International Nuclear Information System (INIS)
Singh, Manpreet; Singh, Gurvinderjit; Sandhu, B.S.; Singh, Bhajan
2006-01-01
The simultaneous effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma photons was studied experimentally. An intense collimated beam, obtained from 6-Ci 137 Cs source, is allowed to impinge on cylindrical aluminium samples of varying diameter and the scattered photons are detected by a 51 mmx51 mm NaI(Tl) scintillation detector placed at 90 o to the incident beam. The full energy peak corresponding to singly scattered events is reconstructed analytically. The thickness at which the multiply scattered events saturate is determined for different detector collimators. The parameters like signal-to-noise ratio and multiply scatter fraction (MSF) have also been deduced and support the work carried out by Shengli et al. [2000. EGS4 simulation of Compton scattering for nondestructive testing. KEK proceedings 200-20, Tsukuba, Japan, pp. 216-223] and Barnea et al. [1995. A study of multiple scattering background in Compton scatter imaging. NDT and E International 28, 155-162] based upon Monte Carlo calculations
International Nuclear Information System (INIS)
Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.
2007-01-01
An inverse response matrix converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a photon spectrum. This also results in extraction of intensity distribution of multiply scattered events originating from interactions of 0.279 MeV photons with thick targets of soldering material. The observed pulse-height distributions are a composite of singly and multiply scattered events in addition to bremmstrahlung-and Rayleigh-scattered events. To evaluate the contribution of multiply scattered events, the spectrum of singly scattered events contributing to inelastic Compton peak is reconstructed analytically. The optimum thickness (saturation depth), at which the number of multiply scattered events saturates, has been measured. Monte Carlo calculations also support the present results
Angular distribution of 662keV multiply-Compton scattered gamma rays in copper
International Nuclear Information System (INIS)
Singh, Manpreet; Singh, Gurvinderjit; Sandhu, B.S.; Singh, Bhajan
2007-01-01
The angular distribution of multiple Compton scattering of 662keV gamma photons, obtained from six Curie 137 Cs source, incident on copper scatterer of varying thickness is studied experimentally in both the forward and backward hemispheres. The scattered photons are detected by a 51mmx51mm NaI(Tl) scintillation detector. The full-energy peak corresponding to singly scattered events is reconstructed analytically. We observe that the numbers of multiply scattered events, having same energy as in the singly scattered distribution, first increases with increase in target thickness and then saturate. The optimum thickness at which the multiply scattered events saturate is determined at different scattering angles
Energy distribution of 0. 279 MeV gamma rays Compton scattered from bound electrons
Energy Technology Data Exchange (ETDEWEB)
Singh, B; Singh, P; Singh, G; Ghumman, B S
1984-11-01
Energy and intensity distribution of 0.279 MeV gamma rays Compton scattered from K-shell electrons of tantalum is measured at scattering angle of 70deg. The experimental results are compared with the available theoretical data. Spectral distribution is also obtained as a function of scatterer thickness to account for the contribution of false events. 13 refs.
International Nuclear Information System (INIS)
Jung, M.; Kattein, J.; Kueck, H.; Leu, P.; Marne, K.D. de; Wedemeyer, R.; Wermes, N.
1981-05-01
Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. 78 data points are presented as angular distributions at photon lab energies of 700, 750, 800, 850, 900, and 950 MeV. The c.m. scattering angle ranges from 40 0 to 130 0 , corresponding to a variation of the four momentum transfer squared between t = -0.10 to t = -0.96 GeV 2 at 700 and 950 MeV, respectively. Two additional differential cross sections have been measured at 1000 MeV, 35.6 0 and 47.4 0 . The angular distributions show forward peaks whose extrapolations to 0 0 are consistent with calculated forward cross sections taken from literature. The small angle data ( vertical stroke t vertical stroke approx. 2 ) together with the calculated cross sections at 0 0 are also consistent with the assumption of a slope parameter B of 5 GeV -2 . For the first time a re-rise of the angular distributions towards backward angles has been observed. It becomes less steep with increasing energy. The most interesting feature of the angular distributions is a sharp structure which appears between t = -0.55 GeV 2 at 700 MeV and t = -0.72 GeV 2 at 950 MeV. Such a rapid variation of the differential cross section with t has never been observed in elastic hadron-hadron scattering or photoproduction processes. It indicates the existence of a dynamical mechanism which could be a peculiarity of Compton scattering. (orig.)
Sikora, Mark; Compton@HIGS Team
2017-01-01
The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.
International Nuclear Information System (INIS)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required
Energy Technology Data Exchange (ETDEWEB)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.
International Nuclear Information System (INIS)
Christillin, P.
1986-01-01
The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)
High-Energy Compton Scattering Light Sources
Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M
2005-01-01
No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2
Energy Technology Data Exchange (ETDEWEB)
Pratt, R.H., E-mail: rpratt@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); LaJohn, L.A., E-mail: lal18@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Florescu, V., E-mail: flor@barutu.fizica.unibuc.r [Centre for Advanced Quantum Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele (Romania); Suric, T., E-mail: suric@irb.h [R. Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Chatterjee, B.K., E-mail: barun_k_chatterjee@yahoo.co [Department of Physics, Bose Institute, Kolkata 700009 (India); Roy, S.C., E-mail: suprakash.roy@gmail.co [Department of Physics, Bose Institute, Kolkata 700009 (India)
2010-02-15
We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p{sup -}>.A{sup -}> effects come into play. (4) Most relativistic effects, except at low
International Nuclear Information System (INIS)
Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.
2010-01-01
We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be
Compton scattering at high intensities
Energy Technology Data Exchange (ETDEWEB)
Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)
2009-12-01
High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.
Weak Deeply Virtual Compton Scattering
International Nuclear Information System (INIS)
Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin
2006-01-01
We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities
International Nuclear Information System (INIS)
Singh, Gurvinderjit; Singh, Manpreet; Singh, Bhajan; Sandhu, B.S.
2006-01-01
The gamma photons continue to soften in energy as the number of scatterings increases in the sample having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness and saturates at a particular value of the target thickness known as saturation depth. The present experiment is undertaken to study the effect of atomic number of the target on saturation depth of 0.662 MeV incident gamma photons multiply scattered from targets of various thicknesses. The scattered photons are detected by an HPGe gamma detector placed at 90 o to the incident beam direction. We observe that with an increase in target thickness, the number of multiply scattered photons also increases and saturates at a particular value of the target thickness. The saturation depth decreases with increasing atomic number. The double Compton scattered peak is also observed in the experimental spectra
International Nuclear Information System (INIS)
Alberico, W.M.; Molinari, A.
1982-01-01
In this paper we briefly review the formalism of the nuclear Compton scattering in the frame of the low-energy theorems (LET). We treat the resonant terms of the amplitude, having collective intermediate nuclear states, as a superposition of Lorentz lines with energy, width and strength fixed by the photo-absorption experiments. The gauge terms are evaluated starting from a simple, but realistic, nuclear Hamiltonian. Dynamical nucleon-nucleon correlations are consistently taken into account, beyond those imposed by the Pauli principle. The comparison of the theoretical predictions with the data of elastic diffusion of photons from 208 Pb shows that LET are insufficient to account for the experiment. (orig.)
Arthur H. Compton and Compton Scattering
dropdown arrow Site Map A-Z Index Menu Synopsis Arthur H. Compton and Compton Scattering Resources with Additional Information * Compton Honored * Compton Scattering Arthur H. Compton Courtesy of Lawrence Berkeley , 1923 Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942, DOE Technical
International Nuclear Information System (INIS)
Datta, Gulshan; Saddi, M.B.; Singh, B.; Sandhu, B.S.
2007-01-01
The doubly differential collision cross-sections of the double-photon Compton process have been measured experimentally for 0.662 MeV incident gamma photons. The measurements are carried out using a single gamma detector, a technique avoiding the use of the complicated slow-fast coincidence set-up used till now for observing this higher order QED process. The energy spectra of detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The measured values of the cross-section for different independent energy levels of one of the two final photons are of the same magnitude but show deviation from the corresponding values obtained from the theory. However, the present measurements are first of its kind and in view of the nature and order of deviations, the agreement of measured values with theory is quite satisfactory
Deeply virtual Compton scattering. Results and future
International Nuclear Information System (INIS)
Nowak, W.D.
2005-03-01
Access to generalised parton distributions (GPDs) through deeply virtual Compton scattering (DVCS) is briefly described. Presently available experimental results on DVCS are summarized in conjunction with plans for future measurements. (orig.)
Computer control in a compton scattering spectrometer
International Nuclear Information System (INIS)
Cui Ningzhuo; Chen Tao; Gong Zhufang; Yang Baozhong; Mo Haiding; Hua Wei; Bian Zuhe
1995-01-01
The authors introduced the hardware and software of computer autocontrol of calibration and data acquisition in a Compton Scattering spectrometer which consists of a HPGe detector, Amplifiers and a MCA
Proton compton scattering in the resonance region
International Nuclear Information System (INIS)
Ishii, Takanobu.
1979-12-01
Differential cross sections of the proton Compton scattering have been measured in the energy range between 400 and 1150 MeV at CMS angles of 130 0 , 100 0 and 70 0 . The recoil proton was detected with a magnetic spectrometer using multi-wire proportional chambers and wire spark chambers. In coincidence with the proton, the scattered photon was detected with a lead glass Cerenkov counter of the total absorption type with a lead plate converter, and horizontal and vertical scintillation counter hodoscopes. The background due to the neutral pion photoproduction, was subtracted by using the kinematic relations between the scattered photon and the recoil proton. Theoretical calculations based on an isobar model with two components, that is, the resonance plus background, were done, and the photon couplings of the second resonance region were determined firstly from the proton Compton data. The results are that the helicity 1/2 photon couplings of P 11 (1470) and S 11 (1535), and the helicity 3/2 photon coupling of D 13 (1520) are consistent with those determined from the single pion photoproduction data, but the helicity 1/2 photon coupling of D 13 (1520) has a somewhat larger value than that from the single pion photoproduction data. (author)
Using Compton scattering for random coincidence rejection
International Nuclear Information System (INIS)
Kolstein, M.; Chmeissani, M.
2016-01-01
The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.
Experimental study of angular dependence in double photon Compton scattering
International Nuclear Information System (INIS)
Sandhu, B.S.; Dewan, R.; Saddi, M.B.; Singh, B.; Ghumman, B.S.
2000-01-01
The collision differential cross-section and energy of one of the final photons for double photon Compton scattering have been measured as a function of scattering angle θ 1 . The incident photon energy is 0.662 MeV and thin aluminium foils are used as a scatterer. The two simultaneously emitted photons in this higher order process are detected in coincidence using two NaI(Tl) scintillation spectrometers and 30 ns timing electronics. The measured values for energy and collision differential cross-section agree with theory within experimental estimated error. The present data provide information of angular dependence in this higher order process
Compton scattering by mesons in nuclei: Experiment on 208Pb
International Nuclear Information System (INIS)
Fuhrberg, K.; Martin, G.; Haeger, D.; Ludwig, M.; Schumacher, M.; Andersson, B.E.; Blomqvist, K.I.; Ruijter, H.; Sandell, A.; Schroeder, B.; Hayward, E.; Nilsson, L.; Zorro, R.
1992-01-01
Using 58 and 73 MeV tagged photons and scattering angles from 60deg to 150deg, it is shown that is possible to observe Compton scattering by 'mesons in nuclei ' through an incomplete cancellation of the mesonic (exchange- current) seagull amplitude by parts of the nuclear resonance amplitude related to the giant-dipole resonance of 208 Pb. This phenomenon is a property of an extended nucleus and , therefore, cannot be dtudied on the deuteron. Predictions of the exchange form factor which determines the angular distribution of the exchange seagull amplitude are compared with experimental data. (orig.)
Theorems of low energy in Compton scattering
International Nuclear Information System (INIS)
Chahine, J.
1984-01-01
We have obtained the low energy theorems in Compton scattering to third and fouth order in the frequency of the incident photon. Next we calculated the polarized cross section to third order and the unpolarized to fourth order in terms of partial amplitudes not covered by the low energy theorems, what will permit the experimental determination of these partial amplitudes. (Author) [pt
Compton scattering collision module for OSIRIS
Del Gaudio, Fabrizio; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luís
2017-10-01
Compton scattering plays a fundamental role in a variety of different astrophysical environments, such as at the gaps of pulsars and the stagnation surface of black holes. In these scenarios, Compton scattering is coupled with self-consistent mechanisms such as pair cascades. We present the implementation of a novel module, embedded in the self-consistent framework of the PIC code OSIRIS 4.0, capable of simulating Compton scattering from first principles and that is fully integrated with the self-consistent plasma dynamics. The algorithm accounts for the stochastic nature of Compton scattering reproducing without approximations the exchange of energy between photons and unbound charged species. We present benchmarks of the code against the analytical results of Blumenthal et al. and the numerical solution of the linear Kompaneets equation and good agreement is found between the simulations and the theoretical models. This work is supported by the European Research Council Grant (ERC- 2015-AdG 695088) and the Fundao para a Céncia e Tecnologia (Bolsa de Investigao PD/BD/114323/2016).
Constraints on low energy Compton scattering amplitudes
International Nuclear Information System (INIS)
Raszillier, I.
1979-04-01
We derive the constraints and correlations of fairly general type for Compton scattering amplitudes at energies below photoproduction threshold and fixed momentum transfer, following from (an upper bound on) the corresponding differential cross section above photoproduction threshold. The derivation involves the solution of an extremal problem in a certain space of vector - valued analytic functions. (author)
Comprehensive study of observables in Compton scattering on the nucleon
Grießhammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.
2018-03-01
We present an analysis of 13 observables in Compton scattering on the proton. Cross sections, asymmetries with polarised beam and/or targets, and polarisation-transfer observables are investigated for energies up to the Δ(1232) resonance to determine their sensitivity to the proton's dipole scalar and spin polarisabilities. The Chiral Effective Field Theory Compton amplitude we use is complete at N4LO, O(e2δ4), for photon energies ω˜ m_{π}, and so has an accuracy of a few per cent there. At photon energies in the resonance region, it is complete at NLO, O(e2δ0), and so its accuracy there is about 20%. We find that for energies from pion-production threshold to about 250 MeV, multiple asymmetries have significant sensitivity to presently ill-determined combinations of proton spin polarisabilities. We also argue that the broad outcomes of this analysis will be replicated in complementary theoretical approaches, e.g., dispersion relations. Finally, we show that below the pion-production threshold, 6 observables suffice to reconstruct the Compton amplitude, and above it 11 are required. Although not necessary for polarisability extractions, this opens the possibility to perform "complete" Compton-scattering experiments. An interactive Mathematica notebook, including results for the neutron, is available from judith.mcgovern@manchester.ac.uk.
Testing special relativity theory using Compton scattering
International Nuclear Information System (INIS)
Contreras S, H.; Hernandez A, L.; Baltazar R, A.; Escareno J, E.; Mares E, C. A.; Hernandez V, C.; Vega C, H. R.
2010-10-01
The validity of the special relativity theory has been tested using the Compton scattering. Since 1905 several experiments has been carried out to show that time, mass, and length change with the velocity, in this work the Compton scattering has been utilized as a simple way to show the validity to relativity. The work was carried out through Monte Carlo calculations and experiments with different gamma-ray sources and a gamma-ray spectrometer with a 3 x 3 NaI (Tl) detector. The pulse-height spectra were collected and the Compton edge was observed. This information was utilized to determine the relationship between the electron's mass and energy using the Compton -knee- position, the obtained results were contrasted with two collision models between photon and electron, one model was built using the classical physics and another using the special relativity theory. It was found that calculations and experiments results fit to collision model made using the special relativity. (Author)
Future measurements of deeply virtual Compton scattering
International Nuclear Information System (INIS)
Korotkov, V.A.; Nowak, W.D.
2001-09-01
Prospects for future measurements of Deeply Virtual Compton Scattering are studied using different simple models for parameterizations of generalized parton distributions (GPDs). Measurements of the lepton charge and lepton beam helicity asymmetry will yield important input for theoretical models towards the future extraction of GPDs. The kinematics of the HERMES experiment, complemented with a recoil detector, was adopted to arrive at realistic projected statistical uncertainties. (orig.)
Colour dipoles and virtual Compton scattering
International Nuclear Information System (INIS)
McDermott, M.
2002-01-01
An analysis of Deeply Virtual Compton Scattering (DVCS) is made within the colour dipole model. We compare and contrast two models for the dipole cross-section which have been successful in describing structure function data. Both models agree with the available cross section data on DVCS from HERA. We give predictions for various azimuthal angle asymmetries in HERA kinematics and for the DVCS cross section in the THERA region. (orig.)
Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars
Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.
2018-02-01
Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.
Induced Compton scattering effects in radiation transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-01-01
In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Induced Compton-scattering effects in radiation-transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-02-01
The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
The effect of Compton scattering on quantitative SPECT imaging
International Nuclear Information System (INIS)
Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.
1982-01-01
A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter
Nucleon structure study by virtual compton scattering
International Nuclear Information System (INIS)
Berthot, J.; Bertin, P.Y.; Breton, V.; Fonvielle, H.; Hyde-Wright, C.; Quemener, G.; Ravel, O.; Braghieri, A.; Pedroni, P.; Boeglin, W.U.; Boehm, R.; Distler, M.; Edelhoff, R.; Friedrich, J.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merle, K.; Neuhausen, R.; Offermann, E.A.J.M.; Pospischil, T.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, T.; Wolf, S.
1995-01-01
We propose to study nucleon structure by Virtual Compton Scattering using the reaction p(e,e'p)γ with the MAMI facility. We will detect the scattered electron and the recoil proton in coincidence in the high resolution spectrometers of the hall A1. Compton events will be separated from the other channels (principally π 0 production) by missing-mass reconstruction. We plan to investigate this reaction near threshold. Our goal is to measure new electromagnetic observables which generalize the usual magnetic and electric polarizabilities. (authors). 9 refs., 18 figs., 7 tabs
Transverse tomography by Compton scattering scintigraphy
International Nuclear Information System (INIS)
Askienazy, S.; Lumbroso, J.; Lacaille, J.M.; Fredy, D.; Constans, J.P.; Barritault, L.
The technique of tomography by Compton-scattering was applied to the exploration of the brain. Studies were carried out on phantoms and on patients and the first results are considered highly encouraging. On a phantom skull, holes at a depth of 7 cm are visible even on analogue documents and whatever their position with regard to the bone. On patients the ventricle cavities were revealed and comparisons with gas encephalograpy showed good agreement between the two techniques. The studies on phantoms also testified to the very low dose received by the patient: about 300 mRem for 2 million counts per section [fr
Virtual compton scattering at low energy
International Nuclear Information System (INIS)
Lhuillier, D.
1997-09-01
The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)
Relativistic wave equations and compton scattering
International Nuclear Information System (INIS)
Sutanto, S.H.; Robson, B.A.
1998-01-01
Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula
Compton scattering of photons from electrons bound in light elements
International Nuclear Information System (INIS)
Bergstrom, P.M. Jr.
1994-01-01
A brief introduction to the topic of Compton scattering from bound electrons is presented. The fundamental nature of this process in understanding quantum phenomena is reviewed. Methods for accurate theoretical evaluation of the Compton scattering cross section are presented. Examples are presented for scattering of several keV photons from helium
Boer, Marie
2017-09-01
Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes, such as Deeply Virtual Compton Scattering (DVCS). DVCS has already been measured in several experiments and several models allow for extracting GPDs from these measurements. Timelike Compton Scattering (TCS) is, at leading order, the time-reversal equivalent process to DVCS and accesses GPDs at the same kinematics. Comparing GPDs extracted from DVCS and TCS is a unique way for proving GPD universality. Combining fits from the two processes will also allow for better constraining the GPDs. We will present our method for extracting GPDs from DVCS and TCS pseudo-data. We will compare fit results from the two processes in similar conditions and present what can be expected in term of contraints on GPDs from combined fits.
Deuteron Compton scattering below pion photoproduction threshold
Levchuk, M. I.; L'vov, A. I.
2000-07-01
Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data.
Deuteron Compton scattering below pion photoproduction threshold
International Nuclear Information System (INIS)
Levchuk, M.I.; L'vov, A.I.
2000-01-01
Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data
Deuteron Compton scattering below pion photoproduction threshold
Energy Technology Data Exchange (ETDEWEB)
Levchuk, M.I. E-mail: levchuk@dragon.bas-net.by; L' vov, A.I. E-mail: lvov@x4u.lebedev.ru
2000-07-17
Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data.
Exclusive compton scattering on the proton
International Nuclear Information System (INIS)
Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.
1999-01-01
An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)
Neutron Compton scattering from selectively deuterated acetanilide
Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.
With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.
Exclusive compton scattering on the proton
Energy Technology Data Exchange (ETDEWEB)
Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others
1999-07-01
An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)
Exclusive Compton Scattering on the Proton
International Nuclear Information System (INIS)
Chen, J. P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.; LeRose, J.; Liang, M.; Michaels, R.; Mitchell, J.; Liyanage, N.; Rutt, P.; Saha, A.; Wojtsekhowski, B.; Bouwhuis, M.; Chang, T.H.; Holt, R. J.; Nathan, A. M.; Roedelbronn, M.; Wijesooriya, K.; Williamson, S. E.; Dodge, G.; Hyde-Wright, C.; Radyushkin, A.; Sabatie, F.; Weinstein, L. B.; Ulmer, P.; Bosted, P.; Finn, J. M.; Jones, M.; Churchwell, S.; Howell, C.; Gilman, R.; Glashausser, C.; Jiang, X.; Ransome, R.; Strauch, S.; Berthot, J.; Bertin, P.; Fonvielle, H.; Roblin, Y.; Bertozzi, W.; Gilad, S.; Rowntree, D.; Zu, Z.; Brown, D.; Chang, G.; Afanasev, A.; Egiyan, K.; Hoohauneysan, E.; Ketikyan, A.; Mailyan, S.; Petrosyan, A.; Shahinyan, A.; Voskanyan, H.; Boeglin, W.; Markowitz, P.; Hines, J.; Strobel, G.; Templon, J.; Feldman, G.; Morris, C. L.; Gladyshev, V.; Lindgren, R. A.; Calarco, J.; Hersman, W.; Leuschner, M.; Gasparian, A.
1999-01-01
An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range; and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together; these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same nonforward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer; currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supercedes E97-108 which was approved by PAC13
Compton Scattering from the Deuteron at Low Energies
Energy Technology Data Exchange (ETDEWEB)
Lundin, Magnus [Lund Univ. (Sweden). Dept. of Physics
2002-05-01
A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 50 < E{sub g} < 70 MeV tagged photons were scattered from a liquid deuterium target and detected simultaneously in three (10{sup x}10{sup )} NaI detectors. The average laboratory angles investigated were 45, 125 and 135 deg. The influence of the inelastic contribution was minimized by implementing a narrow elastic fit-region in the missing energy spectra. Absolute cross sections were extracted for average photon energies of 55 and 66 MeV at each angle and for each experiment. The extracted cross sections are in good agreement with those measured at Illinois by Lucas et al. The difference between the electric and magnetic isospin-averaged polarizabilities of the nucleon inside the deuteron, was varied within the calculations of Levchuk and L'vov to best reproduce the data, holding the sum fixed at 14.6 (10{sup -4} fm{sup 3}). The result implies that the electric polarizability of the neutron is the same as that of the proton within the experimental uncertainties. The result also indicates that the magnetic polarizability of the neutron is larger than that of the proton.
Virtual Compton scattering off protons at moderately large momentum transfer
International Nuclear Information System (INIS)
Kroll, P.
1996-01-01
The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction off protons and the Bethe-Heitler contamination are photon discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (orig.)
Deeply virtual Compton scattering at Jefferson Laboratory
Energy Technology Data Exchange (ETDEWEB)
Biselli, Angela S. [Fairfield University - Department of Physics 1073 North Benson Road, Fairfield, CT 06430, USA; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \\rightarrow e' N' \\gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\\tilde{H}}$, ${\\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables over large kinematics regions. Multiple measurements with overlapping kinematic regions allow to perform a quasi-model independent extraction of the Compton form factors, which are GPDs integrals, revealing a 3D image of the nucleon.
Compton scattering and γ-quanta monochromatization
International Nuclear Information System (INIS)
Goryachev, B.I.; Shevchenko, V.G.
1979-01-01
The γ-quanta monochromatization method is proposed for sdudying high-excited states and mechanisms of nuclei photodisintegration. The method is based on the properties of photon Compton scattering. It permits to obtain high energy resolution without accurate analysis of the particle energies taking part in the scattering process. A possible design of the compton γ- monochromator is presented. The γ-quanta scatterer of the elements with a small nucleus charge (e.g. LiH) is placed inside the β-spectrometer of low resolution. The monochromator is expected to operate in the γ-beam of the high-current synchrotron, and it provides for a rather good energy resolution rho(W) while studying the high-excited nucleus states (rho(W) approximately 2% in the range of the giant dipole resonance). With the γ-quanta energy growth rho(W) increases as Wsup(0.6). The monochromator permits to obtain high statistical accuracy for a smaller period of time (at a considerably better energy resolution) than while working with a bremsstrahlung spectrum. The yield of quasimonochromatic photons related to the ΔW(ΔW = rho(W)W) range of energy resolution increases as Wsup(0.6). This fact makes it promjssing to use monochromator in the energy range considerably exceeding the characteristic energy of the gigantic dipole resonance
Scaling limit of deeply virtual Compton scattering
Energy Technology Data Exchange (ETDEWEB)
A. Radyushkin
2000-07-01
The author outlines a perturbative QCD approach to the analysis of the deeply virtual Compton scattering process {gamma}{sup *}p {r_arrow} {gamma}p{prime} in the limit of vanishing momentum transfer t=(p{prime}{minus}p){sup 2}. The DVCS amplitude in this limit exhibits a scaling behavior described by a two-argument distributions F(x,y) which specify the fractions of the initial momentum p and the momentum transfer r {equivalent_to} p{prime}{minus}p carried by the constituents of the nucleon. The kernel R(x,y;{xi},{eta}) governing the evolution of the non-forward distributions F(x,y) has a remarkable property: it produces the GLAPD evolution kernel P(x/{xi}) when integrated over y and reduces to the Brodsky-Lepage evolution kernel V(y,{eta}) after the x-integration. This property is used to construct the solution of the one-loop evolution equation for the flavor non-singlet part of the non-forward quark distribution.
Compton Scattering from the Deuteron at Low Energies
International Nuclear Information System (INIS)
Lundin, Magnus
2002-05-01
A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 50 g x 10 ) NaI detectors. The average laboratory angles investigated were 45, 125 and 135 deg. The influence of the inelastic contribution was minimized by implementing a narrow elastic fit-region in the missing energy spectra. Absolute cross sections were extracted for average photon energies of 55 and 66 MeV at each angle and for each experiment. The extracted cross sections are in good agreement with those measured at Illinois by Lucas et al. The difference between the electric and magnetic isospin-averaged polarizabilities of the nucleon inside the deuteron, was varied within the calculations of Levchuk and L'vov to best reproduce the data, holding the sum fixed at 14.6 (10 -4 fm 3 ). The result implies that the electric polarizability of the neutron is the same as that of the proton within the experimental uncertainties. The result also indicates that the magnetic polarizability of the neutron is larger than that of the proton
Detection of inverse Compton scattering in plasma wakefield experiments
Energy Technology Data Exchange (ETDEWEB)
Bohlen, Simon
2016-12-15
Inverse Compton scattering (ICS) is the process of scattering of photons and electrons, where the photons gain a part of the electrons energy. In combination with plasma wakefield acceleration (PWA), ICS offers a compact MeV γ-ray source. A numerical study of ICS radiation produced in PWA experiments at FLASHForward was performed, using an ICS simulation code and the results from particle-in-cell modelling. The possibility of determining electron beam properties from measurements of the γ-ray source was explored for a wide range of experimental conditions. It was found that information about the electron divergence, the electron spectrum and longitudinal information can be obtained from measurements of the ICS beams for some cases. For the measurement of the ICS profile at FLASHForward, a CsI(Tl) scintillator array was chosen, similar to scintillators used in other ICS experiments. To find a suitable detector for spectrum measurements, an experimental test of a Compton spectrometer at the RAL was conducted. This test showed that a similar spectrometer could also be used at FLASHForward. However, changes to the spectrometer could be needed in order to use the pair production effect. In addition, further studies using Geant4 could lead to a better reconstruction of the obtained data. The studies presented here show that ICS is a promising method to analyse electron parameters from PWA experiments in further detail.
Compton scatter correction for planner scintigraphic imaging
Energy Technology Data Exchange (ETDEWEB)
Vaan Steelandt, E; Dobbeleir, A; Vanregemorter, J [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy
1995-12-01
A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.
Polarization observables in Virtual Compton Scattering
International Nuclear Information System (INIS)
Doria, Luca
2007-10-01
Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p)γ was measured at MAMI using the A1 Collaboration three spectrometer setup with Q 2 =0.33 (GeV/c) 2 . Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)
Polarization observables in Virtual Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Doria, Luca
2007-10-15
Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p){gamma} was measured at MAMI using the A1 Collaboration three spectrometer setup with Q{sup 2}=0.33 (GeV/c){sup 2}. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)
Deeply virtual Compton scattering off "4He
International Nuclear Information System (INIS)
Hattawy, M.
2015-01-01
The "4He nucleus is of particular interest to study nuclear GPDs (Generalized Parton Distributions) as its partonic structure is described by only one chirally-even GPD. It is also a simple few-body system and has a high density that makes it the ideal target to investigate nuclear effects on partons. The experiment described in this thesis is JLab-E08-24, which was carried out in 2009 by the CLAS collaboration during the 'EG6' run. In this experiment, a 6 GeV longitudinally-polarized electron beam was scattered onto a 6 atm "4He gaseous target. During this experiment, in addition to the CLAS detector, a Radial Time Projection Chamber (RTPC), to detect low-energy nuclear recoils, and an Inner Calorimeter (IC), to improve the detection of photons at very forward angles, were used. We carried out a full analysis on our 6 GeV dataset, showing the feasibility of measuring exclusive nuclear Deeply Virtual Compton Scattering (DVCS) reactions. The analysis included: the identification of the final-state particles, the DVCS event selection, the π"0 background subtraction. The beam-spin asymmetry was then extracted for both DVCS channels and compared to the ones of the free-proton DVCS reaction, and to theoretical predictions from two models. Finally, the real and the imaginary parts of the "4He CFF (Compton Form Factor) HA have been extracted. Different levels of agreement were found between our measurements and the theoretical calculations. This thesis is organized as follows: In chapter 1, the available theoretical tools to study hadronic structure are presented, with an emphasis on the nuclear effects and GPDs. In chapter 2, the characteristics of the CLAS spectrometer are reviewed. In chapter 3, the working principle and the calibration aspects of the RTPC are discussed. In chapter 4, the identification of the final-state particles and the Monte-Carlo simulation are presented. In chapter 5, the selection of the DVCS events, the background subtraction, and uncertainty
Dispersion relations in real and virtual Compton scattering
International Nuclear Information System (INIS)
Drechsel, D.; Pasquini, B.; Vanderhaeghen, M.
2003-01-01
A unified presentation is given on the use of dispersion relations in the real and virtual Compton scattering processes off the nucleon. The way in which dispersion relations for Compton scattering amplitudes establish connections between low energy nucleon structure quantities, such as polarizabilities or anomalous magnetic moments, and the nucleon excitation spectrum is reviewed. We discuss various sum rules for forward real and virtual Compton scattering, such as the Gerasimov-Drell-Hearn sum rule and its generalizations, the Burkhardt-Cottingham sum rule, as well as sum rules for forward nucleon polarizabilities, and review their experimental status. Subsequently, we address the general case of real Compton scattering (RCS). Various types of dispersion relations for RCS are presented as tools for extracting nucleon polarizabilities from the RCS data. The information on nucleon polarizabilities gained in this way is reviewed and the nucleon structure information encoded in these quantities is discussed. The dispersion relation formalism is then extended to virtual Compton scattering (VCS). The information on generalized nucleon polarizabilities extracted from recent VCS experiments is described, along with its interpretation in nucleon structure models. As a summary, the physics content of the existing data is discussed and some perspectives for future theoretical and experimental activities in this field are presented
Source of X-ray radiation based on back compton scattering
Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij
2000-01-01
Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.
Source of X-ray radiation based on back compton scattering
Energy Technology Data Exchange (ETDEWEB)
Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu
2000-06-21
Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.
Source of X-ray radiation based on back compton scattering
International Nuclear Information System (INIS)
Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.
2000-01-01
Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam
Collision, scattering and absorption differential cross-sections in double-photon Compton scattering
International Nuclear Information System (INIS)
Dewan, R.; Saddi, M.B.; Sandhu, B.S.; Singh, B.; Ghumman, B.S.
2005-01-01
The collision, scattering and absorption differential cross-sections of double-photon Compton scattering are measured experimentally for 0.662 MeV incident gamma photons. Two simultaneously emitted gamma quanta are investigated using a slow-fast coincidence technique having 25 ns resolving time. The coincidence spectra for different energy windows of one of the two final photons are recorded using HPGe detector. The experimental data do not suffer from inherent energy resolution of gamma detector and provide more faithful reproduction of the distribution under the full energy peak of recorded coincidence spectra. The present results are in agreement with the currently acceptable theory of this higher order process
Compton scatter imaging: A tool for historical exploration
International Nuclear Information System (INIS)
Harding, G.; Harding, E.
2010-01-01
This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.
Virtual compton scattering off protons at moderately large momentum transfer
Energy Technology Data Exchange (ETDEWEB)
Kroll, P; Schuermann, M [Wuppertal Univ. (Gesamthochschule) (Germany); Guichon, P A.M. [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee
1995-06-28
The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab.
Virtual compton scattering off protons at moderately large momentum transfer
International Nuclear Information System (INIS)
Kroll, P.; Schuermann, M.; Guichon, P.A.M.
1995-01-01
The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab
Deconvolution of shift-variant broadening for Compton scatter imaging
International Nuclear Information System (INIS)
Evans, Brian L.; Martin, Jeffrey B.; Roggemann, Michael C.
1999-01-01
A technique is presented for deconvolving shift-variant Doppler broadening of singly Compton scattered gamma rays from their recorded energy distribution. Doppler broadening is important in Compton scatter imaging techniques employing gamma rays with energies below roughly 100 keV. The deconvolution unfolds an approximation to the angular distribution of scattered photons from their recorded energy distribution in the presence of statistical noise and background counts. Two unfolding methods are presented, one based on a least-squares algorithm and one based on a maximum likelihood algorithm. Angular distributions unfolded from measurements made on small scattering targets show less evidence of Compton broadening. This deconvolution is shown to improve the quality of filtered backprojection images in multiplexed Compton scatter tomography. Improved sharpness and contrast are evident in the images constructed from unfolded signals
Analysis of materials in ducts by Compton scattering
International Nuclear Information System (INIS)
Gouveia, M.A.G.; Lopes, R.T.; Jesus, E.F.O. de; Camerini, C.S.
2000-01-01
This work presents the use of the Compton Scattering Technique as essay, for materials characterization in petroleum ducts. The essay have been accomplished in laboratory ambit, so that the presented results should be analyzed so that the system can come to be used in the field. The inspection was performed using Compton Scattering techniques, with two detectors aligned, in an angle of 90 degrees with a source of Cs-137 with energy of 662 keV. The results demonstrated the good capacity of the system to detect materials deposited in petroleum ducts during petroleum transportation. (author)
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...
Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering
Haeringen, W. van
The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between
X-ray generator based on Compton scattering
Androsov, V.P.; Agafonov, A.V.; Botman, J.I.M.; Bulyak, E.V.; Drebot, I.; Gladkikh, P.I.; Grevtsev, V.; Ivashchenko, V.; Karnaukhov, I.M.; Lapshin, V.I.
2005-01-01
Nowadays, the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR
Nucleon polarizabilities from deuteron Compton scattering within a Green's function hybrid approach
Energy Technology Data Exchange (ETDEWEB)
Hildebrandt, R.P.; Hemmert, T.R. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Griesshammer, H.W. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Universitaet Erlangen-Nuernberg, Institut fuer Theoretische Physik III, Naturwissenschaftliche Fakultaet I, Erlangen (Germany); The George Washington University, Center for Nuclear Studies, Department of Physics, Washington DC (United States)
2010-10-15
We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100MeV, using state-of-the-art deuteron wave functions and NN potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use the chiral effective field theory with explicit {delta} (1232) degrees of freedom within the small-scale expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic {gamma} d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find {alpha}{sub E}{sup s} = (11.3{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and {beta}{sub M}{sup s} = (3.2{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and conclude by comparison to the proton numbers that neutron and proton polarizabilities are the same within rather small errors. (orig.)
Laser Compton Scattering Gamma Ray Induced Photo-Trasmutation
Li, Dazhi
2004-01-01
High brightness beams of gamma rays produced with laser Compton scattering have the potential to realize photo-transmutation through (γ,n) reaction, implying an efficient method to dispose long-lived fission products. Preliminary investigations have been carried out in understanding the feasibility of development of a transmutation facility to repose nuclear waste. A laser Compton scattering experimental setup based on a storage ring started to generate gamma-ray beams for studying the coupling of gamma photons and nuclear giant resonance. This paper demonstrates the dependency of nuclear transmutation efficiency on target dimensions and gamma ray features. 197Au sample was adopted in our experiment, and experimental results correspond to the theoretical estimations.
