WorldWideScience

Sample records for mev neutron radiation

  1. NEUTRON CAPTURE GAMMA RAY FIELD WITH ENERGY TO 10 MeV FOR METROLOGICAL SUPPORT OF RADIATION PROTECTION DEVICES

    Directory of Open Access Journals (Sweden)

    D. I. Komar

    2016-01-01

    Full Text Available Medical, and technological linear particle accelerators, and nuclear reactors are vastly widespread worldwide today. These facility generate fields of secondary gamma radiation with energy to 10 MeV. Therefore, we have a need to calibrate spectrometric and dosimetric ionization measurement instruments for the energies to 10 MeV. The aim of this work is to determine possibility to use thermal neutron collimator of АТ140 Neutron Calibration Facility with 238Pu-Be fast neutron source (IBN-8-6 for this. Below 3 MeV we use a set of point gamma standard spectrometry sources OSGI. We can acquire gamma rays with energies above 3 MeV using radioactive thermal neutron capture on target, i.e. (n, γ-nuclear reaction. We can use neutron capture gamma-ray from titanium target (to 7 MeV or nickel target (to 10 MeV situated in thermal neutron field for calibration. We can use thermal neutron collimator of АТ140 Neutron Calibration Facility with 238Pu-Be fast neutron source (IBN-8-6 for slowing down neutrons from radionuclide fast neutron sources to thermal energies in polyethylene. Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. We placed Ti and Ni targets in collimator’s canal. We got experimental spectral data on detection unit BDKG-19M NaI(Tl 63 × 160 mm with nonlinear channel-energy conversion characteristic in range to 10 MeV. For additional filtration we proposed to use polyethylene neutron reflector and lead discs. We experimentally determined that placement of lead discs in collimator in front of the target allows to filter all spectrum while insignificantly weakening target’s emission. Using theoretical and experimental data we proved the ability to calibrate gamma-ray spectrometers in the range to 10 MeV. 

  2. Conotruncal anomalies induced in chick embryos by 2 MeV neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Tsukasa (Tokyo Women' s Medical Coll. (Japan))

    1984-06-01

    Radiation of 2 MeV neutrons was used to induce conotruncal anomalies experimentally in chick. White leghorn eggs were exposed to a single dose of neutrons ranging from 50 to 250 rads at various stages of the development. Cardiovascular anomalies were found in 209(40%) of 526 treated embryos;conotruncal anomalies (81/209 or 39%), simple VSD (56/209 or 27%), isolated aortic arch anomalies (69/209 or 33%) and others (3/209 or 1%). The conotruncal anomalies were induced at considerably high incidences by exposures during the 3rd day of incubation and the highest incidence was 74% in the cases malformed by 220 rads. The types of conotruncal anomalies observed were as follows: VSD with pulmonary overriding (52 cases), VSD with aortic overriding (11 cases), DORV (10 cases), truncus arteriosus (6 cases) and complete TGA (2 cases). Sixty (74%) of these cases had aortic hypoplasia, constituting coarctation or interruption complex similar to that seen in man. It is generally thought that the experimental production of complete TGA in chick appears to be impossible when utilizing ordinary teratogenic means. However, neutron radiation could induce this peculiar anomaly in chick.

  3. RBE of quasi-monoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes.

    Science.gov (United States)

    Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E

    2005-12-01

    The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.

  4. Radiation damage in InGaAs photodiodes by 1 MeV fast neutrons

    CERN Document Server

    Ohyama, H; Vanhellemont, J; Takami, Y; Sunaga, H

    1998-01-01

    Irradiation damage in In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As p-i-n photodiodes by 1 MeV fast neutrons has been studied as a function of fluence for the first time, and the results are discussed in this paper. The degradation of the electrical and optical performance of diodes increases with increasing fluence. The induced lattice defects in the In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As epitaxial layers and the InP substrate are studied by Deep Level Transient Spectroscopy (DLTS) methods. In the In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As epitaxial layers, hole and electron capture levels are induced by irradiation. The influence of the type of radiation source on the device degradation is then discussed by comparison to 1 MeV electrons with respect to the numbers of knock-on atoms and the nonionizing energy loss (NIEL). The radiation source dependence of performance degradation is attributed to the difference of mass between the two irradiating particles and the p...

  5. Simulating the displacement effect in electronics exposed to space radiation by fission and 14 MeV neutrons; Simulation de l'effet ''deplacement d'atome'' dans l'electronique soumise au rayonnement spatial, par des neutrons de fission et des neutrons de 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Zyromski, Ph. [CEA Valduc, Dept. Recherche sur les Materiaux Nucleaires, 21 - Is-sur-Tille (France)

    1999-07-01

    Various spatial radiation inducing displacement effect in the on board electronics may be quantified by a 1 MeV (Si) equivalent neutron fluence. Simulating this effect is made easier by using the PROSPERO reactor (fission neutrons) or the SAMES 400 kV accelerator (14 MeV neutrons) which data are recalled. (author)

  6. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru; Gribova, O. V., E-mail: gribova79@mail.ru; Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  7. Radiation damage induced in Al{sub 2}O{sub 3} single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Zirour, H. [Faculty of Physics, USTHB, BP. 32, El-Alia, Bab-Ezzouar, Algiers (Algeria); Izerrouken, M., E-mail: izerrouken@yahoo.com [Centre de Recherche Nucléaire de Draria, BP. 43, Sebbala, Draria, Algiers (Algeria); Sari, A. [Centre de Recherche Nucléaire de Berine, BP. 108, Ain-Oussara, Djelfa (Algeria)

    2016-06-15

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al{sub 2}O{sub 3} single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al{sub 2}O{sub 3} samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al{sub 2}O{sub 3} samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 10{sup 13} Xe/cm{sup 2}). It can be assigned to the formation of new lattice plane.

  8. A fine study on gamma radiation in interaction of 14.9 MeV neutron with natural copper

    CERN Document Server

    Deng Fu Guo; Wang Xin Fu; Fan Guo Ying; Hua Ming; Lu Ting

    2001-01-01

    The discrete gamma-ray spectra at 55 degree and 90 degree in the reactions of 14.9 MeV neutrons in natural copper are investigated by using total gamma radiation measurement technique (TGRM) in fast neutron nuclear reaction. There are 107 gamma-rays distinguished by means of a high-resolution gamma-ray analysis code. The production cross sections, the reaction modes and the transition levels of these gamma-rays at the two angles are determined. It is found that the gamma lines come mainly from the reactions of sup 6 sup 3 Cu(n, 2n gamma) sup 6 sup 2 Cu, sup 6 sup 5 Cu(n, 2n gamma) sup 6 sup 4 Cu, sup 6 sup 3 Cu(n, n'gamma) sup 6 sup 3 Cu, sup 6 sup 5 Cu(n, n'gamma) sup 6 sup 5 Cu, etc. Analysis of the activated background spectrum shows that natural copper is an ideal shielding material in fast neutron nuclear reactions

  9. Cellular response to ionizing radiations: a study of the roles of physics and biology. [Neutrons (14 MeV); X radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWyngaert, J.K.

    1982-01-01

    A study of the complementary roles of physics and biology in determining the response of cellular systems to ionizing radiations has been conducted. Upon exposure to radiation, a cell responds in a binary (yes/no) manner in terms of its proliferative ability (survival). The relationship between the survival probability and absorbed dose may then be examined in terms of relevant physical and biological parameters. The approach to these studies was to vary the physics and biology independently and observe separately their influences upon the measured effect. Unique to these studies was the use of heterogeneous tumor systems. These are solid tumors found to consist of genetically related but identifiably distinct populations of cells. The two heterogeneous systems studied, a murine system consisting of four subpopulations and a human tumor system with two subpopulations, were exposed to graded doses of 14 MeV neutrons or x-rays and their effectiveness in inducing cell lethality compared. A further examination of the radiation effect involved a study at the chemical level, measuring the ability of oxygen to potentiate the damage produced by photon irradiation. To summarize, the physics, biology and the environment have all been varied, and the systematics of the responses studied. The data were analyzed within the formalisms of the dual theory of radiation action, the repair-misrepair model, and the repair saturation model of cell killing. The change in survival curve shape and the increased effectiveness in cell killing for higher Linear Energy Transfer (LET) radiations (neutrons vs. x-rays) are discussed in relation to explanations in terms of either physical or biochemical processes.

  10. 14 MeV neutrons physics and applications

    CERN Document Server

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  11. Response of a chevron microchannel plate to 2.5 and 14 MeV neutrons

    Science.gov (United States)

    Medley, S. S.; Persing, R.

    1981-10-01

    The response of a large area (4.6×13 cm) multianode channel electron multiplier array (CEMA) detector to energetic neutrons was investigated. The measured neutron detection efficiencies of the chevron microchannel plate (MCP) were 1.7×10-3 and 6.4×10-3 counts/neutron, respectively, for 2.5 MeV-DD and 14 MeV-DT neutrons. The apparently higher efficiency observed for the 14 MeV neutrons is attributed to neutron-induced background gamma radiation.

  12. Solar Neutrons and the Earth's Radiation Belts.

    Science.gov (United States)

    Lingenfelter, R E; Flamm, E J

    1964-04-17

    The intensity and spectrum of solar neutrons in the vicinity of the earth are calculated on the assumption that the low-energy protons recently detected in balloon and satellite flights are products of solar neutron decay. The solar-neutron flux thus obtained exceeds the global average cosmic-ray neutron leakage above 10 Mev, indicating that it may be an important source of both the inner and outer radiation belts. Neutron measurements in the atmosphere are reviewed and several features of the data are found to be consistent with the estimated solar neutron spectrum.

  13. Radiation Monitoring System of 30 MeV Cyclotron

    Science.gov (United States)

    Lee, Jin-Woo; Hur, Min-Goo; Jeong, Gyosung; Kim, Jongil

    2017-09-01

    A state-of-the-art radiation monitoring system was implemented at KAERI for a 30-MeV cyclotron. This system consists of several types of radiation measuring systems for ambient dose equivalent rate measurements of outside photon and neutron areas as well as inside the cyclotron, and monitors the alpha and beta particulates released from a stack, as well as the results of worker contamination at the portal of the cyclotron. In addition, an automatic alarm system is also mounted if there are alarms in the measuring systems.

  14. Praseodymium activation detector for measuring bursts of 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Tim, E-mail: meehanbt@nv.doe.go [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Hagen, E.C. [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Ruiz, C.L.; Cooper, G.W. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)

    2010-08-21

    A new, accurate, neutron activation detection scheme for measuring pulsed neutrons has been designed and tested. The detection system is sensitive to neutrons with energies above 10 MeV; importantly, it is insensitive to gamma radiation <10 MeV and to lower-energy (e.g., fission and thermal) neutrons. It is based upon the use of {sup 141}Pr, an element that has a single, naturally occurring isotope, a significant n,2n cross-section, and decays by positron emission that result in two coincident 511 keV photons. Neutron fluences are thus inferred by relating measured reaction product decay activity to fluence. Specific sample activity is measured using the sum-peak method to count gamma-ray coincidences from the annihilation of the positron decay products. The system was tested using 14 and 2.45 MeV neutron bursts produced by NSTec Dense Plasma Focus Laboratory fusion sources. Lead, copper, beryllium, and silver activation detectors were compared. The detection method allows measurement of 14 MeV neutron yield with a total error of {approx}18%.

  15. Analysis of a measured neutron background below 6 MeV for fast-neutron imaging systems

    Science.gov (United States)

    Ide, K.; Becchetti, M. F.; Flaska, M.; Poitrasson-Riviere, A.; Hamel, M. C.; Polack, J. K.; Lawrence, C. C.; Clarke, S. D.; Pozzi, S. A.

    2012-12-01

    Detailed and accurate information on the neutron background is relevant for many applications that involve radiation detection, both for non-coincidence and coincidence countings. In particular, for the purpose of developing advanced neutron-detection techniques for nuclear non-proliferation and nuclear safeguards, the energy-dependent, ground-level, neutron-background information is needed. There are only a few previous studies available about the neutron background below 10 MeV, which is a typical neutron energy range of interest for nuclear non-proliferation and nuclear-safeguards applications. Thus, there is a potential for further investigation in this energy range. In this paper, neutron-background measurement results using organic-liquid scintillation detectors are described and discussed, with a direct application in optimization simulations of a fast-neutron imager based on liquid scintillators. The measurement was performed in summer 2011 in Ann Arbor, Michigan, USA, and the measurement setup consisted of several EJ-309 liquid scintillators and a fast waveform digitizer. The average neutron flux below 6 MeV was measured to be approximately 4e-4 counts/cm2/s. In addition, the relationship between the neutron-background count rate and various environmental quantities, such as humidity, at Earth's ground level was investigated and the results did not reveal any straightforward dependences. The measured pulse height distribution (PHD) was unfolded to determine the energy spectrum of the background neutrons. The unfolded neutron-background spectrum was implemented to a previously-created MCNPX-PoliMi model of the neutron-scatter camera and simple-backprojection images of the background neutrons were acquired. Furthermore, a simulated PHD was obtained with the MCNPX-PoliMi code using the "Cosmic-Ray Shower Library" (CRY) source sub-routine which returns various types of radiation, including neutrons and photons at a surface, and accounts for solar cycle

  16. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  17. An intense 14 MeV neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Su Tongling; Sun Biehe; Yang Baotai; Piao Yubo; Shui Yongqing; Chen Kefan; Wang Xuezhi; Yang Cheng; Niu Zhanqi; Liu Yanton; Pan Minshen; Hong Zhongti; Chen Qin (Lanzhou Univ., GS (China). Inst. of Nuclear Research)

    1990-02-15

    A 3x10{sup 12} n/s source of 14 MeV neutrons is described in this paper. The neutrons are produced by the T(d,n){sup 4}He reaction under a 30 mA, 300 keV deuteron beam bombarding a water-cooled, rotating titanium-tritide target. The size of the beam spot on the target is 1.8 cm, and at the distance of closest approach to the source a neutron flux of 5x10{sup 11} n/cm{sup 2} s is obtained. (orig.).

  18. A diamond 14 MeV neutron energy spectrometer with high energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro, E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shin-ichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Watanabe, Hideyuki [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan)

    2016-02-15

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the {sup 12}C(n, α){sup 9}Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  19. Within the framework of the new fuel cycle {sup 232}Th/{sup 233}U, determination of the {sup 233}Pa(n.{gamma}) radiative capture cross section for neutron energies ranging between 0 and 1 MeV; Dans le cadre du nouveau cycle de combustible {sup 232}Th/{sup 233}U, determination de la section efficace de capture radiative {sup 233}Pa(n,{gamma}) pour des energies de neutrons comprises entre 0 et 1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, S

    2004-10-15

    The Thorium cycle Th{sup 232}/U{sup 233} may face brilliant perspectives through advanced concepts like molten salt reactors or accelerator driven systems but it lacks accurate nuclear data concerning some nuclei. Pa{sup 233} is one of these nuclei, its high activity makes the direct measurement of its radiative neutron capture cross-section almost impossible. This difficulty has been evaded by considering the transfer reaction Th{sup 232}(He{sup 3},p)Pa{sup 234}* in which the Pa{sup 234} nucleus is produced in various excited states according to the amount of energy available in the reaction. The first chapter deals with the thorium cycle and its assets to contribute to the quenching of the fast growing world energy demand. The second chapter gives a detailed description of the experimental setting. A scintillation detector based on deuterated benzene (C{sub 6}D{sub 6}) has been used to counter gamma ray cascades. The third chapter is dedicated to data analysis. In the last chapter we compare our experimental results with ENDF and JENDL data and with computed values from 2 statistical models in the 0-1 MeV neutron energy range. Our results disagree clearly with evaluated data: our values are always above ENDF and JENDL data but tend to near computed values. We have also perform the measurement of the radiative neutron cross-section of Pa{sup 231} for a 110 keV neutron: {sigma}(n,{gamma}) 2.00 {+-} 0.14 barn. (A.C.)

  20. Measurement of Neutron Transmission for Tungsten With 2.8 MeV Neutrons

    Institute of Scientific and Technical Information of China (English)

    REN; Jie; RUAN; Xi-chao; BAO; Jie; NIE; Yang-bo; ZHOU; Zu-ying

    2012-01-01

    <正>The neutron transmission for different thickness of tungsten plates for 2.8 MeV neutrons was measured with TOF technique using the d-D reaction neutron source at the 600 kV Cococroft-Walton accelerator at CIAE. The sensitivity for distinguishing the thickness of the tungsten plate was determined with this method. The tungsten plate was put at the beam direction and 1.7 m from the neutron source, and

  1. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.

    Science.gov (United States)

    Takada, Masashi; Mihara, Erika; Sasaki, Michiya; Nakamura, Takashi; Honma, Toshihiko; Kono, Koji; Fujitaka, Kazunobu

    2004-01-01

    Biological data is necessary for estimation of protection from neutrons, but there is a lack of data on biological effects of neutrons for radiation protection. Radiological study on fast neutrons has been done at the National Institute of Radiological Sciences. An intense neutron source has been produced by 25 MeV deuterons on a thick beryllium target. The neutron energy spectrum, which is essential for neutron energy deposition calculation, was measured from thermal to maximum energy range by using an organic liquid scintillator and multi-sphere moderated 3He proportional counters. The spectrum of the gamma rays accompanying the neutron beam was measured simultaneously with the neutron spectrum using the organic liquid scintillator. The transmission by the shield of the spurious neutrons originating from the target was measured to be less than 1% by using the organic liquid scintillator placed behind the collimator. The measured neutron energy spectrum is useful in dose calculations for radiobiology studies.

  2. Limitations of 14 MeV neutron simulation techniques

    Science.gov (United States)

    Kley, W.; Bishop, G. R.; Sinha, A.

    1988-07-01

    A D-T fusion cycle produces five times more neutrons per unit of energy released than a fission cycle, with about twice the damage energy and the capability to produce ten times more hydrogen, helium and transmutation products than fission neutrons. They determine, together with other parameters, the lifetime of the construction materials for the low plasma-density fusion reactors (tokamak, tandem-mirror, etc.), which require a first wall. For the economie feasibility of fusion power reactors the first wall and blanket materials must withstand a dose approaching 300 to 400 dpa. Arguments are presented that demonstrate that today's simulation techniques using existing fission reactors and charged particle beams are excellent tools to study the underlying basic physical phenomena of the evolving damage structures but are not sufficient to provide a valid technological data base for the design of economie fusion power reactors. It is shown than an optimized spallation neutron source based on a continuous beam of 600 MeV, 6 mA protons is suitable to simulate first wall conditions. Comparing it with FMIT the 35 MeV, 100 mA D + -Li neutron source, we arrive at the following figure of merit: FM = {(dpa·volume) EURAC}/{(dpa·volume) FMIT} = {} = 111 reflecting the fact that the proton beam generates about 100 times more neutrons than the deuteron beam in FMIT for the same beam power.

  3. The response of the Sievert instrument in neutron beams up to 180 MeV

    CERN Document Server

    Kylionen, J E; Samuelson, G

    2001-01-01

    Measurements with a tissue-equivalent proportional counter (TEPC) using the variance-covariance method have been performed in neutron beams between 71 keV and 180 MeV and in the cosmic radiation reference field (CERF) at CERN. The results show that with appropriate linear Q/sub D/(y/sub D/) relations, the ambient dose equivalent can be determined within about 55% in these beams. Build- up measurements show that wall thickness is not crucial for H* determinations at 60 and 180 MeV. (26 refs).

  4. MeV Neutron Production from Thermal Neutron Capture in {6}^Li Simulated with Geant4

    CERN Document Server

    Santoro, Valentina; Bentley, Phillip M

    2015-01-01

    Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to $\\gamma$-ray production. Unfortunately, the usage of these compounds can also give rise to fast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for $^6$Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.

  5. MeV Neutron Production from Thermal Neutron Capture in 6Li Simulated With Geant4

    Science.gov (United States)

    Santoro, Valentina; DiJulio, Douglas D.; Bentley, Phillip M.

    2016-09-01

    Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to y- ray production. Unfortunately, the usage of these compounds can also give rise to fast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for 6 Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.

  6. Radiation Response of Forward Biased Float Zone and Magnetic Czochralski Silicon Detectors of Different Geometry for 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Mekki, J; Dusseau, Laurent; Roche, Nicolas Jean-Henri; Saigne, Frederic; Mekki, Julien; Glaser, Maurice

    2010-01-01

    Aiming at evaluating new options for radiation monitoring sensors in LHC/SLHC experiments, the radiation responses of FZ and MCz custom made silicon detectors of different geometry have been studied up to about 4 x 10(14) n(eq)/cm(2). The radiation response of the devices under investigation is discussed in terms of material type, thickness and active area influence.

  7. Response of diamond detector sandwich to 14 MeV neutrons

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Verona-Rinati, G; Cardarelli, R

    2015-01-01

    In this paper we present the measurement of the response of 50 $\\mu$m thin diamond detectors to 14 MeV neutrons. Such neutrons are produced in fusion reactors and are of particular interest for ITER neutron diagnostics. Among semiconductor detectors diamond has properties most appropriate for harsh radiation and temperature conditions of a fusion reactor. However, 300-500 $\\mu$m thick diamond detectors suffer significant radiation damage already at neutron fluences of the order of $10^{14}$ n/cm$^2$. It is expected that a 50 $\\mu$m thick diamond will withstand a fluence of $>10^{16}$ n/cm$^2$. We tested two 50 $\\mu$m thick single crystal CVD diamonds, stacked to form a ``sandwich'' detector for coincidence measurements. The detector measured the conversion of 14 MeV neutrons, impinging on one diamond, into $\\alpha$ particles which were detected in the second diamond in coincidence with nuclear recoil. For $^{12}C(n,\\alpha)^{9}Be$ reaction the total energy deposited in the detector gives access to the initial ...

  8. Research of Fast Neutron Radiation Effect on Rats

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to research the fast neutron radiation effect on rats,the 8 weeks Wistar male rats were wholly irradiated by 14 MeV fast neutron with 5 Gy. In the experiment,the rats were divided into normal and irradiation group, and killed

  9. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20 to 250 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, Thomas D [Los Alamos National Laboratory; Justus, Alan L [Los Alamos National Laboratory; Gadd, S Milan [Los Alamos National Laboratory; Olsher, Richard H [RP-2; Devine, Robert T [RP-2

    2009-01-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom.

  10. Temperature Dependence of the Primary Species Yields of Liquid Water Radiolysis by 0.8-MeV Fast Neutrons

    Directory of Open Access Journals (Sweden)

    S.L. Butarbutar

    2016-04-01

    Full Text Available The yields of species such as e-aq, H•, •OH, H2 and H2O2, formed from the radiolysis of neutral liquid water by the incidence of 0.8-MeV neutrons at temperatures between 25 and 350°C, were calculated by using Monte Carlo simulations. The slowing down of these neutrons through elastic scattering produced recoil protons elastically of ~0.5057, 0.186, and 0.0684 MeV which had linear energy transfers (LETs of ~40, 67 and 76 keV/µm, respectively, at 25°C. The effects of neutron radiation can be predicted based on the contribution of those first three recoil protons by neglecting the radiation effects due to oxygen ion recoils. Then, the fast neutron yields could be estimated by summing the yields of contributing protons after corresponding weightings were used according to their energy. In this work, yields were calculated at 10-7 and 10-6 s after incidence of neutron radiation in water at the aforementioned temperature range. Overall, there is a reasonably good agreement between our calculated and existing experimental G-values for the entire temperature range. However, we proposed an hypothesis that the not very significant difference between experimental data and our calculated data is due to the different measuring time used in obtaining the experimental data as compared to the ones used in our calculation. Our computed yields for 0.8-MeV fast neutron radiation show an essentially similar temperature dependences over the range of temperature studied with 2-MeV fast neutron and low-LET radiation, but with lower values for yields of free radicals and higher values for molecular yields.

  11. Calibration of the radiation monitors from DESY and SPring-8 at the quasi-mono-energetic neutron beams using 100 and 300 MeV 7Li(p,n) reaction at RCNP in Osaka Japan in November 2014

    Science.gov (United States)

    Leuschner, Albrecht; Asano, Yoshihiro; Klett, Alfred

    2017-09-01

    At the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP) Osaka University, Osaka, Japan a series of measurement campaigns had been continued with quasi mono-energetic neutron beams in November 2014. A 7Li target was bombarded with 100 and 300 MeV protons and the generated neutron beams were directed into a long time-of-flight tunnel at 0 and 25 degrees deflection angle with respect to the proton beam. At a distance of 41 m the cross section of the neutron beam was large enough for the illumination of square meter sized objects like extended range rem-counters. The research institutes SPring-8/RIKEN, Japan, and DESY, Germany, participated in this campaign for the calibration of 4 different types of active ambient dose rate monitors: LB 6411, LB 6411-Pb, LB 6419 and LB 6420. The measurements of their responses are reported and compared with the calculated values.

  12. Measurement of Prompt Fission Neutron Spectrum of 238U at 2.8 MeV

    Institute of Scientific and Technical Information of China (English)

    HUANG; Han-xiong; RUAN; Xi-chao; REN; Jie; LI; Guang-wu; LUAN; Guang-yuan

    2015-01-01

    The prompt fission neutron spectrum(PFNS,Fig.1)of 238U was measured at 2.8MeV incident neutron energy by using the Cockcroft&Walton accelerator in China Institute of Atomic Energy(CIAE).The effect-to-background ratio was improved by increasing the amount of sample mass and adding an appropriate shielding.The final uncertainty of neutron energy spectrum is less than 20%below 10MeV region at an bin size

  13. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  14. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, Philippe

    2004-04-01

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects.

  15. Nuclear data measurements for 40-90 MeV neutrons at TIARA

    Energy Technology Data Exchange (ETDEWEB)

    Baba, M. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center

    2000-03-01

    Experimental activities at the {sup 7}Li neutron source of TIARA, Japan Atomic Energy Research Institute, Takasaki Establishment are reviewed briefly. Experiments on (1) double-differential charged particle production cross sections for 40-90 MeV neutrons and protons, and (2) neutron elastic scattering and non-elastic cross sections are described as well as the frame of the research. (author)

  16. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    Science.gov (United States)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  17. Helium production cross section Measurement of Pb and Sn for 14.9 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Fujimoto, Toshihiro; Ozaki, Shuji; Muramasu, Masatomo; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Kanda, Yukinori; Ikeda, Yujiro

    1998-03-01

    Helium production cross sections of lead and tin for 14.9 MeV neutrons were measured by helium accumulation method. Lead and tin samples were irradiated with FNS, an intense d-T neutron source of JAERI. The amount of helium produced in the samples by the neutron irradiation was measured with the Helium Atoms Measurement System (HAMS) at Kyushu University. As the samples contained a small amount of helium because of their small helium production cross sections at 14.9 MeV, the samples were evaporated by radiation from a tungsten filament to decrease background gases at helium measurement. Uncertainties of the present results were less than {+-}4.4%. The results were compared with other experimental data in the literature and also compared with the evaluated values in JENDL-3.2. (author)

  18. Contribution to the determination of Sb-Ag-Cu-Ga-Mo-Zn using 14 MeV neutron activation; Contribution au dosage de Sb-Ag-Cu-Ga-Mo-Zn par activation aux neutrons de 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crambes, M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-04-01

    By using, 14 MeV, neutron irradiation it is possible to extend the field of application of neutron radio-activation analysis, in particular to the case of light elements. For, many other elements it can replace in-pile irradiation thereby making it possible, thanks to portable 14 MeV neutron generators, to carry out radio-activation analyses away from nuclear-research c e n t r e s. With a view to applying this analytical technique to routine work, we have developed some rapid chemical separation methods in order to make possible the determination of several elements which after exposure to fast neutrons, produce {beta} emitting nuclides which cannot be differentiated by a simple instrumental study, the emitted radiation being of the same type and of similar half-life the two cases. (author) [French] L'irradiation au moyen de neutrons de 14 MeV permet d'etendre le domaine d'application de l'analyse par radioactivation neutronique, en particulier aux elements legers. Cependant pour de nombreux autres elements elle peut remplacer l'irradiation en reacteur nucleaire permettant ainsi grace aux ensembles portables producteurs de neutrons de 14 MeV, l'extension de l'analyse par radioactivation a l'exterieur des centres d'etudes nucleaires. Dans le but d'appliquer cette methode d'analyse a des travaux de routine, nous avons mis au point des separations chimiques rapides, afin de permettre le dosage de quelques elements qui par irradiation aux neutrons rapides, engendrent des nucleides emetteurs {beta} qu'une simple etude instrumentale ne peut differencier en raison de l'identite de leur rayonnement et de leurs periodes radioactives trop proches. (auteur)

  19. Radiation fields from neutron generators shielded with different materials

    Science.gov (United States)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  20. Designing of the 14 MeV neutron moderator for BNCT

    Institute of Scientific and Technical Information of China (English)

    CHENG Dao-Wen; LU Jing-Bin; YANG Dong; LIU Yu-Min; WANG Hui-Dong; MA Ke-Yan

    2012-01-01

    In boron neutron capture therapy (BNCT),the ratio of the fast neutron flux to the neutron flux in the tumor (RFNT) must be less than 3%.If a D-T neutron generator is used in BNCT,the 14 MeV neutron moderator must be optimized to reduce the RFNT.Based on the neutron moderation theory and the simulation results,tungsten,lead and diamond were used to moderate the 14 MeV neutrons.Satisfying RFNT of less than 3%,the maximum neutron flux in the tumor was achieved with a three-layer moderator comprised of a 3 cm thick tungsten layer,a 14 cm thick lead layer and a 21 cm thick diamond layer.

  1. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  2. The pilot experimental study of 14 MeV fast neutron digital radiography

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample, whose shell is made of heavy metal and in which there are some hydrogen materials, and the study of fast neutron digital radiography just begins in China. By the use of a D-T accelerator, a digital imaging system made up of a fast neutron scintillation screen made of ZnS(Ag) and polypropylene, lens and a scientific grade CCD, the experimental study of fast neutron radiography has been done between 4.3×1010-6.8×1010 n/s of neutron yield. Some 14 MeV fast neutron digital radiographs have been gotten. According to experimental radiographs and their data, the performance of the fast neutron scintillation screen and the basic characters of 14 MeV fast neutron radiography are analyzed, and it is helpful for the further research.

  3. The pilot experimental study of 14 MeV fast neutron digital radiography

    Institute of Scientific and Technical Information of China (English)

    TANG Bin; ZHOU ChangGen; HUO HeYong; WU Yang; LIU Bin; LOU BenChao; SUN Yong

    2009-01-01

    14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample,whose shell is made of heavy metal and in which there are some hydrogen materials,and the study of fast neutron digital radiography just begins in China.By the use of a D-T accelerator,a digital imaging system made up of a fast neutron scintillation screen made of ZnS(Ag) and polypropylene,lens and a scientific grade CCD,the experimental study of fast neutron radiography has been done between 4.3×1010-6.8×1010 n/s of neutron yield.Some 14 MeV fast neutron digital radiographs have been gotten.According to ex-perimental radiographs and their data,the performance of the fast neutron scintillation screen and the basic characters of 14 MeV fast neutron radiography are analyzed,and it is helpful for the further re-search.

  4. A possible approach to 14MeV neutron moderation: A preliminary study case.

    Science.gov (United States)

    Flammini, D; Pilotti, R; Pietropaolo, A

    2017-07-01

    Deuterium-Tritium (D-T) interactions produce almost monochromatic neutrons with about 14MeV energy. These neutrons are used in benchmark experiments as well as for neutron cross sections assessment in fusion reactors technology. The possibility to moderate 14MeV neutrons for purposes beyond fusion is worth to be studied in relation to projects of intense D-T sources. In this preliminary study, carried out using the MCNP Monte Carlo code, the moderation of 14MeV neutrons is approached foreseeing the use of combination of metallic materials as pre-moderator and reflectors coupled to standard water moderators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Neutron-proton analyzing power measurements from 375 to 775 MeV

    Science.gov (United States)

    Newsom, C. R.; Hollas, C. L.; Ransome, R. D.; Riley, P. J.; Bonner, B. E.; Boissevain, J. G. J.; Jarmer, J. J.; McNaughton, M. W.; Simmons, J. E.; Bhatia, T. S.; Glass, G.; Hiebert, J. C.; Northcliffe, L. C.; Tippens, W. B.

    1989-03-01

    As part of an experimental study of the nucleon-nucleon interaction at medium energy, the free neutron-proton analyzing power An(θ*n,Tn) has been measured at nine incident neutron energies in the range 375<=Tn<=775 MeV and for neutron c.m. angles in the range 57°<=θ*n<=159°. Unpolarized neutrons with a broad continuum of energies, produced by interaction of an 800 MeV proton beam with a beryllium target, were scattered from a polarized proton target. At each angle, for the whole energy region, the scattered neutron and conjugate recoil proton were detected in coincidence. A previously unseen minimum is observed in the energy dependence of An(θ*~100°) near 625 MeV.

  6. A proposed diagnostic for time-resolved 14 MeV neutron measurements on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Ku, L.P.; Nazikian, R.; Prorvitch, V.

    1990-06-01

    A novel method for time resolved measurements of the 14 MeV neutron flux in an intense 2.5 MeV neutron and {gamma}-ray background has been developed. Discrimination against the background 2.5 MeV neutron and {gamma}-ray flux is achieved by the use of polyethylene and lead shielding. A high detection efficiency of DT neutrons is obtained by the use of large volume plastic scintillators and photomultiplier tube designed for operating in high magnetic field environments. Design computations for a such a detector system on TFTR show that an absolute detection efficiency of {approximately}10{sup {minus}8} counts per DT neutron may be obtained. A source strength of 10{sup 13} DT n/s may readily be detected by this method using both count mode and current mode operation with a resolution of {approximately}10 ms within a statistical accuracy of {approximately}5%. 12 refs., 8 figs., 2 tabs.

  7. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.F.; Ronningen, R.M.; Godeke, Arno; Heibronn, L.H; McMahan-Norris, P.; Gupta, R.

    2007-11-01

    The use of HTS materials in high radiation environments requires that the superconducting properties remain constant up to a radiation high dose. BSCCO-2223 samples from two manufacturers were irradiated with 50 MeV protons at fluences of up to 5 x 10{sup 17} protons/cm{sup 2}. The samples lost approximately 75% of their pre-irradiation I{sub c}. This compares with Nb{sub 3}Sn, which loses about 50% at the same displacements per atom.

  8. Neutron-induced fission cross section of 242Pu from 15 MeV to 20 MeV

    Directory of Open Access Journals (Sweden)

    Jovančević N.

    2017-01-01

    Full Text Available Accurate nuclear-data needs in the fast-neutron-energy region have been recently addressed for the development of next generation nuclear power plants (GEN-IV by the OECD Nuclear Energy Agency (NEA. This sensitivity study has shown that of particular interest is the 242Pu(n,f cross section for fast reactor systems. Measurements have been performed with quasi-monoenergetic neutrons in the energy range from 15 MeV to 20 MeV produced by the Van de Graaff accelerator of the JRC-Geel. A twin Frisch-grid ionization chamber has been used in a back-to-back configuration as fission fragment detector. The 242Pu(n,f cross section has been normalized to 238U(n,f cross section data. The results were compared with existing literature data and show acceptable agreement within 5%.

  9. Response of detector modules of the neutron hodoscope SENECA to neutrons with energies 7-70 MeV

    Science.gov (United States)

    v. Edel, G.; Selke, O.; Pöch, C.; Smend, F.; Schumacher, M.; Nolte, R.; Schrewe, U.; Brede, H. J.; Schuhmacher, H.; Henneck, R.

    1993-07-01

    SENECA is a hodoscope for recoil neutrons from photoreactions on nuclei and nucleons in the photon energy range 50-900 MeV. It consists of 32 hexagonal scintillation detector modules in a honeycomb array. Differential detection efficiency spectra of a single module as well as the cross-talk between neighbouring modules were measured at neutron energies between 7 and 70 MeV. Neutron detection efficiencies were determined in the same energy range with an average experimental uncertainty of 7.6%. The experimental results agree with predictions from Monte Carlo codes within the limits of the experimental error.

  10. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  11. Modification of ROSPEC to cover neutrons from thermal to 18 MeV.

    Science.gov (United States)

    Ing, H; Djeffal, S; Clifford, T; Li, L; Noulty, R; Machrafi, R

    2007-01-01

    Rotating Spectrometer (ROSPEC) is a neutron spectrometer designed to measure neutron energy distributions, and provide accurate neutron dosimetry. It is a completely self-contained unit and measures neutron energy via recoiling protons in gas proportional counters. Each of the four original gas counters is dedicated to a particular neutron energy range dictated by sensitivity to gamma rays at the low energy end of the spectrum and by proton collisions with the counter walls at the high energy end. Introduced originally in 1992, ROSPEC has a proven operational record with a program of continued upgrades. The operating range of the original ROSPEC spans 50 keV-4.5 MeV. The range of the ROSPEC has now been extended down to include epithermal and thermal neutrons by adding two 2 in. (3)He counters. Also, an optional simple scintillation spectrometer was designed to extend the upper limit of ROSPEC up to 18 MeV.

  12. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    Science.gov (United States)

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code.

  13. Neutron field measurements at the 590 MeV ring cyclotron of the Paul Scherrer Institute

    CERN Document Server

    Grecescu, M; Boschung, M; Fiechtner, A; Gmuer, K; Laedermann, J P; Valley, J F; Wernli, C

    2002-01-01

    A complete characterization of the neutron field was performed at 3 representative areas around the 590 MeV Ring cyclotron of the Paul Scherrer Institute. The neutron spectra were measured with a Bonner spheres system, sup 2 sup 0 sup 9 Bi and sup 2 sup 3 sup 2 Th fission track detectors. Their shapes are very different according to the location; neutron energies up to about 200 MeV were recorded. The dosimetry was performed with various active instruments: 2202D, LB 6411, LINUS, nm 500, nm 500X, HANDI, REM 500. The comparison between the H*(10) values determined by different systems is presented and discussed.

  14. Elastic Neutron Scattering at 96 MeV from {sup 12}C and {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Klug, J.; Blomgren, J.; Atac, A. [and others

    2003-04-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20-180 MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from {sup 12}C and {sup 208}Pb has been studied at 96 MeV in the 10-70 deg interval. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated uncertainty, 3 %, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic nuclear theory.

  15. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Alba, R; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, G; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Santonocito, D; Schillaci, M

    2012-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  16. Neutron-induced fission cross sections of uraniums up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.

    1998-11-01

    Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)

  17. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.F.; Ronningen, R.M.; Godeke, A.; Heilbronn, L.H.; McMahan-Norris, P.; Gupta, R.

    2007-11-27

    The use of HTS materials in high radiation environmentsrequires that the superconducting properties remain constant up to aradiation high dose. BSCCO-2223 samples from two manufacturers wereirradiated with 50 MeV protons at fluences of up to 5 x 1017 protons/cm2.The samples lost approximately 75 percent of their pre-irradiation Ic.This compares with Nb3Sn, which loses about 50 percent at the samedisplacements per atom.

  18. [Ozone therapy for radiation reactions and skin lesions after neutron therapy in patients with malignant tumors].

    Science.gov (United States)

    Velikaya, V V; Gribova, O V; Musabaeva, L I; Startseva, Zh A; Simonov, K A; Aleinik, A N; Lisin, V A

    2015-01-01

    The article discusses the problem of radiation complications from normal tissues in patients after therapy with fast neutrons of 6.3 MeV. The methods of treatment using ozone technologies in patients with radiation reactions and skin lesions on the areas of irradiation after neutron and neutron-photon therapy have been worked out. Ozone therapy showed its harmlessness and increased efficiency of complex treatment of these patients.

  19. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    CERN Document Server

    Osipenko, M; Alba, R; Ricco, G; Schillaci, M; Barbagallo, M; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, L; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Santonocito, D; Scuderi, V; Viberti, C M

    2013-01-01

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range He3 detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval.

  20. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  1. Calibration of NIF neutron detectors in the energy region E<14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, G J; Moran, M J; Koch, J A; Phillips, T W; Glebov, V Y; Sangster, T C; Stoeckl, C; Wender, S A; Morse, E C

    2004-04-09

    We examine various options for calibration of NIF neutron detectors in the energy region E<14 MeV. These options include: downscatter of D-T fusion neutrons using plastic targets; nuclear reactions at a Tandem Van de Graaf accelerator; and ''white'' neutrons from a pulsed spallation source. As an example of the spallation option, we present some calibration data that was recently obtained with a single crystal CVD diamond detector at the Weapons Neutron Research facility (WNR) at LANL.

  2. Technical preparations for the in-vessel 14 MeV neutron calibration at JET

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P., E-mail: paola.batistoni@enea.it [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044, Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Popovichev, S. [CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Crowe, R. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Cufar, A. [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Ghani, Z. [CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Keogh, K. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Peacock, A. [JET Exploitation Unit, Abingdon, Oxon, OX14 3DB (United Kingdom); Price, R. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Baranov, A.; Korotkov, S.; Lykin, P.; Samoshin, A. [All-Russia Research Institute of Automatics (VNIIA), 22, Sushchevskaya str., 127055, Moscow (Russian Federation)

    2017-04-15

    Highlights: • The JET 14 MeV neutron calibration requires a neutron generator to be deployed inside the vacuum vessel by means of the remote handling system. • A neutron generator of suitable intensity and compliant with physics, remote handling and safety requirements has been identified and procured.The scientific programme of the preparatory phase devoted to fully characterizing the selected 14 MeV neutron generator is discussed. • The aim is to measure the absolute neutron emission rate within (± 5%) and the energy spectrum of emitted neutron as a function of angles. • The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are discussed. - Abstract: The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is ±10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the

  3. Simulation of a Compact Neutron Source with 13MeV Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong ho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Moon, Myung Kook; Hur, Min Goo; Kim, GTae Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this presentation, we calculated neutron flux and neutron energy spectrum in 13MeV Cyclotron. Additionally, we found suitable design of target, metal layer and cooling system. We could find an opportunity about neutron radiography system by using cyclotron. For neutron radiography, fast neutron have to shift thermal range. We need to study this direction. Monte Carlo code is not almighty, so we need to refer to this data. This presentation can be first step to prove to operate KIRAMS-13 in Pusan National University. Proton accelerator is valuable for neutron generator for neutron generator. This paper is aim to verify possibility to get neutron from KIRAMS-13, which is located in Pusan national university and optimize neutron target. To get nice quality of neutrons, it is necessary to study neutron flux and neutron energy spectrum. In order to get neutronic data, the simulation is conducted by using Monte Carlo method with Geant4 code. Regarding target design, which is consist of Beryllium target, metal layer and cooling system, simulation is conducted below many different combinations.

  4. Measurements of double-differential neutron emission cross sections of Nb and Bi for 11.5 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Matsuyama, Shigeo; Soda, Daisuke; Baba, Mamoru; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections (DDXs) of Nb and Bi have been measured for 11.5MeV neutrons using the {sup 15N}(d,n){sup 16}O quasi-monoenergetic neutron source at Tohoku University 4.5MV Dynamitron facility. For En`>6MeV, DDXs were measured by the conventional TOF method (single-TOF:S-TOF). For En`<6MeV, where the S-TOF spectra were distorted by the background neutrons, we adopted a double-TOF method (D-TOF). By applying D-TOF method, we obtained DDXs down to 1MeV. (author)

  5. BPW34 Commercial p-i-n Diodes for High-Level 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Ravotti, F; Moll, M; Saigne, F

    2008-01-01

    The BPW34 p-i-n diode was characterized at CERN in view of its utilization as radiation monitor at the LHC to cover the broad 1-MeV neutron equivalent fluence (Phieq) range expected for the LHC machine and experiments during operation. Electrical measurements for both forward and reverse bias were used to characterize the device and to understand its behavior under irradiation. When the device is powered forward, a sensitivity to fast hadrons for Phieq > 2 times1012 cm-2 has been observed. With increasing particle fluences the forward I- V characteristics of the diode shifts towards higher voltages. At Phieq > 3times1013 cm-2, the forward characteristic starts to bend back assuming a thyristor-like behavior. An explanation for this phenomenon is given in this article. Finally, detailed radiation-response curves for the forward bias-operation and annealing studies of the diode's forward voltage are presented for proton, neutron and gamma irradiation.

  6. Response of LaBr{sub 3}(Ce) scintillators to 14 MeV fusion neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cazzaniga, C., E-mail: carlo.cazzaniga@mib.infn.it [University of Milano Bicocca, Departement of Physics, Piazza della Scienza 3, Milano 20125 (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano 20125 (Italy); Nocente, M. [University of Milano Bicocca, Departement of Physics, Piazza della Scienza 3, Milano 20125 (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano 20125 (Italy); Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano 20125 (Italy); Rebai, M. [University of Milano Bicocca, Departement of Physics, Piazza della Scienza 3, Milano 20125 (Italy); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati, Roma (Italy); Camera, F.; Giaz, A.; Pellegri, L. [University of Milano, Departement of Physics, Via Celoria 16, Milano 1-20133 (Italy); Gorini, G. [University of Milano Bicocca, Departement of Physics, Piazza della Scienza 3, Milano 20125 (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano 20125 (Italy)

    2015-04-01

    The response of a 3″×3″ LaBr{sub 3}(Ce) scintillator to 14 MeV neutron irradiation has been measured at the Frascati Neutron Generator and simulated by means of a dedicated MCNP model. Several reactions are found to contribute to the measured response, with a key role played by neutron inelastic scattering and (n,2n) reactions on {sup 79}Br, {sup 81}Br and {sup 139}La isotopes. An overall 43% efficiency to 14 MeV neutron detection above an experimental threshold of 0.35 MeV is calculated and confirmed by measurements. Post irradiation activation of the crystal has been also observed and is explained in terms of nuclear decays from the short lived {sup 78}Br and {sup 80}Br isotopes produced in (n,2n) reactions. The results presented in this paper are of relevance for the design of γ-ray detectors in burning plasma fusion experiments of the next generation, such as ITER, where capability to perform measurements in an intense 14 MeV neutron flux is required.

