WorldWideScience

Sample records for mev karaj cyclotron

  1. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Dawson, R.; Erdman, K.L.

    1989-05-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. TRIUMF is cooperating with a local industrial company in designing and constructing such a cyclotron. It will be a four sector H - cyclotron, exploiting the newly developed high brightness multicusp ion source. This source with H - current capability in excess of 5 mA makes feasible accelerated H - beam intensities of up to 500 μA. Beam extraction is by stripping to H + in a thin graphite foil. Extraction of two high-intensity beams, with energy variable from 15 to 30 MeV is planned. The use of an external ion source, provision of a good vacuum in the acceleration region, and the careful choice of materials for components in the median plane leads to a cyclotron that will have low activation and can be easily serviced in spite of the very high operating beam intensities. A design extension to 70 MeV using many of the design features of the 30 MeV cyclotron can be easily made. Such a machine with a good quality variable energy beam is a highly desirable source of protons for isotope production, injection into higher energy high intensity acceleration, injection into higher energy high intensity accelerators, and as an irradiation facility for ocular melanomas. Design of the 30 MeV cyclotron is well advanced and construction is in progress

  2. <600> MeV synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    One of the 14 pancakes of the new magnet coils for the 600 MeV synchro-cyclotron which were wound and coated with epoxy resin on the CERN site. These new coils will replace the present ones which have been in use for more than 14 years but are now showing signs of deteriorations.

  3. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Baartman, R.; Kleevan, W.J.; Laxdal, R.E.; Milton, B.F.; Otter, A.J.; Pearson, J.B.; Poirier, R.L.; Schmor, P.W.; Schneider, H.R.; Erdman, K.L.; Walker, Q.

    1989-01-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. We describe such a cyclotron currently under construction. It is a 30 MeV H - design that exploits a newly developed high brightness multicusp ion source which is capable of H - currents of up to 5 mA. This together with careful beam matching then makes feasible accelerated H - beam intensities of 500 μA. The cyclotron being built is a four sector radial ridge design with two 45 degree dees in opposite valleys. Beam extraction is by stripping to H + in a thin graphite foil. Two extraction probes will allow simultaneous extraction of two beams, each with an intensity of up to 200 μA. Energy variation from 15 MeV to 30 MeV is achieved by varying the radial position of the extraction foil. 7 refs., 4 figs., 1 tab

  4. Risk assessment of 30 MeV cyclotron facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyo Seong; Lee, Jin Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Dept. of Radiation Science and Technology, Chonbuk National University, Jeonju (Korea, Republic of)

    2017-03-15

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI.

  5. Risk assessment of 30 MeV cyclotron facilities

    International Nuclear Information System (INIS)

    Jeong, Gyo Seong; Lee, Jin Woo; Kim, Chong Yeal

    2017-01-01

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI

  6. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  7. A 600 MeV cyclotron for radioactive beam production

    International Nuclear Information System (INIS)

    Clark, D.J.

    1993-01-01

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA

  8. A simple and powerful XY-Type current monitor for 30 MeV IPEN/CNEN-SP cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Henrique; Matsuda, Hylton; Sumyia, Luiz Carlos do A.; Junqueira, Fernando de C.; Costa, Osvaldo L. da, E-mail: hbolivei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    A water-cooled XY-type current monitor was designed and built in the Cyclotrons Laboratory of the Nuclear and Energy Research Institute (IPEN). It is a very simple design and easily adaptable to the cyclotron beam lines. Tests were done demonstrating to be an instrument of great assistance in proton beam position along beam transport line and target port. Nowadays the XY-type current monitor has been widely used in {sup 18}F-FDG routine productions, employing irradiation system which were originally designed for productions on 18 MeV cyclotron accelerator only, however, applying the XY-type current monitor the target port may be exchanged between the 30 MeV and 18 MeV cyclotrons and the observed results are in perfect agreement with expected. (author)

  9. Gold nanoparticles production using reactor and cyclotron based methods in assessment of {sup 196,198}Au production yields by {sup 197}Au neutron absorption for therapeutic purposes

    Energy Technology Data Exchange (ETDEWEB)

    Khorshidi, Abdollah, E-mail: abkhorshidi@yahoo.com

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of {sup 197}Au(n,γ){sup 196,198}Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. {sup 197}Au nano-solution, including 20 nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E + 13 n/cm{sup 2}/s for {sup 196,198}Au activity and production yield estimations. Meanwhile, the yield was examined using 30 MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF{sub 2} reflector enclosed the moderator region. Transmutation in {sup 197}Au nano-solution samples were explored at 15 and 25 cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. - Graphical abstract: This figure describes gold nanoparticles production via cyclotron based method. The aim of investigating is to estimate activity and saturation yield of {sup 197}Au(n,γ){sup 198}Au and {sup 197}Au(n,2n){sup 196}Au reactions using Karaj cyclotron available in Iran. The feasibility of a cyclotron-driven production of βeta-emitting radioisotopes was investigated for therapeutic applications via a new neutron activator design. - Highlights: • Nano-gold radioisotope production

  10. Physics design of a 70 MeV high intensity cyclotron, CYCIAE-70

    International Nuclear Information System (INIS)

    Zhang Tianjue; An Shizhong; Wang Chuan; Yin Zhiguo; Wei Sumin; Li Ming; Yang Jianjun; Ji Bin; Jia Xianlu; Zhong Junqing; Yang Fang

    2011-01-01

    This paper introduces the physics design of a 70 MeV high intensity cyclotron at China Institute of Atomic Energy (CIAE), which is aimed for multiple uses including radioactive ion-beam (RIB) production. The machine adopts a compact structure of four straight sectors, capable of accelerating two kinds of beams, i.e. H − and D − . The proton and deuteron beam will be extracted in dual opposite directions by charge exchange stripping devices. The energy of the extracted proton beam is in the range 35–70 MeV with an intensity up to 700 μA. The corresponding values for the deuteron beam are 18–33 MeV and 40 μA. This paper will present the main characteristics and parameters in the design of the 70 MeV cyclotron, the results of the basic beam dynamics study, as well as the physics in the design of the different systems, including the main magnet, RF, injection and extraction systems, etc.

  11. Simulations of Beam Quality in a 13 MeV PET Cyclotron

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2015-12-01

    Full Text Available Simulation of the trajectories of negative hydrogen ion (H− beam in a 13 MeV PET cyclotron (DECY-13 were carried out by using the Runge-Kutta (RK4 approximation method and Scilab 5.4.1. The magnetic and electric fields were calculated using Opera-3d/TOSCA softwares at 1 mm resolution. The cyclotron is of a fourth-harmonics type, meaning that the acceleration occurs four times per cycle, with a radiofrequency (RF field of 77.66 MHz frequency and 40 kV amplitude. The calculations and simulations show that the maximum distance between the ion source and the puller is about 6 mm, while the maximum width of the beam at 13 MeV is about 10 mm, and the initial phase between the RF field and the beam ranges from -10° to 10°, with a yield of about 10% of the beam from the ion source getting accelerated to 13 MeV.

  12. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  13. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  14. Vancouver Cyclotron Conference

    International Nuclear Information System (INIS)

    Clark, David J.

    1993-01-01

    Although no longer on the high energy frontier, the cyclotron field is still a major scientific growth area. Its progress is highlighted at the international conference on cyclotron design, development and utilization held at intervals of about three years, under the auspices of the International Union of Pure and Applied Physics (IUPAP). Vancouver, surrounded by mountains, water and some cyclotrons, provided a pleasant setting for the 13th Conference, held last summer. With over 200 cyclotrons in operation around the world, the attendance, 241 delegates and 26 industrial exhibitors, was a near record, reflecting the flourishing state of the field. The early sessions covered the initial operation of new or upgraded cyclotron facilities. Major facilities completed since the previous Conference in Berlin in May 1989 included the 400 MeV ring cyclotron at Osaka, the U400M cyclotron at Dubna which will be coupled to the U400 to give 20 MeV nucléon uranium beams, the 130 MeV cyclotron at Jyvaskyla (in Finland, the furthest north!), the 110 MeV JAERI machine in Japan, and the 65 MeV proton therapy cyclotron in Nice. Among the facility upgrades were the KFA cyclotron at Julich which will inject the 2.5 GeV storage ring COSY, and the addition of an FM mode to the K=200 CW mode at Uppsala to give protons up to 180 MeV. The impressive current of 1.5 mA at 72 MeV obtained from the PSI Injector II will soon be injected into the 590 MeV ring

  15. Human machine interface based on labview for vacuum system operation of cyclotron proton DECY-13 MeV

    International Nuclear Information System (INIS)

    Fajar Sidik Permana; Saminto; Kurnia Wibowo; Vika Arwida Fanita Sari

    2016-01-01

    Center of Accelerator Science and Technology (CAST), BATAN is designing DECY-13 MeV Proton Cyclotron. So far, this operation system has been conducted conventionally. In this research, an Human Machine Interface system has been successfully built for simplifying operation and monitoring pressure inside vacuum chamber of cyclotron DECY-13 MeV. HMI system is built with LabVIEW software and integrated with Programmable Logic Controller FX-2424 series and NI cRIO (NI-9025 and NI-9870) module. HMI system consist of turning on/of pumps (rotary and diffusion), opening/ closing valve automatically, and retrieving of data from sensor in real time. (author)

  16. An 8 MeV H- cyclotron to charge the electron cooling system for HESR

    International Nuclear Information System (INIS)

    Pakhomchuk, V.; Papash, A.

    2006-01-01

    A compact cyclotron to accelerate negative hydrogen ions up to 8 MeV is considered as optimal solution to the problem of charging the high-voltage terminal of the electron cooling system for High Energy Storage Ring at GSI (HESR Project, Darmstadt). Physical as well as technical parameters of the accelerator are estimated. Different types of commercially available cyclotrons are compared as a possible source of a 1 mA H - beam for the HESR. An original design based on the application of well-established technical solutions for commercial accelerators is proposed

  17. The 200 MeV cyclotron facility

    International Nuclear Information System (INIS)

    1987-01-01

    Beams of protons with several different energies have now been successfully transported between the injector cyclotron SPC1 and the SSC. Some small modifications to the placement of steering magnets and diagnostic equipment have been made in the light of our operational experience, which should improve the ease of tuning this beamline. Proton beams up to 200 MeV in energy have been transported to the experimental areas, where experiments in nuclear physics have been successful conducted. Three of the experimental beamlines are now in operation. Beams of 66 MeV protons have also been transported to targets in the isotope production vault, without difficulty. Field mapping of the remaining quadrupoles on site has been completed. Installation of and alignment of magnets up to the beam swinger is also complete, although the beam tube itself, plus vacuum and diagnostic equipment must still be tackled. The beam swinger has been designed and detailed in the drawing office, and is now being manufactured locally. The beamline elements for the sepctrometer beamline remain to be purchased. A personal computer has been purchased for controlling the field-mapping equipment for the spectrometer magnets, which are being manufactured in this country. A number of computer programs have been written for conversion of calibrated quadrupole and dipole magnet field data to absolute current values for the control system. Other programs permit diagnostic measurements of beam profiles to be used to calculated the beam emittance, or to set steering magnets so that the beam is correctly aligned

  18. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  19. Building on TR-24 success. Advanced Cyclotron Systems Inc. launches a new cyclotron model

    International Nuclear Information System (INIS)

    Russell Watt; William Gyles; Alexander Zyuzin

    2015-01-01

    ACSI is designing a new 30 MeV cyclotron based on the TR-24. While minimizing changes from the proven TR-24, including maintaining the same outer dimensions, the energy of the cyclotron will be increased to 30 MeV, which will make it the most compact, non-superconducting, 30 MeV cyclotron design to date. Maximum beam current will match the TR-24 at 1 mA. With the size and footprint of a typical low energy PET cyclotron, this system will offer users a cost effective solution for a diversified facility capable of producing a wide spectrum of PET and SPECT radioisotopes for research and commercial distribution. (author)

  20. Estimation of exposure quantity of gamma and neutron in 13 MeV proton cyclotron for radioisotope production of 18F

    International Nuclear Information System (INIS)

    Sunardi; Silakhuddin

    2015-01-01

    Quantitative estimation of gamma and neutron exposure in 13 MeV proton cyclotron for radioisotope of 18 F has been done. The aim of this study is to know the exposure of gamma and neutron that will be generated by 13 MeV proton cyclotron The method that was used is the determine of gamma and neutron quantity exposure that produced by proton beam collision with matter in the cyclotron chamber and cyclotron target. The analysis result showed that the reactions occur at chamber are 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co,, while at the target is 18 O(p,n) 18 F. The calculation result of neutron flux at the chamber and the target facility are 7,34×10 7 n/cm 2 dt and 1.10×10 9 n/cm 2 dt, respectively. The gamma activity at the chamber for reaction 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co are 3,0×10 8 Bq, 4,54×10 5 Bq and 1,13×10 9 Bq respectively, while the gamma activity at the cyclotron target is 1,84×10 8 Bq. The data can be used as a basis for designing the cyclotron radiation shielding. (author)

  1. Design of the proposed 250 MeV superconducting cyclotron magnet for proton therapy

    International Nuclear Information System (INIS)

    Dey, M.K.; Ahmed, M.; Murali, S.; Duttagupta, A.; Chaudhuri, J.; Mallik, C.; Bhandari, R.K.

    2006-01-01

    Here we describe the design calculations for the superconducting magnet of a 250 MeV proton cyclotron to be used for therapeutic purpose. Hard-edge approximation method has been adopted for finding the poletip geometry to meet the basic focusing requirements of the beam. Then the uniform-magnetization method has been applied to calculate the 3D magnetic field distribution due to saturated iron poletips, to verify the beam dynamical issues. (author)

  2. Startup work on Inshas cyclotron

    International Nuclear Information System (INIS)

    Vorogushin, M.F.; Strokach, A.P.; Shikhov, V.Ya.; Galchuk, A.V.; Soliman, A.N.; El-Abyad, M.; Comsan, M.N.H.; Saleh, Z.A.; Azzam, A.N.

    2001-01-01

    Startup works on the MGC-20 variable energy cyclotron in the Inshas Nuclear Research Center (Egypt) are described. The cyclotron is intended for acceleration of hydrogen and helium ions in a wide energy range (for protons - from 5 to 20 MeV). Main units of the cyclotron and results of computer experimental acceleration of protons to 18 MeV are described. The prospects of furthers investigations are presented [ru

  3. Fabrication of miniature magnetic magnet pole for validate simulation of magnetic cyclotron proton 13 MeV

    International Nuclear Information System (INIS)

    Subroto; Sukiya; Tony R

    2013-01-01

    A fabrication of miniature magnetic pole field has been made to validate the simulation system 13 MeV magnet of proton cyclotron using mild steel material. This electromagnet of magnetic pole at the end of the magnetic pole is divided into 8 parts of the valley and the hill interval to produce different magnetic field. Pole magnetic field fabrication is meet to match the design of the system simulation results 13 MeV cyclotron magnet. This requires strong cyclotron magnetic field average at 1.275 T magnetic field strength of each piece was different. So that the ion beam passing through a magnetic field. Will be focused before mashing target. The surface of magnetic pole is circular with a diameter of 100 mm and 32 mm pole spacing. Miniature of electrical pole diameter is only one-tenth the diameter of 960 mm designed this requires current 10 A with voltage 30 V to produce field strength of 0.3 T. To measure the magnetic field strength tesla meter is used and to measure the relationship curve in pole position with a magnetic field strength magnets cylinder directions X and Y the used mini lathe. Field strength measurement results with a straight, oblique and circular position show nearly equal to curve simulation results using a 3D module TOSCA opera program. (author)

  4. JSW's baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Y.; Kaneda, Y.; Satoh, Y.; Suzukawa, I.; Yamada, T.

    1983-01-01

    Designed by The Japan Steel Works, Ltd., specially for installation in a hospital's medical department and nuclear research laboratory, '' JSW BABY CYCLOTRON '' has been developed to produce short-lived radioisotopes such as 11C, 13N, 15O and 18F. JSW's Baby Cyclotron has some design features. 1) Fixed energy and four sector azimuthally varying field. 2) Compact figure desired for hospital's nuclear medical department 3) A bitter type magnet yoke shielding activity 4) Simple control and operation 5) Easy maintenance without skilled personnel. Type BC105 (P:10MeV, d:5MeV), BC107 (P:10MeV, d:7MeV), BC168 (P:16MeV, d:8MeV) and BC1710 (P:17MeV, d:10MeV) are available according to required amount of radioisotopes. In our radioisotope production test, yield and purity of 11C, 13N, 15O and 18F are usable to clinical diagnosis

  5. The booster linac of the Sparkle Company 18 MeV Cyclotron: main design elements

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.

    2009-01-01

    The Sparkle Company (Casarano, Le) that is setting up a centre for production and research on radioisotopes for medical use, has requested to the ENEA Accelerator Laboratory a specific design of a linear accelerator for boosting the energy of its commercial cyclotron from 18 to 24 MeV, with the aim of implementing a small proton irradiation facility for radiobiology studies. This is the first case of coupling a cyclotron beam to a linac, that, if successful, can give rise to a new class of accelerators for proton therapy. The linac can accelerate only a very small portion of the cyclotron beam, due to the intrinsic mismatching of the two kind of accelerators both in the vertical and in the longitudinal phase planes. A beam transport line has been studied that besides matching at best the beam to the linac in the transverse plane, is equipped with a chopping system to lower drastically the primary beam power in order to protect the linac structure. The linac is SCDTL type, and operates at 3 GHz. In the following the results of the design are presented. [it

  6. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  7. The TRIUMF 520 MeV cyclotron: recent and future developments

    International Nuclear Information System (INIS)

    Dutto, Gerado.

    1992-08-01

    The TRIUMF cyclotron is now routinely producing 150 μA protons at 500 MeV for meson production with a maximum available current of 200 μA and beam availability of 90%. A successful resonator upgrade program, the recent commissioning of a new 92 MHz rf booster cavity and a new compact CUSP ion source will allow the current to be increased to 225 μA routinely and 300 μA maximum, once an upgrade of the high radiation target areas is completed. Furthermore, the 300 μA maximum H - internal current will allow, in parallel with 100-200 μA for meson production, the simultaneous extraction of 50-100 μA for a radioactive beam facility and of 50-100 μA for isotope production at 70-100 MeV. A proton therapy facility is also proposed. A new optically pumped H - polarized source will allow a highly stable and reproducible 5 μA beam at ∼ 75% polarization to be extracted. The feasibility of the extraction of an H - beam with electrostatic and magnetic channels has also been demonstrated. Problems and plans for the extraction of 150 μA H - for KAON will be discussed. 13 refs., 6 figs

  8. Cyclotron to Oslo University

    International Nuclear Information System (INIS)

    Sandstad, J.