Deeply virtual compton scattering on a virtual pion target
International Nuclear Information System (INIS)
Amrath, D.; Diehl, M.; Lansberg, J.P.; Heidelberg Univ.
2008-07-01
We study deeply virtual Compton scattering on a virtual pion that is emitted by a proton. Using a range of models for the generalized parton distributions of the pion, we evaluate the cross section, as well as the beam spin and beam charge asymmetries in the leading-twist approximation. Studying Compton scattering on the pion in suitable kinematics puts high demands on both beam energy and luminosity, and we find that the corresponding requirements will first be met after the energy upgrade at Jefferson Laboratory. As a by-product of our study, we construct a parameterization of pion generalized parton distributions that has a non-trivial interplay between the x and t dependence and is in good agreement with form factor data and lattice calculations. (orig.)
Model independent dispersion approach to proton Compton scattering
International Nuclear Information System (INIS)
Caprini, I.; Radescu, E.E.
1980-12-01
The proton Compton scattering at low and intermediate energies is studied by means of a dispersion framework which exploits in an optimal way the (fixed momentum transfer) analyticity properties of the amplitudes in conjunction with the consequences of the (s-channel) unitarity. The mathematical background of the work consists of methods specific to boundary value problems for analytic vector-valued functions and interpolation theory. In comparison with previous related work, the external problems to be solved now are much more difficult because of the inclusion of the photoproduction input and also lead to additional computational complications. The lower bounds on the differential cross-section, obtained without any reference to subtractions and annihilation channel contributions, appear sufficiently restrictive to evidentiate rigorously some inconsistencies between results of single pion photoproduction multipole extractions and proton Compton scattering data. (author)
Research of synchrotron radiation by virtual photon and compton scattering
International Nuclear Information System (INIS)
Meng Xianzhu
2005-01-01
This paper presents a new theory to explain the synchrotron radiation. When charged particle does circular motion in the accelerator, the magnetic field of the accelerator can be taken as periodic, and equivalent to virtual photon. By Compton scattering of virtual photon and charged particle, the virtual photon can be transformed into photon to radiate out. According to this theory, the formula of photon wavelength in synchrotron radiation is found out, and the calculation results of wavelength is consonant with experimental data. (author)
Dyson Orbitals, Quasi-Particle effects and Compton scattering
Barbiellini, B.; Bansil, A.
2004-01-01
Dyson orbitals play an important role in understanding quasi-particle effects in the correlated ground state of a many-particle system and are relevant for describing the Compton scattering cross section beyond the frameworks of the impulse approximation (IA) and the independent particle model (IPM). Here we discuss corrections to the Kohn-Sham energies due to quasi-particle effects in terms of Dyson orbitals and obtain a relatively simple local form of the exchange-correlation energy. Illust...
Deeply virtual Compton scattering: How to test handbag dominance?
International Nuclear Information System (INIS)
Gousset, T.; Gousset, T.; Diehl, M.; Pire, B.; Diehl, M.; Ralston, J.P.
1998-01-01
We propose detailed tests of the handbag approximation in exclusive deeply virtual Compton scattering. Those tests make no use of any prejudice about parton correlations in the proton which are basically unknown objects and beyond the scope of perturbative QCD. Since important information on the proton substructure can be gained in the regime of light cone dominance we consider that such a class of tests is of special relevance. copyright 1998 American Institute of Physics
Timelike Compton scattering off the neutron and generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Boer, M.; Guidal, M. [CNRS-IN2P3, Universite Paris-Sud, Institut de Physique Nucleaire d' Orsay, Orsay (France); Vanderhaeghen, M. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)
2016-02-15
We study the exclusive photoproduction of an electron-positron pair on a neutron target in the Jefferson Lab energy domain. The reaction consists of two processes: the Bethe-Heitler and the Timelike Compton Scattering. The latter process provides potentially access to the Generalized Parton Distributions (GPDs) of the nucleon. We calculate all the unpolarized, single- and double-spin observables of the reaction and study their sensitivities to GPDs. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mihalcea, D.; Murokh, A.; Piot, P.; Ruan, J.
2017-07-01
A high-brilliance (~10^{22} photon s^{-1} mm^{-2} mrad^{-2} /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E_{γ}≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.
First experimental observation of double-photon Compton scattering using single gamma detector
International Nuclear Information System (INIS)
Sandhu, B.S.; Saddi, M.B.; Singh, B.; Ghumman, B.S.
2003-01-01
Full text: The phenomenon of double-photon Compton scattering has been successfully observed using single gamma detector, a technique avoiding the use of complicated slow-fast coincidence set-up used till now for observing this higher order process. Here doubly differentiated collision cross-section integrated over direction of one of the two final photons, the direction of other one being kept fixed, has been measured experimentally for 0.662 MeV incident gamma photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process
LabVIEW-based X-ray detection system for laser compton scattering experiment
International Nuclear Information System (INIS)
Luo Wen; Xu Wang; Pan Qiangyan
2010-01-01
A LabVIEW-based X-ray detection system has been developed for laser-Compton scattering (LCS) experiment at the 100 MeV Linac of the Shanghai Institute of Applied Physics (SINAP). It mainly consists of a Si (Li) detector, readout electronics and a LabVIEW-based Data Acquisition (DAQ), and possesses the functions of signal spectrum displaying, acquisition control and simple online data analysis and so on. The performance test shows that energy and time resolutions of the system are 184 eV at 5.9 keV and ≤ 1% respectively and system instability is found to be 0.3‰ within a week. As a result, this X-ray detection system has low-cost and high-performance features and can meet the requirements of LCS experiment. (authors)
Quasi-free Compton scattering and the polarizabilities of the neutron
International Nuclear Information System (INIS)
Kossert, K.; Camen, M.; Wissmann, F.; Schumacher, M.; Seitz, B.; Ahrens, J.; Arends, H.J.; Beck, R.; Caselotti, G.; Jahn, O.; Jennewein, P.; Olmos de Leon, V.; Annand, J.R.M.; McGeorge, J.C.; Rosner, G.; Grabmayr, P.; Natter, A.; Levchuk, M.I.; L'vov, A.I.; Petrun'kin, V.A.; Smend, F.; Thomas, A.; Weihofen, W.; Zapadtka, F.
2003-01-01
Differential cross-sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz photon tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48cm diameter x 64cm NaI(Tl) photon detector and the Goettingen SENECA recoil detector. The data cover photon energies ranging from 200MeV to 400MeV at θ LAB γ =136.2 . Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction p(γ,π + n). The ''free'' proton Compton scattering cross-sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross-section for free scattering from quasi-free data. Differential cross-sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron has been determined to be α n -β n =9.8±3.6(stat) +2.1 -1.1 (syst)±2.2(model) in units of 10 -4 fm 3 . In combination with the polarizability sum α n +β n =15.2±0.5 deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, α n =12.5±1.8(stat) + 1 .1 -0.6 (syst)±1.1(model) and β n =2.7±1.8(stat) +0.6 -1.1 (syst)±1.1(model) are obtained. The backward spin polarizability of the neutron was determined to be γ (n) π =(58.6±4.0) x 10 -4 fm 4 . (orig.)
The hydrogen anomaly problem in neutron Compton scattering
Karlsson, Erik B.
2018-03-01
Neutron Compton scattering (also called ‘deep inelastic scattering of neutrons’, DINS) is a method used to study momentum distributions of light atoms in solids and liquids. It has been employed extensively since the start-up of intense pulsed neutron sources about 25 years ago. The information lies primarily in the width and shape of the Compton profile and not in the absolute intensity of the Compton peaks. It was therefore not immediately recognized that the relative intensities of Compton peaks arising from scattering on different isotopes did not always agree with values expected from standard neutron cross-section tables. The discrepancies were particularly large for scattering on protons, a phenomenon that became known as ‘the hydrogen anomaly problem’. The present paper is a review of the discovery, experimental tests to prove or disprove the existence of the hydrogen anomaly and discussions concerning its origin. It covers a twenty-year-long history of experimentation, theoretical treatments and discussions. The problem is of fundamental interest, since it involves quantum phenomena on the subfemtosecond time scale, which are not visible in conventional thermal neutron scattering but are important in Compton scattering where neutrons have two orders of magnitude times higher energy. Different H-containing systems show different cross-section deficiencies and when the scattering processes are followed on the femtosecond time scale the cross-section losses disappear on different characteristic time scales for each H-environment. The last section of this review reproduces results from published papers based on quantum interference in scattering on identical particles (proton or deuteron pairs or clusters), which have given a quantitative theoretical explanation both regarding the H-cross-section reduction and its time dependence. Some new explanations are added and the concluding chapter summarizes the conditions for observing the specific quantum
Compton scattering at finite temperature: thermal field dynamics approach
International Nuclear Information System (INIS)
Juraev, F.I.
2006-01-01
Full text: Compton scattering is a classical problem of quantum electrodynamics and has been studied in its early beginnings. Perturbation theory and Feynman diagram technique enables comprehensive analysis of this problem on the basis of which famous Klein-Nishina formula is obtained [1, 2]. In this work this problem is extended to the case of finite temperature. Finite-temperature effects in Compton scattering is of practical importance for various processes in relativistic thermal plasmas in astrophysics. Recently Compton effect have been explored using closed-time path formalism with temperature corrections estimated [3]. It was found that the thermal cross section can be larger than that for zero-temperature by several orders of magnitude for the high temperature realistic in astrophysics [3]. In our work we use a main tool to account finite-temperature effects, a real-time finite-temperature quantum field theory, so-called thermofield dynamics [4, 5]. Thermofield dynamics is a canonical formalism to explore field-theoretical processes at finite temperature. It consists of two steps, doubling of Fock space and Bogolyubov transformations. Doubling leads to appearing additional degrees of freedom, called tilded operators which together with usual field operators create so-called thermal doublet. Bogolyubov transformations make field operators temperature-dependent. Using this formalism we treat Compton scattering at finite temperature via replacing in transition amplitude zero-temperature propagators by finite-temperature ones. As a result finite-temperature extension of the Klein-Nishina formula is obtained in which differential cross section is represented as a sum of zero-temperature cross section and finite-temperature correction. The obtained result could be useful in quantum electrodynamics of lasers and for relativistic thermal plasma processes in astrophysics where correct account of finite-temperature effects is important. (author)
Measurement of Deeply Virtual Compton Scattering at HERA
Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solovev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.
2001-01-01
A measurement is presented of elastic Deeply Virtual Compton Scattering e^+ + p -> e^+ + photon + p at HERA using data taken with the H1 detector. The cross section is measured as a function of the photon virtuality, Q^2, and the invariant mass, W, of the gamma p system, in the kinematic range 2 < Q^2 < 20 GeV^2, 30 < W < 120 GeV and |t| < 1 GeV^2, where t is the squared momentum transfer to the proton. The measurement is compared to QCD based calculations.
Kharkov X-ray Generator Based On Compton Scattering
International Nuclear Information System (INIS)
Shcherbakov, A.; Zelinsky, A.; Mytsykov, A.; Gladkikh, P.; Karnaukhov, I.; Lapshin, V.; Telegin, Y.; Androsov, V.; Bulyak, E.; Botman, J.I.M.; Tatchyn, R.; Lebedev, A.
2004-01-01
Nowadays X-ray sources based on storage rings with low beam energy and Compton scattering of intense laser beams are under development in several laboratories. An international cooperative project of an advanced X-ray source of this type at the Kharkov Institute of Physics and Technology (KIPT) is described. The status of the project is reviewed. The design lattice of the storage ring and calculated X-ray beam parameters are presented. The results of numerical simulation carried out for proposed facility show a peak spectral X-ray intensity of about 1014 can be produced
Sources of the X-rays Based on Compton Scattering
International Nuclear Information System (INIS)
Androsov, V.; Bulyak, E.; Gladkikh, P.; Karnaukhov, I.; Mytsykov, A.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.
2007-01-01
The principles of the intense X-rays generation by laser beam scattering on a relativistic electron beam are described and description of facilities assigned to produce the X-rays based on Compton scattering is presented. The possibilities of various types of such facilities are estimated and discussed. The source of the X-rays based on a storage ring with low beam energy is described in details and advantages of the sources of such type are discussed.The results of calculation and numerical simulation carried out for laser electron storage ring NESTOR that is under development in NSC KIPT show wide prospects of the accelerator facility of such type
High-pressure system for Compton scattering experiments
International Nuclear Information System (INIS)
Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.
1998-01-01
High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model
MICROBUNCH TEMPORAL DIAGNOSTIC BY COMPTON SCATTERING IN INTERFERING LASER BEAMS
International Nuclear Information System (INIS)
AMATUNI, A.TS.; POGORELSKY, I.V.
1998-01-01
The exact solution of the classical nonlinear equation of motion for a relativistic electron in the field of two electromagnetic (EM) waves is obtained. For the particular case of the linearly polarized standing EM wave in the planar optical cavity, the intensity of the nonlinear Compton scattering, the time of flight, and the momentum variation after the relativistic electron passes along the cavity axis are calculated in weak and strong field limits. The extent of these effects depends on the initial phase of the EM wave when the electron enters the cavity. This can be used for the production, diagnosis, and acceleration of relativistic electron (positron) microbunches
Compton Scattering of Quasi-Real Virtual Photons at LEP
Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, H.J.; Yeh, S.C.; Zalite, An.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.
2005-01-01
Compton scattering of quasi-real virtual photons, gamma e+- -> gamma e+-, is studied with 0.6fb-1 of data collected by the L3 detector at the LEP e+e- collider at centre-of-mass energies root(s')=189-209GeV. About 4500 events produced by the interaction of virtual photons emitted by e+- of one beam with e-+ of the opposite beam are collected for effective centre-of-mass energies of the photon-electron and photon-positron systems in the range from root(s')= 35GeV up to root(s')=175GeV, the highest energy at which Compton scattering was ever probed. The cross sections of the gamma e+- -> gamma e+- process as a function of root(s') and of the rest-frame scattering angle are measured, combined with previous L3 measurements down to root(s')~20GeV, and found to agree with the QED expectations.
Design Study for Direction Variable Compton Scattering Gamma Ray
Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.
2013-03-01
A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.
International Nuclear Information System (INIS)
Quirk, Thomas J. IV
2004-01-01
The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Compton scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.
Energy Technology Data Exchange (ETDEWEB)
Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)
2016-12-21
An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.
Compton scattering from nuclei and photo-absorption sum rules
International Nuclear Information System (INIS)
Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.
2011-01-01
We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new 'constituent quark model' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.
Deeply Virtual Compton Scattering Studies at Jefferson Lab
International Nuclear Information System (INIS)
Sabatie, F.
2010-11-01
This document describes the early experimental effort at Jefferson Lab to unravel the Generalized Parton Distributions (GPD), using the Deeply Virtual Compton Scattering (DVCS) process. The GPDs contain the usual form factors and parton distribution functions, but in addition, they include correlations between states of different longitudinal and transverse momenta. They therefore give access to a three-dimensional picture of the nucleon. DVCS is the cleanest process allowing to extract GPDs, and as early as 2000, a number of experiments were proposed for this purpose. The results of the first exploratory experiments are presented as well as the first measurements of linear combinations of GPDs. In addition, a thorough discussion on the insights gained from these early experiments is proposed, linked with the theoretical tools used to extract GPDs from DVCS data. Finally, improvements on what was done for this first experimental phase are proposed and discussed, and new proposals and measurements are described. (author)
Virtual compton scattering on the proton below pion threshold
International Nuclear Information System (INIS)
Bertin, P.Y.
1995-01-01
This paper presents the preliminary results of an electron-proton interaction experiment carried out with the accelerator of MAMI at Mainz (Germany) for the recording of virtual compton scattering events. More than 2 10 4 events were recorded in a two days run with a liquid hydrogen target. The main limitation for the counting rate comes from the limitation of the acquisition rate (100 Hz) and the single rates (10 5 ) in the drift chambers. The aim of this experiment is the understanding of both the low energy expansion and the generalized polarizabilities in order to compare, confirm or exclude the models of Quantum Chromodynamics used for the understanding of the nucleon. (J.S.). 3 refs., 5 figs
Virtual compton scattering on the proton below pion threshold
Energy Technology Data Exchange (ETDEWEB)
Bertin, P.Y.; VCS Collaboration
1995-12-31
This paper presents the preliminary results of an electron-proton interaction experiment carried out with the accelerator of MAMI at Mainz (Germany) for the recording of virtual compton scattering events. More than 2 10{sup 4} events were recorded in a two days run with a liquid hydrogen target. The main limitation for the counting rate comes from the limitation of the acquisition rate (100 Hz) and the single rates (10{sup 5}) in the drift chambers. The aim of this experiment is the understanding of both the low energy expansion and the generalized polarizabilities in order to compare, confirm or exclude the models of Quantum Chromodynamics used for the understanding of the nucleon. (J.S.). 3 refs., 5 figs.
Lorentz violation and black-hole thermodynamics: Compton scattering process
International Nuclear Information System (INIS)
Kant, E.; Klinkhamer, F.R.; Schreck, M.
2009-01-01
A Lorentz-noninvariant modification of quantum electrodynamics (QED) is considered, which has photons described by the nonbirefringent sector of modified Maxwell theory and electrons described by the standard Dirac theory. These photons and electrons are taken to propagate and interact in a Schwarzschild spacetime background. For appropriate Lorentz-violating parameters, the photons have an effective horizon lying outside the Schwarzschild horizon. A particular type of Compton scattering event, taking place between these two horizons (in the photonic ergoregion) and ultimately decreasing the mass of the black hole, is found to have a nonzero probability. These events perhaps allow for a violation of the generalized second law of thermodynamics in the Lorentz-noninvariant theory considered.
Electronic properties of Be and Al by Compton scattering technique
International Nuclear Information System (INIS)
Aguiar, J.C.; Di Rocco, H.O.
2011-01-01
In this work, electronic properties of beryllium and aluminum are examined by using Compton scattering technique. The method is based on the irradiation of samples using a beam narrow of mono- energetic photons of 59.54 keV product of radioactive decay of Am -241 . Scattered radiation is collected by a high resolution semiconductor detector positioned at an angle of 90°. The measured spectrum is commonly called Compton profile and contains useful information about the electronic structure of the material. The experimental results are compared with theoretical calculations such as density functional theory showing a good agreement. However, these results show some discrepancies with many libraries used in codes such as Monte Carlo simulation. Since these libraries are based on the values tabulated by Biggs, Mendelsohn and Mann 1975 thus overestimating the scattered radiation on the material. (authors) [es
Anomalous neutron Compton scattering cross section in zirconium hydride
International Nuclear Information System (INIS)
Abdul-Redah, T.; Krzystyniak, M.; Mayers, J.; Chatzidimitriou-Dreismann, C.A.
2005-01-01
In the last few years we observed a shortfall of intensity of neutrons scattered from protons in various materials including metal hydrogen systems using neutron Compton scattering (NCS) on the VESUVIO instrument (ISIS, UK). This anomaly has been attributed to the existence of short-lived quantum entangled states of protons in these materials. Here we report on results of very recent NCS measurements on ZrH 2 at room temperature. Also here an anomalous shortfall of scattering intensity due to protons is observed. In contrast to previous experiments on NbH 0.8 , the anomalies found in ZrH 2 are independent of the scattering angle (or momentum transfer). These different results are discussed in the light of recent criticisms and experimental tests related to the data analysis procedure on VESUVIO
Deeply virtual compton scattering in color dipole formalism
International Nuclear Information System (INIS)
Machado, Magno V.T.
2007-01-01
In this contribution we summarize recent investigations on the Deeply Virtual Compton Scattering (DVCS) within the color dipole approach. The color dipole cross section is implemented through the phenomenological saturation model. The role played by its QCD evolution and skewedness effects in the DVCS cross section are discussed. The results are compared with the recent H1 and ZEUS Collaborations data. The skewing factor, defined as the ratio of the imaginary parts of the amplitudes Im A(γ* p → γ* p)/ Im A(γ* p → γ p) can be extracted from the data using recent DVCS and the inclusive inelastic cross section measurements at DESY-HERA. We report on this experimental extraction and compare the results to the theoretical predictions for NLO QCD and the color dipole approach. (author)
The Mathematical Foundations of 3D Compton Scatter Emission Imaging
Directory of Open Access Journals (Sweden)
T. T. Truong
2007-01-01
Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.
Pulsar high energy emission due to inverse Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Lyutikov, Maxim
2013-06-15
We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.
Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering
Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration
2015-01-01
A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for e p →e'p'γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2 , xB, t , and ϕ , for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.
Deeply virtual Compton scattering from gauge/gravity duality
Energy Technology Data Exchange (ETDEWEB)
Costa, Miguel S.; Djuric, Marko [University of Porto (Portugal)
2013-04-15
We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.
Deeply virtual Compton scattering from gauge/gravity duality
International Nuclear Information System (INIS)
Costa, Miguel S.; Djurić, Marko
2013-01-01
We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.
Measurement of Deeply Virtual Compton Scattering at HERA
Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Koutouev, R.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leiner, B.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2005-01-01
A measurement is presented of elastic deeply virtual Compton scattering \\gamma* p \\to \\gamma p made using e^+ p collision data corresponding to a luminosity of 46.5 pb^{-1}, taken with the H1 detector at HERA. The cross section is measured as a function of the photon virtuality, Q^2, the invariant mass of the \\gamma* p system, W, and for the first time, differentially in the squared momentum transfer at the proton vertex, t, in the kinematic range 2 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2. QCD based calculations at next-to-leading order using generalized parton distributions can describe the data, as can colour dipole model predictions.
Complete $O(\\alpha)$ QED corrections to polarized Compton scattering
Denner, Ansgar
1999-01-01
The complete QED corrections of O(alpha) to polarized Compton scattering are calculated for finite electron mass and including the real corrections induced by the processes e^- gamma -> e^- gamma gamma and e^- gamma -> e^- e^- e^+. All relevant formulas are listed in a form that is well suited for a direct implementation in computer codes. We present a detailed numerical discussion of the O(alpha)-corrected cross section and the left-right asymmetry in the energy range of present and future Compton polarimeters, which are used to determine the beam polarization of high-energetic e^+- beams. For photons with energies of a few eV and electrons with SLC energies or smaller, the corrections are of the order of a few per mille. In the energy range of future e^+e^- colliders, however, they reach 1-2% and cannot be neglected in a precision polarization measurement.
Optimal sum-rule inequalities for spin 1/2 Compton scattering. III
International Nuclear Information System (INIS)
Filkov, L.V.
1980-10-01
The analyticity (optimal) bounds for proton Compton scattering presented in the preceding paper are herewith considered from the point of view of experimental tests. An essential function occuring in this new dispersion framework is constructed numerically making use of existing cross-section data above the pion photoproduction threshold. To secure a safer construction new measurements in the photon laboratory energy region 150 MeV - 240 MeV and at small momentum transfers are necessary. The bounds on the scattering amplitudes in the low energy region below the pion photoproduction threshold are in general sufficiently restrictive so as to be useful in discriminating among variants of theoretical phenomenological analyses but subsequent extremizations needed in bounding only one combination of the amplitudes (the unpolarized differential cross-section) are weakening much the results. The question of strengthening the bounds by means of the combined use of analyticity and unitarity is discussed within a very crude example which nonetheless illustrates that the inclusion of the pion photoproduction data through more elaborate mathematical procedures would deserve the effort. (author)
Sikora, Mark
2016-09-01
The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at incident photon energies of 65 and 85 MeV and discuss the sensitivity of these data to the polarizabilities.
Deeply virtual Compton scattering off longitudinally polarised protons at HERMES
International Nuclear Information System (INIS)
Mahon, David Francis
2010-03-01
This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep→epγ interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A UL and A LU which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A LL dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin φ and cos(0φ) amplitudes are observed for A UL and A LL respectively, with an unexpectedly large sin(2φ) amplitude for A UL . The results for the A UL and A LL asymmetries are broadly compatible with theory predictions, and the extracted A LU amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)
Deeply virtual Compton scattering off unpolarised deuterium at HERMES
Energy Technology Data Exchange (ETDEWEB)
Hill, Gordon D.
2008-10-15
The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of {delta}{sigma} in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)
Importance of Doppler broadening in Compton scatter imaging techniques
Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.
2001-12-01
Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.
Deeply virtual Compton scattering off unpolarised deuterium at HERMES
International Nuclear Information System (INIS)
Hill, Gordon D.
2008-08-01
The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of ΔΣ in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)
Wide angle Compton scattering within the SCET factorization framework
International Nuclear Information System (INIS)
Kivel, N.
2016-01-01
Existing data for the electromagnetic proton form factors and for the cross section of the wide angle Compton scattering (WACS) show that the hard two-gluon exchange mechanism (collinear factorization) is still not applicable in the kinematical region where Mandelstam variables s ∼ -t ∼ -u are about a few GeV 2 . On the other hand these observables can be described in phenomenological models where spectator quarks are soft which assumes a large contribution due to the soft-overlap mechanism. It turns out that the simple QCD factorization picture is not complete and must also include the soft-overlap contribution which can be described as a certain matrix element in the soft collinear effective theory (SCET). Then the leading power contribution to WACS amplitude is described as a sum of the hard- and soft-spectator contributions. The existing experimental data allows one to check certain conclusions based on the assumption about dominant role of the soft-spectator mechanism. (author)
Electronic structure of the palladium hydride studied by compton scattering
Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y
2003-01-01
The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)
Deeply virtual Compton scattering off unpolarised deuterium at HERMES
Energy Technology Data Exchange (ETDEWEB)
Hill, Gordon D
2008-10-15
The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of {delta}{sigma} in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)
X-band RF gun and linac for medical Compton scattering X-ray source
Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi
2004-12-01
Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.
X-band RF gun and linac for medical Compton scattering X-ray source
International Nuclear Information System (INIS)
Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi
2004-01-01
Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year
Compact FEL-driven inverse compton scattering gamma-ray source
Energy Technology Data Exchange (ETDEWEB)
Placidi, M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Di Mitri, S., E-mail: simone.dimitri@elettra.eu [Elettra - Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste (Italy); Pellegrini, C. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); University of California, Los Angeles, CA 90095 (United States); Penn, G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2017-05-21
Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scattering (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. The same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4×22 m{sup 2} footprint system.
Status of Kharkov X-Ray Generator Based on Compton Scattering NESTOR
Energy Technology Data Exchange (ETDEWEB)
Zelinsky, A.
2005-04-11
Nowadays the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR based on electron storage ring with beam energy 43-225 MeV and Nd:YAG laser is described. The layout of the facility is presented and latest results are described. The designed lattice includes 4 dipole magnets with combined focusing functions, 20 quadrupole magnets and 19 sextupoles with correcting components of magnetic field. At the present time a set of quadrupole magnet is under manufacturing and bending magnet reconstruction is going on. The main parameters of developed vacuum system providing residual gas pressure in the storage ring vacuum chamber up to 10{sup -9} torr are presented. The basic parameters of the X-ray source laser and injection systems are presented. The facility is going to be in operation in the middle of 2006 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.
Analysis of the factors that affect photon counts in Compton scattering
International Nuclear Information System (INIS)
Luo, Guang; Xiao, Guangyu
2015-01-01
Compton scattering has been applied in a variety of fields. The factors that affect Compton scattering have been studied extensively in the literature. However, the factors that affect the measured photon counts in Compton scattering are rarely considered. In this paper, we make a detailed discussion on those factors. First, Compton scattering experiments of some alloy series and powder mixture series are explored. Second, the electron density is researched in terms of atom and lattice constants. Third, the factor of attenuation coefficient is discussed. And then, the active degree of electrons is discussed based on the DFT theory. Lastly, the conclusions are made, that the factors affecting Compton scattering photon counts include mainly electron number density, attenuation coefficient and active degree of electrons. - Highlights: • Compton scattering experiments of some alloy series and powder mixture series are explored. • The influence of electron density is researched in terms of atom and lattice constants. • The influence of attenuation coefficient is discussed. • The active degree of electrons is discussed detailedly based on DFT theory
Deeply virtual Compton scattering off longitudinally polarised protons at HERMES
Energy Technology Data Exchange (ETDEWEB)
Mahon, David Francis
2010-06-15
This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep{yields}ep{gamma} interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A{sub UL} and A{sub LU} which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A{sub LL} dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin {phi} and cos(0{phi}) amplitudes are observed for A{sub UL} and A{sub LL} respectively, with an unexpectedly large sin(2{phi}) amplitude for A{sub UL}. The results for the A{sub UL} and A{sub LL} asymmetries are broadly compatible with theory predictions, and the extracted A{sub LU} amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)
Deeply virtual compton scattering at 6 GeV
International Nuclear Information System (INIS)
Berthot, J.; Chen, J.P.; Chudakov, E.
2000-01-01
We propose a measurement of the Deep Virtual Compton Scattering process (DVCS) ep → epγ in Hall A at Jefferson Lab with a 6 GeV beam. We are able to explore the onset of Q 2 scaling, by measuring a beam helicity asymmetry for Q 2 ranging from 1.5 to 2.5 GeV 2 at x B ∼0.35. At this kinematics, the asymmetry is dominated by the DVCS - Bethe-Heitler (BH) interference, which is proportional to the imaginary part of the DVCS amplitude amplified by the full magnitude of the BH amplitude. The imaginary part of the DVCS amplitude is expected to scale early. Indeed, the imaginary part of the forward Compton amplitude measured in deep inelastic scattering (via the optical theorem) scales at Q 2 as low as 1 GeV 2 . If the scaling regime is reached, we will make an 8% measurement of the skewed parton distributions (SPD) contributing to the DVCS amplitude. Also, this experiment allows us to separately estimate the size of the higher-twist effects, since they are only suppressed by an additional factor 1/Q compared to the leading-twist term, and have a different angular dependence. We use a polarized electron beam and detect the scattered electron in the HRSe, the real photon in an electromagnetic calorimeter (under construction) and the recoil proton in a shielded scintillator array (to be constructed). This allows as to determine the difference in cross-sections for electrons of opposite helicities. This observable is directly linked to the SPD's. We estimate that 25 days of beam (600 hours) are needed to achieve this goal. (authors)
Deeply virtual compton scattering at 6 GeV
Energy Technology Data Exchange (ETDEWEB)
Berthot, J. [Universite Blaise Pascal, Clermont-Ferrand II, Lab. de Physique Corpusculaire (CNRS), 63 - Aubiere (France); Chen, J.P.; Chudakov, E. [National Accelerator Facility, Newport News, Virginia (United States)] [and others
2000-07-01
We propose a measurement of the Deep Virtual Compton Scattering process (DVCS) ep {yields} ep{gamma} in Hall A at Jefferson Lab with a 6 GeV beam. We are able to explore the onset of Q{sup 2} scaling, by measuring a beam helicity asymmetry for Q{sup 2} ranging from 1.5 to 2.5 GeV{sup 2} at x{sub B}{approx}0.35. At this kinematics, the asymmetry is dominated by the DVCS - Bethe-Heitler (BH) interference, which is proportional to the imaginary part of the DVCS amplitude amplified by the full magnitude of the BH amplitude. The imaginary part of the DVCS amplitude is expected to scale early. Indeed, the imaginary part of the forward Compton amplitude measured in deep inelastic scattering (via the optical theorem) scales at Q{sup 2} as low as 1 GeV{sup 2}. If the scaling regime is reached, we will make an 8% measurement of the skewed parton distributions (SPD) contributing to the DVCS amplitude. Also, this experiment allows us to separately estimate the size of the higher-twist effects, since they are only suppressed by an additional factor 1/Q compared to the leading-twist term, and have a different angular dependence. We use a polarized electron beam and detect the scattered electron in the HRSe, the real photon in an electromagnetic calorimeter (under construction) and the recoil proton in a shielded scintillator array (to be constructed). This allows as to determine the difference in cross-sections for electrons of opposite helicities. This observable is directly linked to the SPD's. We estimate that 25 days of beam (600 hours) are needed to achieve this goal. (authors)
International Nuclear Information System (INIS)
Saddi, M.B.; Sandhu, B.S.; Singh, B.
2006-01-01
The phenomenon of double-photon Compton scattering has been successfully observed using a single γ detector, a technique avoiding the use of the complicated slow-fast coincidence set-up used till now for observing this higher-order process. Here doubly differential collision cross-sections integrated over the directions of one of the two final photons, the direction of other one being kept fixed, are measured experimentally for 0.662 MeV incident γ photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process
Final state effects in neutron Compton scattering measurements
International Nuclear Information System (INIS)
Fielding, A.L.
1997-10-01
The single atom momentum distributions of condensed matter systems can be derived using the technique of neutron Compton scattering (NCS). The electron Volt spectrometer (eVS) which is situated at the world's most intense pulsed neutron spallation source, ISIS, has been configured to perform NCS measurements. Interpretation of NCS data requires the use of the impulse approximation, however even at the high energy and momentum transfers obtainable on the eVS deviations from the impulse approximation occur. These deviations are generally known as final state effects (FSE) which manifest themselves as an asymmetry in the measured momentum distribution. The aim of the work reported in this thesis is to demonstrate how final state effects can be accounted for in a simple way using the expansion method described by Sears. An advantage of the Sears method is that the first asymmetric term in the expansion is proportional to the mean Laplacian of the potential, 2 V>, thus giving access to further information on the single atom potential. The Sears expansion has been incorporated into data analysis routines and applied to measured data on three systems that were chosen to represent the systems that are regularly investigated using the eVS. Measurements have been carried out on the deuteron in ZrD 2 , a light atom in a heavy lattice, beryllium, a polycrystalline solid and pyrolytic graphite, an aligned crystalline sample with an anisotropic momentum distribution. The study shows how the new analysis method gives more reliable values for the mean kinetic energy k >, which can be derived from the measured momentum distribution. A comparison of measured data with simulated data calculated within the harmonic approximation reveals how 2 V> can be a sensitive probe of anharmonicity of the interatomic potential. An anisotropy in the derived k > and 2 V> of pyrolytic graphite has been measured indicating the dependence of final state effects on bonding strength. The derived 2 V
International Nuclear Information System (INIS)
Rohe, R.C.; Valentine, J.D.
1996-01-01
A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented
A method for determination mass absorption coefficient of gamma rays by Compton scattering.
El Abd, A
2014-12-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spin and orbital magnetisation densities determined by Compton scattering of photons
International Nuclear Information System (INIS)
Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.
1990-03-01
Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)
A Compton scattering technique to determine wood density and locating defects in it
International Nuclear Information System (INIS)
Tondon, Akash; Sandhu, B. S.; Singh, Bhajan; Singh, Mohinder
2015-01-01
A Compton scattering technique is presented to determine density and void location in the given wooden samples. The technique uses a well collimated gamma ray beam from 137 Cs along with the NaI(Tl) scintillation detector. First, a linear relationship is established between Compton scattered intensity and known density of chemical compounds, and then density of the wood is determined from this linear relation. In another experiment, the ability of penetration of gamma rays is explored to detect voids in wooden (low Z) sample. The sudden reduction in the Compton scattered intensities agrees well with the position and size of voids in the wooden sample. It is concluded that wood density and the voids of size ∼ 4 mm and more can be detected easily by this method
Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q{sup 4})
Energy Technology Data Exchange (ETDEWEB)
S.R. Beane; M. Malheiro; J.A. McGovern; D.R. Phillips; U. van Kolck
2004-03-01
We study Compton scattering in systems with A=1 and 2 using chiral perturbation theory up to fourth order. For the proton we fit the two undetermined parameters in the O(Q{sup 4}) {gamma}p amplitude of McGovern to experimental data in the region {omega}, {radical}|t| {le} 180 MeV, obtaining a {chi}{sup 2}/d.o.f. of 133/113. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: {alpha}{sub p} = (12.1 {+-} 1.1 (stat.)){sub -0.5}{sup +0.5} (theory) and {beta}{sub p} = (3.4 {+-} 1.1 (stat.)){sub -0.1}{sup +0.1} (theory), both in units of 10{sup -4} fm{sup 3}. We also compute Compton scattering on deuterium to O(Q{sup 4}). The {gamma}d amplitude is a sum of one- and two-nucleon mechanisms, and contains two undetermined parameters, which are related to the isoscalar nucleon polarizabilities. We fit data points from three recent {gamma}d scattering experiments with a {chi}{sup 2}/d.o.f. = 26.3/20, and find {alpha}{sub N} = 8.9 {+-} 1.5 (stat.){sub -0.9}{sup +4.7} (theory) and {beta}{sub N} = 2.2 {+-} 1.5 (stat.){sub -0.9}{sup +1.2} (theory), again in units of 10{sup -4} fm{sup 3}.
Virtual Compton Scattering off a Spinless Target in the AdS/QCD correspondence
Energy Technology Data Exchange (ETDEWEB)
Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); Marquet, Cyrille [IPhT - Institut de Physique Theorique, Orme des Merisiers bat. 774, PC 136, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Roiesnel, Claude [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)
2010-07-01
We study the doubly virtual Compton scattering off a spinless target {gamma}* P {yields} {gamma}* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests. (author)
Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering
International Nuclear Information System (INIS)
Fleck, J.A. Jr.