  7. IRRADIATION MEASUREMENTS ON THE 0.25 micro m CMOS PIXEL READOUT TEST CHIP BY A 14 MEV NEUTRON FACILITY

    CERN Document Server

    Barbera, R; CERN. Geneva; Palmeri, A; Pappalardo, G S; Riggi, F; Di Liberto, S; Meddi, F; Sestito, S; Loi, D; Angelone, M; Badalà, A; Pillon, M

    2000-01-01

    ALICE-ITS-2000-24   Abstract   A test facility station with 14 MeV neutrons was arranged at the FNG-ENEA Laboratory in Frascati (Italy) for the characterization with respect to radiation tolerance of the prototype pixel readout chips in 0.25 m m IBM technology done in edgeless design. This facility could allow to test both the readout chips and the pilot chips for the pixel readout system. In fact, both ASICs will have to survive at the same radiation level foreseen for the innermost layer (r = 4 cm) of the Inner Tracker System (ITS) in the LHC-ALICE experiment. Two test chips were exposed to an overall flux of 1.3 x 1012 14 MeV neutrons/cm2, which is larger than the expected neutron flux in ALICE during 10 years data taking. No variation in the parameters defining the chip functionality (analog and digital currents, linearity, shapes of the signal, efficiency) was observed.

  8. Shielding studies for 2.5 MeV neutrons using GEANT4

    Science.gov (United States)

    Tovar, Felipe; Castro-Colin, Miguel; Sajo-Bohus, Laszlo

    2008-10-01

    By means of the software GEANT4, a toolkit based on the Monte Carlo method, we seek to study the dispersive effects that 2.5 MeV neutrons have, as well the gamma-yield, after interacting with various attenuating materials with simple geometrical configurations. A simulated mass of Uranium-238 is considered in the study with the purpose of observing the behavior of its characteristic yield after fast neutron irradiation.

  9. 14 MeV neutron-induced transverse mode shifts in multimode VCSELs

    CERN Document Server

    Pailharey, E; D'Hose, C; Musseau, O

    2000-01-01

    Research on optical communication behavior in radiative environments is a key point for the design of diagnostic links for the large physical instruments (Laser MegaJoule at CEA, Large Hadron Collider at CERN). For years, the radiation tolerance of several types of emitters (LED and LD) have been tested with promising results for the LDs. New technologies and devices (VCSEL) have recently appeared as promising candidates to replace conventional edge emitting LDs. The shorter wavelength VCSELs (below 1 mu m) are well adapted for short distance data links, due to their low threshold current, high efficiency and large possibilities for integration. 850 nm VCSELs are tested under 14 MeV neutron irradiation. Three different aperture (8 mu m monomode, 15 mu m and 20 mu m multimode) COTS devices are irradiated up to 3.4*10/sup 13/ n/cm/sup 2/. Transverse pattern behavior is studied using infrared camera imaging, while optical power modifications are measured as a function of bias current. Displacement damage induces...

  10. Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)

    1998-03-01

    Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)

  11. Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Ma, F., E-mail: mf@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhanga, X.Y.; Ju, Y.Q.; Zhang, H.B.; Ge, H.L.; Wang, J.G. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Y.Y.; Xu, X.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Luo, P.; Yang, L.; Zhang, Y.B.; Li, J.Y.; Xu, J.K. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liang, T.J. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, S.L. [University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Y.W.; Gu, L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-01-01

    The neutron yield from thick target of Pb irradiated with 250 MeV protons has been studied experimentally. The neutron production was measured with the water-bath gold method. The thermal neutron distributions in the water were determined according to the measured activities of Au foils. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data. It was found out that the Au foils with cadmium cover significantly changed the spacial distribution of the thermal neutron field. The corrected neutron yield was deduced to be 2.23±0.19 n/proton by considering the influence of the Cd cover on the thermal neutron flux.

  12. Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons

    Science.gov (United States)

    Chen, L.; Ma, F.; Zhanga, X. Y.; Ju, Y. Q.; Zhang, H. B.; Ge, H. L.; Wang, J. G.; Zhou, B.; Li, Y. Y.; Xu, X. W.; Luo, P.; Yang, L.; Zhang, Y. B.; Li, J. Y.; Xu, J. K.; Liang, T. J.; Wang, S. L.; Yang, Y. W.; Gu, L.

    2015-01-01

    The neutron yield from thick target of Pb irradiated with 250 MeV protons has been studied experimentally. The neutron production was measured with the water-bath gold method. The thermal neutron distributions in the water were determined according to the measured activities of Au foils. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data. It was found out that the Au foils with cadmium cover significantly changed the spacial distribution of the thermal neutron field. The corrected neutron yield was deduced to be 2.23 ± 0.19 n/proton by considering the influence of the Cd cover on the thermal neutron flux.

  13. DPA damage analysis for 14-MeV neutrons on PFC materials

    Science.gov (United States)

    Kim, Dong-woo; Lee, Bo-young; Ko, Seung-kook; Kim, Hee-soo; Noh, Seung-jung

    2015-06-01

    The dpa (displacement per atom) damage for 14-MeV neutron in a pfc materials was simulated using MCNPX/SPECTER code. The dpa values in the main components of the structural material SS316L, Fe, Cr and Ni, were calculated to analyze the effect of nuclear damage. According to the neutron wall load for ITER design base, a neutron flux of 3.5 × 1013 neutrons/cm2·sec was applied. The simulated dpa values were found to be as 3.0 dpa/fpy for Fe, 2.9 dpa/fpy for Cr and 3.1 dpa/fpy for Ni. For practical experiments, the simulated dpa values due to the irradiation damage of 17-MeV protons were found to be as 0.67 dpa at the peak and 0.05 at the surface for SS316L using by SRIM code at the same fluence. For the 17-MeV proton irradiation, the Bragg peak appears at a 0.64-mm depth. Also, SS316L specimens irradiated by a 17-MeV proton beam with a fluence of 1016 protons/cm2 were analyzed by using transmission electron microscopy.

  14. Effect of neutron and proton radiations on magnetization of biotite

    CERN Document Server

    Abdurakhimov, A U; Sharipov, S M; Yugaj, V P; Granovskij, A B; Radkovskaya, A A

    2002-01-01

    One analyzes curves of field dependence of magnetization of biotite measured in the initial state under 4.2 K temperature subsequent to irradiation of 14 MeV energy and 1.2 x 10 sup 1 sup 3 cm sup - sup 2 dose neutrons and by 3 MeV energy and 2.2 x 10 sup 1 sup 4 cm sup - sup 2 dose protons, as well as, subsequent to annealing under 1000 deg temperature during 15 min. Irradiation by neutrons and protons was determined to result in increase of magneto-ordered phase content in biotite and, thus, in increase of magnetization of specimen. It is accounted for by formation of oxides in melt radiation thermal peaks and by freezing of high-temperature phase states corresponding to magnetite or solid solution of magnetite and hematite there. Thermal treatment does not change content of magneto-ordered phase in specimens

  15. The New Sorgentina Fusion Source-NSFS: 14 MeV neutrons for fusion and beyond

    Science.gov (United States)

    Pietropaolo, A.; Console Camprini, P.; Agostini, P.; Amendola, R.; Angelone, M.; Bernardi, D.; Bruni, F.; Capogni, M.; Colognesi, D.; Faccini, R.; Filabozzi, A.; Flammini, D.; Fiori, F.; Frisoni, M.; Grazzi, F.; Pillon, M.; Pizzuto, A.; Quintieri, L.; Sacchetti, F.; Valente, P.

    2016-09-01

    The importance of the design for the realization of an intense 14 MeV neutron facility devoted to test and validate materials suitable for harsh neutron environments, such as a fusion reactor, is well established. The “New Sorgentina” Fusion Source (NSFS) is a project that proposes an intense D-T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating targets. NSFS may produce about 1015 n/s at the target and has to be intended as an European facility that maybe realized in a few years, once provided a preliminary technological program devoted to the operation of the ion source in continuous mode, target heat loading/removal, target and tritium handling, inventor as well as site licensing. In this contribution, the main characteristics of NSFS project will be presented and its possible use as a multipurpose facility outlined.

  16. TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons

    Science.gov (United States)

    Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.

  17. Neutron responsive self-powered radiation detector

    Science.gov (United States)

    Brown, Donald P.; Cannon, Collins P.

    1978-01-01

    An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.

  18. Lead 207, 208 (n, xn gamma) reactions for neutron energies up to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pavlik, A.; Vonach, H. [Univ. Wien (Austria). Inst. fuer Radiumforschung und Kernphysik; Chadwick, M.B.; Haight, R.C.; Nelson, R.O.; Wender, S.A.; Young, P.G. [Los Alamos National Lab., NM (United States)

    1994-07-01

    High-resolution {gamma}-ray spectra from the interaction of neutrons in the energy range from 3 to 200 MeV with {sup 207,208}Pb were measured with the white neutron source at the WNR facility at Los Alamos National Laboratory. From these data, excitation functions for prominent {gamma} transitions in {sup 200,202,204,206,207,208}Pb were derived from threshold to 200 MeV incident neutron energy. These {gamma}-production cross sections represent formation cross sections for excited states of the residual nuclei. The results are compared with the predictions of nuclear reaction calculations based on the exciton model for precompound emission, the Hauser-Feshbach theory for compound nuclear decay, and coupled channels calculations to account for direct excitation of collective levels. Good agreement was obtained over the entire energy range covered in the experiment with reasonable model parameters. The results demonstrate that multiple preequilibrium emission has to be taken into account above about 40 MeV, and that the level density model of Ignatyuk should be used instead of the Gilbert-Cameron and back-shifted Fermi-gas models if excitation energies exceed about 30 MeV.

  19. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  20. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Science.gov (United States)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.

    2016-03-01

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  1. The 2.5 MeV neutron flux monitor for MAST

    Science.gov (United States)

    Cecconello, M.; Sangaroon, S.; Conroy, S.; Donato, M.; Ericsson, G.; Marini-Bettolo, C.; Ronchi, R.; Stro¨m, P.; Weiszflog, M.; Wodniak, I.; Turnyanskiy, M.; Akers, R.; Cullen, A.; Fitzgerald, I.; McArdle, G.; Pacoto, C.; Thomas-Davies, N.

    2014-07-01

    A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium-deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron count rates in the range 0.1-1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.

  2. The 2.5 MeV neutron flux monitor for MAST

    Energy Technology Data Exchange (ETDEWEB)

    Cecconello, M., E-mail: marco.cecconello@physics.uu.se [Department of Physics and Astronomy, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Sangaroon, S.; Conroy, S.; Donato, M.; Ericsson, G.; Marini-Bettolo, C.; Ronchi, R.; Stroem, P.; Weiszflog, M.; Wodniak, I. [Department of Physics and Astronomy, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Turnyanskiy, M.; Akers, R.; Cullen, A.; Fitzgerald, I.; McArdle, G.; Pacoto, C.; Thomas-Davies, N. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2014-07-01

    A proof-of-principle collimated Neutron flux Camera (NC) monitor for the measurement of the 2.45 MeV neutron emission from the deuterium–deuterium fusion reactions has been developed, installed and put into use at the Mega Ampere Spherical Tokamak (MAST). The NC measures the spatial and time resolved volume integrated neutron emissivity in deuterium fusion plasmas in the presence of auxiliary plasma heating along two equatorial and two diagonal lines of sight whose tangency radius can be varied between plasma discharges. This paper describes the NC design principles, their technical realization and its performances illustrated with experimental observations of different plasma scenarios. Neutron count rates in the range 0.1–1.5 MHz are routinely observed allowing time resolutions as high as 1 ms with a statistical uncertainty less than 10% and an energy threshold of 0.5 MeV. Examples of the effect of plasma instabilities on the neutron emission are presented. The good results obtained will be used for the design of the neutron flux camera monitor for MAST Upgrade.

  3. A preliminary area survey of neutron radiation levels associated with the NASA variable energy cyclotron horizontal neutron delivery system

    Science.gov (United States)

    Roberts, W. K.; Leonard, R. F.

    1976-01-01

    The 25 MeV deuteron beam from the NASA variable energy cyclotron incident on a thick beryllium target will deliver a tissue neutron dose rate of 2.14 rad micron A-min at a source to skin distance of 125 cm. A neutron survey of the existing hallways with various shielding configurations made during operating of the horizontal neutron delivery system indicates that minimal amounts of additional neutron shielding material are required to provide a low level radiation environment within a self-contained neutron therapy control station. Measurements also indicate that the primary neutron distribution delivered by a planned vertical delivery system will be minimally perturbed by neutrons backscattered from the floor.

  4. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  5. Neutron fluence in a 18 MeV Electron Accelerator for Therapy; Fluencia de neutrones en un Acelerador de Electrones de 18 MeV para terapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C. [Instituto Nacional de Investigaciones Nucleares, Direccion de Innovacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm{sup 2} were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the

  6. Scattering chamber facility for double-differential cross-section measurement with 14 MeV DT neutron generator at IPR

    Indian Academy of Sciences (India)

    PRAJAPATI P M; PANDEY BHAWNA; GUPTA N C; KUMAR SURESH; NAYAK B K; SAXENA A; SURYANARAYANA S V; JAKHAR S; VALA SUDHIRSINH; RAO C V S; BASU T K

    2016-06-01

    Measurement of double-differential cross-sections of 14 MeV neutron-inducedcharged-particle productions is very important for estimating the nuclear heating and radiation damage of a fusion reactor. Only a few experimental data are available even though the nuclear reaction cross-section data of structural materials are important in fusion nuclear technology. In this context,general purpose scattering chamber facility has been developed for accelerator-based 14 MeV DT neutron generator to measure double-differential nuclear reaction cross-section at Fusion Neutronics Laboratory, IPR. It has been designed for experiments using silicon surface barrier detectors forthe online detection of charged particles. It offers flexibility in the arrangement of silicon surface barrier detectors.

  7. Neutron-induced fission cross sections of 233U and 243Am in the energy range 0.5 Mev En 20 MeV @ n_TOF

    CERN Document Server

    Belloni, F; Milazzo, P M; Calviani, M; Colonna, N; Mastinu, P; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvár, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Koehler, P; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vazl, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    Neutron-induced fission cross-sections of actinides have been recently measured at the neutron time of flight facility n_TOF at CERN in the frame of a research project involving isotopes relevant for nuclear astrophysics and nuclear technologies. Fission fragments are detected by a gas counter with good discrimination between nuclear fission products and background events. Neutron-induced fission cross-sections of 233U and 243Am were determined relative to 235U. The present paper reports the results obtained at neutron energies between 0.5 and 20 MeV.

  8. Measurement of thick target neutron yields for protons and deuterons in Ten's of MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Baba, M.; Aoki, T.; Kawata, N.; Hagiwara, M.; Miura, T.; Yamadera, A.; Yonai, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan)

    2002-07-01

    We have measured energy-angular differential thick target neutron yields (TTY) for C, Al, Ta, W(p,n) reactions at 50 MeV, and Li, Be (d,n) reactions for 25 MeV deuterons with the TOF method using Tohoku University K=110 MeV cyclotron equipped with a beam swinger system and a well collimated TOF line. Neutron spectrum data have been obtained down to {approx} 0.8 MeV from the highest energy at several laboratory angles from 0-deg to 90-deg. The results are compared with other experiments and a recent data library LA-150.

  9. Elastic neutron scattering studies at 96 MeV for transmutation.

    Science.gov (United States)

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  10. Spatial and energy distributions of skyshine neutron and gamma radiation from nuclear reactors on the ground-air boundary

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Y.; Netecha, M.E.; Vasiliev, A.P.; Avaev, V.N.; Vasiliev, G.A. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Zelensky, D.I.; Istomin, Y.L.; Cherepnin, Y.S. [Institute of Atomic Energy of the National Nuclear Center of the Republic of Kazakhstan, Semipalatinsk-21 (Kazakhstan); Nomura, Y. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    A set of measurements on skyshine radiation was conducted at two special research reactors. A broad range of detectors was used in the measurements to record neutron and gamma radiations. Dosimetric and radiometric field measurements of the neutrons and gamma quanta of the radiation scattered in the air were performed at distances of 50 to 1000 m from the reactor during different weather conditions. The neutron spectra in the energy range of 1 eV to 10 MeV and the gamma quanta spectra in the range of 0.1-10 MeV were measured. (author)

  11. Summary of monoenergetic neutron beam sources for energies gt 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F.P.; Romero, J.L. (Univ. of California-Davis, Crocker Nuclear Lab., Davis, CA (US))

    1990-11-01

    This paper examines the production of neutron beams for energies between {approx}20 and 100 MeV. Considerations for obtaining monoenergetic beams as well as some of the limiting factors, such as energy resolution are examined as well. Production cross sections at 0 deg are reviewed for proton- and deuteron-induced reactions on light elements. Some current facilities in the context of neutron beams obtained by collimation, by the associate particle method, and by the use of a beam swinger are also discussed.

  12. Cross section measurement for (n,n{alpha}) reactions by 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Y.; Ikeda, Y.; Uno, Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yamamoto, H.; Kawade, K.

    1997-03-01

    Nine (n,n{alpha}) cross sections for (n,n{alpha}) reactions induced by 13.5-14.9 MeV neutrons were measured for {sup 51}V, {sup 65}Cu, {sup 71}Ga, {sup 76}Ge, {sup 87}Rb, {sup 91}Zr, {sup 93}Nb, {sup 96}Zr and {sup 109}Ag isotopes by using Fusion Neutronics Source (FNS) at JAERI. The reactions for 91Zr and 96Zr were measured for the first time. The evaluated data of JENDL-3 and ENDF/B-VI were compared with the present data. Some of the evaluated values are much different from our data by a factor more than ten. (author)

  13. Radiation protection studies for a high-power 160 MeV proton linac

    CERN Document Server

    Mauro, Egidio

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H− linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of ...

  14. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    Science.gov (United States)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed.

  15. Effects of dose and dose protraction on embryotoxicity of 14.1 MeV neutron irradiation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.A.; Buck, S.J. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States); Solomon, H.M. [SmithKline and Beecham Pharmaceuticals, King of Prussia, PA (United States); Gorson, R.O. [Thomas Jefferson Univ., Philadelphia, PA (United States); Mills, R.E. [Brookhaven National Lab., Upton, NY (United States); Brent, R.L. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States)

    1994-06-01

    The embryotoxic effects of neutron radiation on rodent embryos are documented, but there is disagreement about the dose-response relationship and the impact of protracting the dose. Pregnant rats were exposed to total absorbed doses of 0.15 to 1.50 Gy 14.1 MeV neutrons on day 9.5 after conception, coincident with the most sensitive stage of embryonic development for the induction of major congenital malformations. In general terms, the incidence of embryotoxic effects increased with increasing total absorbed dose. However, the dose-response relationship differed depending on the parameter of embryotoxicity chosen, namely, intrauterine death, malformations or very low body weight. In a second study, embryos were exposed to a single embryotoxic absorbed dose (0.75 Gy) administered at a range of dose rates, from 0.10 to 0.50 Gy/h. The results offer no evidence that protraction of this selected dose significantly increased or decreased the incidence or pattern of embryotoxicity of the neutron exposure used in this study. The results do not support the hypothesis of a linear dose-response relationship for the effects of prenatal neutron irradiation that contribute to embryotoxicity for total absorbed doses of 0.15 to 1.50 Gy. 23 refs., 8 tabs.

  16. Detection of 14 MeV neutrons in high temperature environment up to 500 deg. C using 4H-SiC based diode detector

    Energy Technology Data Exchange (ETDEWEB)

    Szalkai, D.; Klix, A. [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344 (Germany); Ferone, R.; Issa, F.; Ottaviani, L.; Vervisch, V. [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231 -13397 Marseille Cedex 20 (France); Gehre, D. [Inst. for Nucl.- and Particle-Phys., Dresden University of Technology, Dresden 01069 (Germany); Lyoussi, A. [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    In reactor technology and industrial applications detection of fast and thermal neutrons plays a crucial role in getting relevant information about the reactor environment and neutron yield. The inevitable elevated temperatures make neutron yield measurements problematic. Out of the currently available semiconductors 4H-SiC seems to be the most suitable neutron detector material under extreme conditions due to its high heat and radiation resistance, large band-gap and lower cost of production than in case of competing diamond detectors. In the framework of the European I-Smart project, optimal {sup 4}H-SiC diode geometries were developed for high temperature neutron detection and have been tested with 14 MeV fast neutrons supplied by a deuterium-tritium neutron generator with an average neutron flux of 10{sup 10}-10{sup 11} n/(s*cm{sup 2}) at Neutron Laboratory of the Technical University of Dresden in Germany from room temperatures up to several hundred degrees Celsius. Based on the results of the diode measurements, detector geometries appear to play a crucial role for high temperature measurements up to 500 deg. C. Experimental set-ups using SiC detectors were constructed to simulate operation in the harsh environmental conditions found in the tritium breeding blanket of the ITER fusion reactor, which is planned to be the location of neutron flux characterization measurements in the near future. (authors)

  17. Research on Prompt Neutron Multiplicity Distribution for the Neutron-Induced Fission of 235U at 14 MeV Neutrons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The prompt neutron multiplicity distribution ν(A) for the n+ 235U fission system at 14 MeV was studied using the distribution mode of the excitation energy and the averaged γ-ray energy in the two

  18. SCANDAL -- A facility for elastic neutron scattering studies in the 50--130 MeV range

    Energy Technology Data Exchange (ETDEWEB)

    Klug, J.; Blomgren, J.; Atac, A.; Bergenwall, B.; Dangtip, S.; Elmgren, K.; Johansson, C.; Olsson, N.; Prokofiev, A.V.; Rahm, J. [Uppsala Univ. (Sweden). Dept. of Neutron Research; Jonsson, O.; Nilsson, L.; Renberg, P.U. [Uppsala Univ. (Sweden). The Svedberg Laboratory; Nadel-Turonski, P. [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Ringbom, A. [Swedish Defence Research Establishment (FOA), Stockholm (Sweden); Oberstedt, A.; Tovesson, F. [Oerebro Univ. (Sweden). Dept. of Technology and Science; Le Brun, C.; Lecolley, J.F.; Lecolley, F.R.; Louvel, M.; Marie, N.; Schweitzer, C.; Varignon, C. [Univ. de Caen (France); Eudes, Ph.; Haddad, F.; Kerveno, M.; Kirchner, T.; Lebrun, C. [Univ. de Nantes (France); Stuttge, L. [IReS, Strasbourg (France); Slypen, I. [Univ. Catholique de Louvain (Belgium). Inst. de Physique Nucleaire; Smirnov, A.N. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Michel, R.; Neumann, S. [Univ. Hannover (Germany). Zentrum fuer Strahlenschutz und Radiooekologie; Herpers, U. [Univ. Cologne (Germany). Abteilung Nuklearchemie

    2001-01-01

    A facility for detection of scattered neutrons in the energy interval 50--130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20--180 MeV neutron beam facility of the The Svedberg Laboratory, Uppsala. It is primarily intended for studies of elastic neutron scattering, but can be used for the (n,p) and (n,d) reaction experiments as well. The performance of the spectrometer is illustrated in measurements of the (n,p) and (n,n) reactions on {sup 1}H and {sup 12}C. In addition, the neutron beam facility is described in some detail.

  19. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  20. Neutron-deuteron analyzing power data at En=22.5 MeV

    Science.gov (United States)

    Weisel, G. J.; Tornow, W.; Crowell, A. S.; Esterline, J. H.; Hale, G. M.; Howell, C. R.; O'Malley, P. D.; Tompkins, J. R.; Witała, H.

    2014-05-01

    We present measurements of n-d analyzing power, Ay(θ), at En=22.5 MeV. The experiment uses a shielded neutron source which produced polarized neutrons via the 2H(d⃗,n⃗)3He reaction. It also uses a deuterated liquid-scintillator center detector and six pairs of liquid-scintillator neutron side detectors. Elastic neutron scattering events are identified by using time-of-flight techniques and by setting a window in the center detector pulse-height spectrum. The beam polarization is monitored by using a high-pressure helium gas cell and an additional pair of liquid-scintillator side detectors. The n-d Ay(θ) data were corrected for finite-geometry and multiple-scattering effects using a Monte Carlo simulation of the experiment. The 22.5-MeV data demonstrate that the three-nucleon analyzing power puzzle also exists at this energy. They show a significant discrepancy with predictions of high-precision nucleon-nucleon potentials alone or combined with Tucscon-Melbourne or Urbana IX three-nucleon forces, as well as currently available effective-field theory based potentials of next-to-next-to-next-to-leading order.

  1. Prompt neutron multiplicity distribution for 235U(n,f) at incident energies up to 20 MeV

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Jing; LIU Ting-Jin

    2011-01-01

    For the n+U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy (A) and the total average energies E(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.

  2. Design status of an intense 14 MeV neutron source for cancer therapy

    CERN Document Server

    Yao, Z E; Cheng, S W; Jia, W B

    2002-01-01

    Design and development of an intense 14 MeV neutron source for cancer therapy is in progress at the Institute of Nuclear Research of Lanzhou University. The neutrons from the T(d,n) sup 4 He reaction are produced by bombarding a rotating titanium tritide target with a 40 mA deuteron beam at 600 keV. The designed neutron yield is 8x10 sup 1 sup 2 n/s and the maximum dose rate at a 100 cm source-to-skin distance is 25 cGy/min. The HV terminal, accelerating column and HV power supply are enclosed inside a stainless steel pressure vessel containing 6 atm SF sub 6 gas to provide the electrical insulation.

  3. Measurements of double-differential neutron emission cross sections of {sup 6}Li and {sup 7}Li for 18 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo; Sanami, Toshiya; Win, T.; Miura, Takako; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections of {sup 6}Li and {sup 7}Li were measured for 18 MeV neutrons at Tohoku University 4.5 MV Dynamitron facility. Neutron emission spectra were obtained down to 1 MeV at 13 angles with energy resolution good enough to separate discrete levels. A care was taken to eliminate the sample-dependent background due to parasitic neutrons. Experimental results were in fair agreement with the JENDL-3.2 data and a simple model considering a three-body breakup process and discrete level excitations. (author)

  4. Preliminary Status Report of Neutron Radiation Effects and Damage to Neutron Imaging System Equipment at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anderson, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, L. A. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brand, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, J. A. [Univ. of California, Berkeley, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); FItsos, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldblum, B. L. [Univ. of California, Berkeley, CA (United States); Hall, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harrig, K. P. [Univ. of California, Berkeley, CA (United States); Johnson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kruse, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Laplace, T. A. [Univ. of California, Berkeley, CA (United States); Mahowald, M. [Univ. of California, Berkeley, CA (United States); Matthews, E. [Univ. of California, Berkeley, CA (United States); Nielson, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ratkiewicz, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rusnak, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Souza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ureche, A. [Univ. of California, Berkeley, CA (United States); Ummel, C. [Univ. of California, Berkeley, CA (United States); Wiedrick, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zeiser, F. [Univ. of Oslo (Norway)

    2017-02-08

    A high-intensity neutron source is being constructed at Lawrence Livermore National Laboratory (LLNL) to perform neutron imaging (NI). Two accelerators are be- ing installed in the shielded, underground, north cave of Building 194 to produce neutrons via deuterium- deuterium fusion at 4 MeV or 7 MeV in a windowless gas cell. Over months to years of future experiments, elec- tronic and mechanical equipment in the room will be ir- radiated by a large uence of neutrons, which could cause them to fail or function incorrectly. Neutrons will also activate equipment and materials in the room, making frequent maintenance di cult and time-consuming, ex- acerbating the consequence of equipment failure. To test the neutron response and failure probability of mission- critical components, a variety of equipment intended to be located closest to the neutron source was irradiated at Lawrence Berkeley National Laboratory's (LBNL's) 88-inch cyclotron, using neutrons produced from the breakup of deuterons impinging a thick beryllium target. The high neutron production and high neutron energy of this reaction in combination with the close-in geom- etry possible at the cyclotron allows the application of neutron doses expected to be delivered in months of NI facility operation in only a few days. In most cases, each piece of equipment was irradiated while powered, moni- tored remotely for failure, to test both its live response to irradiation in addition to permanent e ects. Aluminum activation foils were used as uence monitors, assuming the spectral shape measured by Meulders et. al.[1] While the neutron spectrum of the NI facility and the LBNL fa- cility were not identical, relative electronics and materials damage cross sections were used to equate an equivalent amount of energy-dependent neutron damage.

  5. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Cestelli Guidi, M.; Mirri, C.; Marcelli, A. [Laboratori Nazionali di Frascati - INFN, Frascati, Rome (Italy); Fratini, E.; Amendola, R. [ENEA, UT BIORAD-RAB, Rome (Italy); Licursi, V.; Negri, R. [Universita La Sapienza, Dip. Biologia e Biotecnologie ' ' Charles Darwin' ' , Rome (Italy)

    2012-09-15

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation. (orig.)

  6. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    Science.gov (United States)

    Agvaanluvsan, U.; Alpizar-Vicente, A.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Clement, R.; Esch, E.; Folden, C. M.; Hatarik, R.; Haight, R. C.; Hoffman, D. C.; Krtička, M.; Macri, R. A.; Mitchell, G. E.; Nitsche, H.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Schwantes, J. M.; Sheets, S. A.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wilk, P.; Wouters, J. M.; Wu, C. Y.

    2006-03-01

    Radiative strength functions in 152,154Eu nuclei for γ-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for 151,153Eu targets. Properties of γ decay of neutron resonances in 152,154Eu nuclei are examined. The results of measurements are compared to outcome of simulation of γ cascades based on various models for the radiative strength function. Comparison between experimental data and simulation suggests existence of the low-energy resonance in these two nuclei.

  7. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    Science.gov (United States)

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include 3He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors. We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  8. Determination of neutron cross sections of iron and water between 0. 3 and 11 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Gaafar, M.A.; El-Cherif, A.I. (Atomic Energy Authority, Cairo (Egypt). Reactor and Neutron Physics Dept.)

    1981-07-01

    Total neutron cross-sections of iron and water have been determined experimentally using a continuous neutron spectrum emitted from one of the horizontal channels of the ET-RR-1 reactor. Measurements have been carried out using neutron spectrometer with single stilbene scintillator. The gamma background was rejected from the measured pulses by a compensation method based on the differences in the shape of neutrons and gamma pulses. The measured pulse amplitude distributions were transformed to neutron energy distributions by means of a differential method. The measured fast neutron spectrum leaking directly from the reactor core and that transmitted through iron and water barriers were used to evaluate the total cross-sections for neutrons of energies between 0.3 and 11 MeV for these materials. Comparison between the values of obtained cross-sections and that given by others shows that a reasonable agreement could be observed between the two for neutrons of energies >1.5 MeV. However, for neutrons of energies <1.5 MeV a large discrepancy was observed. This could be attributed to the failure of the discriminating technique used in these measurements to separate between neutron and gamma pulses.

  9. The Angular Distribution of Neutrons Scattered from Deuterium below 2 MeV

    Science.gov (United States)

    Nankov, N.; Plompen, A. J. M.; Kopecky, S.; Kozier, K. S.; Roubtsov, D.; Rao, R.; Beyer, R.; Grosse, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Yakorev, D.; Wagner, A.; Stanoiu, M.; Canton, L.; Nolte, R.; Röttger, S.; Beyer, J.; Svenne, J.

    2014-05-01

    Neutron elastic scattering measurements were carried out at the nELBE neutron time-of-flight facility at a 6 m flight path. Energies below 2 MeV were studied using a setup consisting of eight 6Li-glass detectors placed at nominal angles of 15∘ and 165∘ with respect to the incident neutron beam. A deuterated polyethylene sample with 99.999% enrichment in deuterium was used. These angles were chosen since an earlier study showed that the ratio of the differential cross section at these angles is the most sensitive to differences in evaluated files and model calculations. Accurate 165∘/15∘ angle ratios were obtained. Above 1 MeV these are somewhat larger than given by ENDF/B-VII. Simultaneously the early day experiments using a proportional counter to infer angular distributions from deuterium recoil pulse height distributions are being studied through a new experiment with such a device at the Physikalisch-Technische Bundesanstalt (PTB). At 500 keV this experiment favors ENDF/B-VII over JENDL-4.0, while at lower energies agreement with the data is similar.

  10. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  11. Study of the characteristics of neutron monitor area applied to the evaluation of dose rates in a 15 MeV radiotherapy accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Candido M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica]. E-mail: candido_1998@yahoo.com; Patrao, Karla C.S.; Pereira, Walsan W.; Fonseca, Evaldo S.; Giannoni, Ricardo A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons]. E-mails: karla@ird.gov.br; walsan@ird.gov.br; Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Setor de Fisica Medica]. E-mail: delano@inca.gov.br

    2007-07-01

    Currently, in Radiotherapy, the use of linear accelerators is becoming each time more common. From Radiation Protection point of view, these instruments represent an advance in relation to the cobalt and caesium irradiators, mainly due to absence of the radioactive material. On the other hand, accelerators with the energies superior to 10 MeV produce contamination of the therapeutic beam with the presence of neutrons generated in the interaction of high-energy photons with high atomic number materials from the own irradiator. The present work carries through measurements in a linear accelerator of 15 MeV using three neutron area monitors for a comparison of the response of these instruments, evaluating its adequacy to this measurement. Characteristics of use and operation associates to parameters such as: monitor dead time, monitor gamma rejection, and calibration results are also analyzed in this study. (author)

  12. Evaluation of n + /sup 242/Pu reactions from 10 keV to 20 MeV. [Total cross sections, neutron emission energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.; Young, P.G.

    1978-10-01

    An evaluation of the n + /sup 242/Pu cross sections is presented for the neutron energy range of 10 keV to 20 MeV. The total fission and radiative capture cross sections are based upon experimental measurements on /sup 242/Pu. The remaining cross sections, together with the elastic and inelastic angular distributions to low-lying states, were calculated using various reaction models. An expression is presented for the energy dependence of the average number of neutrons produced per fission. The results were placed in ENDF/B-V format and combined with a recent evaluation of data below 10 keV by the Hanford Engineering Development Laboratory, so that a complete data set covering the energy range of 10/sup -5/ eV to 20 MeV is available. 41 references. (JFP)

  13. Neutron effective dose calculation behind concrete shielding of charged particle accelerators with energy up to 100 MeV

    CERN Document Server

    Alejnikov, V E; Krylov, A R

    2002-01-01

    Calculation data of neutron effective dose behind concrete shielding with thickness up to 3 meters is presented. The calculations have been performed by the Monte Carlo and phenomenological methods for monoenergetic neutrons with energy from 5 to 100 MeV as well as for neutron spectra produced by protons with energies of 30 and 72 MeV in thick targets. Comparison between calculations of neutron effective dose behind shielding using phenomenological approach and those by the Monte Carlo method normally shows agreement to within a factor of better than two, i.e. estimation of shielding thickness by those methods shall not exceed one half value layer of neutron effective dose attenuation in shielding. It amounts from 10 to 30 cm of concrete shielding for neutron energies and thickness of shields under consideration

  14. The SCANDAL facility - How to measure elastic neutron scattering in the 50-130 MeV range

    Energy Technology Data Exchange (ETDEWEB)

    Klug, Joakim

    2001-01-01

    The interest in neutrons of energies above 20 MeV is growing rapidly, since new applications are being developed or have been identified. Transmutation of nuclear waste and cancer therapy with neutron beams are two research fields that would benefit from new neutron scattering data at these energies. A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has been developed and installed at the neutron beam facility of the The Svedberg Laboratory in Uppsala. It can be used to study the (n,n), (n,p) and (n,d) reactions. This thesis describes the layout of the setup, the experimental procedure, and data analysis principles. The performance of the spectrometer is illustrated with measurements of the (n,p) and (n,n) reactions on {sup 1}H and {sup 12}C. In addition, the neutron beam facility is described in some detail.

  15. Search for three-body force effects in neutron-deuteron scattering at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, P. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Blomgren, J. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden)]. E-mail: jan.blomgren@tsl.uu.se; Bergenwall, B. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Hildebrand, A. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Johansson, C. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Klug, J. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Nilsson, L. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Svedberg Laboratory, Uppsala University (Sweden); Olsson, N. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Swedish Defence Research Agency (FOI), Stockholm (Sweden); Oesterlund, M. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Pomp, S. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Tippawan, U. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Jonsson, O. [Svedberg Laboratory, Uppsala University (Sweden); Prokofiev, A. [Svedberg Laboratory, Uppsala University (Sweden); Renberg, P.-U. [Svedberg Laboratory, Uppsala University (Sweden); Nadel-Turonski, P. [Department of Radiation Sciences, Uppsala University (Sweden); Maeda, Y. [Department of Physics, University of Tokyo (Japan); Sakai, H. [Department of Physics, University of Tokyo (Japan); Tamii, A. [Department of Physics, University of Tokyo (Japan)

    2004-09-16

    The neutron-deuteron (nd) elastic scattering differential cross section has been measured at 95 MeV incident neutron energy. The neutron-proton (np) differential cross section has also been measured for normalization purposes. An inclusion of three-nucleon forces gives a considerable improvement in the theoretical description of the nd data in the angular region of the cross-section minimum.

  16. Theoretical Analysis of Neutron Double-differental Cross Section of n+10B at 14.2 MeV

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Having very large neutron absorption cross-section at low energies, 10B has long been selected as theshielding material in nuclear engineering. In the reactions of n+10B there are many partial reactionchannels to be opened even at incident neutron energies of 14 MeV Since the new approach fordescription of neutron induced light nucleus reaction was proposed in 1999, many experimental data,

  17. Neutron-proton charge-exchange amplitudes at 585 MeV

    CERN Document Server

    Chiladze, D; Dzyuba, A; Dymov, S; Glagolev, V; Hartmann, M; Kacharava, A; Keshelashvili, I; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Lomidze, N; Macharashvili, G; Maeda, Y; Mchedlishvili, D; Mersmann, T; Merzliakov, S; Mielke, M; Mikirtychyants, S; Nekipelov, M; Nioradze, M; Ohm, H; Rathmann, F; Ströher, H; Tabidze, M; Trusov, S; Uzikov, Yu; Valdau, Yu; Wilkin, C

    2008-01-01

    The differential cross section and deuteron analysing powers of the dp -> {pp}n charge-exchange reaction have been measured with the ANKE spectrometer at the COSY storage ring. Using a deuteron beam of energy 1170 MeV, data were obtained for small momentum transfers to a {pp} system with low excitation energy. A good quantitative understanding of all the measured observables is provided by the impulse approximation using known neutron-proton amplitudes. The proof of principle achieved here for the method suggests that measurements at higher energies will provide useful information in regions where the existing np database is far less reliable.

  18. Response of CVD Diamond Detectors to 14 MeV Neutrons

    CERN Document Server

    Weiss, C; Gagnon-Moisan, F; Kasper, A; Lucke, A; Schuhmacher, H; Weierganz, M; Zimba, A

    2012-01-01

    A series of measurements was taken at the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig [1] using the 14 MeV neutron beam at the Van der Graaf accelerator with chemical vapor deposition (CVD) diamond detectors, in preparation of an upcoming (n, ) cross-section measurement [2] at the CERN-n TOF experiment [3, 4]. A single-crystal (sCVD) as well as a poly-crystalline (pCVD) diamond detector were used for the measurements. The response of both materials to the mono-energetic neutron beam was studied, also with the prospect for future applications in plasma diagnostics for fusion research. The results of the measurements are presented in this report.

  19. Proliferation kinetics of cultured cells after irradiation with X-rays and 14 MeV neutrons studied by time-lapse cinematography.

    Science.gov (United States)

    Kooi, M W; Stap, J; Barendsen, G W

    1984-06-01

    Exponentially growing cells of an established line derived from a mouse osteosarcoma (MOS) have been studied by time-lapse cinematography after irradiation with 3 Gy of 200 kV X-rays or 1.5 Gy of 14 MeV neutrons. Cell cycle times (Tc) of individual cells and their progeny in three subsequent generations as well as the occurrence of aberrant mitosis have been determined to evaluate the variation in expression of damage in relation to the stage in the intermitotic cycle and the radiation quality. The results show that the radiation doses applied cause an equal elongation of the mean Tc, which is largest in the irradiated cells but persists in the three subsequent generations. After 3 Gy of X-rays, mitotic delay is largest in cells irradiated in later stages of the cycle, but this difference is not observed after 1.5 Gy of 14 MeV neutrons. In subsequent generations the Tc values show larger variations among descendents of cells treated in the same stage of the cycle as compared to controls but this variation is equal for the doses of X-rays and neutrons applied. Division probability was significantly reduced in irradiated cells as well as in subsequent generations, whereby with neutrons as compared to X-rays the damage is expressed in earlier generations, with less variation as a function of the cell cycle.

  20. European Collaboration for High-Resolution Measurements of Neutron Cross Sections between 1 MeV and 250 MeV

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Yuasa nakagawa, K; Koehler, P E; Quaranta, A

    2002-01-01

    The experimental determination of neutron cross section data has always been of primary importance in Nuclear Physics. Many of the salient features of nuclear levels and densities can be determined from the resonant structure of such cross sections and of their decay scheme. An associated importance of precise neutron induced reaction cross sections has resulted from the worldwide interest in Accelerator Driven Systems (ADS) that has emerged at CERN and elsewhere. Many applications, such as accelerator-based transmutation of nuclear waste, energy amplification medical research, astrophysical applications and also fusion research require nuclear data that quantitatively and qualitatively go beyond the presently available traditional evaluation.\\\\ \\\\We consider a spallation driven TOF facility at the CERN-PS with an unprecedented neutron flux (1000 times the existing ones) in the broad energy range between 1 eV and 250 MeV and with very high energy resolution. The present concept for an intense neutron source m...

  1. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    Science.gov (United States)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  2. Radiation shielding for neutron guides

    Science.gov (United States)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  3. Effects of the neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcober, V. (Junta de Energia Nuclear, Madrid (Spain)); Martinez Ruis, F.; Manuzi, M.A. (Dpto. de Traumatologia Centro Ramon y Cajal, Madrid (Spain))

    1984-01-01

    An introduction to the cortical bone neutron irradiation subject and to the effect of the irradiation on the mechanical properties of bone considered as a composite material is presented. Only the special case of the simple flexion has been treated. The evolution of the load-deflection curve as a function of the epithermal neutron dose has been studied. Some hypotheses on the role performed by the organic and mineral phases are introduced.

  4. Response of the Li-7-enriched Cs{sub 2}LiYCl{sub 6}:Ce (CLYC-7) scintillator to 6–60 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-12-11

    We discuss a test campaign designed to irradiate the {sup 7}Li-enriched Cs{sub 2}LiYCl{sub 6}:Ce{sup 3+} (CLYC-7) scintillator with 6–60 MeV neutrons using the cyclotron located at the Crocker Nuclear Laboratory in Davis, CA. CLYC-7 is a newly developed scintillator that exhibits the ability to make good γ-ray measurements and has the ability to detect and discriminate fast neutrons via pulse shape discrimination (PSD) while functioning as a spectrometer. This allows a single detector to make good measurement of both stimuli simultaneously. The response of this scintillation detector has been investigated below 20 MeV [1] but has yet to be explored for energies greater than 20 MeV. Understanding the spectral and pulse shape response across a broad energy range is important for any radiation detection instrumentation capable of detecting multiple species. At the highest energies sampled, the CLYC-7 PSD demonstrated not only the standard electron/proton separation expected in a mixed γ/n field but the ability to discriminate locally produced deuterons, tritons and α particles. We show the results from the four different neutron beam energies sampled during the experiment. Lastly, we present the results obtained for relating the light output equivalence between electrons and protons/deuterons.

  5. Digital neutron/gamma discrimination with an organic scintillator at energies between 1 MeV and 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Comrie, A.C. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Buffler, A., E-mail: andy.buffler@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Smit, F.D. [iThemba LABS, Somerset West 7129 (South Africa); Wörtche, H.J. [INCAS" 3, Dr. Nassaulaan 9. 9400 AT Assen (Netherlands)

    2015-02-01

    Three different digital implementations of pulse shape discrimination for pulses from an EJ301 liquid scintillator detector are presented, and illustrated with neutrons and gamma-rays produced by an Am–Be radioisotopic source, a D–T generator and beams produced by cyclotron-accelerated protons of energies 42, 62 and 100 MeV on a Li target. A critical comparison between the three methods is provided.

  6. Neutron radiation effects on linear CCDs at different clock pulse frequency

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2015-06-01

    Full Text Available The experiments of reactor neutron radiation effects on linear CCDs are presented. The output voltage in dark field after neutron radiation are presented and compared at different clock pulse frequency. The degradation phenomena are analyzed in depth. The mean dark signal (KD and dark signal non-uniformity (DSNU versus neutron fluence is investigated at different clock pulse frequency. The degradation mechanisms of the dark signal and DSNU in linear CCDs are analyzed. The flux of the reactor neutron beams was about 1.33 × 108 n/cm2/s. The samples were exposed to 1MeV neutron-equivalent fluences of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively.

  7. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    Science.gov (United States)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  8. Report on measurements at Ohio University to estimate backgrounds for neutron radiography in the 10-14 MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F. S., LLNL; Hall, James, M.