    1978-01-01

    The new cyclotron was delivered to Oslo University on September 21st 1978, and was mannfactured by A/B Scandtronix of Uppsala, Sweden. The contract price was 6,8 million Norwegian kroner and installation will cost a further 4 million. The main specifications are given. The energy will be 36 MeV for protons and alpha particles, 18 MeV deuterons and 48 MeV for helium 3. The principle of a cyclotron is briefly described. While the primary purpose of the machine is nuclear research it is also planned to produce short-lived radioisotopes, primarily iodine 123. (JIW)

  9. Improvement in beam quality of the JAEA AVF cyclotron for focusing heavy-ion beams with energies of hundreds of MeV

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Oikawa, Masakazu; Yoshida, Ken-ichi; Kamiya, Tomihiro; Fukuda, Mitsuhiro; Satoh, Takahiro; Nara, Takayuki; Agematsu, Takashi; Ishibori, Ikuo; Yokota, Watalu; Nakamura, Yoshiteru

    2007-01-01

    In order to achieve a heavy-ion microbeam with an energy of hundreds of MeV applied to the research fields of biotechnology and materials science, the JAEA AVF cyclotron (K = 110) has been upgraded to provide a high quality beam with a smaller energy spread and a higher current stability. A flat-top (FT) acceleration system of the cyclotron, designed to produce ion beams with an energy spread of ΔE/E ≤ 0.02%, has been developed to reduce chromatic aberrations in the lenses of the focusing microbeam system. The FT acceleration system provides uniform energy gain of the beam by superimposing a fifth-harmonic voltage on the fundamental one. In addition, stabilization of the acceleration rf voltage and the phase were achieved to accelerate the high quality beam and to provide it stably to the microbeam system connected to a cyclotron beam line. In the latest experiment, we have succeeded to accelerate 260 MeV 20 Ne 7+ with an energy spread of 0.05% in FWHM using the FT acceleration system

  10. A new cyclotron for biomedical research

    International Nuclear Information System (INIS)

    Wolber, G.

    1988-01-01

    This paper presents the rationale for replacing the old AEG Compact Cyclotron (built in 1969/71) of the Institute for Radiology and Pathophysiology at the German Cancer Research Center by a 30 MeV H - /15 MeV D - cyclotron. A status report is followed by the scientific and technical reasoning as well as budgetary and organizational considerations. In the appendix we tried to explain the function of a cyclotron in a simple and comprehensive manner. (orig.) [de

  11. Mechanical design of beam extractor system for cyclotron proton 13 MeV

    International Nuclear Information System (INIS)

    Ihwanul Aziz; Widdi Usada

    2012-01-01

    Mechanical design of beam extractor system for 13 MeV proton cyclotron has been carried out. In cyclotron there are two extractor systems, the first is electrostatic deflector system, and the second is stripper system. This stripper serves to change negative charged of hydrogen ions to become positive charged hydrogen ions (protons). In proton cyclotron, the carbon foil is used as a stripper. Mechanical extractor system consists of a carbon foil holder and a driver system to control the position of foil holder and to change the foil. The driver system consists of a stepper motor extractor, a feed-through, a gear, a shaft, and a buffer. After some calculation the obtained component data as the foil follow holder is made of aluminum has total length of 12.25 mm, total width of 10 mm and the total thickness of 2.5 mm, while the length of each extractor arm is made of aluminum 90 mm, width is 30 mm, its height is 10 mm , the total volume is 7,392 x 10-5 and a mass of 0.1995 kg. Extractor drive system includes a stepper motor having a maximum of 4 lb-ft of torque, feed through, gear, shaft, and a buffer. Required torque is 0.16 Nm or 0.12 lb-ft diameter shaft to support the extractor arm is 29 mm. Bolt fastener for the buffer is a type of metric M6 bolt, so that the used seals viton O-ring with seal diameter of 6 mm and DN 40 CF flange. (author)

  12. Development of baby cyclotron for PET in Korea

    International Nuclear Information System (INIS)

    Chai, J.S.; Kim, Y.S.; Hu, J.Y.; Shin, Y.C.; Yoon, M.H.

    2001-01-01

    Development of a 13 MeV cyclotron for Positron Emission Tomography (PET) has been in progress since April 1999 at the Korea Cancer Center Hospital (KCCH). The study has been carried out in a joint collaboration between KCCH and the Pohang University of Science and Technology (POSTECH). Increasing desire for an uninterrupted, reliable and timely supply of the isotopes to customers has prompted obtaining a dedicated 5-13 MeV cyclotron for PET applications and pursuing the purchase of another 30MeV medical cyclotron in the very near future. A decision has been made to design the PET cyclotron in Korea. This will not only ease the problems associated with maintenance during operation but also keep the door open for continuous upgrading of the machine in the future

  13. 44gSc production using a water target on a 13 MeV cyclotron

    International Nuclear Information System (INIS)

    Hoehr, Cornelia; Oehlke, Elisabeth; Benard, Francois; Lee, Chris Jaeil; Hou, Xinchi; Badesso, Brian; Ferguson, Simon; Miao, Qing; Yang, Hua; Buckley, Ken; Hanemaayer, Victoire; Zeisler, Stefan; Ruth, Thomas; Celler, Anna; Schaffer, Paul

    2014-01-01

    Introduction: Access to promising radiometals as isotopes for novel molecular imaging agents requires that they are routinely available and inexpensive to obtain. Proximity to a cyclotron center outfitted with solid target hardware, or to an isotope generator for the metal of interest is necessary, both of which can introduce significant hurdles in development of less common isotopes. Herein, we describe the production of 44 Sc (t 1/2 = 3.97 h, E avg,β + = 1.47 MeV, branching ratio = 94.27%) in a solution target and an automated loading system which allows a quick turn-around between different radiometallic isotopes and therefore greatly improves their availability for tracer development. Experimental yields are compared to theoretical calculations. Methods: Solutions containing a high concentration (1.44–1.55 g/mL) of natural-abundance calcium nitrate tetrahydrate (Ca(NO 3 ) 2 · 4 H 2 O) were irradiated on a 13 MeV proton-beam cyclotron using a standard liquid target. 44g Sc was produced via the 44 Ca(p,n) 44g Sc reaction. Results: 44g Sc was produced for the first time in a solution target with yields sufficient for early radiochemical studies. Saturation yields of up to 4.6 ± 0.3 MBq/μA were achieved using 7.6 ± 0.3 μA proton beams for 60.0 ± 0.2 minutes (number of runs n = 3). Experimental data and calculation results are in fair agreement. Scandium was isolated from the target mixture via solid-phase extraction with 88 ± 6% (n = 5) efficiency and successfully used for radiolabelling experiments. The demonstration of the production of 44 Sc in a liquid target greatly improves its availability for tracer development

  14. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs.

  15. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60μA. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed

  16. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60{mu}A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed.

  17. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong.

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs

  18. Development of 68Ge/68Ga Generator using 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Goo, Hur Min; Dae, Yang Seung; Hoon, Park Jeong; Dae, Park Yong; Je, Lee Eun; Bae, Kong Young; Kim, In Jong; Lee, Jin Woo; Hyun, Yu Kook

    2012-05-01

    The purpose of this research is to develop the 68 Ge/ 68 Ga generator where daughter nuclide 68 Ga can be eluted according to the designated periods from the resin which holds mother nuclide 68 Ge absorbed and to develop the 68 Ga utilization technology. 1. Target development for 68 Ge target and production of 68 Ge - Target designed for 68 Ge production with 30 MeV cyclotron - Target body material evaluation and proton beam irradiation 2. Separation of 68 Ge and development of column material and extraction system for 68 Ge/ 68 Ga separation - Development of 68 Ge separation method from nat Ga target - Development of absorbents for generator using stable isotope 3. Development of 68 Ga labelled radiopharmaceutical - Development of 68 Ga labelled benzamide derivative for diagnosis of melanoma - Development of 68 Ga dendrimer complex using nano-technology 4. Development of shield case for 68 Ge/ 68 Ga generator

  19. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  20. Variable-Energy Cyclotron for Proton Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  1. Rf structure of superconducting cyclotron for therapy application

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni; Matsuki, Seishi; Mashiko, Katuo; Shikazono, Naomoto.

    1981-01-01

    Advantages of fast neutrons in therapeutical application are now widely recognized. Fast neutrons are generated by bombarding a thick beryllium target with high energy protons and deuterons. The AVF cyclotrons which deliver 50 MeV protons and 25 MeV deuterons are commonly used and are commercially available now. At the treatment usually rotational irradiation is taken to prevent an injury to normal tissue from the high LET effect of fast neutrons. The construction cost of both cyclotrons and isocentric irradiation installation are relatively high, so that the spread of neutron therapy is obstructed. A superconducting cyclotron for neutron therapy application was proposed by a Chalk River group. This low cost design allows the installation to be a dedicated facility located in a hospital, and small size allows installations of the complete cyclotron in a rotatable gantry. The design studies of the superconducting cyclotron based on this idea are going on at Kyoto University. The full scale model experiments for a rf structure of the cyclotron were carried out. (author)

  2. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Stevenson, N.R.

    1995-06-01

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  3. Use of cyclotrons in medical research: Past, present, future

    Science.gov (United States)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  4. Isochronous variable energy cyclotron of IPEN-CNEN/SP (Brazil)

    International Nuclear Information System (INIS)

    Lucki, G.; Zanchetta, A.A.; Gouveia, S.; Klein, H.

    1984-01-01

    The cyclotron CV-28 installed at the Radiation Damage Division of IPEN-CNEN/SP is a multi-particle radiation source where protons, deuterons, 3 He ions and alpha particles can be accelerated with variable energy up to 24, 14, 36 and 28 MeV, respectively. The cyclotron is a versatile machine that can be applied in research and development of : radioisotope production - materials science - nuclear physics - activation analysis and others. First internal beam with 24 MeV protons has been obtained in April 23, 1981. First irradiation of Cu sample, at the external beam (beam current 1.5 μA), with 28 MeV alpha particles was performed in December 29, 1983. Main characteristics of the cyclotron are given together with a description of peripheral systems and experimental capability. Presently the accelerator is being optimized for cpontinuous running. (Author) [pt

  5. The PET / cyclotron facility at Putrajaya Hospital - an update

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib; Suzilawati Muhd Sarowi; Munira Shaikh Nasir; Zulkifli Mohamed Hashim

    2006-01-01

    Malaysia desire to have a cyclotron for nuclear medical use came into realisation recently with the establishment of a PET/Cyclotron Facility at Putrajaya Hospital. The testing and commissioning of the cyclotron, hot cells, QC equipment and PET/CT started on March 27, culminating in the first patient to be injected on May 10 2006. Three other patients were to be followed on May 15. The patients from both the Kuala Lumpur and Putrajaya Hospital were pre-selected by physicians from these hospitals. The 18 MeV cyclotron is capable of generating 16.4 MeV protons and 8.4 MeV deuterons. The cyclotron at Putrajaya has three targets (2 liquid and 1 gas) and is capable of producing 18 F-FDG and 18 F-DOPA. To complement this, the facility has 2 modules for FDG synthesis, 1 for F-DOPA and 1 for nucleophilic synthesis. The facility will be GMP compliant. For the first production for human use, the water-18 target was irradiated for 50 minutes at 20 mA to produce 1.3 Ci of F-18. At the end of synthesis, the activity of the FDG obtained was 600 mCi. The product was then injected to a 26-year-old female, with a suspected adenocarcinoma. (Author)

  6. Design calculation for the central region of the NSCL 500 MeV superconducting cyclotron

    International Nuclear Information System (INIS)

    Marti, F.; Gordon, M.M.; Chen, M.B.; Salgado, C.; Antaya, T.; Liukkonen, E.

    1982-01-01

    The 500 MeV superconducting cyclotron has three 60 0 dees within the magnet valleys, and the design of the central region is complicated because it must accommodate the inner tips of these dees, the tips of the three intervening dummy dees, and the ion source, all within a very small space. In addition, this cyclotron is designed to operate on harmonics from h=1 to 7, with dee voltages up to 100 kV, and must accelerate a wide variety of heavy ions with turn numbers from n=100 to 600. To satisfy these diverse requirement, the overall plan for the central region calls for the construction and use of many different, but readily interchangeable sets of electrode structures with each set designed for a different range of operating conditions. The procedure for determining the optimum geometry for a set of electrodes involves a converging sequence of tentative designs each of which is tested and improved through a combination of electrolytic tank measurements and orbit computations. For this purpose, the speed and accuracy of the tank measurements have been improved, and the resultant potentials are used in our computer programs to determine whether the ion orbits clear the obstacles successfully, gain energy efficiently, receive adequate vertical focusing, and finally emerge from the central region properly centered. The vertical motion computations are by far the most difficult, and a special effort has been made to obtain satisfactory results

  7. Radiation safety aspects of a 30 MeV proton cyclotron

    International Nuclear Information System (INIS)

    Nandy, Maitreyee; Bandyopadhyay, Tapas; Sarkar, P.K.; Maiti, Moumita

    2005-01-01

    High current accelerators are increasingly used in nuclear medicine, power industry, material properties, material damage and astrophysical studies, etc. In the present work we have assessed the direct and transmitted neutron dose, build up and decay of air activity in the vault and soil activity for a 30 MeV 350 μA proton cyclotron. The transmitted dose equivalent H through ordinary concrete shield of different thickness has been estimated using the two different sets of values of the attenuation coefficient T eff . It is observed that while the two sets of H values differ by 25-26%, the required shield thickness is around 2.1 m. in both the cases to bring down the dose to the ICRP specified limit of 1 μSv/hr. Activity induced in the air due to 13 N and 15 O has been estimated. It has been found that for a target vault of 4m.x4m.x4m. dimension the activity concentration goes above the DAC value within a few seconds of commencement of operation even with 12 air changes per hour. A theoretical study of the radioactivity that may be induced in the soil indicates formation of 40 K, 24 Na, 56 Mn, 59 Fe, 27 Mg, 60 Co, 59,63,65 Ni, 64,66 Cu, 65,69 Zn radioisotopes. (author)

  8. The beam commissioning of BRIF and future cyclotron development at CIAE

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianjue, E-mail: tjzhang@ciae.ac.cn; Yang, Jianjun, E-mail: yangjianjun2000@tsinghua.org.cn

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200–500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3–4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  9. Calculation of particle dynamics in CI-10 cyclotron

    International Nuclear Information System (INIS)

    Samsonov, E.V.; Karamysheva, G.A.; Vorozhtsov, S.B.

    1999-01-01

    The calculations of beam dynamic characteristics of High-Intensity Cyclotron-Injector CI-10 for deuteron beam of 15 MeV energy are presented. Analytical estimations of space charge effects are given. In order to increase the intensity of the accelerator beam some ideas about the cyclotron design modification are given too. (author)

  10. Nitrate Measurment in Water Source of Karaj City and Zonning it Geographic Information Systems (GIS)

    OpenAIRE

    A.R. Shakib; J. Rahimi; M. Noori Sepehr; M. Zarrabi

    2015-01-01

    Background & Objectives: Nitrate is one of drinking water pollutant which is introduced to water body from municipal wastewater. Information on nitrate concentration and its distribution in water resource is necessary in safe drinking water supply. For that reason, the present work was done for investigation of nitrate in Karaj water supply resource and its zonning with Geographic Information Systems (GIS). Materials and Methods: In this work, the nitrate concentration in 200 wells of Karaj w...

  11. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  12. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  13. Theoretical estimation of "6"4Cu production with neutrons emitted during "1"8F production with a 30 MeV medical cyclotron

    International Nuclear Information System (INIS)

    Auditore, Lucrezia; Amato, Ernesto; Baldari, Sergio

    2017-01-01

    Purpose: This work presents the theoretical estimation of a combined production of "1"8F and "6"4Cu isotopes for PET applications. "6"4Cu production is induced in a secondary target by neutrons emitted during a routine "1"8F production with a 30 MeV cyclotron: protons are used to produce "1"8F by means of the "1"8O(p,n)"1"8F reaction on a ["1"8O]-H_2O target (primary target) and the emitted neutrons are used to produce "6"4Cu by means of the "6"4Zn(n,p)"6"4Cu reaction on enriched zinc target (secondary target). Methods: Monte Carlo simulations were carried out using Monte Carlo N Particle eXtended (MCNPX) code to evaluate flux and energy spectra of neutrons produced in the primary (Be+["1"8O]-H_2O) target by protons and the attenuation of neutron flux in the secondary target. "6"4Cu yield was estimated using an analytical approach based on both TENDL-2015 data library and experimental data selected from EXFOR database. Results: Theoretical evaluations indicate that about 3.8 MBq/μA of "6"4Cu can be obtained as a secondary, ‘side’ production with a 30 MeV cyclotron, for 2 h of irradiation of a proper designed zinc target. Irradiating for 2 h with a proton current of 120 μA, a yield of about 457 MBq is expected. Moreover, the most relevant contaminants result to be "6"3","6"5Zn, which can be chemically separated from "6"4Cu contrarily to what happens with proton irradiation of an enriched "6"4Ni target, which provides "6"4Cu mixed to other copper isotopes as contaminants. Conclusions: The theoretical study discussed in this paper evaluates the potential of the combined production of "1"8F and "6"4Cu for medical purposes, irradiating a properly designed target with 30 MeV protons. Interesting yields of "6"4Cu are obtainable and the estimation of contaminants in the irradiated zinc target is discussed. - Highlights: • "6"4Cu production with secondary neutrons from "1"8F production with protons was investigated. • Neutron reactions induced in enriched "6"4Zn

  14. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  15. Radiation protection of cyclotron vault with maze in PET Cyclotron Center

    International Nuclear Information System (INIS)

    Fueloep, Marko

    2003-01-01

    The PET Cyclotron center (PCC) is a complex for production, research and application of positron radiopharmaceuticals for PET (Positron Emission Tomography), which was commissioned this year (2004) in Bratislava, Slovak Republic. Positron radionuclides are produced by 18/9 MeV proton/deuteron cyclotron CYCLONE 18/9. Radiation protection of personnel and inhabitants against ionizing radiation in the PCC is solved with regard to the ICRP recommendations and Slovak regulatory system, protection rules and criteria and optimization of radiation protection. In the article comparisons of calculated and measured neutron and gamma dose equivalent rates around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze are presented. Description of the CYCLONE 18/9 as a source of angular distribution of neutron energy spectra (production of 18 F was considered) was simulated by Monte Carlo code MCNPX. Code MCNP4B was used for shielding calculation of cyclotron vault with maze. Neutron energy spectra behind the shielding were measured by Bonner spectrometer. The values of neutron dose equivalent, which were calculated and measured around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze, are within the range of factor 2. (authors)

  16. New irradiation facilities at the Australian national medical cyclotron

    International Nuclear Information System (INIS)

    Parcell, S.K.; Arnott, D.W.; Conard, E.M.

    1999-01-01

    Two new irradiation facilities have been developed at the National Medical Cyclotron for radionuclide production. The first relocates PET irradiations from the cyclotron vault to a dedicated PET beam room, to improve accessibility and reduce radiation exposures associated with target maintenance. This new facility consists of a beam line to transport 16-30 MeV proton beams from the cyclotron to 1 of 8 PET targets mounted on a target rack. The target rack has increased the number of targets available for production and experimentation. The second is a completely independent solid target irradiation facility for SPECT. This facility consists of a beam line to transport 26-30 MeV proton beams from the cyclotron to a dedicated beam room containing one solid target station. A new pneumatic target transfer system was also developed to transport the solid target to and from the existing chemistry hot cells. The beam line and target components are operated under the control of a dedicated PLC with a PC based user interface. The development and some technical aspects of these new irradiation facilities are discussed here. (author)

  17. Operation of the Karlsruhe Isochronous Cyclotron in 1976

    International Nuclear Information System (INIS)

    Schulz, F.; Schweickert, H.