1971-03-01
It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur
Double electron ionization in Compton scattering of high energy photons by helium atoms
International Nuclear Information System (INIS)
Amusia, M.Y.; Mikhailov, A.I.
1995-01-01
The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification
International Nuclear Information System (INIS)
Mai Xuan Phong; Nguyen Van Hung; Pham Xuan Hai; Le Van Ngoc; Nguyen Xuan Hai; Dang Lanh; Tran Quoc Duong
2013-01-01
In this subject we have designed and manufactured Compton scattering gamma measurement system based on the calculated optimal configuration as well as the conditions of protect radiation by using Monte-Carlo simulation program and fabrication with the optimal conditions were selected. Monte-Carlo simulation calculation of Compton scattering gamma follow different angles on copper, surveying gamma radiation attenuation characteristics of materials: lead, iron, aluminum, and compared with the experimental results performed on the same measurement system has been built and given for evaluation, comments. (author)
Double electron ionization in Compton scattering of high energy photons by helium atoms
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)
1995-08-01
The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.
Experimental investigation of saturation depth of 0.662 MeV gamma rays in copper
International Nuclear Information System (INIS)
Singh, Gurvinderjit; Singh, Manpreet; Sandhu, B.S.; Singh, Bhajan
2007-01-01
The effect of target thickness on 0.662 MeV multiply Compton scattered gamma photon has been studied experimentally. An intense collimated beam, obtained from 6-Ci 137 Cs source, is allowed to impinge on a rectangular copper target of varying thickness and the scattered photons are detected by a properly shielded NaI(TI) scintillation detector, having dimensions 51 φ mm x 5l mm, placed at 90 deg to the incident beam. The subtraction of events under the analytically reconstructed full energy peak from the events recorded under the observed inelastic peak results in multiply scattered events having energy same as in single scattering. The target thickness at which the number of multiply scattered events saturates has also been determined. The signal-to-noise ratio is found to be decreasing with increasing target thickness. Monte Carlo calculation supports the present experimental results. (author)
International Nuclear Information System (INIS)
Dewangan, S.; Sharma, D.K.; Bakhtsingh, R.I.
2013-01-01
A 3MeV, 10mA DC electron beam accelerator is in commissioning stages at EBC, Kharghar, Navi Mumbai. The accelerating potential of -3MV is generated by a Parallel Coupled Voltage Multiplier (PCVM) scheme using 74 stages of HV rectifier stacks in the 6 kg/cm 2 SF6 gas environment. The HV surges of order of 600kV, 42kA, 10ns is estimated across the rectifier stacks during sparking in the multiplier column. To limit the surge current and protect the rectifier diodes, a non inductive thick film surge limiting resistor (SLR) and protective spark gap is designed and developed. The rectifier stacks with surge limiting resistors at both the ends and protective spark gap in parallel has been successfully tested in simulated surge condition at an impulse voltage of 212kVp, 150ns FWHM and surge energy of 200J, 10ms, 20kV at 6kg/cm 2 SF6 gas environment and found satisfactorily. Subsequently the HV multiplier was installed with this surge protection scheme and is being tested at 1.2 MeV level. This paper describes the design features and test results of the non-inductive surge limiting resistor. (author)
Connections between Compton scattering and pion photoproduction in the delta region
International Nuclear Information System (INIS)
Mukhopadhyay, N.C.; Benmerrouche, M.
1992-01-01
Using textbook tools like analyticity, unitarity and optical theorem, the authors discuss the relationship between pion-nucleon scattering, pion photoproduction and Compton scattering in the Δ(1232) resonance region. They review the relevant data and draw conclusions pertinent to the QCD-inspired models. 27 refs
Energy Technology Data Exchange (ETDEWEB)
Osuch, S.; Popkiewicz, M.; Szeflinski, Z.; Wilhelmi, Z. [Warsaw Univ., Inst. of Experimental Physics, Warsaw (Poland)
1995-12-31
The Bell`s inequality has been experimentally tested using angular correlation of Compton-scattered photons from annihilation of positrons emitted from {sup 22}Na source. The result shows a better agreement with the quantum mechanics predictions rather than with the Bell`s inequality. 7 refs, 5 figs, 1 tab.
International Nuclear Information System (INIS)
Huddleston, A.L.; Weaver, J.
1980-01-01
Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)
International Nuclear Information System (INIS)
Osuch, S.; Popkiewicz, M.; Szeflinski, Z.; Wilhelmi, Z.
1995-01-01
The Bell's inequality has been experimentally tested using angular correlation of Compton-scattered photons from annihilation of positrons emitted from 22 Na source. The result shows a better agreement with the quantum mechanics predictions rather than with the Bell's inequality
Status of Kharkov X-ray Generator based on Compton Scattering NESTOR
Zelinsky, A.; Androsov, V.P.; Bulyak, E.V.; Drebot, I.; Gladkikh, P.I.; Grevtsev, V.; Botman, J.I.M.; Ivashchenko, V.; Karnaukhov, I.M.; Lapshin, V.I.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Peev, F.A.; Rezaev, A.; Shcherbakov, A.; Skomorkohov, V.; Skyrda, V.; Telegin, Y.; Trotsenko, V.; Tatchyn, R.; Lebedev, B.; Agafonov, A.V.
2004-01-01
Nowadays the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR
A method for determination mass absorption coefficient of gamma rays by Compton scattering
International Nuclear Information System (INIS)
El Abd, A.
2014-01-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. - Highlights: • Compton scattering of γ−rays was used for determining mass absorption coefficient. • Scattered intensities were determined by the MCSHAPE software. • Mass absorption coefficients were determined for some compounds, mixtures and alloys. • Mass absorption coefficients were calculated by Winxcom software. • Good agreements were found between determined and calculated results
A compact X-ray source based on Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Bulyak, E.; Gladkikh, P.; Grigor' ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Tarasenko, A.; Telegin, Yu.; Zelinsky, A
2001-07-21
The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described.
A compact X-ray source based on Compton scattering
International Nuclear Information System (INIS)
Bulyak, E.; Gladkikh, P.; Grigor'ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A.; Tarasenko, A.; Telegin, Yu.; Zelinsky, A.
2001-01-01
The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described
Studies of coherent/Compton scattering method for bone mineral content measurement
International Nuclear Information System (INIS)
Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.
1980-01-01
A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)
Compton scattering, meson exchange, and the polarizabilities of bound nucleons
International Nuclear Information System (INIS)
Feldman, G.; Mellendorf, K.E.; Eisenstein, R.A.; Federspiel, F.J.; Garino, G.; Igarashi, R.; Kolb, N.R.; Lucas, M.A.; MacGibbon, B.E.; Mize, W.K.; Nathan, A.M.; Pywell, R.E.; Wells, D.P.
1996-01-01
Elastic photon scattering cross sections on 16 O have been measured in the energy range 27 endash 108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent. copyright 1996 The American Physical Society
Laser-Compton Scattering as a Potential Electron Beam Monitor
International Nuclear Information System (INIS)
Chouffani, K.; Wells, D.; Harmon, F.; Lancaster, G.; Jones, J.
2002-01-01
LCS experiments were carried out at the Idaho Accelerator Center (IAC); sharp monochromatic x-ray lines were observed. These are produced using the so-called inverse Compton effect, whereby optical laser photons are collided with a relativistic electron beam. The back-scattered photons are then kinematically boosted to keV x-ray energies. We have first demonstrated these beams using a 20 MeV electron beam collided with a 100 MW, 7 ns Nd; YAG laser. We observed narrow LCS x-ray spectral peaks resulting from the interaction of the electron beam with the Nd; YAG laser second harmonic (532 nm). The LCS x-ray energy lines and energy deviations were measured as a function of the electron beam energy and energy-spread respectively. The results showed good agreement with the predicted valves. LCS could provide an excellent probe of electron beam energy, energy spread, transverse and longitudinal distribution and direction
The GPD H and spin correlations in wide-angle Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Kroll, P. [Universitaet Wuppertal, Fachbereich Physik, Wuppertal (Germany)
2017-06-15
Wide-angle Compton scattering (WACS) is discussed within the handbag approach in which the amplitudes are given by products of hard subprocess amplitudes and form factors, specific to Compton scattering, which represent 1/x-moments of generalized parton distributions (GPDs). The quality of our present knowledge of these form factors and of the underlying GPDs is examined. As will be discussed in some detail the form factor R{sub A} and the underlying GPD H are poorly known. It is argued that future data on the spin correlations A{sub LL} and/or K{sub LL} will allow for an extraction of R{sub A} which can be used to constrain the large -t behavior of H. (orig.)
Development of TOF-PET using Compton scattering by plastic scintillators
International Nuclear Information System (INIS)
Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.
2017-01-01
We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.
Development of TOF-PET using Compton scattering by plastic scintillators
Energy Technology Data Exchange (ETDEWEB)
Kuramoto, M., E-mail: kuramoto@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Nakamori, T., E-mail: nakamori@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kimura, S.; Gunji, S.; Takakura, M. [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kataoka, J. [Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)
2017-02-11
We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.
Development of TOF-PET using Compton scattering by plastic scintillators
Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.
2017-02-01
We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.
Virtual Compton Scattering off a Spinless Target in the AdS/QCD correspondence
Marquet, C.; Wallon, S.
2010-01-01
We perform a study of the doubly virtual Compton scattering off a spinless target gamma* P -> gamma* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests, and presumably exclude results based on the AdS/QCD correspondence in its minimal version.
Compton scatter correction in case of multiple crosstalks in SPECT imaging.
Sychra, J J; Blend, M J; Jobe, T H
1996-02-01
A strategy for Compton scatter correction in brain SPECT images was proposed recently. It assumes that two radioisotopes are used and that a significant portion of photons of one radioisotope (for example, Tc99m) spills over into the low energy acquisition window of the other radioisotope (for example, Tl201). We are extending this approach to cases of several radioisotopes with mutual, multiple and significant photon spillover. In the example above, one may correct not only the Tl201 image but also the Tc99m image corrupted by the Compton scatter originating from the small component of high energy Tl201 photons. The proposed extension is applicable to other anatomical domains (cardiac imaging).
The experimental challenge of virtual compton scattering above 8 GeV
International Nuclear Information System (INIS)
Pierre Bertin; Yves Roblin; Charles Hyde-Wright
1999-01-01
We discuss the experimental issues confronting measurements of the Virtual Compton Scattering (VCS) reaction ep->ep gamma with electron beam energies 6-30 GeV. We specifically address the kinematics of Deeply Virtual Compton Scattering (Deep Inelastic Scattering, with coincident detection of the exclusive real photon nearly parallel to the virtual photon direction) and large transverse momentum VCS (High energy VCS of arbitrary Q 2 , and the recoil proton emitted with high momentum transverse to the virtual photon direction). We discuss the experimental equipment necessary for these measurements. For the DVCS, we emphasize the importance of the Bethe-Heitler-Compton interference terms that can be measured with the electron-positron (beam charge) asymmetry, and the electron beam helicity asymmetry
Comparative Compton scattering studies in Cu2O and Ag2O
International Nuclear Information System (INIS)
Bandyopadhyay, S.; Chatterjee, A.K.; Saha, S.K.; Chatterjee, A.
1994-01-01
Compton scattering studies in polycrystalline Cu 2 O and Ag 2 O with 59.54 keV γ radiation are reported. A comparison has been made between the valance Compton profiles of these two components scaled to lattice momentum by normalizing them to equal electron density for outer valence electrons, and this comparison shows some differences between the bonding characters of Cu 2 O and Ag 2 O. (author)
A Glimpse of Gluons through Deeply Virtual Compton Scattering on the Proton
Defurne, M.; Jiménez-Argüello, A. Martì; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.
2017-01-01
The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of...
Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.
2017-01-01
Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.
First observation of multi-pulse X-ray train via multi-collision laser Compton scattering
International Nuclear Information System (INIS)
Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.
2009-01-01
A compact hard X-ray source via laser Compton scattering (LCS) has been developed for biological and medical applications at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. The multi-collision LCS has been investigated in order to enhance the X-ray yields. The first observation of multi-pulse X-ray train with 6 pulses via the multi-collision LCS has been successfully demonstrated between the multi-bunch electron train with 6 bunches and the multi-pulse Ti:Sa laser train with 6 pulses. The 32 MeV electron train was generated from a Cs 2 Te photocathode rf gun with a multi-pulse UV laser and the S-band linac. The Ti:Sa laser train was obtained with the chirp pulse amplification (CPA) including the modified regenerative amplifier. The X-ray train with 6 pulses with 12.6 ns spacing was observed with the micro-channel plate (MCP). The maximum energy of the X-ray is analytically estimated to be about 24 keV and the total number of generated photons was calculated to be about 1.8x10 6 photons/train.
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Yamaya, Taiga
2014-11-01
In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate
EXTERNAL COMPTON SCATTERING IN BLAZAR JETS AND THE LOCATION OF THE GAMMA-RAY EMITTING REGION
Energy Technology Data Exchange (ETDEWEB)
Finke, Justin D., E-mail: justin.finke@nrl.navy.mil [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Ave. SW, Washington, DC, 20375-5352 (United States)
2016-10-20
I study the location of the γ -ray emission in blazar jets by creating a Compton-scattering approximation that is valid for all anisotropic radiation fields in the Thomson through Klein–Nishina regimes, is highly accurate, and can speed up numerical calculations by up to a factor of ∼10. I apply this approximation to synchrotron self-Compton, external Compton scattering of photons from the accretion disk, broad line region (BLR), and dust torus. I use a stratified BLR model and include detailed Compton-scattering calculations of a spherical and flattened BLR. I create two dust torus models, one where the torus is an annulus and one where it is an extended disk. I present detailed calculations of the photoabsorption optical depth using my detailed BLR and dust torus models, including the full angle dependence. I apply these calculations to the emission from a relativistically moving blob traveling through these radiation fields. The ratio of γ -ray to optical flux produces a predictable pattern that could help locate the γ -ray emission region. I show that the bright flare from 3C 454.3 in 2010 November detected by the Fermi Large Area Telescope is unlikely to originate from a single blob inside the BLR. This is because it moves outside the BLR in a time shorter than the flare duration, although emission by multiple blobs inside the BLR is possible. Also, γ -rays are unlikely to originate from outside of the BLR, due to the scattering of photons from an extended dust torus, since the cooling timescale would be too long to explain the observed short variability.
International Nuclear Information System (INIS)
Bensafa, I.K.
2006-05-01
The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q 2 = 0.35 GeV 2 ) to measure the beam asymmetry in the ep → epγ and ep → epπ 0 reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for π 0 ) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles (γ * N → πN). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the Δ(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)
International Nuclear Information System (INIS)
Fielding, A.L.; Timms, D.; Mayers, J.
1999-01-01
A new neutron Compton scattering (NCS) measurement of the temperature dependence of the kinetic energy in polycrystalline beryllium at momentum transfers in the range 27.91 to 104.21 A -1 is presented. The measurements have been made with the Electron Volt Spectrometer (eVS) at the ISIS facility and the measured kinetic energies are shown to be in good agreement with calculations made in the harmonic approximation. Numerical simulations are also presented based on the Sears expansion which predict that final state effects in NCS experiments become less significant at elevated temperatures. (author)
International Nuclear Information System (INIS)
Barbiellini, Bernardo
2013-01-01
The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La 2−x Sr x CuO 4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La 2 CuO 4 . Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.
Barbiellini, Bernardo
2013-06-01
The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.
International Nuclear Information System (INIS)
Ricodeau, Jean.
1981-01-01
The present invention concerns a detector for tomography by Compton scattering at 90 0 . The difference between this detector and those currently used previously lies in the fact that the collection aperture of the radiation at normal angle to the incident beam is large and can reach 180 0 and even more. This fact allows to collect an important part of the scattered radiation. A good image quality is obtained with low radiation doses delivered to the body as compared to previous techniques. This detector can be operated in analogical mode which presents the advantage to be faster and easier to realize [fr
Measurement of deeply virtual Compton scattering using the ZEUS detector at HERA
International Nuclear Information System (INIS)
Grabowska-Bold, I.
2004-08-01
The cross sections for deeply virtual compton scattering in the reaction ep → e'γp' has been measured with the ZEUS detector at HERA using integrated luminosities of 95 pb -1 of e + p and 17 pb -1 of e - p collisions. Cross sections are presented as a function of the exchanged photon virtuality, Q 2 , and the centre-of-mass energy, W, of the γ * p system in the region 5 2 2 and 40 < W < 140 GeV. The obtained results are compared to QCD-based calculations. (orig.)
Photoabsorption and Compton scattering in ionization of helium at high photon energies
International Nuclear Information System (INIS)
Andersson, L.R.; Burgdoerfer, J.; Tennessee Univ., Knoxville, TN
1993-01-01
Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards asymptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed
X-Band Linac Beam-Line for Medical Compton Scattering X-Ray Source
Dobashi, Katsuhiro; Ebina, Futaro; Fukasawa, Atsushi; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Ogino, Haruyuki; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji; Yamamoto, Tomohiko
2005-01-01
Compton scattering hard X-ray source for 10~80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U. Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard ( 10-80
High-energy electroweak neutrino-nucleon deeply virtual Compton scattering
International Nuclear Information System (INIS)
Machado, Magno V. T.
2007-01-01
In this work we estimate the differential and total cross sections for the high-energy deeply virtual Compton scattering in the weak sector. In the weak neutral sector one considers neutrino scattering off an unpolarized proton target through the exchange of Z 0 . We numerically compute the process Z*p→γp within the QCD color dipole formalism, which successfully describes the current high-energy electromagnetic DVCS experimental data. We also discuss possible applications for the weak charged sector and perform predictions for scattering on nuclear targets
Energy spectrum of Compton scattering of laser photons on relativistic electrons
International Nuclear Information System (INIS)
Ando, Hiroaki; Yoneda, Yasuharu
1976-01-01
The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)
Compton scattering of 145 keV photons from bound electrons of tin and molybdenum
Energy Technology Data Exchange (ETDEWEB)
Ghumman, B S; Acharya, V B; Singh, B [Punjabi Univ., Patiala (India). Dept. of Physics
1981-10-28
Differential cross sections for Compton scattering of 145 keV gamma rays from K-shell electrons of tin and molybdenum are measured at scattering angles in the range 30 to 150/sup 0/. Measurements are made employing NaI(Tl) detectors and a coincidence set up with resolving time approximately equal to 30 ns. The experimental results are compared with the available theoretical data. The total cross section is estimated to be about 0.43 sigmasub(F) for tin and 0.41 sigmasub(F) for molybdenum.
Compton Scattering Cross Section on the Proton at High Momentum Transfer
International Nuclear Information System (INIS)
A. Danagoulian; V.H. Mamyan; M. Roedelbronn; K.A. Aniol; J.R.M. Annand; P.Y. Bertin; L. Bimbot; P. Bosted; J.R. Calarco; A. Camsonne; C.C. Chang; T.-H. Chang; J.-P. Chen; Seonho Choi; E. Chudakov; P. Degtyarenko; C.W. de Jager; A. Deur; D. Dutta; K. Egiyan; H. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; D.J. Hamilton; J.-O. Hansen; D. Hayes; D.W. Higinbotham; W. Hinton; T. Horn; C. Howell; T. Hunyady; C.E. Hyde-Wright; X. Jiang; M.K. Jones; M. Khandaker; A. Ketikyan; V. Koubarovski; K. Kramer; G. Kumbartzki; G. Laveissiere; J. LeRose; R.A. Lindgren; D.J. Margaziotis; P. Markowitz; K. McCormick; Z.-E. Meziani; R. Michaels; P. Moussiegt; S. Nanda; A.M. Nathan; D.M. Nikolenko; V. Nelyubin; B.E. Norum; K. Paschke; L. Pentchev; C.F. Perdrisat; E. Piasetzky; R. Pomatsalyuk; V.A. Punjabi; I. Rachek; A. Radyushkin; B. Reitz; R. Roche; G. Ron; F. Sabatie; A. Saha; N. Savvinov; A. Shahinyan; Y. Shestakov; S. Sirca; K. Slifer; P. Solvignon; P. Stoler; S. Tajima; V. Sulkosky; L. Todor; B. Vlahovic; L.B. Weinstein; K. Wang; B. Wojtsekhowski; H. Voskanyan; H. Xiang; X. Zheng; L. Zhu
2007-01-01
Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/- 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark
International Nuclear Information System (INIS)
Esmaeili-sani, Vahid; Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein
2012-01-01
Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a 137 Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).
International Nuclear Information System (INIS)
Chen Xuewen; Fang Zhenyun; Shi Chengye
2012-01-01
By using the electroweak standard model (SM), we analyzed the framework of electron mixed chain propagator which composed of serious of different physical loops participating in electroweak interaction and completed the relevant analytical calculation. Then, we obtained the analytical result of electron mixed chain propagator. By applying our result to Compton scattering, the differential cross section of Compton scattering dσ SM (chain) /dcosθ is counted accurately. This result is compared with the lowest order differential cross section dσ (tree) /dcosθ and the electronic chain propagator Compton scattering differential cross section dσ QED (chain) /dcosθ in quantum electrodynamics (QED). It can be seen that dσ SM (chain ) /dcosθ can show the radiation correction more subtly than dσ QED (chain) /dcosθ. (authors)
Energy Technology Data Exchange (ETDEWEB)
Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)
2012-02-01
Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a {sup 137}Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).
International Nuclear Information System (INIS)
Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.
2012-01-01
Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: ► Electron density of normal and neoplastic breast tissues was measured using Compton scattering. ► Monochromatic synchrotron radiation was used to obtain the Compton scattering data. ► The area of Compton peaks was used to determine the electron densities of samples. ► Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. ► Comparison with previous results showed differences smaller than 4%.
Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment
International Nuclear Information System (INIS)
Movsisyan, Aram
2011-05-01
Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5) 2 GeV 2 2 X 2 GeV 2 of the squared missing mass. The dependences of these asymmetries on -t, x N , or Q 2 are investigated. The results include the coherent process ed→edγ and the incoherent process ed→epnγ where in addition a nucleon may be excited to a resonance. For an unpolarized deuterium target, the leading Fourier amplitude of the beam-helicity asymmetry that is sensitive to the interference term is found to be substantial, but no significant t dependence is observed. The leading amplitude of the beam-charge asymmetry is substantial at large -t, but becomes small at small values of -t. The amplitudes of the beam-helicity asymmetry that are sensitive to the squared DVCS term are found to be consistent with zero. The deuteron Compton form factor H 1 appears to have a similar behavior as H of the proton. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Laundy, D.; Connolley, T.; Laan, G. van der; Fabrizi, F. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Janssen, O. [Department of Physics, New York University, New York, NY 10003 (United States); Cooper, M. J. [Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Ebert, H.; Mankovsky, S. [Universität München, Department Chemie, Haus E2.033, Butenandtstrasse 5-13, D-81377 München (Germany)
2016-02-16
The possibility of using X-ray Compton scattering to reveal antisymmetric components of the electron momentum density, as a fingerprint of magnetoelectric sample properties, is investigated experimentally and theoretically by studying the polar ferromagnet GaFeO{sub 3}. This paper discusses the possibility of using Compton scattering – an inelastic X-ray scattering process that yields a projection of the electron momentum density – to probe magnetoelectrical properties. It is shown that an antisymmetric component of the momentum density is a unique fingerprint of such time- and parity-odd physics. It is argued that polar ferromagnets are ideal candidates to demonstrate this phenomenon and the first experimental results are shown, on a single-domain crystal of GaFeO{sub 3}. The measured antisymmetric Compton profile is very small (≃ 10{sup −5} of the symmetric part) and of the same order of magnitude as the statistical errors. Relativistic first-principles simulations of the antisymmetric Compton profile are presented and it is shown that, while the effect is indeed predicted by theory, and scales with the size of the valence spin–orbit interaction, its magnitude is significantly overestimated. The paper outlines some important constraints on the properties of the antisymmetric Compton profile arising from the underlying crystallographic symmetry of the sample.
Performance studies towards a TOF-PET sensor using Compton scattering at plastic scintillators
Kuramoto, M.; Nakamori, T.; Gunji, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.; Aoki, T.
2018-01-01
We have developed a sensor head for a time-of-flight (TOF) PET scanner using plastic scintillators that have a very fast timing property. Given the very small cross section of photoelectric absorption in plastic scintillators at 511 keV, we use Compton scattering in order to compensate for detection efficiency. The detector will consist of two layers of scatterers and absorbers which are made of plastic and inorganic scintillators such as GAGG:Ce, respectively. Signals are read by monolithic Multi Pixel Photon Counters, and with energy deposits and interaction time stamps are being acquired. The scintillators are built to be capable of resolving interaction position in three dimensions, so that our system has also a function of depth-of-interaction (DOI) PET scanners. TOF resolution of ~ 200 ps (FWHM) is achieved in both cases of using the leading-edge discriminator and time-walk correction and using a configuration sensitive to DOI. Both the position resolution and spectroscopy are demonstrated using the prototype data acquisition system, with Compton scattering events subsequently being obtained. We also demonstrated that the background rejection technique using the Compton cone constraint could be valid with our system.
First measurement of $Z/\\gamma^{*}$ production in Compton scattering of quasi-real photons
Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; De Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C.K.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seiler, T.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.
1998-01-01
We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-01-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Compton scattering of microwave background radiation by gas in galaxy clusters
International Nuclear Information System (INIS)
Gould, R.J.; Rephaeli, Y.
1978-01-01
Based on data on the X-ray spectrum of the Coma cluster, interpreted as thermal bremsstrahlung, the expected brightness depletion from Compton scattering of the microwave background in the direction of the cluster is computed. The calculated depletion is about one-third that recently observed by Gull and Northover, and the discrepancy is discussed. In comparing the observed microwave depletion in the direction of other clusters which are X-ray sources it is found that there is no correlation with the cluster X-ray luminosity, while a dependence proportional to L/sub x//sup 1/2/ is expected. Consequently, the microwave depletion observations cannot yet be taken as good evidence for a thermal bremsstrahlung origin for the X-ray emission. The perturbation from Compton scattering of photons on the high-frequency (Wien) tail of the blackbody distribution is computed and found to be much larger than predicted in previous calculations. In the Wien tail the effect is a relative increase in the blackbody intensity that is appreciably greater in magnitude than the depletion in the Rayleigh-Jeans domain
Virtual compton scattering at low energy; Diffusion compton virtuelle a basse energie
Energy Technology Data Exchange (ETDEWEB)
Lhuillier, D
1997-09-01
The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Lowrie, Robert B [Los Alamos National Laboratory; Morel, Jim E [TEXAS A& M UNIV
2008-01-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
A didactic experiment showing the Compton scattering by means of a clinical gamma camera.
Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio
2017-06-01
We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P
2011-12-01
Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.
Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H
2018-03-01
Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.
Virtual compton scattering at low energy; Diffusion compton virtuelle a basse energie
Energy Technology Data Exchange (ETDEWEB)
Lhuillier, D
1997-09-01
The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-09-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Photo-transmutation of {sup 100}Mo to {sup 99}Mo with Laser-Compton Scattering Gamma-ray
Energy Technology Data Exchange (ETDEWEB)
Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)
2016-10-15
This paper presents a photonuclear transmutation method using laser Compton scattering (LCS) gamma-ray beam. Potential production rate (reaction rate) of 99Mo using the photonuclear (γ,n) reaction is evaluated. Rigorous optimization of the LCS spectrum has also been performed to maximize production of the 99Mo. Cyclotron proton accelerators are used worldwide to produce many short-living medical isotopes. However, few are capable of producing Mo-99 and none are suitable for producing more than a small fraction of the required amounts. More than 90% of the world's demand of 99Mo is sourced from five nuclear reactors. Two of these reactors have already been decommissioned and the rest are more than 45 years old. Relatively short half-life of the parent 99Mo requires continuous re-supply to meet the requirements of medical industry. Therefore, there is an urgent need to produce the 99Mo and 99mTc isotopes by alternative ways. One such alternative is giant dipole resonance (GDR) based photonuclear transmutation of 100Mo to 99Mo. For 99Mo production with the LCS photons using GDR-based (γ,n) reaction, the gamma-ray energy should be around 15 MeV. This study indicates that optimization of LCS spectrum by varying the electron and laser energies within practical limits can enhance the transmutation of Mo-100 to M-99 quite significantly. It has been found that irradiation time should be rather short, e.g., less than 6 hours, to maximize the weekly production of Mo-99 in the GDR-based Mo-99 production facility using the LCS photons. The analysis shows that production of 99Mo using a high-performance LCS facility offers a potentially-promising alternative for the production of 99mTc.
On the distribution of electrons in the double ionization of helium-like ions by Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Drukarev, E G [Petersburg Nuclear Physics Institute, Gatchina, St Petersburg 188300 (Russian Federation)
2003-06-28
The Compton scattering of a high energy photon by a helium-like ion, followed by the ionization of two electrons, is considered outside of the Bethe surface of Compton scattering with the knock-out of a single electron. The role of shake-off (SO), of final state interactions (FSI) and of the quasi-free mechanism (QFM) is analysed. The triple and double differential distributions are calculated. It is demonstrated for the first time that in certain kinematical regions the process is dominated by the FSI and by the QFM, while the SO contribution is much smaller.
Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime
Gong, Z.; Hu, R. H.; Lu, H. Y.; Yu, J. Q.; Wang, D. H.; Fu, E. G.; Chen, C. E.; He, X. T.; Yan, X. Q.
2018-04-01
An all-optical scheme is proposed for studying laser plasma based incoherent photon emission from inverse Compton scattering in the quantum electrodynamic regime. A theoretical model is presented to explain the coupling effects among radiation reaction trapping, the self-generated magnetic field and the spiral attractor in phase space, which guarantees the transfer of energy and angular momentum from electromagnetic fields to particles. Taking advantage of a prospective ˜ 1023 W cm-2 laser facility, 3D particle-in-cell simulations show a gamma-ray flash with unprecedented multi-petawatt power and brightness of 1.7 × 1023 photons s-1 mm-2 mrad-2/0.1% bandwidth (at 1 GeV). These results bode well for new research directions in particle physics and laboratory astrophysics exploring laser plasma interactions.
Energy Technology Data Exchange (ETDEWEB)
Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Inst. (Armenia); Akopov, Z. [DESY, Hamburg (DE)] (and others)
2012-06-15
The beam-helicity asymmetry in exclusive electroproduction of real photons by the longitudinally polarized HERA positron beam scattering off an unpolarized hydrogen target is measured at HERMES. The asymmetry arises from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. Azimuthal amplitudes of the beam-helicity asymmetry are extracted from a data sample consisting of ep{yields}ep{gamma} events with detection of all particles in the final state including the recoiling proton. The installation of a recoil detector, while reducing the acceptance of the experiment, allows the elimination of resonant background that was estimated to contribute an average of about 12% to the signal in previous HERMES publications. The removal of the resonant background from the present data sample is shown to increase the magnitude of the leading asymmetry amplitude by 0.054{+-}0.016 to -0.328{+-}0.027(stat.){+-}0.045(syst.).
International Nuclear Information System (INIS)
Airapetian, A.; Akopov, Z.
2012-06-01
The beam-helicity asymmetry in exclusive electroproduction of real photons by the longitudinally polarized HERA positron beam scattering off an unpolarized hydrogen target is measured at HERMES. The asymmetry arises from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. Azimuthal amplitudes of the beam-helicity asymmetry are extracted from a data sample consisting of ep→epγ events with detection of all particles in the final state including the recoiling proton. The installation of a recoil detector, while reducing the acceptance of the experiment, allows the elimination of resonant background that was estimated to contribute an average of about 12% to the signal in previous HERMES publications. The removal of the resonant background from the present data sample is shown to increase the magnitude of the leading asymmetry amplitude by 0.054±0.016 to -0.328±0.027(stat.)±0.045(syst.).
Deeply virtual Compton scattering in the Hall A of Jefferson laboratory
International Nuclear Information System (INIS)
Munoz Camacho, C.
2005-12-01
Generalized Parton Distributions (GPDs), introduced in the late 90's, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon. (author)
Scaling laws in high-energy inverse compton scattering. II. Effect of bulk motions
International Nuclear Information System (INIS)
Nozawa, Satoshi; Kohyama, Yasuharu; Itoh, Naoki
2010-01-01
We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have nonzero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P 1,K (s) as P 1 (s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the x-ray and gamma-ray emission models from various astrophysical objects with nonzero bulk motions such as radio galaxies and astrophysical jets.
Stability analysis and time-step limits for a Monte Carlo Compton-scattering method
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.
2010-01-01
A Monte Carlo method for simulating Compton scattering in high energy density applications has been presented that models the photon-electron collision kinematics exactly [E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativistic electrons, Astrophys. J. 323 (1987) 565]. However, implementing this technique typically requires an explicit evaluation of the material temperature, which can lead to unstable and oscillatory solutions. In this paper, we perform a stability analysis of this Monte Carlo method and develop two time-step limits that avoid undesirable behavior. The first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both instabilities and nonphysical oscillations. With a set of numerical examples, we demonstrate the efficacy of these time-step limits.
High energy deeply virtual Compton scattering on a photon and related meson exclusive production
International Nuclear Information System (INIS)
Machado, Magno V. T.
2007-01-01
In this work we estimate the differential cross section for the high energy deeply virtual Compton scattering on a photon target, γ*γ→γγ, within the QCD dipole-dipole scattering formalism. For the phenomenology, a saturation model for the dipole-dipole cross section for two photon scattering is considered. Its robustness is supported by a good description of current accelerator data. In addition, we consider the related exclusive vector meson production processes, γ*γ→Vγ. This analysis is focused on the light ρ and φ meson production, which produces larger cross sections. The phenomenological results are compared with the theoretical calculation using the color-dipole Balitsky-Fadin-Kuraev-Lipatov approach
Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays
International Nuclear Information System (INIS)
Abdullah, K.K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B.R.S.; Joseph, Antony; Thomas, Rajive; Varier, K.M.
2008-01-01
We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241 Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package. (author)
X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures
Energy Technology Data Exchange (ETDEWEB)
Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)
2015-08-17
We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.
A glimpse of gluons through deeply virtual compton scattering on the proton.
Defurne, M; Jiménez-Argüello, A Martí; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Hyde, C E; Iqbal, S; Itard, F; Kang, H; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Mazouz, M; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Camacho, C Muñoz; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P
2017-11-10
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.
Evaluation of geometrical contributions to the spread of the Compton-scatter energy distribution
International Nuclear Information System (INIS)
Hanson, A.L.; Gigante, G.E.; Dipartimento di Fisica, Universita degli Studi di Roma I, ''La Sapienza,'' Corso Vittorio Emanuele II, 244, 00186 Roma, Italy)
1989-01-01
The spectrum from Compton-scattered x rays is an inherently broad distribution. This distribution is the sum of several Gaussian-like distributions, which gives the sum its unique shape. The Gaussian-like distributions are the result of convoluting the so-called Compton profile, the spread in the scattered-x-ray energies due to the momentum distributions of the target electrons, with the detector response and the geometrical effects. The distribution is then further modified by the absorption within the sample. A formulation for both qualitatively and quantitatively determining the magnitude of the geometrical contributions is presented. This formulation is based on a recently devised approach to the scattering geometry [Hanson, Gigante, Meron, Phys. Rev. Lett. 61, 135 (1988)]. A methodology for determining the geometrical spread in the energy of the scattered x rays is presented. The results can be conveniently used to optimize scattering geometries for the reduction of the geometry-caused spread
Measurement of deeply virtual Compton scattering and its t-dependence at HERA
H1 Collaboration; Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kutak, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Mudrinic, M.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2008-01-01
A measurement of elastic deeply virtual Compton scattering γp→γp using ep collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 145 pb. The cross section is measured as a function of the virtuality Q of the exchanged photon and the centre-of-mass energy W of the γp system in the kinematic domain 6.5
Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment
Energy Technology Data Exchange (ETDEWEB)
Movsisyan, Aram
2011-05-15
Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5){sup 2} GeV{sup 2}
Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences
International Nuclear Information System (INIS)
Battista, J.J.; Bronskill, M.J.
1978-01-01
The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)
International Nuclear Information System (INIS)
LaJohn, L. A.
2010-01-01
The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.