    1997-05-10

    In evaluating the feasibility of neutron radiography and tomography in the 10-14 MeV region, it is important to estimate the radiation backgrounds that could potentially interfere with the measurements. In this context, backgrounds refer to all counts in the detector other than those due to neutrons transmitted through the sample without scattering. There are two principal sources of backgrounds: (1) neutrons and gammas resulting from incident neutrons interacting in the sample, and (2) events in the detector arising from neutrons scattering in the accelerator vault and collimation system, together with natural and induced activation. Counts due to these backgrounds are spread fairly uniformly across the detector, and therefore do not compromise the ability to identify small features in the sample on the millimeter scale in a tomographic reconstruction; however, they do increase the neutron dose required to achieve sufficient statistical accuracy to reveal features of interest. Backgrounds are generally considered to be tolerable if their count rates are less than or comparable to the rates from the transmitted (uncollided) beam. If they are significantly above this level, they are a potentially serious problem. Understanding radiation backgrounds is thus critically important in determining the required source strength and running time. The backgrounds must be characterized by their energy, radiation type (neutron or gamma), and their timing relative to emission time at the source. These properties may have a profound effect on the design of the source and detector (e.g., whether a pulsing-and-timing technique is necessary to reduce backgrounds, and whether a simple plastic-scintillator based integrating detector will suffice). In the geometry that we have chosen to study, the sample is located approximately two meters from the neutron source, and the detector (a plastic-scintillator neutron-imaging camera; Ref. 1) is located another two meters downstream. A thick

  9. Measurements of neutron spectra from iron and boron—in—polyethylene bomareded with 14MeV nuetrons

    Institute of Scientific and Technical Information of China (English)

    ZhouYu-Qing; ChenYuan; 等

    1997-01-01

    The leakage spectra of 14MeV neutrons from spheres of iron and boron-inpolyethylene with three differnet mass ratios of boron carbide to polyethylene were measured over the energy range of 20 keV to 16MeV by using proton recoil method.The integral leakages and removal cross sections at different lower cut-off energy were given.

  10. Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    DEFF Research Database (Denmark)

    Eriksson, J.; Nocente, M.; Binda, F.

    2015-01-01

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe the p......, more generally, to studies of the energy distribution of ions in the MeV range in high performance deuterium and deuterium-tritium plasmas....

  11. Neutron emission cross sections on sup 93 Nb and sup 209 Bi at 20 MeV incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, A.; Rapaport, J.; Finlay, R.; Aslanoglou, X. (Ohio Univ., Athens, OH (USA)); Kielan, D. (Soltan Inst. for Nuclear Studies, Warsaw (Poland))

    1991-07-29

    Double-differential neutron emission cross sections at 20 MeV incident energy have been studied for monoisotopic samples of {sup 93}Nb and {sup 209}Bi. Time-of-flight spectra were taken at several angles between 15{sup 0} and 153{sup 0} using a beam-swinger spectrometer. The data are averaged over 0.5 MeV energy bins and compared with quantum-mechanical, statistical multistep calculations. (orig.).

  12. Neutron spectrometry and dosimetry in 100 and 300 MeV quasi-mono-energetic neutron field at RCNP, Osaka University, Japan

    Science.gov (United States)

    Mares, Vladimir; Trinkl, Sebastian; Iwamoto, Yosuke; Masuda, Akihiko; Matsumoto, Tetsuro; Hagiwara, Masayuki; Satoh, Daiki; Yashima, Hiroshi; Shima, Tatsushi; Nakamura, Takashi

    2017-09-01

    This paper describes the results of neutron spectrometry and dosimetry measurements using an extended range Bonner Sphere Spectrometer (ERBSS) with 3He proportional counter performed in quasi-mono-energetic neutron fields at the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP), Osaka University, Japan. Using 100 MeV and 296 MeV proton beams, neutron fields with nominal peak energies of 96 MeV and 293 MeV were generated via 7Li(p,n)7Be reactions. Neutrons produced at 0° and 25° emission angles were extracted into the 100 m long time-of-flight (TOF) tunnel, and the energy spectra were measured at a distance of 35 m from the target. To deduce the corresponding neutron spectra from thermal to the nominal maximum energy, the ERBSS data were unfolded using the MSANDB unfolding code. At high energies, the neutron spectra were also measured by means of the TOF method using NE213 organic liquid scintillators. The results are discussed in terms of ambient dose equivalent, H*(10), and compared with the readings of other instruments operated during the experiment.

  13. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  14. INFLUENCE OF SCATTERED NEUTRON RADIATION ON METROLOGICAL CHARACTERISTICS OF АТ140 NEUTRON CALIBRATION FACILITY

    Directory of Open Access Journals (Sweden)

    D. I. Komar

    2017-01-01

    Full Text Available Today facilities with collimated radiation field are widely used as reference in metrological support of devices for neutron radiation measurement. Neutron fields formed by radionuclide neutron sources. The aim of this research was to study characteristics of experimentally realized neutron fields geometries on АТ140 Neutron Calibration Facility using Monte Carlo method.For calibration, we put a device into neutron field with known flux density or ambient equivalent dose rate. We can form neutron beam from radionuclide fast-neutron source in different geometries. In containercollimator of АТ140 Neutron Calibration Facility we can install special inserts to gather fast-neutron geometry or thermal-neutron geometry. We need to consider neutron scattering from air and room’s walls. We can conduct measurements of neutron field characteristics in several points and get the other using Monte Carlo method.Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. From found relationship between full neutron flux and distance to neutron source we see that inverse square law is violated. Scattered radiation contribution into total flux increases when we are moving away from neutron source and significantly influences neutron fields characteristics. While source is exposed in shadow-cone geometry neutron specter has pronounced thermal component from wall scattering.In this work, we examined main geometry types used to acquire reference neutron radiation using radionuclide sources. We developed Monte Carlo model for 238Pu-Be neutron source and АТ140 Neutron Calibration Facility’s container-collimator. We have shown the most significant neutron energy distribution factor to be scattered radiation from room’s walls. It leads to significant changes of neutron radiation specter at a distance from the source. When planning location, and installing the facility we should consider

  15. Inter-comparison of High Energy Files (neutron-induced, from 20 to 150 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Recent new applications using accelerator-driven system require well-tested nuclear data when modeling the interaction of neutrons above 20 MeV. This work is aimed to review evaluation methods applied in currently available neutron high energy files above 20 to 150 MeV, to inter-compare their evaluated cross sections on some important isotopes, and to analyze resulting discrepancies. Through out these, integrities and consistencies of the high energy files are checked, applicability of physics models and evaluation methodologies are assessed, and some directions are derived to improve and expand current JENDL High Energy File. (author)

  16. Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

    Science.gov (United States)

    Shin, Jae Won; Park, Tae-Sun

    2017-09-01

    A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.

  17. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U; Alpizar-Vicente, A; Becker, J A; Becvar, F; Bredeweg, T A; Clement, R; Esch, E; Folden, C M; Hatarik, R; Haight, R C; Hoffman, D C; Krticka, M; Macri, R A; Mitchell, G E; Nitsche, H; O' Donnell, J M; Parker, W; Reifarth, R; Rundberg, R S; Schwantes, J M; Sheets, S A; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wilk, P; Wouters, J M; Wu, C Y

    2005-10-04

    Radiative strength functions in {sup 152,154}Eu nuclei for {gamma}-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for {sup 151,153}Eu targets. Properties of resonances in these two nuclei are examined. The measurements are compared to simulation of cascades performed with various models for the radiative strength function. Comparison between experimental data and simulation suggests an existence of the low-energy resonance in these two nuclei.

  18. Fluence to Hp(3) conversion coefficients for neutrons from thermal to 15 MeV.

    Science.gov (United States)

    Gualdrini, G; Ferrari, P; Tanner, R

    2013-12-01

    The recent statement on tissue reactions issued by the International Commission on Radiological Protection in April 2011 recommends a very significant reduction in the equivalent dose annual limit for the eye lens from 150 to 20 mSv y(-1); this has stimulated a lot of interest in eye lens dosimetry in the radiation protection community. Until now no conversion coefficients were available for the operational quantity Hp(3) for neutrons. The scope of the present work was to extend previous evaluations of H*(10) and Hp(10) performed at the PTB in 1995 to provide also Hp(3) data for neutrons. The present work is also intended to complete the studies carried out on photons during the last 4 y within the European Union-funded ORAMED (optimisation of radiation protection for medical staff) project.

  19. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    Science.gov (United States)

    Musabaeva, L. I.; Startseva, Zh. A.; Gribova, O. V.; Velikaya, V. V.; Lisin, V. A.

    2016-08-01

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  20. Precision Measurement of 56Fe(n,n γ) Cross Sections Using 14.1 MeV Neutrons

    Science.gov (United States)

    Wang, Haoyu; Koltick, David

    2016-03-01

    Integral production cross sections for 846.8 keV and 1238.3 keV prompt gamma rays from 14.1 MeV neutrons interactions on 56Fe are reported. The experimental technique takes advantage of the 1.5 nanosecond coincidence timing resolution between the neutron production time and the gamma ray detection time to reject noise, together with the large 30% solid angle gamma ray coverage. The scattering angle coverage with respect to the neutron beam direction extends from 60 degrees to 120 degrees. The neutron flux is measured using the detected associated alpha-particle from the D-T fusion reaction produced using an associated particle neutron generator. Present cross section measurements using other techniques with limited timing resolution and solid angle coverage are in agreement at neutron energies lower than 6 MeV. At higher neutron energies reported results can disagree by more than 20%. The more accurate technique used in these measurements can distinguish between the differences in the present reported results at higher neutron energies. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  1. Neutron-induced fission cross sections of 242Pu from 0.3 MeV to 3 MeV

    Science.gov (United States)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-10-01

    The majority of the next generation of nuclear power plants (GEN-IV) will work in the fast-neutron-energy region, as opposed to present day thermal reactors. This leads to new and more accurate nuclear-data needs for some minor actinides and structural materials. Following those upcoming demands, the Organisation for Economic Cooperation and Development Nuclear Energy Agency performed a sensitivity study. Based on the latter, an improvement in accuracy from the present 20% to 5% is required for the 242Pu(n ,f ) cross section. Within the same project both the 240Pu(n ,f ) cross section and the 242Pu(n ,f ) cross section were measured at the Van de Graaff accelerator of the Joint Research Centre at the Institute for Reference Materials and Measurements, where quasimonoenergetic neutrons were produced in an energy range from 0.3 MeV up to 3 MeV. A twin Frisch-grid ionization chamber has been used in a back-to-back configuration as fission-fragment detector. The 242Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U(n ,f ) , and 238U(n ,f ) . A comprehensive study of the corrections applied to the data and the uncertainties associated is given. The results obtained are in agreement with previous experimental data at the threshold region up to 0.8 MeV. The resonance-like structure at 0.8 to 1.1 MeV, visible in the evaluations and in most previous experimental values, was not reproduced with the same intensity in this experiment. For neutron energies higher than 1.1 MeV, the results of this experiment are slightly lower than the Evaluated Nuclear Data File/B-VII.1 evaluation but in agreement with the experiment of Tovesson et al. (2009) as well as Staples and Morley (1998). Finally, for energies above 1.5 MeV, the results show consistency with the present evaluations.

  2. Performance testing of the neutron flux monitors from 10keV to 1MeV developed for BNCT: A preliminary study.

    Science.gov (United States)

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2017-07-01

    The neutron flux monitors from 10keV to 1MeV designed for boron neutron capture therapy (BNCT) were experimentally tested with prototype monitors in an appropriate neutron field produced at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. The experimental test results and related analysis indicated that the performance of the monitors was good and the neutron fluxes from 10keV to 1MeV of practical BNCT neutron sources can be measured within 10% by the monitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determination of the neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    CERN Document Server

    Lan, Chang-Lin; Peng, Meng; Lv, Tao; Yao, Ze-en; Chen, Jin-Gen; Kong, Xiang-Zhong

    2016-01-01

    The 232Th(n,{\\gamma})233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,{\\alpha})24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the literatures data, evaluated data of ENDF/B-VII, JENDL-4.0, and CENDL-3.1. The Excitation functions of 232Th(n,{\\gamma}) reaction were also calculated theoretically using the TALYS 1.6 computer code.

  4. The 13C(n,α0)10Be cross section at 14.3 MeV and 17 MeV neutron energy

    Science.gov (United States)

    Kavrigin, P.; Belloni, F.; Frais-Koelbl, H.; Griesmayer, E.; Plompen, A. J. M.; Schillebeeckx, P.; Weiss, C.

    2017-09-01

    At nuclear fusion reactors, CVD diamond detectors are considered an advantageous solution for neutron flux monitoring. For such applications the knowledge of the cross section of neutron-induced nuclear reactions on natural carbon are of high importance. Especially the (n,α0) reactions, yielding the highest energy reaction products, are of relevance as they can be clearly distinguished in the spectrum. The 13C(n,α0)10Be cross section was measured relative to 12C(n,α0)9Be at the Van de Graaff facility of EC-JRC Geel, Belgium, at 14.3 MeV and 17.0 MeV neutron energies. The measurement was performed with an sCVD (single-crystal Chemical Vapor Deposition) diamond detector, where the detector material acted simultaneously as sample and as sensor. A novel data analysis technique, based on pulse-shape discrimination, allowed an efficient reduction of background events. The results of the measurement are presented and compared to previously published values for this cross-section.

  5. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    Science.gov (United States)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  6. A Project for High Fluence 14 MeV Neutron Source

    CERN Document Server

    Pillon, Mario; Pizzuto, Aldo; Pietropaolo, Antonino

    2014-01-01

    The international community agrees on the importance to build a large facility devoted to test and validate materials to be used in harsh neutron environments. Such a facility, proposed by ENEA , reconsiders a previous study known as “Sorgentina” but takes into account new technological development so far attained. The “New Sorgentina” Fusion Source (NSFS) project is based upon an intense D - T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating target s . NSFS produces about 1 x10 13 n cm - 2 s - 1 over about 50 cm 3 . The NSFS facility will use the ion source and accelerating system technology developed for the Positive Ion Injectors (PII) used to heat the plasma in the fusion experiments,. NSFS, to be intended as an European facility, may be realized in a few years, once provided a preliminary technological program devote to study the operation of the ion source in continuous mode, target h eat loading/ removal, target and tritium handling, inventory as well as ...

  7. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    Science.gov (United States)

    Andersson, P.; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication

  8. The RBE of 3.4 MeV alpha-particles and 0.565 MeV neutrons relative to 60Co gamma-rays for neoplastic transformation of human hybrid cells and the impact of culture conditions.

    Science.gov (United States)

    Frankenberg-Schwager, M; Spieren, S; Pralle, E; Giesen, U; Brede, H J; Thiemig, M; Frankenberg, D

    2010-01-01

    The neoplastic transformation of human hybrid CGL1 cells is affected by perturbations from external influences such as serum batch and concentration, the number of medium changes during the 21-day expression period and cell seeding density. Nevertheless, for doses up to 1.5 Gy, published transformation frequencies for low linear energy transfer (LET) radiations (gamma-rays, MeV electrons or photons) are in good agreement, whereas for higher doses larger variations are reported. The (60)Co gamma-ray data here for doses up to 1.5 Gy, using a low-yield serum batch and only one medium change, are in agreement with published frequencies of neoplastic transformation of human hybrid cells. For 3.4 MeV alpha-particles (LET = 124 keV/mum) and 0.565 MeV monoenergetic neutrons relative to low doses of (60)Co gamma-rays, a maximum relative biological effectiveness (RBE(M)) of 2.8 +/- 0.2 and 1.5 +/- 0.2, respectively, was calculated. Surprisingly, at higher doses of (60)Co gamma-rays lower frequencies of neoplastic transformation were observed. This non-monotonic dose relationship for neoplastic transformation by (60)Co gamma-rays is likely due to the lack of a G2/M arrest observed at low doses resulting in higher transformation frequencies per dose, whereas the lower frequencies per dose observed for higher doses are likely related to the induction of a G2/M arrest.

  9. Conceptual design for a neutron imaging system for thick target analysis operating in the 10-15 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F.; Hall, J.; Logan, C.

    1996-09-11

    Fast neutron imaging offers the potential to be a powerful non- destructive inspection tool for evaluating the integrity of thick sealed targets. This is particularly true in cases where one is interested in detecting voids, cracks or other defects in low-Z materials (e.g. plastics, ceramics, salts, etc.) which are shielded by thick, high-Z parts. In this paper we present the conceptual design for a neutron imaging system for use in the 10 - 15 MeV energy range and discuss potential applications in the area of nuclear stockpile steward- ship. The background of this project, currently under development at LLNL, will be outlined and computer simulations will be presented which predict system performance. Efforts to assess technical risks involved in the development of the system will be discussed and the results of a recent experiment designed to evaluate background radiation levels will also be presented.

  10. Radiation damage in silicon photomultipliers exposed to neutron radiation

    Science.gov (United States)

    Musienko, Yu.; Heering, A.; Ruchti, R.; Wayne, M.; Andreev, Yu.; Karneyeu, A.; Postoev, V.

    2017-07-01

    We studied performances of two SiPMs before and after irradiation at the Lubljana reactor. These high density (15 μ m cell pitch size) SiPMs were developed by Hamamatsu (in cooperation with the CMS SiPM group) for the CMS HCAL Upgrade Phase I project. The S10943-4732 is a photosensor selected for the CMS HE HCAL where the SiPMs will be exposed to 2× 1011 n/cm2 (1 MeV equivalent) for the operation time of the SLHC (integrated luminosity—5000 fb-1). The HD-1015CN SiPM was developed using new Hamamatsu trench technology to reduce optical cross-talk (X-talk) between SiPM cells. Both SiPMs are considered as candidates for the CMS HCAL barrel upgrade. The SiPMs were irradiated with reactor neutrons up to 1 MeV equivalent fluence of 2× 1012 n/cm2 (that corresponds to the maximum integrated neutron fluence in the HCAL barrel for the duration of the SLHC operation).

  11. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Science.gov (United States)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  12. Determination of radiation levels by neutrons in an accelerator for radiotherapy; Determinacion de niveles de radiacion por neutrones en un acelerador para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Salazar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico); Genis S, R. [Fundacion Clinica Medica Sur, Puente de Piedra 150, Col. Torriello Guerra, Tlalpan 14050, Mexico D.F. (Mexico)

    1998-12-31

    It was determined the radiation levels by neutrons due to photonuclear reactions ({gamma}, n) which occur in the target, levelling filter, collimators and the small pillow blinding of a medical accelerator Varian Clinac 2100C of 18 MeV, using thermoluminescent dosemeters UD-802AS and US-809AS. The experimental values were presented for the patient level, inside and outside of the radiation field, as well as for the small pillow. (Author)

  13. A consistent set of neutron kerma coefficients from thermal to 150 MeV for biologically important materials

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B. [University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barschall, H.H. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53706-1532 (United States); Caswell, R.S. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); DeLuca, P.M. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53706-1532 (United States); Hale, G.M. [University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Jones, D.T. [National Accelerator Centre, Faure, CapeTown (South Africa); MacFarlane, R.E. [University of California, Los Alamos, National Laboratory, Los Alamos, New Mexico 87545 (United States); Meulders, J.P. [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium); Schuhmacher, H.; Schrewe, U.J. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Wambersie, A. [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium); Young, P.G. [University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-06-01

    Neutron cross sections for nonelastic and elastic reactions on a range of elements have been evaluated for incident energies up to 150 MeV. These cross sections agree well with experimental cross section data for charged-particle production as well as neutron and photon production. Therefore they can be used to determine kerma coefficients for calculations of energy deposition by neutrons in matter. Methods used to evaluate the neutron cross sections above 20 MeV, using nuclear model calculations and experimental data, are described. Below 20 MeV, the evaluated cross sections from the ENDF/B-VI library are adopted. Comparisons are shown between the evaluated charged-particle production cross sections and measured data. Kerma coefficients are derived from the neutron cross sections, for major isotopes of H, C, N, O, Al, Si, P, Ca, Fe, Cu, W, Pb, and for ICRU-muscle, A-150 tissue-equivalent plastic, and other compounds important for treatment planning and dosimetry. Numerous comparisons are made between our kerma coefficients and experimental kerma coefficient data, to validate our results, and agreement is found to be good. An important quantity in neutron dosimetry is the kerma coefficient ratio of ICRU-muscle to A-150 plastic. When this ratio is calculated from our kerma coefficient data, and averaged over the neutron energy spectra for higher-energy clinical therapy beams [three p(68)+Be beams, and a d(48.5)+Be beam], a value of 0.94{plus_minus}0.03 is obtained. Kerma ratios for water to A-150 plastic, and carbon to oxygen, are also compared with measurements where available. {copyright} {ital 1999 American Association of Physicists in Medicine.}

  14. Measurement of 232Th(n,2n)231Th reaction cross-sections at neutron energies of 14.1 MeV and 14.8 MeV using neutron activation method

    Institute of Scientific and Technical Information of China (English)

    兰长林; 解保林; 张凯; 彭猛; 方开洪

    2015-01-01

    In this study, the activation cross-sections were measured for 232Th(n,2n)231Th reactions at neutron ener-gies of 14.1 and 14.8 MeV, which were produced by a neutron generator through a T(d,n) 4He reaction. In-duced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. In the cross-section calculations, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of the neutron flux, and low energy neutrons. The mea-sured cross-sections were compared with the literature data, evaluation data (ENDF-B/VII.1, JENDL-4.0 and CENDL-3.1), and the results of the model calculation (TALYS1.6).

  15. Displacement cross sections and PKA spectra: tables and applications. [Neutron damage energy cross sections to 20 MeV, primary knockon atom spectra to 15 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D G; Graves, N J

    1976-12-01

    Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included.

  16. Note on neutron scattering and the optical model near A = 208. [0. 6 to 1. 0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, P.; Havel, D.; Smith, A.

    1976-09-01

    Elastic neutron scattering cross sections of /sup 206/Pb, /sup 207/Pb, /sup 208/Pb and /sup 209/Bi are measured at incident neutron energy intervals of approx. 25 keV from 0.6 to 1.0 MeV with resolutions of approx. 25 keV. Optical model parameters are obtained from the energy-averaged experimental results for each of the isotopes. The observed elastic-neutron-scattering distributions and derived parameters for the lead isotopes (doubly magic or neutron holes in the closed shell) tend to differ from those of /sup 209/Bi (doubly closed shell plus a proton). These potentials, derived in the approx. spherical region of A approximately 208, are extrapolated for the analysis of total and scattering cross sections of /sup 238/U introducing only a small N-Z/A dependence and the known deformation of /sup 238/U. Good descriptions of /sup 238/U total cross sections are obtained from a few hundred keV to 10.0 MeV and the prediction of measured scattering distributions in the low MeV region are as suitable as frequently reported with other specially developed potentials.

  17. Measurement of the Wolfenstein parameters for proton-proton and proton-neutron scattering at 500 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.A.

    1984-07-01

    Using liquid hydrogen and liquid deuterium targets respectively, forward angle (ten degrees to sixty degrees in the center of Mass) free proton-proton and quasielastic proton-proton and proton-neutron triple scattering data at 500 MeV have been obtained using the high resolution spectrometer at the Los Alamos Meson Physics Facility. The data are in reasonable agreement with recent predictions from phase shift analyses, indicating that the proton-nucleon scattering amplitudes are fairly well determined at 500 MeV. 32 references.

  18. Observation of 2.45 MeV neutrons correlated with natural atmospheric lightning discharges by Lead-Free Gulmarg Neutron Monitor

    Science.gov (United States)

    Ishtiaq, P. M.; Mufti, S.; Darzi, M. A.; Mir, T. A.; Shah, G. N.

    2016-01-01

    The first experimental evidence of detecting the neutrons correlated with the natural atmospheric lightning discharges (NALD) was obtained with Lead-Free Gulmarg Neutron Monitor (LFGNM) operating at High Altitude Research Laboratory, Gulmarg, Kashmir, India, and was reported in the year 1985. The neutron observations still continue with LFGNM. However, the current configuration of LFGNM is the upgraded version of the system used earlier to record neutron bursts (in the recording period of 320 μs in four successive electronic gates of 80 μs each) supposedly originating from an NALD. In the current system the neutron recording time period/interval has been extended to 1260 μs with 63 successive gates of 20 μs each. The system also simultaneously records the differential times—maximum up to 14—between the consecutive strokes of a multistroke lightning flash. The distance between an NALD channel and LFGNM setup is determined empirically by making use of the time delay (td)/time of flight (TOF) measurement of the first detected neutron subsequent to the sensing of the electrostatic field variation caused by the initiation of an NALD in the ambient atmosphere of the LFGNM setup. Assuming a priori incident energy as 2.45 MeV of the detected neutrons supposedly generated due to the fusion of deuterium ions in the lightning discharge channel leads to quantifying the neutron emission flux if the NALD channel distance with respect to the LFGNM setup is established. In this paper we discuss the experiment and the time profiles of several of a large number of the major neutron burst events recorded with LFGNM in association with NALDs. Moreover, a rare and an extraordinary neutron burst event, in terms of its associated "td/TOF" of first detected neutron after triggering, recorded by this system is specifically discussed. In this event, the recorded TOF of 14 μs of the escaping neutron detected by the system immediately after getting triggered by the NALD that struck a

  19. Measurement of neutron-induced fission cross-sections of Th232, U238, U233 and Np237 relative to U235 from 1 MeV to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, O.A.; Laptev, A.B.; Petrov, G.A. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad district (Russian Federation); Fomichev, A.V.; Donets, A.Y.; Osetrov, O.I.

    1998-11-01

    The measurements of neutron-induced cross-section ratios for Th232, U238, U233 and Np237 relative to U235 have been carried out in the energy range from 1 MeV up to 200 MeV using the neutron time-of-flight spectrometer GNEIS based on 1 GeV proton synchrocyclotron. Below 20 MeV, the results of present measurements are roughly in agreement with evaluated data though there are some discrepances to be resolved. (author)

  20. Measurement of Neutron Proton Going to Proton Proton Negative Pion at 443 Mev

    Science.gov (United States)

    Bachman, Mark Gregory

    Experiment E372 at TRIUMF measured the analyzing powers (A_{rm NO}, A_ {rm SO}, A_{rm LO}) and relative differential cross section for the reaction np to pppi ^- at 443 MeV. We directed a polarized neutron beam on to a liquid hydrogen target and measured the scattered events in a large solid angle detector capable of measuring the velocities and directions of all of the protons produced in the reaction as well as many of the pions. Kinematic analysis of the events allowed us to remove almost all background and resulted in a clean set of np to pppi^- events. These events were binned against appropriate kinematic variables to produce yields which correspond to relative differential cross sections, and asymmetries which correspond to A _{rm NO}, A_{rm SO}, and A_{rm LO }. These results are the first of their kind for this energy. Comparisons to a theoretical model of Kloet and Lomon and a preliminary study using partial waves are presented.

  1. Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV – Potential impact on neutron dosimetry at energies higher than 20 MeV

    CERN Document Server

    Rühm, W; Pioch, C; Agosteo, S; Endo, A; Ferrarini, M; Rakhno, I; Rollet, S; Satoh, D; Vincke, H

    2014-01-01

    Bonner Spheres Spectrometry in its high-energy extended version is an established method to quantify neutrons at a wide energy range from several meV up to more than 1 GeV. In order to allow for quantitative measurements, the responses of the various spheres used in a Bonner Sphere Spectrometer (BSS) are usually simulated by Monte Carlo (MC) codes over the neutron energy range of interest. Because above 20 MeV experimental cross section data are scarce, intra-nuclear cascade (INC) and evaporation models are applied in these MC codes. It was suspected that this lack of data above 20 MeV may translate to differences in simulated BSS response functions depending on the MC code and nuclear models used, which in turn may add to the uncertainty involved in Bonner Sphere Spectrometry, in particular for neutron energies above 20 MeV. In order to investigate this issue in a systematic way, EURADOS (European Radiation Dosimetry Group) initiated an exercise where six groups having experience in neutron transport calcula...

  2. TARTNP: a coupled neutron--photon Monte Carlo transport code. [10-/sup 9/ to 20 MeV; in LLL FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Plechaty, E.F.; Kimlinger, J.R.

    1976-07-04

    A Monte Carlo code was written that calculates the transport of neutrons, photons, and neutron-induced photons. The cross sections of these particles are derived from TARTNP's data base, the Evaluated Nuclear Data Library. The energy range of the neutron data in the Library is 10/sup -9/ MeV to 20 MeV; the photon energy range is 1 keV to 20 MeV. One of the chief advantages of the code is its flexibility: it allows up to 17 different kinds of output to be evaluated in the same problem.

  3. Pulsed 5 MeV standing wave electron linac for radiation processing

    Science.gov (United States)

    Auditore, L.; Barnà, R. C.; de Pasquale, D.; Italiano, A.; Trifirò, A.; Trimarchi, M.

    2004-03-01

    Several modern applications of radiation processing require compact and self-contained electron accelerators. To match these requirements, a 5MeV, 1kW electron linac has been developed at the Dipartimento di Fisica (Università di Messina) and will be described in this paper. This standing wave accelerator, driven by a 3GHz, 2.5MW magnetron generator, has an autofocusing structure and will be used to study several applications of radiation processing.

  4. Radiation Damage of F8 Lead Glass with 20 MeV Electrons

    CERN Document Server

    Schaefer, B D; McChesney, P; Shepherd, M R; Frye, J M

    2011-01-01

    Using a 20 MeV linear accelerator, we investigate the effects of electromagnetic radiation on the optical transparency of F8 lead glass. Specifically, we measure the change in attenuation length as a function of radiation dose. Comparing our results to similar work that utilized a proton beam, we conclude that F8 lead glass is more susceptible to proton damage than electron damage.

  5. Radiation damage of F8 lead glass with 20 MeV electrons

    Science.gov (United States)

    Schaefer, B. D.; Mitchell, R. E.; McChesney, P.; Shepherd, M. R.; Frye, J. M.

    2012-03-01

    Using a 20 MeV linear accelerator, we investigate the effects of electromagnetic radiation on the optical transparency of F8 lead glass. Specifically, we measure the change in attenuation length as a function of radiation dose. Comparing our results to similar work that utilized a proton beam, we conclude that F8 lead glass is more susceptible to proton damage than electron damage.

  6. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  7. Neutron cross-sections above 20 MeV for design and modeling of accelerator driven systems

    Indian Academy of Sciences (India)

    J Blomgren

    2007-02-01

    One of the outstanding new developments in the field of partitioning and transmutation (P&T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently several million data points can be found in various data libraries. At higher energies, data are scarce or even non-existent. With the development of nuclear techniques based on neutrons at higher energies, nowadays there is a need also for higher-energy nuclear data. To provide alternative to this lack of data, a wide program on neutron-induced data related to ADS for P&T is running at the 20–180 MeV neutron beam facility at `The Svedberg Laboratory' (TSL), Uppsala. The programme encompasses studies of elastic scattering, inelastic neutron production, i.e., (, ′) reactions, light-ion production, fission and production of heavy residues. Recent results are presented and future program of development is outlined.

  8. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the {sup 15}N(p,n) reaction as neutron source; Messung von Wirkungsquerschnitten fuer die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der {sup 15}N(p,n)-Reaktion als Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, Erik

    2010-04-26

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The {sup 15}N(p,n){sup 15}O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the {sup 15}N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure {sup 209}Bi and {sup 181}Ta samples at 4 MeV incident neutron energy

  9. Hadron Radiobiology : Investigation of the Inhibition of ten days Growth of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2 Hadron Radiobiology : Investigation of the Inhibition of ten days'Grown of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2

    CERN Multimedia

    2002-01-01

    Hadron Radiobiology : Investigation of the Inhibition of ten days Growth of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2 Hadron Radiobiology : Investigation of the Inhibition of ten days'Grown of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2

  10. Neutron-proton scattering observables at 325 MeV, the epsilon/sub 1/ parameter, and the tensor force

    Energy Technology Data Exchange (ETDEWEB)

    Chulick, G.S.; Elster, C.; Machleidt, R.; Picklesimer, A.; Thaler, R.M.

    1988-04-01

    The sensitivity of neutron-proton elastic scattering observables to variations in the low angular momentum T = 0 phase shifts is studied at E/sub lab/ = 325 MeV. It is found that the J = 1 coupling parameter epsilon/sub 1/ is not well determined by existing data. This uncertainty in epsilon/sub 1/ permits models with quite different tensor forces to describe the extant data. Implications and possible experimental resolution of such ambiguities are discussed.

  11. Neutron-proton scattering observables at 325 MeV, the ɛ1 parameter, and the tensor force

    Science.gov (United States)

    Chulick, G. S.; Elster, Ch.; Machleidt, R.; Picklesimer, A.; Thaler, R. M.

    1988-04-01

    The sensitivity of neutron-proton elastic scattering observables to variations in the low angular momentum T=0 phase shifts is studied at Elab=325 MeV. It is found that the J=1 coupling parameter ɛ1 is not well determined by existing data. This uncertainty in ɛ1 permits models with quite different tensor forces to describe the extant data. Implications and possible experimental resolution of such ambiguities are discussed.

  12. SOME RECENT RESULTS ON NEUTRON DECAY OF PB-208 EXCITED TO ENERGIES IN THE 14 TO 25 MEV RANGE

    NARCIS (Netherlands)

    CHMIELEWSKA, D; VANDENBERG, AM; BLUMENFELD, Y; ALAMANOS, N; AUGER, F; BLOMGREN, J; BORDEWIJK, J; BRANDENBURG, S; FRASCARIA, N; GILLIBERT, A; NILSSON, L; OLSSON, N; ROUSSELCHOMAZ, P; ROYNETTE, JC; SCARPACI, JA; SUOMIJARVI, T; TURCOTTE, R; VANDERWOUDE, A; van der Woude, Adriaan

    1994-01-01

    First results of an (Pb(O, O'n)Pb)-Pb-208-O-17-O-17-Pb-207 experiment at 84 MeV/n, designed to study the neutron decay of the Giant Dipole Resonance and the region above, is presented. Direct decay up to an excitation energy of 25 MeV in Pb-208 has been observed. The direct decay branch in the GDR e

  13. Study of the accumulation of air pollution by the biological indicators, using 14 MeV neutron activation

    Science.gov (United States)

    Senhou, A.; Khoukhi, T. El; Chouak, A.; Cherkaoui, R. El Moursili; Yahiaoui, A. El; Lferde, M.

    2001-06-01

    14 MeV neutron activation analysis was used to determine air polluting elements in samples of mosses, lichens and tree barks, collected from different regions in Morocco. The analysis of spectra shows clearly that the elements Mg, Al, Si, Cl, J, Ca, Ti and Fe can easily be determined by 14 NAA with good precision, while results for Zn, Rb, Sr, Ba and La are less precise. Curves showing correlation between Al and Mg concentrations are given for different sites.

  14. Estimate of the radiation source term for 18F production via thick H218O targets bombarded with 18 MeV protons

    Science.gov (United States)

    Cruzate, Juan Ángel

    2015-12-01

    The positron-emitting radionuclide most important from the point of view of radiation protection is 18F. This isotope is usually produced by bombarding 18O-enriched water with protons. Currently there are few experimental data on the radiation source term generated during these reactions. In addition, presently there is no theoretical estimates of this source term, for use in radiation protection, validated by experimental data. Up till now this term is calculated by using nuclear interactions' simulation codes, such as ALICE91. An estimate of the energy spectra for neutrons and photons, induced by 18 MeV protons on H218O target, have been calculated by using MCNPX code with cross sections from release 0 of ENDF/B VII library for all materials except 18O, for which TENDL-2012 library was used. This estimate was validated against a recent experiment carried out at the Japan Atomic Energy Agency (JAEA). The calculated spectra have generally well reproduced experiments. The results show that the calculated radiation source term may be used to estimate the neutron activation of the accelerator components and the cyclotron building, to calculate the cyclotron shielding, and to carry out radiation protection evaluations in general, for the case of cyclotrons producing 18F by means of the 18O(p,n)18F nuclear reactions, for proton energies up to 18 MeV.

  15. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  16. Reconciling Coulomb breakup and neutron radiative capture

    Science.gov (United States)

    Capel, P.; Nollet, Y.

    2017-07-01

    The Coulomb-breakup method to extract the cross section for neutron radiative capture at astrophysical energies is analyzed in detail. In particular, its sensitivity to the description of the neutron-core continuum is ascertained. We consider the case of 14C(n ,γ )15C for which both the radiative capture at low energy and the Coulomb breakup of 15C into 14C+n on Pb at 68 MeV/nucleon have been measured with accuracy. We confirm the direct proportionality of the cross section for both reactions to the square of the asymptotic normalization constant of 15C observed by Summers and Nunes [Phys. Rev. C 78, 011601(R) (2008), 10.1103/PhysRevC.78.011601], but we also show that the 14C-n continuum plays a significant role in the calculations. Fortunately, the method proposed by Summers and Nunes can be improved to absorb that continuum dependence. We show that a more precise radiative-capture cross section can be extracted selecting the breakup data at forward angles and low 14C-n relative energies.

  17. Differential RBE values obtained for mammary adenocarcinoma tumor cell subpopulations after 14. 8-MeV neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWyngaert, J.K.; Leith, J.T.; Peck, R.A.; Bliven, S.F.

    1981-10-01

    For tumor cell subpopulations which were isolated from a single mouse mammary adenocarcinoma were examined for their relative sensitivities to 250-kVp x irradiation and 14.8-MeV neutron irradiation. The sublines are designated 66, 67, 4.10, and 68H and differ significantly in their biological characteristics. Exponentially growing cells were exposed at the Radiological Research Accelerator Facility (RARAF) at Brookhaven National Laboratories, Upton, NY. The purpose of these studies was to compare the response of these cell lines to ionizing radiation, for high-linear-energy-transfer radiation as well as for low. The interest of such an intercomparison lies in the fact that these different cell lines, while closely related, were biologically distinguishable. Survival curve parameters obtained by fitting the single dose-response curves to a linear-quadratic equation using linear least-squares regression analysis gave values for sublines 66, 67, 4.10, and 68H, respectively, of: ..cap alpha../sub n/ (G/sub 8//sup -1/) = 0.00. 0.150, 0.041, and 0.182; ..cap alpha../sub x/ (G/sub 8//sup -1/) = 0.672, 0.845, 0.787, and 0.709; ..beta../sub x/ (G/sub 8//sup -2/) = 0.0462, 0.0345, 0.0576, and 0.0503; and ..beta../sub n/ (G/sub 8//sup -2/) = 0.0253, 0.0000, 0.0156, and 0.0666. Different relative biological effectiveness (RBE) values were obtained for sublines 66, 67, 4.10, and 68H of 4.0, 3.6, 3.9, and 2.7 at the 50% level of survival and 2.4, 2.4, 2.2, and 2.0 at the 10% level. Sublines 67 and 68H show responses which suggest a constant RBE at low values of dose, while sublines 66 and 4.10 do not. It is felt that these data illustrate the need to consider biological information as well as microdosimetric considerations in attempts to relate celluar inactivation responses to radiation quality. Further implications of these data in relation to the dual-action model of radiation inactivation are discussed.

  18. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  19. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  20. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  1. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  2. SAS 2 observations of the earth albedo gamma radiation above 35 MeV

    Science.gov (United States)

    Thompson, D. J.; Simpson, G. A.; Ozel, M. E.

    1981-01-01

    The earth albedo gamma radiation above 35 MeV in the equatorial region is investigated using observations from the second Small Astronomy Satellite. The zenith angle distribution of the gamma radiation has a peak toward the horizon which is about an order of magnitude more intense than the radiation coming from the nadir, and nearly two orders of magnitude more intense than the gamma radiation from most parts of the sky. The gamma radiation originating from the western horizon is a factor of four more intense than the radiation from the eastern horizon and a factor of three more intense than that from the northern and southern directions. This reflects the geomagnetic effects on the incident cosmic rays whose interactions produce the albedo gamma rays. The variation of the upcoming gamma ray intensity with vertical cutoff rigidity is consistent with the empirical relationship found by Gur'yan et al. (1979).

  3. Neutron yield of thick 12C and 13C targets with 20 and 30 MeV deuterons

    Science.gov (United States)

    Lhersonneau, G.; Malkiewicz, T.; Fadil, M.; Gorelov, D.; Jones, P.; Ngcobo, P. Z.; Sorri, J.; Trzaska, W. H.

    2016-12-01

    The neutron yield of thick targets of carbon, natural and enriched in 13C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a 12C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a 13C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the 12C and 13C targets.

  4. Light charged particle emission induced by fast neutrons (25 to 65 MeV) on sup 5 sup 9 Co

    CERN Document Server

    Nica, N; Raeymackers, E; Slypen, I; Meulders, J P; Corcalciuc, V

    2002-01-01

    Double-differential cross sections (energy spectra) for the proton, deuteron, triton and alpha-particle production in fast neutron induced reactions on cobalt are reported for ten incident neutron energies between 25 and 65 MeV. Energy spectra were obtained at nine laboratory angles between 20 deg. and 160 deg. and extrapolated or interpolated to other ten angles covering uniformly the laboratory angular domain of 0 deg. to 180 deg. The experimental set-up and procedures for data reduction including corrections and normalization are presented and discussed. Based on the measured double-differential cross sections, energy-differential and total cross sections are reported as well. Experimental cross sections are compared with similar available data from neutron- and proton-induced reactions. Theoretical calculations based on semiclassical exciton model and Hauser-Feshbach statistical theory (GNASH code) and intranuclear cascade model for nucleon-induced interactions (INCL3 code) were done and compared to the e...

  5. Experimental Neutron-Induced Fission Fragment Mass Yields of 232Th and 238U at Energies from 10 to 33 MeV

    CERN Document Server

    Simutkin, V D; Blomgren, J; Österlund, M; Bevilacqua, R; Ryzhov, I V; Tutin, G A; Yavshits, S G; Vaishnene, L A; Onegin, M S; Meulders, J P; Prieels, R

    2013-01-01

    Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results have been published before and in this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.

  6. Study of neutron spectra in a water bath from a Pb target irradiated by 250 MeV protons

    Science.gov (United States)

    Li, Yan-Yan; Zhang, Xue-Ying; Ju, Yong-Qin; Ma, Fei; Zhang, Hong-Bin; Chen, Liang; Ge, Hong-Lin; Wan, Bo; Luo, Peng; Zhou, Bin; Zhang, Yan-Bin; Li, Jian-Yang; Xu, Jun-Kui; Wang, Song-Lin; Yang, Yong-Wei; Yang, Lei

    2015-04-01

    Spallation neutrons were produced by the irradiation of Pb with 250 MeV protons. The Pb target was surrounded by water which was used to slow down the emitted neutrons. The moderated neutrons in the water bath were measured by using the resonance detectors of Au, Mn and In with a cadmium (Cd) cover. According to the measured activities of the foils, the neutron flux at different resonance energies were deduced and the epithermal neutron spectra were proposed. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data to check the validity of the code. The comparison showed that the simulation could give a good prediction for the neutron spectra above 50 eV, while the finite thickness of the foils greatly effected the experimental data in low energy. It was also found that the resonance detectors themselves had great impact on the simulated energy spectra. Supported by National Natural Science Foundation and Strategic Priority Research Program of the Chinese Academy of Sciences (11305229, 11105186, 91226107, 91026009, XDA03030300)

  7. O(n,x. gamma. ) reaction cross section for incident neutron energies between 6. 5 and 20. 0 MeV. [Yield

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.L.; Chapman, G.T.

    1979-09-01

    Differential cross sections for the neutron-induced gamma-ray production from oxygen were measured for incident neutron energies between 6.5 and 20.0 MeV. The Oak Ridge Electron Linear Accelerator (ORELA) was used to provide the neutrons and a NaI spectrometer to detect the gamma rays at 125/sup 0/. The data presented are the double differential cross section, d/sup 2/sigma/d..cap omega..dE, for gamma-ray energies between 1.6 and 10.6 MeV for coarse intervals in incident neutron energy. The integrated yield for gamma rays of energies greater than 1.6 MeV with higher resolution in the neutron energy is also presented. The experimental results are compared with the Evaluated Nuclear Data File (ENDF). 34 references.

  8. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    Science.gov (United States)

    Bergmann, B.; Caicedo, I.; Leroy, C.; Pospisil, S.; Vykydal, Z.

    2016-10-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  9. Measurements of the high energy neutron component of cosmic radiation fields in aircraft using etched track dosemeters

    CERN Document Server

    Bartlett, D T; Tanner, R J; Steele, J D

    2001-01-01

    Measurements of the complex cosmic radiation field in aircraft at altitude are made with a passive survey meter comprising routine-use thermoluminescent detectors and etched track detectors. The energy dependence of response of the etched track detectors used to determine the neutron component has been characterized, partly, up to a neutron energy of 180 MeV. The neutron detectors are routinely calibrated in the CERN EC Ref.Field. The 15% determination level for total dose equivalent is 100 mu Sv. The evidence is that the passive survey meter provides a reliable determination of route dose. (41 refs).

  10. Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV (7)Li(p,n) reactions at angles from 0 degrees to 300 degrees

    CERN Document Server

    Iwamoto, Y; Nakamura, T; Nakashima, H; Mares, V; Itoga, T; Matsumoto, T; Nakane, Y; Feldbaumer, E; Jaegerhofer, L; Pioch, C; Tamii, A; Satoh, D; Masuda, A; Sato, T; Iwase, H; Yashima, H; Nishiyama, J; Hagiwara, M; Hatanaka, K; Sakamoto, Y

    2011-01-01

    The authors measured the neutron energy spectra of a quasi-monoenergetic (7)Li(p,n) neutron source with 246 and 389 MeV protons set at seven angles (0 degrees, 2.5 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees and 30 degrees), using a time-of-flight (TOF) method employing organic scintillators NE213 at the Research Center for Nuclear Physics (RCNP) of Osaka University. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0 degrees and 10 MeV at other angles. The cross-sections of the peak neutron production reaction at 0 degrees were on the 35-40 mb line of other experimental data, and the peak neutron angular distribution agreed well with the Taddeucci formula. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes of the continuum above 150 MeV changed considerably with the angle. In order to consider the correction required to derive the response in the peak region from the measured total response for high-energy neutron monitors such as DAR...