    1977-08-01

    The operation of the Karlsruhe Isochronous Cyclotron in 1976 is briefly surveyed. The status and the results of the following technical developments are briefly described: 1) Computer aided cyclotron operation; 2) New correction coils for the cyclotron; 3) Non-intercepting measurement of the extraction rate; 4) Lambshift source for polarized deuterons; 5) Improvements of the 6 Li 3+ -Penning ion source; 6) New beam line to an irradiation room for machine parts; 7) Nova 2 computer system for nuclear physics experiments; 8) Routine production of Iodine-123 for nuclear medicine. - In the annual report 1975 we have included a section consisting of a series of brief reports on applied research in progress. This year we give a compilation of the current basic nuclear physics work at our cyclotron. The short papers prepared by the experimental groups are arranged according to the following topics: 1) Experiments using the 156 MeV 6 Li 3+ -beam; 2) Experiments using the 52 MeV polarized deuteron beam; 3) Further nuclear reactions; 4) Nuclear spectroscopy; 5) Measurements of nuclear magnetic moments; 6) Measurements with the neutron time-of-flight spectrometer. (orig.) [de

  18. Cyclotron laboratory in the Institute of Nuclear Studies of the Hungarian Academy of Sciences

    International Nuclear Information System (INIS)

    Gal'chuk, A.V.; Korolev, L.E.; Stepanov, A.V.

    1985-01-01

    The status of the development of cyclotron laboratory in the Institute for Nuclear Research of the Hungarian Academy of Sciences is discussed. The MGTS-20Eh isochronous cyclotron is to be mounted in the laboratory. Obtaining of accelerated proton beams is planned (energy of 5-18 MeV, internal beam current - 200 μA, external beam current - 50 μA), deuterons (3-10 MeV, 300 μA, 50 μA), H 3 +2 ions (7-27 MeV, 50 μA, 25 μA) and He 4 +2 (6-20 MeV, 50 μA, 25 μA). Fundamental researches in the field of atomic and nuclear physics applied investigations in the field of analysis of high purity materials, radiobiological investigations in the field of medicine and agriculture are to be performed in the laboratory. The cyclotron is to be used for production and application of short-lived radioisotopes and radiation testing machine parts

  19. First results of beam generation test for JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Tachikawa, T.; Hayashi, Y.; Ishii, K.

    1992-01-01

    The performance of JAERI AVF cyclotron was investigated with several kinds of ions in the wide energy range. The 90 MeV protons of 10 μA intensity was successfully extracted for the first time by the model 930 cyclotron. The feature of beam chopping system is also presented. (author)

  20. Neutron radiography by using JSW baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Yojiro

    1995-01-01

    At present, JSW baby cyclotrons are mostly used for the production of the radioisotopes for medical use. The attempt to use this baby cyclotron for neutron radiography began already in 1981. The feasibility of the neutron radiography for the explosives in metallic cases which are used for H1 rockets was investigated. In 1983, it was shown that the neutron radiography by using the baby cyclotron in Muroran Works, Japan Steel Works, Ltd. was able to be carried out as a routine work. Since then, the nondestructive inspection by neutron radiography has been performed for rocket pyrotechnic articles, and contributed to heighten their reliability. Further, the radiography by using fast neutrons was developed and put to practical use for recent large H2 rockets. The JSW baby cyclotron BC 168 which has been used for neutron radiography can accelerate 16 MeV protons or 8 MeV deuterons up to 50 μA. The principle of thermal neutron radiography is the generation of fast neutrons by irradiating a Be target with the proton beam accelerated by a baby cyclotron, the moderation of the fast neutrons, the formation of the thermal neutron flux of uniform distribution with a collimator, the thermal neutron flux hitting the Gd plate in a film cassette through an object, and the exposure of an X-ray film to electrons from the Gd plate. Fast neutron radiography apparatus, and commercial neutron radiography are described. (K.I.)

  1. Important radiation protection aspects of the operation of a commercial medical cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1997-01-01

    Since July 1991 the Radiopharmaceutical Division of the Australian Nuclear Science and Technology Organisation (ANSTO) operates a 30 MeV H'- ion Medical Cyclotron (Model; CYCLONE 30, Manufacturer: Ion Beam Applications, Louvain La Neuve, Belgium). During routine isotope production operations at the cyclotron a thick copper substrate plate electroplated with thin layer of selected enriched target material are bombarded with 30 MeV proton beam current up to 450 μA. The nuclear reaction of protons with the copper atoms result in the reduction of prompt evaporation neutrons with a peak energy of ∼ 1.8 MeV. These evaporation neutrons slow down via multiple collisions with the concrete shielding walls of the target cave, bounce back to the,interior space of the cave activating the cyclotron parts, beam tube components and other utilities installed in the irradiation cave. After the completion of 60 hour isotope production run, gamma dose equivalent rates of ∼10 5 μSvh -1 were measured at contact with the target irradiation stations and beam collimators. Evidently, these gamma rays emitted from the activated cyclotron components impose crucial radiation exposure hazard problems for the cyclotron maintenance technicians. Experiments had been carried out in order to identify the specific pathways of cyclotron component activation and to assess the probable personnel radiation exposure during handling of the activated cyclotron parts. The cool-down (radioactive decay) of the activated cyclotron components was estimated experimentally at different target bombardment conditions using the wall mounted gamma area monitors interfaced to the Health Physics Data Acquisition System. The gamma dose equivalent rates at contact with various locations of interest at the target irradiation station and at the typical work areas of the maintenance personnel were carefully recorded with a radiation (gamma) survey instrument during the three years operation period of the cyclotron. A

  2. Goodbye Synchro-Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-12-15

    On 17 December, after having seen many other physics machines come and go during its 33-year career, CERN's 600 MeV SynchroCyclotron (SC) is being shut down. Judged simply by its length (to say nothing of its quality), the research career of this machine testifies to the wisdom and imagination of the CERN pioneers who proposed it in the early 1950s.

  3. Goodbye Synchro-Cyclotron

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    On 17 December, after having seen many other physics machines come and go during its 33-year career, CERN's 600 MeV SynchroCyclotron (SC) is being shut down. Judged simply by its length (to say nothing of its quality), the research career of this machine testifies to the wisdom and imagination of the CERN pioneers who proposed it in the early 1950s

  4. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  5. Design and research of RF system for 10 MeV compact cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A 10 MeV compact cyclotron (CYCHU-10) has been developing in Huazhong University of Science and Technology (HUST). The RF system includes a 10 kW RF power generator and a resonance cavity. There is no automatic frequency tuning equipment in the cavity due to space limitations, so the generator must search and track the cavity resonant frequency. AD9850 synthesizer is used to generate RF signal in the experimental prototype, and a fine sinusoidal waveform around 99 MHz is obtained with the method of picking up a special aliased signal from the synthesizer’s output, and the output power level can be set by regulating the resistor connected to the Pin ’Rset’. The final stage amplifier based on tetrode operates in the grounded cathode configuration, and the schematic of the tetrode circuit is illustrated. The method of searching the resonant frequency is discussed in detail. For the sake of a compact and robust structure, the resonance cavity will adopt non-uniform characteristic impedance coaxial structure, and the magnet surface electroplated with copper will be used as dummy Dees. The precise shapes and dimensions of the cavity are designed and simulation results are carried out in this paper. The distributions of electromagnetic field are illustrated by means of numerical calculation analysis, and the wooden model test is preformed as well.

  6. Investigation of Prevalence of Energizer Drugs and Supplements Consumption and Effective Factors Among Bodybuilder Men in Karaj (2011)

    OpenAIRE

    F. Shoshtarizadeh; F. Bahramian; A.A. Safari; M. Pourghaderi; H. Barati

    2013-01-01

    Background: Body builder athletes’ high attention to form of body can result in high prevalence of nutritional disorders and habit to energizer drugs consumption. With notice to abuse problems of these drugs, this research was carried out to estimate prevalence of energizer drugs and supplements consumption in Karaj body builder men in 2011. Method: In cross-sectional (description- analytical) research 780 Karaj body builder men were selected randomly. Data were collected through interv...

  7. The problems of high efficient extraction from the isochronous cyclotron

    International Nuclear Information System (INIS)

    Schwabe, J.

    1994-06-01

    The problem of high efficient extraction (η ≥ 50%) from isochronous cyclotrons (with the exception of the stripping method) is not completely solved up to this day. This problem is specifically important, because these cyclotrons are being also applied in the production of medical radioisotopes, labeled pharmaceuticals as well as in neutron therapy (oncology), machine industry, agriculture (plant mutagenesis), etc. The aim of the proposed topic is to solve this problem on the AIC-144 isochronous cyclotron in the INP (Institute of Nuclear Physics). Lately, a beam of 20 MeV deuterons with an efficiency of ca. 15% was extracted from this cyclotron. (author). 25 refs, 14 figs

  8. A new generation of medical cyclotrons for the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA

  9. A new generation of medical cyclotrons for the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. We will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA. (author)

  10. The study of Health Literacy of adults in Karaj

    Directory of Open Access Journals (Sweden)

    Mahdi Sahrayi

    2017-03-01

    Full Text Available Background and objective: Health literacy represents the cognitive and social skills that determine the motivation and ability of individuals to acquire, access and understand the information to maintain and promote health. This study aimed to assess the health literacy of adults in Karaj. Methods: In this cross-sectional and descriptive study, 525 subjects aged 18-65 years old were selected using multistage sampling in Karaj. Relevant information was obtained using demographic questionnaire and HELIA questionnaire (18-65 years-old, respectively. Data were analyzed using SPSS and appropriate tests. Results: The mean age of participants was 33.48 ± 11.39 years old. 48.8% (n=250 the participants were male and 51.2% (n=262 were female. 24.2% (n=124 of the participants had inadequate health literacy, 23.4 % (n=120 not so inadequate health literacy, 37.9 % (n=194 adequate health literacy and 14.5 (n = 74 had higher health literacy. Health literacy was significantly associated with age, gender, marital status, education, BMI, smoking and physical activity (p<0.05. Conclusion: Due to low health literacy and the importance of adult role in society, it is necessary educational programs aimed at improving their health literacy skills , designed and implemented. Paper Type: Research Article.

  11. Present situation of 'baby cyclotron'

    International Nuclear Information System (INIS)

    Yamada, Teruo

    1981-01-01

    A ''baby cyclotron'' has been developed by the Japan Steel Works, Ltd. Its No. 1 model (proton 9.4 MeV) was delivered to the Nakano Hospital of National Sanatorium in March, 1979. It is being used successfully for the production of 11 C, 13 N and 15 O and labeled compounds. The proton or deuteron particles accelerated in the cyclotron collide on target materials. The target box, which is automatically changeable, is directly installed to the accelerating box, thereby taking the safety measures for any leaking radiation. The following matters are described: the production of short-lived radioisotopes (RI yields and treatment); the processes of production in the Nakano Hospital, with No. 1 baby cyclotron, including the photosynthesis of labeled compounds such as 11 C-labeled glucose; the research on the automation in the synthesis of organic labeled compounds like 11 C-palmitic acid. (J.P.N.)

  12. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F

    2002-04-22

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  13. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  14. Composition and B-H curve analysis of low carbon steel from Krakatau Steel company using VSM And EDX for magnet design of 13 MeV cyclotron

    International Nuclear Information System (INIS)

    Taufik; Emy Mulyani; Kusminarto; Slamet Santosa

    2012-01-01

    Cyclotron is one type of particle accelerator that accelerate particle in circular trajectory, in order to obtain high kinetic energy. One of the main components is the cyclotron magnet system that serves to form a cyclic particle trajectories and made of forged low carbon steel. In the magnet design, the selection of magnetic materials is very important in determining whether cyclotron magnet can operate properly or not and even can be optimal. That is why we need to test samples of magnetic materials from local production in this case two samples of material produced by PT Krakatau Steel (KS). Tests performed include testing of BH curve using VSM (Vibrating Sample Magnetometer) and material composition using EDX (Energy-dispersive X-ray spectroscopy). Obtained BH curve is used as material data in three-dimensional simulation using the Opera 3D with referee to magnetic model of Kirams 13. From this study it can be concluded that the position of the test object to the direction of the magnetic field induction gives different BH curve and the samples obtained from KS has a carbon content which is still high. The lower the carbon content in the iron will produce a better magnetic properties. Material samples analyzed will produce a field that is not optimal when it is used in a 13 MeV cyclotron magnet. (author)

  15. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  16. Cyclotron for industrial production of radioisotopes: relevants characteristics

    International Nuclear Information System (INIS)

    Lima, Wanderley de

    1997-01-01

    The industrial production of radioisotopes requests cyclotrons with easy maintenance services, high productivity and low operation costs. To obtain this performance the experts on the have achieved excellent results, taking advantage of modern resources in calculation and modeling. Only by the maximum exploitation of the azimutal variation of the magnetic field, a physical concept introduced in 1967 with the isocronous cyclotrons, it was possible to construct cyclotrons with only 30% of the electrical consumption required by the former cyclotrons. On the other hand, the acceleration of negative ions enable the 100% accelerated beam utilization, without internal energy dissipation, obtaining beam intensities up to 1mA in continuous running which represents an increased factor of 15. Other construction parameters were optimized aiming at reliability and reduction in the components activation. Concerning energy consumption and the beam intensity supplied, a present cyclotron with 30 MeV and 300μA of protons current is 15 times more efficient than its precedent. (author). 6 refs., 1 fig., 2 tabs

  17. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    International Nuclear Information System (INIS)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-01-01

    The University of Iowa’s 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  18. Design features and operating characteristics of the MC-50 cyclotron

    International Nuclear Information System (INIS)

    Bak, Hae Ill; Bak, Joo Shik

    1989-01-01

    The MC-50 cyclotron at Korean Cancer Center Hospital is now operational for neutron therapy and medical radioisotope production. Design features, mechanical structures and operating characteristics of the MC-50 are described in this paper. Optimum operating condition for this cyclotron has been determined by the repetitive running, and the performances of the internal beam have been investigated through the measurements of intensity and spatial distribution of the internal beam as a function of the radius of the cyclotron. Routinely, the 40 μA of 50 MeV protons have been obtained at first Faraday cup with a extraction efficiency of 61%. (Author)

  19. 40. anniversary of cyclotron of Institute of Nuclear Physics, Tashkent

    International Nuclear Information System (INIS)

    Umerov, R.A.; Uzakov, J.M.; Gulamov, I.R.

    2004-01-01

    Full text: The Cyclotron U-150-II of Institute of Nuclear Physics was projected in middle of the last century for nuclear-physical researches in a scientific research institute of electro physical equipment in Leningrad. The Cyclotron can accelerate positive ions with beam energy of the protons 18 MeV, deuterons 20 MeV, alpha particles 40 MeV. Intensity of a beam a little some microampere. The building of a Cyclotron represents an impressive three-floor construction in volume of 2000 m 3 . The capital equipment, the high-frequency generator, sources of power supplies, vacuum pumps and other technological units are placed on the first and socle floors of a building. The second and third floors served for accommodation of scientific laboratories. A building of a Cyclotron has three experimental halls, where it was possible to carry out physical researches. They have divided from each other, and the main thing from the accelerator, concrete walls with the purpose of reduction of the big radiating background at the working accelerator, preventing realization of experiments. It provided also biological protection of the on duty personnel. The first some years of operation of the Cyclotron have revealed a line of lacks of this machine. For example, for change of energy of a beam of a Cyclotron it took 2-3 weeks. Also, for transition of acceleration of one particles to others it take same time. Time parameters of a beam were unstable. In 1968 reconstruction of the Cyclotron has been started that has allowed to bring in basic changes to parameters U-150-II. The time took on change of an operating mode of a Cyclotron was sharply reduced, and it was possible to reduce it till 10-20 hours, to improve the energy and time resolution of a beam many times over, to reduce angular straggling of particles in a beam. And, all this enormous amount of works was spent by forces of institute. In 70 th years the big development was received with works on radiating stability of materials

  20. Synthesis and quality control of 2-Fluoro-2-Deoxy-D-Glucose radiopharmaceuticals at Center of 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Vu Thanh Quang

    2011-01-01

    Positron Pharmaceuticals of 2-Fluoro-2-Deoxy-D-Glucose ( 18 F-FDG) is being produced routinely on Centre of 30 MeV cyclotron. Daily productions including the main stages are: Target of oxygen-18 rich water is irradiated by accelerated proton beam to create fluorine-18; Synthesis of 18 F-FDG use precursor manotriflate and quality control of the final product of 18 F-FDG is carried out as requirements of British Pharmacopoeia. Accounting until 11 Nov., 2010 the centre was in operation for 1 year. With capacity production of 3.5-4 Ci of 18 F-FDG/day, the centre has supplied 18 F-FDG for 150 patients imagined PET in the military central hospital and delivered 2035 mCi of 18 F-FDG for cancer centres of Bach Mai and Viet Duc hospitals. (author)

  1. Design features of isotope production facility at Inshas cyclotron complex. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N [Nuclear Research Center, Atomic Energy Aurhority, Cairo, (Egypt)

    1996-03-01

    The nuclear research center, AEA, Egypt is erecting at its Inshas campus cyclotron complex for multidisciplinary use for research and application. The complex is to utilize a russian made AVF cyclotron accelerator of the type MGC-20 with MeV protons. Among its applications, the accelerator will be used for the production of short lived cyclotron isotopes. This article presents a concise description of the design features of isotope production facility to be annexed to the complex layout, schemes for radio waste, ventilation, and air conditioning systems. 2 figs., 2 tabs.

  2. PRIORITIZING OF EFFECTIVE FACTORS IN SERVICE QUALITY OF AEROBIC CLUBS IN KARAJ

    Directory of Open Access Journals (Sweden)

    Ali Benesbordi

    2011-01-01

    Full Text Available The purpose of this research was prioritizing of effective factors in service quality of aerobicclubs in Karaj. Nowadays service quality is one of successful factor in service organizations.Customers’ satisfaction from services causes to maintaining of customers that leads to successof organization. Method of the research is descriptive and solidarity kind. The statisticalpopulation was the members of aerobic clubs. 12 clubs were selected in a random cluster wayand totally 141 questionnaire were collected. In the research standard Liu questionnaire wasused that has been translated and its validity was subscribed by specialist teachers. Reliability ofquestionnaire also was calculated by Cronbach’s alpha coefficient (α= 0/87. Factor analysiswith Varimax rotation was used for analysis of data. The result showed empathy with loadfactor of 0/86; reliability with load factor of 0/85; assurance with load factor of 0/80;responsiveness with load factor of 0/78 and tangibles with load factor of 0/73 were sequentiallythe most important factors in service quality of aerobic clubs in Karaj.