Energy Technology Data Exchange (ETDEWEB)
Schopferer, Sebastian
2013-12-16
The COMPASS-II experiment at CERN is focusing on a measurement of the deeply virtual Compton scattering. Several upgrades of the experimental setup have been performed in 2012, namely the construction of a long liquid hydrogen target and a surrounding recoil proton detector called CAMERA. Based on a time-of-flight measurement between two barrels of scintillators, the CAMERA detector allows to detect protons with a kinetic energy down to 35 MeV, which leave the target under large polar angles. At the same time, protons can be distinguished from other particles resulting from background processes by means of an energy loss measurement in the scintillating material. In order to extend the existing COMPASS trigger scheme, a digital trigger system has been developed, which is detailed in the thesis at hand. The trigger system is able to select events with a recoil proton in the final state while suppressing background events, using the particle identification capabilities of the CAMERA detector. Challenging selection criteria based on both the time-of-flight and the energy loss measurement call for a powerful programmable logic board. At the same time, the integration into the existing COMPASS trigger system poses strict constraints on the latency of the trigger decision. For the implementation of the proton trigger system, a new FPGA-based trigger and DAQ hardware called TIGER has been built. The module is operated in two firmware configurations, serving two distinct purposes. Firstly, the trigger processor is responsible for the generation of a trigger signal based on recoil particles, which is included in the global first-level trigger decision. Secondly, a readout concentrator allows to multiplex the data streams of up to 18 readout modules into one link to the DAQ. The CAMERA detector and the corresponding readout and trigger electronics was commissioned during a test run in autumn 2012. This thesis contains details about the trigger concept, the development of the
Measurements of Compton Scattering on the Proton at 2 - 6 GeV
Energy Technology Data Exchange (ETDEWEB)
Danagoulian, Areg [Univ. of Illinois, Urbana-Champaign, IL (United States)
2006-01-01
Similar to elastic electron scattering, Compton Scattering on the proton at high momentum transfers(and high p⊥) can be an effective method to study its short-distance structure. An experiment has been carried out to measure the cross sections for Real Compton Scattering (RCS) on the proton for 2.3-5.7 GeV electron beam energies and a wide distribution of large scattering angles. The 25 kinematic settings sampled a domain of s = 5-11(GeV/c)^{2},-t = -7(GeV/c)^{2} and -u = 0.5-6.5(GeV/c)^{2}. In addition, a measurement of longitudinal and transverse polarization transfer asymmetries was made at a 3.48 GeV beam energy and a scattering angle of θ_{cm }= 120°. These measurements were performed to test the existing theoretical mechanisms for this process as well as to determine RCS form factors. At the heart of the scientific motivation is the desire to understand the manner in which a nucleon interacts with external excitations at the above listed energies, by comparing and contrasting the two existing models – Leading Twist Mechanism and Soft Overlap “Handbag” Mechanism – and identify the dominant mechanism. Furthermore, the Handbag Mechanism allows one to calculate reaction observables in the framework of Generalized Parton Distributions (GPD), which have the function of bridging the wide gap between the exclusive(form factors) and inclusive(parton distribution functions) description of the proton. The experiment was conducted in Hall A of Thomas Jefferson National Accelerator Facility(Jefferson Lab). It used a polarized and unpolarized electron beam, a 6% copper radiator with the thickness of 6.1% radiation lengths (to produce a bremsstrahlung photon beam), the Hall A liquid hydrogen target, a high resolution spectrometer with a focal plane polarimeter, and a photon hodoscope calorimeter. Results of the differential cross sections are presented, and discussed in the general context of the scientific motivation.
Analytical description of photon beam phase spaces in inverse Compton scattering sources
Directory of Open Access Journals (Sweden)
C. Curatolo
2017-08-01
Full Text Available We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc. and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a
Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Seipt, Daniel
2012-12-20
The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton
Local Two-Photon Couplings and the J=0 Fixed Pole in Real and Virtual Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; Llanes-Estrada, Felipe J.; Szczepaniak, Adam P.
2008-12-05
The local coupling of two photons to the fundamental quark currents of a hadron gives an energy-independent contribution to the Compton amplitude proportional to the charge squared of the struck quark, a contribution which has no analog in hadron scattering reactions. We show that this local contribution has a real phase and is universal, giving the same contribution for real or virtual Compton scattering for any photon virtuality and skewness at fixed momentum transfer squared t. The t-dependence of this J = 0 fixed Regge pole is parameterized by a yet unmeasured even charge-conjugation form factor of the target nucleon. The t = 0 limit gives an important constraint on the dependence of the nucleon mass on the quark mass through the Weisberger relation. We discuss how this 1=x form factor can be extracted from high energy deeply virtual Compton scattering and examine predictions given by models of the H generalized parton distribution.
Energy Technology Data Exchange (ETDEWEB)
Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov
2001-06-01
Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.
International Nuclear Information System (INIS)
Hao Dongshan; Xie Hongjun
2006-01-01
By comparing the kinematical equation of a shock wave in free air, the study of transmission characteristics of the laser plasma shock wave in Compton scattering is presented. The results show that the attenuation course of the kinematics of he laser plasma shock wave is related not only with the explosion fountainhead and the characteristics of the explosion course, total energy release, air elastic, but also with multi-photon nonlinear Compton scattering. Because of the scattering the initial radius of the shock wave increases, the attenuation course shortens, the energy metastasis efficiency rises. The results of the numerical analysis and the actual values of the shock waves in air by a way intense explosion are very tallying. (authors)
International Nuclear Information System (INIS)
Panek, P.; Kaminski, J.Z.; Ehlotzky, F.
2003-01-01
Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)
International Nuclear Information System (INIS)
Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov
2001-01-01
Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom
Electric and magnetic polarizabilities of hadrons via elastic Compton scattering at KAON
International Nuclear Information System (INIS)
Moinester, M.A.; Blecher, M.
1990-08-01
The study of dynamic properties of hadrons presents a challenge. Among the most basic of these are the electric and magnetic polarizabilities describing the electromagnetic structure of hadrons. They characterize the induced transient dipole moments of hadrons in an external electromagnetic field. During gamma-hadron Compton scattering the lowest order scattering is determined by the charge and magnetic moment. The next order scattering is determined by the induced dipole moments. The dipole polarizabilities probe the rigidity of the internal structure of baryons and mesons, the dipole moments being induced by the rearrangement of the hadron constituents driven by the presence of the electric and magnetic fields of the photon during scattering. A sophisticated understanding of hadrons within the framework of QCD will be tested, in part, by the prediction of these quantities. For the light charged pion, chiral symmetry leads to a precise prediction for the polarizabilities. For the heavier charged kaon, chiral perturbation theory can be applied to predict the polarizabilities. For these cases, the experimental polarizabilities subject the underlying chiral symmetry and chiral perturbation techniques of QCD to new and serious tests. Here the physics of electromagnetic polarizabilities is first described, followed by a review of previous experimental and theoretical polarizability results for the proton, neutron, pion, and kaon. A brief description is then given of how polarizabilities for these hadrons can be studied at the proposed TRIUMF KAON facility. (36 refs., 4 figs.)
Transverse Extension of Partons in the Proton probed by Deeply Virtual Compton Scattering
Akhunzyanov, R.; The COMPASS collaboration; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Burtin, E.; Burtsev, V.E.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chumakov, A.G.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr., M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Juraskova, K.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Pešková, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veit, B.M.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2018-01-01
We report on the first measurement of exclusive single-photon muoproduction on the proton by COMPASS using 160 GeV/$c$ polarized $\\mu^+$ and $\\mu^-$ beams of the CERN SPS impinging on a liquid hydrogen target. We determine the dependence of the average of the measured $\\mu^+$ and $\\mu^-$ cross sections for deeply virtual Compton scattering on the squared four-momentum transfer $t$ from the initial to the final final proton. The slope $B$ of the $t$-dependence is fitted with a single exponential function, which yields $B=(4.3 \\ \\pm \\ 0.6_{\\text{stat}}\\ _{- \\ 0.3}^{+ \\ 0.1}\\big\\rvert_{\\text{sys}})\\,(\\text{GeV}/c)^{-2}$. This result can be converted into an average transverse extension of partons in the proton, $\\sqrt{\\langle r_{\\perp}^2 \\rangle} = (0.58 \\ \\pm \\ 0.04_{\\text{stat}}\\ _{- \\ 0.02}^{+ \\ 0.01}\\big\\rvert_{\\text{sys}}) \\text{fm}$. For this measurement, the average virtuality of the photon mediating the interaction is $\\langle Q^2 \\rangle = 1.8\\,(\\text{GeV/}c)^2$ and the average value of the Bjorken va...
Development of a compact x-ray source via laser compton scattering at KEK-LUCX
International Nuclear Information System (INIS)
Sakaue, Kazuyuki; Washio, Masakazu; Aryshev, Alexander; Araki, Sakae; Urakawa, Junji; Terunuma, Nobuhiro; Fukuda, Masafumi; Miyoshi, Toshinobu; Takeda, Ayaki
2013-01-01
The compact X-ray source based on Laser-Compton scattering (LCS) has been developed at LUCX (Laser Undulator Compact X-ray source) facility in KEK. The multi-bunch high quality electron beam produced by a standing wave 3.6 cell RF Gun and accelerated by the followed S-band normal conducting 12 cells standing wave 'Booster' linear accelerator is scattered off the laser beam stored in the optical cavity. The 4-mirror planar optical cavity with finesse 335 is used. The MCP (Micro-Channer Plate) detector as well as SOI (Silicon-On-Insulator) pixel sensor was used for scattered X-ray detection. The SOI pixel sensor has been used for LCS X-ray detection for the first time and has demonstrated high spatial resolution and high SN ratio X-ray detection that in turn lead to clearest X-ray images achieved by LCS X-ray. We have also achieved generation of 6.38x10 6 ph./sec., which is more than 30 times larger LCS X-ray flux in comparison with our previous results. The complete details of LUCX LCS X-ray source, specifications of both electron and laser beams, and the results of LCS X-ray generation experiments are reported in this paper. (author)
Measurement of deeply virtual Compton scattering and its t-dependence at HERA
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D. [National Insitute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania)]|[Bucharest Univ. (Romania). Faculty of Physics; Aktas, A. [DESY Hamburg (Germany); Alexa, C. [National Insitute for Physics and Nuclear Engineering (NIPNE), Bucharest (RO)] (and others)
2007-09-15
A measurement of elastic deeply virtual Compton scattering {gamma}{sup *}p {yields} {gamma}p using e{sup -}p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 145 pb{sup -1}. The cross section is measured as a function of the virtuality Q{sup 2} of the exchanged photon and the centre-of-mass energy W of the {gamma}{sup *}p system in the kinematic domain 6.5
International Nuclear Information System (INIS)
Colgate, S.A.; Petschek, A.G.
1978-01-01
The full radiation spectrum of quasars and BL Lac objects is interpreted as due to a dependent combination of a soft plasma oscillation source at 2ν/sub P/ and bremsstrahlung. Previous work of the plasma oscillation radiation is extended into the radio part of the spectrum and it is shown how the high brightness temperature observations of BL Lac objects [kT/sub b/ (100 MHz) approximate = 3 x 10 5 mc 2 ] are a reasonable consequence of a lower external plasma density and ejection as required for the observed lack of emission lines. Two extreme cases are considered, the one where the plasma oscillations are suddenly extinguished and only stimulated Compton scattering remains and a second case of a constant source of plasma oscillations but a graded surface density. The first case gives 1/100 of the required brightness temperature and the second gives 100 times too large a brightness temperature and also a x 10 too large a radius. It is believed reasonable to invoke a combination of both processes to explain the observed radio spectrum. This model circumvents the self-Compton x-ray flux difficulty of incoherent synchrotron emission
Deeply virtual Compton scattering off an unpolarised hydrogen target at HERMES
Energy Technology Data Exchange (ETDEWEB)
Burns, Jonathan R.T.
2010-08-15
Deeply Virtual Compton Scattering (DVCS) i.e. ep {yields} ep{gamma} is the simplest interaction that allows access to Generalised Parton Distributions (GPDs), a theoretical framework describing nucleon structure. The strong interest in GPDs results from the fact that they can be used to determine the total angular momentum of quarks inside the nucleon and provide a 3-dimensional picture of nucleon structure. The measurement of the DVCS process is facilitated by the interference with a competing interaction known as the Bethe-Heitler process which has the same nal state. DVCS information is obtained from the asymmetrical in distribution of the real photon around the azimuthal angle {phi} at HERMES. Beam charge and beam helicity asymmetries, extracted from DVCS events with an unpolarised hydrogen target recorded during the 2006-2007 and 1996-2007 data taking periods, are presented in this thesis. The asymmetry amplitudes are presented over the range of HERMES kinematic acceptance, with their dependence on kinematic variables t, x{sub B} and Q{sup 2} also shown and compared to a phenomenological model. (orig.)
International Nuclear Information System (INIS)
Girod, F.X.
2006-12-01
The structure of the nucleon, among the first fundamental problems in hadronic physics, is the subject of a renewed interest. The lightest baryonic state has historically been described in two complementary approaches: through elastic scattering, measuring form factors which reflect the spatial shape of charge distributions, and through deep inelastic scattering, providing access to parton distribution functions which encode the momentum content carried by the constituents. The recently developed formalism of Generalized Parton Distributions unifies those approaches and provides access to new informations. The cleanest process sensitive to GPDs is the deeply virtual Compton scattering (DVCS) contributing to the ep → epγ reaction. This work deals with a dedicated experiment accomplished with the CLAS detector, completed with two specific equipments: a lead tungstate calorimeter covering photon detection at small angles, and a superconducting solenoid actively shielding the electromagnetic background. The entire project is covered: from the upgrade of the experimental setup, through the update of the software, data taking and analysis, up to a first comparison of the beam spin asymmetry to model predictions. (author)
International Nuclear Information System (INIS)
Shrimpton, P.C.
1981-01-01
Accurate direct measurements of electron density have been performed on specimens from 10 different tissue types of the human body, representing the major organs, using a Compton scatter technique. As a supplement to these experimental values, calculations have been carried out to determine the electron densities expected for these tissue types. The densities observed are in good agreement with the broad ranges deduced from the basic data previously published. The results of both the in vitro sample measurements and the approximate calculations indicate that the electron density of most normal healthy soft tissue can be expected to fall within the fairly restricted range of +- 5% around 3.4 X 10 23 electrons per cm 3 . The obvious exception to this generalisation is the result for lung tissue, which falls considerably below this range owing to the high air content inherent in its construction. In view of such an overall limited variation with little difference between tissues, it would appear that electron density alone is likely to be a rather poor clinical parameter for tissue analysis, with high accuracy and precision being essential in any in vivo Compton measurements for imaging or diagnosis on specific organs. (author)
The HERMES recoil photon detector and the study of deeply virtual Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Hulse, Charlotte van
2011-03-15
The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a {delta}{sup +} resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of {delta}{sup +} decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ryan, Elaine A; Farquharson, Michael J; Flinton, David M [School of Allied Health Sciences, City University, Charterhouse Square, London EC1M 6PA (United Kingdom)
2005-07-21
This study describes a technique for measuring the electron density of breast tissue utilizing Compton scattered photons. The K{sub {alpha}}{sub 2} line from a tungsten target industrial x-ray tube (57.97 keV) was used and the scattered x-rays collected at an angle of 30{sup 0}. At this angle the Compton and coherent photon peaks can be resolved using an energy dispersive detector and a peak fitting algorithm. The system was calibrated using solutions of known electron density. The results obtained from a pilot study of 22 tissues are presented. The tissue samples investigated comprise four different tissue classifications: adipose, malignancy, fibroadenoma and fibrocystic change (FCC). It is shown that there is a difference between adipose and malignant tissue, to a value of 9.0%, and between adipose and FCC, to a value of 12.7%. These figures are found to be significant by statistical analysis. The differences between adipose and fibroadenoma tissues (2.2%) and between malignancy and FCC (3.4%) are not significant. It is hypothesized that the alteration in glucose uptake within malignant cells may cause these tissues to have an elevated electron density. The fibrotic nature of tissue that has undergone FCC gives the highest measure of all tissue types.
Ryan, Elaine A.; Farquharson, Michael J.; Flinton, David M.
2005-07-01
This study describes a technique for measuring the electron density of breast tissue utilizing Compton scattered photons. The Kα2 line from a tungsten target industrial x-ray tube (57.97 keV) was used and the scattered x-rays collected at an angle of 30°. At this angle the Compton and coherent photon peaks can be resolved using an energy dispersive detector and a peak fitting algorithm. The system was calibrated using solutions of known electron density. The results obtained from a pilot study of 22 tissues are presented. The tissue samples investigated comprise four different tissue classifications: adipose, malignancy, fibroadenoma and fibrocystic change (FCC). It is shown that there is a difference between adipose and malignant tissue, to a value of 9.0%, and between adipose and FCC, to a value of 12.7%. These figures are found to be significant by statistical analysis. The differences between adipose and fibroadenoma tissues (2.2%) and between malignancy and FCC (3.4%) are not significant. It is hypothesized that the alteration in glucose uptake within malignant cells may cause these tissues to have an elevated electron density. The fibrotic nature of tissue that has undergone FCC gives the highest measure of all tissue types.
Spin Polarisabilities and Compton Scattering from χEFT: Bridging QCD and Data
Griesshammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.
2017-01-01
Compton scattering from protons and neutrons probes their two-photon response in electric and magnetic fields of real photons, exploring the symmetries and interaction strengths of the internal degrees of freedom. With the scalar polarisabilities αE 1 and βM 1 now reasonably understood, the focus turns to the so-far poorly explored spin-polarisabilities. They parametrise the stiffness of the nucleon spin in external electro-magnetic fields, analogous to rotations of the polarisation of light by optically active media (bi-refringence/Faraday effect) and are particularly sensitive to the directional dependence of the πNγ interactions dictated by chiral symmetry and its breaking. This contribution addresses the potential of Chiral Effective Field Theory to relate between lattice QCD and ongoing or approved efforts at MAX-lab, HI γS and MAMI. We discuss high-intensity experiments with polarised targets and polarised beams which will allow the extraction of the spin-polarisabilities; χEFT predictions which indicate which observables for polarised protons, deuterons and 3 He are particularly sensitive; convergence, residual theoretical uncertainties and possibilities for improvement; and chiral extrapolations in mπ for lattice computations. Supported in part by UK STFC, US DOE and George Washington University.
Compton scattering of photons from electrons in magnetically insulated transmission lines
International Nuclear Information System (INIS)
Brower, K.L.; VanDevender, J.P.
1979-01-01
Self-magnetically insulated transmission lines are used for power transport between the vacuum insulator and the diode in high current particle accelerators. Since the efficiency of the power transport depends on the details of the initial line geometry, i.e., the injector, the dependence of the electron canonical momentum distribution on the injector geometry should reveal the loss mechanism. We propose to study that dependence experimentally through a Compton scattering diagnostic. The spectrum of scattered light reveals the electron velocity distribution perpendicular to the direction of flow. The design of the diagnostic is in progress. Our preliminary analysis is based on the conservation of energy and canonical momentum for a single electron in the anti E and anti B fields determined from 2-D calculations. For the Mite accelerator with power flow along Z, the normalized canonical momentum, μ, is in the range - 0.7 < μ less than or equal to 0. For anti k/sub i/ parallel to circumflex Y, and anti k/sub s/ circumflex X, our analysis indicates that the scattered photons have 1.1 eV less than or equal to h nu/sub s/ < 5.6 eV for ruby laser scattering and can be detected with PM tubes
International Nuclear Information System (INIS)
Mosse, L.
2002-02-01
The experimental and theoretical aspects of the deep virtual Compton scattering (DVCS) are presented in the first chapter. The prevailing amplitude of DVCS is developed to lead to the introduction of the generalized distributions of partons. The second chapter is centered on the measurement campaigns performed throughout the world concerning DVCS processes and meson production. The experimental achieving of DVCS is difficult because it is an exclusive process that requires a perfect identification and moreover its cross-section is low. In the third chapter the author presents a feasibility study of a DVCS experiment using Compass installation in CERN, this experiment requires the designing of a recoil detector. By developing the theoretical studies presented in the first chapter, the author has computed an estimation of the expected counting rate. The main difficulty of this work is to be able to discriminate some events that lead to the same final state as DVCS. It is the case of the event characterized by the production of pions with very low impulse, the fourth chapter is dedicated to determination of the value of the cross-section of that event. A prototype of a recoil detector has been designed and tested and the first preliminary results are presented in the last chapter. (A.C.)
Measurement of Deeply Virtual Compton Scattering and its t-dependence at HERA
Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2008-01-01
A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e-p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 145 pb^-1. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma*p system in the kinematic domain 6.5 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. The measurements are compared to a NLO QCD calculation based on generalised parton distributions. In the context of the dipole approach, the geometric scaling property of the DVCS cross section is studied for different values of t.
International Nuclear Information System (INIS)
Ryan, Elaine A; Farquharson, Michael J; Flinton, David M
2005-01-01
This study describes a technique for measuring the electron density of breast tissue utilizing Compton scattered photons. The K α2 line from a tungsten target industrial x-ray tube (57.97 keV) was used and the scattered x-rays collected at an angle of 30 0 . At this angle the Compton and coherent photon peaks can be resolved using an energy dispersive detector and a peak fitting algorithm. The system was calibrated using solutions of known electron density. The results obtained from a pilot study of 22 tissues are presented. The tissue samples investigated comprise four different tissue classifications: adipose, malignancy, fibroadenoma and fibrocystic change (FCC). It is shown that there is a difference between adipose and malignant tissue, to a value of 9.0%, and between adipose and FCC, to a value of 12.7%. These figures are found to be significant by statistical analysis. The differences between adipose and fibroadenoma tissues (2.2%) and between malignancy and FCC (3.4%) are not significant. It is hypothesized that the alteration in glucose uptake within malignant cells may cause these tissues to have an elevated electron density. The fibrotic nature of tissue that has undergone FCC gives the highest measure of all tissue types
Optimal sum rules inequalities for spin 1/2 Compton scattering
International Nuclear Information System (INIS)
Guiasu, I.; Radescu, E.E.; Razillier, I.
1979-08-01
A formalism appropriate for model independent dispersion theoretic investigations of the (not necessarily forward) Compton scattering off spin 1/2 hadronic targets, which fully exploits the analyticity properties of the amplitudes (to lowest order in electromagnetism) in ν 2 at fixed t(ν=(s-u)/4) s,t,u = Mandelstam variables), is developed. It relies on methods which are specific to boundary value problems for analytic matrix-valued functions. An analytic factorization of the positive definite hermitian matrix associated with the bilinear expression of the unpolarized differential cross section (u.d.c.s.) in terms of the Bardeen-Tung (B.T.) invariant amplitudes is explicitly obtained. For t in a specified portion of the physical region, six new amplitudes describing the process are thereby constructed which have the same good analyticity structure in ν 2 as the (crossing symmetrized) B.T. amplitudes, while their connection with the usual helicity amplitudes is given by a matrix which is unitary on the unitarity cut. A bound on a certain integral over the u.d.c.s. above the first inelastic threshold, established in terms of the target's charge and anomalous magnetic moment, improves a previous weaker result, being now optimal under the information accepted as known. (author)
Coherent deeply virtual Compton scattering off 3He and neutron generalized parton distributions
Directory of Open Access Journals (Sweden)
Rinaldi Matteo
2014-06-01
Full Text Available It has been recently proposed to study coherent deeply virtual Compton scattering (DVCS off 3He nuclei to access neutron generalized parton distributions (GPDs. In particular, it has been shown that, in Impulse Approximation (IA and at low momentum transfer, the sum of the quark helicity conserving GPDs of 3He, H and E, is dominated by the neutron contribution. This peculiar result makes the 3He target very promising to access the neutron information. We present here the IA calculation of the spin dependent GPD H See Formula in PDF of 3He. Also for this quantity the neutron contribution is found to be the dominant one, at low momentum transfer. The known forward limit of the IA calculation of H See Formula in PDF , yielding the polarized parton distributions of 3He, is correctly recovered. The extraction of the neutron information could be anyway non trivial, so that a procedure, able to take into account the nuclear effects encoded in the IA analysis, is proposed. These calculations, essential for the evaluation of the coherent DVCS cross section asymmetries, which depend on the GPDs H,E and H See Formula in PDF , represent a crucial step for planning possible experiments at Jefferson Lab.
International Nuclear Information System (INIS)
Camsonne, A.
2005-11-01
The Hall A Deeply Virtual Compton Scattering (DVCS) experiment used the 5.757 GeV polarized electron beam available at Jefferson Laboratory and ran from september until december 2004. Using the standard Hall A left high resolution spectrometer three kinematical points were taken at a fixed x b (jorken) = 0.32 value for three Q 2 values: 1.5 GeV 2 , 1.91 GeV 2 , 2.32 GeV 2 . An electromagnetic Lead Fluoride calorimeter and a proton detector scintillator array designed to work at a luminosity of 10 37 cm -2 s -1 were added to ensure the exclusivity of the DVCS reaction. In addition to the new detectors new custom electronics was used: a calorimeter trigger module which determines if an electron photon coincidence has occurred and a sampling system allowing to deal with pile-up events during the offline analysis. Finally the data from the kinematic at Q 2 = 2.32 GeV 2 and s = 5.6 GeV 2 allowed to get a preliminary result for the exclusive π 0 electroproduction on the proton. (author)
Energy Technology Data Exchange (ETDEWEB)
Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)
2012-07-15
Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: Black-Right-Pointing-Pointer Electron density of normal and neoplastic breast tissues was measured using Compton scattering. Black-Right-Pointing-Pointer Monochromatic synchrotron radiation was used to obtain the Compton scattering data. Black-Right-Pointing-Pointer The area of Compton peaks was used to determine the electron densities of samples. Black-Right-Pointing-Pointer Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. Black-Right-Pointing-Pointer Comparison with previous results showed differences smaller than 4%.
Neutron-induced 2.2 MeV background in gamma ray telescopes
International Nuclear Information System (INIS)
Zanrosso, E.M.; Long, J.L.; Zych, A.D.; White, R.S.; Hughes Aircraft Co., Los Angeles, CA)
1985-01-01
Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma line essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen
Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro
2018-01-01
Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single
Feasibility of Strong and Quasi-Monochromatic Gamma-Ray Generation by the Laser Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)
2015-10-15
This is because LCS γ-rays are energy-tunable, quasi-monochromatic, and beam-like. The photon intensity of the mono-chromatic LCS gamma-ray should be high or strong for efficient and high transmutation rate. It was recently reported that a so-called energy-recovery linac system is able to produce a very high-intensity LCS photons in the order of approximately 1013 photons/s economically. It however did not evaluate quality of the LCS photon beam although a quasi-monoenergetic LCS beam is of huge importance in the photo-nuclear transmutation reactions. It is upon this observation that this paper was prepared. Specifically, this work attempts to quantify intensity of the quasi-monochromatic LCS beam from the said linac system. In addition, this paper aims to discuss general characteristics of the LCS photon, and possible approaches to increase its intensity. This paper presents essential characteristics of the laser Compton scattering (LCS) in terms of its photon energy, cross-section and photon intensity. By using different combinations of electron energy, laser energy and scattering angle, we can effectively generate high-intensity and highly-chromatic LCS gamma-rays. Our preliminary analyses indicate that, in view of Compton cross-section, higher-energy photon can be better generated by increasing the electron energy rather than increasing the laser energy. However, in order to maximize the intensity of monochromatic beam, the laser energy should be maximized for a targeted LCS photon energy.
Energy Technology Data Exchange (ETDEWEB)
Blomberg, Adam [Temple Univ., Philadelphia, PA (United States)
2016-12-01
Non-spherical components of the nucleon wave function are measured through p(e,e'p)π^{0} experiment at the Δ^{+}(1232) resonance for Q^{2} = 0.04, 0.09, and 0.13 (GeV=c)^{2} utilizing the Jefferson National Accelerator Facility (JLab) pulsed beam and Hall A spectrometers. The new data extend the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements. The Coulomb to magnetic multipole ratio (CMR) and generalized polarizability (GP) of the nucleon are also measured through virtual Compton scattering (VCS) for Q^{2} = 0.2(GeV=c)^{2} utilizing the Mainz Microtron (MAMI) continuous beam and A1 spectrometers. This data represents the first low Q^{2} GP measurement at the Δ^{+}(1232) resonance. The GP measurement explores a region where previous data and theoretical calculations disagree. The CMR measurement will be the first VCS extraction to compare with world data generated through pion electroproduction. The Dispersion Relation (DR) model used for the VCS extraction provides a new theoretical framework for the data signal and backgrounds that is largely independent from the pion electroproduction models. The independence of the DR from the traditional models provides a strong crosscheck on the ability of the models to isolate the data signal.
Determination of electron beam parameters by means of laser-Compton scattering
Directory of Open Access Journals (Sweden)
K. Chouffani
2006-05-01
Full Text Available Laser-Compton scattering (LCS experiments were carried out at the Idaho Accelerator Center using the 5 ns (FWHM and 22 MeV electron beam. The electron beam was brought to an approximate head-on collision with a 29 MW, 7 ns (FWHM, 10 Hz Nd:YAG laser. Clear and narrow x-ray peaks resulting from the interaction of relativistic electrons with the Nd:YAG laser second harmonic line at 532 nm were observed. We have developed a relatively new method of using LCS as a nonintercepting electron beam monitor. Our method focused on the variation of the shape of the LCS spectrum rather than the LCS intensity as a function of the observation angle in order to extract the electron beam parameters at the interaction region. The electron beam parameters were determined by making simultaneous fits to spectra taken across the LCS x-ray cone. This scan method allowed us also to determine the variation of LCS x-ray peak energies and spectral widths as a function of the detector angles. Experimental data show that in addition to being viewed as a potential bright, tunable, and quasimonochromatic x-ray source, LCS can provide important information on the electron beam pulse length, direction, energy, angular and energy spread. Since the quality of LCS x-ray peaks, such as degree of monochromaticity, peak energy and flux, depends strongly on the electron beam parameters, LCS can therefore be viewed as an important nondestructive tool for electron beam diagnostics.
Beam Diagnostics of the Compton Scattering Chamber in Jefferson Lab's Hall C
Faulkner, Adam; I&C Group Collaboration
2013-10-01
Upcoming experimental runs in Hall C will utilize Compton scattering, involving the construction and installation of a rectangular beam enclosure. Conventional cylindrical stripline-style Beam Position Monitors (BPMs) are not appropriate due to their form factor; therefore to facilitate measurement of position, button-style BPMs are being considered due to the ease of placement within the new beam enclosure. Button BPM experience is limited at JLAB, so preliminary measurements are needed to characterize the field response, and guide the development of appropriate algorithms for the Analog to Digital receiver systems. -field mapping is performed using a Goubau Line (G-Line), which employs a surface wave to mimic the electron beam, helping to avoid problems associated with vacuum systems. Potential algorithms include simplistic 1/r modeling (-field mapping), look-up-tables, as well as a potential third order power series fit. In addition, the use of neural networks specifically the multi-layer Perceptron will be examined. The models, sensor field maps, and utility of the neural network will be presented. Next steps include: modification of the control algorithm, as well as to run an in-situ test of the four Button electrodes inside of a mock beam enclosure. The analysis of the field response using Matlab suggests the button BPMs are accurate to within 10 mm, and may be successful for beam diagnostics in Hall C. More testing is necessary to ascertain the limitations of the new electrodes. The National Science Foundation, Old Dominion University, The Department of Energy, and Jefferson Lab.
International Nuclear Information System (INIS)
Luckstead, S.C.
1978-09-01
Differential production cross sections for multiply charged fragments from 800-MeV proton-induced spallation of 12 C, 27 Al, and natural Ni were measured at 30 and 90 degrees. The ion fragments were identified by use of time-of-flight, ΔE--E detector telescope capable of complete particle identification for energies as low as .25 MeV/nucleon. The very short ranges of the particles of interest required the construction of very thin detectors with minimal deadlayer material. The time-pick-off detectors and gas ionization chamber developed are unique, and represent the state-of-the-art in fast timing for time-of-flight measurements and in construction of thin detectors. The resolutions achieved allowed the cross sections of 3 He, 4 He, 6 Li, 7 Li, 7 Be, 9 Be, 10 Be, 10 B, 11 B, 11 C, 12 C, and 13 C to be determined, along with those of nitrogen and oxygen without isotope separation. The cross sections were found to have weak angular dependence. Consequently, pseudo cross sections were calculated from the 90 0 data by integrating the differential cross sections from 0 to 25 MeV for each product and multiplying by 4π. Pseudo theoretical cross sections were similarly calculated from theoretical differential cross sections. These differential cross sections were calculated by use of a Monte Carlo computer code which incorporated the cascade-evaporation model of high-energy nuclear reactions. Implications are drawn for modifications of the model. The results suggest reducing the transparency of the struck nucleus to pions produced in the cascade stage of the reaction model in order that a higher excitation energy be left for the evaporation stage. Also, there is some evidence that evaporations of nuclear aggregates more massive than 4 He occur. Inclusion of such evaporations should improve the model. 82 figures, 1 table
International Nuclear Information System (INIS)
Airapetian, A.; Akopov, Z.
2009-11-01
The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Pippig, G
1975-01-01
Taking the Compton scattering of pions and deuterons as an example it is shown that low-energy theorems which are valid for the order e/sup 2/ are also valid for the next higher order of electromagnetic interactions. The imaginary component of the scattering amplitude was exactly calculated for the energy of incident photons in the order e/sup 4/ up to the desired one, whereas the real component was obtained from dispersion relations. It is proved that the results derived from the dispersion theory of strong interactions are equivalent to those obtained from quantum electrodynamics for spin 0 and spin 1, respectively.
A measurement of the Q2, W and t dependences of deeply virtual Compton scattering at HERA
International Nuclear Information System (INIS)
2009-01-01
Deeply virtual Compton scattering, γ*p → γp, has been measured in e + p collisions at HERA with the ZEUS detector using an integrated luminosity of 61.1 pb -1 . Cross sections are presented as a function of the photon virtuality, Q 2 , and photon-proton centre-of-mass energy, W, for a wide region of the phase space, Q 2 > 1.5 GeV 2 and 40 -1 , is used for the first direct measurement of the differential cross section as a function of t, where t is the square of the four-momentum transfer at the proton vertex.
Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.
2001-06-01
Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques
Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.-B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.
2004-01-01
The proton structure function F_2(x,Q^2) is measured in inelastic QED Compton scattering using data collected with the H1 detector at HERA. QED Compton events are used to access the kinematic range of very low virtualities of the exchanged photon, Q^2, down to 0.5 GeV^2, and Bjorken x up to \\sim 0.06, a region which has not been covered previously by inclusive measurements at HERA. The results are in agreement with the measurements from fixed target lepton-nucleon scattering experiments.
International Nuclear Information System (INIS)
Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.; Dreuille, O. de; Gaillard, J.F.; Bendriem, B.
1997-01-01
SPECT quantification: a review of the different correction methods with Compton scatter attenuation and spatial deterioration effects. The improvement of gamma-cameras, acquisition and reconstruction software opens new perspectives in term of image quantification in nuclear medicine. In order to meet the challenge, numerous works have been undertaken in recent years to correct for the different physical phenomena that prevent an exact estimation of the radioactivity distribution. The main phenomena that have to betaken into account are scatter, attenuation and resolution. In this work, authors present the physical basis of each issue, its consequences on quantification and the main methods proposed to correct them. (authors)
A measurement of the Q2, W and t dependences of deeply virtual Compton scattering at HERA
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Magill, S.
2008-12-01
Deeply virtual Compton scattering, γ * p→γp, has been measured in e + p collisions at HERA with the ZEUS detector using an integrated luminosity of 61.1 pb -1 . Cross sections are presented as a function of the photon virtuality, Q 2 , and photon-proton centre-of-mass energy, W, for a wide region of the phase space, Q 2 >1.5 GeV 2 and 40 -1 , is used for the first direct measurement of the differential cross section as a function of t, where t is the square of the four-momentum transfer at the proton vertex. (orig.)
Longitudinal target-spin azimuthal asymmetry in Deeply-Virtual Compton Scattering
International Nuclear Information System (INIS)
Kopytin, M.
2006-01-01
As a generalization of the usual Parton Distribution Functions (PDFs) Generalized Parton Distributions (GPDs), introduced a decade ago, contain additional information about quark and gluon distributions in the plane transverse to the direction of motion of the nucleon. Strong interest in GPDs was triggered by the work of X. Ji who demonstrated that in the forward limit GPDs can give information about the total angular momentum carried by quarks (gluons) in the nucleon. The hard exclusive electroproduction of a real photon, called Deeply Virtual Compton Scattering (DVCS), appears to be the theoretically cleanest way to access GPDs experimentally. This process has a final state identical to that of the Bethe-Heitler (BH) process where the photon is radiated from either incoming or outgoing lepton. Both processes are experimentally indistinguishable as their amplitudes interfere. The interference term involves linearly the amplitudes of the DVCS process giving access to GPDs. In this thesis results from HERMES are reported on an azimuthal asymmetry with respect to the spin of the proton target, which is attributed to the interference between the Bethe-Heitler process and the DVCS process. The asymmetry, also referred to as the longitudinal target-spin asymmetry (LTSA), gives access mainly to the polarized GPD H. The kinematic dependences of the LTSA on t, x B and Q 2 are measured and compared with the corresponding measurements on the deuteron. The results are compared with theoretical calculations and with the recent CLAS measurements. The data, used for analysis in this thesis, have been accumulated by the HERMES experiment at DESY scattering the HERA 27.6 GeV positron beam off hydrogen and deuterium gas targets. Additionally, production tests of the HELIX128 3.0 chip are discussed. The chip is the frontend readout chip of the silicon recoil detector. The latter is a part of the HERMES recoil detector, which is built around the target area in order to detect the
Deeply Virtual Compton scattering at CERN. What is the size of the proton?