  11. Reusable shielding material for neutron- and gamma-radiation

    Science.gov (United States)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  12. Neutron radiation effect on 4H-SiC MESFETs and SBDs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin; Zhang Yimen; Zhang Yuming; Han Chao, E-mail: zhanglin@mail.xidian.edu.cn [Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-11-15

    4H-SiC metal Schottky field effect transistors (MESFETs) and Schottky barrier diodes (SBDs) were irradiated at room temperature with 1 MeV neutrons. The highest neutron flux and gamma-ray total dose were 1 x 10{sup 15} n/cm{sup 2} and 3.3 Mrad(Si), respectively. After a neutron flux of 1 x 10{sup 13} n/cm{sup 2}, the current characteristics of the MESFET had only slightly changed, and the Schottky contacts of the gate contacts and the Ni, Ti/4H-SiC SBDs showed no obvious degradation. To further increase the neutron flux, the drain current of the SiC MESFET decreased and the threshold voltage increased. {phi}{sub B} of the Schottky gate contact decreased when the neutron flux was more than or equal to 2.5 x 10{sup 14} n/cm{sup 2}. SiC Schottky interface damage and radiation defects in the bulk material are mainly mechanisms for performance degradation of the experiment devices, and a high doping concentration of the active region will improve the neutron radiation tolerance.

  13. Research on 14 MeV Neutron Induced Single-event-effects in SRAMs

    Institute of Scientific and Technical Information of China (English)

    FAN; Hui; GUO; Gang; SHEN; Dong-jun; LIU; Jian-cheng

    2013-01-01

    High energy neutrons are produced in nuclear cascade showers created by nuclear spallation reactions between cosmic rays(mainly protons)and atmospheric nuclei(nitrogen and oxygen).Atmospheric neutrons have been identified as the main cause of single-event-effects(SEE)at elevated altitudes.Avionics are vulnerable to atmospheric neutrons,which can easily produce SEE in

  14. Calculation and evaluation of cross-sections and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B. [California Univ., Livermor, CA (United States). Lawrence Livermore National Lab.; Young, P.G.

    1997-03-01

    We present evaluations of the interaction of neutrons with energies between 20 and 100 MeV with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra for light ejectiles with A {<=} 4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. (author). 52 refs.

  15. Fission Product Yields from 232Th, 238U, and 235U Using 14 MeV Neutrons

    Science.gov (United States)

    Pierson, B. D.; Greenwood, L. R.; Flaska, M.; Pozzi, S. A.

    2017-01-01

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets-thorium-oxide, depleted uranium metal, and highly enriched uranium metal-at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields of short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for 89Kr, -90, and -92 and 138Xe, -139, and -140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were -10.2%, 4.5%, and -12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from 84As to 146La are presented.

  16. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    Science.gov (United States)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H *(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H *(10) value of 2.7 μSv Gy-1 was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H *(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy-1 at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal

  17. Study on neutron radiation field of carbon ions therapy

    CERN Document Server

    Xu, Jun-Kui; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2015-01-01

    Carbon ions offer significant advantages for deep-seated local tumors therapy due to their physical and biological properties. Secondary particles, especially neutrons caused by heavy ion reactions should be carefully considered in treatment process and radiation protection. For radiation protection purposes, the FLUKA Code was used in order to evaluate the radiation field at deep tumor therapy room of HIRFL in this paper. The neutron energy spectra, neutron dose and energy deposition of carbon ion and neutron in tissue-like media was studied for bombardment of solid water target by 430MeV/u C ions. It is found that the calculated neutron dose have a good agreement with the experimental date, and the secondary neutron dose may not exceed one in a thousand of the carbon ions dose at Bragg peak area in tissue-like media.

  18. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  19. Analysis for Radiation and Shielding Dose in Plasma Focus Neutron Source Using FLUKA

    Science.gov (United States)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2012-06-01

    Monte Carlo simulations have been performed for the attenuation of neutron radiation produced at Plasma focus (PF) devices through various shielding design. At the test site it will be fired with deuterium and tritium (D-T) fusion resulting in a yield of about 1013 fusion neutrons of 14 MeV. This poses a radiological hazard to scientists and personnel operating the device. The goal of this paper was to evaluate various shielding options under consideration for the PF operating with D-T fusion. Shields of varying neutrons-shielding effectiveness were investigated using concrete, polyethylene, paraffin and borated materials. The most effective shield, a labyrinth structure, allowed almost 1,176 shots per year while keeping personnel under 20 mSV of dose. The most expensive shield that used, square shield with 100 cm concrete thickness on the walls and Borated paraffin along with borated polyethylene added outside the concrete allowed almost 15,000 shot per year.

  20. Measurements of the induced gamma ray cross sections by 14. 2 MeV neutrons with Fe, Ni, Cu

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xiamin; Shen Ronglin; Xing Jinjiang; Wu Yongshun; Ding Dazhao

    1982-05-01

    The differential cross sections of the discrete gamma rays at 55/sup 0/ in the nuclear reactions of 14.2 MeV neutrons with Fe, Ni, Cu have been measured. The Ge (Li) semiconductor detector is enclosed in a heavy complete shielding. The relative efficiencies of full energy peaks and double peaks of the Ge (Li) detector are determined by the ''doubleline method'' in ..gamma.. energy region from 0.3 to 12 MeV and then normalized by a set of standard sources in order to determine the absolute efficiency. The linearity, stability and the effect of counting rate of the spectrometer have been checked.

  1. Light-ion production from O, Si, Fe and Bi induced by 175 MeV quasi-monoenergetic neutron

    CERN Document Server

    Bevilacqua, R; Jansson, K; Gustavsson, C; Osterlund, M; Simutkin, V; Hayashi, M; Hirayama, S; Naitou, Y; Watanabe, Y; Hjalmarsson, A; Prokofiev, A; Tippawan, U; Lecolley, F -R; Marie, N; Leray, S; David, J -C; Mashnik, S

    2013-01-01

    We have measured double-differential cross sections in the interaction of 175 MeV quasimonoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compared our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.

  2. Evaluation of neutron and proton nuclear data of {sup 28}Si for energies up to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weili [Kyushu Univ., Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka (Japan); Watanabe, Y. [Kyushu Univ., Department of Advanced Energy Engineering Science, Fukuoka (Japan); Sukhovitskii, E. Sh. [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus); Iwamoto, O.; Chiba, S. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The neutron and proton nuclear data of {sup 28}Si up to 200 MeV are evaluated for various nuclear engineering applications. The soft rotator model and the coupled-channel method are used to perform a consistent analysis of the collective band structure of {sup 28}Si and nucleon scattering from {sup 28}Si. The GNASH nuclear model code is used for compound and preequilibrium particle emission calculations, where the emission of {sup 3}He is also included. Comparisons show overall good agreement with various experimental data. (author)

  3. Ge(Li) measurement of some neutron activation cross-sections at (14. 2+-0. 2) MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmana Das, N.; Srinivasa Rao, C.V.; Thirumala Rao, B.V.; Rama Rao, J. (Andhra Univ., Waltair (India). Lab. for Nuclear Research)

    1978-12-21

    Precision measurements of activation cross-sections were made for the reactions /sup 138/Ba(n, 2n)/sup 137/Basup(m), /sup 167/Er(n,p)/sup 167/Ho and /sup 181/Ta(n,2n)/sup 180/Tasup(m) at an incident-neutron energy of (14.2+-0.2)MeV. The mixed-powder technique and high-resolution Ge(Li) detector coupled to a ND 512 channel analyser system were employed. The cross-section values were compared with the values reported in the literature.

  4. Theoretical Analysis of Neutron Double-Differential Cross Section of n+11B at 14.2 MeV

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Shang

    2003-01-01

    A new reaction model for light nuclei is proposed to analyze the measured data, especially for the doubledifferential cross sections. In this paper the calculation with this model is employed to analyze measurements of the total outgoing neutron double-differential cross sections for n+11B reactions at En = 14.2 MeV. The representation of the double-differential cross sections of the second emitted particles is given in detail. The calculation results indicate that the recoil effect in light nuclear reaction is essentially important. The reaction channels are discussed in detail.

  5. Statistical Model Analysis of (n, α Cross Sections for 4.0-6.5 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Khuukhenkhuu G.

    2016-01-01

    Full Text Available The statistical model based on the Weisskopf-Ewing theory and constant nuclear temperature approximation is used for systematical analysis of the 4.0-6.5 MeV neutron induced (n, α reaction cross sections. The α-clusterization effect was considered in the (n, α cross sections. A certain dependence of the (n, α cross sections on the relative neutron excess parameter of the target nuclei was observed. The systematic regularity of the (n, α cross sections behaviour is useful to estimate the same reaction cross sections for unstable isotopes. The results of our analysis can be used for nuclear astrophysical calculations such as helium burning and possible branching in the s-process.

  6. Fast neutron leakage in 18 MeV medical electron accelerator

    CERN Document Server

    Paredes, L; Balcazar, M; Tavera, L; Camacho, E

    1999-01-01

    In this work the neutron fluence of the Varian Clinac 2100C Medical Accelerator has been evaluated using CR39 track dosimeter. The assessment of fast neutron dose to a patient for typical treatment of 200 cGy with an 18 MV photons beam is performed at surface-source distance of 100 cm with a field size of 20x20 cm sup 2. Fast neutron leakage around of the accelerator head is evaluated.

  7. Managing NIF safety equipment in a high neutron and gamma radiation environment.

    Science.gov (United States)

    Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark

    2013-06-01

    The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.

  8. Measurement of accelerator neutron radiation field spectrum by Extended Range Neutron Multisphere Spectrometers and unfolding program

    CERN Document Server

    Li, Guanjia; Ma, Zhongjian; Guo, Siming; Yan, Mingyang; Shi, Haoyu; Xu, Chao

    2015-01-01

    This paper described a measurement of accelerator neutron radiation field at a transport beam line of Beijing-TBF. The experiment place was be selected around a Faraday Cup with a graphite target impacted by electron beam at 2.5GeV. First of all, we simulated the neutron radiation experiment by FLUKA. Secondly, we chose six appropriate ERNMS according to their neutron fluence response function to measure the neutron count rate. Then the U_M_G package program was be utilized to unfolding experiment data. Finally, we drew a comparison between the unfolding with the simulation spectrum and made an analysis about the result.

  9. Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector

    Science.gov (United States)

    Brandis, M.; Vartsky, D.; Dangendorf, V.; Bromberger, B.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Friedman, E.; Czasch, A.; Mardor, I.; Mor, I.; Weierganz, M.

    2012-04-01

    Results are presented from the latest experiment with a new neutron/gamma detector, a Time-Resolved, Event-Counting Optical Radiation (TRECOR) detector. It is composed of a scintillating fiber-screen converter, bending mirror, lens and Event-Counting Image Intensifier (ECII), capable of specifying the position and time-of-flight of each event. TRECOR is designated for a multipurpose integrated system that will detect Special Nuclear Materials (SNM) and explosives in cargo. Explosives are detected by Fast-Neutron Resonance Radiography, and SNM by Dual Discrete-Energy gamma-Radiography. Neutrons and gamma-rays are both produced in the 11B(d,n+γ)12C reaction. The two detection modes can be implemented simultaneously in TRECOR, using two adjacent radiation converters that share a common optical readout. In the present experiment the neutron detection mode was studied, using a plastic scintillator converter. The measurements were performed at the PTB cyclotron, using the 9Be(d,n) neutron spectrum obtained from a thick Be-target at Ed ~ 13 MeV\\@. The basic characteristics of this detector were investigated, including the Contrast Transfer Function (CTF), Point Spread Function (PSF) and elemental discrimination capability.

  10. MCNPX simulations of the SCANDAL setup for measurement of neutron scattering cross section at 175 MeV

    Science.gov (United States)

    Tesinsky, Milan; Andersson, Pernilla; Gustavsson, Cecilia; Pomp, Stephan; Österlund, Michael; Blomgren, Jan; Bevilacqua, Riccardo; Hjalmarsson, Anders; Kolozhvari, Anatoly; LeColley, François-René; Marie, Nathalie; Prokofiev, Alexander V.; Simutkin, Vasily; Tippawan, Udomrat

    2010-06-01

    The Scattered Nucleon Detection Assembly (SCANDAL) setup at The Svedberg Laboratory has been used to produce neutron elastic scattering cross section data at 175 MeV for bismuth and iron. This work presents MCNPX simulations of the experimental setup and aims to describe processes and data important for the upcoming off-line data analysis. In the experiment, neutrons scattered off the target are converted to protons, which are stopped in scintillator crystals. The results include a description of the proton spectra dependence on the neutron-to-proton conversion angle, suggesting a cut at a conversion angle of 15.2°. Calculation of the hit position gates indicates high proton leakage from the crystals. A study of the converter describes the role of its chemical composition and also the role of other plastic scintillators on the proton spectra. The neutron-to-proton conversion efficiency of the converter simulated by MCNPX is 5.1×10-4 and corresponds to theoretical predictions.

  11. Measurement method of activation cross-sections of reactions producing short-lived nuclei with 14 MeV neutrons

    CERN Document Server

    Kawade, K; Kasugai, Y; Shibata, M; Iida, T; Takahashi, A; Fukahori, T

    2003-01-01

    We describe a method for obtaining reliable activation cross-sections in the neutron energy range between 13.4 and 14.9 MeV for the reactions producing short-lived nuclei with half-lives between 0.5 and 30 min. We noted neutron irradiation fields and measured induced activities, including (1) the contribution of scattered low-energy neutrons, (2) the fluctuation of the neutron fluence rate during the irradiation, (3) the true coincidence sum effect, (4) the random coincidence sum effect, (5) the deviation in the measuring position due to finite sample thickness, (6) the self-absorption of the gamma-ray in the sample material and (7) the interference reactions producing the same radionuclides or the ones emitting the gamma-ray with the same energy of interest. The cross-sections can be obtained within a total error of 3.6%, when good counting statistics are achieved, including an error of 3.0% for the standard cross-section of sup 2 sup 7 Al (n, alpha) sup 2 sup 4 Na. We propose here simple methods for measuri...

  12. Materials for Low-Energy Neutron Radiation Shielding

    Science.gov (United States)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  13. Low cost CCD camera protection against neutron radiation damage.

    Science.gov (United States)

    Kok, J G M

    2005-01-01

    At a radiotherapy department cancer patients are treated with high energy electron and photon beams. These beams are produced by a linear accelerator. A closed circuit television system is used to monitor patients during treatment. Although CCD cameras are rather resistant to stray radiation, they are damaged by the low flux of neutrons which are produced by the linac as a side effect. PVC can be used to reduce damage to CCD cameras induced by neutron radiation. A box with 6 cm thick walls will extend the life of the camera at least by a factor of two. A PVC neutron shield is inexpensive. PVC is easy to obtain and the box is simple to construct. A similar box made out of PE will not reduce neutron damage to a CCD camera. Although PE is a good medium to moderate faster neutrons, thereby reducing some of the bulk defects, it will not capture thermal neutrons which induce surface damage.

  14. New frontier of laser particle acceleration: driving protons to 80 MeV by radiation pressure

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Lee, Chang-Lyoul; Choi, Il Woo; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V; Jeong, Tae Moon; Nam, Chang Hee

    2014-01-01

    The radiation pressure acceleration (RPA) of charged particles has been considered a challenging task in laser particle acceleration. Laser-driven proton/ion acceleration has attracted considerable interests due to its underlying physics and potential for applications such as high-energy density physics, ultrafast radiography, and cancer therapy. Among critical issues to overcome the biggest challenge is to produce energetic protons using an efficient acceleration mechanism. The proton acceleration by radiation pressure is considerably more efficient than the conventional target normal sheath acceleration driven by expanding hot electrons. Here we report the generation of 80-MeV proton beams achieved by applying 30-fs circularly polarized laser pulses with an intensity of 6.1 x 1020 W/cm2 to ultrathin targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and 3D-PIC simulations. We expect this fast energy scalin...

  15. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    Science.gov (United States)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su; Lee, Byeong-No; Lee, Byung-Chul; Park, Hyung-dal; Song, Ki-back; Song, Ho-seung; Mun, Sangchul; Ha, Donghyup; Chai, Jong-Seo

    2017-04-01

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  16. Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas

    Science.gov (United States)

    Rebai, M.; Giacomelli, L.; Milocco, A.; Nocente, M.; Rigamonti, D.; Tardocchi, M.; Camera, F.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Giaz, A.; Hu, Z. M.; Marchi, T.; Peng, X. Y.; Gorini, G.

    2016-11-01

    A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.

  17. Direct radiative capture of p-wave neutrons

    CERN Document Server

    Mengoni, A; Ishihara, M

    1995-01-01

    The neutron direct radiative capture (DRC) process is investigated, highlighting the role of incident p-wave neutrons. A set of calculations is shown for the 12-C(n,gamma) process at incoming neutron energies up to 500 keV, a crucial region for astrophysics. The cross section for neutron capture leading to loosely bound s, p and d orbits of 13-C is well reproduced by the DRC model demonstrating the feasibility of using this reaction channel to study the properties of nuclear wave functions on and outside the nuclear surface. A sensitivity analysis of the results on the neutron-nucleus interaction is performed for incident s- as well as p-waves. It turned out that the DRC cross section for p-wave neutrons is insensitive to this interaction, contrary to the case of incident s-wave neutrons. PACS number(s): 25.40Lw,21.10Gv,23.40.Hc

  18. Dispersive spherical optical model of neutron scattering from Al27 up to 250 MeV

    CERN Document Server

    Molina, A; Quesada, J M; Lozano, M

    2002-01-01

    A spherical optical model potential (OMP) containing a dispersive term is used to fit the available experimental database of angular distribution and total cross section data for n + Al27 covering the energy range 0.1- 250 MeV using relativistic kinematics and a relativistic extension of the Schroedinger equation. A dispersive OMP with parameters that show a smooth energy dependence and energy independent geometry are determined from fits to the entire data set. A very good overall agreement between experimental data and predictions is achieved up to 150 MeV. Inclusion of nonlocality effects in the absorptive volume potential allows to achieve an excellent agreement up to 250 MeV.

  19. Precision Cross Sections Measurement of 56Fe(n,n γ) at 14.1 MeV using Associated Particle Neutron Elemental Imaging Technique

    Science.gov (United States)

    Wang, Haoyu; Koltick, David

    2017-01-01

    Integral production cross sections for 846.8 keV and 1238.3 keV prompt gamma rays from 14.1 MeV neutrons interactions on 56Fe and are reported, using Associated Particle Neutron Elemental Imaging technique. The experimental technique involves: (1) The development of a VME standard high speed DAQ system and a MATLAB parallel cluster for offline signal analysis with full control of data flow; (2) The advantage of the <1.5 ns coincidence timing resolution between the neutron production and the gamma ray detection to reject noise; (3) A large 30% solid angle gamma ray coverage by an array of NaI(Tl) detectors. The neutron flux is measured through detecting the associated alpha-particle from the D-T fusion reaction in the neutron generator. Present cross section measurements using other techniques with limited timing resolution and solid angle coverage are in agreement at neutron energies lower than 6 MeV. At higher neutron energies reported results can disagree by more than 20%. This more accurate technique presented can distinguish between the differences in the reported results based on pulse-mode neutron source and neutron time-of-flight techniques, at higher neutron energies.

  20. Fast-neutron induced pre-equilibrium reactions on 55Mn and 63,65Cu at energies up to 40 MeV

    CERN Document Server

    Avrigeanu, M; Filatenkov, A A; Forrest, R A; Herman, M; Köning, A J; Plompen, A J M; Roman, F L; Avrigeanu, V

    2007-01-01

    Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$\\alpha$)$^{52}$V, $^{63}$Cu(n,$\\alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections are compared with the results of calculations including all activation channels for the stable isotopes of Mn and Cu, for neutron incident energies up to 50 MeV. Within the energy range up to 20 MeV the model calculations are most sensitive to the parameters related to nuclei in the early stages of the reaction, while the model assumptions are better established by analysis of the data in the energy range 20-40 MeV. While the present analysis has taken advantage of both a new set of accurate measured cross sections around 14 MeV and the larger data basis fortunately available between 20 and 40 MeV for the Mn and Cu isotopes, the need of additional measurements below as well as above 40 MeV is pointed out. Keywords: 55Mn, 63,65Cu, E$\\leq$40 MeV, Neutron activati...

  1. ANALYSIS OF THE EFFICIENCY OF A THERAPEUTIC PROGRAM USING 10.2-MEV FAST NEUTRONS. OPTIMIZATION AND PROSPECTS OF THE DEVELOPMENT OF A PROCEDURE FOR COMBINED PHOTON-NEUTRON THERAPY. THE EXPERIENCE OF THE URAL CENTER FOR NEUTRON THERAPY

    Directory of Open Access Journals (Sweden)

    E. Yu. Kandakova

    2013-01-01

    Full Text Available The Ural Center for Neutron Therapy performs combined photon-neutron therapy for cancer patients, by applying an ELLIT-80 gamma unit and a NG-12I neutron generator. After modernization of the NG-12I generator, there was a need for redetermination of the relative biological efficiency (RBE to optimize radiotherapy for the patients. An exotest was used to experimentally estimate RBE according to the survival criteria for stem hematopoietic cells in CBA mice after modernization of the equipment generated by the NG-12I unit with respect to the gamma radiation generated by the ELLIT-80 unit. The investigation established that the RBE factor of NG-12I unit-induced radiation determined as the ratio of equally effective doses (our study used D0 was 1.53 for an acute radiation regimen. During fractional radiation, the RBE factor of neutron radiation was 3.05. That is to say, the total neutron radiation dose replacing 20 % gamma radiation (13 Gy in the used photon-neutron therapy regimen is 4.26 Gy. The experimental findings have led us to conclude that the previously described neuron therapy regimen may be optimized, by increasing the contribution of neutrons to the total course of radiotherapy in a definite category of patients with radioresistant tumors of the head and neck.

  2. Neutron production at 0{degree} from the {sup 40}Ca+H reaction at E{sub lab}=357A and 565A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Costa, S.; Insolia, A.; Potenza, R.; Reito, S.; Romanski, J.; Russo, G.V. [Universita di Catania and INFN - I, 95129 Catania (Italy); Cronqvist, M.; Lindstrom, P.J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chen, C.; Guzik, T.G.; Tull, C.E.; Wefel, J.P. [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Crawford, H.J.; Engelage, J.; Greiner, L. [Space Science Laboratory, University of California, Berkeley, California 94720 (United States); Knott, C.N.; Waddington, C.J. [University of Minnesota, Minneapolis, Minnesota 55455 (United States); Webber, W.R. [University of New Mexico, Las Cruces, New Mexico 88003 (United States); Soutoul, A.; Testard, O. [Service dAstrophysique, CEN, 91191 Saclay (France); Mitchell, J.W. [NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    1997-08-01

    Neutrons produced in the {sup 40}Ca+H reaction at E{sub lab}=357A and 565A MeV have been detected using a three-module version of the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range around the beam in the forward direction (0{degree}{minus}3.2{degree}). Semi-inclusive neutron production cross sections, at the two energies, are reported together with neutron energy spectra, angular, rapidity, and transverse momentum distributions. Comparison with a Boltzmann-Nordheim-Vlasov approach + phase space coalescence model is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  3. The light-yield response of a NE-213 liquid-scintillator detector measured using 2 -- 6 MeV tagged neutrons

    CERN Document Server

    Scherzinger, J; Annand, J R M; Fissum, K G; Hall-Wilton, R; Kanaki, K; Lundin, M; Nilsson, B; Perrey, H; Rosborg, A; Svensson, H

    2016-01-01

    The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2--6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. Parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.

  4. Determination of neutron spectra formed by 40-MeV deuteron bombardment of a lithium target with multi-foil activation technique

    CERN Document Server

    Maekawa, F; Wada, M; Wilson, P P H; Ikeda, Y

    2000-01-01

    Neutron flux spectra at an irradiation field produced by a 40-MeV deuteron bombardment on a thick lithium-target at Forschungszentrum Karlsruhe, Germany, have been determined by the multi-foil activation technique. Twenty-seven dosimetry reactions having a wide energy range of threshold energies up to 38 MeV were employed as detectors for the neutron flux spectra extending to 55 MeV. The spectra were adjusted with the SAND-II code with the experimental reaction rates based on an iterative method. The adjusted spectra validated quantitatively the Monte Carlo deuteron-lithium (d-Li) neutron source model code (M sup C DeLi) which was used to calculate initial guess spectra and also has been used for IFMIF nuclear designs. Accuracy of the adjusted spectra was approx 10% that was suitable for successive integral tests of activation cross section data.

  5. Container inspection in the port container terminal by using 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Valkovic, Vladivoj [Institute Ruder Boskovic, Zagreb (Croatia); Kvinticka 62, Zagreb (Croatia); Sudac, Davorin; Nad, Karlo; Obhodas, Jasmina [Ruder Boskovic Institute, Bijenicka c.54, Zagreb (Croatia)

    2015-07-01

    A proposal for an autonomous and flexible ship container inspection system is presented. This could be accomplished by the incorporation of inspection system on the container transportation devices (straddle carriers, yard gentry cranes automated guided vehicles, trailers). This configuration is terminal specific and it will be decided by container terminal operator. In such a way no part of port operational area will be used for inspection. The inspection scenario will include container transfer from ship to transportation device with inspection unit mounted on it, inspection during container movement to the container location. A neutron generator without associated alpha particle detection will be used. This will allow the use of higher neutron intensity (5x10{sup 9} - 10{sup 10} n/s in 4π). The inspected container will be stationary in the 'inspection position' on the transportation device while the 'inspection unit' will move along its side. Following analytical methods will be used simultaneously: neutron radiography, X-ray radiography, neutron activation analysis, (n,γ) and (n,n'γ) reactions, neutron absorption, and scattering, X-ray backscattering, Neutron techniques will take the advantage of using 'smart collimators' for neutrons and gammas, both emitted and detected. The inspected voxel will be defined by intersections/union of neutron generator and detectors solid angles. The container inspection protocol will be based on identification of discrepancies between its cargo manifest and its elemental 'fingerprint' and radiography profiles. In addition, the information on container weight will be obtained during the container transport and foreseen screening from the measurement of density of material in the container. (authors)

  6. Radiation induced changes in electrical conductivity of chemical vapor deposited silicon carbides under fast neutron and gamma-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Bun, E-mail: btsuchiya@meijo-u.ac.jp [Department of General Education, Faculty of Science and Technology, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502 (Japan); Shikama, Tatsuo; Nagata, Shinji; Saito, Kesami [Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamamoto, Syunya [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohnishi, Seiki [Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Nozawa, Takashi [Aomori Research and Development Center, Japan Atomic Energy Agency, 2-166, Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2011-10-15

    The radiation-induced changes in the volume electrical conductivities of chemical vapor deposited silicon carbides (CVD-SiCs) were in-site investigated by performing irradiation using 1.17 and 1.33-MeV gamma-ray and 14-MeV fast neutron beams in air and vacuum. Under gamma-ray irradiation at ionization dose rates of 3.6 and 5.9 Gy/s and irradiation temperature of approximately 300 K, the initial rapid increase in electrical conductivity; this is indicative of radiation-induced conductivity (RIC), occurred due to electronic excitation, and a more gradual increase followed up to a dose of approximately 10-50 kGy corresponding to the results in base conductivity without radiation; this is indicative of radiation-induced electrical degradation (RIED). However, the radiation-induced phenomena were not observed at irradiation temperatures above 373 K. Under neutron irradiation at a further low dose rate below approximately 2.1 Gy/s, a fast neutron flux of 9.2 x 10{sup 14} n/m{sup 2} s, and 300 K, the RIED-like behavior according to radiation-induced modification of the electrical property occurred with essentially no displacement damage, but ionizing effects (radiolysis).

  7. High-accuracy 233U(n, f ) cross-section measurement at the white-neutron source n TOF from near-thermal to 1 MeV neutron energy

    OpenAIRE

    Sarchiapone, L.; Savvidis, I.; Konovalov, V; Stephan, C.; Tagliente, G.; Krticka, M; Rudolf, G.; Kossionides, E.; Rullhusen, P; Leeb, H.; Salgado, J.; Capote, R.; Cano-Ott, D.; Mengoni, A.; Calviño Tavares, Francisco

    2009-01-01

    The 233U(n,f ) cross section has been measured at the white neutron source n TOF in a wide energy range with a dedicated fission ionization chamber. We report here the results from ∼30 meV to 1 MeV neutron energy. The 233U(n,f ) cross section has been determined relative to a reference sample of 235U(n,f )measured simultaneously with the same detector. The very high instantaneous neutron flux and the intrinsically low background of the n TOF installation result in an accuracy arou...

  8. NEUTRON DECAY OF THE EXCITATION-ENERGY REGION UP TO 60 MEV, EXCITED BY HEAVY-ION SCATTERING .2. ZR-90 AND SN-124

    NARCIS (Netherlands)

    BLOMGREN, J; VANDENBERG, AM; BORDEWIJK, JA; BRANDENBURG, S; CHMIELEWSKA, D; VANDERWOUDE, A; NILSSON, L; OLSSON, N; BLUMENFELD, Y; FRASCARIA, N; ROYNETTE, JC; SCARPACI, JA; SUOMIJARVI, T; ALAMANOS, N; AUGER, F; GILLIBERT, A; ROUSSELCHOMAZ, P; TURCOTTE, R

    1994-01-01

    The neutron decay of the continuum in Zr-90 and Sn-124, excited by inelastic scattering of 84A MeV O-17 ions in the range from 1.5 to 4.5-degrees, has been measured. Statistical decay was found to dominate the excitation-energy interval studied, up to about 50 MeV. In the excitation-energy interval

  9. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  10. Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models

    Science.gov (United States)

    Sakaguchi, Kaori; Nagatsuma, Tsutomu; Reeves, Geoffrey D.; Spence, Harlan E.

    2015-12-01

    The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary orbit (GEO) and medium Earth orbit. To provide alerts of electron flux enhancements, 16 prediction models of the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements of omnidirectional 2.3 MeV electron flux from the Van Allen Probes mission as well as >2 MeV electrons from the GOES 15 spacecraft were used as the predictors. Model explanatory parameters were selected from solar wind parameters, the electron log-flux at GEO, and geomagnetic indices. For the innermost region of the outer radiation belt, the electron flux is best predicted by using the Dst index as the sole input parameter. For the central to outermost regions, at L ≧ 4.8 and L ≧ 5.6, the electron flux is predicted most accurately by including also the solar wind velocity and then the dynamic pressure, respectively. The Dst index is the best overall single parameter for predicting at 3 ≦ L ≦ 6, while for the GEO flux prediction, the KP index is better than Dst. A test calculation demonstrates that the model successfully predicts the timing and location of the flux maximum as much as 2 days in advance and that the electron flux decreases faster with time at higher L values, both model features consistent with the actually observed behavior.

  11. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Science.gov (United States)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  12. Measurements of attenuation lengths through concrete and iron for neutrons produced by 800-MeV proton on tantalum target at ISIS

    CERN Document Server

    Nunomiya, T; Wright, P; Nakamura, T; Kim, E; Kurosawa, T; Taniguchi, S; Sasaki, M; Iwase, H; Uwamino, Y; Shibata, T; Ito, S; Perry, D R

    2002-01-01

    A deep penetration experiment through a thick bulk shield was performed at an intense spallation neutron source facility, ISIS, of the Rutherford Appleton Laboratory (RAL), United Kingdom. ISIS is a 800 MeV-200 mu A proton accelerator facility. Neutrons are produced from a tantalum target, and are shielded with approximately 3-m thick steel and 1-m thick ordinary concrete. On top of the shield, we measured the neutron flux attenuation through concrete and iron shields, which were additionally placed up to 120-cm and 60-cm thickness, respectively, using activation detectors of graphite and bismuth. The attenuation lengths of concrete and iron for high-energy neutrons above 20 MeV were obtained from the sup 1 sup 2 C(n, 2n) sup 1 sup 1 C reaction of graphite.

  13. Experimental studies on the neutron emission spectrum and activation cross-section for 40 MeV deuterons in IFMIF accelerator structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M. E-mail: hagi@cyric.tohoku.ac.jp; Itoga, T.; Baba, M.; Uddin, M.S.; Hirabayashi, N.; Oishi, T.; Yamauchi, T

    2004-08-01

    In order to improve the nuclear data required in the safety design of the International Fusion Materials Irradiation Facility (IFMIF), we have measured the neutron emission spectra and the activation cross-sections of the IFMIF accelerator structural elements, C and Al, for 40 MeV deuterons using the Tohoku University AVF cyclotron. Neutron spectra from thick C and Al targets were measured with the time-of-flight method at ten laboratory angles between 0- and 110-deg. using a beam swinger system and a well collimated neutron flight channel. The data were obtained over almost entire energy range of secondary neutrons using a two-detector method. Activation cross-sections were measured by detecting the {gamma}-rays from C and Al targets with a high-pure Ge detector. The stacked target technique was used to obtain the data from 40 MeV down to the threshold energy.

  14. Determination of neutron spectra within the energy of 1 keV to 1 MeV by means of reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sergeyeva, Victoria; Destouches, Christophe; Lyoussi, Abdallah [Instrumentation Sensors and Dosimetry Laboratory, CEA Cadarache 13108, (France); Thiollay, Nicolas; Vigneau, Olivier [Chemical and Radiochemical Analyses Laboratory, CEA Cadarache 13108, (France); Korschinek, Gunther [Maier Leibnitz Laboratorium, Technische Universitaet Munchen, Am Coulombwall 6, 85748 Garching, (Germany); Carcreff, Hubert [OSIRIS Irradiation Programme Support Laboratory, CEA Saclay Gif-sur-Yvette 91191, (France)

    2015-07-01

    The standard procedure for neutron reactor dosimetry is based on neutron irradiation of a target and its post-irradiation analysis by Gamma and/or X-ray spectrometry. Nowadays, the neutron spectra can be easily characterized for thermal and fast energies (respectively 0.025 eV and >1 MeV). In this work we propose a new target and an innovating post-irradiation technique of analysis in order to detect the neutron spectra within the energy of 1 keV to 1 MeV. This article will present the calculations performed for the selection of a suitable nuclear reaction and isotope, the results predicted by simulations, the irradiation campaign that is proposed and the post-irradiation technique of analysis. (authors)

  15. Experimental investigation of the 19F( n, α)16N reaction excitation function in the neutron energy range of 4 to 7.35 MeV

    Science.gov (United States)

    Bondarenko, I. P.; Khryachkov, V. A.; Ivanova, T. A.; Kuz'minov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2013-07-01

    The interaction of neutrons with light nuclei study is of interest for understanding nuclear-reaction mechanisms. Fluorine nuclei are worth particular attention because they are abundant in the core of the promising molten-salt reactors and can noticeably affect the chain reaction kinetics. In this work we have experimentally investigated the 19F( n, α)16N reaction cross-section at neutron energies ranging from 4 to 7.35 MeV.

  16. Neutron spectra from 647- and 800-MeV proton bombardment of hydrogen and deuterium. [Cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Bjork, C.W.

    1975-12-01

    Zero degree neutron spectra for the inclusive reactions p(p,n) and d(p,n) were obtained. Spectra were obtained for bombarding proton kinetic energies of 647 and 800 MeV. The strongly peaked p(p,n) spectra are well explained via the p(p,n)p..pi../sup +/ reaction primarily through the production of the N*/sub 33/(..delta../sup + +/) resonance. However, there is evidence for n-p final state interactions as well. Calculations have shown the roles of the N*/sub 33/ resonance and the n-p final state interactions in these p(p,n) spectra. The d(p,n) spectra exhibit a strong quasi-elastic charge exchange peak influenced by the final state p-p interaction in the reaction d(p,n)2p. The d(p,n) spectra also show a broad bump at lower neutron momenta qualitatively similar to the p(p,n) spectra. The d(p,n) spectra at lower momenta are nearly explained by nucleon-nucleon single pion production via the N*/sub 33/ resonance but it appears that higher order contributions involving nucleon--nucleon and nucleon--pion interactions are required as well. The d(p,n)2p reaction provides an intense, nearly monoenergetic neutron beam for use as a probe, primarily of the n-p interaction, at medium energies. The d(p,n) and p(p,n) measurements provide zero degree neutron momentum distributions which are very useful in furthering the knowledge about pion production near the N*/sub 33/ resonance. These data provide a challenge to the theoreticians to explain pion production in the two and three nucleon initial states. (auth)

  17. Detector Development for Neutron Imaging System for Radioactive-Waste Analysis (NISRA) with 14 MeV Neutrons

    OpenAIRE

    2014-01-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radiotoxic and chemotoxic contents. In a cooperation framework Forschungszentrum Jülich, RWTH Aachen University and the Siemens AG are studying the feasibility of a compact Neutron Imaging Syst...

  18. Monte Carlo Calculations for Neutron and Gamma Radiation Fields on a Fast Neutron Irradiation Device

    Science.gov (United States)

    Vieira, A.; Ramalho, A.; Gonçalves, I. C.; Fernandes, A.; Barradas, N.; Marques, J. G.; Prata, J.; Chaussy, Ch.

    We used the Monte Carlo program MCNP to calculate the neutron and gamma fluxes on a fast neutron irradiation facility being installed on the Portuguese Research Reactor (RPI). The purpose of this facility is to provide a fast neutron beam for irradiation of electronic circuits. The gamma dose should be minimized. This is achieved by placing a lead shield preceded by a thin layer of boral. A fast neutron flux of the order of 109 n/cm2s is expected at the exit of the tube, while the gamma radiation is kept below 20 Gy/h. We will present results of the neutron and gamma doses for several locations along the tube and different thickness of the lead shield. We found that the neutron beam is very collimated at the end of the tube with a dominant component on the fast region.

  19. Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19F at 14.2 MeV

    Institute of Scientific and Technical Information of China (English)

    DUAN Jun-Feng; YAN Yu-Liang; SUN Xiao-Jun; ZHANG Yue; ZHANG Jing-Shang

    2007-01-01

    A new light nuclear reaction model has been developed and the double-differential measurements of 1p shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-1d shell nucleus. The double-differential cross section of total outgoing neutron for n + 19F reactions at En = 14.2 MeV has been calculated and analyzed, which agrees fairly well with the experimental measurements. In this paper, the contributions from different reaction channels to the double-differential cross sections have been analyzed in detail. The calculations indicate that this light nuclear reaction model is also able to be used for the 2s-1d shell nucleus so long as the related level scheme could be provided sufficiently.

  20. Multilayer passive shielding of scintillation detectors based on BGO, NaI(Tl), and stilbene crystals operating in intense neutron fields with an energy of 14.1 MeV

    Science.gov (United States)

    Bystritsky, V. M.; Valkovic, V.; Grozdanov, D. N.; Zontikov, A. O.; Ivanov, I. Zh.; Kopatch, Yu. N.; Krylov, A. R.; Rogov, Yu. N.; Ruskov, I. N.; Sapozhnikov, M. G.; Skoy, V. R.; Shvetsov, V. N.

    2015-03-01

    We discuss the issues related to choosing the optimum type of passive shielding of scintillation detectors based on BGO, NaI(Tl), and stilbene crystals from the direct penetration of neutron radiation with an energy of 14.1 MeV that was emitted isotropically into a solid angle of 4π. A series of experimental measurements of the count-rate suppression factor that may be obtained for the indicated detectors through the use of various shielding filters comprising iron, lead, and borated polyethylene layers with a total thickness not exceeding 50 cm are conducted.

  1. Measurement of cross sections producing short-lived nuclei by 14 MeV neutron. Br, Te, Dy, Ho, Yb

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Matsumoto, T.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1997-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 2 min and 57 min have been measured at energy range between 13.4 and 14.9 MeV for Br, Te, Dy, Ho, Yb. The cross sections of {sup 81}Br(n,p){sup 81m}Se, {sup 128}Te(n,p){sup 128m}Sb, {sup 128}Te(n,{alpha}){sup 125m}Sn, {sup 164}Dy(n,p){sup 164}Tb, {sup 165}Ho(n,{alpha}){sup 162}Tb, {sup 176}Yb(n,p){sup 176}Tm were newly obtained at the six energy points between 13.4-14.9 MeV, although the previous results have been obtained at one energy point. {sup 79}Br(n,2n){sup 78}Br, {sup 164}Dy(n,p){sup 164}Tb are compared with evaluated data of JENDL-3.2. The evaluations for these reactions agree reasonably well with experimental results. The cross sections of (n,p) reaction are compared with systematics by Kasugai et. al. The systematics agrees with experimental results. (author)

  2. Spin Dependence in Neutron-Proton Charge Exchange at 790 MeV

    Science.gov (United States)

    Ransome, R. D.; Hollas, C. L.; Riley, P. J.; Bonner, B. E.; Gibbs, W. R.; McNaughton, M. W.; Simmons, J. E.; Bhatia, T. S.; Glass, G.; Hiebert, J. C.; Northcliffe, L. C.; Tippens, W. B.

    1982-03-01

    The analyzing power A and spin-transfer parameters KNN, KSS, KSL, and KLL have been measured in the np charge-exchange (np-->pn) region at 790 MeV. These data provide new and unique information on the spin dependence of the np interaction in the charge-exchange region. Models which explain the charge-exchange peak in the np elastic differential cross section as being due to interference between one-pion exchange and a slowly varying background are in basic agreement with the data.

  3. Neutron-induced deuteron breakup cross section at 10. 3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, M.; Bodek, K.; Krug, J.; Lubcke, W.; Obermanns, S.; Ruhl, H.; Steinke, M.; Kamke, D.; Witala, H.; Cornelius, T.; and others

    1989-06-01

    The absolute cross section of /ital n/+/ital d//r arrow//ital n/+/ital n/+/ital p/ at 10.3 MeV incidentneutron energy has been measured in the so called ''space-star'' configuration.The results are compared with three-nucleon calculations based on the Parispotential and the new Bonn potential. The agreement within the experimentaluncertainties of 8% puts an upper limit to the combined corrections due torelativistic effects, on-shell two-nucleon uncertainties, and the three-nucleonforce.

  4. Neutron- and proton-induced nuclear data evaluation of thorium, uranium and curium isotopes for energies up to 250 MeV

    CERN Document Server

    Young, Ouk Lee; Jonghwa, Chang; Konobeyev, A Yu

    2004-01-01

    The evaluation of neutron- and proton nuclear data for thorium-232, U-233,234,236, and Cm-243,244,245,246 isotopes have been performed at energies up to 250 MeV. Neutron data was evaluated at energies from 20 MeV to 250 MeV, and combined with the JENDL-3.3 data at 20 MeV while proton data was obtained for energies from 1 to 250 MeV. Nuclear model parameters are largely based on the IAEA-RIPL recommendation, and adjusted to better reproduce the available measurements. The coupled channel optical model was applied to calculate the total, reaction, elastic, and direct inelastic cross sections, and to obtain the transmission coefficients. Decay of excited nuclei was described with the Hauser-Feshbach and exciton models using the GNASH code to simultaneously handle neutron, proton, deuteron, triton, helium-3, alpha , gamma emissions and fissions. Special attention was paid on the fission cross sections for energies where experimental data are scant, using appropriate systematics and fittings. Particles and gamma e...

  5. Preliminary cross sections for gamma rays produced by interaction of 1 to 40 MeV neutrons with sup 59 Co

    Energy Technology Data Exchange (ETDEWEB)

    Slusarchyk, T.E.

    1989-10-15

    Data for 46 distinct gamma rays previously obtained at the 20-meter station of the Oak Ridge Electron Linear Accelerator (ORELA) were studied to determine cross sections for 1.0-40.0 MeV neutron interactions with {sup 59}Co. Data reduction methods and preliminary cross sections are given in this report. 5 refs., 12 figs., 8 tabs.

  6. NEUTRON DECAY OF THE EXCITATION-ENERGY REGION UP TO 60 MEV, EXCITED BY HEAVY-ION SCATTERING .1. PB-207

    NARCIS (Netherlands)

    VANDENBERG, AM; CHMIELEWSKA, D; BORDEWIJK, JA; BRANDENBURG, S; VANDERWOUDE, A; BLUMENFELD, Y; FRASCARIA, N; ROYNETTE, JC; SCARPACI, JA; SUOMIJARVI, T; ALAMANOS, N; AUGER, F; GILLIBERT, A; ROUSSELCHOMAZ, P; BLOMGREN, J; NILSSON, L; OLSSON, N; TURCOTTE, R

    1994-01-01

    The neutron decay of the continuum in Pb-208, excited by small-angle inelastic scattering of 84 MeV/nucleon O-17 ions in the range from 1.5-degrees, to 4.5-degrees, has been measured. Statistical decay was found to dominate the excitation-energy interval studied, up to 60 MeV. In the excitation-ener

  7. Neutron decay of deep hole states and isobaric analog states in Sn-115 populated by the (He-3,alpha) reaction at 102 MeV

    NARCIS (Netherlands)

    Soderman, PO; Ringbom, A; Blomgren, J; Olsson, N; Nilsson, L; Bordewijk, JA; van't Hof, G; Hofstee, MA; van der Ploeg, H; van der Werf, SY; Krasznahorkay, A; Balanda, A; Chmielewska, D; Laurent, H

    2001-01-01

    Neutron decay of excited hole states and isobaric analog states (IAS) populated by the Sn-116(He-3,alpha) reaction at an energy of 102 MeV has been investigated. The alpha -particles were analysed in a magnetic spectrograph positioned at 1.4 degrees and detected with a multiwire drift chamber. Excit

  8. Measurement of fission cross-section for the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chang-Lin; Fang, Kai-Hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lanzhou University, Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou, Gansu Province (China); Liu, Shuang-Tong; Lv, Tao; Wang, Qiang; Zhang, Zheng-Wei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lai, Cai-Feng [Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan Province (China)

    2016-11-15

    The fission cross-section of the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV was measured precisely with the neutron activation and off-line gamma-ray spectrometric technique. Neutron fluence was monitored on-line using the accompanying α-particles from the {sup 3}H({sup 2}H,n){sup 4}He reaction, whereas the neutron energies were measured by the method of cross-section ratios of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reactions. The experimentally determined {sup 232}Th(n,f){sup 141}Ba reaction cross-sections were 12.2 ± 0.4 mb at E{sub n} = 14.1 ± 0.3 MeV, 13.0 ± 0.5 mb at E{sub n} = 14.5 ± 0.3 MeV and 13.3 ± 0.5 mb at E{sub n} = 14.7 ± 0.3 MeV, respectively. (orig.)