  3. The identification of major dietary patterns in Karaj adolescents

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Background: The eating habits of adolescents are of concerns about public health, because of the direct relationship between diet and the incidence of obesity and other chronic diseases in adults. Identifying dietary patterns can be used as a prognostic factor in the relationship between diet and chronic disease risk. Materials and Methods: The present study is a cross-sectional study on 140 healthy adolescents 13-19 years of middle schools and high schools in Karaj. Samples were selected by multistage cluster sampling method from 5 districts in Karaj. Validated food frequency questionnaire was used to assess dietary intake. Food items were categorized into 25 food groups based on similarity. Results: Using principal component analysis three major dietary patterns were identified ehich among subjects had the highest dispersion justifying 30.25 percent of the total variance of consumption. Mediterranean-like pattern showed high loadings on nuts, fruits and vegetables, fish, chicken, olives, sweetmeat and pickles. The second pattern, called unhealthy pattern specified with a high intake of mayonnaise, refined cereals, boiled potatoes, red meat and processed meat, high fat dairy products, viscera. The third pattern (traditional had high loading for solid fats, dairy scab, legumes and whole grains. Conclusion: Mediterranean-like pattern with explained 14.14% of the variance of the maximum percentage to be allocated. These patterns can be used to identify the appropriate educational steps taken to promote sufficient nutrition.

  4. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  5. Medical cyclotron basic concepts and its applications

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Sonkawade, R.G.

    2012-01-01

    More than 3000 nuclides are known, of which approximately 2700 are radioactive, and rest are stable. The majority of radionuclides are artificially produced in the reactor and cyclotron. In a cyclotron, Charge particle such as proton, Deuteron, á (Alpha) particle, 3 He particles and so forth are accelerated in circular paths within the Dees under vacuum by means of an electromagnetic field. These accelerated particles can possess few KeV to several BeV of kinetic energy depending on the design of the cyclotron. At our setup we have an 11 MeV dual beam multi target cyclotron which is capable producing 11 C, 13 N, 15 O, 18 F and 2 F radioisotopes and all have been successfully produced and tested in our lab. Earlier cyclotrons were the best source of high-energy beams for nuclear physics experiments; several cyclotrons are still in use for this type of research. Cyclotrons can be used to treat cancer. Ion beams from cyclotrons can be used, as in proton therapy. The positron emitting isotopes are suitable for PET imaging. As discussed we are producing mainly Carbon-11, Nitrogen-13, Oxygen-15, and Fluorine-18: These are positron emitters used in PET for studying brain physiology and pathology, in particular for localizing epileptic focus, and in dementia, psychiatry and neuropharmacology studies. So these are having significant role in diagnosis of Oncological, Neurological and Cardiological disorder. More than ninety percent we are producing 18 F in FDG. 18 F in FDG (Flouro-Deoxy-glucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. Medical cyclotron is complex equipment requiring delicate handling by highly trained personnel. The aim of this article is to highlight few finer aspects of Medical cyclotron operation, including precautions for safety and smooth functioning of this sophisticated equipment. (author)

  6. Radiation protection problems by the operation of the cyclotron facility

    International Nuclear Information System (INIS)

    Durcik, M.; Nikodemova, D.

    1998-01-01

    The Cyclotron Center in Bratislava will consist of two cyclotrons. First - cyclotron DC-72 with maximal energy of 72 MV for protons for making experiments, for teaching process, for radioisotope production as 123 I and for neutron and proton therapy. Second - compact cyclotron with maximal proton energy of 18 MeV will be used for radioisotopes production for medical diagnosis as 1 *F (fluorodeoxyglucose), 81 Rb/ 81 Kr generator. This paper deals with the radiation protection problems by the operation of tis cyclotron facility as radiation protection of workers, monitoring plan, ventilation, safety lock and limitation and radiation monitoring. For proposed and continuing practices at the accelerator facility, the following general principles have to be fulfilled: (1) practices should produce sufficient benefit to offset the radiation detriment they case (justification); (2) the magnitude of the individual doses should be kept as low as achievable (optimization of protection); (3) individual exposures are subject to dose limits and some control of risk from potential exposures (dose and risk limits)

  7. Development of an MeV ion beam lithography system in Jyvaeskylae

    Energy Technology Data Exchange (ETDEWEB)

    Gorelick, Sergey [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)]. E-mail: Sergey.Gorelick@phys.jyu.fi; Ylimaeki, Tommi [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sagari, A.R.A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Whitlow, Harry J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)

    2007-07-15

    A lithographic facility for writing patterns with ion beams from cyclotron beams is under development for the Jyvaeskylae cyclotron. Instead of focusing and deflecting the beam with electrostatic and magnetic fields a different approach is used. Here a small rectangular beam spot is defined by the shadow of a computer-controlled variable aperture in close proximity to the sample. This allows parallel exposure of rectangular pattern elements of 5-500 {mu}m side with protons up to 6 MeV and heavy ions ({sup 20}Ne, {sup 85}Kr) up to few 100 MeV. Here we present a short overview of the system under construction and development of the aperture design, which is a critical aspect for all ion beam lithography systems.

  8. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    Science.gov (United States)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  9. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M. [Physics and Medical Technology, VU University Medical Center, Amsterdam 1007 MB (Netherlands) and BV Cyclotron VU, Amsterdam 1081HV (Netherlands)

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  10. Feasibility Study for a Two-Energy Compact Medical Cyclotron Controlled by Two Pairs of Main Coils

    International Nuclear Information System (INIS)

    Blum, D.; Breckow, J.; Zink, K.

    2013-01-01

    At Paul Scherrer Institute, Villigen, Switzerland, protons are accelerated for the proton therapy by a 250 MeV isochronous cyclotron. As for radiotherapy less energy is required (about 70 MeV) a carbon degrader reduces the extracted beam energy. This involves the increase of emittance, decrease of transmission, more activated components and a higher dose for the staff. By extracting a lower energy beam from the cyclotron, less degrade would be necessary and the above mentioned side-effects could be minimized. A possible solution could be to extract two energies from the cyclotron, 250 MeV for very deep located tumours and 230-235 MeV for others. A technically easy and affordable solution for this problem might be a two-energy cyclotron controlled by just two pairs of main coils. The feasibility of this solution has been analysed in this study. The compounded magnetic flux density B is the sum of the coil's and the iron's flux density. The amount caused by a coil is mainly responsible for the shape of the compounded flux density. Therefore a split of the coil pair was simulated to obtain more possibilities in the adjustment of a lower-energy beam to its ideal isochronous shape. The result is a simulated isochronous 240 MeV beam which was found with an tangential split of the coil pair, their repositioning and the increasing of current in the first coil pair and decreasing in the other one. The tangential split seemed to reduce the problem of the irons linear share of B. This feasibility study is seen as a first step before using 3D-capable software which considers a higher spatial resolution and the influence of temperature.(author)

  11. RF control hardware design for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-21

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  12. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  13. Radiation monitoring in a self-shielded cyclotron installation

    International Nuclear Information System (INIS)

    Capaccioli, L.; Gori, C.; Mazzocchi, S.; Spano, G.

    2002-01-01

    As nuclear medicine is approaching a new era with the spectacular growth of PET diagnosis, the number of medical cyclotrons installed within the major hospitals is increasing accordingly. Therefore modern medical cyclotron are highly engineered and highly reliable apparatus, characterised with reduced accelerating energies (as the major goal is the production of fluorine 18) and often self-shielded. However specific dedicated monitors are still necessary in order to assure the proper radioprotection. At the Careggi University Hospital in Florence a Mini trace 10 MeV self-shielded cyclotron produced by General Electric has been installed in 2000. In a contiguous radiochemistry laboratory, the preparation and quality control of 1 8F DG and other radiopharmaceuticals takes place. Aim of this work is the characterisation and the proper calibration of the above mentioned monitors and control devices

  14. A critical evaluation of the role of the cyclotron in radiation therapy

    International Nuclear Information System (INIS)

    Wolber, G.

    1984-01-01

    The present situation in heavy particle radiotherapy is reviewed. The potential of the cyclotron and competing devices is evaluated with respect to dose distribution, dose rate, versatility, size, and cost. Some related non-physical problems characterizing radiation therapy in general are briefly considered. It turns out that compact cyclotrons for 30 to 60 MeV protons hold their leading position in fast neutron therapy at least, as they do in radioisotope production

  15. The Prevalence of Anabolic Steroid Misuse and the Awareness about Its Negative Effects among Bodybuilders in Karaj City

    Directory of Open Access Journals (Sweden)

    H. Arazi

    2014-01-01

    Full Text Available Background & Aims: Regarding the increase in the misuse of anabolic steroids among young athletes particularly bodybuilding and power lifting athletes, this study aims to specify the degree of misuse prevalence anabolic steroid and the awareness of the side effects of such drugs among Karaj bodybuilders. Materials and Methods: This study is descriptive. All the bodybuilders of Karaj city was the participants of this research. The measurement instrument of this research was a questionnaire that contained 25 questions (7 questions were for background information, 9 questions were for awareness, 4 questions for attitudes about use of such drugs and the left 5 ones were for misuse prevalence that distributed among 320 bodybuilding athletes of different parts of Karaj. The response rate was 63.75% (240 persons from total 320 persons. At last, the current research output analyzed by the SPSS software and descriptive and inferential statistics. Results: The analysis showed that 62.7% of athletes that participated in the research used such drugs. Also, the data analysis showed that there was a meaningful relationship between the sport histories of the involved participants with misuse prevalence (p0.05. In addition to this, data analysis showed that there was a significant relationship between misuse prevalence and wrong attitudes about anabolic steroid (p< 0.05. The comparison of the current study results about the misuse of anabolic steroid with a similar research at 1382 showed 140% increase in the misuse of these drugs. Conclusion: This study indicates the high use of anabolic steroids among bodybuilders. According to this, we understand that the bodybuilders in Karaj don’t consult with specialist in this field get wrong information from unprofessional people. This leads the high misuse of such drugs. So, it is recommended to hold the prevention programs and athletes training about the side effects of anabolic steroids.

  16. Determination of the optimal conditions for simultaneous production of 73SE and 75SE radioisotopes in a 30 MeV cyclotron

    International Nuclear Information System (INIS)

    Pejman Rowshanfazad; Amirreza Jalilian; Mahsheed Sabet

    2004-01-01

    enrichment process, due to the presence of arsenic as 75 As(100%) in nature. On the other hand, chemical separation could be carried out in simple, inexpensive methods in a short time, due to the difference between target materials and the products. So the above reactions were taken to be the best choices according to the present conditions and facilities. 2 Cross Section Calculations for 75 As Reactions with Protons. Characterization of excitation function is a very important step for the determination of the projectile beam energy range. Excitation function can be determined by using computer codes such as ALICE (21) or experimental methods. In the present research, performed in the cyclotron department of Atomic Energy Organization of Iran (IBA, Cyclone-30), 75 As reaction cross-sections with protons were calculated for beam energy range of 3-30 MeV (this cyclotron can accelerate protons to 30 MeV energy) using ALICE code and the results were compared with previous experimental data given in the literature (19, 22, 23). The results of this comparison are shown in figure 1. Figure 1 shows a good agreement between the results of ALICE code and the experimental data. The three main reactions were 75 As(p, n) 75 Se, 75 As(p, pn) 74 Se and 75 As(p, 3n) 73 Se. Production of 75 Se began at about 2 MeV and reached its maximum around 12 MeV, where the reaction cross section was about 840 mb. Production of 74 As began around 13 MeV and reached its maximum at about 26 MeV, where the reaction cross section was about 170 mb. 74 As (which was considered as impurity) has a half life of 17.8 days, so it could be easily separated from the product by efficient chemical methods and it was not taken into account while energy selection. Production of 73 Se began at around 22 MeV proton energy and continued to increase while beam energy increased to 30 MeV, where the reaction cross section was about 550 mb. Thus, if the target thickness would be enough to reduce the proton energy from 22 MeV

  17. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-01-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H − ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested

  18. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    Science.gov (United States)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  19. Small-sized cyclotron for studies of physical processes in accelerators

    International Nuclear Information System (INIS)

    Arzumanov, A.A.; Voronin, A.M.; Gerasimov, V.I.; Gor'kovets, M.S.; Gromov, D.D.; Zavezionov, V.P.; Kruglov, V.G.

    1979-01-01

    A description is given of a cyclotron intended for studying physical processes taking place in the accelerator central part, for investigating various ion sources and also for optimizing the elements and systems of the U-150M isochronous cyclotron. The accelerator uses a hot-cathode slit ion source. The resonance system constitutes a quarter-wave nonaxial resonator excited at a frequency of 11.2 MHz. Investigations of beam time characteristics showed that the beam axial size constituted 11 mm, its radial size 5 mm. Displacement of the beam with respect to the median plane does not exceed 2 mm. In the cyclotron H + ions have been accelerated to an energy of 1 MeV. The integrated beam current constituted 250 μA

  20. Medical radioisotopes production at the isochronous cyclotron in Alma-Ata

    International Nuclear Information System (INIS)

    Arzumanov, A.A.; Batischev, V.N.; Gladun, V.K.; Kochetkov, V.L.

    1988-01-01

    High efficiency cyclotron operations (up to 5200 hours of beam time a year) considerably increased the possibility to perform both fundamental and applied scientific work. There appeared possibility to accelerate protons in a wide energy range from 6 to 30 MeV and realize correspondingly the nuclear reactions up to (A, 3n). This paper reports that among different applied tasks performed at the cyclotron the special program of cyclotron production of short-lived medical radioisotopes iodine-123, thallium-201, cadmium-109 in the first place and some others to satisfy clinic needs of Alma-Ata and its region has special importance. In accordance with this program the preparation to produce iodine-123 is being held and regular production of Thallium chloride, thallium-201 pharmaceptical is started

  1. Tobacco use and substance abuse in students of Karaj Universities

    Directory of Open Access Journals (Sweden)

    Kourosh Kabir

    2016-01-01

    Full Text Available Background: It is clear that tobacco smoking and substance abuse have negative consequences on adolescent and youth′s health. Tobacco smoking especially hookah smoking has increased worldwide especially among university students. This study aimed to determine the prevalence of risk-taking behaviors such as cigarette smoking, hookah smoking, alcohol use, and drug abuse and its predictors in students of Karaj universities. Methods: This cross-sectional study took place in Karaj in January and February 2014. The randomly selected sample consisted of 1959 college students. A self-administered questionnaire was used to measure risk-taking behaviors as well as demographic and related risk factors. Logistic regression model was performed in data analysis. Results: The prevalence of cigarette smoking was 9.3%. The prevalence of hookah smoking was 9.3%. 7% of students used illegal drugs and 9.5% of students used alcohol at least once in last 30 days. After adjustment for other factors, being male, living without parents, having smoker friends, and presence any smoker in the family were factors associated with students′ risk-taking behaviors. The results showed the co-occurrence of risk-taking behaviors. Conclusions: The prevalence of tobacco smoking and substance abuse, particular in males, are high. It seems that planning preventive interventions for this part of the population are necessary. This study emphasized the co-occurrence of risky behaviors, so, it is better high-risk behaviors simultaneously targeted at reducing or preventing interventions.

  2. Applied research with cyclotrons

    International Nuclear Information System (INIS)

    Apel, P.; Dmitriev, S.; Gulbekian, G.; Gikal, B.; Ivanov, O.; Reutov, V.; Skuratov, V.

    2005-01-01

    During the past three decades the Flerov laboratory carried out research and development of a number of applications that have found or may find use in modern technologies. One of the applications is the so-called ion track technology enabling us to create micro- and nano-structured materials. Accelerated heavy ion beams are the unique tools for structuring insulating solids in a controllable manner. At FLNR JINR the U-400 cyclotron and the IC-100 cyclotron are employed for irradiation of materials to be modified by the track-etch technique. For practical applications, U-400 delivers the 86 Kr ion beams with total energies of 250, 350, 430 and 750 MeV, and the 136 Xe ion beams with the energy of 430 MeV. The cyclotron is equipped with a specialized channel for irradiation of polymer foils. IC-100 is a compact accelerator specially designed for the technological uses. High-intensity krypton ion beams with the energy of ∼ 1 MeV/u are available now at IC-100. Production of track-etch membranes is an example of mature technology based on irradiation with accelerated ions. The track-etch membranes offer distinct advantages over other types of membranes due to their precisely determined structure. One-pore, oligo-pore and multi-pore samples can serve as models for studying the transport of liquids, gases, particles, solutes, and electrolytes in narrow channels. Track-etch pores are also used as templates for making nano wires, nano tubes or array of nano rods. The microstructures obtained this way may find use in miniaturized devices such as sensors for biologically important molecules. Bulk and surface modification for the production of new composites and materials with special optical properties can be performed with ion beams. Flexible printed circuits, high-performance heat transfer modules, X-ray filters, and protective signs are examples of products developed in collaboration with research and industrial partners. Some recent achievements and promising ideas that

  3. The cyclotron laboratory and the RFQ accelerator in Bern

    International Nuclear Information System (INIS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-01-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study

  4. The cyclotron laboratory and the RFQ accelerator in Bern

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Scampoli, P. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland and Department of Physical Sciences, University Federico II, Via Cintia, I-60126 Napoli (Italy); Bremen, K. von [SWAN Isotopen AG, Inselspital, CH-3010 Bern (Switzerland)

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  5. Development of Cyclotron Beam Technology for Applications in Materials Science and Biotechnology at JAERI-TIARA

    International Nuclear Information System (INIS)

    Ohara, Y.; Arakawa, K.; Fukuda, M.; Kamiya, T.; Kurashima, S.; Nakamura, Y.; Okumura, S.; Saidoh, M.; Tajima, S.

    2003-01-01

    Recent progress of cyclotron ion beam development for applications in materials science and biotechnology at the ion-irradiation research facility TIARA of the Japan Atomic Energy Research Institute(JAERI) is overviewed. The AVF cyclotron in TIARA can accelerate protons and heavy ions up to 90 MeV and 27.5 MeV/n, respectively. In order to conform to the requirement of a reliable tuning of microbeam formation, the cyclotron beam current has been stabilized by controlling the temperature of the magnet yoke and pole within +/-0.5 deg. and hence by decreasing the variation of the magnetic field ΔB/B below 10-5. A heavy ion microbeam with energy of hundreds MeV is a significantly useful probe for researches on biofunctional elucidation in biotechnology. Production of the microbeam with spot size as small as 1μm by quadrupole lenses requires the energy spread of the beam ΔE/E < 2 x 10-4. In order to minimize the energy spread of the cyclotron beam, the fifth-harmonic voltage waveform has been successfully superposed on the fundamental one to make energy gain uniform

  6. Damage by the Great East Japan Earthquake and current status of the Sendai cyclotron

    International Nuclear Information System (INIS)

    Wakui, Takashi; Itoh, Masatoshi; Shimada, Kenzi; Yoshida, Hidetomo; Shinozuka, Tsutomu; Sakemi, Yasuhiro

    2012-01-01

    The Great East Japan Earthquake has inflicted damages on the accelerator facility of the Cyclotron and Radioisotope Center (CYRIC), Tohoku University. The K=110 MeV cyclotron was slanted due to the damage of props supporting the cyclotron. The cyclotron building has also been slightly inclined. This situation requires the re-alignment of all the beam transport line and the cyclotron. Some of the shield doors at experimental rooms were broken and blocked the entrance. The earthquake caused also a lot of damages to some components of the cyclotron as well as the beam transport lines, such as beam ducts, magnets, vacuum pumps and power supplies. Fortunately, no one was injured at CYRIC. The restoration work was started on July 2011 and will be completed by July 2012. This report describes the situation of damages and the current status of the restoration work. (author)

  7. Production of radionuclides by 14 MeV neutron generator

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1983-01-01

    Due to the short half-lives of these nuclides they have to be produced in situ or at least not far from the place of use. The cost of 14 MeV neutron generators have been compared with the typical middle-sized cyclotrons and it was found that the capital costs are much lower in the case of neutron generators. This is the main reason for the availability of 14 MeV neutron generators in many scientific institutes compared to the scarcity of cyclotrons. Lately, the use of 14 MeV neutrons for cancer therapy was studied in several medical centers. A number of hospitals and cancer research centers have high intensity 14 MeV neutron generators for this purpose. The advantages of using short-lived in-house produced radionuclides suggest the use of the available 14 MeV neutron generators for biological studies and in medical diagnosis. 14 MeV neutron generators can be used to produce some of the medically useful radionuclides, such as /sup 18/F, /sup 80/Br, /sup 199m/Hg, and others. However, the amount required for medicine can only be prepared by the new high intensity neutron generators, used for neutron therapy and not by the smaller ones, commonly used in university laboratories (--10/sup 11/ n/sec). On the other hand, these relatively small neutron generators can be used for the preparation of radionuclides for biological studies. They facilitate the study of metabolism of elements for which radionuclides cannot be usually purchased due to short half-lives or the high price of the long-lived ones, such as /sup 34m/Cl, /sup 18/F, /sup 28,29/Al, /sup 27/Mg, and others. An example is the work done on the fate of Al and Mg in rats using /sup 28/Al and /sup 27/Mg./sup 13/

  8. Radiation exposure to workers at cyclotron facilities

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Sanchez, A.S.; Rodrigues, D.L.