Energy Technology Data Exchange (ETDEWEB)
Joerg, Philipp
2017-04-27
Tremendous efforts have been made to understand the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism, which led to the successful discovery of the Higgs Boson and the clarification of the origin of the mass of fundamental particles. However, it is often forgotten that the vast majority of visible matter is given by baryons, which gain most of their mass dynamically within poorly known non-perturbative quantum chromodynamics processes. The best laboratory to study the underlying mechanisms of non-perturbative quantum chromodynamics is still given by the nucleon and the central question of how the macroscopic properties of a nucleon like its mass, spin and size can be comprehensively decomposed into the microscopic description in terms of quarks, antiquarks and gluons remains still open. A major part of the COMPASS-II program is dedicated to the investigation of Generalized Parton Distributions (GPDs), which aim for the most complete description of the partonic structure of the nucleon, comprising both, spacial and kinematic distributions. By including transverse degrees of freedom, a three dimensional picture of baryonic matter is created, which will revolutionise our understanding of what comprises 99 percent of the visible matter. GPDs are experimentally accessible via lepton-induced exclusive reactions, in particular the Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). At COMPASS, those processes are investigated using a high intensity muon beam of 160 GeV/c together with a 2.5 m-long liquid hydrogen target and an open field two stage spectrometer, to detect and identify charged and neutral particles. In order to optimize the selection of exclusive reactions at those energies, the target is surrounded by a new barrel-shaped time-of-flight system, which detects the recoiling target particles. A pilot run dedicated to the measurement of Generalized Parton distributions performed in 2012 allows for detailed performance studies
Longitudinal target-spin azimuthal asymmetry in Deeply-Virtual Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Kopytin, M.
2006-08-22
As a generalization of the usual Parton Distribution Functions (PDFs) Generalized Parton Distributions (GPDs), introduced a decade ago, contain additional information about quark and gluon distributions in the plane transverse to the direction of motion of the nucleon. Strong interest in GPDs was triggered by the work of X. Ji who demonstrated that in the forward limit GPDs can give information about the total angular momentum carried by quarks (gluons) in the nucleon. The hard exclusive electroproduction of a real photon, called Deeply Virtual Compton Scattering (DVCS), appears to be the theoretically cleanest way to access GPDs experimentally. This process has a final state identical to that of the Bethe-Heitler (BH) process where the photon is radiated from either incoming or outgoing lepton. Both processes are experimentally indistinguishable as their amplitudes interfere. The interference term involves linearly the amplitudes of the DVCS process giving access to GPDs. In this thesis results from HERMES are reported on an azimuthal asymmetry with respect to the spin of the proton target, which is attributed to the interference between the Bethe-Heitler process and the DVCS process. The asymmetry, also referred to as the longitudinal target-spin asymmetry (LTSA), gives access mainly to the polarized GPD H. The kinematic dependences of the LTSA on t, x{sub B} and Q{sup 2} are measured and compared with the corresponding measurements on the deuteron. The results are compared with theoretical calculations and with the recent CLAS measurements. The data, used for analysis in this thesis, have been accumulated by the HERMES experiment at DESY scattering the HERA 27.6 GeV positron beam off hydrogen and deuterium gas targets. Additionally, production tests of the HELIX128 3.0 chip are discussed. The chip is the frontend readout chip of the silicon recoil detector. The latter is a part of the HERMES recoil detector, which is built around the target area in order to
Development and characterization of a tunable ultrafast X-ray source via inverse-Compton-scattering
International Nuclear Information System (INIS)
Jochmann, Axel
2014-01-01
will serve as a milestone and starting point for the scaling of the X-ray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need.
Conti, C. C.; Anjos, M. J.; Salgado, C. M.
2014-09-01
X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.
Deeply Virtual Compton Scattering and its Beam Charge Asymmetry in $e^{\\pm} p$ Collisions at HERA
Aaron, F.D.; Alexa, C.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.
2009-01-01
A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e^+ p and e^- p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 306 pb^-1, almost equally shared between both beam charges. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma* p system in the kinematic domain 6.5 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. Using e^+ p and e^- p data samples, a beam charge asymmetry is extracted for the first time in the low Bjorken x kinematic domain. The observed asymmetry is attributed to the interference between Bethe-Heitler and deeply virtual Compton scattering processes. Experimental results are dis...
International Nuclear Information System (INIS)
Bildsten, L.; Zurek, W.H.
1988-01-01
Two observations of the gamma-ray spectrum from the direction of the Galactic center were made by HEAO 3 in the fall of 1979 and the spring of 1980. The 2-gamma 511 keV annihilation line flux decreased by a factor of about three during the 6 months between these observations, while the excess gamma-ray continuum below the annihilation line, often interpreted as 3-gamma decay of orthopositronium, barely changed. This discrepancy in temporal behavior makes the identification of the bulk of excess continuum as 3-gamma decay of positronium difficult. It is shown that Compton scattering of the line and high-energy radiation provides a natural explanation for the surprisingly small changes seen in the excess continuum. Scattered photons are delayed by a time corresponding to the size of the scattering region. For the annihilation source in the Galactic center, this distance is probably a fraction of a parsec. Thus, even after the high-energy continuum and annihilation line are gone, low-energy Compton-scattered photons can still be detected with an almost unchanged flux. 23 references
Energy Technology Data Exchange (ETDEWEB)
Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics
1978-04-01
Integral K-shell Compton scattering cross-sections in elements Nb, Mo, Ag, Cd, In, Sn and Sb have been determined for 1250 keV photons. The results when compared with theory suggest that K-shell electrons in the elements under investigation behave as free electrons.
International Nuclear Information System (INIS)
Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.
1982-01-01
Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)
2014-03-24
Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.
Vijayakumar, R.; Shivaramu; Ramamurthy, N.; Ford, M. J.
2008-12-01
Here we report the first ever 137Cs Compton spectroscopy study of lithium fluoride. The spherical average Compton profiles of lithium fluoride are deduced from Compton scattering measurements on poly crystalline sample at gamma ray energy of 662 keV. To compare the experimental data, we have computed the spherical average Compton profiles using self-consistent Hartree-Fock wave functions employed on linear combination of atomic orbital (HF-LCAO) approximation. The directional Compton profiles and their anisotropic effects are also calculated using the same HF-LCAO approximation. The experimental spherical average profiles are found to be in good agreement with the corresponding HF-LCAO calculations and in qualitative agreement with Hartree-Fock free atom values. The present experimental isotropic and calculated directional profiles are also compared with the available experimental isotropic and directional Compton profiles using 59.54 and 159 keV γ-rays.
Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y
2015-02-27
We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.
International Nuclear Information System (INIS)
Masakazu Washio; Kazuyuki Sakaue; Yoshimasa Hama; Yoshio Kamiya; Tomoko Gowa; Akihiko Masuda; Aki Murata; Ryo Moriyama; Shigeru Kashiwagi; Junji Urakawa
2007-01-01
High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)
A measurement of the Q{sup 2}, W and t dependences of deeply virtual Compton scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)
2008-12-15
Deeply virtual Compton scattering, {gamma}{sup *}p{yields}{gamma}p, has been measured in e{sup +}p collisions at HERA with the ZEUS detector using an integrated luminosity of 61.1 pb{sup -1}. Cross sections are presented as a function of the photon virtuality, Q{sup 2}, and photon-proton centre-of-mass energy, W, for a wide region of the phase space, Q{sup 2}>1.5 GeV{sup 2} and 40
Directory of Open Access Journals (Sweden)
K. Horikawa
2014-10-01
Full Text Available In 1957, Agodi predicted that the neutron angular distribution in (γ, n reactions with a 100% linearly polarized γ-ray beam for dipole excitation should be anisotropic and universally described by the simple function of a+b⋅cos(2ϕ at the polar angle θ=90°, where ϕ is the azimuthal angle. However, this prediction has not been experimentally confirmed in over half a century. We have verified experimentally this angular distribution in the (γ, n reaction for 197Au, 127I, and natural Cu targets using linearly polarized laser Compton scattering γ-rays. The result suggests that the (γ→, n reaction is a novel tool to study nuclear physics in the giant dipole resonance region.
International Nuclear Information System (INIS)
Reiter, G F; Deb, Aniruddha
2014-01-01
Neutron Compton scattering(NCS) measurements of the momentum distribution of light ions using the Vesuvio instrument at ISIS provide a sensitive local probe of the environment of those ions. NCS measurements of the proton momentum distribution in bulk water show only small deviations from the usual picture of water as a collection of molecules, with the protons covalently bonded to an oxygen and interacting weakly, primarily electrostatically, with nearby molecules. However, a series of measurements of the proton momentum distribution in carbon nanotubes, xerogel, and Nafion show that the proton delocalizes over distances of 0.2-0.3Å when water is confined on the scale of 20Å. This delocalization must be the result of changes in the Born-Oppenheimer surface for the protons, which would imply that there are large deviations in the electron distribution from that of a collection of weakly interacting molecules. This has been observed at Spring-8 using x-ray Compton scattering. The observed deviation in the valence electron momentum distribution from that of bulk water is more than an order of magnitude larger than the change observed in bulk water as the water is heated from just above melting to just below boiling. We conclude that the protons and electrons in nano-confined water are in a qualitatively different ground state from that of bulk water. Since the properties of this state persist at room temperature, and the confinement distance necessary to observe it is comparable to the distance between the elements of biological cells, this state presumably plays a role in the functioning of those cells
Energy Technology Data Exchange (ETDEWEB)
Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)
2014-09-15
Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)
Bohlen, TT; Patera, V; Sala, P R
2012-01-01
An accurate description of the basic physics processes of Compton scattering and positron annihilation in matter requires the consideration of atomic shell structure effects and, in specific, the momentum distributions of the atomic electrons. Two algorithms which model Compton scattering and two-quanta positron annihilation at rest accounting for shell structure effects are proposed. Two-quanta positron annihilation is a physics process which is of particular importance for applications such as positron emission tomography (PET). Both models use a detailed description of the processes which incorporate consistently Doppler broadening and binding effects. This together with the relatively low level of complexity of the models makes them particularly suited to be employed by fast sampling methods for Monte Carlo particle transport. Momentum distributions of shell electrons are obtained from parametrized one-electron Compton profiles. For conduction electrons, momentum distributions are derived in the framework...
International Nuclear Information System (INIS)
Suric, T.; Pisk, K.; Pratt, R.H.
1996-01-01
We examine the charge (Z) dependence of the nonrelativistic high energy limit for the double to total ionization ratio by Compton scattering of a photon, as well as by the photoeffect, utilizing our approach based on the impulse approximation or on the generalized shake-off theory. For all Z our high energy Compton ratio is about half the corresponding photoeffect ratio, calculated using the same assumptions or, alternatively, the ratio of double ionization by Compton scattering to double ionization by the photoeffect is about half the ratio for single ionization. We conclude that all current Compton calculations are consistent with this result, and we show that the recent calculation of Amusia and Mikhailov [Phys. Lett. A 199 (1995) 209] corresponds to our high Z results. (orig.)
International Nuclear Information System (INIS)
Kahl, T.
1976-01-01
Compton scattering on hydrogen, deuterium and heavy nuclei up to hold was studied at very small momentum transfer and at two energies. Measurements were carried out in the region 0.002LT= /t/ LT=0.06 (GeV/c)**2 at 5 GeV and in the region 0.001 LT=/t/LT=0.02 (GeV/c)**2 at 3 GeV. (orig.) [de
International Nuclear Information System (INIS)
Diaz Garcia, A.; Cabal Rodriguez, A.E.; Rubio Rodriguez, J. A.; Salicio Diez, J.; Perez Morales, J.M.; Vela Morales, O.; Willmott Zappacosta, C.; Van Espen, P.
2011-01-01
Electronically collimated Compton Cameras have been tested in Single Photon Emission Tomography (SPECT) systems instead of mechanically collimated gamma detectors in order to improve their limited sensitivity. One of the main factors that contribute to the worsening of the angular resolution and thus to the deterioration of the system spatial resolution is Doppler broadening. Double differential Klein-Nishina equation is used to consider the random movement of electron inside the crystal. It is important to perform this analysis for each particular material because is difficult to infer one simple Doppler broadening dependency of the atomic number Z. In high Z materials the internal electrons are strongly linked to the nucleus and therefore there can be found high momentums, but they represent just a small portion of the electrons that suffers Compton scattering. This work estimates the influence of the Doppler broadening in CdZnTe semiconductor for different incoming photon energies. For this means there are analyzed main Compton broadening processes in semiconductor Cd 0,8 Zn 0,2 Te with density ρ=5,85g/cm 3 . (Author)
International Nuclear Information System (INIS)
Fanelli, C.; Salme, G.; Cisbani, E.; Hamilton, D.; Wojtsekhowski, B.
2014-01-01
A preliminary analysis of polarization-transfer data at large scattering angle (70 degrees), obtained in an experiment of real Compton scattering on proton, performed in Hall-C of Jefferson Lab, is presented. It is also discussed the relevance of this kind of experiments for shedding light on the non-perturbative structure of the proton, at low energy, and on the transition from the non-perturbative regime to the perturbative one, that occurs at high energy. Moreover, the possibility to extract Compton form factors and the Generalized Parton Distributions (GPD), one of the most promising theoretical tool to determine the total angular momentum contribution of quarks and gluons to nucleon spin, is emphasized. The preliminary results appear consistent with GPD's based and Regge predictions. This is not sufficient yet to exclude pQCD COZ (Chernyak-Oglobin-Zhitnistsky) model, but it is another preliminary indication that the handbag approach seems to be the dominant mechanism at the energy of the experiment
International Nuclear Information System (INIS)
Gigante, G.E.; Sciuti, S.
1985-01-01
In this paper, experiments and related theoretical deductions on coherent/Compton scattering of 59.5-keV Am241 gamma line by bonelike materials are described. In particular, the authors demonstrate that a photon scattering mineralometer (PSM) can attain the best working conditions when it operates in a backscattering geometry mode. In fact, the large scattering angle they chose, theta = 135 degrees, allowed them to assemble a very compact source-detector device. Further, the relative sensitivity at 135 degrees turns out to be congruent to 1.7 and congruent to 6 times bigger than at 90 degrees and 45 degrees, respectively. The performances of the theta = 135 degrees PSM were experimentally investigated; i.e., in a measuring time of 10(3) s, a congruent to 5% statistical precision for bonelike materials, such as K 2 HPO 4 -water solutions, was obtained. The large-angle PSM device seems to be very promising for trabecular bone mineral density measurements in vivo in peripheral anatomic sites
International Nuclear Information System (INIS)
Gu Yi; Xiong Shengqing; Zhou Jianxin; Fan Zhengguo; Ge Liangquan
2014-01-01
γ-ray released by the radon daughter has severe impact on airborne γ-ray spectrometry. The spectral-ratio method is one of the best mathematical methods for radon background deduction in airborne γ-ray spectrometry. In this paper, an advanced spectral-ratio method was proposed which deducts Compton scattering ray by the fast Fourier transform rather than tripping ratios, the relationship between survey height and correction coefficient of the advanced spectral-ratio radon background correction method was studied, the advanced spectral-ratio radon background correction mathematic model was established, and the ground saturation model calibrating technology for correction coefficient was proposed. As for the advanced spectral-ratio radon background correction method, its applicability and correction efficiency are improved, and the application cost is saved. Furthermore, it can prevent the physical meaning lost and avoid the possible errors caused by matrix computation and mathematical fitting based on spectrum shape which is applied in traditional correction coefficient. (authors)
Compton scatter in germanium and its effect on imaging with gamma-ray position-sensitive detectors
International Nuclear Information System (INIS)
Sherman, I.S.; Strauss, M.G.; Brenner, R.
1978-01-01
The spatial spread due to Compton scatter in Ge was measured to study the reduction in image contrast and signal-to-noise ratio (S/N) resulting from erroneous readout in Ge position-sensitive detectors. The step response revealing this spread was obtained by scanning with a 122 keV γ-ray beam across a boundary of two sectors of a slotted coaxial Ge(Li) detector that is 40 mm diameter by 22 mm long. The derived line-spread function at 140 keV (/sup 99m/Tc) exhibits much shorter but thicker tails than those due to scatter in tissue as observed with a NaI detector through 5.5 cm of scattering material. Convolutions of rectangular profiles of voids with the Ge(Li) line-spread function show marked deterioration in contrast for voids less than 10 mm across, which in turn results in even greater deterioration of the S/N. As a result, the contrast for voids in Ge images is only 20 to 30 percent higher than that in NaI and the S/N is only comparable for equal detector areas. The degradation in image contrast due to scatter in Ge detectors can be greatly reduced by either using thin detectors (approximately 5 mm), where scatter virtually does not exist, or by using thicker detectors and rejecting scatter electronically. To reduce the effects of scatter on the S/N as well as on contrast, the erroneous position readouts must actually be corrected. A more realizable approach to achieving the ultimate potential of Ge detectors may be a scanning array of discrete detectors (not position sensitive) in which readout is not affected by scatter
Fonvieille, H; Laveissiere, G; Degrande, N; Jaminion, S; Jutier, C; Todor, L; Di Salvo, R; Van Hoorebeke, Luc; Alexa, LC; Anderson, BD; Aniol, KA; Arundell, K; Audit, G; Auerbach, L; Baker, FT
2012-01-01
Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep -> ep gamma. This paper gives a detailed account of the analysis which has led to the determination of the structure functions P-LL - P-TT/epsilon and P-LT and the electric and magnetic generalized polarizabilities (GPs) alpha(E) (Q(2)) and beta(M) (Q(2)) at values of the four-momentum transfer squared Q(2) = 0.92 and 1.76 GeV2. These data, toget...
International Nuclear Information System (INIS)
Airapetian, A.; Akopov, Z.
2009-09-01
Hard exclusive leptoproduction of real photons from an unpolarized proton target is studied in an effort to elucidate generalized parton distributions. The data accumulated during the years 1996-2005 with the HERMES spectrometer are analyzed to yield asymmetries with respect to the combined dependence of the cross section on beam helicity and charge, thereby revealing previously unseparated contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. The integrated luminosity is sufficient to show correlated dependences on two kinematic variables, and provides the most precise determination of the dependence on only the beam charge. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Guegan, Baptiste [Rensselaer Polytechnic Inst., Troy, NY (United States)
2012-11-01
The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.
Pion Virtual Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Ocherashvili, Aharon [Tel Aviv U.
2000-01-01
Plasma production via field ionization occurs when an incoming electron beam is sufficiently dense that the electric field associated with the beam ionizes the neutral vapor. Experiments at the Stanford Linear Accelerator Center (SLAC) explore the threshold conditions necessary to induce field ionization in a neutral lithium (Li) vapor. By independently varying the bunch length, transverse spot size or number of electrons per bunch, the radial component of the electric field is controlled to be above or below the threshold for field ionization. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments. Based on the experimental results, the incoming beam ionizes the neutral Li vapor when its peak electric field is approximately 5 G V / m and higher. This electric field translates into a peak charge density of approximately 3x 1016 cm-3 . The experimental conditions are approximated and simulated in a 2-D particle-in-cell code, OOPIC. The code and the data correspond well in terms of the correct threshold conditions and the dependence on the critical beam parameters. In addition to the ionization threshold, the field ionization effects are characterized by the beam's energy loss through the Li vapor column due to the plasma wake field production. The peak and average energy loss as a result of wake production and beam propagation through the plasma is compared with simulation results from OOPIC. The simulation code accurately predicts the peak energy loss of the beam, but approximations in the code produce differences between the average energy loss measured and the loss calculated by the simulation.
Energy Technology Data Exchange (ETDEWEB)
Bensafa, I.K
2006-05-15
The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q{sup 2} = 0.35 GeV{sup 2}) to measure the beam asymmetry in the ep {yields} ep{gamma} and ep {yields} ep{pi}{sup 0} reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for {pi}{sup 0}) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles ({gamma}{sup *}N {yields} {pi}N). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the {delta}(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)
International Nuclear Information System (INIS)
Marchand, D.
1998-11-01
This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation
Energy Technology Data Exchange (ETDEWEB)
Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)
2015-03-01
In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will
International Nuclear Information System (INIS)
Fedala, Y.
2008-10-01
The main goal of this thesis is the study and design of a high finesse Fabry Perot cavity to amplify a laser beam in order to achieve power gains ranging from 10 4 to 10 5 . This cavity is dedicated to the production of intense and monochromatic X-ray for medical applications (medical RADIOTHOMX ring) and gamma rays for a Compton based polarized positron source by Compton scattering of a high power laser beam and electron beam. To increase the brightness of the Compton interaction at the collision points, it is essential to have not only a high power laser beam but also very small laser beam radii at the interaction points. To achieve such performances, 2 scenarios are possible: a concentric 2 mirrors cavity which is mechanically unstable or a 4 mirrors cavity more complex but more stable. We tested numerically mechanical stability and stability of Eigen modes polarization of various planar and non-planar geometries of 4 mirrors cavities. Experimentally, we have developed a four mirrors tetrahedral 'bow-tie' cavity; radii of the order of 20 microns were made. The Eigen modes of such a cavity, in both planar and non planar geometries, were measured and compared with the numerical results. A good agreement was observed. In a second time, the impact of Compton interaction on the transverse dynamics, in the case of the polarized positrons source, and the longitudinal dynamic, in the case of the medical ring of the electron beam was studied. Compton scattering causes energy loss and induces an additional dispersion of energy in electron beam. For the polarized positrons source, 10 collision points are planned. The transport line has been determined and the modelling of the Compton interaction effect with a simple matrix calculation was made. For the medical ring, Compton scattering causes bunch lengthening and the increase of energy dispersion which are to influence the produced X-ray flux. A study of the longitudinal dynamics of the electron beam in the ring was
Laveissière, G; Todor, L; Degrande, N; Jaminion, S; Jutier, C; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Boeglin, W U; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C-C; Chen, J-P; Chudakov, E; Cisbani, E; Dale, D S; de Jager, C W; De Leo, R; Deur, A; d'Hose, N; Dodge, G E; Domingo, J J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gomez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; LeRose, J J; Liang, M; Lindgren, R A; Liyanage, N; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E A J M; Papandreou, Z; Pasquini, B; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R; Prout, D L; Punjabi, V A; Pussieux, T; Quémenér, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saito, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tieulent, R; Tomasi-Gustaffson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Vanderhaeghen, M; Van De Vyver, R; Van der Meer, R L J; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W-M; Zhao, J; Zhou, Z-L
2004-09-17
We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from piN intermediate states.
Energy Technology Data Exchange (ETDEWEB)
Munoz Camacho, C
2005-12-15
Generalized Parton Distributions (GPDs), introduced in the late 90's, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon. (author)
International Nuclear Information System (INIS)
Washio, M.; Sakaue, K.; Hama, Y.; Kamiya, Y.; Moriyama, R.; Hezume, K.; Saito, T.; Kuroda, R.; Kashiwagi, S.; Ushida, K.; Hayano, H.; Urakawa, J.
2006-01-01
High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emittance was about 3 mm·mrad at 100 pC of electron charge. The soft X-ray beam generation with the energy of 370 eV, which is in the energy region of so-called 'water window', by inverse Compton scattering has been performed by the collision between IR laser and the low emittance electron beams. (authors)
International Nuclear Information System (INIS)
Franzini, M.; Leoni, L.; Saitta, M.
1976-01-01
By utilizing a reflection geometry, an accurate mass absorption coefficient of a sample can be determined by measuring the Ag Kα Compton intensity. Intensities of Ag Kα Compton scattered radiation have been collected by using either the usual reflection geometry of a Philips PW 1450 automatic x-ray spectrometer or a more refined reflection geometry, achieved on a Philips PW 1540/10A manual x-ray spectrometer. The experimental results have shown that the relationship between the Ag Kα Compton intensity and the mass absorption is a logarithmic function. The experimental results are not in agreement with those reported in literature, but a theoretical explanation to account for this fact has not been achieved as yet. (author)
International Nuclear Information System (INIS)
Levin, C.S.; Tornai, M.P.; Cherry, S.R.; MacDonald, L.R.; Hoffman, E.J.
1997-01-01
To improve spatial resolution, positron emission tomography (PET) systems are being developed with finer detector elements. Unfortunately, using a smaller crystal size increases intercrystal Compton scatter and X-ray escape crosstalk, causing positioning errors that can lead to degradation of image contrast. The authors investigated the use of extremely thin lead strips for passive shielding of this intercrystal crosstalk. Using annihilation gamma rays and small Bismuth Germanate (BGO) crystal detectors in coincidence, crosstalk studies were performed with either two small adjacent crystals [(one-dimensional) (1-D)] or one crystal inside a volume of BGO [(two-dimensional) (2-D)]. The fraction of Compton scattered events from one crystal into an adjacent one was reduced, on average, by a factor of 3.2 (2.2) in the 1-D experiment and by a factor of 3.0 (2.1) in 2-D one, with a 300 (150)-microm-thick lead strip in between the crystals and a 300--700-keV energy window in both crystals. The authors could not measure a reduction in bismuth X-ray crosstalk with the sue of lead septa due to the production of lead X-rays of similar energy. The full-width at half-maximum (FWHM) of the coincident point-spread function (CPSF) was not significantly different for the 1- and 2-D studies, with or without the different septa in place. However, the FWTM was roughly 20% smaller with the 300-microm lead shielding in place. These results indicate that intercrystal crosstalk does not affect the positioning resolution at FWHM, but does affect the tails of the CPSF. Thus, without introducing any additional dead area, an insertion of very thin lead strips can reduce the extent of positioning errors. Reducing the intercrystal crosstalk in a high-resolution PET detector array could potentially improve tomographic image contrast in situations where intercrystal crosstalk plays a significant role in event mispositioning
International Nuclear Information System (INIS)
Thanh, Tran Thien; Nguyen, Vo Hoang; Chuong, Huynh Dinh; Tran, Le Bao; Tam, Hoang Duc; Binh, Nguyen Thi; Tao, Chau Van
2015-01-01
This article focuses on the possible application of a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets. In order to increase the reliability of the obtained experimental results and to verify the detector response function of Compton scattering spectrum, simulation using Monte Carlo N-particle (MCNP5) code is performed. The obtained results are in good agreement with the response functions of the simulation scattering and experimental scattering spectra. On the basis of such spectra, the saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°. This study aims at measuring the diameter of solid cylindrical objects by gamma-scattering technique. - Highlights: • This study aims a possible application a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets by gamma-scattering technique. • Monte Carlo N-particle (MCNP5) code is performed to verify on the detector response function of Compton scattering spectrum. • The results show a good agreement in response function of the experimental and simulation scattering spectra. • The saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°.
International Nuclear Information System (INIS)
Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.
2008-01-01
The gamma photons continue to soften in energy as the number of scatterings increases in the target having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness known as saturation thickness (depth). The present measurements are carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from targets of various thicknesses. The scattered photons are detected by a properly shielded NaI(Tl) gamma ray detector placed at 90 deg. to the incident beam. We observe that the saturation thickness increases with increasing incident gamma photon energy. Monte Carlo calculations based upon the package developed by Bauer and Pattison [Compton scattering experiments at the HMI (1981), HMI-B 364, pp. 1-106] support the present experimental results
International Nuclear Information System (INIS)
Duda, J.; Hoefner, F.W.; Jung, M.; Kleissler, R.; Kueck, H.; Leu, P.; Marne, K.D. de; Munk, B.; Vogl, W.; Wedemeyer, R.
1982-11-01
Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. The experiment covers photon laboratory energies between 1.2 GeV and 1.7 GeV and the square of the four-momentum transfer ranges from t = -0.17 GeV 2 to -0.98 GeV 2 corresponding to c.m. scattering angles between 35 0 and 80 0 . The cross sections exhibit a forward peak followed by a monotone fall-off up to the largest measured vertical stroketvertical stroke-values. Fits of the form dsigma/dt = A.exp(Bt) to the data points with vertical stroketvertical stroke 2 yield forward cross sections A, which are consistent with the 0 0 cross sections calculated from the measured total photon-proton cross section. The average slope is B = 5.6 +- 0.14 GeV 2 . (orig.)
International Nuclear Information System (INIS)
Jo, H.S.
2007-03-01
The Generalized Parton Distributions (GPDs), introduced in the 1990's, provide the most complete description of the structure (in quarks and gluons) of the nucleon. The Deeply Virtual Compton Scattering (DVCS), which corresponds to the 'hard' exclusive electroproduction of photons on the nucleon, is a key process among the reactions allowing access to the GPDs. A DVCS-dedicated experiment was carried out in 2005 with the CLAS detector of Jefferson Lab, using a polarized electron beam of 5.776 GeV and a hydrogen target. For this experiment, we built and used a dedicated electromagnetic calorimeter capable of detecting the final-state photon. The collected data allowed us to study the DVCS in the widest kinematic range ever accessed for this reaction: 1 2 2 , 0.1 B 2 . The work performed during this PhD includes simulation work done for the preparation of the experiment, timing calibration of one of the CLAS subsystems, and data analysis. The aim of the data analysis was the extraction of the unpolarized cross sections of the studied reaction and of the difference of the polarized cross sections, this latter observable being linearly proportional to the GPDs. The obtained results were compared to DVCS theoretical calculations based on one of the most up-to-date GPD parametrizations. (author)
Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun
2017-08-01
Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.
Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.
2004-08-01
We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.
International Nuclear Information System (INIS)
Guzey, V.; Teckentrup, T.
2006-01-01
We develop the minimal model of a new leading order parametrization of generalized parton distributions (GPDs) introduced by Polyakov and Shuvaev. The model for GPDs H and E is formulated in terms of the forward quark distributions, the Gegenbauer moments of the D-term, and the forward limit of the GPD E. The model is designed primarily for small and medium-size values of x B , x B ≤0.2. We examine two different models of the t dependence of the GPDs: the factorized exponential model and the nonfactorized Regge-motivated model. Using our model, we successfully described the deeply virtual Compton scattering (DVCS) cross section measured by H1 and ZEUS, the moments of the beam-spin A LU sinφ , the beam-charge A C cosφ , and the transversely polarized target A UT sinφcosφ DVCS asymmetries measured by HERMES and A LU sinφ measured by CLAS. The data on A C cosφ prefer the Regge-motivated model of the t dependence of the GPDs. The data on A UT sinφcosφ indicate that the u and d quarks carry only a small fraction of the proton total angular momentum
International Nuclear Information System (INIS)
Guegan, B.
2012-11-01
The Generalized Parton Distributions (GPDs) provide a new description of the nucleon structure in terms of its elementary constituents, the quarks and the gluons. The GPDs give access to a unified picture of the nucleon, correlating the information obtained from the measurements of the Form Factors and the Parton Distribution Functions. They describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark of the nucleon eN → e'N'γ, is the most straightforward exclusive process allowing access to the GPDs. A dedicated experiment to study DVCS with the CLAS detector of Jefferson Lab has been carried out using a 5.883 GeV polarized electron beam and an unpolarized hydrogen target, allowing to collect DVCS events in the widest kinematic range ever explored in the valence region: 1 2 2 , 0.1 B 2 . In this work, we present the extraction of three different DVCS observables: the unpolarized cross section, the difference of polarized cross sections and the beam spin asymmetry. We present comparisons with GPD model. We show a preliminary extraction of the GPDs using the latest fitting code procedure on our data, and a preliminary interpretation of the results in terms of parton density. (author)
International Nuclear Information System (INIS)
Gibson, David J.; Anderson, Scott G.; Barty, Christopher P.J.; Betts, Shawn M.; Booth, Rex; Brown, Winthrop J.; Crane, John K.; Cross, Robert R.; Fittinghoff, David N.; Hartemann, Fred V.; Kuba, Jaroslav; Le Sage, Gregory P.; Slaughter, Dennis R.; Tremaine, Aaron M.; Wootton, Alan J.; Hartouni, Edward P.; Springer, Paul T.; Rosenzweig, James B.
2004-01-01
The PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 μm rms, at 57 MeV, with 260 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820 nm laser pulse had an energy of 180 mJ and a duration of 54 fs. Initial x rays were captured with a cooled charge-coupled device using a cesium iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3x10 6 photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently under way, with the goal of reaching 10 8 photons/shot and a peak brightness approaching 10 20 photons/mm 2 /mrad 2 /s/0.1% bandwidth
Directory of Open Access Journals (Sweden)
Garry Jacobs
2013-05-01
Full Text Available This article is not a comprehensive factual history of money as an economic instrument. It aims rather to present an essential psychological history of the power of money as a social organization or social technology. It explores the catalytic role of money in the development of society and its ever-increasing capacity for accomplishment in both economic and non-economic fields. This perspective focuses attention on the unutilized potential for harnessing the social power of money for promoting full employment, global development and human welfare. The title ‘multiplying money’ is intended to convey the idea that this untapped potential is exponential in nature. In order to recognize it, some fundamental misconceptions about the nature of money, how it is created and on what it is based need to be examined. This is the second article in a series.
International Nuclear Information System (INIS)
Chighvinadze, T; Pistorius, S
2014-01-01
Purpose: To investigate the dependence of the reconstructed image quality on the number of projections in multi-projection Compton scatter tomography (MPCST). The conventional relationship between the projection number used for reconstruction and reconstructed image quality pertained to CT does not necessarily apply to MPCST, which can produce images from a single projection if the detectors have sufficiently high energy and spatial resolution. Methods: The electron density image was obtained using filtered-backprojection of the scatter signal over circular arcs formed using Compton equation. The behavior of the reconstructed image quality as a function of the projection number was evaluated through analytical simulations and characterized by CNR and MTF. Results: The increase of the projection number improves the contrast with this dependence being a function of fluence. The number of projections required to approach the asymptotic maximum contrast decreases as the fluence increases. Increasing projection number increases the CNR but not spatial resolution. Conclusions: For MPCST using a 500eV energy resolution and a 2×2mm 2 size detector, an adequate image quality can be obtained with a small number of projections provided the incident fluence is high enough. This is conceptually different from conventional CT where a minimum number of projections is required to obtain an adequate image quality. While increasing projection number, even for the lowest dose value, the CNR increases even though the number of photons per projection decreases. The spatial resolution of the image is improved by increasing the sampling within a projection rather than by increasing the number of projections
Bhatt, Samir; Mund, H. S.; Kumar, Kishor; Bapna, Komal; Dashora, Alpa; Itou, M.; Sakurai, Y.; Ahuja, B. L.
2018-05-01
Spin momentum densities of ferromagnetic ZrFe2 and Zr0.8Sc0.2Fe2 have been measured using magnetic Compton scattering with 182.65 keV circularly polarized synchrotron radiations. Site specific spin moments, which are responsible for the formation of total spin moment, have been deduced from Compton line shapes. At room temperature, the computed spin moment of ZrFe2 is found to be slightly higher than that of Sc doped ZrFe2 which is in consensus with the magnetization data. To compare the experimental data, we have also computed magnetic Compton profiles (MCPs), total and partial spin projected density of states (DOS) and the site specific spin moments using spin-polarized relativistic Korringa-Kohn-Rostoker method. It is observed that the spin moment at Fe site is aligned antiparallel to that of Zr site in both ZrFe2 and Zr0.8Sc0.2Fe2. The MCP results when compared with vibrating sample magnetometer based magnetization data, show a very small contribution of orbital moment in the formation of total magnetic moments in both the compounds. The DOS of ferromagnetic ground state of ZrFe2 and Zr0.8Sc0.2Fe2 are interpreted on the basis of a covalent magnetic model beyond the Stoner rigid band model. It appears that on alloying between a magnetic and a non-magnetic partner (with low valence), a polarization develops on the non-magnetic atom which is anti-parallel to that of the magnetic atom.
International Nuclear Information System (INIS)
Rehman, Haseeb ur; Lee, Jiyoung; Kim, Yonghee
2015-01-01
This paper also presents sensitivity analysis to yield the maximum possible photo-transmutation rates. In general the possibility of radionuclide transmutation using photo-neutron reaction is evaluated in this work. In this paper a detailed methodology to calculate transmutation reaction rates using Laser Induced Bremsstrahlung (LIB) and Laser Compton Scattering (LCS) has been discussed. The methodology was validated by comparing the calculated reaction rates against published data in publically accessed literatures. In the second half of the paper, the authors present a novel concept to narrow down the LCS photon spectrum to an energy range that matches with the resonance region of a particular radionuclide. This is particularly useful considering hazardous waste is usually a mix of different isotopes. As such, being able to tune the LCS photon into any narrow energy range so as to selectively transmute any particular isotope of interest in the hazardous waste mixture would be very desirable. LCS spectrum is highly sensitive to the electron beam energy, laser power, laser luminosity and Compton backscattering angle. From the results it is quite evident that LCS is much better option for the radionuclide transmutation as reaction rates for the LCS is much higher than LIB method even for very small laser power. It can be seen even for the optimistic reaction rate calculations with Bremsstrahlung method reaction rate is much lower than LCS case for 10 Hz repetition rate. If repetition rate of laser 100 Hz then LIB reaction rate has the same order of the magnitude as the reaction rate via LCS. Higher Laser Powers can yield very high transmutation rates
2013-01-01
A few weeks ago, I had a vague notion of what TED was, and how it worked, but now I’m a confirmed fan. It was my privilege to host CERN’s first TEDx event last Friday, and I can honestly say that I can’t remember a time when I was exposed to so much brilliance in such a short time. TEDxCERN was designed to give a platform to science. That’s why we called it Multiplying Dimensions – a nod towards the work we do here, while pointing to the broader importance of science in society. We had talks ranging from the most subtle pondering on the nature of consciousness to an eighteen year old researcher urging us to be patient, and to learn from our mistakes. We had musical interludes that included encounters between the choirs of local schools and will.i.am, between an Israeli pianist and an Iranian percussionist, and between Grand Opera and high humour. And although I opened the event by announcing it as a day off from physics, we had a quite brill...