  9. Measurement of 14 MeV neutron cross section of {sup 129}I with foil activation method

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Nakano, Daisuke; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The {sup 129}I, which is one of the most famous fission products (FPs), is of very important concern from the standpoint of waste transmutation due to its extremely long half life. The accurate reaction cross section data of {sup 129}I induced by 14 MeV neutrons are indispensable when evaluating the performance to transmute it in a fusion reactor. However, there was no available experimental data reported until now. We measured 14 MeV neutron induced reaction cross sections of {sup 129}I to give the reference cross section data for evaluation of transmutation performance and nuclear data, using OKTAVIAN facility of Osaka university, Japan. Since the available amount of {sup 129}I as a sample is quite small, probably less than 1 mg, the foil activation method was adopted in the measurement. The sample was a sealed source of {sup 129}I and the {gamma}-rays from the irradiated sample were measured with a Hp-Ge detector. Several {gamma}-rays peaks which could be expected to be caused by two nuclear reactions of {sup 129}I(n,2n) and {sup 129}I(n,{gamma}) were observed. We confirmed that these peaks corresponded to those of {sup 128}I and {sup 130}I through ascertaining each energy and half life. From the measurement, the cross section of {sup 129}I(n,2n) and the effective production cross section of {sup 130}I produced by the {sup 129}I(n,{gamma}){sup 130}I reaction including the contribution of {sup 129}I(n,{gamma}){sup 130m}I reaction, that were estimated to be 1.1{+-}0.1 b and 0.032{+-}0.003 b, respectively at 14.8 MeV, were obtained with an acceptable accuracy of about 10 %, though the errors caused by the uncertainty of {gamma} decay scheme data still existed. The measured cross sections were compared with the evaluated nuclear data of JENDL-3.2 and ENDF/B-VI. For the {sup 129}I(n,2n) reaction, the evaluations overestimate the cross section by 30-40 %, while for the {sup 129}I(n,{gamma}) reaction, the evaluations underestimate by at least one order of magnitude

  10. Study of Neutron and Gamma Radiation Protective Shield

    OpenAIRE

    Eskandar Asadi Amirabadi; Marzieh Salimi; Nima Ghal-Eh; Gholam Reza Etaati; Hossien Asadi

    2013-01-01

    Due to the development of nuclear technology and use of these technologies in various fields of industry, medicine, research and etc, protection against radioactive rays is one of the most important topics in this field .The purpose of this is to reduce the dose rate from radioactive sources. The sources in terms of components are emitted various types of nuclear radiation with different energies. These radiations are involving of alpha particles, beta, and neutron and gamma radiation. Given ...

  11. GEM detectors development for radiation environment: neutron tests and simulations

    Science.gov (United States)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  12. Shielding data for 100-250 MeV proton accelerators double differential neutron distributions and attenuation in concrete

    CERN Document Server

    Agosteo, S; Mereghetti, A; Silari, M; Zajacova, Z

    2007-01-01

    Double differential distributions of neutrons produced by 100, 150, 200 and 250 MeV protons stopped in a thick iron target were simulated with the FLUKA Monte Carlo code at four emission angles: forward, 45°, transverse and 135° backwards. The attenuation in ordinary concrete of the dose equivalent due to secondary neutrons, protons, photons and electrons was calculated. Some of the resulting attenuation curves are best fitted by a double-exponential function rather than a single-exponential. The effect of various approximations introduced in the simulations is thoroughly discussed. The contribution to the total ambient dose equivalent from photons and protons is usually limited to a few percent, except in the backward direction where photons contribute more than 10% and up to 35% to the total dose for a shield thickness of 1 – 2 m. Source terms and attenuation lengths are given as a function of energy and emission angle, along with fit to the Monte Carlo data. An extensive comparison is made of values ob...

  13. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at Eγ=65 MeV

    Science.gov (United States)

    Sikora, Mark; Compton@HIGS Team

    2017-01-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.

  14. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA.

  15. Measurement of the free neutron-proton analyzing power and spin transfer parameters in the charge exchange region at 790 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ransome, R.D.

    1981-07-01

    The free neutron-proton analyzing power and the spin transfer parameters (K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/) were measured at the Los Alamos Meson Physics Facility at 790 MeV between 165/sup 0/ and 180/sup 0/ center of mass. A 40% polarized neutron beam incident on a liquid hydrogen target was used. The recoil protons were momentum analyzed with a magnetic spectrometer to isolate elastic scatters. A large solid angle carbon polarimeter was used to measure the proton polarization. The measurements are the first at this energy and are in basic agreement with pre-existing phase shift solutions. The proton-carbon analyzing power was measured between 500 and 750 MeV. An empirical fit to the proton-carbon analyzing power between 100 and 750 MeV was done.

  16. Characterization of the radiation background at the Spallation Neutron Source

    Science.gov (United States)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.; Hall-Wilton, Richard J.; Bentley, Phillip M.

    2016-09-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden.

  17. LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing

    Science.gov (United States)

    Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min

    2009-06-01

    In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.

  18. Hydrothermal growth and characterization of UO2 single crystals for neutron radiation detection(Conference Presentation)

    Science.gov (United States)

    Mann, Matthew; Hunt, Eric; Young, Christopher; Kimani, Martin; Turner, David; Varga, Stephan; Petrosky, James

    2016-09-01

    There is significant interest in developing efficient, direct conversion, neutron sensitive solid-state radiation detector materials with the ability to discriminate between photon and neutron events. Recently, this has led several research groups to pursue uranium dioxide (UO2) single crystals as a detection material due to the large reaction energy ( 185 MeV) from a neutron induced fission event. The resulting electrical pulse, generated primarily by the energetic fission fragments, is expected to be on the order of 165 MeV, which is much greater than current detection schemes which rely on reaction energies between 2-6 MeV. The primary technical challenge to the successful fabrication of UO2 devices is the lack of high quality (semiconductor grade) single crystals of UO2. The high melting point of UO2 ( 2878°C) precludes the use of traditional melt growth techniques like Czochralski. While exotic melt growth techniques such as arc fusion, cold crucible, and solar furnace have successfully grown UO2, the crystal quality suffers from both thermal strain and oxygen non-stoichiometry, two particularly difficult challenges inherent to uranium oxide materials. Crystal growth of UO2 by the hydrothermal synthesis technique has never been investigated, although the method has been successfully applied to the synthesis of other refractory oxides. In this talk, we will present growth of UO2 single crystals from a variety of hydrothermal solutions at temperatures below 650C. X-ray diffraction confirmed the stoichiometric nature of the samples and X-ray photoelectron spectroscopy determined the photoelectric work function of two crystal orientations. Preliminary proof-of-concept irradiation studies of a simple UO2 resistive detector will also be presented.

  19. Preliminary Design of 3.5-MeV Helium RFQ for Fusion Materials Radiation Damage Study

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yongsub; Jang, Jiho; Kwon, Hyeokjung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    This work briefly summarized a 3.5 MeV helium RFQ design for alpha irradiation study. We have studied a 3.5-MeV helium RFQ for the fusion material damage study, especially for the alpha particle effects produced by DT reaction. The total length is about 3.7 m, which is compact to be installed in a general experiment hall with a reasonable radiation shielding. For the ion source of He, we are considering a microwave ion source. KOMAC (KOrea Multi-purpose Accelerator Complex) has developed a 100-MeV proton linac which includes a 50-keV ion source, a 3-MeV RFQ (Radio Frequency Quadrupole), and a 100-MeV DTL (drift tube linac). The RFQ technology can be also used to MeV ion beam applications. Especially helium beam with the kinetic energy of 3.5 MeV can be used to study the alpha particle irradiation from DT nuclear fusion reaction on the first wall of the fusion reactor.

  20. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.

    Science.gov (United States)

    Tanaka, H; Sakurai, Y; Suzuki, M; Takata, T; Masunaga, S; Kinashi, Y; Kashino, G; Liu, Y; Mitsumoto, T; Yajima, S; Tsutsui, H; Takada, M; Maruhashi, A; Ono, K

    2009-07-01

    In order to generate epithermal neutrons for boron neutron capture therapy (BNCT), we proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30 MeV protons accelerated by a cyclotron, using an optimum moderator system composed of iron, lead, aluminum, calcium fluoride, and enriched (6)LiF ceramic filter. At present, the epithermal-neutron source is under construction since June 2008 at Kyoto University Research Reactor Institute. This system consists of a cyclotron to supply a proton beam of about 1 mA at 30 MeV, a beam transport system, a beam scanner system for heat reduction on the beryllium target, a target cooling system, a beam shaping assembly, and an irradiation bed for patients. In this article, an overview of the cyclotron-based neutron source (CBNS) and the properties of the treatment neutron beam optimized by using the MCNPX Monte Carlo code are presented. The distribution of the RBE (relative biological effectiveness) dose in a phantom shows that, assuming a (10)B concentration of 13 ppm for normal tissue, this beam could be employed to treat a patient with an irradiation time less than 30 min and a dose less than 12.5 Gy-eq to normal tissue. The CBNS might be an alternative to the reactor-based neutron sources for BNCT treatments.

  1. Tritium production in a sphere of /sup 6/LiD irradiated by 14-MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hemmendinger, A.; Ragan, C.E.; Shunk, E.R.; Ellis, A.N.; Anaya, J.M.; Wallace, J.M.

    1978-10-01

    The specific production of tritium in samples of /sup 6/LiH and /sup 7/LiH embedded in a 600-mm-diam sphere of /sup 6/LiD irradiated by a central source of 14-MeV neutrons was determined by measuring the activity of the hydrogen evolved from the samples of each isotope at each of five different radii in the /sup 6/LiD assembly. The entire process of decomposing the LiH, transferring the evolved gas into counters, and determining the decay rate was standardized by processing LiH samples irradiated by thermal neutrons for which the /sup 6/Li(n,..cap alpha..) cross section is well known. The specific production of tritium in /sup 6/LiH and /sup 7/LiH (embedded samples) and the activation of radiochemical detector foils of /sup 45/Sc, /sup 89/Y, /sup 90/Zr, /sup 169/Tm, /sup 191/Ir /sub 373/, /sup 193/Ir /sub 627/, /sup 197/Au, /sup 235/U, and /sup 238/U placed at various positions in the /sup 6/LiD sphere were calculated and compared with the experimental data. One- and three-dimensional Monte Carlo and S/sub n/ neutron-transport calculations were performed. The most reliable (three-dimensional Monte Carlo) calculation is in reasonable agreement with both the tritium-production and the radiochemical-activation data. The existing discrepancies between calculation and experiment appear largely attributable to uncertainties in some tritium-production and radiochemical-activation cross sections. 15 references.

  2. Measurement of the response function and the detection efficiency of an organic liquid scintillator for neutrons between 1 and 30 MeV

    Institute of Scientific and Technical Information of China (English)

    HUANG Han-Xiong; RUAN Xi-Chao; CHEN Guo-Chang; ZHOU Zu-Ying; LI Xia; BAO Jie; NIE Yang-Bo; ZHONG Qi-Ping

    2009-01-01

    The light output function of a φ50.8 mm×50.8 mm BC501A scintillation detector was measured in the neutron energy region of 1 to 30 MeV by fitting the pulse height (PH) spectra for neutrons with the simulations from the NRESP code at the edge range. Using the new light output function, the neutron detection efficiency was determined with two Monte-Carlo codes, NEFF and SCINFUL. The calculated efficiency was corrected by comparing the simulated PH spectra with the measured ones. The determined efficiency was verified at the near threshold region and normalized with a Proton-Recoil-Telescope (PRT) at the 8-14 MeV energy region.

  3. Production cross sections of discrete gamma-ray resulting from interaction of 14. 2 MeV neutron with Pb and Bi

    Energy Technology Data Exchange (ETDEWEB)

    Wu Youngshun; Shen Ronglin; Shi Xiamin; Xing Jinqiang; Ding Dazhao

    1982-11-01

    The differential cross sections of gamma-rays produced in interation of 14.2 MeV neutron with natural lead and bismuth have been measured at 55/sup 0/ (lab). The complete shield Ge (Li) spectrometer with time-of-flight technique gated by associated particle in T(d,n) reaction was used. The gamma-ray spectra from 14.2 MeV neutron interactions with /sup 238/U and natural Tungsten have been measured as well. For Pb and Bi, tens of discrete gamma-rays were identified. Some of thme have not been reported in previous work. The effects of attenuation and multiple scattering of neutron and the gamma-ray self-absorption in sample are corrected by Monte-Carlo method. The experimental results are compared with others.

  4. Volumetric Heat Generation and Consequence Raise in Temperature Due to Absorption of Neutrons from Thermal up to 14.9 MeV Energies

    CERN Document Server

    Massoud, E

    2003-01-01

    In this work, the heat generation rate and the consequence rise in temperature due to absorption of all neutrons from thermal energies (E<0.025) up to 14.9 MeV in water, paraffin wax, ordinary concrete and heavy concrete and heavy concrete as some selected hydrogenous materials are investigated. The neutron flux distributions are calculated by both ANISN-code and three group method in which the fast neutrons are expressed by the removal cross section concept while the other two groups (epithermal and thermal) are treated by the diffusion equation. The heat generation can be calculated from the neutron macroscopic absorption of each material or mixture multiplied by the corresponding neutron fluxes. The rise in temperature is then calculated by using both of the heat generation and the thermal conductivity of the selected materials. Some results are compared with the available experimental and theoretical data and a good agreement is achieved.

  5. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  6. Displacement Damage in Silicon Irradiated with 6- to 10-MeV Neutrons.

    Science.gov (United States)

    1977-04-01

    3. E . E . Conrad , “Considerations in Establ i sh ing a Standard for N eutron Displacement Energy Ef fec ts in Semiconductors ” , IEEE Trans. Nuci...at a tem perature s ign i f i can t ly hi gher than that during irradiation , is sufficient t~- el iminate prior thermal history as a factor in...the number and natur e of permanent defects. 22. C.E. Barnes , “ Thermal and Injection Annealing of Neutron- Irradi tsd P-Type Silicon Between 76°K and

  7. Evaluation of area monitor response for neutrons in radiation field generated by a 15 MV clinic accelerator; Avaliacao da resposta dos monitores de area para neutrons em campo de radiacao gerado por um acelerador clinico de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula

    2011-07-01

    The clinical importance and usage of linear accelerators in cancer treatment increased significantly in the last years. Coupled with this growth came the concern about the use of accelerators with energies over to 10 MeV which produce therapeutic beam contaminated with neutrons generated when high-energy photons interact with high-atomic-number materials such as tungsten and lead present in the accelerator itself. At these facilities, measurements of the ambient dose equivalent for neutrons present difficulties owing to the existence of a mixed radiation field and possible electromagnetic interference near the accelerator. The Neutron Laboratory of the IRD - Brazilian Institute for Radioprotection and Dosimetry, aiming to evaluate the survey meters performance at these facilities, initiated studies of instrumentation response in the presence of different neutron spectra. Neutrons sources with average energies ranging from 0.55 to 4.2 MeV, four different survey meters and one ionization chamber to obtain the ratio between the dose due to neutrons and gamma radiation were used in this work. The evaluation of these measurements, performed in a 15 MV linear accelerator room is presented. This work presents results that demonstrate the complexity and care needed to make neutrons measurements in radiotherapy treatment rooms containing high energy clinical accelerators. (author)

  8. Concrete shielding of neutron radiations of plasma focus and dose examination by FLUKA

    Science.gov (United States)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2013-07-01

    Plasma Focus (PF) is among those devices which are used in plasma investigations, but this device produces some dangerous radiations after each shot, which generate a hazardous area for the operators of this device; therefore, it is better for the operators to stay away as much as possible from the area, where plasma focus has been placed. In this paper FLUKA Monte Carlo simulation has been used to calculate radiations produced by a 4 kJ Amirkabir plasma focus device through different concrete shielding concepts with various thicknesses (square, labyrinth and cave concepts). The neutron yield of Amirkabir plasma focus at varying deuterium pressure (3-9 torr) and two charging voltages (11.5 and 13.5 kV) is (2.25 ± 0.2) × 108 neutrons/shot and (2.88 ± 0.29) × 108 neutrons/shot of 2.45 MeV, respectively. The most influential shield for the plasma focus device among these geometries is the labyrinth concept on four sides and the top with 20 cm concrete.

  9. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F. [CNRS-IN2P3-IPN Orsay, Orsay (France)

    2007-07-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators ({approx}24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: {approx}20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T{approx}4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35{mu}A) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose ({approx}20%): a neutrons fluence of more than 10{sup 14} n/cm{sup 2} is achieved in {approx}20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T{approx}4.2 K. This new apparatus allows on-line automatic measurements

  10. The Search for >35 MeV Neutrons from the June 3, 2012 Impulsive Flare

    CERN Document Server

    Koga, K; Matsumoto, H; Muraki, Y; Okudaira, T Obara O; Shibata, S; Yamamoto, T; Goka, T

    2015-01-01

    We analyzed a highly impulsive solar flare observed on June 3, 2012. In association with this flare, emissions of hard X-rays, high-energy gamma rays, and neutrons were detected by the detectors onboard the FERMI, RHESSI satellites and the International Space Station. We compared those results with the pictures taken by the UV telescope onboard the Solar Dynamics Observatory satellite and found the crossing structure of two magnetic ropes at two positions on the solar surface almost at the same time. High-energy gamma rays were detected by the Fermi Large Area Telescope satellite, implying that the impulsive flare was one of a major source of proton acceleration processes on the solar surface. At the beginning of research, impulsive solar flares were considered to be the main source of particle acceleration processes; our current observations have confirmed this hypothesis.

  11. Compilation and evaluation of 14-MeV neutron-activation cross sections for nuclear technology applications. Set I

    Energy Technology Data Exchange (ETDEWEB)

    Evain, B.P.; Smith, D.L.; Lucchese, P.

    1985-04-01

    Available 14-MeV experimental neutron activation cross sections are compiled and evaluated for the following reactions of interest for nuclear-energy technology applications: /sup 27/Al(n,p)/sup 27/Mg, Si(n,X)/sup 28/Al, Ti(n,X)/sup 46/Sc, Ti(n,X)/sup 47/Sc, Ti(n,X)/sup 48/Sc, /sup 51/V(n,p)/sup 51/Ti, /sup 51/V(n,..cap alpha..)/sup 48/Sc, Cr(n,X)/sup 52/V, /sup 55/Mn(n,..cap alpha..)/sup 52/V, /sup 55/Mn(n,2n)/sup 54/Mn, Fe(n,X)/sup 54/Mn, /sup 54/Fe(n,..cap alpha..)/sup 51/Cr, /sup 59/Co(n,p)/sup 59/Fe, /sup 59/Co(n,..cap alpha..)/sup 56/Mn, /sup 59/Co(n,2n)/sup 58/Co, /sup 65/Cu(n,p)/sup 65/Ni, Zn(n,X)/sup 64/Cu, /sup 64/Zn(n,2n)/sup 63/Zn, /sup 113/In(n,n')/sup 113m/In, /sup 115/In(n,n') /sup 115m/In. The compiled values are listed and plotted for reference without adjustments. From these collected results those values for which adequate supplementary information on nuclear constants, standards and experimental errors is provided are selected for use in reaction-by-reaction evaluations. These data are adjusted as needed to account for recent revisions in the nuclear constants and cross section standards. The adjusted results are subsequently transformed to equivalent cross sections at 14.7 MeV for the evaluation process. The evaluations are performed utilizing a least-squares method which considers correlations between the experimental data. 440 refs., 41 figs., 46 tabs.

  12. {sup 48}Ti(n,xnpa{gamma}) reaction cross sections using spallation neutrons for E{sub n} = 1 to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Cooper, J R; Hoffman, R D; Younes, W; Devlin, N; Fotiades, N; Nelson, R O

    2005-01-06

    {gamma}-ray excitation functions have been measured for the interaction of fast neutrons with {sup 48}Ti (neutron energy from 1 MeV to 250 MeV). The Los Alamos National Laboratory spallation neutron source, at the LANSCE/WNR facility, provided a ''white'' neutron beam which is produced by bombarding a natural W target with a pulsed proton beam. The prompt-reaction {gamma} rays were measured with the large-scale Compton-suppressed Ge spectrometer, GEANIE. Neutron energies were determined by the time-of-flight technique. Excitation functions were converted to partial {gamma}-ray cross sections, taking into account the dead-time correction, the target thickness, the detector efficiency, and neutron flux (monitored with an in-line fission chamber). The data analysis is presented here for neutron energies between 1 to 20 MeV. Partial {gamma}-ray cross sections for transitions in {sup 47,48}Ti, {sup 48}Sc, and {sup 45}Ca have been determined. These results are compared to Hauser-Feshbach predictions calculated using the STAPRE code, which includes compound nuclear and pre-equilibrium emission. The partial cross sections for {gamma} rays, whose discrete {gamma}-ray cascade path leads to the ground state in {sup 48}Ti, {sup 47}Ti, {sup 48}Sc, and {sup 45}Ca have been summed to obtain estimates of the lower limits for reaction cross sections. Partial cross sections for unobserved {gamma}-rays are predicted from the STAPRE code. These lower limits are combined with Hauser-Feshbach calculations to deduce {sup 48}Ti(n,n'){sup 48}Ti, {sup 48}Ti(n,2n){sup 47}Ti, {sup 48}Ti(n,p){sup 48}Sc, and {sup 48}Ti(n,{alpha}){sup 45}Ca reaction channel cross sections.

  13. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    Science.gov (United States)

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  14. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  15. Neutron radiation effect on carbon-loaded polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Ervedosa, Eduardo P.; Santos, Luiz A.P., E-mail: lasantos@cnen.gov.br, E-mail: eduardoervedosa@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Genezini, Frederico A., E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This work aims to study the changes in the electrical conductivity of carbon-loaded polyethylene after neutron irradiation. The material is a polymer-based semiconductor and it was used to evaluate the neutron flux in a research nuclear reactor. The main advantage with this type of semiconductor concerns about that the composite itself is not a material that bring high neutron activation. Such a feature could allow for measuring the neutron flux in real time with the advantage that it is a low cost material. Samples in triplicate with identical geometries were prepared and irradiated at different time intervals in order to evaluate the material response to neutron radiation in function of its electrical property. The method of measurement is based on the voltage yielded when a high precision ultra-low constant current is passing through the material. The results show that if this polymer based semiconductor is submitted to a neutron flux from a nuclear reactor it presents a systematic variation in its electrical resistance and one can conclude that this material can be used as a neutron sensor. (author)

  16. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  17. Moessbauer studies of hemoglobin in erythrocytes exposed to neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Niemiec, Katarzyna; Kaczmarska, Magdalena; Buczkowski, Mateusz [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland); Fornal, Maria [Collegium Medicum, Jagiellonian University, Department of Internal Medicine and Gerontology (Poland); Pohorecki, Wladyslaw [AGH University, Faculty of Energy and Fuels (Poland); Matlak, Krzysztof; Korecki, Jozef [AGH University, Faculty of Physics and Computer Science, Department of Solid State Physics (Poland); Grodzicki, Tomasz [Collegium Medicum, Jagiellonian University, Department of Internal Medicine and Gerontology (Poland); Burda, Kvetoslava, E-mail: kvetoslava.burda@fis.agh.edu.pl [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland)

    2012-03-15

    We studied radiation effects on the stability of various states of hemoglobin (Hb) in red blood cells (RBC) irradiated with a very low dose of neutron rays, 50 {mu}Gy. We investigated RBCs isolated from blood of healthy donors. Moessbauer spectroscopy was applied to monitor different forms of Hb. Our results show, for the first time, that oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoxyHb) are two Hb forms sensitive to such a low neutron radiation. Both Hbs change into a new Hb form (Hb{sub irr}). Additionally, OxyHb transfers into HbOH/H{sub 2}O, which under our experimental conditions is resistant to the action of neutron rays.

  18. Thermal radiation from magnetic neutron star surfaces

    CERN Document Server

    Pérez-Azorin, J F; Pons, J A

    2005-01-01

    We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool atmospheres with moderately intense magnetic fields. The thermal emission from an isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution, depending on the magnetic field geometry. In this case, the observed flux of such an object looks very similar to a BB spectrum, but depressed in a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter (and therefore its size) by a factor 5-10 (2-3).

  19. Consistency of neutron cross-section data, S /SUB N/ calculations, and measured tritium production for a 14-MeV neutron-driven sphere of natural lithium deuteride

    Energy Technology Data Exchange (ETDEWEB)

    Reupke, W.A.; Davidson, J.N.; Muir, D.W.

    1982-12-01

    The authors present algorithms, describe a computer program, and gives a computational procedure for the statistical consistency analysis of neutron cross-section data, S /SUB N/ calculations, and measured tritium production in 14-MeV neutron-driven integral assemblies. Algorithms presented include a reduced matrix manipulation technique suitable for manygroup, 14-MeV neutron transport calculations. The computer program incorporates these algorithms and is expanded and improved to facilitate analysis of such integral experiments. Details of the computational procedure are given for a natural lithium deuteride experiment performed at the Los Alamos National Laboratory. Results are explained in terms of calculated cross-section sensitivities and uncertainty estimates. They include a downward adjustment of the /sup 7/Li(n,xt) 14-MeV cross section from 328 + or - 22 to 284 + or - 24 mb, which is supported by the trend of recent differential and integral measurements. It is concluded that with appropriate refinements, the techniques of consistency analysis can be usefully applied to the analysis of 14-MeV neutron-driven tritium production integral experiments.

  20. Radiation effects on silicon bipolar transistors caused by 3-10 MeV protons and 20-60 MeV bromine ions

    Science.gov (United States)

    Li, Xingji; Geng, Hongbin; Lan, Mujie; Liu, Chaoming; Yang, Dezhuang; He, Shiyu

    2010-03-01

    The current gain degradation in silicon NPN bipolar junction transistors (BJTs) was examined under irradiation with 3-10 MeV protons and 20-60 MeV bromine (Br) ions with various dose levels. To characterize the radiation damage of the NPN BJTs, the ionizing dose D i and displacement dose D d as a function of chip depth in the NPN BJTs were calculated for both the protons and Br ions with different energies. Based on the irradiation testing and calculated results, it is shown that the current gain degradation of NPN BJTs is sensitive to the ratio of D d/( D d+ D i) in the sensitive region given by protons and Br ions. The irradiation particles (protons and Br ions), which give larger D d/( D d+ D i) at a given total dose, would generate more severe damage to the NPN BJTs. The reciprocal of the gain variation as a function of the displacement dose was compared, showing that the Messenger-Spratt equation becomes relevant to describe the experimental data, when the ratio of the D d/( D d+ D i) are larger and the displacement dose are higher than a certain value.

  1. Estimation of low energy neutron flux ($E_n\\leq15$ MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    CERN Document Server

    Dokania, N; Mathimalar, S; Garai, A; Nanal, V; Pillay, R G; Bhushan, K G

    2015-01-01

    The neutron flux at low energy ($E_n\\leq15$ MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of U, Th and ($\\alpha, n$) interactions in the rock is determined employing the actual rock composition. It has been demonstrated that the total flux is equivalent to a finite size cylindrical rock ($D=L=140$ cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) $\\times 10^{-6}\\rm~n ~cm^{-2}~s^{-1}$. The estimated neutron flux is of the same order ($\\sim10^{-6}\\rm~n ~cm^{-2}~s^{-1}$)~as measured in other underground laboratories.

  2. Simplified method for deducing high-energy neutron spectra between 1 and 100 MeV using Foil-Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Y.; Matsuda, N.; Sakamoto, Y.; Nakashima, H. [Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Yashima, H. [Research Reactor Inst., Kyoto Univ., Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsumura, H.; Iwase, H.; Hirayama, H. [High Energy Accelerator Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Mokhov, N.; Leveling, A.; Boehnlein, D.; Vaziri, K.; Lauten, G. [Fermi National Accelerator Laboratory, Batavia, IL 87545 (United States); Oishi, K. [Shimizu Corporation, 4-17, Echujima 3-chome, Koto-ku, Tokyo 135-8530 (Japan); Nakamura, T. [Tohoku Univ., Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan)

    2011-07-01

    The Japanese and American Study of Muon Interaction and Neutron detection (JASMIN) collaboration, has been conducting shielding experiments using the Fermilab anti-proton target station (Pbar) shielding assembly. A multi-foil technique was used to measure the high energy neutron spectra, in the range of 1 to 100 MeV, for the target station shielding configuration. The neutron spectra were de-convoluted using a new fitting method. This method is based on the assumption that a neutron spectrum can be expressed as a simple sum of two exponentials. The validity of the fitting method was confirmed by comparison with the results obtained using SAND-II computer code and theoretical calculations. Finally, it was found that there are simple correlations between reaction rates and the adjustable parameters in the fitting function. (authors)

  3. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 MeV proton-7Li reaction or from fission of 235U

    Science.gov (United States)

    Tanaka, Kenichi; Kobayashi, Tooru; Sakurai, Yoshinori; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2001-10-01

    The feasibility of neutron capture therapy (NCT) using an accelerator-based neutron source of the 7Li(p,n) reaction produced by 2.5 MeV protons was investigated by comparing the neutron beam tailored by both the Hiroshima University radiological research accelerator (HIRRAC) and the heavy water neutron irradiation facility in the Kyoto University reactor (KUR-HWNIF) from the viewpoint of the contamination dose ratios of the fast neutrons and the gamma rays. These contamination ratios to the boron dose were estimated in a water phantom of 20 cm diameter and 20 cm length to simulate a human head, with experiments by the same techniques for NCT in KUR-HWNIF and/or the simulation calculations by the Monte Carlo N-particle transport code system version 4B (MCNP-4B). It was found that the 7Li(p,n) neutrons produced by 2.5 MeV protons combined with 20, 25 or 30 cm thick D2O moderators of 20 cm diameter could make irradiation fields for NCT with depth-dose characteristics similar to those from the epithermal neutron beam at the KUR-HWNIF.

  4. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 MeV proton-{sup 7}Li reaction or from fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kenichi [Department of Nuclear Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto (Japan); Kobayashi, Tooru; Sakurai, Yoshinori [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan); Nakagawa, Yoshinobu [National Kagawa Children' s Hospital, Zentsuji-cho, Zentsuji, Kagawa (Japan); Endo, Satoru [Department of Applied Nuclear Physics, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima (Japan); Hoshi, Masaharu [Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima (Japan)

    2001-10-01

    The feasibility of neutron capture therapy (NCT) using an accelerator-based neutron source of the {sup 7}Li(p,n) reaction produced by 2.5 MeV protons was investigated by comparing the neutron beam tailored by both the Hiroshima University radiological research accelerator (HIRRAC) and the heavy water neutron irradiation facility in the Kyoto University reactor (KUR-HWNIF) from the viewpoint of the contamination dose ratios of the fast neutrons and the gamma rays. These contamination ratios to the boron dose were estimated in a water phantom of 20 cm diameter and 20 cm length to simulate a human head, with experiments by the same techniques for NCT in KUR-HWNIF and/or the simulation calculations by the Monte Carlo N-particle transport code system version 4B (MCNP-4B). It was found that the {sup 7}Li(p,n) neutrons produced by 2.5 MeV protons combined with 20, 25 or 30 cm thick D{sub 2}O moderators of 20 cm diameter could make irradiation fields for NCT with depth-dose characteristics similar to those from the epithermal neutron beam at the KUR-HWNIF. (author)

  5. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    Science.gov (United States)

    Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

  6. Cross-section measurements for (n, 2n) reactions on stannum isotopes in the neutron energy range of 13.5 to 14.6 MeV

    Institute of Scientific and Technical Information of China (English)

    PU Zhong-Sheng; YAN Dong; MA Jun; DU Xiao-Fang; GUAN Qiu-Yun

    2008-01-01

    Cross-sections for (n, 2n) reactions have been measured on stannum isotopes at the neutron energies of 13.5 to 14.6 MeV using the activation technique. Data are reported for the following reactions:112Sn(n, 2n)111Sn, 118Sn(n, 2n)117Sn and 124Sn(n, 2n)123mSn. The neutron fluences were determined using the monitor reaction 93Nb(n, 2n)92mNb or 27Al(n, α)24Na. The results of present work were compared with data published previously.

  7. Production of neutron-rich isotopes by cold fragmentation in the reaction {sup 197}Au + Be at 950 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.; Pereira, J. [Universidad de Santiago de Compostela (Spain)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Farget, F. [Institut de Physique Nucleaire, 91 - Orsay (France); Taieb, J. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Institut de Physique Nucleaire, 91 - Orsay (France)

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV {sup 179}Au beam in a beryllium target. Seven new isotopes ({sup 193}Re, {sup 194}Re, {sup 191}W, {sup 192}W, {sup 189}Ta, {sup 187}Hf and {sup 188}Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  8. Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

    Science.gov (United States)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.

    2017-01-01

    Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.

  9. Measurement of 14 MeV neutron-induced prompt gamma-ray spectra from 15 elements found in cargo containers

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B. [Commissariat a l' Energie Atomique, 13108 St Paul-lez-Durance (France)], E-mail: bertrand.perot@cea.fr; Carasco, C.; Bernard, S.; Mariani, A. [Commissariat a l' Energie Atomique, 13108 St Paul-lez-Durance (France); Szabo, J.-L.; Sannie, G. [Commissariat a l' Energie Atomique, 91191 Gif-Sur-Yvette (France); Valkovic, V.; Sudac, D. [Institute Ruder Boskovic, 54 Bijenicka c., 10000 Zagreb (Croatia); Viesti, G.; Lunardon, M.; Botosso, C.; Nebbia, G.; Pesente, S.; Moretto, S. [INFN and Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zenoni, A.; Donzella, A. [INFN and Universita di Brescia, 38 Via Branze, 25123 Brescia (Italy); Moszynski, M.; Gierlik, M. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland); Klamra, W. [Royal Institute of Technology, 10691 Stockholm (Sweden); Le Tourneur, P. [EADS-SODERN, 20 Av. Descartes, 94451 Limeil-Brevannes Cedex (France)] (and others)

    2008-04-15

    Within the EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) project, the gamma-ray spectra produced in a series of materials by 14-MeV tagged-neutron beams have been collected in the inspection portal equipped with large volume NaI(Tl) detectors, in order to build a database of signatures for various elements: C, N, O, Na, Al, Si, Cl, K, Ca, Cr, Fe, Ni, Cu, Zn, Pb. The measured spectra have been compared with prediction from Monte Carlo simulations to verify the consistency of the relevant nuclear data inputs. This library of measured 14-MeV neutron-induced gamma-ray spectra is currently used in a data processing algorithm to unfold the energy spectra of the transported goods into elementary contributions, thus allowing material identification.

  10. Reliability assessment of high energy particle induced radioactivity calculation code DCHAIN-SP 2001 by analysis of integral activation experiments with 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Maekawa, Fujio; Kasugai, Yoshimi; Takada, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kosako, Kazuaki [Sumitomo Atomic Energy Industries, Ltd., Tokyo (Japan)

    2002-03-01

    Reliability assessment for the high energy particle induced radioactivity calculation code DCHAIN-SP 2001 was carried out through analysis of integral activation experiments with 14-MeV neutrons aiming at validating the cross section and decay data revised from previous version. The following three kinds of experiments conducted at the D-T neutron source facility, FNS, in JAERI were employed: (1) the decay gamma-ray measurement experiment for fusion reactor materials, (2) the decay heat measurement experiment for 32 fusion reactor materials, and (3) the integral activation experiment on mercury. It was found that the calculations with DCHAIN-SP 2001 predicted the experimental data for (1) - (3) within several tens of percent. It was concluded that the cross section data below 20 MeV and the associated decay data as well as the calculation algorithm for solving the Beteman equation that was the master equation of DCHAIN-SP were adequate. (author)

  11. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    Science.gov (United States)

    Rochman, D.; Goriely, S.; Koning, A. J.; Ferroukhi, H.

    2017-01-01

    The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF) reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS). The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the "High Fidelity Resonance" (HFR) method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  12. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    Directory of Open Access Journals (Sweden)

    D. Rochman

    2017-01-01

    Full Text Available The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS. The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the “High Fidelity Resonance” (HFR method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  13. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  14. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  15. Investigation of Neutron Radiation Effects on Polyclonal Antibodies (IgG) and Fluorescein Dye for Astrobiological Applications

    Science.gov (United States)

    Le Postollec, A.; Coussot, G.; Baqué, M.; Incerti, S.; Desvignes, I.; Moretto, P.; Dobrijevic, M.; Vandenabeele-Trambouze, O.

    2009-09-01

    Detecting life in the Solar System is one of the great challenges of new upcoming space missions. Biochips have been proposed as a way to detect organic matter on extraterrestrial objects. A biochip is a miniaturized device composed of biologically sensitive systems, such as antibodies, which are immobilized on a slide. In the case of in situ measurements, the main concern is to ensure the survival of the antibodies under space radiation. Our recent computing simulation of cosmic ray interactions with the martian environment shows that neutrons are one of the dominant species at soil level. Therefore, we have chosen, in a first approach, to study antibody resistance to neutrons by performing irradiation experiments at the Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine (AIFIRA) platform, a French ion beam facility at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan in Bordeaux. Antibodies and fluorescent dyes, freeze-dried and in buffer solution, were irradiated with 0.6 MeV and 6 MeV neutrons. Sample analyses demonstrated that, in the conditions tested, antibody recognition capability and fluorescence dye intensity are not affected by the neutrons.

  16. Measurements of (n,xp), (n,xd) double differential cross sections of Al and C for neutrons at 75 and 65 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nauchi, Yasushi; Baba, Mamoru; Iwasaki, Tomohiko [Tohoku Univ., Sendai (Japan). Faculty of Engineering] [and others

    1998-03-01

    The (n,xp) and (n,xd) double differential cross sections (DDXs) of Al and C were measured at 6 angles (12deg, 17deg, 25deg, 40deg, 55deg and 70deg) for neutrons En=65 and 75 MeV. These data are compared with theoretical calculations of ISOBAR and GNASH. A new wide range spectrometer under fabrication to down the detection threshold is also described. (author)

  17. Estimations and integral measurements for the spectral yield of neutrons from thick beryllium target bombarded with 16 MeV protons

    CERN Document Server

    Fenyvesi, A

    2015-01-01

    Spectral yield of p+Be neutrons emitted by thick (stopping) beryllium target bombarded by 16 MeV protons was estimated via extrapolation of literature data. The spectrum was validated via multi-foil activation method and irradiation of 2N2222 transistors. The hardness parameter (NIEL scaling factor) for displacement damage in bulk silicon was calculated and measured and kappa = 1.26 +- 0.1 was obtained.

  18. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  19. Development of a quasi-monoenergetic neutron field using the 7Li(p,n)7Be reaction in the energy range from 250 to 390 MeV at RCNP.

    Science.gov (United States)

    Taniguchi, S; Nakao, N; Nakamura, T; Yashima, H; Iwamoto, Y; Satoh, D; Nakane, Y; Nakashima, H; Itoga, T; Tamii, A; Hatanaka, K

    2007-01-01

    A quasi-monoenergetic neutron field using the (7)Li(p,n)(7)Be reaction has been developed at the ring cyclotron facility at the Research Center for Nuclear Physics (RCNP), Osaka University. Neutrons were generated from a 10-mm-thick Li target injected by 250, 350 and 392 MeV protons and neutrons produced at 0 degrees were extracted into the time-of-flight (TOF) room of 100-m length through the concrete collimator of 10 x 12 cm aperture and 150 cm thickness. The neutron energy spectra were measured by a 12.7-cm diam x 12.7-cm long NE213 organic liquid scintillator using the TOF method. The peak neutron fluence was 1.94 x 10(10), 1.07 x 10(10) and 1.50 x 10(10) n sr(-1) per muC of 250, 350 and 392 MeV protons, respectively. The neutron spectra generated from various thick (stopping length) targets of carbon, aluminium, iron and lead, bombarded by 250 and 350 MeV protons, were also measured with the TOF method. Although these measurements were performed to obtain thick target neutron yields, they are also used as a continuous energy neutron field. These neutron fields are very useful for characterising neutron detectors, measuring neutron cross sections, testing irradiation effects for various materials and performing neutron shielding experiments.

  20. Channeling and Radiation of 855 MeV Electrons and Positrons in Straight and Bent Tungsten (110) Crystals

    CERN Document Server

    Shen, H; Zhang, F S; Sushko, Gennady B; Korol, Andrei V; Solov'yov, Andrey V

    2016-01-01

    Planar channeling of 855 MeV electrons and positrons in straight and bent tungsten (110) crystal is simulated by means of the \\MBNExplorer software package. The results of simulations for a broad range of bending radii are analyzed in terms of the channel acceptance, dechanneling length, and spectral distribution of the emitted radiation. Comparison of the results with predictions of other theories as well as with the data for (110) oriented diamond, silicon and germanium crystals is carried out.

  1. Experimental studies on the neutron emission spectrum and induced radioactivity of the sup 7 Li(d,n) reaction in the 20-40 MeV region

    CERN Document Server

    Baba, M; Hagiwara, M; Sugimoto, M; Miura, T; Kawata, N; Yamadera, A; Orihara, H

    2002-01-01

    To improve the data accuracy of the neutron emission spectrum of the sup 7 Li(d,n) reaction and the radioactivity ( sup 7 Be, sup 3 H, etc.) accumulated in the sup 7 Li target in IFMIF, we have measured the neutron emission spectrum and the radioactivity of sup 7 Be induced in the lithium target for 25 MeV deuterons at the Tohoku University AVF cyclotron (K=110) facility. Neutron spectra were measured with the time-of-flight (TOF) method at four laboratory angles by using a beam swinger system and a well collimated TOF channel. Induced radioactivity was measured by detecting the gamma-rays from sup 7 Be with a pure Ge detector. Experimental results are compared with other experimental data. The present result of neutron emission spectra are in qualitative agreement with other experimental data but that of sup 7 Be production was much larger than expected by the recent codes. Measurement will be extended to several incident energies up to 40 MeV.

  2. Experimental studies on the neutron emission spectrum and induced radioactivity of the {sup 7}Li(d,n) reaction in the 20-40 MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Baba, M. E-mail: babam@cyric.tohoku.ac.jp; Aoki, T.; Hagiwara, M.; Sugimoto, M.; Miura, T.; Kawata, N.; Yamadera, A.; Orihara, H

    2002-12-01

    To improve the data accuracy of the neutron emission spectrum of the {sup 7}Li(d,n) reaction and the radioactivity ({sup 7}Be, {sup 3}H, etc.) accumulated in the {sup 7}Li target in IFMIF, we have measured the neutron emission spectrum and the radioactivity of {sup 7}Be induced in the lithium target for 25 MeV deuterons at the Tohoku University AVF cyclotron (K=110) facility. Neutron spectra were measured with the time-of-flight (TOF) method at four laboratory angles by using a beam swinger system and a well collimated TOF channel. Induced radioactivity was measured by detecting the gamma-rays from {sup 7}Be with a pure Ge detector. Experimental results are compared with other experimental data. The present result of neutron emission spectra are in qualitative agreement with other experimental data but that of {sup 7}Be production was much larger than expected by the recent codes. Measurement will be extended to several incident energies up to 40 MeV.

  3. Neutron production station ESS-BILBAO; Estacion de produccion de neutrones de ESS-BILBAO

    Energy Technology Data Exchange (ETDEWEB)

    Vicente Bueno, J. Pe. de; Bermejo, J.; Fraile Santiago, T.

    2012-07-01

    The ESS-Bilbao installation produces neutrons by nuclear reactions stripping energy 50 MeV protons on a target of beryllium. the Neutron Production Station would have a target and would allow condition the neutron energy, maximize their performance, provide structural support to the whole, the high power cooling and radiation shielding received abroad.

  4. Complete determination of neutron yield from 62 MeV protons on 9Be for the design of a low – power ADS

    Directory of Open Access Journals (Sweden)

    Schillaci Maria

    2014-03-01

    Full Text Available Within the European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics of future fast neutron-based reactors are very important. In this respect, an Accelerator Driven System low-power prototype, based on a 70 MeV proton beam impinging on a thick Beryllium converter, was recently proposed and designed within the INFN-E project. The world data on neutron yield from Be target are scarce in this proton energy range. This lack of data calls for a dedicated measurement which was performed at INFN Laboratori Nazionali del Sud, covering a wide angular range, from 0 to 150 degrees, and an almost complete neutron energy interval, from thermal up to the beam energy. In this contribution the results are discussed together with the description of the proposed ADS facility.

  5. Complete determination of neutron yield from 62 MeV protons on 9Be for the design of a low - power ADS

    Science.gov (United States)

    Schillaci, Maria; Osipenko, Mikhail; Ripani, Marco; Alba, Rosa; Ricco, Giovanni; Barbagallo, Massimo; Celentano, Andrea; Boccaccio, Pasquale; Cosentino, Luigi; Del Zoppo, Antonio; Di Pietro, Alessia; Esposito, Juan; Finocchiaro, Paolo; Kostyukov, Alexander; Maiolino, Concettina; Santonocito, Domenico; Viberti, Carlo Maria

    2014-03-01

    Within the European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics of future fast neutron-based reactors are very important. In this respect, an Accelerator Driven System low-power prototype, based on a 70 MeV proton beam impinging on a thick Beryllium converter, was recently proposed and designed within the INFN-E project. The world data on neutron yield from Be target are scarce in this proton energy range. This lack of data calls for a dedicated measurement which was performed at INFN Laboratori Nazionali del Sud, covering a wide angular range, from 0 to 150 degrees, and an almost complete neutron energy interval, from thermal up to the beam energy. In this contribution the results are discussed together with the description of the proposed ADS facility.