    2001-01-01

    Radiopharmaceuticals quickly furnish the information doctors need to establish a precise diagnosis of the patient's condition, and therefore to prescribe the most effective therapy. In cancerology, F18-FDG, the most widely used PET imaging tracer, excels in the early detection of cancer tumors, even very tiny ones, which it locates and clearly distinguishes from healthy surrounding tissues. IPEN-CNEN/SP has two cyclotron accelerators used mainly for radioisotope production to be utilized in nuclear medicine for diagnosis and therapy. The first is a CV-28 cyclotron, variable energy that came into operation in 1982, which was used to produce F18-FDG and Iodine 123 up to 1998. The second, a Cyclone 30 cyclotron, 30 MeV, commenced operation in 1998 for certification purpose, and due to increase demand for radiopharmaceuticals in Brazil, started F18-FDG production in 1999. Cyclotron Laboratory will be a reference Research and Developing Center in our country and will help the Brazilian and Latin-American community. It is necessary to have an adequate database to allow regular follow up and analysis of the individual dose distributions for each group involved in the cyclotron activities. These databases are also important means to assess the effectiveness of efforts in order to maintain doses ALARA and reduce inequalities. The official individual occupational dosimetry is provided by certified Laboratory of Thermoluminescent Dosimetry at IPEN-CNEN/SP. This paper describes the occupational doses distribution in Laboratory of Cyclotrons at IPEN-CNEN/SP from January, 1998 to July, 2000 and propose improvements for the future. (author)

  9. Digital neutron/gamma discrimination with an organic scintillator at energies between 1 MeV and 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Comrie, A.C. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Buffler, A., E-mail: andy.buffler@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Smit, F.D. [iThemba LABS, Somerset West 7129 (South Africa); Wörtche, H.J. [INCAS" 3, Dr. Nassaulaan 9. 9400 AT Assen (Netherlands)

    2015-02-01

    Three different digital implementations of pulse shape discrimination for pulses from an EJ301 liquid scintillator detector are presented, and illustrated with neutrons and gamma-rays produced by an Am–Be radioisotopic source, a D–T generator and beams produced by cyclotron-accelerated protons of energies 42, 62 and 100 MeV on a Li target. A critical comparison between the three methods is provided.

  10. Design study of an ultra-compact superconducting cyclotron for isotope production

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  11. Radiation control during the dismantling of a 22 Mev cyclotron

    International Nuclear Information System (INIS)

    Dumas, D.; Killian, C.; Labenski, T.; Brantley, D.

    1976-01-01

    The problem with the cyclotron became apparent when the operators found great difficulty in obtaining an adequate, operational vacuum. After all possible causes were investigated, the replacement of the inner 0-rings was decided to be the only solution. This paper covers the pre-planning and training thought to be necessary to complete the procedure as quickly and safely as possible. The main objective is to show that exposure can be kept to a minimum with proper forethought and supervision

  12. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    Science.gov (United States)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  13. New design for a medical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M

    1985-12-01

    The Oxford Instruments Group PLC, have designed a 30 MeV energy proton cyclotron incorporating a super-conducting magnet and a novel RF accelerating cavity. The energy range is suitable for the production of isotopes such as /sup 67/Ga, /sup 111/In, /sup 123/I and /sup 201/Tl, and the short lived isotopes of carbon, nitrogen, oxygen and fluorine for use in Positron Emmission Tomography (PET). A new magnet and RF cavity design permit a considerable power and weight reduction and a compact size (1.5m dia x 1.9m high), allowing the cyclotron to be transported to a shielded site as an assembly after factory testing. A method of beam extraction has been adopted which minimises activation of the accelerator components and so allows hands on maintenance to be carried out when required.

  14. Support vector machine based fault detection approach for RFT-30 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Young Bae, E-mail: ybkong@kaeri.re.kr; Lee, Eun Je; Hur, Min Goo; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-10-21

    An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.

  15. Automated cyclotron tuning using beam phase measurements

    International Nuclear Information System (INIS)

    Timmer, J.H.; Roecken, H.; Stephani, T.; Baumgarten, C.; Geisler, A.

    2006-01-01

    The ACCEL K250 superconducting cyclotron is specifically designed for the use in proton therapy systems. The compact medical 250 MeV proton accelerator fulfils all present and future beam requirements for fast scanning treatment systems and is delivered as a turn key system; no operator is routinely required. During operation of the cyclotron heat dissipation of the RF system induces a small drift in iron temperature. This temperature drift slightly detunes the magnetic field and small corrections must be made. A non-destructive beam phase detector has been developed to measure and quantify the effect of a magnetic field drift. Signal calculations were made and the design of the capacitive pickup probe was optimised to cover the desired beam current range. Measurements showed a very good agreement with the calculated signals and beam phase can be measured with currents down to 3 nA. The measured phase values are used as input for a feedback loop controlling the current in the superconducting coil. The magnetic field of the cyclotron is tuned automatically and online to maintain a fixed beam phase. Extraction efficiency is thereby optimised continuously and activation of the cyclotron is minimised. The energy and position stability of the extracted beam are well within specification

  16. Consideration of Intestinal Parasite in Day-Care Center Children in Karaj City in 2012

    Directory of Open Access Journals (Sweden)

    F. Haji Aliani

    2014-12-01

    Full Text Available History and Aim: Parasitical Diseases are the most important economic- health problems of most developing countries. Children who belong to very important constituents of society are at risk of such diseases. The parasitic transmission in some places with children come together has a very special importance because they interact closely to each others. Constant and regular study in developing countries for planning to control these diseases is essential. Thus, the present study aims to explore the prevalence of parasites and enterobius and effective factors in their spread among children of Karaj kindergartens in 1391. Materials and Methods: This is a descriptive study and sampling was random clustering from34 kindergartens out of 154 active kindergartens of 9 districts of Karaj city under supervision of state welfare organization of Karaj using a random number table. In this project the prevalence of enterobius and other intestinal parasites in 904 children from one to six years old in Karaj in 2o13 was studied. The number of samples was calculated using 95% confidence interval and relative accuracy of 35% and hypothetical prevalence of 5% of intestinal parasites to be 596. Considering 50% efficacy for clustering method, increased the sample size to 894. The questionnaires collecting the required data like age and gender of the child, and were used for gender, age, occupation and education of the parents and effective factors on infection with intestinal parasites like hand washing and using personal drinking glass and clinical symptoms in children and symptoms reported by the child to his/her parents or caregiver and the demographic data. The results of the scotch test, either positive or negative, were recorded. Formalin ether and direct smear test were performed on three samples of every case which collected for find determination inconsecutively. For the eneterobius diagnosis, the scotch test which is more specific was used. Results: A

  17. Inappropriate Dietary and Occupational Patterns: Major Risk Factors Associated With Brucellosis in the Area Covered by Karaj Health Center No. 2

    Directory of Open Access Journals (Sweden)

    Yosef Khani

    2015-11-01

    Full Text Available Background: Brucellosis is one of the most common diseases among humans and livestock. Using contaminated and unpasteurized dairy products, having contact with infected livestock and, in general, inappropriate dietary patterns, as well as lack of hygiene, can be noted as the most common modes of transmission for such a disease. Objectives: Since the establishment of Alborz province in Iran and, accordingly, Alborz university of medical sciences, Karaj, Iran, there has been no study on the epidemiological situation of the disease. Therefore, the present study examines the epidemiology of Brucellosis at Karaj Health center No. 2, Karaj, Iran, during 2011 - 2012. Patients and Methods: This research was a cross-sectional descriptive study, on patients with Brucellosis, during 2011 - 2012, in the area covered by Karaj health center No. 2, Karaj, Iran. The data about all suspected cases, collected from polyclinic, laboratories and health centers, and confirmed by Wright, combs Wright and 2ME tests were reviewed. After recording the demographic data and laboratory results, they were entered into STATA 11 software and analyzed. Results: The number of patients reported in this study was 67. The incidence of the disease during 2011 - 2012 was, respectively, 3.75 and 4.6 per hundred thousand and the average incidence of the disease was 4.2 per hundred thousand. The highest rate of infection, in terms of occupation, was found among ranchers (40.29%. In 100% of the cases, there was a history of consumption of cottage cheese, fresh cow milk or other unpasteurized dairy products. Considering the incidence season, most cases of the disease (38.80% had occurred in the spring. In terms of gender, 56.71% were male and 43.28% of patients were female. As well, in terms of age, more 50% of the patients were in the age groups of 31 - 40 and 41 - 50 years old. Conclusions: Given the occurrence of more cases of the disease among individuals with risk factors, such as

  18. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.

    1997-01-01

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed

  19. Measurement of omega, the energy required to create an ion pair, for 150-MeV protons in nitrogen and argon

    International Nuclear Information System (INIS)

    Petti, P.L.

    1985-01-01

    The purpose of this thesis is to provide a 1% measurement of omega, the energy required to produce an ion pair, for 150 MeV protons in various gases. Such a measurement should improve the accuracy of proton ionization chamber dosimetry at the Harvard Cyclotron Laboratory. Currently, no measurements of omega exist in the energy range of 30 to 150 MeV, and present ionization chamber dosimetry at the Cyclotron relies on average values of measurements at lower and higher energies (i.e. for E < 3 MeV and E = 340 MeV). Contrary to theoretical expectations, these low and high energy data differ by as much as 9% in some gases. The results of this investigation demonstrate that the existing high energy data is probably in error, and current proton ionization chamber dosimetry underestimates omega, and hence the proton dose, by 5%

  20. River Sediment Monitoring Using Remote Sensing and GIS (case Study Karaj Watershed)

    Science.gov (United States)

    Shafaie, M.; Ghodosi, H.; Mostofi, K. H.

    2015-12-01

    Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  1. RIVER SEDIMENT MONITORING USING REMOTE SENSING AND GIS (CASE STUDY KARAJ WATERSHED

    Directory of Open Access Journals (Sweden)

    M. Shafaie

    2015-12-01

    Full Text Available Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  2. Properties of the TRIUMF cyclotron beam

    International Nuclear Information System (INIS)

    Craddock, M.K.; Blackmore, E.W.; Dutto, G.; Kost, C.J.; Mackenzie, G.H.; Richardson, J.R.; Root, L.W.; Schmor, P.

    1975-08-01

    Eight percent of the 300 keV d.c. beam from the ion source can be transmitted to 500 MeV in the TRIUMF cyclotron, without using the buncher. The beam losses are entirely accounted for; there are no significant losses due to orbit dynamic problems during 1500 turns of acceleration. The phase history is in good agreement with predictions based on the magnetic field survey. The effect of the harmonic coils and injection parameters on beam quality has been investigated. (author)

  3. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project

    International Nuclear Information System (INIS)

    Schillo, M.; Geisler, A.; Hobl, A.; Klein, H.U.; Krischel, D.; Meyer-Reumers, M.; Piel, C.; Blosser, H.; Kim, J.-W.; Marti, F.; Vincent, J.; Brandenburg, S.; Beijers, J.P.M.

    2001-01-01

    A cyclotron for proton therapy has to fulfill many requirements set by the specific operational and safety needs of a medical facility and the medical environment. These are for instance high extraction efficiency, high availability and reliability, simple and robust operation. ACCEL Instruments GmbH has refined the design concept of a medical cyclotron for the PSI PROSCAN project with the objective to use this cyclotron as the standard accelerator in complete proton therapy facilities, which ACCEL intends to market. Starting from the design, we have carried out further detail clarifications, optimizations and adaptations to the needs of PSI. The work was performed in a collaboration between ACCEL, NSCL and KVI in view of the requirements from the PSI PROSCAN project. An overview on the design will be given touching on subjects such as the 3D structural analysis of the coil, detailed magnetic modeling for optimization of the inner region and the spiral, optimization of the RF power, optimization of the cryogenic design based on available cryocoolers instead of a liquefaction plant and Monte Carlo simulations to estimate the heat balance produced by neutrons at 4K components

  4. Soil Contamination With Eggs of Toxocara Species in Public Parks of Karaj, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Zibaei

    2017-05-01

    Full Text Available Background: Human toxocariasis is one of the zoonotic helminth diseases that is usually occurred with exposure to contaminated soil. Both Toxocara canis and Toxocara cati are considered the causative agents of Toxocara infection. Objectives: This survey was intended to provide data on the Toxocara species eggs contamination in soil samples in the public parks of Karaj, Iran. Materials and Methods: This study was carried out among 200 soil samples collected from 12 public parks between August and September 2016 to examine the soil contamination with Toxocara species eggs. Soil samples were tested for the presence of Toxocara eggs using sucrose flotation method. Results: Prevalence of Toxocara species eggs in soil samples collected from public parks was 36.4%. The highest number of eggs recovered from 200 g of soil was 20. A total of 200 eggs were recovered and 7.6% were fully developed to embryonated egg stages. The contamination rate in the third region in 4 studied areas was higher than the other regions. A similar tendency was observed in park areas, so that parks higher than 5000 m2 were highly contaminated. Conclusion: According to the results of this study, soils of the public parks in Karaj are one of the main risk factors for human toxocariasis.

  5. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    International Nuclear Information System (INIS)

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV 16 O 2+ was injected into ORIC, stripped to 8 + and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin 208 Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations

  6. Medical isotope production experience at the V.G. Khlopin Radium Institute cyclotron

    International Nuclear Information System (INIS)

    Solin, L.M.

    2000-01-01

    Radium Institute cyclotron MGC-20 is used since 1990. There are four cyclotrons of such type in Russia and four abroad: in Finland, in Hungary, in North Korea and in Egypt. The Radium institute cyclotron was used in different fields, such as radioisotope production, nuclear physics, physics and engineering. For ten years some improvements of the Radium Institute cyclotron operation have been made. Those are: creation of the automatic control system based on IBM PC, development of a new power supply for the ion source, creation of the deflector electronic protection from discharges, change of the main elements of the cyclotron with high induced radioactivity. Moreover we investigated the possibility of the negative ions acceleration at the MGC-20 cyclotron without ion source exchange. The maximum value of the proton beam current reached was about 30 μA for 10 MeV H - beam energy. To extract the proton beam from the cyclotron after the stripping foil we made an additional output beam line. It was used for determination of the horizontal and vertical emittance. A special device was constructed and used for measurements of emittance. The latter amounted 30 π mm mrad for horizontal direction and 16 π mm mrad for vertical direction

  7. Investigation of Prevalence of Energizer Drugs and Supplements Consumption and Effective Factors Among Bodybuilder Men in Karaj (2011

    Directory of Open Access Journals (Sweden)

    F. Shoshtarizadeh

    2013-08-01

    Full Text Available Background: Body builder athletes’ high attention to form of body can result in high prevalence of nutritional disorders and habit to energizer drugs consumption. With notice to abuse problems of these drugs, this research was carried out to estimate prevalence of energizer drugs and supplements consumption in Karaj body builder men in 2011. Method: In cross-sectional (description- analytical research 780 Karaj body builder men were selected randomly. Data were collected through interview with questionnaires containing demographic questions and using information of drugs. Data were analyzed with SPSS software (Ver. 19 and κ² test with meaningful level of P<0.05. Result: Prevalence of consumption in studied sample from different types of supplements and energizer drugs was estimated 88.2%. The most consumption prevalence belonged to food supplements and vitamins group and combination of those (69.9%. About anabolic and energizer compounds and also hormonal drugs and corticosteroids, prevalence was 5.6% and 2.1% respectively and 7.7% totally. There was meaningful relation between experience times of abuse problems, place of drug and supplement supply and attention to being permissible or impermissible of those items with type of drugs or supplement (P = 0.001. Also relation between consumption of supplements and drugs with main goal in using them was meaningful (P = 0.045. Conclusion: Consumption of supplement and energizer drugs in Karaj body builder men has high prevalence.

  8. Radiochemical studies using a 42 MeV cyclotron. Final report, September 1, 1983-February 28, 1986

    International Nuclear Information System (INIS)

    Tilbury, R.S.; Kolar, A.J.

    1986-01-01

    The cyclotron is working well for neutron production and has been used in the past year for radiation therapy of patients and radiobiology experiments. Good progress has been made with three projects described here. 13 irradiations on the University of Texas Health Science Center cyclotron have been used for the production of bromine radioisotopes and Ba-131, which have been used in these studies

  9. Digital control in LLRF system for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-21

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog–digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  10. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J. [Centre for PET, Melbourne, VIC (Australia). Austin and Repatriation Medical Centre

    1997-12-31

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed. 30 refs., 1 tab., 1 fig.

  11. Project of the JAERI superconducting AVF cyclotron for applications in biotechnology and materials science

    International Nuclear Information System (INIS)

    Miyawaki, Nobumasa; Kurashima, Satoshi; Okumura, Susumu; Chiba, Atsuya; Agematsu, Takashi; Kamiya, Tomihiro; Kaneko, Hirohisa; Nara, Takayuki; Saito, Yuichi; Ishii, Yasuyuki; Sakai, Takuro; Mizuhashi, Kiyoshi; Fukuda, Mitsuhiro; Yokota, Watalu; Arakawa, Kazuo

    2005-01-01

    A project for expanding TIARA (Takasaki Ion accelerators for Advanced Radiation Application) facilities of JAERI has been proposed to broaden application region of biotechnology and materials science. As a result of the investigation of TIARA facility user's request, energy increase up to more than 100 MeV/n for heavy ions and up to 300 MeV for proton are strongly required. The magnet of a superconducting AVF cyclotron with a K number of 900 has been designed to cope with acceleration of both 150 MeV/n heavy ions and 300 MeV protons. The lower limit of energies has been investigated to overlap the energy region covered by the JAERI AVF cyclotron, required to increase beam time for present users. We have designed a beam transport system to satisfy various requirements of the applications. (author)

  12. ROKCY-12 (KCCH PET-dedicated cyclotron): main features and improvements

    International Nuclear Information System (INIS)

    Chai, J. S.; Kim, Y. S.; Yang, Y. T.; Jung, I. S.; Hong, S. S.; Lee, M. Y.; Jang, H. S.; Kim, J. H.