International Nuclear Information System (INIS)
Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio
2005-01-01
In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)
International Nuclear Information System (INIS)
Park, Ji Sung
2012-02-01
In order to obtain the physical properties of an inspection object using an X-ray source, the energy-resolving X-ray method, reflecting the characteristic of continuous energy, is a very useful tool. In this study, the effective atomic number (Z eff ) and normal density (ρ) obtained by the source weighting method on a dual energy X-ray inspection system are presented and demonstrated by experimental implementation. Two X-ray beams of the suggested method were designed using the XCOMP5r code. The filter design of a high energy X-ray source was fixed as 3.5 mm Sn at 150 kVp tube voltage, and the new high energy X-ray beam was named as IN150. The filter design of a low energy X-ray source was also fixed as 0.5 mm Sn at 90 kVp tube voltage, and the new beam was named as IN90. Benchmark calculations by MCNP simulation experiments were performed using four different materials, i.e., Polyethylene, Acetal, Urethane, and TNT. The results of the benchmark calculation showed that the new method can estimate the effective atomic number and the normal density of a scattered object accurately, even when the object was arbitrarily located in samples. Finally to verify the proposed new method, scattering experiments using various polymerized compounds were carried out. The effective attenuation coefficients (μ 1 , μ 2 ) of the experiment objects at the source energies E 1 and E 2 , were calculated using scattered spectra. The effective atomic number and the normal density were then calculated by using the ratio of μ 1 to μ 2 . As a result in case of all sample geometries, the relative differences between the calculation value and the reference value for the effective atomic numbers of each material were within 14 %, and the relative differences for the normal densities were within 12 %. This observation led us to the conclusion that the new 90 .deg. Compton scattering method for identifying explosive materials using a dual-energy X-ray is valid for calculating effective
Energy Technology Data Exchange (ETDEWEB)
Hattawy, M.; Baltzell, N. A.; Dupré, R.; Hafidi, K.; Stepanyan, S.; Bültmann, S.; De Vita, R.; El Alaoui, A.; El Fassi, L.; Egiyan, H.; Girod, F. X.; Guidal, M.; Jenkins, D.; Liuti, S.; Perrin, Y.; Torayev, B.; Voutier, E.; Adhikari, K. P.; Adhikari, S.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Armstrong, Whitney R.; Avakian, H.; Ball, J.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Thanh Cao, Frank; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D’Angelo, A.; Dashyan, N.; De Sanctis, E.; Deur, A.; Djalali, C.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Meziani, Z. E.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Strauch, S.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.
2017-11-01
We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized He-4 gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber is used to detect the recoiling He-4 nuclei. We measure beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we are able to extract, in a model-independent way, the real and imaginary parts of the only He-4 Compton form factor, HA. This first measurement of coherent deeply virtual Compton scattering on the He-4 nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhenyu
2007-02-15
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
International Nuclear Information System (INIS)
Ye, Zhenyu
2007-02-01
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)
2014-11-15
A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.
International Nuclear Information System (INIS)
LaJohn, L A; Pratt, R H
2009-01-01
We discuss the increase in error with increasing nuclear charge Z in the use of the relativistic impulse approximation (RIA) for the calculation of Compton K-shell scattering doubly differential cross sections (DDCS). We also show that nonrelativistic (nr) expressions can be used to obtain accurate peak region DDCS at scattering angles less than about 35 0 even at incident photon energies ω i exceeding 1 MeV, if Z<30. This is possible because in the Compton peak region, as θ→0, a low momentum transfer limit is being approached.
International Nuclear Information System (INIS)
Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.
1976-01-01
A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described
International Nuclear Information System (INIS)
Comby, G.
1996-01-01
The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)
Energy Technology Data Exchange (ETDEWEB)
Camsonne, A
2005-11-15
The Hall A Deeply Virtual Compton Scattering (DVCS) experiment used the 5.757 GeV polarized electron beam available at Jefferson Laboratory and ran from september until december 2004. Using the standard Hall A left high resolution spectrometer three kinematical points were taken at a fixed x{sub b}(jorken) = 0.32 value for three Q{sup 2} values: 1.5 GeV{sup 2}, 1.91 GeV{sup 2}, 2.32 GeV{sup 2}. An electromagnetic Lead Fluoride calorimeter and a proton detector scintillator array designed to work at a luminosity of 10{sup 37} cm{sup -2}s{sup -1} were added to ensure the exclusivity of the DVCS reaction. In addition to the new detectors new custom electronics was used: a calorimeter trigger module which determines if an electron photon coincidence has occurred and a sampling system allowing to deal with pile-up events during the offline analysis. Finally the data from the kinematic at Q{sup 2} = 2.32 GeV{sup 2} and s = 5.6 GeV{sup 2} allowed to get a preliminary result for the exclusive {pi}{sup 0} electroproduction on the proton. (author)
Vasquez Sierra, Ricardo
2006-01-01
This thesis discusses two main topics. First, the cross section of the process e + e - [arrow right]Ze + e - is measured with 0.7 ph - of data collected with the L3 detector at LEP. Decays of the Z boson into quarks and muons are considered at center-of-mass energies ranging frond 183 GeV up to 209 GeV. The measurements are found to agree with Standard Model predictions, achieving a precision of about 10% for the hadronic channel. Second, Compton scattering of quasi-real virtual photons, γe ± [arrow right]γe ± , is studied with 0.6 fb - 1 of data collected by the L3 detector at LEP at center-of-mass energies [Special characters omitted.] = 189--209GeV. About 4500 events produced by the interaction of virtual photons emitted by particles of one beam with particles of the opposite beam are collected for effective center-of-mass energies of photon-electron and photon-positron systems in the range [Special characters omitted.] = 35 GeV up to [Special characters omitted.] = 175 GeV, the highest energy at which...
International Nuclear Information System (INIS)
Laveissiere, G.
2001-11-01
In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focussed on the VCS experiment performed at Jefferson Lab in 1998. The 4 GeV electron beam is scattered off a cryogenic hydrogen target, and the scattered electron and recoiled proton are detected in coincidence in the twin hall A spectrometers. The photon (pion) is reconstructed using a missing particle technique. The data analysis allowed to extract the cross sections relative to both process at four-momentum transfer squared Q 2 = 1 GeV 2 . The VCS cross section has been extracted for the first time in the proton resonance region (W between 1.O and 2.0 GeV) through the photon electroproduction reaction. Around the pion-production threshold up to the Delta(1232) resonance region, these results lead to the measurement of the generalized polarizabilities, that describe the proton structure in the same way as the elastic form factors. Moreover, the neutral pion electroproduction cross section measurement in the resonance region has brought new constraints on the existing phenomenological models. (author)
Energy Technology Data Exchange (ETDEWEB)
Girod, F.X
2006-12-15
The structure of the nucleon, among the first fundamental problems in hadronic physics, is the subject of a renewed interest. The lightest baryonic state has historically been described in two complementary approaches: through elastic scattering, measuring form factors which reflect the spatial shape of charge distributions, and through deep inelastic scattering, providing access to parton distribution functions which encode the momentum content carried by the constituents. The recently developed formalism of Generalized Parton Distributions unifies those approaches and provides access to new informations. The cleanest process sensitive to GPDs is the deeply virtual Compton scattering (DVCS) contributing to the ep {yields} ep{gamma} reaction. This work deals with a dedicated experiment accomplished with the CLAS detector, completed with two specific equipments: a lead tungstate calorimeter covering photon detection at small angles, and a superconducting solenoid actively shielding the electromagnetic background. The entire project is covered: from the upgrade of the experimental setup, through the update of the software, data taking and analysis, up to a first comparison of the beam spin asymmetry to model predictions. (author)
Energy Technology Data Exchange (ETDEWEB)
Aleksanyan, A.S.; Babayan, G.E.; Voskanyan, A.V.; Gasparyan, A.D.; Gevorkyan, S.R.; Karapetyan, S.N.; Ketikyan, A.Z.; Megrabyan, G.K.; Movsisyan, K.A.; Oganesyan, G.A.; and others
1987-04-01
The differential cross sections for Compton scattering by nuclei of /sup 4//sub 2/ He have been measured at the momentum transfers 0.02less than or equal tochemically bondtchemically bond<0.14 (GeV/c)/sup 2/ in the energy region E/sub ..gamma../ = 1.8--3.8 GeV. On the basis of the diffraction theory of multiple scattering the values of the differential cross sections at t = 0, of the slope parameters of the diffraction cone, and of the /sup 4//sub 2/ He nucleus radius have been determined. Experimental values are given for the phase of the scattering amplitude by nucleons, ..cap alpha..( f/sup 0//sub i/) = Re f/sup 0//sub i// Im f/sup 0//sub i/. On the basis of the differential cross sections at t = 0 the total photoabsorption cross section and the photon screening coefficient are determined for the /sup 4//sub 2/ He nucleus.
Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro
2017-09-01
Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.
Energy Technology Data Exchange (ETDEWEB)
Cornejo, Juan Carlos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. As of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by its lack of a description of gravity, nor dark matter. Its largest challenge to date, has been the observation of neutrino oscillations, and the implication that they may not be massless, as required by the Standard Model. The growing consensus is that the Standard Model is simply a lower energy effective field theory, and that new physics lies at much higher energies. The Q_{weak} Experiment is testing the Electroweak theory of the Standard Model by making a precise determination of the weak charge of the proton (Q^{p}_{w}). Any signs of "new physics" will appear as a deviation to the Standard Model prediction. The weak charge is determined via a precise measurement of the parity-violating asymmetry of the electron-proton interaction via elastic scattering of a longitudinally polarized electron beam of an un-polarized proton target. The experiment required that the electron beam polarization be measured to an absolute uncertainty of 1%. At this level the electron beam polarization was projected to contribute the single largest experimental uncertainty to the parity-violating asymmetry measurement. This dissertation will detail the use of Compton scattering to determine the electron beam polarization via the detection of the scattered photon. I will conclude the remainder of the dissertation with an independent analysis of the blinded Q_{weak}.
The Multiply Handicapped Child.
Wolf, James M., Ed.; Anderson, Robert M., Ed.
Articles presented in the area of the medical and educational challenge of the multiply handicapped child are an overview of the problem, the increasing challenge, congenital malformations, children whose mothers had rubella, prematurity and deafness, the epidemiology of reproductive casualty, and new education for old problems. Discussions of…
Microchannel electron multiplier
International Nuclear Information System (INIS)
Beranek, I.; Janousek, L.; Vitovsky, O.
1981-01-01
A microchannel electron multiplier is described for detecting low levels of alpha, beta, soft X-ray and UV radiations. It consists of a glass tube or a system of tubes of various shapes made of common technological glass. The inner tube surface is provided with an active coat with photoemitter and secondary emitter properties. (B.S.)
Flowers, William L., Jr.; Harris, John B.
1981-01-01
The multiplier effect is discussed as it applies to the field of continuing education. The authors' main point is that one grant or contract can, and should, be used as the basis for building organizational competencies and capabilities that will secure other funds. (Author/CT)
Pritha Mitra; Tigran Poghosyan
2015-01-01
Amid renewed crisis, falling tax revenues, and rising debt, Ukraine faces serious fiscal consolidation needs. Durable fiscal adjustment can support economic confidence and rebuild buffers but what is its overall impact on growth? How effective are revenue versus spending instruments? Does current or capital spending have a larger impact? Applying a structural vector autoregressive model, this paper finds that Ukraine’s near-term revenue and spending multipliers are well below one. In the medi...
Nelson, Jane Bray
2012-01-01
As a new physics teacher, I was explaining how to find the weight of an object sitting on a table near the surface of the Earth. It bothered me when a student asked, "The object is not accelerating so why do you multiply the mass of the object by the acceleration due to gravity?" I answered something like, "That's true, but if the table were not…
K-shell ionization and double-ionization of Au atoms with 1.33 MeV photons
International Nuclear Information System (INIS)
Belkacem, A.; Dauvergne, D.; Feinberg, B.; Ionescu, D.; Maddi, J.; Sorensen, A.H.
2000-01-01
At relativistic energies, the cross section for the atomic photoelectric effect drops off as does the cross section for liberating any bound electron through Compton scattering. However, when the photon energy exceeds twice the rest mass of the electron, ionization may proceed via electron-positron pair creation. We used 1.33 MeV photons impinging on Au thin foils to study double K-shell ionization and vacuum-assisted photoionization. The preliminary results yield a ratio of vacuum-assisted photoionization and pair creation of 2x10 -3 , a value that is substantially higher than the ratio of photo double ionization to single photoionization that is found to be 0.5-1x10 -4 . Because of the difficulties and large error bars associated with the small cross sections additional measurements are needed to minimize systematic errors
Virtual Compton Scattering at Jefferson Lab
International Nuclear Information System (INIS)
Laveissiere, G.
2003-01-01
The presentation, subtitled 'Extraction of Proton Generalized Polarisabilities at Q2=1.0 and 1.9 GeV2 using a Dispersion Relations Formalism' highlighted activities in the following areas: Electroproduction of photons experiment: analysis below and above π 0 production threshold; Proton Generalized Polarisabilities extraction above π 0 production threshold, specifics of the Jlab E93050 experiment, Cross section results and dispersion relations fit at the Q2 = 0.923 GeV2 and Q2 = 1.760 GeV2 levels; and ending with a comparsion of structure functions and dispersion relations parameters analysis
Experimental confirmation of neoclassical Compton scattering theory
Energy Technology Data Exchange (ETDEWEB)
Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)
2013-12-15
Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.
Compton scatter tomography in TOF-PET
Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis
2017-10-01
Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.
Colour coherence in deep inelastic Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Lebedev, A.I.; Vazdik, J.A. (Lebedev Physical Inst., Academy of Sciences, Moscow (USSR))
1992-01-01
MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p{sub t} and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.).
Colour coherence in deep inelastic Compton scattering
International Nuclear Information System (INIS)
Lebedev, A.I.; Vazdik, J.A.
1992-01-01
MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p t and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.)
High-quality beam generation using an RF gun and a 150 MeV microtron
Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.
2000-11-01
Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.
UWB delay and multiply receiver
Energy Technology Data Exchange (ETDEWEB)
Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.
2013-09-10
An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.
Effective switching frequency multiplier inverter
Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI
2007-08-07
A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.
Microwave Frequency Multiplier
Velazco, J. E.
2017-02-01
High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing
Lagrange multipliers and gravitational theory
International Nuclear Information System (INIS)
Elston, F.D.
1977-01-01
The Lagrange multiplier variational method is extended to nonlinear Lagrangians in a Riemann space, where it is shown explicitly for the quadratic Lagrangians that, as expected, this approach is equivalent to the Hilbert variational method. It is not, in general, equivalent to the Palatini variational method. The nonvanishing Lagrange multipliers for the quadratic Lagrangians are explicitly obtained in covariant form. A similiar analysis is then carried out in a Riemann--Cartan torsional metric space for the specific Lagrangians g/sup 1/2/R tilde and g/sup 1/2/R/sub uv/tilde R/sup uv/tilde. The possible relevance of the R/sub uv/R/sup u anti v/ invariant to an action-principle formulation of the Rainich--Misner--Wheeler (RMW) already-unified theory is also discussed. It is then pointed out how a different use of the Lagrange multiplier technique in the language of the 3 + 1 canonical formalism developed by Arnowitt, Deser, and Misner (ADM) permits the recasting of the equations of motion for quadratic and general higher-order invariants into the ADM canonical formalism. In general, without this Lagrange multiplier approach, the higher-order ADM problem could not be solved. This is done explicitly for the simplest quadratic Langrangian g/sup 1/2/R 2 as an example
Multiplied Environmental Literacy. Final Report.
Buethe, Chris
This booklet presents a pupil-oriented program designed to increase the environmental literacy of teachers and students in Indiana schools through a programmed multiplier effect. Junior and senior high school science teachers were prepared to teach students the meanings of 44 selected environmental terms and related concepts. Those teachers then…
Directory of Open Access Journals (Sweden)
Itoga Toshiro
2017-01-01
Full Text Available Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.
233U breeding and neutron multiplying blankets for fusion reactors
International Nuclear Information System (INIS)
Cook, A.G.; Maniscalco, J.A.
1975-01-01
In this work, along with a previous paper three possible uses of 14-MeV deuterium--tritium fusion neutrons are investigated: energy production, neutron multiplication, and fissile-fuel breeding. The results presented include neutronic studies of fissioning and nonfissioning thorium systems, tritium breeding systems, various fuel options (UO 2 , UC, UC 2 , etc.), and uranium as well as refractory metal first-wall neutron-multiplying regions. A brief energy balance and an estimate of potential revenues for fusion devices are given to help illustrate the potentials of these designs
Energy Technology Data Exchange (ETDEWEB)
Bouchigny, S
2004-04-01
The first part describe my work on the frozen spin target project HYDILE. This target has to be made of very pure HD (Hydrogen Deuterium), better than 99.95%. However, commercial HD is never found with a concentration better than 98%. The goal was, then, to build an HD distillation facility which could produce pure HD. We describe, in this thesis, the design of the distillator and the implementation of a quadrupole mass spectrometer to monitor the HD purity during the distillation process. The second part of the thesis concerns the analysis taken at the electron accelerator facility TJNAF (Virginia, USA). We look at the electroproduction of Delta resonances involving Deep Virtual Compton Scattering (DeltaVCS). The interpretation of this reaction in terms of GPDs (Generalized Parton Distribution) can provide new insights to the nucleon structure. We focus on the measurement of the beam spin asymmetry which comes from the interference of the Bethe Heitler process with the DeltaVCS. (author)
Energy Technology Data Exchange (ETDEWEB)
Jo, H.S
2007-03-15
The Generalized Parton Distributions (GPDs), introduced in the 1990's, provide the most complete description of the structure (in quarks and gluons) of the nucleon. The Deeply Virtual Compton Scattering (DVCS), which corresponds to the 'hard' exclusive electroproduction of photons on the nucleon, is a key process among the reactions allowing access to the GPDs. A DVCS-dedicated experiment was carried out in 2005 with the CLAS detector of Jefferson Lab, using a polarized electron beam of 5.776 GeV and a hydrogen target. For this experiment, we built and used a dedicated electromagnetic calorimeter capable of detecting the final-state photon. The collected data allowed us to study the DVCS in the widest kinematic range ever accessed for this reaction: 1 < Q{sup 2} < 4.6 GeV{sup 2}, 0.1 < x{sub B} < 0.58, 0.09 < -t < 2 GeV{sup 2}. The work performed during this PhD includes simulation work done for the preparation of the experiment, timing calibration of one of the CLAS subsystems, and data analysis. The aim of the data analysis was the extraction of the unpolarized cross sections of the studied reaction and of the difference of the polarized cross sections, this latter observable being linearly proportional to the GPDs. The obtained results were compared to DVCS theoretical calculations based on one of the most up-to-date GPD parametrizations. (author)
Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.
2004-09-01
Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.
International Nuclear Information System (INIS)
Kurudirek, Murat; Ozdemir, Yueksel
2011-01-01
The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) have been calculated for some essential amino acids, fatty acids and carbohydrates in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameter geometric progression (G-P) fitting approximation has been used to calculate both EABF and EBF. Variations of EABF and EBF with incident photon energy, penetration depth and weight fraction of elements have been studied. While the significant variations in EABF and EBF for amino acids and fatty acids have been observed at the intermediate energy region where Compton scattering is the main photon interaction process, the values of EABF and EBF appear to be almost the same for all carbohydrates in the continuous energy region. It has been observed that the fatty acids have the largest EABF and EBF at 0.08 and 0.1 MeV, respectively, whereas the maximum values of EABF and EBF have been observed for aminoacids and carbohydrates at 0.1 MeV. At the fixed energy of 1.5 MeV, the variation of EABF with penetration depth appears to be independent of the variations in chemical composition of the amino acids, fatty acids and carbohydrates. Significant variations were also observed between EABF and EBF which may be due to the variations in chemical composition of the given materials.
Synthesis algorithm of VLSI multipliers for ASIC
Chua, O. H.; Eldin, A. G.
1993-01-01
Multipliers are critical sub-blocks in ASIC design, especially for digital signal processing and communications applications. A flexible multiplier synthesis tool is developed which is capable of generating multiplier blocks for word size in the range of 4 to 256 bits. A comparison of existing multiplier algorithms is made in terms of speed, silicon area, and suitability for automated synthesis and verification of its VLSI implementation. The algorithm divides the range of supported word sizes into sub-ranges and provides each sub-range with a specific multiplier architecture for optimal speed and area. The algorithm of the synthesis tool and the multiplier architectures are presented. Circuit implementation and the automated synthesis methodology are discussed.
International Nuclear Information System (INIS)
Avakian, R.O.; Ispirian, K.A.
2004-01-01
Full text: The existing synchrotron radiation sources and the fourth generation x-ray sources, which are projected at SLAC, USA, and DESY, Germany, are very expensive. For this reason the search of the novel and cheaper sources using various types of radiation produced by 5-20 MeV electrons available at many hospitals, universities and firms in various countries is of great interest. In this article a review of the physics, history, new theoretical and experimental results and of some applications is given with a purpose to consider the possibilities of construction of small tabletop sources of quasimonochromatic X-ray photon beams necessary for scientific, industrial, medicine and other applications. Simple formulae for almost all types of radiation are given with the help of which one can estimate the expected useful yield and background. PACS: 41.60.-m; 43.35.Ty; 61.85+p;m 78.67.Pt; 78.70.-g. Key words: Bremsstrahlung/Cherenkov radiation/ Transition radiation / Parametric X-ray radiation / Channeling radiation/ Compton scattering
GEM the gas electron multiplier
Sauli, Fabio
1997-01-01
We describe the basic structure and operation of a new device, the Gas Electron Multiplier. Consisting in a polymer foil, metal-clad on both sides and perforated by a high density of holes, the GEM mesh allows to pre-amplify charges released in the gas with good uniformity and energy. Coupled to a micro-strip plate, the pre-amplification element allows to preserve high rate capability and resolution at considerably lower operating voltages, thus completely eliminating discharges and instabilities. Several GEM grids can be operated in cascade; charge gains are large enough to allow detection of signals in the ionization mode on the last element, permitting the use of a simple printed circuit as read-out electrode. Two-dimensional read-out can then be easily implemented. A new generation of simple, reliable and cheap fast position sensitive detectors seems at hand.
Otanps synapse linear relation multiplier circuit
International Nuclear Information System (INIS)
Chible, H.
2008-01-01
In this paper, a four quadrant VLSI analog multiplier will be proposed, in order to be used in the implementation of the neurons and synapses modules of the artificial neural networks. The main characteristics of this multiplier are the small silicon area and the low power consumption and the high value of the weight input voltage. (author)
On compact multipliers of topological algebras
International Nuclear Information System (INIS)
Mohammad, N.
1994-08-01
It is shown that if the maximal ideal space Δ(A) of a semisimple commutative complete metrizable locally convex algebra contains no isolated points, then every compact multiplier is trivial. Particularly, compact multipliers on semisimple commutative Frechet algebras whose maximal ideal space has no isolated points are identically zero. (author). 5 refs
Faster and Energy-Efficient Signed Multipliers
Directory of Open Access Journals (Sweden)
B. Ramkumar
2013-01-01
Full Text Available We demonstrate faster and energy-efficient column compression multiplication with very small area overheads by using a combination of two techniques: partition of the partial products into two parts for independent parallel column compression and acceleration of the final addition using new hybrid adder structures proposed here. Based on the proposed techniques, 8-b, 16-b, 32-b, and 64-b Wallace (W, Dadda (D, and HPM (H reduction tree based Baugh-Wooley multipliers are developed and compared with the regular W, D, H based Baugh-Wooley multipliers. The performances of the proposed multipliers are analyzed by evaluating the delay, area, and power, with 65 nm process technologies on interconnect and layout using industry standard design and layout tools. The result analysis shows that the 64-bit proposed multipliers are as much as 29%, 27%, and 21% faster than the regular W, D, H based Baugh-Wooley multipliers, respectively, with a maximum of only 2.4% power overhead. Also, the power-delay products (energy consumption of the proposed 16-b, 32-b, and 64-b multipliers are significantly lower than those of the regular Baugh-Wooley multiplier. Applicability of the proposed techniques to the Booth-Encoded multipliers is also discussed.
Spin sensitivity of a channel electron multiplier
International Nuclear Information System (INIS)
Scholten, R.E.; McClelland, J.J.; Kelley, M.H.; Celotta, R.J.
1988-01-01
We report direct measurements of the sensitivity of a channel electron multiplier to electrons with different spin orientations. Four regions of the multiplier cone were examined using polarized electrons at 100-eV incident energy. Pulse counting and analog modes of operation were both investigated and in each case the observed spin effects were less than 0.5%
Enhanced fuel production in thorium fusion hybrid blankets utilizing uranium multipliers
International Nuclear Information System (INIS)
Pitulski, R.H.; Chapin, D.L.; Klevans, E.
1979-01-01
The multiplication of 14 MeV D-T fusion neutrons via (n,2n), (n,3n), and fission reactions by 238 U is well known and established. This study consistently evaluates the effectiveness of a depleted (tails) UO 2 multiplier on increasing the production of 233 U and tritium in a thorium/lithium fusion--fission hybrid blanket. Nuclear performance is evaluated as a function of exposure and zone thickness
The gas electron multiplier (GEM)
Bouclier, Roger; Dominik, Wojciech; Hoch, M; Labbé, J C; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A
1996-01-01
We describe operating priciples and results obtained with a new detector component: the Gas Electrons Multiplier (GEM). Consisting of a thin composite sheet with two metal layers separated by a thin insulator, and pierced by a regular matrix of open channels, the GEM electrode, inserted on the path of electrons in a gas detector, allows to transfer the charge with an amplification factor approaching ten. Uniform response and high rate capability are demonstrated. Coupled to another device, multiwire or micro-strip chamber, the GEM electrode permit to obtain higher gains or less critical operation; separation of the sensitive (conversion) volume and the detection volume has other advantages, as a built-in delay (useful for triggering purposes) and the possibility of applying high fields on the photo-cathode of ring imaging detectors to improve efficiency. Multiple GEM grids in the same gas volume allow to obtain large amplification factors in a succession of steps, leading to the realization of an effective ga...
Gaseous Electron Multiplier (GEM) Detectors
Gnanvo, Kondo
2017-09-01
Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.
Pb(n,2n) cross section at 14.1 MeV
International Nuclear Information System (INIS)
Zhou Delin
1991-01-01
Pb is a potential candidate for the neutron multiplier of the fusion reactor, so its (n, 2n) cross section at 14 MeV is of importance. This work is carried out to get a new evaluation of Pb (n,2n) cross section at 14.1 MeV for checking the angle-integrated neutron emission cross section. The equal weight averaged value 2252 +- 40 Mb is adopted in the evaluation
Keynesian multiplier versus velocity of money
Wang, Yougui; Xu, Yan; Liu, Li
2010-08-01
In this paper we present the relation between Keynesian multiplier and the velocity of money circulation in a money exchange model. For this purpose we modify the original exchange model by constructing the interrelation between income and expenditure. The random exchange yields an agent's income, which along with the amount of money he processed determines his expenditure. In this interactive process, both the circulation of money and Keynesian multiplier effect can be formulated. The equilibrium values of Keynesian multiplier are demonstrated to be closely related to the velocity of money. Thus the impacts of macroeconomic policies on aggregate income can be understood by concentrating solely on the variations of money circulation.
Calculated characteristics of multichannel photoelectron multipliers
International Nuclear Information System (INIS)
Vasil'chenko, V.G.; Dajkovskij, A.G.; Milova, N.V.; Rakhmatov, V.E.; Rykalin, V.I.
1990-01-01
Structural features and main calculated characteristics of some modifications of position-sensitive two-coordinate multichannel photoelectron multipliers (PEM) with plate-type multiplying systems are described. The presented PEM structures are free from direct optical and ion feedbacks, provide coordinate resolution ≅ 1 mm with efficiency of photoelectron detection ≅ 90%. Capabilities for using silicon field-effect photocathodes, providing electron extraction into vacuum, as well as prospects of using multichannel multiplying systems for readout of the data from solid detectors are considered
Multipliers for continuous frames in Hilbert spaces
International Nuclear Information System (INIS)
Balazs, P; Bayer, D; Rahimi, A
2012-01-01
In this paper, we examine the general theory of continuous frame multipliers in Hilbert space. These operators are a generalization of the widely used notion of (discrete) frame multipliers. Well-known examples include anti-Wick operators, STFT multipliers or Calderón–Toeplitz operators. Due to the possible peculiarities of the underlying measure spaces, continuous frames do not behave quite as their discrete counterparts. Nonetheless, many results similar to the discrete case are proven for continuous frame multipliers as well, for instance compactness and Schatten-class properties. Furthermore, the concepts of controlled and weighted frames are transferred to the continuous setting. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Study of Compton scattering influence in cardiac SPECT images
International Nuclear Information System (INIS)
Munhoz, A.C.L.; Abe, R.; Zanardo, E.L.; Robilotta, C.C.
1992-01-01
The reduction effect from Compton fraction in the quality of and image is evaluated, with two ways of acquisition data: one, with the window of energetic analyser dislocated over the photopeak and the other, with two windows, one over the Compton contribution and the other, placed in the center over the photopeak. (C.G.C.)
Laser propagation and compton scattering in parabolic plasma channel
Dongguo, L; Yokoya, K; Hirose, T
2003-01-01
A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)
Monte Carlo simulation of virtual compton scattering at MAMI
International Nuclear Information System (INIS)
D'Hose, N.; Ducret, J.E.; Gousset, TH.; Guichon, P.A.M.; Kerhoas, S.; Lhuillier, D.; Marchand, C.; Marchand, D.; Martino, J.; Mougey, J.; Roche, J.; Vanderhaeghen, M.; Vernin, P.; Bohm, H.; Distler, M.; Edelhoff, R.; Friedrich, J.M.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merkel, H.; Merle, K.; Neuhausen, R.; Pospischil, TH.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, TH.; Wolf, S.; Hyde-Wright, CH.; Boeglin, W.U.; Van de Wiele, J.
1996-01-01
The Monte Carlo simulation developed specially for the VCS experiments taking place at MAMI in fully described. This simulation can generate events according to the Bethe-Heitler + Born cross section behaviour and takes into account resolution deteriorating effects. It is used to determine solid angles for the various experimental settings. (authors)
Meson-induced correlations of nucleons in nuclear Compton scattering
International Nuclear Information System (INIS)
Huett, M.; Milstein, A.I.
1998-01-01
The nonresonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is discussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities. copyright 1998 The American Physical Society
Fast sampling algorithm for the simulation of photon Compton scattering
International Nuclear Information System (INIS)
Brusa, D.; Salvat, F.
1996-01-01
A simple algorithm for the simulation of Compton interactions of unpolarized photons is described. The energy and direction of the scattered photon, as well as the active atomic electron shell, are sampled from the double-differential cross section obtained by Ribberfors from the relativistic impulse approximation. The algorithm consistently accounts for Doppler broadening and electron binding effects. Simplifications of Ribberfors' formula, required for efficient random sampling, are discussed. The algorithm involves a combination of inverse transform, composition and rejection methods. A parameterization of the Compton profile is proposed from which the simulation of Compton events can be performed analytically in terms of a few parameters that characterize the target atom, namely shell ionization energies, occupation numbers and maximum values of the one-electron Compton profiles. (orig.)
Stimulated ion Compton scattering instability of whistlers in plasmas
International Nuclear Information System (INIS)
Shukla, P. K.; Shukla, Nitin; Stenflo, L.
2006-01-01
The nonlinear interactions between magnetic field-aligned broadband whistler wave packets (hereafter referred to as whistlerons) and ion quasimodes in magnetized plasmas are considered. By treating the whistlerons as quasiparticles, their nonlinear propagation in a slowly varying medium supported by ion quasimode density perturbations is studied. A nonlinear dispersion relation within the framework of the wave-kinetic (for the whistlerons) and Vlasov (for the ion quasimodes) descriptions is derived. The dispersion relation admits a kinetic modulational instability. The growth rate of the latter is presented. The present result can improve our understanding of the nonlinear propagation of incoherent whistlers, which have been frequently observed in the Earth's magnetosphere as well as in laboratory plasmas
Induced Compton scattering of a laser in an inhomogeneous plasma
International Nuclear Information System (INIS)
Liu, C.S.; Tripathi, V. K.
2003-01-01
A laser propagating through a high temperature low density plasma undergoes induced Compton backscattering involving the coupling of the laser pump and the scattered electromagnetic wave via the resonant electrons or the resistive quasimode. The region of nonlinear interaction is localized due to plasma inhomogeneity. At short density scale lengths when the interaction region is strongly localized and resonant electrons quickly move out of it, the electron distribution function remains Maxwellian and Compton reflectivity is significant at laser intensity >10 16 W/cm 2 . In gentle density gradients the resonant electrons are trapped in the ponderomotive and self-consistent potential well of the quasimode as they enter the interaction region. The ones with velocity v z p (v p being the phase velocity of the ponderomotive wave propagating along z direction) are accelerated to v p while those with v z >v p are retarded to v p . Since the number of the former is more than that of the latter there is a net momentum transfer to electrons. Momentum and action conservation lead to a reflectivity, R, that initially goes as the square of pump intensity, then rises gradually at higher intensity. R decreases rapidly with v th /v p , where v th is the thermal velocity of electrons
Nucleon Compton Scattering with Two Space-Like Photons
International Nuclear Information System (INIS)
Andrei Afanasev; I. Akushevich; N.P. Merenkov
2002-01-01
We calculate two-photon exchange effects for elastic electron-proton scattering at high momentum transfers. The corresponding nucleon Compton amplitude is defined by two space-like virtual photons that appear to have significant virtualities. We make predictions for (a) a single-spin beam asymmetry, and (b) a single-spin target asymmetry or recoil proton polarization caused by an unpolarized electron beam
Compton scattering of gamma rays in nondestructive testing
International Nuclear Information System (INIS)
Anjos, M.J. dos; Lopes, R.T.
1988-01-01
A system constituted of a Cesium 137 source with activity of 7,4 x 10 10 Bq, whose gamma rays energy is 662 KeV and a NaI (Tl) of 50 x 50 mm as surface inspection techniques is presented. The physical basic principle is the gamma radiation interaction with matter, where the predominant interaction is the comption scattering. The scattering angle chose is 90 0 . Aluminium blocks, are used as sample with defects in surfaces of several diameters. Defects with measurements higher than 1,6 mm, were detected. (C.M.) [pt
Detection of detachments and inhomogeneities in frescos by Compton scattering
International Nuclear Information System (INIS)
Castellano, A.; Cesareo, R.; Buccolieri, G.; Donativi, M.; Palama, F.; Quarta, S.; De Nunzio, G.; Brunetti, A.; Marabelli, M.; Santamaria, U.
2005-01-01
A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'
Detection of detachments and inhomogeneities in frescos by Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Castellano, A. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Cesareo, R. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy) and INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy)]. E-mail: cesareo@uniss.it; Buccolieri, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Donativi, M. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); Palama, F. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Quarta, S. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); De Nunzio, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy); Marabelli, M. [Istituto Centrale del Restauro, P.zza S. Francesco di Paola, 00184 Rome (Italy); Santamaria, U. [Laboratori dei Musei Vaticani, Citta del Vaticano, Rome (Italy)
2005-07-01
A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'.
Experiments in Special Relativity Using Compton Scattering of Gamma Rays.
Egelstaff, P. A.; And Others
1981-01-01
Some simple undergraduate laboratory experiments are described, which verify the energy-momentum relationship of special relativity. These experiments have been designed either to be used as classroom demonstrations or to be carried out by second-year students. (Author/JN)
Formal analogy between Compton scattering and Doppler effect
DEFF Research Database (Denmark)
Nielsen, A.; Olsen, Jørgen Seir
1966-01-01
Viewed from the scatterer, the energy of the incoming photon or particle is equal to that of the outgoing, and the angle of incidence is equal to the angle of reflection, when the direction of the velocity of the scatterer after the collision is taken as reference. This paper sets out to prove...... this statement in a more simple and direct way. The authors only consider the Compton scatting process as it is quite analogous to the particle case....
Simple Regge pole model for Compton scattering of protons
International Nuclear Information System (INIS)
Saleem, M.; Fazal-e-Aleem
1978-01-01
It is shown that by a phenomenological choice of the residue functions, the differential cross section for ν p → ν p, including the very recent measurements up to - t=4.3 (GeV/c) 2 , can be explained at all measured energies greater than 2 GeV with simple Regge pole model
Deeply virtual Compton scattering in a relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Spitzenberg, T.