  6. Buckling analysis of a cylindrical shell, under neutron radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Arani, A. Ghorbanpour [Department of Mechanical Engineering, School of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Ahmadi, M. [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology (Iran, Islamic Republic of); Ahmadi, A. [Department of Management, University of Tehran, Tehran (Iran, Islamic Republic of); Rastgoo, A. [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sepyani, H.A., E-mail: hosepiani@yahoo.com [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The work investigates the buckling of a shell in the neutron radiation environment. Black-Right-Pointing-Pointer Radiation induced porosity in elastic materials affects the material's properties. Black-Right-Pointing-Pointer The data based technique was used to determine the volume fraction porosity. Black-Right-Pointing-Pointer The theoretical formulations are presented based on the classical shell theory (CST). Black-Right-Pointing-Pointer It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2-15e-7 dPa/s at 345-650 Degree-Sign C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.

  7. Radiative Neutron Capture on Carbon-14 in Effective Field Theory

    CERN Document Server

    Rupak, Gautam; Vaghani, Akshay

    2012-01-01

    The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Breit-Wigner resonance form.

  8. Measurement of reaction cross-sections for 89Y at average neutron energies of 7.24-24.83 MeV

    Science.gov (United States)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Shahid, Muhammad

    2015-05-01

    We measured neutron-induced reaction cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions with the average neutron energy region from 7.45 to 24.83 MeV by an activation and off-line γ-ray spectrometric technique using the MC-50 Cyclotron at Korea Institute of Radiological and Medical Sciences. The neutron-induced reaction cross-sections of 89Y as a function of neutron energy were taken from the TENDL-2013 library. The flux-weighted average cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions were calculated from the TENDL-2013 values based on mono-energetic neutron and by using the neutron energy spectrum from MCNPX 2.6.0 code. The present results are compared with the flux-weighted values of TENDL-2013 and are found to be in good agreement

  9. A SHORTCUT FORMULA FOR THE 230-MeV PROTON-INDUCED NEUTRON DOSE EQUIVALENT IN CONCRETE AFTER A METAL SHIELD, DERIVED FROM MONTE CARLO SIMULATIONS WITH MCNPX.

    Science.gov (United States)

    Taal, A; van der Kooij, A; Okx, W J C

    2016-11-01

    Monte Carlo simulations were performed with MCNPX to determine the neutron dose equivalent in thick concrete after a metal shield, a double-layered shielding configuration. In the simulations, a 230-MeV proton beam impinging on a copper target was used to produce the neutrons. For forward angles up to 30° with respect to the proton beam, it is found that the neutron dose equivalent in thick concrete after a metal layer can be expressed in a single formula. This single formula being the neutron dose equivalent formula for a single thick concrete shield enhanced with an additional exponential term. The exponent of this additional exponential term is related to the relative macroscopic neutron removal cross section of the metal with respect to the concrete. The single formula found fits MCNPX data for the neutron dose equivalent in thick concrete after layers of metal ranging from beryllium to lead. First attempts were made to make this shortcut formula applicable to alloys and compounds of metals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The 13C(n,α010Be cross section at 14.3 MeV and 17 MeV neutron energy

    Directory of Open Access Journals (Sweden)

    Kavrigin P.

    2017-01-01

    Full Text Available At nuclear fusion reactors, CVD diamond detectors are considered an advantageous solution for neutron flux monitoring. For such applications the knowledge of the cross section of neutron-induced nuclear reactions on natural carbon are of high importance. Especially the (n,α0 reactions, yielding the highest energy reaction products, are of relevance as they can be clearly distinguished in the spectrum. The 13C(n,α010Be cross section was measured relative to 12C(n,α09Be at the Van de Graaff facility of EC-JRC Geel, Belgium, at 14.3 MeV and 17.0 MeV neutron energies. The measurement was performed with an sCVD (single-crystal Chemical Vapor Deposition diamond detector, where the detector material acted simultaneously as sample and as sensor. A novel data analysis technique, based on pulse-shape discrimination, allowed an efficient reduction of background events. The results of the measurement are presented and compared to previously published values for this cross-section.

  11. Estimations of neutron yield from beryllium target irradiated by SPring-8 hard synchrotron radiation

    CERN Document Server

    Gryaznykh, D A; Plokhoi, V V

    2000-01-01

    The possibility of creating a neutron source based on ''SPring-8'' synchrotron radiation interaction with beryllium targets is discussed. The possible neutron yield is estimated to be of order 10 sup 1 sup 2 s sup - sup 1 .

  12. Development of a quasi-monoenergetic neutron field and measurements of the response function of an organic liquid scintillator for the neutron energy range from 66 to 206 MeV

    CERN Document Server

    Nakao, N; Nakamura, T; Uwamino, Y

    2002-01-01

    A quasi-monoenergetic neutron field was developed using a thin sup 7 Li target bombarded by protons in the energy range from 70 to 210 MeV at the RIKEN ring cyclotron facility. The neutron energy spectra were measured with an NE213 organic liquid scintillator using the TOF method. The absolute peak neutron yields were obtained by measurements of 478 keV gamma-rays from sup 7 Be nuclei produced in a sup 7 Li target through the sup 7 Li( p,n) sup 7 Be (g.s.+0.429 MeV) reaction. Using the neutron field, the absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured, and were compared with calculations using a Monte Carlo code developed by Cecil et al. The measured response functions without any wall-effect events were also obtained, and compared with calculations using a modified Monte Carlo code. Comparisons between a measurement and a calculation both with and without any wall-effect events gave a good agreement.

  13. Energy Dependence of Neutron-Induced Fission Product Yields of 235U, 238U and 239Pu Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Tornow, Werner; Tonchev, Anton; Vieira, Dave; Wilhelmy, Jerry; Arnold, Charles; Fowler, Malcolm; Stoyer, Mark

    2014-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements have been performed. The energy dependence of a number of cumulative fission products between 0.5 and 14.8 MeV have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of activation utilizing specially designed dual-fission chambers and γ-ray counting. The dual-fission chambers are back-to-back ionization chambers encasing a target with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the fission rate in the activation target with no reference to the fission cross-section, reducing uncertainties. γ-ray counting was performed on well-shield HPGe detectors over a period of 2 months per activation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 4.6 and 14.8 MeV.

  14. Measurements of the Ratio of Neutron Capture Cross Section of 71Ga and 180Hf to 197Au From 0.5 to 3.0 MeV

    Institute of Scientific and Technical Information of China (English)

    CHENXiong-jun; CHANGHong-wei; JIANGLi-yang; ZHONGQi-ping; HANXiao-gang; YUWei-xiang; LIJing-wen; LUHan-lin

    2003-01-01

    The measurements of the ratio of neutron capture cross section of 71Ga and 180Hf to 197Au were carried out at 5SDH-2 tandem accelerator and 600 kV Cockroft-Walton accelerator. Neutrons were produced in the energy region from 0.5 MeV to 2.0 MeV by the T(p, n) reaction at 5SDH-2 tandem accelerator, in the energy 3.0 MeV by the D(d, n) reaction at Cockroft-Walton accelerator, respectively.The activation technique was used in this work.

  15. Neutronics experiments, radiation detectors and nuclear techniques development in the EU in support of the TBM design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Fischer, U. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Flammini, D. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Jodlowski, P. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Klix, A. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kodeli, I. [Jožef Stefan Institute, Ljubljana (Slovenia); Kuc, T. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Leichtle, D. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lilley, S. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Majerle, M.; Novák, J. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); Ostachowicz, B. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Packer, L.W. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Pillon, M. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Pohorecki, W. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Radulović, V. [Jožef Stefan Institute, Ljubljana (Slovenia); Šimečková, E. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); and others

    2015-10-15

    Highlights: • A number of experiments and tests are ongoing to develop detectors and methods for HCLL and HCPM ITER-TBM. • Experiments for measuring gas production relevant to IFMIF are also performed using a cyclotron. • A benchmark experiment with a Cu block is performed to validate copper cross sections. • Experimental techniques to measure tritium in TBM are presented. • Experimental verification of activation cross sections for a Neutron Activation System for TBM is addressed. - Abstract: The development of high quality nuclear data, radiation detectors and instrumentation techniques for fusion technology applications in Europe is supported by Fusion for Energy (F4E) and conducted in a joint and collaborative effort by several European research associations (ENEA, KIT, JSI, NPI, AGH, and CCFE) joined to form the “Consortium on Nuclear Data Studies/Experiments in Support of TBM Activities”. This paper presents the neutronics activities carried out by the Consortium. A selection of available results are presented. Among then a benchmark experiment on a pure copper block to study the Cu cross sections at neutron energies relevant to fusion, the fabrication of prototype neutron detectors able to withstand harsh environment and temperature >200 °C (artificial diamond and self-powered detectors) developed for operating in ITER-TBM as well as measurement of relevant activation and integral gas production cross-sections. The latter measured at neutron energies relevant to IFMIF (>14 MeV) and the development of innovative experimental techniques for tritium measurement in TBM.

  16. (n,2n) and (n,3n) cross sections of neutron-induced reactions on 150Sm for En from threshold to 35 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dashdorj, D; Mitchell, G; Kawano, T; Becker, J; Wu, C; Devlin, M; Fotiades, N; Nelson, R; Kunieda, S

    2009-03-16

    Cross-section measurements were made of prompt discrete {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on a {sup 150}Sm sample fo 1550 mg/cm{sup 2} of Sm{sub 2}O{sub 3} enriched to 95.6% in {sup 150}Sm. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual {gamma}-rays up to E{sub x} = 0.8 MeV in {sup 149}Sm and one {gamma}-ray transition between the first excited and ground state in {sup 148}Sm were measured. Partial {gamma}-ray cross sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic 'global' optical model potential parameters. The coupled-channel optical model based on the soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin distribution in {sup 150}Sm was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. the partial cross sections for discrete {gamma}-ray cascade paths leading to the ground state in {sup 149}Sm and {sup 148}Sm have been summed (without double counting) to estimate lower limits for reaction cross sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross sections. These reaction channel cross sections agree with previously measured experimental and ENDF/B-VII evaluations.

  17. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P., E-mail: paolo.colautti@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Esposito, J., E-mail: juan.esposito@tin.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Fazzi, A.; Introini, M.V.; Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Neutron energy spectra at different emission angles, between 0 Degree-Sign and 120 Degree-Sign from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0 Degree-Sign resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  18. Neutron scattering from 208Pb at 30.4 and 40.0 MeV and isospin dependence of the nucleon optical potential

    CERN Document Server

    DeVito, R P; Austin, Sam M; Berg, U E P; Loc, Bui Minh

    2012-01-01

    Analysis of data involving nuclei far from stability often requires optical potential (OP) for neutron scattering. Since neutron data is seldom available, while proton scattering data is more abundant, it is useful to have estimates of the difference of the neutron and proton optical potentials. This information is contained in the isospin dependence of the nucleon OP. Here we attempt to provide it for the nucleon-208Pb system. The goal of this paper is to obtain accurate n+208Pb scattering data, and use it, together with existing p+208Pb and 208Pb(p,n)208$Bi*_{IAS} data, to obtain an accurate estimate of the isospin dependence of the nucleon OP at energies in the 30-60 MeV range. Cross sections for n+208Pb scattering were measured at 30.4 and 40.0 MeV, with a typical relative (normalization) accuracy of 2-4% (3%). An angular range of 15 to 130 degrees was covered using the beam-swinger time of flight system at Michigan State University. These data were analyzed by a consistent optical model study of the neut...

  19. Cross Section Measurements of Neutron Induced Reactions on GaAs using Monoenergetic Beams from 7.5 to 15 MeV

    Science.gov (United States)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-09-01

    Cross section measurements for the neutron induced reactions on GaAs have been carried out at ten different neutron energies from 7.5 to 15 MeV, using the activation technique. The monoenergetic neutron beams were produced via the 2H(d,n)3He reaction, known for it's high neutron yield in the chosen energy regime. GaAs samples were activated along with the Au and Al monitor foils, for estimating the incident neutron flux. The induced activiy was measured using high resolution γ-ray spectroscopy. Five reaction channels viz., 69Ga(n, 2n) Ga, 69Ga(n,p)69mZn, 71Ga(n,p)71mZn, 75As(n, 2n)74As and 75As(n,p)75Ge, have been reported for the comprehensive cross section measurements. The results are compared with the existing literature data and the available evaluations. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and EMPIRE codes and are compared with the experimental values.

  20. 基于GDT的14MeV中子源初步设计研究%Preliminary design of GDT-based 14 MeV neutron source

    Institute of Scientific and Technical Information of China (English)

    杜红飞; 陈德鸿; 蒋洁琼; 汪晖; 王福琼; 陈一平; 吴宜灿; FDS团队

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m2.%为满足聚变材料测试对D-T聚变中子源的需要,本文首先根据国际上对用于聚变材料测试的中子源的要求给出设计目标,然后基于Gas Dynamic Trap(GDT)装置的实验进展,提出了基于GDT装置的14 MeV中子源的设计初步方案,并建立了GDT中子源的物理模型.计算分析给出了两套中子源参数初步方案,其中FDS-GDT2中子壁负载为2 MW/m2,可用于聚变材料的测试.

  1. Measurements of neutron fluxes with energies from thermal to several MeV in near-Earth space: SINP results.

    Science.gov (United States)

    Shavrin, P I; Kuzhevskij, B M; Kuznetsov, S N; Nechaev, O Yu; Panasyuk, M I; Ryumin, S P; Yushkov, B Yu; Bratolyubova-Tsulukidze, L S; Lyagushin, V I; Germantsev, Yu L

    2002-10-01

    Neutron measurement results obtained at SINP MSU since 1970 are presented. These measurements were made using techniques based on neutron moderation and subsequent detection in a Li6I(Eu) crystal or a He3 coronal counter. The measurements were mainly carried out in orbits with inclination of 52 degrees and altitudes of 200-450 km. The spatial and angular distributions of the measured neutron fluxes were studied. The albedo neutron flux was estimated according to the count rate difference for opposite detector orientations towards Earth and away from it. This flux is comparable to the local neutron flux outside the Brazil anomaly region, where local neutrons dominate. Neutron fluxes, generated by solar protons, were detected during a solar flare on June 6, 1991 for the first time. Their spectrum was estimated as a power law with alpha>2.

  2. Rechargeable solid state neutron detector and visible radiation indicator

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Wiggins, Brenden; Burger, Arnold

    2017-05-23

    A radiation detection device, including: a support structure; and a chalcopyrite crystal coupled to the support structure; wherein, when the chalcopyrite crystal is exposed to radiation, a visible spectrum of the chalcopyrite crystal changes from an initial color to a modified color. The visible spectrum of the chalcopyrite crystal is changed back from the modified color to the initial color by annealing the chalcopyrite crystal at an elevated temperature below a melting point of the chalcopyrite crystal over time. The chalcopyrite crystal is optionally a .sup.6LiInSe.sub.2 crystal. The radiation is comprised of neutrons that decrease the .sup.6Li concentration of the chalcopyrite crystal via a .sup.6Li(n,.alpha.) reaction. The initial color is yellow and the modified color is one of orange and red. The annealing temperature is between about 450 degrees C. and about 650 degrees C. and the annealing time is between about 12 hrs and about 36 hrs.

  3. Neutron particle-hole electric dipole states in /sup 206/ /sup 207/ /sup 208/Pb. [16. 2 to 17. 8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, P.A.

    1979-01-01

    Inelastic proton scattering on /sup 206/Pb, /sup 207/Pb, and /sup 208/Pb through isobaric analog resonances was used to study neutron particle-hole excitations with large ground-state gamma branches in these Pb isotopes. Relative (p,p') cross sections at 90/sup 0/ are extracted for structures selectively excited on the d/sub 5/2/, s/sub 1/2/, and d/sub 3/2/-g/sub 7/2/ resonances. Interpretation of excitations in /sup 206/Pb and /sup 207/Pb in terms of coupling to states in /sup 208/Pb is discussed. Branching ratios for 1/sup -/ states in /sup 208/Pb at 4.84, 5.29, 5.94, and 6.31 MeV and the 1/2/sup +/ state in /sup 207/Pb at 4.63 MeV are deduced. 15 figures, 4 tables.

  4. Mosaic diamond detectors for fast neutrons and large ionizing radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Rome (Italy); Bellucci, Alessandro [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Rome (Italy); Dipartimento di Fisica, Universita degli Studi di Roma ' ' La Sapienza' ' , Rome (Italy); Cazzaniga, Carlo; Rebai, Marica; Rigamonti, Davide [Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica dei Plasmi (IFP), Consiglio Nazionale delle Ricerche (CNR), Milano (Italy); Tardocchi, Marco [Istituto di Fisica dei Plasmi (IFP), Consiglio Nazionale delle Ricerche (CNR), Milano (Italy); Pillon, Mario [ENEA, Centro Ricerche di Frascati, Rome (Italy)

    2015-11-15

    First neutron and X-ray beam tests on a novel 12-pixel single-crystal diamond mosaic detector are presented and discussed. Preliminary characterization of single-pixel electronic properties, performed with α particles, results in charge carrier mobilities >2000 cm{sup 2} Vs{sup -1} and saturation velocities of the order of 10{sup 7} cm s{sup -1}. Signal stability over time, measured with a {sup 241}Am source (37 kBq activity), is longer than 5 h. Tests under an intense X-ray beam (1 Gy h{sup -1} dose-rate) show a very good response uniformity (down to about 1% of relative standard deviation from mean value), suggesting a high level of pixel reproducibility at intermediate bias voltages (ranging from 20 to 100 V). Response uniformity reduces at voltages >200 V, due presumably to radiation-assisted detrapping effects. Preliminary results of 12-pixel simultaneous acquisitions of X-ray beam profiles and pulse height spectra under a fast neutron beam (14 MeV) are also presented. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Neutron radiation damage and recovery studies of SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, T.; Rao, T.; Stoll, S.; Woody, C.

    2016-12-01

    We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 1012 neutron/cm2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespread implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.

  6. Neutron radiation damage and recovery studies of SiPMs

    Science.gov (United States)

    Tsang, T.; Rao, T.; Stoll, S.; Woody, C.

    2016-12-01

    We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 1012 neutron/cm2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespread implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.

  7. Optimization of Thermal Neutron Converter in SiC Sensors for Spectral Radiation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Krolikowski, Igor; Cetnar, Jerzy [Department of Nuclear Energy, Faculty of Energy and Fuels at AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Issa, Fatima; Ferrone, Raffaello; Ottaviani, Laurent [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231, 13397 Marseille Cedex 20 (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Karlsruhe 76344 (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lyoussi, Abdalla [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Saenger, Richard [Etudes et Productions Schlumberger, Clamart (France)

    2015-07-01

    Optimization of the neutron converter in SiC sensors is presented. The sensors are used for spectral radiation measurements of thermal and fast neutrons and optionally gamma ray at elevated temperature in harsh radiation environment. The neutron converter, which is based on 10B, allows to detect thermal neutrons by means of neutron capture reaction. Two construction of the sensors were used to measure radiation in experiments. Sensor responses collected in experiments have been reproduced by the computer tool created by authors, it allows to validate the tool. The tool creates the response matrix function describing the characteristic of the sensors and it was used for detailed analyses of the sensor responses. Obtained results help to optimize the neutron converter in order to increase thermal neutron detection. Several enhanced construction of the sensors, which includes the neutron converter based on {sup 10}B or {sup 6}Li, were proposed. (authors)

  8. Neutron cross section evaluations of europium isotopes in 1 keV - 30 MeV energy range. Format - validation - comparison; Evaluation de sections efficaces pour des neutrons incidents sur des isotopes d'europium aux energies 1 keV - 30 MeV. Format - validation - comparaison

    Energy Technology Data Exchange (ETDEWEB)

    Dossantos-Uzarralde, P.; Le Luel, C.; Bauge, E. [CEA Bruyeres le Chatel, 91 (France). Dept. de Physique Theorique et Appliquee

    2004-07-01

    This paper presents neutron cross section evaluations of Europium isotopes. The cross sections are evaluated in 1 keV - 30 MeV energy range for the isotopes {sup 146}Eu, {sup 147}Eu, {sup 148}Eu, {sup 149}Eu, {sup 150}Eu, {sup 151}Eu, {sup 152}Eu, {sup 153}Eu, {sup 154}Eu in their ground state. This evaluation includes cross section productions of the long life isomeric states. Special attention is put on the options used for the description of the files written in ENDF-6 format. The final issue is a proposal of a new breed of ENDF-6 formatted neutron activation file. (authors)

  9. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    Science.gov (United States)

    Oo, Myo Min; Rashid, N. K. A. Md; Karim, J. Abdul; Zin, M. R. Mohamed; Hasbullah, N. F.

    2013-12-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region.

  10. A proposed three-phase counting system for the in vivo measurement of the major elements using pulsed 14 MeV neutrons.

    Science.gov (United States)

    Mitra, S; Sutcliffe, J F; Hill, G L

    1990-01-01

    It is proposed to employ a pulsed source of 14 MeV neutrons for in vivo activation analysis. This would permit the differentiation, with time, of the resulting gamma ray emission into three separate spectra, according to the type of nuclear reaction and mode of decay. The three-phase counting has been divided into approximately 10 microseconds during "beam-on," and 200 and 800 microseconds during "beam-off." Measurements of the major elements, C, N, O, Cl, and P, to give nutritionally-important body compartments of total body fat, protein, water, minerals, and extracellular water, thus is expected with a single scan.

  11. Calculations of neutron-induced alpha emission double-differential cross section of Flourine at 14.2 MeV

    Directory of Open Access Journals (Sweden)

    Sahan Muhittin

    2017-01-01

    Full Text Available In this preset study, calculations of neutron-induced alpha particle emission double-differential cross section of fluorine (19F at 14.2 MeV have been calculated by using ALICE and EMPIRE model programs for six different emission angles ranging from 30° to 150°. Calculated results from the Hybrid Monte Carlo pre-equilibrium emission and the full featured Hauser-Feshbach model have been compared with the experimental (EXFOR. The calculated double-differential cross section results using three codes are in good agreement with experimental data.

  12. Production of neutron-rich copper isotopes in 30-MeV proton-induced fission of sup 2 sup 3 sup 8 U

    CERN Document Server

    Kruglov, K; Bruyneel, B; Dean, S S; Franchoo, S; Huyse, M; Kudryavtsev, Y; Müller, W F; Prasad, N V S; Raabe, R; Reusen, I; Schmidt, K H; Van De Vel, K; Van Duppen, P; Van Roosbroeck, J; Weissman, L

    2002-01-01

    The neutron-rich isotopes sup 7 sup 0 sup - sup 7 sup 6 Cu have been produced in 30-MeV proton-induced fission of sup 2 sup 3 sup 8 U using the Ion Guide Laser Ion Source (IGLIS) at LISOL. The production rates of the copper isotopes, and of the nickel and cobalt isotopes that were measured earlier, are compared to cross section calculations. Based on these new results an estimate for the cross section of sup 7 sup 8 Ni is given.

  13. Measurement of 232Th(, ) and 232Th(, 2) cross-sections at neutron energies of 13.5, 15.5 and 17.28 MeV using neutron activation techniques

    Indian Academy of Sciences (India)

    Sadhana Mukerji; H Naik; S V Suryanarayana; S Chachara; B S Shivashankar; V Mulik; Rita Crasta; Sudipta Samanta; B K Nayak; A Saxena; S C Sharma; P V Bhagwat; K K Rasheed; R N Jindal; S Ganesan; A K Mohanty; A Goswami; P D Krishnani

    2012-08-01

    The 232Th(, ) reaction cross-section at average neutron energies of 13.5, 15.5 and 17.28 MeV from the 7Li(, ) reaction has been determined for the first time using activation and off-line -ray spectrometric technique. The 232Th(, 2) cross-section at 17.28 MeV neutron energy has also been determined using the same technique. The experimentally determined 232Th(, ) and 232Th(, 2) reaction cross-sections from the present work were compared with the evaluated data of ENDF/BVII and JENDL-4.0 and were found to be in good agreement. The present data, along with literature data in a wide range of neutron energies, were interpreted in terms of competition between 232Th(, ), (, ), (, ) and (, ) reaction channels. The 232Th(, ) and 232Th(, 2) reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code and were found to be in good agreement with the experimental data from the present work but were slightly higher than the literature data at lower neutron energies.

  14. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    Science.gov (United States)

    Magistris, Matteo; Silari, Marco

    2006-06-01

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  15. Measurements of double differential charged particle emission cross sections and development of a wide range charged particles spectrometer for ten`s MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nauchi, Yasushi; Baba, Mamoru; Kiyosumi, Takehide [Tohoku Univ., Sendai (Japan). Faculty of Engineering] [and others

    1997-03-01

    We measured (n,xp), (n,xd) cross sections of C and Al for En=64.3 MeV neutrons at the {sup 7}Li(p,n) neutron sources facility at TIARA (Takasaki Establishment, JAERI) by using a conventional SSD-NaI telescope placed in the air. They show characteristic energy and angular dependence in high energy regions. In order to extend the measurements to low energy protons and {alpha} particles, a new spectrometer consisting of low pressure gas counters and BaF{sub 2} scintillators is now under development. A low threshold for low energy {alpha} particles will be achieved by using the gas counters. The particle identification over a wide energy range will be achieved by combining the {Delta}E-E method for low energy particles with the pulse shape discrimination (PSD) method of BaF{sub 2} for high energy particles. (author)

  16. The Prompt Fission Neutron Spectrum of 235U for Einc 0.7-5.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jaime A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lee, Hye Young [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Keegan John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fotiadis, Nikolaos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neudecker, Denise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Talou, Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, Clell Jeffrey Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucher, Brian Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buckner, Matthew Quinn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henderson, Roger Alan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-23

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum (PFNS) for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced using the white neutron source. Using a two arm time of flight (T.O.F) technique; Chi-Nu presents a preliminary result of the low energy component of the 235U PFNS measured using an array of 22-Lithium glass scintillators.

  17. TANGRA-Setup for the Investigation of Nuclear Fission induced by 14.1 MeV neutrons

    OpenAIRE

    RUSKOV I.; Kopatch, Y; BYSTRITSKY V.; Skoy, V.; SHVETSOV V.; Hambsch, Franz-Josef; Oberstedt, Stephan; CAPOTE NOY R.; Sedyshev, P.; GROZDANOV D.; IVANOV I. Zh.; ALEKSAKHIN V. Yu.; BOGOLUBOV E. P.; BARMAKOV Y.; Khabarov, S. V.

    2015-01-01

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn’), (n,xn’γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, wit...

  18. Simulation of neutron radiation damage in silicon semiconductor devices.

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  19. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  20. Direct Radiative Capture of Neutron in Drip-Line Nuclei

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; ZHANG Xi-Zhen; ZHANG Huan-Qiao

    2004-01-01

    @@ The analytic expressions of radial matrix elements , and in a finite square-well potential are derived. Based on these analytic expressions of radial matrix elements, the neutron direct radiative capture (DRC) processes leading to bound p-orbit from incident s-wave, and leading to s- and d-orbits from incident p-wave are discussed. For the DRC processes leading to loosely bound orbits, the dominant contributions to the radial matrix elements come from the outer region of nuclear potential radius R.

  1. Characterization of high-energy quasi-monoenergetic neutron energy spectra and ambient dose equivalents of 80-389 MeV 7Li(p,n) reactions using a time-of-flight method

    Science.gov (United States)

    Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Araki, Shouhei; Yashima, Hiroshi; Sato, Tatsuhiko; Masuda, Akihiko; Matsumoto, Tetsuro; Nakao, Noriaki; Shima, Tatsushi; Kin, Tadahiro; Watanabe, Yukinobu; Iwase, Hiroshi; Nakamura, Takashi

    2015-12-01

    We completed a series of measurements on mono-energetic neutron energy spectra of the 7Li(p,n) reaction with 80-389-MeV protons in the 100-m time-of-flight (TOF) tunnel at the Research Center for Nuclear Physics cyclotron facility. For that purpose, we measured neutron energy spectra of the 80-, 100- and 296-MeV proton incident reactions, which had not been investigated in our previous studies. The neutron peak intensity was 0.9-1.1×1010 neutrons/sr/μC in the incident proton energy region of 80-389 MeV, and it was almost independent of the incident proton energy. The contribution of peak intensity of the spectrum to the total intensity integrated with energies above 3 MeV varied between 0.38 and 0.48 in the incident proton energy range of 80-389 MeV. To consider the correction required to derive a response in the peak region from the measured total responses of neutron monitors in the 100-m TOF tunnel, we proposed the subtraction method using energy spectra between 0° and 25°. The normalizing factor k against 25° neutron fluence to equalize it to 0° neutron fluence in the continuum region ranges from 0.74 to 1.02 depending on the incident proton energy and angle measured. Even without the TOF method, the subtraction method with the k factor almost decreases the response in the continuum region of a neutron spectrum against the total response of neutron monitors.

  2. The scattering of a bremsstrahlung radiation of electrons with energy 13 and 22 MeV from plane targets

    CERN Document Server

    Asatov, U T

    2002-01-01

    In the present work the characteristics of backward (90 sup d egradiation originating at interaction of a beam of a bremsstrahlung radiation of electrons with energy 13 and 22 MeV with plane targets of different thickness from glass textolite, aluminium, iron, lead and their combination are investigated. The dependence of thickness of saturation of 'forward' scattered gamma radiation, a on angles of detection (theta sub s) and orientation (phi) of plane targets depending on a direction of probing beam was observed for the first time. For the first time, the numerical performances of beams of forward scattered gamma radiation from different targets were investigated and determined depending on their orientation and thickness. The new and corrected data on numerical performances of beams of the inverse scattered gamma radiation is obtained. The distinction in characteristics of beams of the scattered gamma radiation is s...

  3. Cross-section measurements of neutron-induced reactions on GaAs using monoenergetic beams from 7.5 to 15 MeV

    Science.gov (United States)

    Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kawano, T.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2011-04-01

    Cross-section measurements for neutron-induced reactions on GaAs have been carried out at twelve different neutron energies from 7.5 to 15 MeV using the activation technique. The monoenergetic neutron beams were produced via the H2(d,n)He3 reaction. GaAs samples were activated along with Au and Al monitor foils to determine the incident neutron flux. The activities induced by the reaction products were measured using high-resolution γ-ray spectroscopy. Cross sections for five reaction channels, viz., Ga69(n,2n)Ga68, Ga69(n,p)Zn69m, Ga71(n,p)Zn71m, As75(n,2n)As74, and As75(n,p)Ge75, are reported. The results are compared with the previous measurements and available data evaluations. Statistical-model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and the COH3 codes and are compared with the experimental results.

  4. Neutron radiation therapy: application of advanced technology to the treatment of cancer

    CERN Document Server

    Maughan, R L; Kota, C; Burmeister, J; Porter, A T; Forman, J D; Blosser, H G; Blosser, E; Blosser, G

    1999-01-01

    The design and construction of a unique superconducting cyclotron for use in fast neutron radiation therapy is described. The clinical results obtained in the treatment of adenocarcinoma of the prostate with this accelerator are presented. Future use of the boron neutron capture reaction as a means of enhancing fast neutron therapy in the treatment of patients with brain tumors (glioblastoma multiforme) is also discussed.

  5. Energetic neutron and gamma-ray spectra under the earth radiation belts according to "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686" orbital complex and "CORONAS-I" satellite data.

    Science.gov (United States)

    Bogomolov, A V; Dmitriev, A V; Myagkova, I N; Ryumin, S P; Smirnova, O N; Sobolevsky, I M

    1998-01-01

    The spectra of neutrons >10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686", are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm-2 s-1 for neutrons, 0.8 cm-2 s-1 for gamma-rays at the equator and 1.2 cm-2 s-1, 1.9 cm-2 s-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from "CORONAS-1" data are near those for albedo particles.

  6. A review of nanostructured based radiation sensors for neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Pervaiz; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Center of Excellence in Nanotechnology Department of Fundamental and Applied Sciences, Department of Electrical and Electronic Engineering Universiti Teknologi PETRONAS (Malaysia)

    2012-09-26

    Currently radiation sensors with various mechanisms such as radio thermo luminescence, radiographic and radiochromic film, semiconductor and ionization have been used for the detection of nuclear radiation. Sensitivity, handling procedure, heating condition, energy response, nonlinearity, polarization, non-uniform electric field, high bias voltage and spatial resolution due to large physical size are some of the key issues faced by these sensors. Due to the excellent electrical and mechanical properties, nanostructured materials such as carbon nanotubes (CNTs) have been researched as sensing elements in the sensors to overcome the mentioned problems. However CNTs are found to pose different problems, arising from the uncontrolled helicity and small cross-sectional area. Therefore, alternative sensing elements are still been sought after and the possibility of using boron nitride nanotubes for sensing neutron is considered in this review.

  7. Measurements of the total neutron cross-sections of Be, Ni and Cu at room and liquid nitrogen temperatures in the energy range from 2. 2 eV to 2. 2 meV

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Abdel-Kawy, A.; Maayouf, R.M.A.; Eid, Y.; Shuriet, G.; Hamouda, I.

    1980-09-01

    The total neutron cross-sections of Be, Ni, and Cu are measured using two time-of-flight spectrometers installed in front of two of the horizontal channels of the ET-RR-1 reactor. The measurements were carried out in the energy range from 2.2 eV to 2.2 meV at room temperature and at liquid nitrogen temperature for neutron energies below 5 meV. The coherent scattering cross-sections of these elements were determined from the Bragg cut-offs observed in the behavior of the total cross-sections at cold neutron energies. The incoherent cross-sections of Be, Ni and Cu were obtained from the analysis of the total neutron cross-section data beyond the Bragg cut-off. The one phonon annihilation process was estimated at long neutron wavelengths and was found to be in reasonable agreement with the results of calculations.

  8. Light-ion production in the interaction of 175 MeV quasi-mono-energetic neutrons with iron and with bismuth

    CERN Document Server

    Bevilacqua, R; Pomp, S; Andersson, P; Blomgren, J; Gustavsson, C; Hjalmarsson, A; Simutkin, V D; Österlund, M; Koning, A J; Prokofiev, A V; Hayashi, M; Hirayama, S; Naitou, Y; Watanabe, Y; Tippawan, U; Mashnik, S G; Kerby, L M; Lecolley, F -R; Marie, N; David, J -C; Leray, S

    2014-01-01

    Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from such data, notably accelerator-driven incineration of nuclear waste. The Medley setup was used for a series of measurements of p, d, t, $^3$He and $\\alpha$-particle production by 175 MeV quasi-mono-energetic neutrons on various target nuclei. The measurements were performed at the The Svedberg Laboratory in Uppsala, Sweden. Eight detector telescopes placed at angles between 20$^\\circ$ and 160$^\\circ$ were used. Medley uses the $\\Delta E$-$\\Delta E$-$E$ technique to discriminate among the particle types and is able to measure double-differential cross sections over a wide range of particle energies. This paper briefly describes the experimental setup, summarizes the data analysis and reports on recent changes in the previously reported preliminary data set on bism...

  9. Activation cross sections and isomeric ratios in reactions induced by 14. 5 MeV neutrons on [sup 152]Sm, [sup 154]Sm and [sup 178]Hf

    Energy Technology Data Exchange (ETDEWEB)

    Kirov, A. (Washington Univ., St. Louis, MO (United States). Dept. of Chemistry); Nenoff, N.; Georgieva, E.; Necheva, C. (Sofia Univ. (Bulgaria). Atomic Physics Dept.); Ephtimov, I. (IZR, Kostinbrod (Bulgaria))

    1993-05-01

    Cross sections for the reactions [sup 152]Sm(n, p)[sup 152g,m1,m2P]m, [sup 154]Sm(n, p)[sup 154g,m]Pm, [sup 178]Hf(n, p)[sup 178m,g]Lu, [sup 154]Sm(n, d)[sup 153]Pm and [sup 152]Sm(n, [alpha])[sup 149]Nd were measured at 14.5 meV neutron energy by the activation method. On the basis of these cross sections, the associated isomeric ratios in [sup 154]Pm, [sup 152]Pm, [sup 178]Lu and the comparison with the predictions of different compound and precompound models, conclusions are drawn about the role of the preequilibrium processes in 14.5 MeV neutron induced reactions. Calculations for equal angular momentum removal by equilibrium and preequilibrium emitted particles better reproduced the experimental isomeric ratios, than for higher angular momentum removal in the preequilibrium phase. The isomeric ratios may be used as a source of additional information about the spin of the isomeric states in [sup 152]Pm and [sup 154]Pm for which the spectroscopic information is uncertain. (orig.).

  10. Activation cross sections and isomeric ratios in reactions induced by 14.5 MeV neutrons on152Sm,154Sm and178Hf

    Science.gov (United States)

    Kirov, A.; Nenoff, N.; Georgieva, E.; Necheva, C.; Ephtimov, I.

    1993-09-01

    Cross sections for the reactions152Sm( n, p)152 g,m1, m2 Pm,154Sm( n, p)154 g,m Pm,178Hf( n, p)178 m,g Lu,154Sm( n, d)153Pm and152Sm( n, α)149Nd were measured at 14.5 MeV neutron energy by the activation method. On the basis of these cross sections, the associated isomeric ratios in154Pm,152Pm,178Lu and the comparison with the predictions of different compound and precompound models, conclusions are drawn about the role of the preequilibrium processes in 14.5 MeV neutron induced reactions. Calculations for equal angular momentum removal by equilibrium and preequilibrium emitted particles better reproduced the experimental isomeric ratios, than for higher angular momentum removal in the preequilibrium phase. The isomeric ratios may be used as a source of additional information about the spin of the isomeric states in152Pm and154Pm for which the spectroscopic information is uncertain.

  11. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    Science.gov (United States)

    Pastuović, Željko; Capan, Ivana; Cohen, David D.; Forneris, Jacopo; Iwamoto, Naoya; Ohshima, Takeshi; Siegele, Rainer; Hoshino, Norihiro; Tsuchida, Hidekazu

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm-3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1-6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm-2.

  12. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Pastuović, Željko, E-mail: zkp@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Capan, Ivana [Material Physics Division, Institute Rudjer Boskovic, PO Box 180, 10000 Zagreb (Croatia); Cohen, David D. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Forneris, Jacopo [Physics Department and NIS Excellence Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Iwamoto, Naoya; Ohshima, Takeshi [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Siegele, Rainer [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Hoshino, Norihiro; Tsuchida, Hidekazu [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 10{sup 14} cm{sup −3}) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He{sup 2+} ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z{sub 1/2} center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1–6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 10{sup 11} cm{sup −2}.

  13. Neutron and gamma radiation shielding material, structure, and process of making structure

    Energy Technology Data Exchange (ETDEWEB)

    Hondorp, H.L.

    1981-07-06

    The present invention is directed to a novel neutron and gamma radiation shielding material consisting of 95 to 97% by weight SiO/sub 2/ and 5 to 3% by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  14. Formation of proton radiation belts in the MeV energy range

    Science.gov (United States)

    Panasiuk, M. I.; Sosnovets, E. N.

    1984-09-01

    Satellite data on the spatial location of intensity peaks of radial profiles (Ljm) of protons in the energy range from 500 keV to 100 MeV near the geomagnetic equator are examined. These data are compared with calculations of Ljm(E), taking into account particle transport under the effect of geomagnetic-field fluctuations (GFF). Calculations and experimental data are shown to agree well for a GFF power spectrum having, along with the principal spectrum component Pm(nu) proportional to nu exp -p (where p is about 2), a dominant spectral component at the frequency nu in the mHz range.

  15. Formation of proton radiation belts in region of energies of several MeV

    Science.gov (United States)

    Panasyuk, M. I.; Sosnovets, E. N.

    1985-09-01

    Satellite data on the spatial location of intensity peaks of radial profiles (Ljm) of protons in the energy range from 500 keV to 100 MeV near the geomagnetic equator are examined. These data are compared with calculations of Ljm(E), taking into account particle transport under the effect of geomagnetic-field fluctuations (GFF). Calculations and experimental data are shown to agree well for a GFF power spectrum having, along with the principal spectrum component Pm(nu) proportional to nu exp-p (where p is about 2), a dominant spectral component at the frequency nu in the MHz range.

  16. Radiation shielding design for neutron diffractometers assisted by Monte Carlo methods

    Science.gov (United States)

    Osborn, John C.; Ersez, Tunay; Braoudakis, George

    2006-11-01

    Monte Carlo simulations may be used to model radiation shielding for neutron diffractometers. The use of the MCNP computer program to assess shielding for a diffractometer is discussed. A comparison is made of shielding requirements for radiation generated by several materials commonly used in neutron optical elements and beam stops, including lithium-6 based absorbers where the Monte Carlo method can model the effects of fast neutrons generated by this material.

  17. Exploratory study of fission product yields of neutron-induced fission of 235U , 238U , and 239Pu at 8.9 MeV

    Science.gov (United States)

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2015-06-01

    Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.

  18. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  19. 20 years experience in radiobiology of neutron, and 10 years experience of neutron therapy in Obninsk, Russia. (Neutrons against cancer - the new methods in radiation therapy of tumors using nuclear reactor neutron beams)

    Energy Technology Data Exchange (ETDEWEB)

    Mardinsky, Y.S.; Oulianenko, S.E.; Obaturov, G.M. [Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk (Russian Federation)] [and others

    1997-12-31

    New technology of radiation therapy, developed in Obninsk, is based on newly acquired knowledge in biological effects of neutrons. Detailed studies have been made of antitumor effectiveness of neutrons and of radiomodification factors action. Up till now more then 250 patients with tumors have been treated using reactor neutrons. Integral analysis of 5-year survival rates indicated a higher efficiency of neutron and mixed gamma-neutron therapy as compared with conventional radiation treatment. The survival rates were 89% for larynx cancer and 67% for breast cancer after neutron irradiation; the corresponding values were 65% and 46% after conventional radiation. The advantages of neutrons have been demonstrated both in loco-regional control and in overcoming of recurrences and metastasis

  20. The measurement of Ann for free n-p scattering for neutron energies 300-665 MeV

    Science.gov (United States)

    Bhatia, T. S.; Glass, G.; Hiebert, J. C.; Northcliffe, L. C.; Tippens, W. B.; Bonner, B. E.; Simmons, J. E.; Hollas, C. L.; Newsom, C. R.; Ransome, R. D.; Riley, P. J.

    1981-03-01

    The spin correlation parameter Ann for free n-p scattering has been measured for 300-665 MeV over an angular range 70°-166° cm. This is the first Ann measurement in this energy region. The results are compared with predictions from the existing nucleon-nucleon phase shift solutions.

  1. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety

    Directory of Open Access Journals (Sweden)

    Pant G

    2007-01-01

    Full Text Available A self-shielded medical cyclotron (11 MeV was commissioned at our center, to produce positron emitters, namely, 18 F, 15 O, 13 N and 11 C for positron emission tomography (PET imaging. Presently the cyclotron has been exclusively used for the production of 18 F - for 18 F-FDG imaging. The operational parameters which influence the yield of 18 F - production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18 O water, is bombarded with proton beam from the cyclotron to produce 18 F - ion that is used for the synthesis of 18 F-FDG. The operational parameters which influence the yield of 18 F - were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18 F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18 F - activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice.

  2. Benchmarking of Decay Heat Measured Values of ITER Materials Induced by 14 MeV Neutron Activation with Calculated Results by ACAB Activation Code

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Ortego, P.; Rodriguez Rivada, A.

    2014-07-01

    The aim of this paper is the comparison between the calculated and measured decay heat of material samples which were irradiated at the Fusion Neutron Source of JAERI in Japan with D-T production of 14MeV neutrons. In the International Thermonuclear Experimental Reactor (ITER) neutron activation of the structural material will result in a source of heat after shutdown of the reactor. The estimation of decay heat value with qualified codes and nuclear data is an important parameter for the safety analyses of fusion reactors against lost of coolant accidents. When a loss of coolant and/or flow accident happen plasma facing components are heated up by decay heat. If the temperature of the components exceeds the allowable temperature, the accident would expand to loose the integrity of ITER. Uncertainties associated with decay prediction less than 15% are strongly requested by the ITER designers. Additionally, accurate decay heat prediction is required for making reasonable shutdown scenarios of ITER. (Author)

  3. Activation cross section measurement at neutron energy from 13.3 to 14.9 MeV using FNS facility

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Yoshimi; Ikeda, Yujiro; Uno, Yoshitomo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamamoto, Hiroshi; Kawade, Kiyoshi [Nagoya Univ. (Japan)

    2001-03-01

    Sixty activation cross sections have been measured in the neutron energy between 13.4 and 14.9 MeV using intense D-T neutrons source (Fusion Neutronics Source, FNS) at JAERI. The following reactions are included in this work: (1) 32 reactions mainly for lanthanide isotopes, (2) 19 reactions for short-lived products (the half-lives are from 1 s to 20 min) and (3) 9 (n, n{alpha}) reactions. The experimental results were compared with the data reported previously and the evaluated data of ENDF/B-VI Rev. 4, JENDL-3.2 and FENDL/A-2.0. The present data for the (n, p) and (n, {alpha}) reactions were compared with the values estimated by using the empirical formulae proposed by our group in order to validate the systematics for the reactions for the lanthanide isotopes. Systematic trend of (n, n{alpha}) reactions were discussed based on the present data. (author)

  4. Determination of Fission Product Yields of 235U, 238U and 239Pu for Neutron Energies from 0.5 to 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Becker, John; Bhatia, Chitra; Bhike, Megha; Fowler, Malcolm; Howell, Calvin; Kelley, John; Stoyer, Mark; Tonchev, Anton; Tornow, Werner; Vieira, Dave; Wilhelmy, Jerry

    2014-03-01

    A joint TUNL-LANL-LLNL collaboration has been formed to study the issue of possible energy dependences for certain fission product isotopes. Work has been carried out at the TUNL 10 MV Tandem accelerator which produces nearly mono-energetic neutrons via either 2H(d,n)3He,3H(d,n)4He,or3H(p,n)3He reactions. Three dual fission ionization chambers dedicated to 235U, 238U and 239Pu thick target foils and thin monitor foils respectively, were exposed to the neutron beams. After irradiation, thick target foils were gamma counted over a period of 1-2 months and characteristic gamma rays from fission products were recorded using HPGe detectors at TUNL's low background counting area. Using the dual fission chambers, relative fission product yield were determined at a high precision of 2-3 % as well as absolute fission product yields at a lower precision of 5-6 %. Preliminary results will be presented for a number of fission product isotopes over the incident neutron energy range of 0.5 to 14.8 MeV.