    2002-01-01

    In this paper, we describe the development of 13 MeV cyclotron (ROKCY-12) that can be used for a Position Emission Tomography(PET) purpose. This cyclotron with a maximum beam energy of 13 MeV can produce radio isotopes especially 18 F which has a relatively short half lifetime of 110 minutes. First, we show the beam characteristics can be used to carry out the operation of ROCKY-12. Based on this, a computer program has been developed to determine main cyclotron parameters such as cyclotron magnet, RF system, ion source, vacuum system and other cyclotron operation parameters. And then we show the result of design and manufacturing feature of ROKCY-12. By using this design program, one can determines magnet yoke geometry and the average magnetic fields etc. And then the three-dimensional computer program OPERA-3D has been invoked to determine magnet pole tips. Validity of the design can be seen by investigating magnetic fields, radial and vertical focusing frequencies as a function of the beam energy. In this paper, we show the results of cyclotron beam by ROCKY-12. We designed 77.3 MHz RF system and ion source system. We tested RF resonance each coupling methods. We show the result of RF design and prototype operation. Developed ion source is PIG type. We described our design methods and implementation. We report the result of getting negative hydrogen ion. Cyclotron controller asks inputs of every sensor and output of every instrument for notifying current condition to operator. It has independent controllers, for example DC power supply, vacuum system, beam profile system, beam extraction system, RF system, ion source, cooling unit and so on. Basically, each control system uses RS-485 for communication to main control computer. Consumers reward products and services that feature quality, originality, a distinct personality and charm. The International Standardization Organization (ISO) requires, as its mission, that we achieve competitive superiority by

  13. Evaluation of yield and yield components and some agronomic traits of white bean genotypes under Karaj climate

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2016-04-01

    Full Text Available In order to study compatibility of 30 white bean genotypes under Karaj climate, an experiment was conducted based on randomized Complete Block Design with four replications. Evaluation and statistical analysis was performed for 18 important traits. Analysis of variance results showed that there are significant differences between varieties for all traits. Results of genotypes means comparison with Duncan’s multiple range test showed that genotype No. 29 was better than others in plant height, yield, and biological yield, seed no. per plant and pod weight traits. Simple correlation coefficients were significant between yield and weight of pod, biological yield, number of seed per plant, number of pod per plant, plant height, width of pod and number of seed per pod. Only pod length was negative correlated with yield between all investigated traits. Cluster analysis with UPGMA method arrangement genotypes into three groups. According to this experiment results we can recommend 29 and 30 genotypes for Karaj condition

  14. Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework

    Science.gov (United States)

    Winklehner, Daniel; Adelmann, Andreas; Gsell, Achim; Kaman, Tulin; Campo, Daniela

    2017-12-01

    We present an upgrade to the particle-in-cell ion beam simulation code opal that enables us to run highly realistic simulations of the spiral inflector system of a compact cyclotron. This upgrade includes a new geometry class and field solver that can handle the complicated boundary conditions posed by the electrode system in the central region of the cyclotron both in terms of particle termination, and calculation of self-fields. Results are benchmarked against the analytical solution of a coasting beam. As a practical example, the spiral inflector and the first revolution in a 1 MeV /amu test cyclotron, located at Best Cyclotron Systems, Inc., are modeled and compared to the simulation results. We find that opal can now handle arbitrary boundary geometries with relative ease. Simulated injection efficiencies and beam shape compare well with measured efficiencies and a preliminary measurement of the beam distribution after injection.

  15. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    Energy Technology Data Exchange (ETDEWEB)

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV /sup 16/O/sup 2 +/ was injected into ORIC, stripped to 8/sup +/ and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin /sup 208/Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations.

  16. Conceptual design of the RF accelerating cavities for a superconducting cyclotron

    International Nuclear Information System (INIS)

    Maggiore, M.; Calabretta, L.; Di Giacomo, M.; Rifuggiato, D.; Battaglia, D.; Piazza, L.

    2006-01-01

    A superconducting cyclotron accelerating ions up to 250 A MeV, for medical applications and radioactive ions production is being studied at Laboratori Nazionali del Sud in Catania. The radio frequency (RF) system, working in the fourth harmonic, is based on four normal conducting radio frequency cavities operating at 93 MHz. This paper describes an unusual multi-stem cavity design, performed with 3D electromagnetic codes. Our aim is to obtain a cavity, completely housed inside the cyclotron, with a voltage distribution ranging from 65 kV in the injection region to a peak value of 120 kV in the extraction region, and having a low power consumption

  17. The Study of Physical Activity AmongElderly of Karaj City and its Relationship with Some the Demographic Factors

    Directory of Open Access Journals (Sweden)

    M. Asadi Shavaki

    2016-11-01

    Full Text Available Backgrounds and Objective:Physical activity is one of the important and effective factors associated with the human health. The elderly are among the most vulnerable groups in many diseases and disorders that exercise can prevent of many of these diseases. The aims of this study is to determine the level of physical activity among elderly of Karaj city and its relationship with some the demographic factors. Materials and Method: This cross-sectional study was conducted in the first half of 2014 and in health centers of Karaj city, Iran. The study population were people older than 60 years (n=286 who referred to these centers. A short physical activity questionnaire (IPAQ was used to collect data. Data were analyzed by SPSS and the descriptive and analytical tests.  Results: The age mean of elderly was 67/37 ± 6/5 years. The majority of them (52/4% were woman & (54/2 % were in families with 4-6 members. About physical activity level in participant finding show that 50/5% were in low level, 43/1% intermediate and 6/4% were in high level. A significant relationship was between gender & job in elderly with level of physical activity (P<0/05.  Conclusion: According to the results it seems that for encourage and remove the barriers of doing physical activity in elderly, basic plans must be done at the macro level of management. So it is suggested that more researches and interventions about barriers of doing physical activity be done in elderly of Karaj city.  

  18. Focusing and bunching of ion beam in axial injection channel of IPHC cyclotron TR24

    Science.gov (United States)

    Adam, T.; Ivanenko, I.; Kazarinov, N.; Osswald, F.; Traykov, E.

    2017-07-01

    The CYRCe cyclotron (CYclotron pour la ReCherche et l’Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 μA. The solenoidal focusing instead of existing quadrupole one is proposed in this report. The changing of the focusing elements will give the better beam matching with the acceptance of the spiral inflector of the cyclotron. The parameters of the focusing solenoid are found. Additionally, the main parameters of the bunching system are evaluated in the presence of the beam space charge. This system consists of the buncher installed in the axial injection beam line of the cyclotron. The using of the grid-less multi harmonic buncher may increase the accelerated beam current and will give the opportunity to new proton beam applications.

  19. Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2013-10-01

    Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.

  20. Calculation of the neutrons shielding in cyclotron accelerator

    International Nuclear Information System (INIS)

    Ribeiro, Martha S.; Sanches, Matias P.; Rodrigues, Demerval L.

    2000-01-01

    The objective of radioprotection in cyclotron facilities is to reduce the dose levels in the workplaces to classify them like supervised areas. In this way, the radiation dose rates in areas occupied by workers during cyclotron operations should not exceed 7,5 μSv/h. In controlled areas these levels are not observed and some rigorous controls must be exerted by administrative procedures or protection mechanisms. The Cyclotron Laboratory at IPEN-CNEN/SP has a cyclotron model Cyclone 30, 30 MeV, used for research and it is also used for radioisotopes production for medical diagnosis and therapeutical applications. Among them, 123 I, 67 Ga and 18 F can be pointed. When accelerator is operating, failures in perforations and paths that conduce to room accelerator can be occur and thus, the dose levels are higher than that established by law. For this reason, a review for shielding structure was necessary in order to optimize radiation dose. The purpose of this work was to determine the shielding thickness and adequate material to diminish the dose rates in workplaces to a value below 7,5 μSv/h. It was used a method to employ the equivalent dose value in the facility areas for neutrons fluency rate for the principal reactions in target irradiation processes. The purposed shielding for the vault doors ensures dose levels lower than established limits to supervised areas. (author)

  1. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  2. The Midwest Proton Radiation Institute project at the Indiana University Cyclotron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V; Broderick, B; Collins, J C; Friesel, D L; Jenner, D; Jones, W P; Katuin, J; Klein, S B; Starks, W; Self, J; Schreuder, N [IUCF, Bloomington, Indiana 47408 (United States)

    2001-12-12

    The IUCF cyclotrons ceased delivering particle beams for physics research and became dedicated medical proton beam accelerators in 1999. Removal of the beam lines and nuclear research facilities associated with the cyclotrons to make room for the new medical beam delivery systems was completed in October, 2000. A new achromatic beam line was completed, extending from the main stage cyclotron and ending at a temporary research platform. This beam line is being commissioned during ongoing applied research. The achromatic line will deliver 0.5 {mu}A of 205 MeV protons from which the treatment room technician may draw current at any time via fast switching, laminated magnets located at the entrances to the energy selection systems upstream of each of the treatment rooms. Three treatment rooms are planned, one containing two fixed horizontal lines and two gantry rooms. The cyclotrons will also support full time research in radiation effects, single event upset, radiation biology and pre-clinical research. This contribution describes the status of the medical construction project.

  3. Cyclotron Production of Technetium-99m

    Science.gov (United States)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  4. Channeling experiments at IPNE Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, F; Dumitru, M; Ivan, A [Cyclotron Laboratory, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania)

    1992-01-01

    Channeling experiments have been performed at the I.P.N.E Cyclotron using a 3 MeV alpha beam. A slide system cut the beam up to 5 minutes spatial resolution with a maximum 60 nA beam current on the target. The two-axis goniometer, fully computer-controlled, moves the target, a silicon wafer, with 2.5 minute resolution, while an alpha particle sensitive solid state detector, monitors the backscattered particle fluence. In the first stage, channeling appears to be a simple, fast and reliable method for precise monocrystal orientation. A reduction of the host yield by a factor of two allowed impurities and defects to be studied. (Author).

  5. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2005-09-01

    , constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.

  6. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  7. Tritium production in thorium by 135 MeV protons

    International Nuclear Information System (INIS)

    Lefort, M.; Simonoff, G.; Tarrago, X.; Bibron, R.

    1960-01-01

    We have measured the cross-section of tritium production by bombardment of thorium by 135 MeV protons in the Orsay synchro-cyclotron. The tritium was separated from the targets by heating in a graphite crucible with a high-frequency generator, under hydrogen gas pressure. Tritiated water was synthesised and the tritium was measured with liquid scintillator. A value of 19.5 ± 0.05 mbarns was obtained for the tritium-cross section and ten percent of tritons have energies higher than 35 MeV. This large cross-section is attributed to a double pick-up process. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 959, dec 1959 [fr

  8. Charge-state distributions of 100, 175, 275, and 352 MeV gold ions emerging from thin carbon foils

    International Nuclear Information System (INIS)

    Martin, J.A.; Auble, R.L.; Erb, K.A.; Jones, C.M.; Olsen, D.K.

    1985-01-01

    These measurements were undertaken as a consequence of our failure early this year to accelerate Au +46 ions in the Oak Ridge Isochronous Cyclotron using an injected beam of 352 MeV 197 Au +17 from the 25 MV tandem accelerator. Following that unsuccessful test, we made a preliminary measurement of the charge-state distribution of 352 MeV 197 Au ions emerging from a carbon foil using the bending magnet that is a part of the cyclotron beam injection system. The measured mean charge was approx.38.5, about 4.5 charge-states lower than predicted by the Sayer semi-empirical formula. The measurements reported here were done more precisely and systematically confirm that preliminary result. 12 refs., 5 figs., 4 tabs

  9. Charge-state distributions of 100, 175, 275, and 352 MeV gold ions emerging from thin carbon foils

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.A.; Auble, R.L.; Erb, K.A.; Jones, C.M.; Olsen, D.K.

    1985-01-01

    These measurements were undertaken as a consequence of our failure early this year to accelerate Au/sup +46/ ions in the Oak Ridge Isochronous Cyclotron using an injected beam of 352 MeV /sup 197/Au/sup +17/ from the 25 MV tandem accelerator. Following that unsuccessful test, we made a preliminary measurement of the charge-state distribution of 352 MeV /sup 197/Au ions emerging from a carbon foil using the bending magnet that is a part of the cyclotron beam injection system. The measured mean charge was approx.38.5, about 4.5 charge-states lower than predicted by the Sayer semi-empirical formula. The measurements reported here were done more precisely and systematically confirm that preliminary result. 12 refs., 5 figs., 4 tabs.

  10. Study of cultured rainbow trout contamination with Streptococcus iniae and Lactococcus garvieae in some fish markets of Tehran and Karaj(orginal reserch article

    Directory of Open Access Journals (Sweden)

    Ali Taheri Mirghaed

    2016-05-01

    Full Text Available Streptococcosis is one of the economically important diseases in the aquaculture industry particularly in rainbow trout aquaculture causing remarkable annual losses. Streptococcosis is known as a zoonotic disease causing morbidity and mortality in some consumers. In this study the status of farmed rainbow trout contamination with Streptococcus iniae and Lactococcus garvieae was assessed. For this reason, during summer months, 64 apparently diseased trout were sampled from fish markets of Tehran and Karaj. Gram staining was performed on grown colonies and then gram-positive cocci were further characterized using biochemical and PCR assays. The obtained results showed that 56.23% (36 samples of the samples were infected with the both bacterial pathogens. The prevalence of S. iniae and L. garvieae were 32.8 % (21 samples and 23.43% (15 samples, respectively. The highest and lowest prevalence rate of S. iniae was observed in the samples of Karaj (15.62% and Kahrizak (0% markets, respectively. In the case of L. garvieae, the highest and lowest rates were obtained in Karaj/Kahrizak (7.81% and Meidan-Nabi (1.56% markets, respectively. The results revealed that in some markets, the prevalence of streptococcosis and lactococcusis in cultured rainbow were relatively high. Therefore, it is necessary to conduct further trials.

  11. Status and results from the TR30 cyclotron centre region model

    International Nuclear Information System (INIS)

    Kleeven, W.; Lanz, P.; McDonald, M.; Milton, B.F.; Schmor, P.W.; Schneider, H.R.; Jayamanna, K.; Sura, J.; Uzat, W.; Gyles, W.

    1990-06-01

    A full scale model for the centre region of the compact 30 MeV, 350 μA H - cyclotron (TR30) has been constructed, to test the design of critical components and to study beam properties and space charge effects out to the 5. turn (1 MeV). The ion source and injection line system duplicates that used in the TR30. The centre region can be accessed with diagnostic probes at four different angles. The normalized circulating emittances as estimated from beam profile measurements are 1.7π mm-mrad (radially) and 1.8π mm-mrad (vertically). The radial centering error of the beam is less than 1.5 mm. After initial tests the maximum intensity achieved at the 5. turn is 650 μA. This corresponds with a transmission efficiency of 12.5% for a continuous (non-bunched) input beam. No significant space charge effects are observed up to 650 μA. For the TR30 bunching is not a must because of the high current available from the source. Nevertheless, it was considered useful to study beam bunching for the Centre Region Cyclotron (CRC). Some of these results are described. (Author) 11 refs., 6 figs

  12. Neutron spectra due 13N production in a PET cyclotron

    International Nuclear Information System (INIS)

    Benavente, J.A.; Vega-Carrillo, H.R.; Lacerda, M.A.S.; Fonseca, T.C.F.; Faria, F.P.; Silva, T.A. da

    2015-01-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during 13 N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1 MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for 18 F production in a previous work. - Highlights: • MCNPX code was used to estimate the neutron spectra in a PET cyclotron. • Neutrons were estimated when 13 N is produced. • Neutron spectra show evaporation and room-return neutrons. • Calculated H*(10) were compared with measured H*(10)

  13. Elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on separated targets of {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn and {sup 208}Pb using the Saclay fixed-energy cyclotron; Sections efficaces differentielles elastiques et inelastiques obtenues par diffusion de particules {alpha} de 44 MeV sur des cibles de {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn et {sup 208}Pb au cyclotron a energie fixe de saclay

    Energy Technology Data Exchange (ETDEWEB)

    Bruge, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physique nucleaire, service de physique nucleaire a moyenne energie

    1967-01-01

    This report contains elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn and Pb enriched targets. (author) [French] Ce rapport contient les tableaux des sections efficaces differentielles obtenues par diffusion elastique et inelastique des particules {alpha} de 44 MeV, fournies par le cyclotron a energie fixe de Saclay, sur des cibles d'isotopes separes de Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn et Pb. (auteur)

  14. The local distribution of radiation quality of a collimated fast neutron beam from 15 MeV deuterons on beryllium

    International Nuclear Information System (INIS)

    Fidorra, J.; Booz, J.

    1978-01-01

    The local distribution of radiation quality (ysub(F), ysub(D)) of a collimated fast neutron beam from 14 MeV deuterons on Beryllium was studied with a spherical 1/2 inch EG and G proportional counter simulating a diameter of 2μm. The deuterons were accelerated by the compact cyclotron CV-28 of the Kernforschungsanlage Juelich. The collimator was constructed by the Cyclotron Corporation. The mean neutron energy was 6 MeV. The measurements were performed in air and in a water phantom at a target skin distance of 125 cm. The energy deposition spectra of fast neutrons obtained at various positions were separated into three components of different radiation quality: the gamma component, the recoil proton component, and the heavy ion component

  15. The design, fabrication and testing of an iron-core current compensated magnetic channel for cyclotron extraction

    International Nuclear Information System (INIS)

    Laxdale, R.E.; Fong, K.; Houtman, H.

    1994-06-01

    An iron-core current compensated magnetic channel has been built ss part of the TRIUMF 450 MeV H - extraction feasibility project. The channel would operate in the 0.5 T cyclotron field and was designed using the two-dimensional code POISSON. Recent beam tests with the channel installed in the TRIUMF cyclotron confirmed that the electro-mechanical design is reliable and that the effect on the circulating beam is in agreement with calculation. The design and hardware details will be described and the beam test results reported. (author)

  16. High resolution line for secondary radioactive beams at the U400M cyclotron

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    For implementation of an experimental program for studying nuclear reactions with radioactive ion beams in the energy domain of 20 through 80 MeV · A the high resolution beam line ACCULINNA was put into commissioning on a primary beam line of the JINR U-400M cyclotron. By means of nuclear fragmentation of the 14 N beam with the energy of 51 MeV · A on the 170 mg/cm 2 carbon target radioactive beams of 6 He, 8 He and 8 B were obtained. Possibilities of further development of the set-up are discussed. 6 refs., 7 figs., 2 tabs

  17. Evaluation of the production capabilities of 18F, 11C, 13N and 15O PET isotopes at the PET-cyclotron-radiochemistry site of Messina University

    OpenAIRE

    Auditore, Lucrezia; Amato, Ernesto; Italiano, Antonio; Pagano, Benedetta; Baldari, Sergio

    2017-01-01

    The production of 18F, 11C, 13N, and 15O positron emitting radionuclides for PET imaging is usually accomplished in Nuclear Medicine Departments through direct nuclear reactions induced by protons accelerated by compact medical cyclotrons on liquid or gaseous targets. Messina University has funded the construction of a PET-cyclotron-radio-chemistry plant at the Messina University Hospital, equipped with a 11 MeV self-shielded cyclotron. We estimated the expected production yields of these nuc...