2007-09-15
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N{yields}N and N{yields}{delta} transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N{yields}{delta} GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)
Relativistic inverse Compton scattering of photons from the early universe.
Malu, Siddharth; Datta, Abhirup; Colafrancesco, Sergio; Marchegiani, Paolo; Subrahmanyan, Ravi; Narasimha, D; Wieringa, Mark H
2017-12-05
Electrons at relativistic speeds, diffusing in magnetic fields, cause copious emission at radio frequencies in both clusters of galaxies and radio galaxies through non-thermal radiation emission called synchrotron. However, the total power radiated through this mechanism is ill constrained, as the lower limit of the electron energy distribution, or low-energy cutoffs, for radio emission in galaxy clusters and radio galaxies, have not yet been determined. This lower limit, parametrized by the lower limit of the electron momentum - p min - is critical for estimating the total energetics of non-thermal electrons produced by cluster mergers or injected by radio galaxy jets, which impacts the formation of large-scale structure in the universe, as well as the evolution of local structures inside galaxy clusters. The total pressure due to the relativistic, non-thermal population of electrons can be measured using the Sunyaev-Zel'dovich Effect, and is critically dependent on p min , making the measurement of this non-thermal pressure a promising technique to estimate the electron low-energy cutoff. We present here the first unambiguous detection of this Sunyaev-Zel'dovich Effect for a non-thermal population of electrons in a radio galaxy jet/lobe, located at a significant distance away from the center of the Bullet cluster of galaxies.
Accurate Compton scattering measurements for N{sub 2} molecules
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Kohjiro [Advanced Technology Research Center, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Itou, Masayoshi; Tsuji, Naruki; Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoya, Tetsuo; Sakurai, Hiroshi, E-mail: sakuraih@gunma-u.ac.jp [Department of Production Science and Technology, Gunma University, 29-1 Hon-cho, Ota, Gunma 373-0057 (Japan)
2011-06-14
The accurate Compton profiles of N{sub 2} gas were measured using 121.7 keV synchrotron x-rays. The present accurate measurement proves the better agreement of the CI (configuration interaction) calculation than the Hartree-Fock calculation and suggests the importance of multi-excitation in the CI calculations for the accuracy of wavefunctions in ground states.
Economic Multipliers and Mega-Event Analysis
Victor Matheson
2004-01-01
Critics of economic impact studies that purport to show that mega-events such as the Olympics bring large benefits to the communities “lucky” enough to host them frequently cite the use of inappropriate multipliers as a primary reason why these impact studies overstate the true economic gains to the hosts of these events. This brief paper shows in a numerical example how mega-events may lead to inflated multipliers and exaggerated claims of economic benefits.
Optical studies of multiply excited states
International Nuclear Information System (INIS)
Mannervik, S.
1989-01-01
Optical studies of multiply-excited states are reviewed with emphasis on emission spectroscopy. From optical measurements, properties such as excitation energies, lifetimes and autoionization widths can be determined with high accuracy, which constitutes a challenge for modern computational methods. This article mainly covers work on two-, three- and four-electron systems, but also sodium-like quartet systems. Furthermore, some comments are given on bound multiply-excited states in negative ions. Fine structure effects on transition wavelengths and lifetimes (autoionization) are discussed. In particular, the most recent experimental and theoretical studies of multiply-excited states are covered. Some remaining problems, which require further attention, are discussed in more detail. (orig.) With 228 refs
Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications
International Nuclear Information System (INIS)
Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles
2003-01-01
The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant
Energy Technology Data Exchange (ETDEWEB)
Laveissiere, G
2001-11-01
In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focussed on the VCS experiment performed at Jefferson Lab in 1998. The 4 GeV electron beam is scattered off a cryogenic hydrogen target, and the scattered electron and recoiled proton are detected in coincidence in the twin hall A spectrometers. The photon (pion) is reconstructed using a missing particle technique. The data analysis allowed to extract the cross sections relative to both process at four-momentum transfer squared Q{sup 2} = 1 GeV{sup 2}. The VCS cross section has been extracted for the first time in the proton resonance region (W between 1.O and 2.0 GeV) through the photon electroproduction reaction. Around the pion-production threshold up to the Delta(1232) resonance region, these results lead to the measurement of the generalized polarizabilities, that describe the proton structure in the same way as the elastic form factors. Moreover, the neutral pion electroproduction cross section measurement in the resonance region has brought new constraints on the existing phenomenological models. (author)
Semigroups of Herz-Schur multipliers
DEFF Research Database (Denmark)
Knudby, Søren
2014-01-01
function (see Theorem 1.2). It is then shown that a (not necessarily proper) generator of a semigroup of Herz–Schur multipliers splits into a positive definite kernel and a conditionally negative definite kernel. We also show that the generator has a particularly pleasant form if and only if the group...
A quantum architecture for multiplying signed integers
International Nuclear Information System (INIS)
Alvarez-Sanchez, J J; Alvarez-Bravo, J V; Nieto, L M
2008-01-01
A new quantum architecture for multiplying signed integers is presented based on Booth's algorithm, which is well known in classical computation. It is shown how a quantum binary chain might be encoded by its flank changes, giving the final product in 2's-complement representation.
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Shigeo; Morotomi, Ryutaro; Kondo, Tetsuo; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering
2000-03-01
Secondary gamma-ray skyshine and groundshine, including the direct contribution from the facility building, have been measured with an Hp-Ge detector and an NaI(Tl) detector at the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan. The mechanism of secondary gamma-rays propagation were analyzed with the measured spectrum with the Hp-Ge detector. The contribution of the skyshine was shown to be a continuum spectrum that was composed of mainly Compton scattered high energy secondary gamma-rays generated in the facility building created by (n, {gamma}) reaction. The contribution of the groundshine considerably contained secondary gamma-rays generated by {sup nat}Si (n, {gamma}) reaction in soil, including the albedo contribution from the ground. And the total contribution contained capture gamma-rays from iron (Fe) and other nuclides. The measurements with the NaI(Tl) detector as well as the Hp-Ge detector were carried out to investigate the dependence of gamma-ray dose as a function of distance from the neutron source up to hundreds meters. Consequently, it was found that the dependence could be fitted with the function of const.{center_dot}exp(-r/{lambda})/r{sup n}, where n values were around 2 except for the skyshine (n {approx} 1). It was thus indicated that the contribution of the skyshine could be propagated farther downfield than the direct contribution from the facility. The measured ratios of the three contributions (skyshine, groundshine, and direct contributions) and the distance dependence in each path were shown to be in good agreement with calculated results by the Monte Carlo transport code MCNP-4A. And the total contributions for the two detectors of NaI(Tl) and Hp-Ge agree excellently with each other. (author)
Equations for the stochastic cumulative multiplying chain
Energy Technology Data Exchange (ETDEWEB)
Lewins, J D [Cambridge Univ. (UK). Dept. of Engineering
1980-01-01
The forward and backward equations for the conditional probability of the neutron multiplying chain are derived in a new generalization accounting for the chain length and admitting time dependent properties. These Kolmogorov equations form the basis of a variational and hence complete description of the 'lumped' multiplying system. The equations reduce to the marginal distribution, summed over all chain lengths, and to the simpler equations previously derived for that problem. The method of derivation, direct and in the probability space with the minimum of mathematical manipulations, is perhaps the chief attraction: the equations are also displayed in conventional generating function form. As such, they appear to apply to number of problems in areas of social anthropology, polymer chemistry, genetics and cell biology as well as neutron reactor theory and radiation damage.
Equations for the stochastic cumulative multiplying chain
International Nuclear Information System (INIS)
Lewins, J.D.
1980-01-01
The forward and backward equations for the conditional probability of the neutron multiplying chain are derived in a new generalization accounting for the chain length and admitting time dependent properties. These Kolmogorov equations form the basis of a variational and hence complete description of the 'lumped' multiplying system. The equations reduce to the marginal distribution, summed over all chain lengths, and to the simpler equations previously derived for that problem. The method of derivation, direct and in the probability space with the minimum of mathematical manipulations, is perhaps the chief attraction: the equations are also displayed in conventional generating function form. As such, they appear to apply to number of problems in areas of social anthropology, polymer chemistry, genetics and cell biology as well as neutron reactor theory and radiation damage. (author)
Tourism multipliers in the Mexican economy
Directory of Open Access Journals (Sweden)
Antonio Kido-Cruz
2016-12-01
Full Text Available This paper presents an analysis of the multiplier impact generated by the tourism sector in Mexico in the year 2013. The importance of studying this sector, in particular, lies in its contribution to the National GDP of over 8% and in its promising development based on services’ quality and the preferred destination of the developed countries. In addition, it is proposed to simulate the multiplier impact that will generate two current events, as they are, the construction of the new International Airport of Mexico and the increase of the investment in Fibers. The results were very punctual, a better distribution of the investment is generated, it is invested in the tourism sector, mainly in variables such as value added and remuneration.
Integrated optic vector-matrix multiplier
Watts, Michael R [Albuquerque, NM
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Single electron based binary multipliers with overflow detection ...
African Journals Online (AJOL)
electron based device. Multipliers with overflow detection based on serial and parallel prefix computation algorithm are elaborately discussed analytically and designed. The overflow detection circuits works in parallel with a simplified multiplier to ...
Tax Multipliers: Pitfalls in Measurement and Identification
Daniel Riera-Crichton; Carlos A. Vegh; Guillermo Vuletin
2012-01-01
We contribute to the literature on tax multipliers by analyzing the pitfalls in identification and measurement of tax shocks. Our main focus is on disentangling the discussion regarding the identification of exogenous tax policy shocks (i.e., changes in tax policy that are not the result of policymakers responding to output fluctuations) from the discussion related to the measurement of tax policy (i.e., finding a tax policy variable under the direct control of the policymaker). For this purp...
Electron cyclotron resonance multiply charged ion sources
International Nuclear Information System (INIS)
Geller, R.
1975-01-01
Three ion sources, that deliver multiply charged ion beams are described. All of them are E.C.R. ion sources and are characterized by the fact that the electrons are emitted by the plasma itself and are accelerated to the adequate energy through electron cyclotron resonance (E.C.R.). They can work without interruption during several months in a quasi-continuous regime. (Duty cycle: [fr
Multiplier-free filters for wideband SAR
DEFF Research Database (Denmark)
Dall, Jørgen; Christensen, Erik Lintz
2001-01-01
This paper derives a set of parameters to be optimized when designing filters for digital demodulation and range prefiltering in SAR systems. Aiming at an implementation in field programmable gate arrays (FPGAs), an approach for the design of multiplier-free filters is outlined. Design results...... are presented in terms of filter complexity and performance. One filter has been coded in VHDL and preliminary results indicate that the filter can meet a 2 GHz input sample rate....
Mining, regional Australia and the economic multiplier
Directory of Open Access Journals (Sweden)
Paul Cleary
2012-12-01
Full Text Available Mining in Australia has traditionally delivered a strong development multiplier for regional communities where most mines are based. This relationship has weakened in recent decades as a result of the introduction of mobile workforces - typically known as fly in, fly out. Political parties have responded with policies known as ‘royalties for regions’, though in designing them they overlooked long established Indigenous arrangements for sharing benefits with areas affected directly by mining.
The Uncertainty Multiplier and Business Cycles
Saijo, Hikaru
2013-01-01
I study a business cycle model where agents learn about the state of the economy by accumulating capital. During recessions, agents invest less, and this generates noisier estimates of macroeconomic conditions and an increase in uncertainty. The endogenous increase in aggregate uncertainty further reduces economic activity, which in turn leads to more uncertainty, and so on. Thus, through changes in uncertainty, learning gives rise to a multiplier effect that amplifies business cycles. I use ...
Isometric multipliers of a vector valued Beurling algebra on a ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 127; Issue 1. Isometric multipliers of a vector valued Beurling algebra on a discrete semigroup. Research Article Volume 127 Issue 1 February 2017 pp 109- ... Keywords. Weighted semigroup; multipliers of a semigroup; Beurling algebra; isometric multipliers.
Study of heterogeneous multiplying and non-multiplying media by the neutron pulsed source technique
International Nuclear Information System (INIS)
Deniz, V.
1969-01-01
The pulsed neutron technique consists essentially in sending in the medium to be studied a short neutron pulse and in determining the asymptotic decay constant of the generated population. The variation of the decay constant as a function of the size of the medium allows the medium characteristics to be defined. This technique has been largely developed these last years and has been applied as well to moderator as to multiplying media, in most cases homogeneous ones. We considered of interest of apply this technique to lattices, to see if useful informations could be collected for lattice calculations. We present here a general theoretical study of the problem, and results and interpretation of a series of experiments made on graphite lattices. There is a good agreement for non-multiplying media. In the case of multiplying media, it is shown that the age value used until now in graphite lattices calculations is over-estimated by about 10 per cent [fr
Transient phenomena in bounded fast multiplying assemblies
International Nuclear Information System (INIS)
Kraft, T.E.
1976-01-01
A generalized dispersion formalism is developed in the context of time-, space-, and energy-dependent transport theory. The evolution of the neutron population in a fast multiplying system following an initial burst of neutrons is examined. The generalized dispersion law obtained is an integral equation, in one variable, for the Laplace and Fourier transformed time- and space-dependent sources of fission neutrons. An approximation technique is shown to generate solutions which converge in L 2 norm to the exact solution for exact elastic, exact inelastic, Goertzel-Grueling or Wigner scattering kernels, and any reasonable fission spectrum
Quasiparticle trapping and the quasiparticle multiplier
International Nuclear Information System (INIS)
Booth, N.E.
1987-01-01
Superconductors and in particular superconducting tunnel junctions can be used to detect phonons, electromagnetic radiation, x rays, and nuclear particles by the mechanism of Cooper-pair breaking to produce excess quasiparticles and phonons. We show that the sensitivity can be increased by a factor of 100 or more by trapping the quasiparticles in another superconductor of lower gap in the region of the tunnel junction. Moreover, if the ratio of the gap energies is >3 a multiplication process can occur due to the interaction of the relaxation phonons. This leads to the concept of the quasiparticle multiplier, a device which could have wider applications than the Gray effect transistor or the quiteron
Multipliers on Generalized Mixed Norm Sequence Spaces
Directory of Open Access Journals (Sweden)
Oscar Blasco
2014-01-01
Full Text Available Given 1≤p,q≤∞ and sequences of integers (nkk and (nk′k such that nk≤nk′≤nk+1, the generalized mixed norm space ℓℐ(p,q is defined as those sequences (ajj such that ((∑j∈Ik|aj|p1/pk∈ℓq where Ik={j∈ℕ0 s.t. nk≤j
Effects of tritium on electron multiplier performance
International Nuclear Information System (INIS)
Kerst, R.A.; Malinowski, M.E.
1980-01-01
In developing diagnostic instruments for fusion reactors, it is necessary to measure the effects of tritium contamination on channel electron multipliers (CEM). A CEM was exposed to T 2 pressures of up to 1.5 x 10 -1 Pa, with exposure quantities ranging up to 8800 Pa-s. The counting rate of the CEM is shown to consist of a prompt (Type I) signal caused by gas-phase tritium and a residual (Type II) signal, probably caused by near-surface tritium. The potential for using CEMs for observing the dynamics of tritium adsorption and absorption is discussed
Rhinoplasty for the multiply revised nose.
Foda, Hossam M T
2005-01-01
To evaluate the problems encountered on revising a multiply operated nose and the methods used in correcting such problems. The study included 50 cases presenting for revision rhinoplasty after having had 2 or more previous rhinoplasties. An external rhinoplasty approach was used in all cases. Simultaneous septal surgery was done whenever indicated. All cases were followed for a mean period of 32 months (range, 1.5-8 years). Evaluation of the surgical result depended on clinical examination, comparison of pre- and postoperative photographs, and degree of patients' satisfaction with their aesthetic and functional outcome. Functionally, 68% suffered nasal obstruction that was mainly caused by septal deviations and nasal valve problems. Aesthetically, the most common deformities of the upper two thirds of the nose included pollybeak (64%), dorsal irregularities (54%), dorsal saddle (44%), and open roof deformity (42%), whereas the deformities of lower third included depressed tip (68%), tip contour irregularities (60%), and overrotated tip (42%). Nasal grafting was necessary in all cases; usually more than 1 type of graft was used in each case. Postoperatively, 79% of the patients, with preoperative nasal obstruction, reported improved breathing; 84% were satisfied with their aesthetic result; and only 8 cases (16%) requested further revision to correct minor deformities. Revision of a multiply operated nose is a complex and technically demanding task, yet, in a good percentage of cases, aesthetic as well as functional improvement are still possible.
Quantum mechanics in a multiply connected region
International Nuclear Information System (INIS)
Miyazawa, H.
1986-01-01
It is usually assumed that wave fields or wave functions are single valued functions of space-time. However, the phase of a complex field is an unobservable quantity and there is no obvious reason that it must be single valued. On this point quantum mechanics in a multiply connected regions is not well formulated. This ambiguity appears e.g., in the case of the Bohm-Aharonov effect concerning the observability of the vector potential around a magnetic flux. The author discusses the single or multiple valuedness of wave functions and attempts to see if such an effect really exists or not. The wave function of a charged particle in a multiply connected region is not necessarily single valued. The condition that the ground state energy be a minimum fixes the character of the multiple valuedness. For a charged particle around a magnetic flux a multiple valued wave function is preferable and no Bohm-Aharonov effect is observed. The minimum energy principle is proved if one also considers the interaction of a charged particle with external objects. Then theoretically the Bohm-Aharonov effect should not be observed. Experiments are not yet conclusive on this point
Tritium-caused background currents in electron multipliers
International Nuclear Information System (INIS)
Malinowski, M.E.
1979-05-01
One channel electron multiplier (Galileo No. 4501) and one 14 stage Be/Cu multiplier (Dumont No. SPM3) were exposed to tritium pressures between approx. 10 -7 Torr to 10 -3 Torr in amounts from approx. 10 -5 Torr-s to 60 Torr-s and the β-decay caused currents in the multipliers measured. The background currents in both multipliers consisted of two components: (1) a high, reversible current which was proportional to the tritium exposure pressure; and (2) a lower, irreversible background current which increased with increasing cumulative tritium exposure. The β-decay caused currents in each multiplier increased the same way with exposure, suggesting the detected electrons arose from decaying tritium adsorbed on surfaced external to the multipliers
Hadamard Multipliers and Abel Dual of Hardy Spaces
Directory of Open Access Journals (Sweden)
Paweł Mleczko
2016-01-01
Full Text Available The paper is devoted to the study of Hadamard multipliers of functions from the abstract Hardy classes generated by rearrangement invariant spaces. In particular the relation between the existence of such multiplier and the boundedness of the appropriate convolution operator on spaces of measurable functions is presented. As an application, the description of Hadamard multipliers into H∞ is given and the Abel type theorem for mentioned Hardy spaces is proved.
φ-Multipliers on Banach Algebras and Topological Modules
Adib, Marjan
2015-01-01
We prove some results concerning Arens regularity and amenability of the Banach algebra ${M}_{\\phi }(A)$ of all $\\phi $ -multipliers on a given Banach algebra $A$ . We also consider $\\phi $ -multipliers in the general topological module setting and investigate some of their properties. We discuss the $\\phi $ -strict and $\\phi $ -uniform topologies on ${M}_{\\phi }(A)$ . A characterization of $\\phi $ -multipliers on ${L}_{1}(G)$ -module ${L}_{p}(G)$ , where $G$ is a compact group, is given.
Performance of gas electron multiplier (GEM) detector
International Nuclear Information System (INIS)
Han, S. H.; Moon, B. S.; Kim, Y. K.; Chung, C. E.; Kang, H. D.; Cho, H. S.
2002-01-01
We have investigated in detail the operating properties of Gas Electron Multiplier (GEM) detectors with a double conical and a cylindrical structure in a wide range of external fields and GEM voltages. With the double conical GEM, the gain gradually increased with time by 10%; whereas this surface charging was eliminated with the cylindrical GEM. Effective gains above 1000 were easily observed over a wide range of collection field strengths in a gas mixture of Ar/CO 2 (70/30). The transparency and electron collection efficiency were found to depend on the ratio of external field and the applied GEM voltage; the mutual influence of both drift and collection fields was found to be trivial
Charge transfer in gas electron multipliers
Energy Technology Data Exchange (ETDEWEB)
Ottnad, Jonathan; Ball, Markus; Ketzer, Bernhard; Ratza, Viktor; Razzaghi, Cina [HISKP, Bonn University, Nussallee 14-16, D-53115 Bonn (Germany)
2015-07-01
In order to efficiently employ a Time Projection Chamber (TPC) at interaction rates higher than ∝1 kHz, as foreseen e.g. in the ALICE experiment (CERN) and at CB-ELSA (Bonn), a continuous operation and readout mode is required. A necessary prerequisite is to minimize the space charge coming from the amplification system and to maintain an excellent spatial and energy resolution. Unfortunately these two goals can be in conflict to each other. Gas Electron Multipliers (GEM) are one candidate to fulfill these requirements. It is necessary to understand the processes within the amplification structure to find optimal operation conditions. To do so, we measure the charge transfer processes in and between GEM foils with different geometries and field configurations, and use an analytical model to describe the results. This model can then be used to predict and optimize the performance. The talk gives the present status of the measurements and describes the model.
Neutron multiplier alternative for fusion reactor blankets
International Nuclear Information System (INIS)
Taczanowski, S.
1980-01-01
A proposal is given to replace neutron multiplier needed to enable low lithium and tritium inventories simultaneously assuring sufficient production of tritium, by an efficient moderator ( 7 LiH or 7 LiD). The advantageous effect of the intensified neutron energy degradation is due to the 1/v character of the main tritium producing reaction. The slowing-down medium is designed to be the source of moderated neutrons for the surrounding Li ( 6 Li enriched) region where the most of tritium is to be produced. The surplus tritium production remains stored in the moderator zone. Some preliminary calculations illustrating the above concept were carried out and the neutron flux and tritium production distributions are presented. The indications regarding further studies are also suggested. (author)
Electronic de-multipliers; Demultiplicateurs electroniques
Energy Technology Data Exchange (ETDEWEB)
Ailloud, J
1948-07-01
The counting of a huge number of events, randomly or periodically distributed, requires the use of electronic counters which can work with a flow of up to 500000 events per second, while mechanical systems have a much lower resolution which leads to an important percentage of losses (non-counted events). Thus, hybrid systems are generally used which comprise an electronic part with fast counting capabilities but low recording capacities, and a mechanical part for the recording of the successive resets of the electronic part. This report describes the basic elementary circuits of these electronic counters (de-multipliers): dividers by 2 and 5 and flip-flop circuits using triode and pentode valves for the counting of events in the decimal system. (J.S.)
Four-gate transistor analog multiplier circuit
Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)
2011-01-01
A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.
Fabrication and measurement of gas electron multiplier
International Nuclear Information System (INIS)
Zhang Minglong; Xia Yiben; Wang Linjun; Gu Beibei; Wang Lin; Yang Ying
2005-01-01
Gas electron multiplier (GEM) with special performance has been widely used in the field of radiation detectors. In this work, GEM film was fabricated using a 50 μm -thick kapton film by the therma evaporation and laser masking drilling technique. GEM film has many uniformly arrayed holes with a diameter of 100 μm and a gap of 223 μm. It was then set up to a gas-flowing detector with an effective area of 3 x 3 cm 2 , 5.9 keV X-ray generated from a 55 Fe source was used to measure the pulse height distribution of GEM operating at various high voltage and gas proportion. The effect of high potential and gas proportion on the count rate and the energy resolution was discussed in detail. The results indicate that GEM has a very high ratio of signal to noise and better energy resolution of 18.2%. (authors)
Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers
Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille
This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.
Efek Multiplier Zakat terhadap Pendapatan di Provinsi DKI Jakarta
Al Arif, M. Nur Rianto
2012-01-01
The aim of this research is to analyse the multiplier effect of zakâh revenue in DKI Jakarta. A study case at Badan Amil Zakat, Infak, and Sadaqah (BAZIS) DKI Jakarta. Least square method is used to analyze the data. The coefficients will be used to calculate the multiplier effect of zakâh-revenue and it will be compared with the economy without zakah revenue. The results showed 2,522 multiplier effects of zakâh-revenue and 3.561 multiplier effect ofeconomic income without zakâh-revenue. Thi...
Multipliers for the Absolute Euler Summability of Fourier Series
Indian Academy of Sciences (India)
In this paper, the author has investigated necessary and sufficient conditions for the absolute Euler summability of the Fourier series with multipliers. These conditions are weaker than those obtained earlier by some workers. It is further shown that the multipliers are best possible in certain sense.
Multiplier convergent series and uniform convergence of mapping ...
Indian Academy of Sciences (India)
MS received 14 April 2011; revised 17 November 2012. Abstract. In this paper, we introduce the frame property of complex sequence sets and study the uniform convergence of nonlinear mapping series in β-dual of spaces consisting of multiplier convergent series. Keywords. Multiplier convergent series; mapping series. 1.
Dimension of the c-nilpotent multiplier of Lie algebras
Indian Academy of Sciences (India)
Abstract. The purpose of this paper is to derive some inequalities for dimension of the c-nilpotent multiplier of finite dimensional Lie algebras and their factor Lie algebras. We further obtain an inequality between dimensions of c-nilpotent multiplier of Lie algebra L and tensor product of a central ideal by its abelianized factor ...
Optimizing strassen matrix multiply on GPUs
ul Hasan Khan, Ayaz; Al-Mouhamed, Mayez; Fatayer, Allam
2015-01-01
© 2015 IEEE. Many core systems are basically designed for applications having large data parallelism. Strassen Matrix Multiply (MM) can be formulated as a depth first (DFS) traversal of a recursion tree where all cores work in parallel on computing each of the NxN sub-matrices that reduces storage at the detriment of large data motion to gather and aggregate the results. We propose Strassen and Winograd algorithms (S-MM and W-MM) based on three optimizations: a set of basic algebra functions to reduce overhead, invoking efficient library (CUBLAS 5.5), and parameter-tuning of parametric kernel to improve resource occupancy. On GPUs, W-MM and S-MM with one recursion level outperform CUBLAS 5.5 Library with up to twice as faster for large arrays satisfying N>=2048 and N>=3072, respectively. Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between 20x to 80x for the above arrays. The proposed approach can be used to enhance the performance of CUBLAS and MKL libraries.
Optimizing strassen matrix multiply on GPUs
ul Hasan Khan, Ayaz
2015-06-01
© 2015 IEEE. Many core systems are basically designed for applications having large data parallelism. Strassen Matrix Multiply (MM) can be formulated as a depth first (DFS) traversal of a recursion tree where all cores work in parallel on computing each of the NxN sub-matrices that reduces storage at the detriment of large data motion to gather and aggregate the results. We propose Strassen and Winograd algorithms (S-MM and W-MM) based on three optimizations: a set of basic algebra functions to reduce overhead, invoking efficient library (CUBLAS 5.5), and parameter-tuning of parametric kernel to improve resource occupancy. On GPUs, W-MM and S-MM with one recursion level outperform CUBLAS 5.5 Library with up to twice as faster for large arrays satisfying N>=2048 and N>=3072, respectively. Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between 20x to 80x for the above arrays. The proposed approach can be used to enhance the performance of CUBLAS and MKL libraries.
Design of two easily-testable VLSI array multipliers
Energy Technology Data Exchange (ETDEWEB)
Ferguson, J.; Shen, J.P.
1983-01-01
Array multipliers are well-suited to VLSI implementation because of the regularity in their iterative structure. However, most VLSI circuits are very difficult to test. This paper shows that, with appropriate cell design, array multipliers can be designed to be very easily testable. An array multiplier is called c-testable if all its adder cells can be exhaustively tested while requiring only a constant number of test patterns. The testability of two well-known array multiplier structures are studied. The conventional design of the carry-save array multipler is shown to be not c-testable. However, a modified design, using a modified adder cell, is generated and shown to be c-testable and requires only 16 test patterns. Similar results are obtained for the baugh-wooley two's complement array multiplier. A modified design of the baugh-wooley array multiplier is shown to be c-testable and requires 55 test patterns. The implementation of a practical c-testable 16*16 array multiplier is also presented. 10 references.
Production processes of multiply charged ions by electron impact
International Nuclear Information System (INIS)
Oda, Nobuo
1980-02-01
First, are compared the foil or gas stripper and the ion sources utilizing electron-atom ionizing collisions, which are practically used or are under development to produce multiply charged ions. A review is made of the fundamental physical parameters such as successive ionization potentials and various ionization cross sections by electron impact, as well as the primary processes in multiply charged ion production. Multiply charged ion production processes are described for the different existing ion sources such as high temperature plasma type, ion-trapping type and discharge type. (author)
Photoionization of multiply charged ions at the advanced light source
International Nuclear Information System (INIS)
Schlachter, A.S.; Kilcoyne, A.L.D.; Aguilar, A.; Gharaibeh, M.F.; Emmons, E.D.; Scully, S.W.J.; Phaneuf, R.A.; Muller, A.; Schippers, S.; Alvarez, I.; Cisneros, C.; Hinojosa, G.; McLaughlin, B.M.
2004-01-01
Photoionization of multiply charged ions is studied using the merged-beams technique at the Advanced Light Source. Absolute photoionization cross sections have been measured for a variety of ions along both isoelectronic and isonuclear sequences
Cavallo's multiplier for in situ generation of high voltage
Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.
2018-05-01
A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.
Sociophysics of sexism: normal and anomalous petrie multipliers
Eliazar, Iddo
2015-07-01
A recent mathematical model by Karen Petrie explains how sexism towards women can arise in organizations where male and female are equally sexist. Indeed, the Petrie model predicts that such sexism will emerge whenever there is a male majority, and quantifies this majority bias by the ‘Petrie multiplier’: the square of the male/female ratio. In this paper—emulating the shift from ‘normal’ to ‘anomalous’ diffusion—we generalize the Petrie model to a stochastic Poisson model that accommodates heterogeneously sexist men and woman, and that extends the ‘normal’ quadratic Petrie multiplier to ‘anomalous’ non-quadratic multipliers. The Petrie multipliers span a full spectrum of behaviors which we classify into four universal types. A variation of the stochastic Poisson model and its Petrie multipliers is further applied to the context of cyber warfare.
Atomic collisions in fusion plasmas involving multiply charged ions
International Nuclear Information System (INIS)
Salzborn, E.
1980-01-01
A short survey is given on atomic collisions involving multiply charged ions. The basic features of charge transfer processes in ion-ion and ion-atom collisions relevant to fusion plasmas are discussed. (author)
Efek Multiplier Zakat Terhadap Pendapatan di Propinsi DKI Jakarta
Directory of Open Access Journals (Sweden)
M. Nur Rianto Al Arif
2015-10-01
Full Text Available The aim of this research is to analyze the multiplier effect of zakah revenue in DKI Jakarta, a study case at Badan Amil Zakat, Infak, and Shadaqah (BAZIS DKI Jakarta. Least square methods is used to analyze the data. The coefficient will be used to calculate the multiplier effect of zakah revenue and it will be compared with the economy without zakah revenue. The result showed 2,522 multiplier effects of zakah revenue and 3,561 multiplier effect of economic income without zakah revenue. This suggest that the management of zakah in BAZIS DKI Jakarta still can have a significant influence on the economyDOI: 10.15408/aiq.v4i1.2079
Multiplier less high-speed squaring circuit for binary numbers
Sethi, Kabiraj; Panda, Rutuparna
2015-03-01
The squaring operation is important in many applications in signal processing, cryptography etc. In general, squaring circuits reported in the literature use fast multipliers. A novel idea of a squaring circuit without using multipliers is proposed in this paper. Ancient Indian method used for squaring decimal numbers is extended here for binary numbers. The key to our success is that no multiplier is used. Instead, one squaring circuit is used. The hardware architecture of the proposed squaring circuit is presented. The design is coded in VHDL and synthesised and simulated in Xilinx ISE Design Suite 10.1 (Xilinx Inc., San Jose, CA, USA). It is implemented in Xilinx Vertex 4vls15sf363-12 device (Xilinx Inc.). The results in terms of time delay and area is compared with both modified Booth's algorithm and squaring circuit using Vedic multipliers. Our proposed squaring circuit seems to have better performance in terms of both speed and area.
Instructional Computing Project Uses "Multiplier Effect" to Train Florida Teachers.
Roblyer, M. D.; Castine, W. H.
1987-01-01
Reviews the efforts undertaken in the Florida Model Microcomputer Trainer Project (FMMTP) and its statewide impact. Outlines its procedural strategies, trainer curriculum, networking system, and the results of its multiplier effect. (ML)
Evaporator line for special electron tubes, in particular electron multipliers
International Nuclear Information System (INIS)
Richter, M.
1984-01-01
The invention has been aimed at reducing the effort for preventing short circuits in achieving certain material-dependent effects e.g. secondary emission, by deposition through evaporation in the production of electron tubes, in particular electron multipliers
EFEK MULTIPLIER ZAKAT TERHADAP PENDAPATAN DI PROVINSI DKI JAKARTA
Directory of Open Access Journals (Sweden)
M. Nur Rianto Al Arif
2016-02-01
Full Text Available The aim of this research is to analyse the multiplier effect of zakâh revenue in DKI Jakarta. A study case at Badan Amil Zakat, Infak, and Sadaqah (BAZIS DKI Jakarta. Least square method is used to analyze the data. The coefficients will be used to calculate the multiplier effect of zakâh-revenue and it will be compared with the economy without zakah revenue. The results showed 2,522 multiplier effects of zakâh-revenue and 3.561 multiplier effect ofeconomic income without zakâh-revenue. This suggests that the management of zakat in BAZIS Jakarta still can have a significant influence on the economy.DOI: 10.15408/aiq.v4i1.2533
The generalization of the Schur multipliers of Bieberbach groups
Masri, Rohaidah; Hassim, Hazzirah Izzati Mat; Sarmin, Nor Haniza; Ali, Nor Muhainiah Mohd; Idrus, Nor'ashiqin Mohd
2014-12-01
The Schur multiplier is the second homology group of a group. It has been found to be isomorphic to the kernel of a homomorphism which maps the elements in the exterior square of the group to the elements in its derived subgroup. Meanwhile, a Bieberbach group is a space group which is a discrete cocompact group of isometries of oriented Euclidean space. In this research, the Schur multipliers of Bieberbach groups with cyclic point group of order two of finite dimension are computed.
Physics of subcritical multiplying regions and experimental validation
International Nuclear Information System (INIS)
Salvatores, M.
1996-01-01
The coupling of a particle accelerator with a spallation target and with a subcritical multiplying region has been proposed in the fifties and is called here a hybrid system. This article gives some ideas about the energetic balance of such a system. The possibilities of experimental validation of some properties of a subcritical multiplying region by using MASURCA facility at CEA-Cadarache are examined. The results of a preliminary experiment called MUSE are presented. (A.C.)
Isometric multipliers of a vector valued Beurling algebra on a ...
Indian Academy of Sciences (India)
Throughout, let S be a nonunital faith- ful abelian semigroup, and let A be a commutative Banach algebra. A map σ : S → S is a multiplier [1, 4] if σ(xy) = xσ(y) = σ(x)y, x,y ∈ S. Let M(S) be the set of all multipliers of S. Then M(S) is a unital abelian semigroup under composition. Since S is faithful, S can be imbedded as an ...
Beam diagnostics using transition radiation produced by a 100 Mev electron beam
International Nuclear Information System (INIS)
Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.
1991-01-01
We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac
Tables of compound-discount interest rate multipliers for evaluating forestry investments.
Allen L. Lundgren
1971-01-01
Tables, prepared by computer, are presented for 10 selected compound-discount interest rate multipliers commonly used in financial analyses of forestry investments. Two set of tables are given for each of the 10 multipliers. The first set gives multipliers for each year from 1 to 40 years; the second set gives multipliers at 5-year intervals from 5 to 160 years....