  5. ANITA-2000 activation code package - updating of the decay data libraries and validation on the experimental data of the 14 MeV Frascati Neutron Generator

    Directory of Open Access Journals (Sweden)

    Frisoni Manuela

    2016-01-01

    Full Text Available ANITA-2000 is a code package for the activation characterization of materials exposed to neutron irradiation released by ENEA to OECD-NEADB and ORNL-RSICC. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation. The code requires the decay data library (file fl1 containing the quantities describing the decay properties of the unstable nuclides and the library (file fl2 containing the gamma ray spectra emitted by the radioactive nuclei. The fl1 and fl2 files of the ANITA-2000 code package, originally based on the evaluated nuclear data library FENDL/D-2.0, were recently updated on the basis of the JEFF-3.1.1 Radioactive Decay Data Library. This paper presents the results of the validation of the new fl1 decay data library through the comparison of the ANITA-4M calculated values with the measured electron and photon decay heats and activities of fusion material samples irradiated at the 14 MeV Frascati Neutron Generator (FNG of the NEA-Frascati Research Centre. Twelve material samples were considered, namely: Mo, Cu, Hf, Mg, Ni, Cd, Sn, Re, Ti, W, Ag and Al. The ratios between calculated and experimental values (C/E are shown and discussed in this paper.

  6. SAS-2 observations of celestial diffuse gamma radiation above 30 MeV

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

    1974-01-01

    The small astronomy satellite, SAS-2, used a 32-deck magnetic core digitized spark chamber to study gamma rays with energies above 30 MeV. Data for four regions of the sky away from the galactic plane were analyzed. These regions show a finite, diffuse flux of gamma rays with a steep energy spectrum, and the flux is uniform over all the regions. Represented by a power law, the differential energy spectrum shows an index of 2.5 + or - 0.4. The steep SAS-2 spectrum and the lower energy data are reasonably consistent with a neutral pion gamma-ray spectrum which was red-shifted (such as that proposed by some cosmological theories). It is concluded that the diffuse celestial gamma ray spectrum observed presents the possibility of cosmological studies and possible evidence for a residual cosmic ray density, and supports the galactic superclusters of matter and antimatter remaining from baryon-symmetric big bang.

  7. Excitation functions for the production of radionuclides by neutron-induced reactions on C, O, Mg, Al, Si, Fe, Co, Ni, Cu, Ag, Te, Pb, and U up to 180 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Michel, R., E-mail: michel@irs.uni-hannover.de [Institute for Radioecology and Radiological Protection, Leibniz University Hannover (Germany); Hansmann, D. [Institute for Radioecology and Radiological Protection, Leibniz University Hannover (Germany); Neumann, S. [Institute for Radioecology and Radiological Protection, Leibniz University Hannover (Germany); Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Glasser, W. [Institute for Radioecology and Radiological Protection, Leibniz University Hannover (Germany); Schuhmacher, H.; Dangendorf, V.; Nolte, R. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Herpers, U. [Dept. for Nuclear Chemistry, University of Cologne (Germany); Smirnov, A.N.; Ryzhov, I.V. [V. G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Prokofiev, A.V. [The Svedberg Laboratory (TSL), Uppsala University (Sweden); Dept. of Physics and Astronomy, Uppsala University (Sweden); Malmborg, P. [The Svedberg Laboratory (TSL), Uppsala University (Sweden); Kollár, D. [Dept. of Nuclear Physics, Comenius University, Bratislava (Slovakia); Meulders, J.-P. [Université Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium)

    2015-01-15

    Irradiation experiments with well-characterized, quasi mono-energetic neutrons of energies between 32.7 MeV and 175.4 MeV were performed at UCL/Louvain-la-Neuve and TSL/Uppsala. The abundances of relatively short-lived residual radionuclides from 13 different target elements were determined by γ-spectrometry. More than 100 excitation functions of neutron-induced reactions were unfolded based on the neutron spectra and the radionuclide abundances with the aid of additional information that was provided by “guess” excitation functions calculated by the TALYS 1.0 code. The results are compared with the sparse existing data from other authors. The new excitation functions were validated by calculation of and comparison with experimental thick-target production rates. Consistency with neutron excitation functions up to 1.6 GeV, which were derived earlier by unfolding the thick-target production rates, was so demonstrated.

  8. First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takabayashi, Y., E-mail: takabayashi@saga-ls.jp [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Fiks, E.I. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-06-12

    The first experiment on Cherenkov light from 255-MeV electrons passing through a 50-μm-thick diamond crystal in a special geometry allowing extraction of 500-nm Cherenkov light at a right angle with respect to the electron beam direction has been performed at the injector linac of SAGA Light Source accelerator facility. The dependence of 500-nm Cherenkov light intensity (separated by a band-pass filter) on the crystal rotation angle was measured by a CCD detector. The experimentally obtained rocking curve with an intense maximum is theoretically explained as the projector effect of Cherenkov light deflected by the exit surface of the crystal. The width of the rocking curve is explained by the convolution of the standard Tamm–Frank angular distribution of Cherenkov radiation with chromatic aberration, the multiple scattering of electrons in a crystal, and initial electron beam angular divergence. In addition, it is found that the Cherenkov light intensity did not change under the (220) planar channeling condition, which is consistent with a recent theory. - Highlights: • Cherenkov light from 255-MeV electrons in a diamond crystal has been investigated. • The Cherenkov light from channeled electrons has been observed for the first time. • The experimental results are in good agreement with theory.

  9. Radiation damage study using small-angle neutron scattering

    Science.gov (United States)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  10. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H. [Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Isobe, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sato, Y. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Chayahara, A.; Umezawa, H.; Shikata, S. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  11. Neutron photoproduction in sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U using thermal neutron capture gamma-rays in the energy range 5.61 to 10.83 MeV

    CERN Document Server

    Goncalez, O L

    1998-01-01

    Neutron photoproduction studies for sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U were carried out from 5.6 to 10.8 MeV, using neutron capture gamma-rays with high resolution in energy (3 to 21 eV), produced by 30 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 2 MW research reactor. The samples (17.76 g of U sub 3 sub O sub 8 depleted to 0.349% in sup 2 sup 3 sup 5 U and 19.93 g of natural Th O sub 2) have been irradiated inside a 4 pi geometry neutron detector system sup L ong Counter sup , 520.5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (E G and G Ortec, 25 cm sup 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A methodology for unfolding the set of expe...

  12. Measurement of cross sections producing short-lived nuclei by 14MeV neutron. Cd, Sn, Te, Nd, Gd, Re

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1998-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 25sec and 22min were measured at energy range between 13.4 and 14.9 MeV by activation method. The (n,p) and (n,{alpha}) reaction cross sections were measured for the isotopes of {sup 110}Cd, {sup 112}Sn, {sup 122}Te, {sup 130}Te and {sup 185}Re and those of {sup 130}Te, {sup 148}Nd and {sup 158}Gd, respectively. The present results were compared with our systematics proposed on the basis of 58 cross section data of (n,p) and 33 data of (n,{alpha}) reaction. Good agreements have been seen between them. (author)

  13. R-Matrix Evaluation of {sup 16}O neutron cross sections up to 6.3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; and Wright, R.Q.

    2000-08-01

    In this paper the authors describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique.

  14. Radiation effects on bipolar junction transistors induced by 25 MeV carbon ions

    Science.gov (United States)

    Liu, Chaoming; Li, Xingji; Geng, Hongbin; Zhao, Zhiming; Yang, Dezhuang; He, Shiyu

    2010-12-01

    The characteristic degradation in silicon NPN bipolar junction transistors (BJTs) of 3DG112 type is examined under the irradiation with 25 MeV carbon (C) ions and various bias conditions. Different electrical parameters were measured in-situ during the exposure under each bias condition. From the experimental data, larger variation of base current ( IB) is observed after irradiation at a given value of base-emitter voltage ( VBE), while the collector current is only slightly affected by irradiation at a given VBE. The gain degradation is mostly affected by the behavior of the base current. The change in the reciprocal of current gain (Δ(1/ β)) increases linearly with increasing the C ions fluence. The degradation of the NPN BJTs under various bias conditions during irradiation was studied. Compared to the case where the terminals are grounded, at a given fluence, the change in the reciprocal of current gain varies slightly less when the base-emitter junction is forward biased. On the other hand, there is no distinction for the change in the reciprocal of current gain between the case of reverse-biased base-emitter junction and that of all terminals grounded for the NPN BJTs at a given fluence.

  15. Energy dependence of fission product yields from 235U, 238U, and 239Pu with monoenergetic neutrons between thermal and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Bhike, Megha; Bredeweg, Todd; Fowler, Malcolm; Krishichayan; Tonchev, Anton; Tornow, Werner; Stoyer, Mark; Vieira, David; Wilhelmy, Jerry

    2017-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033.

  16. Evaluation of cross sections and calculation of kerma factors for neutrons up to 80 MeV on {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Watanabe, Y. [Kyushu Univ., Fukuoka (Japan); Chiba, S.; Fukahori, T.

    1997-03-01

    We have evaluated the cross sections for neutrons with incident energies from 20 to 80 MeV on {sup 12}C for the JENDL high-energy file. The total cross sections were determined by a generalized least-squares method with available experimental data. The cross sections of elastic and inelastic scattering to the first 2{sup +} were evaluated with the theoretical calculations. The optical potentials necessary for these calculations were derived using a microscopic approach by Jeukenne-Lejeune-Mahaux. For the evaluation of double differential emission cross sections (DDXs), we have developed a code system SCINFUL/DDX in which total 35 reactions including the 3-body simultaneous breakup process (n+{sup 12}C {yields} n+{alpha}+{sup 8}Be) can be taken into consideration in terms of a Monte Carlo method, and have calculated the DDXs of all light-emissions (A{<=}4) and heavier reaction products. The results for protons, deuterons, and alphas showed overall good agreement with experimental data. The code is also applicable for calculations of total and partial kerma factors. Total kerma factors calculated for energies from 20 to 80 MeV were compared with the measurements and the other latest evaluations from the viewpoints of medical application and nuclear heating estimation. (author)

  17. Hot Radiative Accretion onto a Spinning Neutron Star

    CERN Document Server

    Medvedev, M V

    2004-01-01

    (Abridged) A new type of self-similar hot viscous radiative accretion flow onto a rapidly spinning neutron star has recently been discovered. This ``hot brake'' flow forms in the two-temperature zone (close to a central object), but at a sufficiently low accretion rate and a high spin it may extend in the radial direction beyond ~300 Schwarzchild radii into a one-temperature zone. When the spin of the star is small enough, the flow transforms smoothly to an advection-dominated accretion flow. All gas parameters (density, angular velocity, temperature, luminosity, angular momentum flux) except for the radial velocity are independent of the mass accretion rate. The radiative efficiency may be arbitrarily large as M-dot -> 0. The gas angular momentum is transported outward under most conditions, hence the central star is nearly always spun-down. The flow is convectively stable. We also find that themal conduction in the flow is strong enough to make the flow thermally stable. The very fact that the density, temp...

  18. Simultaneous quiet time observations of energetic radiation belt protons and helium ions - The equatorial alpha/p ratio near 1 MeV

    Science.gov (United States)

    Fritz, T. A.; Spjeldvik, W. N.

    1979-01-01

    Simultaneous monitoring of energetic helium ions and protons in the earth's radiation belts has been conducted with Explorer 45 in the immediate vicinity of the equatorial plane. Protons were measured from less than 1 keV to 1.6 MeV and also above 3.3 MeV in a channel responsive up to 22 MeV; helium ions were monitored in three passbands: 910 keV to 3.15 MeV, 590 to 910 keV, and 2.0 to 3.99 MeV. Alpha/proton flux ratios were found to vary significantly with energy and location in the radiation belts. At equal energy per nucleon a range of variability for alpha/p from 0.0001 to well above 0.001 was found, and at equal energy per ion the corresponding variability was from 0.001 to above 10. The latter findings emphasize the relative importance of the very energetic helium ions in the overall radiation belt ion populations.

  19. Study of n-γ discrimination for 0.4-1 MeV neutrons using the zero-crossing method with a BC501A liquid scintillation detector

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Hao; LEI Jia-Rong; ZHANG Xiao-Dong; AN Li; ZHENG Pu; WANG Xin-Hua; ZHU Chuan-Xin

    2013-01-01

    An experimental system aimed at n-γ discrimination using the zero-crossing method with a φ3"× 2"BC501A liquid scintillation detector was established and tested with an Am-Be neutron source.Two-dimensional plots of energy versus zero-crossing time were obtained.The quality of n-γdiscrimination was checked by the figure-of-merit (FOM),the neutron peak-to-valley ratio,and the proportion of leaked neutrons over all neutron events.The performance of n-γ discrimination in terms of FOM was compared with previous work done by other groups.The n-γ discrimination in four different energy regions with an interval of 0.1 MeV between 0.3 MeV and 0.7 MeV was studied,and the results indicate that the n-γ discrimination threshold can go down to 0.4 MeV.

  20. RBE of fast neutrons for apoptosis in mouse thymocytes

    NARCIS (Netherlands)

    Warenius, HM; Down, JD

    1995-01-01

    We compared apoptosis in mouse thymocytes following exposure to low doses of high linear energy transfer (LET), 625-MeV (p-->Be+) fast neutrons and low LET, 4-MeV photons by flow cytometric analysis of hypodiploid cells. The incidence of apoptotic cell death rose steeply at very low radiation doses

  1. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  2. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve

  3. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to EFisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.

  4. R-Matrix Evaluation of 16O Neutron Cross Sections up to 6.3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, R.O.

    2000-08-21

    In this paper we describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes method, a generalized least squares technique. Over the years the nuclear community has developed a collection of evaluated nuclear data for applications in thermal, fast reactor, and fusion systems. However, typical neutron spectra in criticality safety applications are different from the spectra relevant to thermal, fast reactor, and fusion systems. In fact, the neutron spectra important for these non-reactor systems appear to peak in the epithermal energy range. Nuclear data play a major role in the calculation of the criticality safety margins for these systems. A thorough examination of how the present collection of nuclear data evaluations behaves in criticality safety calculations is needed. Many older evaluations will probably need to be revised, and new evaluations will be needed. Oxygen is an important element in criticality safety applications where oxides are present in significant abundance. The existing ENDF/B-VI.5 evaluation is expressed in terms of point-wise cross sections derived from the analysis of G. Hale [HA91]. Unfortunately such an evaluation is not directly useful for resonance analysis of data from samples in which oxygen is combined with other elements; for that purpose, Reich-Moore resonance parameters are needed. This paper addresses the task of providing those parameters. In the following sections we discuss the data, resonance analysis procedure, and results.

  5. Measurement of double differential cross sections for light charged particles production in neutron induced reaction at 62.7 MeV on lead target; Mesures des sections efficaces doublement differentielles de production de particules chargees legeres lors de reactions induites par neutrons de 62.7 MeV sur cible de plomb

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M

    2000-09-27

    In order to develop new options for nuclear waste management, studies are carrying out on the perfecting of hybrid systems (sub-critical reactor driven by accelerator). This thesis work takes place more precisely in the framework of nuclear data linked to hybrid systems development. Increasing the upper limit energy value (from 20 to 150 MeV) of data bases supposes that theoretical codes could have sufficient predictive power in this energy range. Thus it's necessary to measure new cross sections to constrain these codes. The experiment, performed at Louvain-la-Neuve Cyclotron, aims to determine the double differential cross sections for light charged particles production in neutron induced reactions at 62.7 MeV on natural lead target. The detection device consists of 6 NE102-CsI telescopes. Time of flight measurements are used to reconstruct the neutron energy spectra. The general framework (hybrid systems and associated nuclear data problematic) in which this work takes place is presented in a first part. The experimental set up used for our measurements is described in a second part. The three following parts are dedicated to the data analysis and double differential cross sections extraction. The particle discrimination, the energy calibration of detectors as the different corrections applied to the experimental spectra are related in details. And finally a comparative study between our experimental results and some theoretical predictions is presented. (author)

  6. R-Matrix Evaluation of Cl Neutron Cross Sections up to 1.2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, R.O.

    2003-03-27

    We have performed an evaluation of {sup 35}Cl, {sup 37}Cl, and {sup nat}Cl neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were carried out with the computer code SAMMY, which utilizes Bayes' method, a generalized least squares technique. A recent modification of SAMMY enabled us to calculate charged particle penetrabilities for the proton exit channel. Our resonance parameter representation describes the data much better than does ENDF/B-VI, and it should lead to improved criticality safety calculations for systems where Cl is present.

  7. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  8. A database of neutron spectra, instrument response functions, and dosimetric conversion factors for radiation protection applications

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, O.F. [National Physical Lab., Teddington (United Kingdom); Siebert, B.R.L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1997-09-01

    One of the major problems encountered in dose assessment for neutron radiation protection derives from the imperfect dose equivalent response of the devices used for monitoring. To investigate the performance of such devices in realistic neutron fields and to optimise calibration procedures, knowledge of both the prevalent spectral fluences and the energy response of the dosemeters is required. To facilitate this and similar studies, a database has been developed comprising a catalogue of neutron spectra and energy-dependent response functions together with a software package to manipulate the data in the catalogue. The range of data, features of the programs, and examples for radiation protection applications are described. (author).

  9. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    Science.gov (United States)

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  10. Estimation of double differential angle-dependent neutron production cross sections from tritons on 197Au at energies from 5.97 to 19.14 MeV

    CERN Document Server

    Drosg, Manfred

    2016-01-01

    Estimated cross sections for neutron production from triton bombardment of gold are deduced from measurements of triton interactions with gas targets that used gold as a triton beam stop material. Differential cross sections for production of neutrons from 5.97-, 7.47-, 10.45-, 16.41- and 19.14-MeV tritons on 197Au were evaluated. Corrections for the neutron interaction in gold, in the target structure and in the air of the flight path were obtained by means of a Monte Carlo technique. Uncorrelated scale uncertainties range from 24 to 41% whereas those of double differential cross sections range from 0.2 to 5%. Based on these cross section data, calculation of neutron yield at 0o from fully stopped tritons at 20.22 MeV agree with an independent measurement. Least-squares fits with a gamma distribution model indicate an anisotropy in the high energy portion of the neutron spectra. Legendre polynomial fits of differential cross sections are reported. All neutron cross section data are made available through the...

  11. Experimental test of a newly developed single-moderator, multi-detector, directional neutron spectrometer in reference monochromatic fields from 144 keV to 16.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Gómez-Ros, J.M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Bortot, D. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Gentile, A. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Introini, M.V. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Mazzitelli, M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Sacco, D. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); INAIL – DPIA, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy)

    2015-05-11

    A new directional neutron spectrometer called CYSP (CYlindrical SPectrometer) was developed within the NESCOFI@BTF (2011–2013) collaboration. The device, composed by seven active thermal neutron detectors located along the axis of a cylindrical moderator, was designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons. The new spectrometer condenses the performance of the Bonner Sphere Spectrometer in a single moderator; thus requiring only one exposure to determine the whole spectrum. The CYSP response matrix, determined with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 144 keV to 16.5 MeV, plus a {sup 252}Cf source, available at NPL (Teddington, UK). The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±2.5%. The new active spectrometer CYSP offers an innovative option for real-time monitoring of directional neutron fields as those produced in neutron beam-lines.

  12. Compounds for neutron radiation detectors and systems thereof

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, Leslie M.

    2016-08-30

    A composition of matter includes an organic molecule having a composition different than stilbene. The organic molecule is embodied as a crystal, and exhibits: an optical response signature for neutrons; an optical response signature for gamma rays, and performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays. The optical response signature for neutrons is different than the optical response signature for gamma rays.

  13. Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field

    CERN Document Server

    Yan, X; Köhler, A; Newhauser, W D

    2002-01-01

    Measurements of neutron dose equivalent values and neutron spectral fluences close to but outside of the therapeutic proton radiation field are presented. The neutron spectral fluences were determined at five locations with Bonner sphere measurements and established by unfolding techniques. More than 50 additional neutron dose equivalent values were measured with LiI and BF sub 3 thermal neutron detectors surrounded by a 25 cm polyethylene moderating sphere. For a large-field treatment, typical values of neutron dose equivalent per therapeutic proton absorbed dose, H/D, at 50 cm distance from isocenter, range from 1 mSv/Gy (at 0 deg.with respect to the proton beam axis) to 5 mSv/Gy (at 90 deg.). Experiments reveal that H/D varies significantly with the treatment technique, e.g., patient orientation, proton beam energy, and range-modulation. The relative uncertainty in H/D values is approximately 40% (one standard deviation).

  14. Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets

    Science.gov (United States)

    Agosteo, S.; Nakamura, T.; Silari, M.; Zajacova, Z.

    2004-04-01

    Data on transmission of neutrons in concrete generated by heavy ions of intermediate energies (of typically up to 1 GeV per nucleon) are of interest for shielding design of accelerators for use in both the research and in the medical field. The energy distributions of neutrons produced by ions of different species (from He to Xe) striking various targets at energies from 100 to 800 MeV per nucleon were recently measured by Kurosawa et al. in the angular range 0-90°. These spectra were used as input data for Monte Carlo simulations to determine source terms and attenuation lengths in ordinary concrete. The present paper presents calculations for 100 MeV/u helium ions on a Cu target, 100 MeV/u carbon ions on C, Al, Cu and Pb, 100 MeV/u neon ions on Cu and Pb, 400 MeV/u carbon ions on C, Al, Cu and Pb, 400 MeV/u neon ions on Cu, 400 MeV/u Ar ions on Cu, 400 MeV/u Fe ions on Cu and 400 MeV/u Xe ions on Cu. The results include the contributions of all secondaries. Some of the resulting attenuation curves are best fitted by a double-exponential function rather than the usual single-exponential. The effect of various approximations introduced in the simulations is discussed. A comparison is made with shielding data for protons scaled with the ion mass number. A comparison is also made with a simple analytical model in use at GANIL.

  15. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n

  16. Radiation detector based on 4H-SiC used for thermal neutron detection

    Science.gov (United States)

    Zaťko, B.; Šagátová, A.; Sedlačková, K.; Boháček, P.; Sekáčová, M.; Kohout, Z.; Granja, C.; Nečas, V.

    2016-11-01

    In this work we have focused on detection of thermal neutrons generated by 239Pu-Be isotopic neutron source. A high quality liquid phase epitaxial layer of 4H-SiC was used as a detection region. The thickness of the layer was 70 μ m and the diameter of circular Au/Ni Schottky contact was 4.5 mm. Around the Schottky contact two guard rings were created. The detector structure was first examined as a detector of protons and alpha particles for energy calibration. Monoenergetic protons of energies from 300 keV up to 1.9 MeV were used for detector energy calibration and a good linearity was observed. The energy resolution of 35 keV was obtained for 1.9 MeV protons. The 6LiF conversion layer was applied on the detector Schottky contact. In the experiment we used different thicknesses of conversion layers from 5 μ m up to 35 μ m. Measured detected spectra show two parts corresponding to alpha particles detection in lower energy channels and 3H in higher energy channels. We have also performed simulations of thermal neutron detection using MCNPX (Monte Carlo N-particle eXtended) code. The detection efficiency and the detector response to thermal neutrons was calculated with respect to the 6LiF layer thickness. The detection efficiency calculation is found to be in good agreement with the experiment.

  17. Shielding data for 100 250 MeV proton accelerators: Attenuation of secondary radiation in thick iron and concrete/iron shields

    Science.gov (United States)

    Agosteo, S.; Magistris, M.; Mereghetti, A.; Silari, M.; Zajacova, Z.

    2008-08-01

    Double differential distributions of neutrons produced by 100, 150, 200 and 250 MeV protons stopped in a thick iron target were calculated with the FLUKA Monte Carlo code at four emission angles: forward, 45°, transverse and 135° backwards. The attenuation in thick iron shields of the dose equivalent due to neutrons, protons, photons and electrons was also calculated. The contribution to the total ambient dose equivalent from photons and protons is limited to a few percent at maximum. Source terms and attenuation lengths are given as a function of energy and emission angle, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. A brief discussion of simulations performed with composite iron/concrete shields is also given, showing the need for further investigations.

  18. Measurement of formation cross sections of short-lived nuclei by 14 MeV neutron. Nd, Sm, Dy, Er, Yb

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan). School of Engineering; Iida, T.; Takahashi, A.

    1997-03-01

    Eight neutron activation cross sections producing the nuclei with half-lives between 3 min and 24 min were obtained at the energy range between 13.4 and 14.9 MeV by activation method. The cross sections were {sup 146}Nd(n,p){sup 146}Pr, {sup 154}Sm(n,{alpha}){sup 151}Nd, {sup 162}Dy(n,p){sup 162}Tb, {sup 163}Dy(n,np){sup 162}Tb, {sup 163}Dy(n,p){sup 163}Tb, {sup 164}Dy(n,p){sup 164}Tb, {sup 170}Er(n,{alpha}){sup 167}Dy, {sup 174}Yb(n,p){sup 170}Tm. {sup 163}Dy(n,np){sup 162}Tb (T{sub 1/2}=7.7 min) was obtained for the first time. Present results are compared with previous results and the evaluated data of JENDL-3 and ENDF/B-VI. There are some discrepancies between present results and the JENDL-3 and ENDF/B-VI. (author)

  19. Measurements of the total and partial neutron cross sections of Be, Ni and Cu in the energy range from 2. 2 eV - 2. 2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shuriet, G.; Hamouda, I. (Atomic Energy Establishment, Inshas (Egypt))

    1980-07-01

    The total neutron cross-sections of Be, Ni and Cu have been measured using two time-of-flight spectrometers installed in front of two of the horizontal channels of the ET-RR-1 reactor. The measurements were carried out in the energy range from 2.2 eV - 2.2 MeV at room temperature and at liquid nitrogen temperatures for neutron energies below 5 MeV. The values of both potential scattering cross-section and effective nuclear radius R' were determined, for the three elements, from the measured behaviour of the total cross-section, using the single level Breit-Wigner analysis. The determined values of R' are found in agreement with those predicted from the optical model. The coherent scattering amplitudes as well as the coherent scattering cross-sections were determined using the values of the Bragg cut-offs observed in the total cross-section measured at low neutron energies. The resulting values are in good agreement with those obtained using neutron diffraction methods. The incoherent scattering cross-sections were obtained from the total neutron cross-section beyond the Bragg cut-off measured at liquid nitrogen temperature.

  20. Volume change of Al/sub 2/O/sub 3/ and MgAl/sub 2/O/sub 4/ induced by 14-MeV neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanimura, Katsumi; Itoh, Noriaki; Clinard, F.W.

    1987-10-01

    Volume change of Al/sub 2/O/sub 3/ and MgAl/sub 2/O/sub 4/ induced by irradiation with 14-MeV neutrons at 50/sup 0/C has been measured. It is shown that the volume change of Al/sub 2/O/sub 3/ is anisotropic and is larger than that of MgAl/sub 2/O/sub 4/ about a factor of five. The result for MgAl/sub 2/O/sub 4/ is compared with that of fission neutron irradiation.

  1. Operational aspects of an externally driven neutron multiplier assembly concept using a Z-pinch 14-MeV Neutron Source (ZEDNA).

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Lewis; Heames, Terence John (Alion Science and Technology, Albuquerque, NM); Parma, Edward J., Jr.; Peters, Curtis D.; Suo-Anttila, Ahti Jorma (Alion Science and Technology, Albuquerque, NM)

    2007-09-01

    This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.

  2. Operational aspects of an externally driven neutron multiplier assembly concept using a Z-pinch 14-MeV Neutron Source (ZEDNA).

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Lewis; Heames, Terence John (Alion Science and Technology, Albuquerque, NM); Parma, Edward J., Jr.; Peters, Curtis D.; Suo-Anttila, Ahti Jorma (Alion Science and Technology, Albuquerque, NM)

    2007-09-01

    This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.

  3. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + {sup 7}Li reaction in the energy range of 18–36 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Majerle, M., E-mail: majerle@ujf.cas.cz; Bém, P.; Novák, J.; Šimečková, E.; Štefánik, M.

    2016-09-15

    Au, Bi, Co and Nb samples were irradiated several times with quasi-monoenergetic neutrons from p + {sup 7}Li reaction in the energy range of 18–36 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross-sections were extracted using the SAND-II method with the reference cross-sections from the EAF-2010 database. The uncertainties of the final results are discussed.

  4. Damage Induced by Neutron Radiation on Output Characteristics of Solar Cells, Photodiodes, and Phototransistors

    Directory of Open Access Journals (Sweden)

    Biljana Simić

    2013-01-01

    Full Text Available This study investigates the effects of neutron radiation on I-V characteristics (current dependance on voltage of commercial optoelectronic devices (silicon photodiodes, phototransistors, and solar panels. Current-voltage characteristics of the samples were measured at room temperature before and after irradiation. The diodes were irradiated using Am-Be neutron source with neutron emission of 2.7×106 n/s. The results showed a decrease in photocurrent for all samples which could be due to the existence of neutron-induced displacement defects introduced into the semiconductor lattice. The process of annealing has also been observed. A comparative analysis of measurement results has been performed in order to determine the reliability of optoelectronic devices in radiation environments.

  5. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  6. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    Science.gov (United States)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  7. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Science.gov (United States)

    Sacco, D.; Bedogni, R.; Bortot, D.; Palomba, M.; Pola, A.; Introini, M. V.; Lorenzoli, M.; Gentile, A.; Strigari, L.; Pressello, C.; Soriani, A.; Gómez-Ros, J. M.

    2015-10-01

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 109-1010 cm-2, using the ex-core radial thermal neutron column of the ENEA Casaccia - TRIGA reactor. The results are presented in this work.

  8. LiCaAlF6 scintillators in neutron and gamma radiation fields

    Science.gov (United States)

    Viererbl, L.; Klupák, V.; Vinš, M.; Koleška, M.; Šoltés, J.; Yoshikawa, A.; Nikl, M.

    2016-09-01

    Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to6Li. A plutonium-beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 137Cs and 60Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.

  9. Investigation of the fission fragment properties of the reaction sup 2 sup 3 sup 8 U(n,f) at incident neutron energies up to 5.8 MeV

    CERN Document Server

    Vivès, F; Bax, H; Oberstedt, S

    2000-01-01

    The fission fragment properties of the reaction sup 2 sup 3 sup 8 U(n,f) have been studied, at different incident neutron energies ranging from E sub n =1.2 to 5.8 MeV. The pre-neutron emission mass, kinetic energy and fission fragment angular distributions have been investigated with a double Frisch-gridded ionization chamber. The influence of the subthreshold vibrational resonances and of the proton pairing effect on the fission fragment properties is clearly visible. The total kinetic energy averaged over all fission fragment masses TKEbar shows an increasing trend up to E sub n =3.5 MeV with a sudden drop at roughly E sub n =3.8 MeV which has been attributed to the onset of pair breaking at the barrier. Above E sub n =3.8 MeV, the TKEbar is again continuously increasing. The changes in the mass yield and TKEbar(A) distributions have been studied as a function of the compound nuclear excitation energy and their contribution to the observed variations in the TKEbar have been determined. The two-dimensional ...

  10. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    Science.gov (United States)

    2016-06-01

    and alkali-halide scintillators for potential use in neutron and gamma detection systems .” M.S. thesis, Dept. Physics , Naval Posgraduate School...DETECTION AND CLASSIFICATION OF HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DETECTION OF FAST NEUTRONS by Jacob W. Capps June 2016 Thesis...DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RADIATION DETECTION AND CLASSIFICATION OF HEAVY OXIDE

  11. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kageji, T. E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, S.; Mizobuchi, Y.; Toi, H.; Nakagawa, Y.; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n=8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n=4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n=6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4{+-}4.2 Gy, 15.7{+-}1.2 and 13.9{+-}3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8{+-}1.3 Gy in positive and was 12.6{+-}4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8{+-}3.8 Gy in positive and was 13.6{+-}4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  12. Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    CERN Document Server

    Potekhin, A Y; Chabrier, G

    2016-01-01

    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields $B\\sim 10^{10}-10^{15}$ G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields $B\\sim 10^{10}-10^{11}$ G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.

  13. Multi-coincident study of the quasimolecular 1ssigma radiation and its angular distribution in 40 MeV Ni-Ni collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, R.; Justiniano, E.; Schuch, R.; Baptista, G.B.; Konrad, J.; Schulz, M.; Ziegler, F.

    1986-11-01

    The production mechanism of quasimolecular (MO) X-rays in 40 MeV Ni-Ni collisions was investigated in a multi-parameter experiment. Impact parameter dependent MO X-ray production probabilities were determined. The study of the angular distribution of the emitted radiation allowed the determination of impact parameter dependent alignment parameters for this process. Triple coincident MO X-ray - Ni K X-ray - scattered projectile data provided for the determination of state selective MO X-ray production probabilities. The results are compared to dynamical calculations describing the time dependent evolution of the relevant quasimolecular states and the radiative couplings among them.

  14. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  15. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R., E-mail: rebello@ime.eb.br, E-mail: daltongirao@yahoo.com.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, Ademir X., E-mail: ademir@nuclear.ufrj.br [Corrdenacao dos Programas de Pos-Graduacao em Egenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into {sup i}nitial nuclear radiation{sup ,} referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10){sub n}{sup -}. (author)

  16. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045

    Energy Technology Data Exchange (ETDEWEB)

    Kerr GD, Frome EL, Watkins JP, Tankersley WG

    2009-12-14

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  17. Shielding measurements for a 230 MeV proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  18. Advances in nuclear particle dosimetry for radiation protection and medicine - Ninth Symposium on Neutron Dosimetry (Editorial Material, English)

    Energy Technology Data Exchange (ETDEWEB)

    Zoetelief, J; Bos, A J.; Schuhmacher, H; McDonald, Joseph C.; Schultz, F W.; Pihet, P

    2004-12-15

    The Ninth Symposium on Neutron Dosimetry has been expanded to cover not only neutron radiation but heavy charged particle dosimetry as well. The applications are found in such fields as radiation protection, aircrew dosimetry, medicine, nuclear power and accelerator health physics. Scientists from many countries from around the world presented their work, and described the latest developments in techniques and instrumentation.

  19. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.cz [Nuclear Research Institute Rez plc, 250 68 Husinec-Rez 130 (Czech Republic); Research Centre Rez Ltd. (Czech Republic); Lahodova, Z.; Voljanskij, A.; Klupak, V.; Koleska, M. [Nuclear Research Institute Rez plc, 250 68 Husinec-Rez 130 (Czech Republic); Research Centre Rez Ltd. (Czech Republic); Cabalka, M. [Nuclear Research Institute Rez plc, 250 68 Husinec-Rez 130 (Czech Republic); Turek, K. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic)

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of {sup 235}U, {sup 238}U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  20. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    Science.gov (United States)

    Viererbl, L.; Lahodová, Z.; Voljanskij, A.; Klupák, V.; Koleška, M.; Cabalka, M.; Turek, K.

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of 235U, 238U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  1. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  2. Measurement of the $\\mathrm e^+\\mathrm e^-\\rightarrow\\mathrm\\pi^+\\mathrm\\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Du, S X; Duan, P F; Eren, E E; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Fava, L; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; He, X Q; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G M; Huang, G S; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kühn, W; Kupsc, A; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, Lei; Li, P R; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Moriya, K; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Shepherd, M R; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, X Y; Zhang, Y; Zhang, Y N; Zhang, Y H; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2015-01-01

    We extract the $e^+e^-\\rightarrow \\pi^+\\pi^-$ cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb$^{-1}$ taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor $|F_\\pi|^2$ as well as the contribution of the measured cross section to the leading order hadronic vacuum polarization contribution to $(g-2)_\\mu$. We find this value to be $a_\\mu^{\\pi\\pi,\\rm LO}(600-900\\;\\rm MeV) = (372.5 \\pm 2.6_{\\rm stat} \\pm 3.4_{\\rm sys})\\cdot 10^{-10}$.

  3. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    Science.gov (United States)

    Tomaszewski, Krzysztof J.

    2008-04-01

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which—besides photomultiplier itself—also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes—embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device.

  4. What Do s- and p-Wave Neutron Average Radiative Widths Reveal

    Energy Technology Data Exchange (ETDEWEB)

    Mughabghab, S.F.

    2010-04-30

    A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.

  5. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Model-Independent Calculation of Radiative Neutron Capture on Lithium-7

    NARCIS (Netherlands)

    Rupak, Gautam; Higa, Renato

    2011-01-01

    The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter r(1

  7. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  8. Analysis of the radiation shielding of the bunker of a 230MeV proton cyclotron therapy facility; comparison of analytical and Monte Carlo techniques.

    Science.gov (United States)

    Sunil, C

    2016-04-01

    The neutron ambient dose equivalent outside the radiation shield of a proton therapy cyclotron vault is estimated using the unshielded dose equivalent rates and the attenuation lengths obtained from the literature and by simulations carried out with the FLUKA Monte Carlo radiation transport code. The source terms derived from the literature and that obtained from the FLUKA calculations differ by a factor of 2-3, while the attenuation lengths obtained from the literature differ by 20-40%. The instantaneous dose equivalent rates outside the shield differ by a few orders of magnitude, not only in comparison with the Monte Carlo simulation results, but also with the results obtained by line of sight attenuation calculations with the different parameters obtained from the literature. The attenuation of neutrons caused by the presence of bulk iron, such as magnet yokes is expected to reduce the dose equivalent by as much as a couple of orders of magnitude outside the shield walls.

  9. Radiation damage and recovery of medium heavy and light inorganic crystalline, glass and glass ceramics materials after irradiation with 150 MeV protons and 1.2 MeV gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, K.T.; Dormenev, V.; Novotny, R.W.; Zaunick, H.G. [II. Physikalisches Institut, JLU Giessen (Germany); Borisevich, A.; Korjik, M.; Kozlov, D. [INP BSU, Minsk (Belarus); Kalinov, V.; Voitovich, A. [Institute of Physics of National Academy of Science, Minsk (Belarus); Kavatsyuk, M. [KVI-CART, University Groningen (Netherlands)

    2015-07-01

    Further concepts of the detectors at HEP experiments will require using cheap, capable for a mass production and radiation hard materials, especially for application at collider experiments. A set of samples with volume 1-2 cm{sup 3} of the middle light and light materials: crystalline BaF{sub 2}, Y{sub 3}A{sub l5}O{sub 12}:Ce, Y{sub 3}A{sub l5}O{sub 12}:Pr, Lu{sub 3}A{sub l5}O{sub 12}:Ce, LiF and newly developed glass and glass ceramics DSB:Ce and DSL:Ce were irradiated with gamma-quanta with absorbed dose 100 Gy and 150 MeV protons up to fluence 5 x 10{sup 13} p/cm{sup 2}. Here we report results of the comparison of the optical transmission damage and recovery after different types of irradiation. A significant acceleration of the induced absorption recovery is observed at the DSB:Ce samples illuminated with visible and IR light. This effect is similar to one observed by us in PWO. It indicates that radiation induced absorption in DSB: Ce scintillation material can be retained at the acceptable level by stimulation with light at the conditions of a strong irradiation environment of the collider experiments.

  10. Radiation-induced effects in MgO single crystal by 200 keV and 1 MeV Ni ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Nakai, Yoshihiro; Hamaguchi, Dai [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    MgO(100) single crystals were implanted with 1.0 MeV and 200 keV Ni ions between 10{sup 15} and 10{sup 17} ions/cm{sup 2} at room temperature. Before and after thermal annealing the radiation damage and the lattice location of implanted Ni ions were analyzed by using Rutherford backscattering spectrometry with channeling and optical absorption measurements. For 1.0 MeV Ni ions, the disorder of Mg atoms increased slowly with ion dose near surface region, while it increased sharply and saturated with ion dose from 2x10{sup 16} ions/cm{sup 2} near ion range. The radiation damage was recovered and implanted Ni ions diffused to the whole of crystal and occupied substitutional positions after 1400degC annealing. For 200 keV Ni ions, the disorder of Mg atoms increased with dose near ion range and had a maximum at about 5x10{sup 16} ions/cm{sup 2}. This tendency agrees with the behavior of color centers obtained from optical measurements. For thermal annealing the radiation damage did not change during 500degC annealing, but the aggregate centers appeared after 300degC annealing. (author)

  11. The effect of electrons, neutron and gamma radiation on nitrocellulose; Effet des radiations gamma, des electrons et des neutrons sur la nitrocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Heppell-Masys, K.M. [College Militaire Royal du Canada, Dept. de chimie et genie chimique, Kingston, Ontario (Canada)

    2001-07-01

    High nitrogen content nitrocellulose is mostly used as an explosive component in the fabrication of propellant. Slow evaporation of the stabiliser agents deteriorate the safe properties of these materials throughout the years, making them hazardous to handle well beyond their shelf lives. The irradiation may neutralize and convert the stocks of aged and unstable nitrocellulose explosives into less nitrated hence non-explosive substance. The effects of electrons, thermal neutrons and gamma radiation on the nitrogen content of wet nitrocellulose using the SLOWPOKE-2 nuclear reactor were investigated. Four nitrocellulose grades containing 30% water were used:12.11% N,12.60% N, 13.11% N and 13.22% N. These samples of about 0.3g each contained in sealed polyethylene vials were exposed to thermal neutrons, gamma and electron radiation in the SLOWPOKE-2 reactor pool for various times ranging from 15 minutes to 10 hours. In order to assess the extent of change in the nitrogen content, solutions of nitrocellulose in tetrahydrofuran were analyzed using Gel Permeation Chromatography (GPC) and Fourier Transform Infrared Spectroscopy (FTIR). A decrease of molecular weights and numbers was observed from GPC results as well as an increase of polydispersity indicating chain scission of the nitrocellulose backbone. The G value indicated that scission yield was predominant over the crosslinking yield. Nitrocellulose exposure to thermal neutrons, gamma rays and electrons is indeed effective in reducing average molecular weight and number, as well as in decreasing nitrogen content.

  12. Continuum quasiparticle random phase approximation for astrophysical direct neutron capture reaction of neutron-rich nuclei

    OpenAIRE

    Matsuo, Masayuki

    2014-01-01

    We formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random phase approximation (QRPA). A focus is put on very neutron-rich nuclei and low-energy neutron kinetic energy in the range of O(1 keV) - O(1 MeV), relevant for the rapid neutron-capture process of nucleosynthesis. We begin with the photo-absorption cross section and the E1 strength function, t...

  13. Development and characterization of the integrated fiber-optic radiation sensor for the simultaneous detection of neutrons and gamma rays.

    Science.gov (United States)

    Jang, Kyoung Won; Lee, Bong Soo; Moon, Joo Hyun

    2011-04-01

    Sometimes, detection of thermal neutrons in the presence of gamma rays is required. This study developed and characterized an integrated fiber-optic radiation sensor for the simultaneous detection of thermal neutrons and gamma rays in a mixed radiation field. The performance of the integrated sensor was verified by measuring the distributions of thermal neutrons and gamma rays released from a nuclear fuel rod at the Kyoto University Critical Assembly. The experimental results show that the integrated sensor produced similar distribution patterns to those of thermal neutrons and gamma rays released from a fuel rod.

  14. Radiation resistance and parameters of activation of aluminium-magnesium-scandium and aluminium-magnesium-vanadium alloys under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, L.I.; Ivanov, V.V.; Lazorenko, V.M.; Platov, Yu.M.; Tovtin, V.I.; Toropova, L.S. (A.A. Baikov Inst. of Metallurgy, Academy of Sciences, Moscow (Russia))

    1992-09-01

    Alloys Al-2.24Mg-0.223Sc-0.04Zr, Al-2.24Mg-0.12Sc-0.04Zr, and Al-2.24Mg-0.05V (at.%) annealed at 150deg C and 400deg C were irradiated at [approx equal] 70 and [approx equal] 150deg C in the SM-2 reactor. The maximum neutron fluence was 4.7x10[sup 24] m[sup -2] (E > 0.1 MeV). The tensile tests were carried out in the temperature range 20 to 350deg C. Alloy Al-2.24 Mg-0.23Sc-0.04Zr annealed at 400deg C and alloy Al-2.24Mg-0.12Sc-0.04Zr annealed at 150deg C at all test temperatures retained good mechanical properties after irradiation. The mechanisms for the radiation resistance of aluminium-scandium and aluminium-magnesium-scandium alloys are discussed. Calculations of induced radioactivity and its decay behaviour after shutdown in aluminium and Al-2.24Mg-(0.12-0.23)Sc alloys were carried out. Composition of the radionuclides in these materials after irradiation in the SM-2 reactor were also determined using a gamma-spectroscopy technique. (orig.).

  15. Radiation resistance and parameters of activation of aluminium-magnesium-scandium and aluminium-magnesium-vanadium alloys under neutron irradiation

    Science.gov (United States)

    Ivanov, L. I.; Ivanov, V. V.; Lazorenko, V. M.; Platov, Yu. M.; Tovtin, V. I.; Toropova, L. S.