  18. The production of cyclotron radioisotopes and radiopharmaceuticals at the national accelerator centre in South Africa

    International Nuclear Information System (INIS)

    Walt, T.N. van der

    1998-01-01

    Accelerator radioisotopes have been manufactured in South Africa since 1965 with the 30 MeV cyclotron at the Council for Scientific and Industrial Research (CSIR) in Pretoria. After its closure in 1988, the radioisotope production programme was continued at the National Accelerator Centre (NAC) with the 200 MeV separated sector cyclotron (SCC) utilizing the 66 MeV proton beam, which is shared with the neutron therapy programme during part of the week. A variety of radiopharmaceuticals, such as 18 F-FDG, 67 Ga-citrate, a 67 Ga-labelled resin. 111 In-chloride, 111 In-oxine and 111 In-labelled resin. 123 I-sodium iodide and 123 I-labelled compounds, 201 Tl-chloride, as well as the 81 Rb/ 81m Kr gas generator, are prepared for use in the nuclear medicine departments of 12 State hospitals and about 28 private nuclear medicine clinics in South Africa. A few longer-lived radioisotopes, such as 22 Na, 55 Fe and 139 Ce, are also produced for research or industrial use. A research and development programme is running to develop new production procedures to produce radioisotopes and radiopharmaceuticals, or to improve existing production procedures. As part of a programme to utilize the beam time optimally, the production of some other radioisotopes is investigated. (author)

  19. Acceleration of tritons with a compact cyclotron

    International Nuclear Information System (INIS)

    Wegmann, H.; Huenges, E.; Muthig, H.; Moringa, H.

    1981-01-01

    With the compact cyclotron at the Faculty of Physics of the Technical University of Munich, tritons have been accelerated to an energy of 7 MeV. A safe and reliable operation of the gas supply for the ion source was obtained by a new tritium storage system. A quantity of 1500 Ci tritium is stored by two special Zr-Al getter pumps in a non-gaseous phase. The tritium can be released in well-defined amounts by heating the getter material. During triton acceleration the pressure in the cyclotron vacuum chamber is maintained only by a large titanium sputter-ion pump, thus forming a closed vacuum system without any exhaust of tritium contaminated gas. Any tritium contaminations in the air can be detected by an extremely sensitive tritium monitoring system. The triton beam with a maximum intensity of 30 μA has been used so far to produce neutron-rich radioisotopes such as 28 Mg, 43 K, or 72 Zn, which are successfully applied in tracer techniques in the studies of biological systems. (orig.)

  20. Medical Cyclotrons

    Science.gov (United States)

    Friesel, D. L.; Antaya, T. A.

    Particle accelerators were initially developed to address specific scientific research goals, yet they were used for practical applications, particularly medical applications, within a few years of their invention. The cyclotron's potential for producing beams for cancer therapy and medical radioisotope production was realized with the early Lawrence cyclotrons and has continued with their more technically advanced successors — synchrocyclotrons, sector-focused cyclotrons and superconducting cyclotrons. While a variety of other accelerator technologies were developed to achieve today's high energy particles, this article will chronicle the development of one type of accelerator — the cyclotron, and its medical applications. These medical and industrial applications eventually led to the commercial manufacture of both small and large cyclotrons and facilities specifically designed for applications other than scientific research.

  1. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    Science.gov (United States)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  2. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  3. Computer studies of the field for the superconducting magnetic system of the deuteron cyclotron DC-1

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.; Dudareva, T.N.; Zaplatin, N.L.; Samsonov, E.V.

    1983-01-01

    The calculation results are presented concerning the magnetic system parameters for the 90 MeV deuteron cyclotron (DC-1). Dynamic characteristics of the equilibrium orbits have been calculated too. It is shown that stability of the circUlation frequency in the 15-103 MeV energy range is maintained with the accuracy +-2x10 -3 or +-0.03 MHz. Calculations of the pondermotive forces affecting the coil showed that the maximum density of normal and axial forces equals 2.7 MN/m and 0.5 MN/m respectively

  4. Production of Pd 103 seed from Rh targets for brachytherapy

    International Nuclear Information System (INIS)

    Afarideh, H.; Ardaneh, K.; Sadeghi, M.

    2000-01-01

    The suitability of a given radionuclide for brachytherapy is determined by its half-life, the type of energy, and abundance (number per decay) of its emission. The half-life of a radionuclide must be long enough to permit shipping and implant preparation with an acceptable loss of source strength due to decay, but it must also be short enough to permit source sizes sufficiently small for the intended application. Pd-103 is a low energy photon emitter available for permanent interstitial implantation. Pd-103 has energy and safety characteristics similar to I-125, but its initial peripheral dose rate is approximately three times greater. This may provide improved control of rapidly proliferating tumours. Although Pd-103 has been used for various kinds of cancers, it is almost exclusively used for prostate cancer, the most common cancer, and the death rate from this cancer is the highest. There are two cyclotron production routes for Pd-103, Ag (p,xn) 103 Pd and Rh (p,n) 103 Pd. For a cyclotron with low energy (such as 30Mev that we have in Iran, Karaj, NRCAM) only Rh target can be used. The target material should be deposited on a special designed Cu substrate and the separation process should isolate the desired radionuclide from target material as well as Cu. Our work plan for production of Pd 103 in Karaj, Iran, is as follows: In the first year of the CRP we are going to complete the literature survey of Pd production and perform the relevant experiments as described later. In the second year of the CRP we will construct suitable hot cells for Pd production and also do research for development of Pd seeds. In the last year of the CRP we are going to finalise all the work done during the last two years and propose the automation system for routine production

  5. Auxiliary accelerating system for TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Zach, M.; Fong, K.; Laxdal, R.; Mackenzie, G.H.; Pacak, V.; Pearson, J.; Richardson, J.R.; Stanford, G.; Worsham, R.

    1990-06-01

    A 92 MHz auxiliary accelerating cavity has been designed and manufactured for installation in the TRIUMF cyclotron. Operating at the fourth harmonic of the RF with a peak voltage of 150 kV, it almost doubles the present energy gain per turn in the 400-500 MeV range, and reduces by ∼50% the stripping loss of the H - beam. This significant improvement will allow a substantial increase in the extracted current above the present routine level of 150μA while maintaining the same levels of residual radioactivity. The system is completed and being commissioned. A description of the design and commissioning procedures is presented, and results of beam tests given. (Author) 7 refs., 5 figs

  6. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  7. System analysis of industrial waste management: A case study of industrial plants located between Tehran and Karaj

    OpenAIRE

    Mohammad Amin Karami; Mohsen Sadani; Mehdi Farzadkia; Nezam Mirzaei; Anvar Asadi

    2015-01-01

    Aims: In this study, management of industrial waste in industries located between Tehran and Karaj in 2009-2010 was examined. Materials and Methods: This is a cross-sectional study which was done by site survey (Iranian environmental protection organization) questionnaire usage and results analysis. This questionnaire was consisted of 45 questions about industrial waste, quantity, quality, and management. A total number of industries with over 50 employees was 283, and Stratified sampling...

  8. Production of exotic beams at the LBL 88-Inch Cyclotron by the ISOL method

    International Nuclear Information System (INIS)

    1990-04-01

    The Users of the LBL 88-Inch Cyclotron are preparing a proposal to produce exotic, i.e., radioactive beams. The facility will consist of a high-current 30 MeV cyclotron to generate the radioactive nuclei, an ECR source that can be coupled to different production targets, and the 88-Inch Cyclotron to accelerate the radioactive ions. Thus, the basic concept is that of the double cyclotron system pioneered at Louvain-la-Neuve, although the initial emphasis will be on producing a variety of light proton-rich beams at energies up to 10 MeV/A. At this workshop we wish to outline what is being planned, to invite comments and suggestions, and, especially, to encourage participation. We believe that this facility will be an important step toward establishing the scientific and technical basis for a National High Intensity Facility. This can be achieved through active participation by members of the radioactive beam (RB) community in (1) experiments with high quality radioactive beams of moderate intensity and, (2) R ampersand D on high beam-power targets and highly efficient ion sources. 5 refs., 4 figs

  9. Improvements of High Current/ Low Pressure Liquid And Gas Targets For Cyclotron Produced Radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hur, M. G. [Korea Atomic Energy Research Institute, Jeongup (Korea, Republic of); Hong, B. H. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chai, J. S. [SungKyunKwan University, Seoul (Korea, Republic of)

    2009-07-01

    The development of the C-11 cylindrical target with cooling fin for 13 MeV and 30 MeV proton beams and the development of pleated double-foil O-18 water target were carried out. For the test of new target system it was done at 2 pilots of cyclotron centres in Korea. The development of pleated double-foil O-18 water target was also executed. The pleated foil has the more advantages than flat foil. With the same beam bombarding the pleated foil with cooling had more yield of F-18production. CFD and FEM study were considered to design of the pleated foil and flat foil structure. (author)

  10. A simple thick target for production of 89Zr using an 11MeV cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Krohn, Kenneth A.; O' Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  11. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    Science.gov (United States)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  12. Design of a simple magnetic spectrograph for the Karlsruhe isochronous cyclotron

    International Nuclear Information System (INIS)

    Gils, H.J.

    1980-12-01

    The ion-optical design of a simple magnetic spectrograph for studies of nuclear reactions on the Karlsruhe cyclotron is described. The spectrograph allows to determine the nuclear charge, the mass number, the reaction angle and the impulse (energy) of charged particles, which are emitted from the target. The spectrographs possibilities cover an appropriate range of likely nuclear reactions which are induced by light and heavy particles up to mass number A=20 and energies of 26 MeV per nucleon [de

  13. Effect of 'Gutingen V' as an intensive training system on agromorphological characters of some apple cultivars in Karaj region of Iran

    Directory of Open Access Journals (Sweden)

    Dadashpour Ahmad

    2010-01-01

    Full Text Available V-shape systems represent an efficient and popular option to increase yields and fruit quality in fruit trees. Hence, this paper attempts to compare some vegetative and yield characteristics of five apple cultivars grown at horticultural research station in Karaj, Iran. The selected apple cultivars were included: 'Golab-kohans' (Iranian cultivar, 'Fuji', 'Gala', 'Starking' and 'Delbar estival' (commercial foreign cultivars that were grafted on M.9 rootstock which were trained in a V system. All of these trees were planted in winter 2005. The time of irrigation started from the second experimental year after planting and the method of irrigation was drip irrigation system. Results showed that the 'Golab-kohans' had the most tree height (278.63 cm, trunk cross sectional area (7.308 cm2 and mean shoot length (100.58 cm. Also 'Delbar estival' had the most yield (0.98 kg, yield efficiency (0.550 kg/cm2. Consistently, Results revealed that among the investigated cultivars, 'Delbar estival' can be introduced as a prone and productive cultivar for V system in Karaj's climatic conditions.

  14. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  15. Proposal on ''standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides''

    International Nuclear Information System (INIS)

    Suparman, Ibon

    2000-01-01

    The Center for the Development of Radioisotopes and Radiopharmaceuticals - National Nuclear Energy Agency (P2RR-BATAN) has one Cyclotron type CS-30 with maximum 30 MeV proton energy. It is used since 1990 for 201 Tl production. The main use of 201 Tl in Indonesia is for diagnosis and assessment of myocardial ischaemia, especially diagnosis of coronary artery disease, viability of the heart muscle and forecasting the outcome for patients with coronary disease. The Cyclotron facility is supported with a solid target station, two hot cells and the chemical equipment for electroplating. The yield of 201 Tl production currently achieved around 40-50%. The irradiation technique and chemical separation should be improved. We are also very interested in the development of the production of 103 Pd via 103 Rh (p,n) 103 Pd reaction. The objective of this proposal will support the main program of the National Nuclear Energy Agency (BATAN) in enhancement of health care and in providing Cyclotron produced radiopharmaceuticals for hospitals

  16. Development of cyclotron solid targetry

    International Nuclear Information System (INIS)

    D'Souza, J.; Deans, T.; Cryer, D.; Price, R.

    2004-01-01

    Full text: Western Australia's first medical cyclotron was recently installed in the Department of Medical Technology and Physics at Sir Charles Gairdner Hospital. The cyclotron is routinely used for 18 F production using a liquid target, and now research is being undertaken into solid target bombardment for production of novel isotopes such as 124 I, 64 Cu and 96 Tc. The IBA Cyclone 18/9 has a maximum proton beam energy of 18MeV and maximum beam current of 80μA. A proton beam is generated by the acceleration of H- ions in the evacuated cyclotron (10 -6 bar) which are then stripped of 2 electrons just prior to exiting a target port. Each port has two strippers which are made of 10μm thick carbon with dimensions 12mmxl3mm. Due to their thinness, the strippers are easily ruptured. The Cyclone 18/9 has 8 target ports. In order to fit a target onto the cyclotron when the cyclotron is already evacuated the target is first evacuated to 10 -3 bar by a roughing pump before an isolation valve at the port is opened. This stops any damage that may occur by the flow of air from the target reservoir to the cyclotron eg to the strippers. The first step in the project to develop solid targetry is to build a beam line in order to measure the beam profile. If successful, this design will be improved in order to have a beam line and target holder that are suitable for use in solid target bombardment. A 40cm beam line with an internal diameter of 3.6cm was built to fit onto the IBA Cyclone 18/9. The beam line, made out of aluminium, incorporates a step 5cm from the end at which a target material can be fitted. A cover fits onto the beam line, behind the target in order to maintain vacuum. The cover is held in place by the vacuum within the beam line. At the end of bombardment, the beam line can be isolated from the vacuum of the target and normal air pressure restored. In doing so the cover plate falls open and the target falls into a lead pot, ready for removal from the cyclotron

  17. Cyclotron production, radiochemical separation and quality control of platinum radiotracers for toxicological studies

    International Nuclear Information System (INIS)

    Bonardi, M.; Birattari, C.; Groppi, F.; Arginelli, D.; Gini, L.; Gallorini, M.

    1998-01-01

    The increasing concentration of Pt, Pd and Rh in the environment is mainly due to the release of these elements from the catalytic converters of the motorvehicles. This situation makes it necessary to carry out metallotoxicological experiments on both cell cultures and laboratory animals, in order to assess their impact on living organisms after a Long Term and Low Level Exposure (LLE). Both nuclear reactions nat Ir(p,xn) and nat Os(α,xn) were investigated in the energy range up to 45 MeV for protons and 38 MeV for alpha-particles, in order to optimize the irradiation parameters for the production of 188,189,191 Pt. Several sets of thin- and thick-target excitation functions were determined experimentally by cyclotron irradiation at both Milano and Ispra cyclotrons. This paper reports the irradiation parameters studied and adopted and two radiochemical procedures for the separation of radio-Pt from an Os target, as well as from ruthenium, iridium and gold impurities. These procedures were used to obtain very high specific activity Pt radionuclides in No Carrier Added (NCA) form. Radionuclidic, radiochemical and chemical purity measurements were carried out by the use of several techniques like γ-spectrometry, ion-exchange radio-chromatography, atomic absorption spectrometry and neutron activation analysis. (author)

  18. High power targets for cyclotron production of 99mTc‡

    OpenAIRE

    Zeisler, S. K.; Hanemaayer, V.; Buckley, K. R.; Hook, B. K.; MeDiarmid, S.; Klug, J.; Corsaut, J.; Kovacs, M.; Cockburn, N.; Exonomou, C.; Harper, R.; Valliant, J. F.; Ruth, T. J.; Schaffer, P.

    2015-01-01

    Introduction Technetium-99m, supplied in the form of 99Mo/99mTc generators, is the most widely used radioisotope for nuclear medical imaging. The parent isotope 99Mo is currently produced in nuclear reactors. Recent disruptions in the 99Mo supply chain [1] prompted the development of methods for the direct accelerator-based production of 99mTc. Our approach involves the 100Mo(p,2n)99mTc reaction on isotopically enriched molybdenum using small medical cyclotrons (Ep ≤ 20 MeV), which is ...

  19. Isochronization calculations for the Indiana University cyclotron

    International Nuclear Information System (INIS)

    Jones, W.P.

    1975-01-01

    A series of calculations using measured magnetic fields was performed to determine the optimal gradient coil currents for the wide range of operating conditions to be experienced by the Indiana University main stage cyclotron. Depending on the particle type to be accelerated and final energy desired, the required radial field increase varies from 0.5 percent to 22 percent. An iterative least squares fitting technique is used to minimize orbit time variations. For the acceleration of 200 MeV protons (330 revolutions, fourth harmonic), the maximum phase excursion is predicted to be less than two rf degrees. The technique used can be adapted to using measured phase histories to predict corrections to gradient coil currents. (auth)

  20. Superconducting sector magnet for the deuteron cyclotron DC-1

    International Nuclear Information System (INIS)

    Alenitskij, Y.G.; Vasilenko, A.T.; Zaplatin, N.L.; Mironov, S.V.; Morozov, N.A.; Pryanichnikov, V.I.; Samsonov, E.V.; Sukhanov, V.I.; Chesnov, A.F.; Chesnova, S.I.

    1992-01-01

    In this paper the results of calculations of a superconducting magnet with a cold pole for a cyclotron to deuteron energy 100 MeV are presented. The maximum induction in the magnet is 4.5 T, stored energy 5 MJ, mean current density in coil 9 · 10 7 A/m 2 . The scheme and main parameters of the magnet protection system and cryogenic provision system are described. The results of calculation of magnetic and thermal forces acting on the coil and its case are presented. The status of the manufacture of the magnetic system elements is considered

  1. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.

  2. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Ouda, M.M.E.M.

    2011-01-01

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  3. Radiation shielding design for DECY-13 cyclotron using Monte Carlo method

    International Nuclear Information System (INIS)

    Rasito T; Bunawas; Taufik; Sunardi; Hari Suryanto

    2016-01-01

    DECY-13 is a 13 MeV proton cyclotron with target H_2"1"8O. The bombarding of 13 MeV protons on target H_2"1"8O produce large amounts of neutrons and gamma radiation. It needs the efficient radiation shielding to reduce the level of neutrons and gamma rays to ensure safety for workers and public. Modeling and calculations have been carried out using Monte Carlo method with MCNPX code to optimize the thickness for the radiation shielding. The calculations were done for radiation shielding of rectangular space room type with the size of 5.5 m x 5 m x 3 m and thickness of 170 cm made from lightweight concrete types of portland. It was shown that with this shielding the dose rate outside the wall was reduced to 1 μSv/h. (author)

  4. Interactions of 29 MeV. He3 particles with light nuclei

    International Nuclear Information System (INIS)

    de la Rubia Pacheco, J.