On centralized power pool auction: a novel multipliers stabilization procedure
International Nuclear Information System (INIS)
Jimenez-Redondo, Noemi
2005-01-01
This paper addresses the Short-Term Hydro-Thermal Coordination (STHTC) problem. It is a large-scale, combinatorial and nonlinear optimization problem. It is usually solved using a Lagrangian Relaxation (LR) approach. LR procedure is based on the solution of the dual problem of the original one. The dual problem variables are the Lagrange multipliers. These multipliers have an economic meaning: electric energy hourly prices. This paper focuses on an efficient solution of the dual problem of the STHTC problem. A novel multiplier stabilization technique, which significantly improves the quality of the solution, is presented. The provided method could be the optimization tool used by the Independent System Operator of a centralized Power Pool. The solution procedure diminishes the conflict of interest in determining energy prices. A realistic large-scale case study illustrates the behavior of the presented approach. (Author)
New design of an RSFQ parallel multiply-accumulate unit
International Nuclear Information System (INIS)
Kataeva, Irina; Engseth, Henrik; Kidiyarova-Shevchenko, Anna
2006-01-01
The multiply-accumulate unit (MAC) is a central component of a successive interference canceller, an advanced receiver for W-CDMA base stations. A 4 x 4 two's complement fixed point RSFQ MAC with rounding to 5 bits has been simulated using VHDL, and maximum performance is equal to 24 GMACS (giga-multiply-accumulates per second). The clock distribution network has been re-designed from a linear ripple to a binary tree network in order to eliminate the data dependence of the clock propagation speed and reduce the number of Josephson junctions in clock lines. The 4 x 4 bit MAC has been designed for the HYPRES 4.5 kA cm -2 process and its components have been experimentally tested at low frequency: the 5-bit combiner, using an exhaustive test pattern, had margins on DC bias voltage of ± 18%, and the 4 x 4 parallel multiplier had margins equal to ± 2%
Multiplier Accounting of Indian Mining Industry: The Application
Hussain, Azhar; Karmakar, Netai Chandra
2017-10-01
In the previous paper (Hussain and Karmakar in Inst Eng India Ser, 2014. doi: 10.1007/s40033-014-0058-0), the concepts of input-output transaction matrix and multiplier were explained in detail. Input-output multipliers are indicators used for predicting the total impact on an economy due to changes in its industrial demand and output which is calculated using transaction matrix. The aim of this paper is to present an application of the concepts with respect to the mining industry, showing progress in different sectors of mining with time and explaining different outcomes from the results obtained. The analysis shows that a few mineral industries saw a significant growth in their multiplier values over the years.
Dark energy from modified gravity with Lagrange multipliers
International Nuclear Information System (INIS)
Capozziello, Salvatore; Matsumoto, Jiro; Nojiri, Shin'ichi; Odintsov, Sergei D.
2010-01-01
We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F 2 (R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.
Principal parameters of classical multiply charged ion sources
International Nuclear Information System (INIS)
Winter, H.; Wolf, B.H.
1974-01-01
A review is given of the operational principles of classical multiply charged ion sources (operating sources for intense beams of multiply charged ions using discharge plasmas; MCIS). The fractional rates of creation of multiply charged ions in MCIS plasmas cannot be deduced from the discharge parameters in a simple manner; they depend essentially on three principal parameters, the density and energy distribution of the ionizing electrons, and the confinement time of ions in the ionization space. Simple discharge models were used to find relations between principal parameters, and results of model calculations are compared to actually measured charge state density distributions of extracted ions. Details of processes which determine the energy distribution of ionizing electrons (heating effects), confinement times of ions (instabilities), and some technical aspects of classical MCIS (cathodes, surface processes, conditioning, life time) are discussed
Study on neutron irradiation behavior of beryllium as neutron multiplier
Energy Technology Data Exchange (ETDEWEB)
Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)
Time efficient signed Vedic multiplier using redundant binary representation
Directory of Open Access Journals (Sweden)
Ranjan Kumar Barik
2017-03-01
Full Text Available This study presents a high-speed signed Vedic multiplier (SVM architecture using redundant binary (RB representation in Urdhva Tiryagbhyam (UT sutra. This is the first ever effort towards extension of Vedic algorithms to the signed numbers. The proposed multiplier architecture solves the carry propagation issue in UT sutra, as carry free addition is possible in RB representation. The proposed design is coded in VHDL and synthesised in Xilinx ISE 14.4 of various FPGA devices. The proposed SVM architecture has better speed performances as compared with various state-of-the-art conventional as well as Vedic architectures.
Radial multipliers on amalgamated free products of II-factors
DEFF Research Database (Denmark)
Möller, Sören
2014-01-01
Let ℳi be a family of II1-factors, containing a common II1-subfactor 풩, such that [ℳi : 풩] ∈ ℕ0 for all i. Furthermore, let ϕ: ℕ0 → ℂ. We show that if a Hankel matrix related to ϕ is trace-class, then there exists a unique completely bounded map Mϕ on the amalgamated free product of the ℳi...... with amalgamation over 풩, which acts as a radial multiplier. Hereby, we extend a result of Haagerup and the author for radial multipliers on reduced free products of unital C*- and von Neumann algebras....
Electronic de-multipliers II (ring-shape systems)
International Nuclear Information System (INIS)
Raievski, V.
1948-09-01
This report describes a new type of ring-shape fast electronic counter (de-multiplier) with a resolution capacity equivalent to the one made by Regener (Rev. of Scientific Instruments USA 1946, 17, 180-89) but requiring two-times less electronic valves. This report follows the general description of electronic de-multipliers made by J. Ailloud (CEA--001). The ring comprises 5 flip-flop circuits with two valves each. The different elements of the ring are calculated with enough details to allow the transfer of this calculation to different valve types. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Jaminion, St
2000-12-01
Virtual Compton Scattering off the proton ({gamma}{sup *}p {yields} {gamma}p) at low energy is accessible via the reaction (ep {yields} ep{gamma}), and contains 6 new observables: Generalized Polarizabilities (GPs). Their extraction needs the measurement of absolute five fold differential cross sections for photon electroproduction off the proton. The determination of GPs will put new constraints on models of nucleon structure in the non-perturbative Quantum Chromodynamics region. Following the Mainz experiment realized at four momentum transfer Q{sup 2} = 0.33 GeV{sup 2}, the E93050 experiment which was performed in the Hall A of Jefferson Lab during march-april 1998, will allow the measurement of combinations of generalized polarizabilities at Q{sup 2}=1 and 1.9 GeV{sup 2}. The final electron and proton were detected in coincidence in the Hall A high resolution spectrometers. The final photon is reconstructed like a missing particle, and all its variables can be determined. We had to optimize optics tensor of each spectrometer in order to have the best reconstruction at vertex point. We created an acceptance function, which is included in the software simulating solid angle. We determined different cuts to substract our background dominating (ep {yields} ep{gamma}) reaction. This work allows to carry out our first photon electro-production cross section measurement at Q{sup 2}=1.9 GeV{sup 2}. The results seem to indicate a measurable effect of generalized polarizabilities, which remains however to be confirmed. (author)
The Gas Electron Multiplier Chamber Exhibition LEPFest 2000
2000-01-01
The Gas Electron Multiplier (GEM) is a novel device introduced in 1996.Large area detectors based on this technology are in construction for high energy physics detectors.This technology can also be used for high-rate X-ray imaging in medical diagnostics and for monitoring irradiation during cancer treatment
ANALYSIS OF THE INVESTMENT ARBITRAGE STRATEGY USING FINANCIAL MULTIPLIERS
Directory of Open Access Journals (Sweden)
Dmitry S. Pashkov
2013-01-01
Full Text Available This article describes an algorithm for stock pairs trading using financial multipliers of underlying companies. This algorithm has been tested on historical data and compared with classical Bollinger bands strategy. The results of tests were presented for two financial sectors of US stock market.
Garbage-free reversible constant multipliers for arbitrary integers
DEFF Research Database (Denmark)
Mogensen, Torben Ægidius
2013-01-01
We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants...
Smooth bifurcation for variational inequalities based on Lagrange multipliers
Czech Academy of Sciences Publication Activity Database
Eisner, Jan; Kučera, Milan; Recke, L.
2006-01-01
Roč. 19, č. 9 (2006), s. 981-1000 ISSN 0893-4983 R&D Projects: GA AV ČR(CZ) IAA100190506 Institutional research plan: CEZ:AV0Z10190503 Keywords : abstract variational inequality * bifurcation * Lagrange multipliers Subject RIV: BA - General Mathematics
Detection of differential item functioning using Lagrange multiplier tests
Glas, Cornelis A.W.
1998-01-01
Abstract: In the present paper it is shown that differential item functioning can be evaluated using the Lagrange multiplier test or Rao’s efficient score test. The test is presented in the framework of a number of IRT models such as the Rasch model, the OPLM, the 2-parameter logistic model, the
Detection of differential item functioning using Lagrange multiplier tests
Glas, Cornelis A.W.
1996-01-01
In this paper it is shown that differential item functioning can be evaluated using the Lagrange multiplier test or C. R. Rao's efficient score test. The test is presented in the framework of a number of item response theory (IRT) models such as the Rasch model, the one-parameter logistic model, the
Lagrange-multiplier tests for weak exogeneity: a synthesis.
Boswijk, H.P.; Urbain, J.P.
1997-01-01
This paper unifies two seemingly separate approaches to test weak exogeneity in dynamic regression models with Lagrange-multiplier statistics. The first class of tests focuses on the orthogonality between innovations and conditioning variables, and thus is related to the Durbin-Wu-Hausman
Fiscal multipliers over the growth cycle : evidence from Malaysia
Rafiq, Sohrab; Zeufack, Albert
2012-01-01
This paper explores the stabilisation properties of fiscal policy in Malaysia using a model incorporating nonlinearities into the dynamic relationship between fiscal policy and real economic activity over the growth cycle. The paper also investigates how output multipliers for government purchases may alter for different components of government spending. The authors find that fiscal polic...
A database analysis of information on multiply charged ions
International Nuclear Information System (INIS)
Delcroix, J.L.
1989-01-01
A statistical analysis of data related to multiply charged ions, is performed in GAPHYOR data base: over-all statistics by ionization degree from q=1 to q=99, 'historical' development from 1975 to 1987, distribution (for q≥ 5) over physical processes (energy levels, charge exchange,...) and chemical elements
Multiple images of our galaxy in closed, multiply connected cosmologies
International Nuclear Information System (INIS)
Fagundes, H.V.
1985-01-01
Friedmanian cosmology with multiply connected spatial sections allows multiple images of cosmic sources, in particular of the galaxy itself. This is illustrated with a specific example of a closed hyperbolic model and a brief mention of a spherical model. Such images may eventually become observable (or recognized as such), thus providing a new test of relativistic cosmology. (Author) [pt
A CMOS four-quadrant analog current multiplier
Wiegerink, Remco J.
1991-01-01
A CMOS four-quadrant analog current multiplier is described. The circuit is based on the square-law characteristic of an MOS transistor and is insensitive to temperature and process variations. The circuit is insensitive to the body effect so it is not necessary to place transistors in individual
The evolution of unconditional strategies via the 'multiplier effect'.
McNamara, John M; Dall, Sasha R X
2011-03-01
Ostensibly, it makes sense in a changeable world to condition behaviour and development on information when it is available. Nevertheless, unconditional behavioural and life history strategies are widespread. Here, we show how intergenerational effects can limit the evolutionary value of responding to reliable environmental cues, and thus favour the evolutionary persistence of otherwise paradoxical unconditional strategies. While cue-ignoring genotypes do poorly in the wrong environments, in the right environment they will leave many copies of themselves, which will themselves leave many copies, and so on, leading genotypes to accumulate in habitats in which they do well. We call this 'The Multiplier Effect'. We explore the consequences of the multiplier effect by focussing on the ecologically important phenomenon of natal philopatry. We model the environment as a large number of temporally varying breeding sites connected by natal dispersal between sites. Our aim is to identify which aspects of an environment promote the multiplier effect. We show, if sites remain connected through some background level of 'accidental' dispersal, unconditional natal philopatry can evolve even when there is density dependence (with its accompanying kin competition effects), and cues that are only mildly erroneous. Thus, the multiplier effect may underpin the evolution and maintenance of unconditional strategies such as natal philopatry in many biological systems. © 2011 Blackwell Publishing Ltd/CNRS.
A cascaded three-phase symmetrical multistage voltage multiplier
International Nuclear Information System (INIS)
Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G
2006-01-01
A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM
Robust formation control of marine surface craft using Lagrange multipliers
DEFF Research Database (Denmark)
Ihle, Ivar-Andre F.; Jouffroy, Jerome; Fossen, Thor I.
2006-01-01
This paper presents a formation modelling scheme based on a set of inter-body constraint functions and Lagrangian multipliers. Formation control for a °eet of marine craft is achieved by stabilizing the auxiliary constraints such that the desired formation con¯guration appears. In the proposed fr...
Familiar Sports and Activities Adapted for Multiply Impaired Persons.
Schilling, Mary Lou, Ed.
1984-01-01
Means of adapting some familiar and popular physical activities for multiply impaired persons are described. Games reviewed are dice baseball, one base baseball, in-house bowling, wheelchair bowling, ramp bowling, swing-ball bowling, table tennis, shuffleboard, beanbag bingo and tic-tac-toe, balloon basketball, circle football, and wheelchair…
Multiply excited molecules produced by photon and electron interactions
International Nuclear Information System (INIS)
Odagiri, T.; Kouchi, N.
2006-01-01
The photon and electron interactions with molecules resulting in the formation of multiply excited molecules and the subsequent decay are subjects of great interest because the independent electron model and Born-Oppenheimer approximation are much less reliable for the multiply excited states of molecules than for the ground and lower excited electronic states. We have three methods to observe and investigate multiply excited molecules: 1) Measurements of the cross sections for the emission of fluorescence emitted by neutral fragments in the photoexcitation of molecules as a function of incident photon energy [1-3], 2) Measurements of the electron energy-loss spectra tagged with the fluorescence photons emitted by neutral fragments [4], 3) Measurements of the cross sections for generating a pair of photons in absorption of a single photon by a molecule as a function of incident photon energy [5-7]. Multiply excited states degenerate with ionization continua, which make a large contribution in the cross section curve involving ionization processes. The key point of our methods is hence that we measure cross sections free from ionization. The feature of multiply excited states is noticeable in such a cross section curve. Recently we have measured: i) the cross sections for the emission of the Lyman- fluorescence in the photoexcitation of CH 4 as a function of incident photon energy in the range 18-51 eV, ii) the electron energy-loss spectrum of CH 4 tagged with the Lyman-photons at 80 eV incident electron energy and 10 electron scattering angle in the range of the energy loss 20-45 eV, in order to understand the formation and decay of the doubly excited methane in photon and electron interactions. [8] The results are summarized in this paper and the simultaneous excitation of two electrons by electron interaction is compared with that by photon interaction in terms of the oscillator strength. (authors)
Californium Multiplier. Part I. Design for neutron radiography
International Nuclear Information System (INIS)
Crosbie, K.L.; Preskitt, C.A.; John, J.; Hastings, J.D.
1982-01-01
The Californium Multiplier (CFX) is a subcritical assembly of enriched uranium surrounding a californium-252 neutron source. The function of the CFX is to multiply the neutrons emitted by the source to a number sufficient for neutron radiography. The CFX is designed to provide a collimated beam of thermal neutrons from which the gamma radiation is filtered, and the scattered neutrons are reduced to make it suitable for high resolution radiography. The entire system has inherent safety features, which provide for system and personnel safety, and it operates at moderate cost. In Part I, the CFX and the theory of its operation are described in detail. Part II covers the performance of the Mound Facility CFX
Generation of fast multiply charged ions in conical targets
International Nuclear Information System (INIS)
Demchenko, V.V.; Chukbar, K.V.
1990-01-01
So-called conical targets, when the thermonuclear fuel is compressed and heated in a conical cavity in a heavy material (lead, gold, etc.) with the help of a spherical segment that is accelerated by a laser pulse or a beam of charged particles, are often employed in experimental studies of inertial-confinement fusion. In spite of the obvious advantages of such a scheme, one of which is a significant reduction of the required energy input compared with the complete spherical target, it also introduces additional effects into the process of cumulation of energy. In this paper the authors call attention to an effect observed in numerical calculations: the hydrodynamic heating of a small group of multiply charged heavy ions of the walls of the conical cavity up to high energies (T i approx-gt 100 keV). This effect ultimately occurs as a result of the high radiation losses of a multiply charged plasma
Inverse mass matrix via the method of localized lagrange multipliers
Czech Academy of Sciences Publication Activity Database
González, José A.; Kolman, Radek; Cho, S.S.; Felippa, C.A.; Park, K.C.
2018-01-01
Roč. 113, č. 2 (2018), s. 277-295 ISSN 0029-5981 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA ČR GA17-22615S Institutional support: RVO:61388998 Keywords : explicit time integration * inverse mass matrix * localized Lagrange multipliers * partitioned analysis Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 2.162, year: 2016 https://onlinelibrary.wiley.com/doi/10.1002/nme.5613
Multiply-negatively charged aluminium clusters and fullerenes
Energy Technology Data Exchange (ETDEWEB)
Walsh, Noelle
2008-07-15
Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)
On Lagrange Multipliers in Work with Quality and Reliability Assurance
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Becker, P.
1986-01-01
In optimizing some property of a system, reliability say, a designer usually has to accept certain constraints regarding cost, completion time, volume, weight, etc. The solution of optimization problems with boundary constraints can be helped substantially by the use of Lagrange multipliers...... in the areas of sales promotion and teaching. These maps illuminate the logic structure of solution sequences. One such map is shown, illustrating the application of LMT in one of the examples....
Characterization of a prototype matrix of Silicon PhotoMultipliers
Energy Technology Data Exchange (ETDEWEB)
Dinu, N. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France)], E-mail: dinu@lal.in2p3.fr; Barrillon, P.; Bazin, C. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Belcari, N.; Bisogni, M.G. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Bondil-Blin, S. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Boscardin, M. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Chaumat, V. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Collazuol, G. [Scuola Normale Superiore (SNS), 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); De La Taille, C. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Del Guerra, A. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Llosa, G. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); Marcatili, S. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Melchiorri, M.; Piemonte, C. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Puill, V. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Tarolli, A. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Vagnucci, J.F. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Zorzi, N. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy)
2009-10-21
This work reports on the electrical as well as the optical characterizations of a prototype matrix of Silicon PhotoMultipliers (SiPM). The electrical test consists of the measurement of the static (breakdown voltage, quenching resistance, post-breakdown dark current) as well as the dynamic characteristics (gain, dark count rate). The optical test consists of the estimation of the photon detection efficiency as a function of wavelength as well as operation voltage.
Characterization of a prototype matrix of Silicon PhotoMultipliers
International Nuclear Information System (INIS)
Dinu, N.; Barrillon, P.; Bazin, C.; Belcari, N.; Bisogni, M.G.; Bondil-Blin, S.; Boscardin, M.; Chaumat, V.; Collazuol, G.; De La Taille, C.; Del Guerra, A.; Llosa, G.; Marcatili, S.; Melchiorri, M.; Piemonte, C.; Puill, V.; Tarolli, A.; Vagnucci, J.F.; Zorzi, N.
2009-01-01
This work reports on the electrical as well as the optical characterizations of a prototype matrix of Silicon PhotoMultipliers (SiPM). The electrical test consists of the measurement of the static (breakdown voltage, quenching resistance, post-breakdown dark current) as well as the dynamic characteristics (gain, dark count rate). The optical test consists of the estimation of the photon detection efficiency as a function of wavelength as well as operation voltage.
Radial multipliers on reduced free products of operator algebras
DEFF Research Database (Denmark)
Haagerup, Uffe; Møller, Søren
2012-01-01
Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier...
Study of the electric field inside microchannel plate multipliers
International Nuclear Information System (INIS)
Gatti, E.; Oba, K.; Rehak, P.
1982-01-01
Electric field inside high gain microchannel plate multipliers was studied. The calculations were based directly on the solution of the Maxwell equations applied to the microchannel plate (MCP) rather than on the conventional lumped RC model. The results are important to explain the performance of MCP's, (1) under a pulsed bias tension and, (2) at high rate conditions. The results were tested experimentally and a new method of MCP operation free from the positive ion feedback was demonstrated
Neutralization of H-- in energetic collisions with multiply charged ions
International Nuclear Information System (INIS)
Melchert, F.; Benner, M.; Kruedener, S.; Schulze, R.; Meuser, S.; Huber, K.; Salzborn, E.; Uskov, D.B.; Presnyakov, L.P.
1995-01-01
Employing the crossed-beam technique, we have measured absolute cross sections for neutralization of H -- ions in collisions with multiply charged ions Ne q+ (q≤4) and Ar q+ , Xe q+ (q≤8) at center-of-mass energies ranging from 20 to 200 keV. . . It is found that th cross sections are independent of the target ion species. The data are in excellent agreement with quantum calculations. A universal scaling law for the neutralization cross section is given
Estimates for Unimodular Multipliers on Modulation Hardy Spaces
Directory of Open Access Journals (Sweden)
Jiecheng Chen
2013-01-01
Full Text Available It is known that the unimodular Fourier multipliers eit|Δ|α/2, α>0, are bounded on all modulation spaces Mp,qs for 1≤p,q≤∞. We extend such boundedness to the case of all 00 and obtain the local well-posedness for the Cauchy problem of some nonlinear partial differential equations with fundamental semigroup eit|Δ|α/2.
Safety analysis report for the Neutron Multiplier Facility, 329 Building
International Nuclear Information System (INIS)
Rieck, H.G.
1978-09-01
Neutron multiplication is a process wherein the flux of a neutron source such as 252 Cf is enhanced by fission reactions that occur in a subcritical assemblage of fissile material. The multiplication factor of the device depends upon the consequences of neutron reactions with matter and is independent of the initial number of neutrons present. Safe utilization of such a device demands that the fissile material assemblage be maintained in a subcritical state throughout all normal and credibly abnormal conditions. Examples of things that can alter the multiplication factor (and degree of subcriticality) are temperature fluctuations, changes in moderator material such as voiding or composition, addition of fissile materials, and change in assembly configuration. The Neutron Multiplier Facility (NMF) utilizes a multiplier- 252 Cf assembly to produce neutrons for activation analysis of organic and inorganic environmental samples and for on-line mass spectrometry analysis of fission products which diffuse from a stationary fissile target (less than or equal to 4 g fissile material) located in the Neutron Multiplier. The NMF annex to the 329 Building provides close proximity to related counting equipment, and delay between sample irradiation and counting is minimized
Neutron fluctuations in a multiplying medium randomly varying in time
Energy Technology Data Exchange (ETDEWEB)
Pal, L. [KFKI Atomic Energy Research Inst., Budapest (Hungary); Pazsit, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Engineering
2006-07-15
The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment.
Neutron fluctuations in a multiplying medium randomly varying in time
International Nuclear Information System (INIS)
Pal, L.; Pazsit, I.
2006-01-01
The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment
Charge amplification and transfer processes in the gas electron multiplier
International Nuclear Information System (INIS)
Bachmann, S.; Bressan, A.; Ropelewski, L.; Sauli, F.; Sharma, A.; Moermann, D.
1999-01-01
We report the results of systematic investigations on the operating properties of detectors based on the gas electron multiplier (GEM). The dependence of gain and charge collection efficiency on the external fields has been studied in a range of values for the hole diameter and pitch. The collection efficiency of ionization electrons into the multiplier, after an initial increase, reaches a plateau extending to higher values of drift field the larger the GEM voltage and its optical transparency. The effective gain, fraction of electrons collected by an electrode following the multiplier, increases almost linearly with the collection field, until entering a steeper parallel plate multiplication regime. The maximum effective gain attainable increases with the reduction in the hole diameter, stabilizing to a constant value at a diameter approximately corresponding to the foil thickness. Charge transfer properties appear to depend only on ratios of fields outside and within the channels, with no interaction between the external fields. With proper design, GEM detectors can be optimized to satisfy a wide range of experimental requirements: tracking of minimum ionizing particles, good electron collection with small distortions in high magnetic fields, improved multi-track resolution and strong ion feedback suppression in large volume and time-projection chambers
International Nuclear Information System (INIS)
Sabharwal, Arvind D.; Singh, Bhajan; Sandhu, B.S.
2009-01-01
The energy and intensity distributions of multiple backscattering of 1.12 MeV gamma photons emerging from targets of elements and alloys are observed as a function of thickness and atomic number (Z) of the target. The numbers of these multiply backscattered events show an increase with increase in target thickness, and then saturate for a particular thickness of the target called saturation thickness (depth). The saturation thickness decreases with increasing atomic number and varies as e -Z . The multiple backscattering, an interfering background noise in Compton profile, has been successfully used to assign the 'effective atomic number' to alloys. Monte Carlo calculations also support the present experimental results. The number, energy and dose albedos are also found to be saturating for the same thickness where the numbers of multiply backscattered events saturate.
International Nuclear Information System (INIS)
Mittal, K.C.; Nanu, K.; Jain, A.
2006-01-01
High power electron beam accelerators are becoming an important tool for industrial radiation process applications. Keeping this in mind, a 3 MeV, 10 mA, 30 kW DC industrial electron accelerator has been designed and is in advanced stage of development at Electron Beam Center, Kharghar, Navi Mumbai. The operating range of this accelerator is 1 MeV to 3 MeV with maximum beam current of 10 mA. Electron beam at 5 keV is generated in electron gun with LaB 6 cathode and is injected into accelerating column at a vacuum of 10 -7 torr. After acceleration the beam is scanned and taken out in air through a 100 cm X 7 cm titanium window for radiation processing applications. The high voltage accelerating power supply is based on a capacitive coupled parallel fed voltage multiplier scheme operating at 120 kHz. A 50 kW oscillator feeds power to high voltage multiplier column. The electron gun, accelerating column and high voltage multiplier column are housed in accelerator tank filled with SF 6 gas insulation at 6 kg/cm 2 . The accelerator is located in a RCC building with product conveyor for handling products. A central computerized control system is adopted for operation of the accelerator. Accelerator is in the advance stage of commissioning. Many of the subsystems have been commissioned and tested. This paper describes the design details and current status of the accelerator and various subsystems. (author)
2012-03-01
develop around rivets on aircraft. Marc Sands used MCST to image a phantom representing a wrist bone [59]. Noninvasive bone density measurements would be...the detection of Gamma-Ray Bursts (GRB). GRBs are the most intense electromagnetic events in the universe. There is still not a full consensus as to...would be actuated by external permanent magnets or electromagnets . However, the attenuation in the plastic rods was calculated as being too great and
High Intensity Compton Scattering in a strong plane wave field of general form
International Nuclear Information System (INIS)
Hartin, A.; Moortgat-Pick, G.; Hamburg Univ.
2011-06-01
Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)
Use of primary beam filtration in estimating mass attenuation coefficients by Compton scattering
International Nuclear Information System (INIS)
O'Connor, B.H.; Chang, W.J.
1985-01-01
Mass attenuation coefficients (MACs) are frequently estimated over a range of wavelengths in x-ray spectrometry from the intensity of the Compton peak I /SUB C/ associated with a prominent tube line. The MAC μ /SUB ll/ at wavelength lambda is estimated from the MAC at the Compton wavelength lambda /SUB C/ with the approximations μ /SUB ll/ α μ /SUB C/ and μ /SUB C/ α l/I /SUB C/ , Systematic errors may introduce absorption edge bias (AEB) effects into the results, caused by sample components with absorption edges between lambda /SUB C/ and lambda. A procedure is described which eliminates AEB effects by measuring I /SUB C/ using emission radiation from a primary beam filter
Forward Compton scattering with weak neutral current: Constraints from sum rules
Directory of Open Access Journals (Sweden)
Mikhail Gorchtein
2015-07-01
Full Text Available We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. We address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν,0. For the dispersive γZ-box correction to the proton's weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributions by a factor of two. The finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.
Simulating measures of wood density through the surface by Compton scattering
International Nuclear Information System (INIS)
Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.
2009-01-01
Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)
Simulation of inverse Compton scattering and its implications on the scattered linewidth
Ranjan, N.; Terzić, B.; Krafft, G. A.; Petrillo, V.; Drebot, I.; Serafini, L.
2018-03-01
Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to describe the effects of horizontal and vertical emittance on the properties of the scattered radiation. We also present an improved version of the code initially reported in Krafft et al. [Phys. Rev. Accel. Beams 19, 121302 (2016), 10.1103/PhysRevAccelBeams.19.121302], that can perform the same simulations as those present in cain and give accurate results in low-probability regions by integrating over the emissions of the electrons. Finally, we use these codes to carry out simulations that closely verify the behavior predicted by the analytically derived scaling law.
Geant4 simulations on Compton scattering of laser photons on relativistic electrons
Energy Technology Data Exchange (ETDEWEB)
Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6, Romania and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)
2015-02-24
Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.
Analysis of Deeply Virtual Compton Scattering data at Jefferson Lab and proton tomography
Energy Technology Data Exchange (ETDEWEB)
Dupre, R.; Guidal, M.; Niccolai, S. [Institut de Physique Nucleaire d' Orsay, CNRS-IN2P3, Universite Paris-Sud, Universite Paris-Saclay, Orsay (France); Vanderhaeghen, M. [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik und PRISMA Cluster of Excellence, Mainz (Germany)
2017-08-15
The CLAS and Hall A Collaborations at Jefferson Laboratory have recently released new results for the ep → epγ reaction. We analyze these new data within the Generalized Parton Distribution formalism. Employing a fitter algorithm introduced and used in earlier works, we are able to extract from these data new constraints on the kinematical dependence of three Compton Form Factors. Based on experimental data, we subsequently extract the dependence of the proton charge radius on the quarks' longitudinal momentum fraction. (orig.)
Deeply Virtual Compton Scattering off an unpolarized hydrogen target at the HERMES experiment
Energy Technology Data Exchange (ETDEWEB)
Zeiler, Dietmar
2009-11-15
The structure of this thesis is as follows: In the second chapter the theoretical basis needed for the description of the exclusive electro-production of photons in the framework of GPDs is explained. Three different models are discussed and experimental observables are defined. The third chapter includes a description of the Hermes experiment and its components. The data analysis is discussed in chapter four, along with various studies both on real and Monte Carlo data and the derivations of the systematic uncertainties. In chapter five the present results are given and interpreted both from an experimental point of view, and in comparison to existing models. Conclusion from the results are drawn. Furthermore the calibration of the Recoil Silicon Detector and the performance of the complete Recoil Detector is outlined in chapter six. In chapter seven an outlook is presented followed by the summary. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Roche, J. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, (France); Friedrich, J. M. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Lhuillier, D. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, (France); Bartsch, P. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Baumann, D. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Berthot, J. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Bertin, P. Y. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Breton, V. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Boeglin, W. U. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Boehm, R. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany)] (and others)
2000-07-24
Absolute differential cross sections for the reaction ep{yields}ep{gamma} have been measured at a four-momentum transfer with virtuality Q{sup 2}=0.33 GeV{sup 2} and polarization {epsilon}=0.62 in the range 33.6 to 111.5 MeV/c for the momentum of the outgoing photon in the photon-proton center of mass frame. The experiment has been performed with the high-resolution spectrometers at the Mainz Microtron MAMI. From the photon angular distributions, two structure functions which are a linear combination of the generalized polarizabilities have been determined for the first time. (c) 2000 The American Physical Society.
Compton scattering studies of the electron momentum distribution in indium phosphide
Deb, A; Guin, R; Chatterjee, A K
1999-01-01
The electron momentum anisotropy of indium phosphide has been studied by measuring the directional Compton profiles of indium phosphide single crystals with the use of radiation from an sup 2 sup 4 sup 1 Am gamma source. Three different samples, cut along the [100], [110] and [111] planes, were used. The experimental anisotropy has been compared with the results based on the linear combination of Gaussian orbitals (LCGO) method. The agreement is very good with our theoretical results. It is found that the extrema appearing in the dependences on q of the anisotropies have an intimate connection with the bonding properties of the semiconductor. A self-consistent, all-electron, local density calculation for the partial density of states, total density of states and the charge analysis is also presented here.
National Research Council Canada - National Science Library
Lange, Matthew
2000-01-01
As aircraft age, corrosion forms upon unobservable surfaces, particularly at the junction of the sheet aluminum and the steel rivets used to attach the sheets to the airframe, degrading the aircraft s airworthiness...
Design of a 4.8-m ring for inverse Compton scattering x-ray source
Directory of Open Access Journals (Sweden)
H. S. Xu
2014-07-01
Full Text Available In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.
Compton scatter and randoms corrections for origin ensembles 3D PET reconstructions
Energy Technology Data Exchange (ETDEWEB)
Sitek, Arkadiusz [Harvard Medical School, Boston, MA (United States). Dept. of Radiology; Brigham and Women' s Hospital, Boston, MA (United States); Kadrmas, Dan J. [Utah Univ., Salt Lake City, UT (United States). Utah Center for Advanced Imaging Research (UCAIR)
2011-07-01
In this work we develop a novel approach to correction for scatter and randoms in reconstruction of data acquired by 3D positron emission tomography (PET) applicable to tomographic reconstruction done by the origin ensemble (OE) approach. The statistical image reconstruction using OE is based on calculation of expectations of the numbers of emitted events per voxel based on complete-data space. Since the OE estimation is fundamentally different than regular statistical estimators such those based on the maximum likelihoods, the standard methods of implementation of scatter and randoms corrections cannot be used. Based on prompts, scatter, and random rates, each detected event is graded in terms of a probability of being a true event. These grades are utilized by the Markov Chain Monte Carlo (MCMC) algorithm used in OE approach for calculation of the expectation over the complete-data space of the number of emitted events per voxel (OE estimator). We show that the results obtained with the OE are almost identical to results obtained by the maximum likelihood-expectation maximization (ML-EM) algorithm for reconstruction for experimental phantom data acquired using Siemens Biograph mCT 3D PET/CT scanner. The developed correction removes artifacts due to scatter and randoms in investigated 3D PET datasets. (orig.)
Compton scattering on the γ-α phase transition in cerium
International Nuclear Information System (INIS)
Kornstaedt, U.
1979-07-01
Compton profiles for γ- and α-Cer were measured using Cr51 as a γ-radiation source. The experimental profiles have been corrected for multiple scattering by Monte-Carlo techniques. The corrected profiles are compared with theoretical profiles which are calculated on the basis of the renormalized free atom model for 6s electrons and the tight-binding model of 4f and 5d electrons. The experimental results show clearly that the promotional model is not valid. Instead a possible explanation for the observed phase transition may be a Mott transition. To better determine this, improved electron wave functions, such as might be obtained by band structure calculations, are needed. (orig.) [de
An Imaging Camera for Biomedical Application Based on Compton Scattering of Gamma Rays
Fontana, Cristiano Lino
2013-01-01
In this thesis we present the R&D of a Compton Camera (CC) for small object imaging. The CC concept requires two detectors to obtain the incoming direction of the gamma ray. This approach, sometimes named ``Electronic Collimation,'' differs from the usual technique that employs collimators for physically selecting gamma-rays of a given direction. This solution offers the advantage of much greater sensitivity and hence smaller doses. We propose a novel design, which uses two simila...
Increase in compton scattering of gamma rays passing along metal surface
International Nuclear Information System (INIS)
Grigor'ev, A.N.; Bilyk, Z.V.; Sakun, A.V.; Marushchenko, V.V.; Chernyavskij, O.Yu.; Litvinov, Yu.V.
2014-01-01
The paper considers experimental study of changes in energy of 137 Cs gamma source as gamma rays pass along metal surface. Decrease in gamma energy was examined by reducing the number of gamma rays in the complete absorption peak to the Compton length level and increasing the Compton effect. The number of gamma rays in the complete absorption peak decreases by 3.5 times in the angle range under study
Constant-q data representation in Neutron Compton scattering on the VESUVIO spectrometer
International Nuclear Information System (INIS)
Senesi, R.; Pietropaolo, A.; Andreani, C.
2008-01-01
Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved
Constant-q data representation in Neutron Compton scattering on the VESUVIO spectrometer
Energy Technology Data Exchange (ETDEWEB)
Senesi, R. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy); Centro NAST, Nanoscienze and Nanotecnologie and Strumentazione, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: roberto.senesi@roma2.infn.it; Pietropaolo, A.; Andreani, C. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy); Centro NAST, Nanoscienze and Nanotecnologie and Strumentazione, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy)
2008-09-01
Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,{omega}). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.
Constant- q data representation in Neutron Compton scattering on the VESUVIO spectrometer
Senesi, R.; Pietropaolo, A.; Andreani, C.
2008-09-01
Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.
MCNP simulations of a new time-resolved Compton scattering imaging technique
International Nuclear Information System (INIS)
Ilan, Y.
2004-01-01
Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain
Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations
International Nuclear Information System (INIS)
Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.
2001-01-01
The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)
Spin effects in nonlinear Compton scattering in a plane-wave laser pulse
International Nuclear Information System (INIS)
Boca, Madalina; Dinu, Victor; Florescu, Viorica
2012-01-01
We study theoretically the electron angular and energy distribution in the non-linear Compton effect in a finite plane-wave laser pulse. We first present analytical and numerical results for unpolarized electrons (described by a Volkov solution of the Dirac equation), in comparison with those corresponding to a spinless particle (obeying the Klein–Gordon equation). Then, in the spin 1/2 case, we include results for the spin flip probability. The regime in which the spin effects are negligible, i.e. the results for the unpolarized spin 1/2 particle coincide practically with those for the spinless particle, is the same as the regime in which the emitted radiation is well described by classical electrodynamics.
Compton scattering of 145 keV gamma rays by K-shell electrons of silver
Energy Technology Data Exchange (ETDEWEB)
Acharya, V B; Singh, B; Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics
1981-01-01
Differential cross-sections for the incoherent scattering of 145 keV photons from K-shell electrons of silver are measured at scattering angles ranging from 30/sup 0/ to 150/sup 0/ to investigate the effect of electron binding on the scattering process in the low energy region. Measurements are made employing two NaI (Tl) scintillation spectrometers and a slow-fast coincidence circuit of resolving time 30 ns. The experimental results are compared with the available theoretical data. The total K-shell scattering cross-section is also estimated and is about 45% of the free electron cross-section.