    1992-09-01

    Alloys Al2.24Mg0.23Sc0.04Zr, Al2.24Mg0.12Sc0.04Zr, and Al2.24Mg0.05V (at.)) annealed at 150°C and 400°C were irradiated ≈70 and ≈150°C in the SM-2 reactor. The maximum neutron fluence was 4.7×1024 m-2 (E > 0.1 MeV). The tensile tests were carried out in the temperature range 20 to 350°C. Alloy Al2.24Mg0.23Sc0.04Zr annealed at 400°C and alloy Al2.24Mg0.12Sc0.04Zr annealed at 150°C at all test temperature, retained good mechanical properties after irradiation. The mechanisms for the radiation resistance of aluminiumscandium and aluminiummagnesiumscandium alloys are discussed. Calculations of induced radioactivity and its decay behaviour after shutdown in aluminium and Al2.24Mg(0.12-0.23)Sc alloys were carried out. Composition of the radionuclides in these materials after irradiation in the SM-2 reactor were also determined using a gamma-spectroscopy technique.

  16. Light response of YAP:Ce and LaBr{sub 3}:Ce scintillators to 4–30 MeV protons for applications to Telescope Proton Recoil neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cazzaniga, C., E-mail: carlo.cazzaniga@stfc.ac.uk [ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Cremona, A. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Nocente, M.; Rebai, M.; Rigamonti, D. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Università degli Studi di Milano-Bicocca, Dipartimento di Fisica, Piazza della Scienza 3, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Croci, G. [Istituto di Fisica del Plasma “P. Caldirola”, Associazione EURATOM-ENEA/CNR, Via Cozzi 53, Milano (Italy); Università degli Studi di Milano-Bicocca, Dipartimento di Fisica, Piazza della Scienza 3, Milano (Italy); Ericsson, G. [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Fazzi, A. [Department of Energy of the Politecnico di Milano, via Lambruschini 4, I-20156 Milano (Italy); Hjalmarsson, A. [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Mazzocco, M.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, and INFN, Sez. di Padova, I-35131 Padova (Italy); and others

    2016-06-01

    The light response of two thin inorganic scintillators based on YAP:Ce and LaBr{sub 3}:Ce crystals has been measured with protons in the 4–8 MeV energy range at the Uppsala tandem accelerator and in the 8–26 MeV energy range at the Legnaro tandem accelerator. The crystals have been calibrated in situ with {sup 137}Cs and {sup 60}Co γ-ray sources. The relative light yields of protons with respect to gammas have been measured and are here reported to be (96±2)% and (80±2)% for YAP:Ce and LaBr{sub 3}:Ce, respectively. The results open up to the development of a Telescope Proton Recoil spectrometer based on either of the two crystals as alternative to a silicon based spectrometer for applications to high neutron fluxes.

  17. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  18. Biological effectiveness of neutron irradiation on animals and man

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.

    1982-11-01

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, /sup 252/Cf-fission, and 15 MeV neutrons, compared with that by /sup 60/Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use.

  19. Relative biological efficiency of 592 MeV protons. Analysis of the biological effect of secondary radiation; Efficacite biologique relative des protons de 592 MeV. Analyse de l'effet biologique du aux rayonnements secondaires

    Energy Technology Data Exchange (ETDEWEB)

    Legeay, G.; Baarli, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; European Organization for Nuclear Research, Geneva (Switzerland)

    1968-07-01

    The relative biological efficiency (RBE) of high energy protons is of importance because of their effects in the field of radioprotection around large accelerators and during space-flights. The nature of the interactions between 592 MeV protons and biological tissues makes it necessary to take into consideration the contribution of secondary radiation to the biological effect. Since it is not possible to obtain from a synchrotron a beam having a sufficiently large cross-section to irradiate large animals, one has to resort to certain devices concerning the mode of exposure when small laboratory animals are used. By irradiating rats individually and in groups, and by using the lethal test as a function of time, the authors show that the value of the RBE is different for animals of the same species having the same biological parameters. Thus there appears an increase in the biological effect due to secondary radiation produced in nuclear cascades which develop in a large volume, for example that of a human being. (author) [French] L'efficacite biologique relative des protons de haute energie doit etre etudiee en raison de leur incidence sur la radioprotection autour des grands accelerateurs et lors des vols spatiaux. La nature des interactions des protons de 592 MeV avec les tissus biologiques rend necessaire d'envisager la contribution des rayonnements secondaires a l'effet biologique. Ne pouvant obtenir aupres d'un synchrotron un faisceau de section importante pour irradier de gros animaux, il est necessaire de faire appel a des artifices portant sur le mode d'exposition lorsque l'on utilise les petits animaux de laboratoire. En irradiant des rats individuellement et en groupe et en utilisant le test de letalite en fonction du temps, les auteurs montrent que la valeur de l'EBR est differente sur des animaux de la meme espece presentant les memes parametres biologiques. Il apparait ainsi un accroissement de l'effet biologique

  20. Early ultrastructural changes in the rat adenohypophysis following exposure to neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Teshchenko, G.A.; Monastyrskaya, B.I.

    1977-01-01

    An electron microscopic study was made of the rat adenohypophysis following single exposure to whole-body radiation (LD/sub 30/30/) with fast neutrons in the biochannel of the BBP-M reactor. The demonstrated intensification of corticotrophic and thyrotrophic elements, as well as depression of activity of somatotrophic ones, are analogous the previous findings following single whole-body x-irradiation of rats in an equivalent dosage, but more marked. The appearance of dark cells of the thyrotropic and somatotropic types is related to the direct effect of neutrons on this gland's cells.

  1. Reverse Monte Carlo studies of CeO2 using neutron and synchrotron radiation techniques

    Science.gov (United States)

    Clark, Adam H.; Marchbank, Huw R.; Hyde, Timothy I.; Playford, Helen Y.; Tucker, Matthew G.; Sankar, Gopinathan

    2017-03-01

    A reverse Monte Carlo analysis method was employed to extract the structure of CeO2 from Neutron total scattering (comprising both neutron diffraction (ND) and pair-distribution functions (PDF) and Ce L3- and K-edge EXAFS data. Here it is shown that there is a noticeable difference between using short ranged x-ray absorption spectroscopy data and using medium-long range PDF and ND data in regards to the disorder of the cerium atoms. This illustrates the importance of considering multiple length scales and radiation sources.

  2. Neutron Production in Coincidence with Fragments from the {sup 40}Ca + H Reactions at E{sub lab} = 357 and 565 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T.G.; Insolia, A.; Knott, C.N.; Lindstrom, P.J.; Mitchell, J.W.; Potenza, R.; Russo, G.V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C.E.; Waddington, C.J.; Webber, W.R.; Wefel, J.P.

    2000-12-31

    In the frame of the Transport Collaboration neutrons in coincidence with charged fragments produced in the {sup 40}Ca + H reaction at E{sub lab} = 357 and 565 AMeV have been measured at the Heavy Ion Spectrometer System (HISS) facility of the Lawrence Berkeley National Laboratory, using the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range about the beam in the forward direction (0? - 3.2?). In this contribution we report absolute neutron production cross sections in coincidence with charged fragments (10 {<=} Z {<=} 20). The neutron multiplicities have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a pre-equilibrium emission of prompt neutrons in superposition to a 'slower' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in the inclusive rapidity distributions.

  3. Improved fission neutron energy discrimination with 4He detectors through pulse filtering

    Science.gov (United States)

    Zhu, Ting; Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit; Chandra, Rico; Kiff, Scott; Chung, Heejun; Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A.

    2017-03-01

    This paper presents experimental and computational techniques implemented for 4He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since 4He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the 4He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with 252Cf spontaneous fission neutrons. Given the 4He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a 4He fast neutron detection system.

  4. 6.3 MeV fast neutrons in the treatment of patients with locally advanced and locally recurrent breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru; Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The study included 135 breast cancer patients (70 patients with locally recurrent breast cancer and 65 patients with locally advanced breast cancer with unfavorable prognostic factors) who received the neutron therapy alone or in combination with the photon therapy. The neutron therapy was shown to be effective in multimodality treatment of patients with locally advanced and locally recurrent breast cancer. The 8-year survival rate in patients without repeated breast cancer recurrence was 87.6 ± 8.7% after the neutron and neutron-photon therapy and 54.3 ± 9.2% after the electron beam therapy.

  5. COMPTEL all-sky imaging at 2.2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, M.; Ryan, J. [University of New Hampshire, Durham, New Hampshire (United States); Fletcher, S. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Bennett, K.; van Dijk, R. [Astrophysics Division, ESTEC, Noordwijk (The Netherlands); Bloemen, H.; Hermsen, W. [SRON-Utrecht, Utrecht (The Netherlands); Diehl, R.; Schoenfelder, V.; Strong, A. [Max Planck Institute (MPE), Garching (Germany)

    1997-05-01

    It is now generally accepted that accretion of matter onto a compact object (white dwarf, neutron star or black hole) is one of the most efficient processes in the universe for producing high energy radiations. Measurements of the {gamma}-ray emission will provide a potentially valuable means for furthering our understanding of the accretion process. Here we focus on neutron capture processes, which can be expected in any situation where energetic neutrons may be produced and where the liberated neutrons will interact with matter before they decay (where they have a chance of undergoing some type of neutron capture). Line emission at 2.2 MeV, resulting from neutron capture on hydrogen, is believed to be the most important neutron capture emission. Observations of this line in particular would provide a probe of neutron production processes (i.e., the energetic particle interactions) within the accretion flow. Here we report on the results of our effort to image the full sky at 2.2 MeV using data from the {ital COMPTEL} experiment on the {ital Compton Gamma-Ray Observatory} ({ital CGRO}). {copyright} {ital 1997 American Institute of Physics.}

  6. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma

  7. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan,; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed

  8. The accelerator neutron source for boron neutron capture therapy

    Science.gov (United States)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  9. Review of measurement techniques for the neutron radiative-capture process

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W.P.

    1981-07-01

    The experimental techniques applied in measurements of the neutron capture process are reviewed. The emphasis is on measurement techniques used in neutron capture cross section measurements. The activation technique applied mainly in earlier work has still its use in some cases, specifically for measurements of technologically important cross sections (/sup 238/U and /sup 232/Th) with high accuracy. Three major prompt neutron radioactive capture detection techniques have evolved: the total gamma radiation energy detection technique (mainly with large liquid scintillation detectors), the gamma-energy proportional detectors (with proportional counters or Moxon-Rae detectors), and the pulse-height weighting technique. These measurement techniques are generally applicable, however, shortcomings limit the achievable accuracy to a approx. = 5 to 15% uncertainty level.

  10. Safety techniques in the change of nuclear systems. Radiation protection at spallation neutron sources and transmutation facilities; Sicherheitstechnik im Wandel Nuklearer Systeme. Strahlenschutz bei Spallationsneutronenquellen und Transmutationsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nuenighoff, Kay

    2009-07-01

    To push the boundary towards higher neutron fluxes concepts based on spallation reactions have been discussed. Here neutrons are produced by bombarding a heavy metal target (e.g. mercury, tungsten, or tantalum) with high energetic protons. Up to now such facilities could not be realised because of the high power particle accelerators needed. Recent developments of the accelerator technology open the possibility of construction and operating proton accelerators in the MW region. This is demonstrated by construction and commissioning of two MW spallation neutron sources, namely SNS (Oak Ridge, Tennessee, USA) with a power of 1.4 MW and J-PARC (Japan) with 1 MW. The realisation of proton accelerators at this power level will open the way towards energy amplifiers, as proposed e.g. by Carlo Rubbia. Such a facility will not only produce electric power. Furthermore longliving radionuclides can be transmutated into shortlived or even stable nuclides by neutron induced nuclear reactions. A mitigation of the problem of nuclear waste disposal. The above discussed developments prove that accelerators are not only constructed for research, moreover application of these technology became state of the art. With the emergence of particle accelerators in the MW region, radiation protection is confronted with new kind of problems to be solved. Especially the higher kinetic energies of the primary beam particles requires modification and expansion of computer programs well known in nuclear engineering. In contrast to nuclear reactors with kinetic energies up to 2-3 MeV, in spallation reaction secondary particles up to the incident energy in the GeV region will be produced. Problems related to radiation protection have to be considered in an energy range three orders of magnitude higher than known from nuclear reactors. In this thesis existing computer codes are compared and validated with data from selected experiments. Questions concerning radiation protection covers a broad range

  11. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  12. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  13. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  14. Comment on "Detection and characterization of 0.5-8 MeV neutrons near Mercury: Evidence for a solar origin"

    CERN Document Server

    Share, Gerald; Tylka, Allan; Dennis, Brian; Ryan, James

    2014-01-01

    We argue that the hour-long neutron transient detected by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Neutron Spectrometer beginning at 15:45 UT on 2011 June 4 is due to secondary neutrons from energetic protons interacting in the spacecraft. The protons were probably accelerated by a shock that passed the spacecraft about thirty minutes earlier. We reach this conclusion after a study of data from the MESSENGER neutron spectrometer, gamma-ray spectrometer, X-ray Spectrometer, and Energetic Particle Spectrometer, and from the particle spectrometers on STEREO A. Our conclusion differs markedly from that given by Lawrence et al. [2014] who claimed that there is "strong evidence" that the neutrons were produced by the interaction of ions in the solar atmosphere. We identify significant faults with the authors' arguments that led them to that conclusion.

  15. Distribution of total radiation widths for neutron resonances of Pt isotopes

    Directory of Open Access Journals (Sweden)

    Koehler P.E.

    2015-01-01

    Full Text Available High quality neutron capture and transmission data were measured on isotopically enriched 192,194,195,196Pt and natural Pt samples at ORELA. R-matrix analysis of this data revealed resonance parameters for 159, 413, 423, 258, and 11 neutron resonances for neutron energies below 5.0, 16.0, 7.5, 16.0, and 5.0 keV for 192,194,195,196,198Pt+n, respectively. Earlier analysis of data on reduced neutron widths, Γ0n, showed that the distributions of Γ0n for 192,194Pt deviate significantly from the Porter-Thomas distribution (PTD predicted by random matrix theory. In this contribution we report on preliminary results of the analysis of distribution of total radiation widths, Γγ, in 192,194,195,196Pt+n reactions. Comparison of experimental data with predictions made within the nuclear statistical model indicates that standard models of Photon Strength Functions (PSFs and Nuclear Level Density predict Γγ distributions which are too narrow. We found that satisfactory agreement between experimental and simulated distributions can be obtained only by a strong suppression of the PSFs at low γ-ray energies and/or by violation of the usual assumption that primary transitions from neutron resonances follow the PTD. The shape of PSFs needed for reproduction of our Γγ data also nicely reproduces spectra from several (n,γ experiments on the neighbor nuclide 198Au.

  16. Response of TLD badge to mixed fields of photons of energies above 6 MeV and beta radiation encountered in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, A.S.; Bakshi, A.K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2000-05-01

    Response of TLD badge in use for our countrywide personnel monitoring was evaluated for high-energy photon beams (10 MV, 15 MV and 18 MV) from medical Linear Accelerators with beam output measurements within an accuracy better than {+-}3%. The badge has three CaSO{sub 4}:Dy teflon TLD discs (each of dia. 13.5 mm and thickness 0.8 mm) clipped on an aluminum card kept in a cassette having three regions (i) combined metal filter of 1 mm thick Cu and 1 mm thick Al, (ii) 1.6 mm thick plastic filter and (iii) an open window area on either side sandwiching the TLD card. Mainly discs under metal filter and open window are used to estimate the dose due to gamma rays and beta rays, respectively while ratios of responses of discs under plastic filter and open window/metal filter in an algorithm are used for arriving at the correction factors for evaluation of beta and gamma ray doses. In nuclear power plants, especially the CANDU pressurized heavy water reactor systems, gamma ray of energy higher than 6 MeV (produced from disintegration of {sup 16}N via the reaction {sup 16}O(n p){sup 16}N) do contribute significantly to personal dose equivalent Hp(10) in addition to situations where beta radiation contributes to personal dose equivalent Hp(0.07). The values of absorbed doses at 10 mm in phantom were obtained from the measured values of dose at Dmax traceable to national standard and irradiations of dosimeters were made on a plastic phantom of size 25x25x25 cm{sup 3}. The bare dosimeter disc was found to exhibit no photon energy dependence for high energy photons of energy above 300 keV (up to 7 MeV). However, the response of the badge was found to increase by about 10% above 6 MeV as compared to that of Co-60 gamma rays due to the influence of metal filters used in the badge for compensation of photon energy (below 200keV) response. In the case of LiF TLD-100 ribbons sandwiched between 0.3 mm thick Cu filters, no over-response was observed. A significant complication in the

  17. Gravitational radiation from neutron stars deformed by crustal Hall drift

    Science.gov (United States)

    Suvorov, A. G.; Mastrano, A.; Geppert, U.

    2016-07-01

    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  18. Modeling the Spin Equilibrium of Neutron Stars in LMXBs Without Gravitational Radiation

    Science.gov (United States)

    Andersson, N.; Glampedakis, K.; Haskell, B.; Watts, A. L.

    2004-01-01

    In this paper we discuss the spin-equilibrium of accreting neutron stars in LMXBs. We demonstrate that, when combined with a naive spin-up torque, the observed data leads to inferred magnetic fields which are at variance with those of galactic millisecond radiopulsars. This indicates the need for either additional spin-down torques (eg. gravitational radiation) or an improved accretion model. We show that a simple consistent accretion model can be arrived at by accounting for radiation pressure in rapidly accreting systems (above a few percent of the Eddington accretion rate). In our model the inner disk region is thick and significantly sub-Keplerian, and the estimated equilibrium periods are such that the LMXB neutron stars have properties that accord well with the galactic millisecond radiopulsar sample. The implications for future gravitational-wave observations are also discussed briefly.

  19. Radiation sensitivity of silicon imaging sensors on missions to the outer planets.

    Science.gov (United States)

    Brucker, G. J.; Cope, A. D.

    1972-01-01

    Review of the results of an investigation of the magnitude of the degradation effects of radiation on the operating characteristics of camera tubes using silicon diode arrays in the space environment, and discussion of the radiation damage mechanisms concerned. The effects produced by bombardment of bare-silicon-diode arrays or vidicon tubes with 85-kV X rays, Cobalt 60 gamma rays, 1 MeV and 11 MeV electrons, 3 MeV and 142 MeV protons, and reactor neutrons are presented. Interference effects produced by radiation bombardment during operation of television tubes are investigated, and limiting fluxes of electrons and protons are given.

  20. Response of AGATA Segmented HPGe Detectors to Gamma Rays up to 15.1 MeV

    CERN Document Server

    Crespi, F C L; Camera, F; Akkoyun, S; Atac, A; Bazzacco, D; Bellato, M; Benzoni, G; Blasi, N; Bortolato, D; Bottoni, S; Bracco, A; Brambilla, S; Bruyneel, B; Cerutia, S; Ciemala, M; Coelli, S; Eberth, J; Fanin, C; Farnea, E; Gadea, A; Giaz, A; Gottardo, A; Hess, H; Kmiecik, M; Leoni, S; Maj, A; Mengoni, D; Michelagnoli, C; Million, B; Montanari, D; Pellegri, L; Recchia, F; Reiter, P; Riboldi, S; Ur, C A; Vandone, V; Valiente-Dobon, J J; Wieland, O; Wiens, A

    2012-01-01

    The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%. Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation following neutron capture by Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape Analysis, is discussed.

  1. Investigating Time and Spectral Dependence in Neutron Radiation Environments for Semiconductor Damage Studies

    Science.gov (United States)

    2014-09-18

    source of beta particles with radius , s, a distance, d, away from a detector with radius , a. The geometric factor, ξ, is dependent on the solid angle...parameters varied in sensitivity study. Units of D are cm2/s, units of E are eV, units of ν are s−1 and units of Radius are Å...as much of the neutron radiation (either cosmic or nuclear weapon induced) remains hard and the radiation pulse short. Also, the gamma flux from

  2. Comparison of radiation damage in silicon induced by proton and neutron irradiation

    CERN Document Server

    Ruzin, A; Glaser, M; Zanet, A; Lemeilleur, F; Watts, S

    1999-01-01

    The subject of radiation damage to Si detectors induced by 24-GeV/c protons and nuclear reactor neutrons has been studied. Detectors fabricated on single-crystal silicon enriched with various impurities have been tested. Significant differences in electrically active defects have been found between the various types of material. The results of the study suggest for the first time that the widely used nonionizing energy loss (NIEL) factors are insufficient for normalization of the electrically active damage in case of oxygen- and carbon-enriched silicon detectors. It has been found that a deliberate introduction of impurities into the semiconductor can affect the radiation hardness of silicon detectors. (16 refs).

  3. Importance of Compton scattering for radiation spectra of isolated neutron stars with weak magnetic fields

    CERN Document Server

    Suleimanov, V

    2007-01-01

    Emergent model spectra of neutron star atmospheres are widely used to fit the observed soft X-ray spectra of different types of isolated neutron stars. We investigate the effect of Compton scattering on the emergent spectra of hot (T_eff > 10^6 K) isolated neutron stars with weak magnetic fields. In order to compute model atmospheres in hydrostatic and radiative equilibrium we solve the radiation transfer equation with the Kompaneets operator. We calculate a set of models with effective temperatures in the range 1 - 5 * 10^6 K, with two values of surface gravity (log g = 13.9 and 14.3) and different chemical compositions. Radiation spectra computed with Compton scattering are softer than those computed without Compton scattering at high energies (E > 5 keV) for light elements (H or He) model atmospheres. The Compton effect is more significant in H model atmospheres and models with low surface gravity. The emergent spectra of the hottest (T_eff > 3 * 10^6 K) model atmospheres can be described by diluted blackb...

  4. Saturn Neutron Exosphere as Source for Inner and Innermost Radiation Belts

    Science.gov (United States)

    Cooper, John; Lipatov, Alexander; Sittler, Edward; Sturner, Steven

    2011-01-01

    Energetic proton and electron measurements by the ongoing Cassini orbiter mission are expanding our knowledge of the highest energy components of the Saturn magnetosphere in the inner radiation belt region after the initial discoveries of these belts by the Pioneer 11 and Voyager 2 missions. Saturn has a neutron exosphere that extends throughout the magnetosphere from the cosmic ray albedo neutron source at the planetary main rings and atmosphere. The neutrons emitted from these sources at energies respectively above 4 and 8 eV escape the Saturn system, while those at lower energies are gravitationally bound. The neutrons undergo beta decay in average times of about 1000 seconds to provide distributed sources of protons and electrons throughout Saturn's magnetosphere with highest injection rates close to the Saturn and ring sources. The competing radiation belt source for energetic electrons is rapid inward diffusion and acceleration of electrons from the middle magnetosphere and beyond. Minimal losses during diffusive transport across the moon orbits, e.g. of Mimas and Enceladus, and local time asymmetries in electron intensity, suggest that drift resonance effects preferentially boost the diffusion rates of electrons from both sources. Energy dependences of longitudinal gradient-curvature drift speeds relative to the icy moons are likely responsible for hemispheric differences (e.g., Mimas, Tethys) in composition and thermal properties as at least partly produced by radiolytic processes. A continuing mystery is the similar radial profiles of lower energy (belt region. Either the source of these lower energy protons is also neutron decay, but perhaps alternatively from atmospheric albedo, or else all protons from diverse distributed sources are similarly affected by losses at the moon' orbits, e.g. because the proton diffusion rates are extremely low. Enceladus cryovolcanism, and radiolytic processing elsewhere on the icy moon and ring surfaces, are additional

  5. Computational evaluation oa a neutron field facility

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Jose Julio de O.; Pazianotto, Mauricio T., E-mail: jjfilos@hotmail.com, E-mail: mpazianotto@gmail.com [Instituto Tecnologico de Aeronautica (ITA/DCTA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio A.; Passaro, Angelo, E-mail: claudiofederico@ieav.cta.br, E-mail: angelo@ieav.cta.br [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    This paper describes the results of a study based on computer simulation for a realistic 3D model of Ionizing Radiation Laboratory of the Institute for Advanced Studies (IEAv) using the MCNP5 (Monte Carlo N-Particle) code, in order to guide the installing a neutron generator, produced by reaction {sup 3}H(d,n){sup 4}He. The equipment produces neutrons with energy of 14.1 MeV and 2 x 10{sup 8} n/s production rate in 4 πgeometry, which can also be used for neutron dosimetry studies. This work evaluated the spectra and neutron fluence provided on previously selected positions inside the facility, chosen due to the interest to evaluate the assessment of ambient dose equivalent so that they can be made the necessary adjustments to the installation to be consistent with the guidelines of radiation protection and radiation safety, determined by the standards of National Nuclear Energy Commission (CNEN). (author)

  6. Preliminary Analysis of the Multisphere Neutron Spectrometer

    Science.gov (United States)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  7. Measurement of the e+e−→π+π− cross section between 600 and 900 MeV using initial state radiation

    Directory of Open Access Journals (Sweden)

    M. Ablikim

    2016-02-01

    Full Text Available We extract the e+e−→π+π− cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |Fπ|2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g−2μ. We find this value to be aμππ,LO(600–900MeV=(368.2±2.5stat±3.3sys⋅10−10, which is between the corresponding values using the BaBar or KLOE data.

  8. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  9. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)(3)He and D(d,n)(3)He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the (9)Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  10. MeV Pulsars: Modeling Spectra and Polarization

    Science.gov (United States)

    Kust Harding, Alice; Kalapotharakos, Constantinos

    2017-08-01

    A sub-population of energetic rotation-powered pulsars show high fluxes of pulsed non-thermal hard X-ray emission. While this ‘MeV pulsar’ population includes some radio-loud pulsars like the Crab and PSR B1509-58, a significant number have no detected radio or GeV emission, a mystery since gamma-ray emission is a common characteristic of pulsars with high spin-down power. Their steeply rising hard X-ray spectral energy distributions (SEDs) suggest peaks at 0.1 - 1 MeV but they have not been detected above 200 keV. Several upcoming and planned telescopes may shed light on the MeV pulsars. The Neutron star Interior Composition ExploreR (NICER) will observe pulsars in the 0.2 - 12 keV band and may discover additional MeV pulsars. The All-Sky Medium-Energy Gamma-Ray Observatory (AMEGO), in a study phase, can detect emission above 0.2 MeV and polarization in the 0.2 - 10 MeV band. We present a model for the spectrum and polarization of MeV pulsars where the X-ray emission comes from electron-positron pairs radiating in the outer magnetosphere and current sheet. This model predicts that the peak of the SED increases with surface magnetic field strength if the pairs are produced in polar cap cascades. For small inclination angles, viewing at large angles to the rotation axis can miss both the radio pulse and the GeV pulse from particles accelerating near the current sheet. Characterizing the emission and geometry of MeV pulsars can thus provide clues to the source of pairs and acceleration in the magnetosphere.

  11. Annealing of radiation-induced damage in tungsten under and after irradiation with 20 MeV self-ions

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V., E-mail: olga.ogorodnikova@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Gasparyan, Yu.; Efimov, V. [National Research Nuclear University “MEPHI”, Moscow (Russian Federation); Ciupiński, Ł.; Grzonka, J. [Warsaw University of Technology, ul. Woloska 141, PL-02507 Warsaw (Poland)

    2014-08-01

    Accumulation and recovery of radiation defects under/after self-ion irradiation in tungsten (W) have been investigated via decoration with deuterium (D) and scanning transmission electron microscopy (STEM). The deuterium was incorporated in damaged material by low-energy D plasma. The D concentration at radiation-induced defects in each sample was subsequently measured by nuclear reaction analysis allowing determination of the D concentration at depths up to 6 μm. The total D retention was measured by thermal desorption spectroscopy. It was shown that pre-irradiation with self-ions led to rather high D concentration (⩾ 0.1 at.%) in W even at high temperatures (⩾ 700 K) due to formation of defects with high de-trapping energy for deuterium. The annealing of defects with low trapping energy for D occurs intensively in the temperature range between 300 and 700 K. The radiation-induced defects with high de-trapping energy for D are thermally stable at least up to 1100 K. The rearrangement and partial healing of dislocations as well as coalescence of small clusters in a big ones accompanied by a reduction of the total density of defects was observed by STEM after annealing of radiation-induced defects in recrystallized tungsten at 1000 K. The D retention monotonically decreases in recrystallized W with increasing of annealing temperature up to 1100 K that is in agreement with the reduction of radiation defect density observed by STEM. However, an increase of the D retention in ‘as received’ W pre-irradiated with self-ions at annealing temperature of around 1000 K was found. The increase of the D retention at annealing temperature of ∼1000 K was not observed in the case of recrystallized W pre-irradiated with self-ions. The mechanism of recovery of radiation-induced defects in dependence on the initial intrinsic defects (grain size, impurities, etc.) in W is discussed.

  12. Optimize the shielding of therapy head of 14MeV neutron therapy system%14MeV中子治癌机中治疗头屏蔽体的优化设计

    Institute of Scientific and Technical Information of China (English)

    贾文宝; 姚泽恩; 苏桐龄; 王学智; 杨化中

    2000-01-01

    According to the design need of the shielding of therapy head in the 14MeV neutron therapy syst em of Lanzhou University, this paper simulated the transfer process of neutron at a source to body surface distance of 100cm by Monte Carlo method ( mcnp3b). The dose transmissivity of fast neutron on the complex shielding of various combination was calculated. Optimum scheme of shielding was des igned. It supplied a scientific basis for the design of therapy head.%应兰州大学14MeV中子治癌机中治疗头屏蔽体的设计需要,利用Monte Carlo方法(MCNP程序)模拟计算了一个复合屏蔽的(采用100cm源皮距下,国际上 一般采用100—120cm)中子输运过程,计算了14MeV快中子源在复合屏蔽的不同组合时的透射剂量率,优化设计了最经济实用的屏蔽体的方案,为治疗头的屏蔽设计提供了 可靠的科学依据。

  13. Radiation-induced damage and recovery effects in GG17 glass irradiated by 1 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qingyan, E-mail: wqyhit03s@126.com [Department of Physics, Harbin Institute of Technology, Harbin 150006 (China); Zhang Zhonghua [Institute of Opto-Electronics, Harbin Institute of Technology, Harbin (China); Geng Hongbin; Sun Chengyue; Yang Dezhuang; He Shiyu [Space Materials and Environment Engineering Laboratory, Harbin Institute of Technology, Harbin (China); Hu Zhaochu [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China)

    2012-06-15

    The optical properties and microstructural damage of GG17 glasses, as well as their recovery during annealing at room temperature, are investigated after exposure to 1 MeV electrons with various fluences. Experimental results show that the electrons lead to severe optical degradation in the GG17 glass, and induce the formation of paramagnetic defects which can be mainly attributed to the boron-oxygen hole centers. With increasing annealing time at room temperature their decay serves as long-lived defects following first order kinetics. Except for the strong absorption bands located at 334-352 nm and 480 nm that corresponds to the boron-oxygen hole centers, weaker absorption bands appear at 780 nm or 794.6 nm after irradiation, inducing a decrease in transmittance by approximately 17% for a fluence of 1 Multiplication-Sign 10{sup 16} cm{sup -2}. It is shown that electron irradiation could cause a harmful effect on rubidium lamps when GG17 glass is used as the lamp envelope material.

  14. Investigation of 186Re via radiative thermal-neutron capture on 185Re

    Science.gov (United States)

    Matters, D. A.; Lerch, A. G.; Hurst, A. M.; Szentmiklósi, L.; Carroll, J. J.; Detwiler, B.; Révay, Zs.; McClory, J. W.; McHale, S. R.; Firestone, R. B.; Sleaford, B. W.; Krtička, M.; Belgya, T.

    2016-05-01

    Partial γ -ray production cross sections and the total radiative thermal-neutron capture cross section for the 185Re(n ,γ ) 186Re reaction were measured using the Prompt Gamma Activation Analysis facility at the Budapest Research Reactor with an enriched 185Re target. The 186Re cross sections were standardized using well-known 35Cl(n ,γ )36Cl cross sections from irradiation of a stoichiometric natReCl3 target. The resulting cross sections for transitions feeding the 186Re ground state from low-lying levels below a cutoff energy of Ec=746 keV were combined with a modeled probability of ground-state feeding from levels above Ec to arrive at a total cross section of σ0=111 (6 ) b for radiative thermal-neutron capture on 185Re. A comparison of modeled discrete-level populations with measured transition intensities led to proposed revisions for seven tentative spin-parity assignments in the adopted level scheme for 186Re. Additionally, 102 primary γ rays were measured, including 50 previously unknown. A neutron-separation energy of Sn=6179.59 (5 ) keV was determined from a global least-squares fit of the measured γ -ray energies to the known 186Re decay scheme. The total capture cross section and separation energy results are comparable to earlier measurements of these values.

  15. A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy.

    Science.gov (United States)

    Futamura, Gen; Kawabata, Shinji; Siba, Hiroyuki; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji; Sakurai, Yoshinori; Tanaka, Minoru; Todo, Tomoki; Miyatake, Shin-Ichi

    2014-11-04

    We treated a 54-year-old Japanese female with a recurrent radiation-induced osteosarcoma arising from left occipital skull, by reactor-based boron neutron capture therapy (BNCT). Her tumor grew rapidly with subcutaneous and epidural extension. She eventually could not walk because of cerebellar ataxia. The tumor was inoperable and radioresistant. BNCT showed a marked initial therapeutic effect: the subcutaneous/epidural tumor reduced without radiation damage of the scalp except hair loss and the patient could walk again only 3 weeks after BNCT. BNCT seems to be a safe and very effective modality in the management of radiation-induced osteosarcomas that are not eligible for operation and other treatment modalities.

  16. Characterization methods for an accelerator based fast-neutron facility

    Science.gov (United States)

    Franklyn, C.; Daniels, G. C.

    2012-02-01

    A fast neutron facility provides a number of complexities in both detection and shielding, the latter arising not only due to uncertainty in the behaviour of the scattered radiation (neutron and gamma-rays) from a fast neutron source, but also on shielding requirements that have to take into account internal and external factors, such as dose limitations, space availability for implementing bulky shielding and secondary interactions of the radiation with materials. This has possible influence on experimental measurements with a low signal to noise ratio. This paper reports on some of the investigations performed at a RFQ accelerator facility generating > 1011 neutrons per second with energies up to 14 MeV, which are used to perform fast neutron radiography studies. Areas highlighted are the neutron cross section libraries, where important data needs to be reviewed or updated.

  17. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV.

    Directory of Open Access Journals (Sweden)

    D Nikezic

    Full Text Available Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy.

  18. Radiative properties of magnetic neutron stars with metallic surfaces and thin atmospheres

    CERN Document Server

    Potekhin, A Y; van Adelsberg, M; Werner, K

    2012-01-01

    The goal of this work is to develop a simple analytic description of the emission properties (spectrum and polarization) of the condensed, strongly magnetized surface of neutron stars. We have improved the method of van Adelsberg et al. (2005) (arXiv:astro-ph/0406001) for calculating the spectral properties of condensed magnetized surfaces. Using the improved method, we calculate the reflectivity of an iron surface at magnetic field strengths B \\sim (10^{12} - 10^{14}) G, with various inclinations of the magnetic field lines and radiation beam with respect to the surface and each other. We construct analytic expressions for the emissivity of this surface as functions of the photon energy, magnetic field strength, and the three angles that determine the geometry of the local problem. Using these expressions, we calculate X-ray spectra for neutron stars with condensed iron surfaces covered by thin partially ionized hydrogen atmospheres. We develop simple analytic descriptions of the intensity and polarization o...

  19. Neutron and Synchrotron Radiation Studies for Designer Materials, Sustainable Energy and Healthy Lives

    Science.gov (United States)

    Gibson, J. Murray

    2009-05-01

    Probably the most prolific use of large accelerators today is in the creation of bright beams of x-ray photons or neutrons. The number of scientific users of such sources in the US alone is approaching 10,000. I will describe the some of the major applications of synchrotron and neutron radiation and their impact on society. If you have AIDS, need a better IPOD or a more efficient car, or want to clean up a superfund site, you are benefitting from these accelerators. The design of new materials is becoming more and more dependent on structural information from these sources. I will identify the trends in applications which are demanding new sources with greater capabilities.

  20. Optimising the neutron environment of Radiation Portal Monitors: a computational optimisation study

    CERN Document Server

    Gilbert, Mark R; Packer, Lee W

    2015-01-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model helium-3 detector system we have conducted a parameter study to identify the optimum combination of detector shielding and collimation that maximises the sensitivity of RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Fu...

  1. Description of the proton and neutron radiative capture reactions in the Gamow shell model

    CERN Document Server

    Fossez, K; Płoszajczak, M; Jaganathen, Y

    2015-01-01

    We formulate the Gamow shell model (GSM) in coupled-channel (CC) representation for the description of proton/neutron radiative capture reactions and present the first application of this new formalism for the calculation of cross-sections in mirror reactions 7Be(p,gamma)8B and 7Li(n,gamma)8Li. The GSM-CC formalism is applied to a translationally-invariant Hamiltonian with an effective finite-range two-body interaction. Reactions channels are built by GSM wave functions for the ground state 3/2- and the first excited state 1/2- of 7Be/7Li and the proton/neutron wave function expanded in different partial waves.

  2. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  3. Photo-neutron reaction cross-section for {sup 93}Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kim, G.N., E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Schwengner, R. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); John, R.; Massarczyk, R.; Junghans, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Shin, S.G.; Key, Y. [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Lee, M.W. [Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of); Goswami, A. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Cho, M.-H. [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2013-10-23

    The photo-neutron cross-sections of {sup 93}Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The {sup 93}Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the {sup 93}Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of {sup 93}Nb(γ, n) and {sup 93}Nb(γ, 2n) reaction cross-sections are sharper compared to {sup 93}Nb(γ, 3n) and {sup 93}Nb(γ, 4n) reaction cross-sections. The sharp increase of {sup 93}Nb(γ, n) and {sup 93}Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual {sup 93}Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels.

  4. Study of radiation damage in InGaN and AlGaN films induced by 8.9 MeV Bi33+ ions

    Science.gov (United States)

    Zhang, L. M.; Li, C. X.; Zhao, J. T.; Yang, K. J.; Zhang, G. F.; Wang, T. S.; Zhang, C. H.

    2013-06-01

    Homogeneous radiation damage was induced in ˜250-nm-thick In0.18Ga0.82N and Al0.2Ga0.8N films by irradiation with 8.9 MeV Bi33+ ions at room temperature. The ion fluence was in the range from 5 × 1011 to 5 × 1013 cm-2. From the Rutherford backscattering/channeling (RBS/C) measurements, it is shown that Al0.2Ga0.8N had a radiation resistance at least one order of magnitude higher than In0.18Ga0.82N. When the ion fluence was increased from 1 × 1013 to 5 × 1013 cm-2, enhanced surface peaks were observed in the RBS/C spectra for both the In0.18Ga0.82N and Al0.2Ga0.8N films, which may be attributed to the high charge state of the incident ions. Moreover, from the Raman spectra measurements, the evolution of the disorder-related B1 bands and TO-like peaks with the fluence was observed for the In0.18Ga0.82N and Al0.2Ga0.8N films, respectively.

  5. Correlated analysis of 2 MeV proton-induced radiation damage in CdZnTe crystals using photoluminescence and thermally stimulated current techniques

    Science.gov (United States)

    Gu, Yaxu; Jie, Wanqi; Rong, Caicai; Wang, Yuhan; Xu, Lingyan; Xu, Yadong; Lv, Haoyan; Shen, Hao; Du, Guanghua; Fu, Xu; Guo, Na; Zha, Gangqiang; Wang, Tao

    2016-11-01

    Radiation damage induced by 2 MeV protons in CdZnTe crystals has been studied by means of photoluminescence (PL) and thermally stimulated current (TSC) techniques. A notable quenching of PL intensity is observed in the regions irradiated with a fluence of 6 × 1013 p/cm2, suggesting the increase of non-radiative recombination centers. Moreover, the intensity of emission peak Dcomplex centered at 1.48 eV dominates in the PL spectrum obtained from irradiated regions, ascribed to the increase of interstitial dislocation loops and A centers. The intensity of TSC spectra in irradiated regions decreases compared to the virgin regions, resulting from the charge collection inefficiency caused by proton-induced recombination centers. By comparing the intensity of identified traps obtained from numerical fitting using simultaneous multiple peak analysis (SIMPA) method, it suggests that proton irradiation under such dose can introduce high density of dislocation and A-centers in CdZnTe crystals, consistent with PL results.

  6. Channel coupling in neutron inelastic scattering by even--even nuclei with 48less than or equal toAless than or equal to64 at energies up to 9. 0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, S.P.; Cabezas, R.; Korzh, I.A.; Lunev, V.P.; Mishchenko, V.A.; Pravdivyi, N.M.

    1987-08-01

    Cross sections for excitation of one-phonon and two-phonon levels of 48 less than or equal to A less than or equal to 64 nuclei by neutrons with energies from threshold up to 9.0 MeV are analyzed in the optical-statistical approach using the coupled-channel method with various numbers of channels taken into account. Analysis of the theoretical calculations and their comparison with experimental data show that the cross sections for direct excitation of the one-phonon levels of the nuclei studied depend on the number of channels taken into account as well as on the deformation parameter ..beta../sub 2//sub J/, and that in the energy region under investigation the levels of the two-phonon triplet are excited primarily through the compound nucleus since the cross sections for their direct excitation are very small

  7. Prompt neutron multiplicity distribution for ~(235)U(n,f) at incident energies up to 20 MeV

    Institute of Scientific and Technical Information of China (English)

    陈永静; 刘廷进

    2011-01-01

    For the n+235U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy ε (A) and the total average energies Eˉγ(A) removed by γ rays as a function of fission fragment mass are given at incident

  8. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  9. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  10. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  11. Light charged particle and neutron velocity spectra in coincidence with projectile fragments in the reaction sup 4 sup 0 Ar(44 A MeV)+ sup 2 sup 7 Al

    CERN Document Server

    Lanzanò, G; Geraci, M; Pagano, A; Aiello, S; Cunsolo, A; Fonte, R; Foti, A; Sperduto, M L; Volant, C; Charvet, J L; Dayras, R; Legrain, R

    2001-01-01

    We present a three source analysis of velocity spectra of light charged particles (LCP) and neutrons emitted in the reaction sup 4 sup 0 Ar+ sup 2 sup 7 Al at 44 A MeV. The light particle (LP) velocity spectra are studied as a function of the detection angle (1.5 deg. MeV, independent of the PLF charge. Comparison with temperature values extracted from double isotopic ratios, shows an agreement only between the temperature values extracted from formula involving sup 3 He, sup 4 He, d, t ratios and the PLF proton temperature parameter. The characteristics of the PLF sources are derived. Present ...

  12. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  13. Yields of neutron-rich isotopes around Z = 28 produced in 30 MeV proton-induced fission of 238U

    Science.gov (United States)

    Kruglov, K.; Andreyev, A.; Bruyneel, B.; Dean, S.; Franchoo, S.; Górska, M.; Helariutta, K.; Huyse, M.; Kudryavtsev, Yu.; Mueller, W. F.; Prasad, N. V. S. V.; Raabe, R.; Schmidt, K.-H.; Van Duppen, P.; Van Roosbroeck, J.; Van de Vel, K.; Weissman, L.

    Heavy 65-70Co, 68-74Ni, 70-76Cu and 74-81Ga isotopes were produced at the LISOL facility by means of 30 MeV proton-induced fission of 238U. Production rates were deduced and compared to two types of cross-section calculations: the empirical model (V. Rubchenya, private communication) and the PROFI code. Comparison with experimental data favors the latter model. Yields using different beam-target combinations and different energies are calculated and discussed.

  14. Measurement of peak fluence of neutron beams using Bi-fission detectors

    Indian Academy of Sciences (India)

    R K Jain; Ashok Kumar; N L Singh; L Tommasino; B K Singh

    2012-03-01

    Fission fragments and other charged particles leave tracks of permanent damage in most of the insulating solids. Damage track detectors are useful for personal dosimeters and for flux/dose determination of high-energy particles from accelerators or cosmic rays. A detector that has its principal response at nucleon energy above 50 MeV is provided by the fission of Bi-209. Neutrons produce the largest percentage of hadron dose in most high-energy radiation fields. In these fields, the neutron spectrum is typically formed by low-energy neutrons (evaporation spectrum) and high-energy neutrons (knock-on spectrum). We used Bi-fission detectors to measure neutron peak fluence and compared the result with the calculated value of neutron peak fluence. For the exposure to 100 MeV we have used the iThemba Facility in South Africa.

  15. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    Science.gov (United States)

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  16. Dense Plasma Focus as Collimated Source of D-D Fusion Neutron Beams for Irradiation Experiences and Study of Emitted Radiations

    Science.gov (United States)

    Milanese, M.; Niedbalski, J.; Moroso, R.; Guichón, S.; Supán, J.

    2008-04-01

    A "table-top" 2 kJ, 250 kA plasma focus, the PACO (Plasma AutoConfinado), designed by the Dense Plasma Group of IFAS is used in its optimum regime for neutron yield for obtaining collimated pulsed neutron beams (100 ns). A simple and low-cost shielding arrangement was developed in order to fully eliminate the 2.45 MeV neutrons generated in the PACO device (108 per shot at 31 kV, 1-2 mbar). Conventional neutron diagnostics: scintillator-photomultiplier (S-PMT), silver activation counters (SAC), etc., are used to determine the minimum width of the shielding walls. Emission of very hard electromagnetic pulses is also studied. Collimation using lead and copper plates is made to determine the localization of the very hard X-ray source. The maximum energy of the continuum photon distribution is estimated in 0,6 MeV using a system of filters.

  17. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  18. Constraints on Thermal X-Ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission

    NARCIS (Netherlands)

    C.O. Heinke; P.G. Jonker; R. Wijnands; R.E. Taam

    2007-01-01

    Thermal X-ray radiation from neutron star soft X-ray transients in quiescence provides the strongest constraints on the cooling rates of neutron stars and thus on the interior composition and properties of matter in the cores of neutron stars. We analyze new (2006) and archival (2001) XMM-Newton obs

  19. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    Science.gov (United States)

    Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.

    2015-09-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  20. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Mark R., E-mail: mark.gilbert@ccfe.ac.uk [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Ghani, Zamir [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); McMillan, John E. [Department of Physics and Astronomy, University of Sheffield, Hicks building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Packer, Lee W. [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-09-21

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model {sup 3}He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.