    1964-01-01

    The interactions of 29 MeV He 3 particles with 32 S , 19 F and 12 C , irradiated in the Nuffield cyclotron (Birmingham University) have been studied using the nuclear emulsion technique. The first excitation levels of 12 C and 32 S have been obtained and the pick-up reaction 12 C (3 H e, 4 H e) 11 C has been studied and used to calculate its Q-values and the first levels of 1 C . (Author) 24 refs

  5. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  6. Specific features of the desion of a cyclotron for radioisotope production

    International Nuclear Information System (INIS)

    Akulova, N.V.; Bogdanov, P.V.; Ivanov, V.V.

    1979-01-01

    Results of development of an isochronous cyclotron for commercial production of Co 57 and Ga 67 isotopes are described. The accelerator is intended for proton acceleration up to 25 MeV at 1000-1500 mA intensity of inner beam and 200 mA intensity of external beam. An axial ion source with a hot cathode will be used in the cyclotron. Outer diameter of armour type electromagnet is 3130 mm, mass - 75 t, diameter of poles-150 cm and mean induction of magnetic field in a working gap amounts to 12 kgs. Accelerating chamber vessel is made of steel in the form of thick-wall hollow cylinder having 3130 mm outer diameter, 330 mm thickness and 380 mm height. Resonance system represents a quarter-wave line operating on 16.6 MHZ-frequency. Vacuum system is designed to produce and maintain residual pressure of 6.7x10 -4 Pa and 2.7x10 -3 Pa in the accelerating chamber which can be provided with two NDM-2 ion-getter pumps with an arc evaporator. The suggested constructive solution for electromagnet, accelerating chamber of the cyclotron and pumping system permitted to arrange the accelerator on the whole and to considerably decrease the level of ionizing radiations inside the chamber [ru

  7. The new solid target system at UNAM in a self-shielded 11 MeV cyclotron

    International Nuclear Information System (INIS)

    Zarate-Morales, A.; Gaspar-Carcamo, R. E.; Lopez-Rodriguez, V.; Flores-Moreno, A.; Trejo-Ballado, F.; Avila-Rodriguez, Miguel A.

    2012-01-01

    A dual beam line (BL) self-shielded RDS 111 cyclotron for radionuclide production was installed at the School of Medicine of the National Autonomous University of Mexico in 2001. One of the BL’s was upgraded to Eclipse HP (Siemens) in 2008 and the second BL was recently upgraded (June 2011) to the same version with the option for the irradiation of solid targets for the production of metallic radioisotopes.

  8. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  9. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  10. The constituents of essential oil in leaves of Karaj accession of Trigonella foenum graecum.

    Science.gov (United States)

    Riasat, Mehrnaz; Jafari, Ali Ashraf; Bahmanzadegan, Atefeh; Hatami, Ahmad; Zareiyan, Faraneh

    2017-07-01

    The chemical composition of the essential oils of Karaj accession of Trigonella foenum graecum leaves was detected by hydro-distillation and analysed by gas chromatography (GC-FID) and gas chromatography-mass spectroscopy (GC-MS) apparatuses for first time. Thirty-six compounds representing 95.3% of the total components were identified. The patterns of the main compounds were (2E)-Hexenal (26.61%), n-Hexadecanoic acid (10.14%) and (E)-b-Ionone (7.99%). Other notable constituents were Thymol (4.79%), 6,10,14-trimethyl-2-Pentadecanone (4.59%), Carvacrol (3.40%), (E)-Nerolidol (3.32%) and (2E,6Z)-Nonadienal (3.30%). (2E)-Hexenal was found as the most dominant component in this study.

  11. Study of the neutron field in the vicinity of an unshielded PET cyclotron

    International Nuclear Information System (INIS)

    Mendez, R; Iniguez, M P; MartI-Climent, J M; Penuelas, I; Vega-Carrillo, H R; Barquero, R

    2005-01-01

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 μA h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses

  12. Study of the neutron field in the vicinity of an unshielded PET cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R [Dpto. Fisica Teorica, Atomica y Optica, Universidad de Valladolid (Spain); Iniguez, M P [Dpto. Fisica Teorica, Atomica y Optica, Universidad de Valladolid (Spain); MartI-Climent, J M [Servicio de Medicina Nuclear, ClInica Universitaria de Navarra (Spain); Penuelas, I [Servicio de Medicina Nuclear, ClInica Universitaria de Navarra (Spain); Vega-Carrillo, H R [Dpto. Estudios Nucleares, IngenierIa Electrica, Matematicas, Universidad Autonoma de Zacatecas (Mexico); Barquero, R [Hospital Universitario RIo Hortega, Valladolid (Spain)

    2005-11-07

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during {sup 18}F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 {mu}A h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses.

  13. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  14. MICHIGAN: Cyclotron conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead.

  15. Theory of accelerated orbits and space charge effects in an AVF cyclotron

    International Nuclear Information System (INIS)

    Kleeven, W.J.G.M.

    1988-01-01

    In the first part of this thesis the influence of the accelerating electric field upon the motion of particles in a cyclotron is studied. A general relativistic Hamiltonian theory is derived which allows for a simultaneous study of the transverse and longitudinal motion as well as the coupling between both motions. It includes azimuthally varying magnetic fields and therefore describes phenomena which are due to the interfering influences of a given geometrical dee system with the azimuthally varying part of the magnetic field. As an example the electric gap crossing resonance is treated. The second part deals with space charge effects in a AVF cyclotron. The properties of the bunch, like the sizes, emittances and momentum spread, are represented in terms of second order moments of the phase space distribution function, and two sets of differential equations are derived which describe the time evolution of these moments under space charge conditions. The model takes into account the coupling between the longitudinal and radial motion, and the fact that the revolution frequency of the particles is independent of their energy. The analytical models developed can be applied to a given cyclotron by adopting the relevant parameters. Some calculations are presented for the small 3 MeV Iscochroneous Low Energy Cyclotron ILEC which is presently under construction at the Eindhoven University. Also some attention to the construction of this machine is given. (H.W.). 49 refs.; 37 figs

  16. Direct production of 99mTc using a small medical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, Suzanne [Washington Univ., St. Louis, MO (United States)

    2017-10-03

    This project describes an investigation towards the production of 99mTc with a small medical cyclotron. This endeavor addresses the current urgent problem of availability of 99mTc due to the ongoing production reactor failures and the upcoming Canadian reactor shut down. Currently, 99mTc is produced via nuclear fission using highly enriched uranium which is a concern due to nuclear proliferation risks. In addition to this, the United States is dependent solely on currently unreliable foreign sources of this important medical isotope. Clearly, a need exists to probe alternative production routes of 99mTc. In the first year, this project measured cross-sections and production yields of potential pathways to 99mTc and associated radionuclidic impurities produced via these pathways using a small 15 MeV medical cyclotron. During the second and third years target systems for the production of 99mTc via the most promising reaction routes were developed and separation techniques for the isolation of 99mTc from the irradiated target material will be investigated. Systems for the recycling of the enriched target isotopes as well as automated target processing systems were examined in years four and five. This project has the potential to alleviate some of the current crisis in the medical community by developing a technique to produce 99mTc on location at a university hospital. This technology will be applicable at many other sites in the United States as many other similar, low energy (<20 MeV) cyclotrons (currently used for a few hours per day for the production of [18F]fluorodeoxyglucose) are available for production of 99mTc though this method, thus leading to job creation and preservation.

  17. (p,3He) reactions on 1p shell nuclei at 41 and 45 MeV

    International Nuclear Information System (INIS)

    Rapp, V.

    1982-01-01

    In the present thesis the (p, 3 He) reactions on target nuclei of the 1p shell were studied. The measurements were performed at the isochronous cyclotron of the KFA Juelich. Angular distribution at 41 and 45 MeV to residual nuclear states in 7 Li, 8 Be, 9 Be, 10 B, 11 B, 12 C, 13 C, and 14 N. were evaluated. (orig.) [de

  18. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  19. MICHIGAN: Cyclotron conference

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead

  20. Cyclotron produced {sup 67}Ga, a potential radionuclide for diagnostic and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin, E-mail: mu-khandaker@um.edu.my; Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haba, Hiromitsu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-04-29

    Production cross-sections of the {sup nat}Zn(d,x){sup 67}Ga reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. An overall good agreement is found with some of the earlier measurements, whereas a partial agreement is obtained with the theoretical data extracted from the TENDL-2013 library. Physical thick target yield for the {sup 67}Ga radionuclide was deduced using the measured cross-sections, and found in agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<11 MeV) cyclotron and an enriched {sup 66}Zn target could be used to obtain {sup 67}Ga in no carrier added form.

  1. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  2. Extraction of carrier-free 103Pd from thin rhodium wire irradiated with a proton beam in U-150 cyclotron

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Khudajbergenov, U.; Gulamov, I.R.; Mirzarva, M.A.; Rylov, A.A.

    2003-01-01

    A procedure for preparation of 103 Pd isotope of 99.9 % purity from a thin rhodium wire irradiated by 21 MeV proton beam in a cyclotron was developed. The desired product was prepared by electrolytic dissolution of the irradiated target in 6 M HCl with subsequent extraction of 103 Pd isotope without carrier by dimethylglyoxime in chloroform [ru

  3. Mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron

    International Nuclear Information System (INIS)

    Benavente Castillo, Jhonny Antonio

    2017-01-01

    The use of spectrometric techniques in a cyclotron facility is strongly advised for the complete characterization of the neutron radiation field. In recent years, several studies of neutron spectrometry have been carried out at the Cyclotron of the Development Center of Nuclear Technology (CDTN). The main objective of this work is to propose a methodology for mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron. The method of neutron activation analysis with gold, indium and nickel activation foils was used to measure the activities induced at specific points in the cyclotron bunker. The irradiations of the activation foils were performed using the intermittent irradiation method to optimize the radiation field during 18 F production. The study of the neutron spectrum was performed using three radiation source terms. The first source term was constructed based on data provided by the cyclotron manufacturer using the neutron cross sections of the ENDF/B-VII library. The other two were proposed considering the irradiation process used in the routine of 18 F production. Both radiation source terms used the LA150H proton cross sections and for the 18 O, the cross sections of the physical model CEM03 (Cascade-exciton model) and TENDL (TALYS-based Evaluated Nuclear Data Library) were used. The results of the source terms in relation to the experimental results, in terms of neutron fluence rates, reaction rates and dose equivalent rates, showed that are in the same order of magnitude as those obtained by Ogata et al, Fujibuchi et al, and Gallerani et al., for the same cyclotron; and by Mendez et al. for a different manufacturing cyclotron. The models of the proposed radiation source terms were validated to obtain the spectra generated during the 18 F production when water enriched at 18 O is bombarded with a proton beam of 16.5 MeV. Finally, the model of the LA150H - TENDL - 2015 radiation source term is

  4. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  5. Heliospheric MeV energization due to resonant interaction

    International Nuclear Information System (INIS)

    Roth, Ilan

    2001-01-01

    The prompt enhancement of relativistic electron flux during active geomagnetic periods, and the impulsive increase in the flux of the heliospheric energetic heavy ions during active solar periods are of major importance with respect to the proper operation of electronics on space-borne spacecraft and the safety of interplanetary human travel, respectively. Both enhancements may be caused by resonant wave-particle interaction with oblique electromagnetic waves on the terrestrial and coronal field lines. Whistler waves, which are enhanced significantly during substorms and which propagate obliquely to the magnetic field, can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. This interaction occurs over a broad spatial region when a relativistic electron is bouncing in the terrestrial magnetic field. Coronal ions interact selectively with electromagnetic ion-cyclotron (emic) waves which are correlated with impulsive flares. This interaction occurs over a small spatial region when the Doppler-shifted frequency matches the first or higher harmonic of the ion gyrofrequency. Recent new observations of terrestrial MeV X-rays are interpreted as a resonant loss of the radiation belt electrons

  6. Cyclotron waves in plasma

    International Nuclear Information System (INIS)

    Lominadse, D.G.

    1975-01-01

    The book deals with fundamental physical concepts of the theory of cyclotron waves and cyclotron instabilities conditioned by the presence in plasma of direct or alternating electric currents passing in it perpendicularily to a magnetic field. A great variety of problems is considered connected with the linear theory of cyclotron oscillations in equilibrium and electron plasma of metals and semiconductors. Parametric excitations of electron cyclotron oscillations of plasma in an alternating electric field are studied. Particular attention is paid to the investigation of plasma turbulence arising as a result of development of cyclotron instabilities. Experimental data are discussed and compared with theoretical results

  7. Cyclotrons: 1978

    International Nuclear Information System (INIS)

    Martin, J.A.

    1978-01-01

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron

  8. Production of C, N, O, and Ne ions by pulsed ion source and acceleration of these ions in the cyclotron

    International Nuclear Information System (INIS)

    Nakajima, Hisao; Kohara, Shigeo; Kageyama, Tadashi; Kohno, Isao

    1977-01-01

    The heavy ion source, of electron bombarded hot cathode type, is usually operated by applying direct current for arc discharge. In order to accelerate Ne 6+ ion in the cyclotron, a pulsed operation of this source was attempted. Ne 6+ and O 6+ ions were accelerated successfully up to 160 MeV and more than 0.1 μA of these ion were extracted from the cyclotron. C 5+ , Ne 7+ and 22 Ne 6+ ions were also extracted with a modest intensity of beam. The intensity of C 4+ , N 4+ , N 5+ , and O 5+ ions was increased about ten times. (auth.)

  9. Identification of minority ion cyclotron emission during radio frequency heating in the JET tokamak

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    1999-11-01

    First measurements and identification of Minority Ion Cyclotron Emission (MICE) during ICRF (H)D minority heating in the JET tokamak are presented. An inner wall radiofrequency (rf) probe shows the new single MICE spectral line, downshifted from the heating, frequency and appearing ∼ 400 ms after the ICRH switch-on. The line is narrow (Δω / ω) ∼ 0.04), characterised by the ion cyclotron frequency of minority protons in the outer edge mid-plane plasma and is observed irrespective of whether single or multi-frequency ICRH is applied. Threshold conditions for MICE are: coupled RF power to the plasma P rf ≥ 4.5 MW; total fast ion energy content W fast ≥ 0.6 MJ. At the time of the rapid switch-on of MICE, the measured power loss from the energetic minority ions is ∼ 0.1 ± 0.1 MW, constituting rf . The observations are consistent with the classical evolution and population of the plasma edge with ∼ 3 MeV ICRH protons on orbits near the outboard limiters. Particle loss and energy filtering contribute to a local non-Maxwellian energetic ion distribution which is susceptible to ion cyclotron instability

  10. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    International Nuclear Information System (INIS)

    Osipenko, M.; Ripani, M.; Ricco, G.; Alba, R.; Schillaci, M.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Finocchiaro, P.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Barbagallo, M.; Colonna, N.; Boccaccio, P.; Esposito, J.; Celentano, A.; Viberti, C.M.; Kostyukov, A.

    2013-06-01

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range 3 He detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval. (authors)

  11. Development of quasi-monochromatic p-7Li neutron generating system for 80-210 MeV

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Shibata, Tokushi; Nakamura, Takashi; Uwamino, Yoshitomo; Nakanishi, Noriyoshi; Kurosawa, Tadahiro; Kim, Unju.

    1996-01-01

    Recently the requirements for the experimental data on the response characteristics of neutron detector and the cross section for neutron generation by charged particles have been increasing for shield designing. Here, a system for quasi-monochromatic neutron generation was developed in the facility of ring-cyclotron in Institute of Physical and Chemical Sciences. In this study, H 2 + accelerated to an energy range of 80-135 MeV/n and P + to 150-210 MeV was irradiated to E4 beam course and NE102A plastic scintillator was used for monitoring the neutron flux. The amount of neutrons generated was estimated from the radioactivity of 7 Be produced in 7 Li-target. The neutron spectres thus estimated as an energy range of 80-210 MeV were presented and the lower limit of these spectres was about 20 MeV. The peaks in the range of 150 and 210 MeV were comparatively wide because of the inferiority of energy resolving power at a higher energy level. (M.N.)

  12. Low-temperature irradiation of niobium with 15-MeV neutrons

    International Nuclear Information System (INIS)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Sekula, S.T.

    1978-01-01

    Niobium was irradiated at 4.2 K with high energy d-Be neutrons to a fluence of 3.7x10 15 n/cm 2 . The neutrons were generated at the Oak Ridge Isochronous Cyclotron by the breakup reaction of 40-MeV deuterons in a thick Be target. The resulting neutron energy spectrum was broadly peaked near 15 MeV. The 0.012-cm-diameter wire sample (RRR=200) was situated in a uniform transverse magnetic field. The critical current, flux flow resistance, and normal state resistance were measured by using a standard four-terminal technique. The critical current density and the flux flow resistivity were observed to increase with irradiation and to decrease toward the preirradiation values with subsequent isochronal annealing between 4.2 K and 360 K. Using recent theories of flux line lattice deformation, the elementary pinning force is deduced and the result is compared to theoretical calculations. (Auth.)

  13. Neutron radiography using a transportable superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.A. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Hawkesworth, M.R. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Beynon, T.D. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Green, S. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Rogers, J.D. (Rolls-Royce, Derby (United Kingdom)); Allen, M.J. (Rolls-Royce, Derby (United Kingdom)); Plummer, H.C. (Rolls-Royce, MatEval, Derby (United Kingdom)); Boulding, N.J. (Oxford Instruments (United Kingdom)); Cox, M. (Oxford Instruments (United Kingdom)); McDougall, I. (Oxford Instruments (United Kingdom))

    1994-12-30

    A thermal neutron radiography system based on a compact 12 MeV superconducting proton cyclotron is described. Neutrons are generated using a thick beryllium target and moderated in high density polyethylene. Monte Carlo computer simulations have been used to model the neutron and photon transport in order to optimise the performance of the system. With proton beam currents in excess of 100 [mu]A, it can provide high thermal neutron fluxes with L/D ratios of between 50 and 300 for various applications. Both film and electronic imaging are used to produce radiographs. The electronic imaging system consists of a [sup 6]Li-loaded ZnS intensifier screen, and a low light CCD or SIT camera. High resolution images can be recorded and computer-controlled data processing, analysis and display are possible. ((orig.))

  14. A study on the proton irradiation effect of reactor materials using cyclotron

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Park, Jong Man; Park, Deuk Keun; Lee, Bong Sang; Oh, Jong Myung

    1993-02-01

    Understanding on radiation damage of important structural materials is important for safe operation and radiation damage evaluation of new reactor structural materials. This study was performed to simulate and evaluate 14 MeV neutron irradiation effects on mechanical properties of candidate structural materials (HT-9/SS316) of next generation reactors (FBR, Fusion) irradiated by Cyclotron(MC-50) using SP test technique. After qualification of SP test techniques from J IC and ε qf correlation, SP tests were performed to evaluate 16MeV proton irradiation effects on mechanical properties of irradiated and unirradiated HT-9/SS316 steels. Test results were evaluated for ε qf , energy and displacement up to failure and J IC change. In addition, damaged zone and dpa upon depth after irradiation were calculated using TRIM code and Doppler broadening line shapes were measured to evaluate defects for 15% cold worked HT-9 steel using PAS. (Author)

  15. Measurement and microscopic analysis of the 11B(p,p') reaction at Ep = 150 MeV. Part I: Inelastic scattering

    International Nuclear Information System (INIS)

    Hannen, V.M.; Van den Berg, A.M.; Bieber, R.K.; Harakeh, M.N.; De Huu, M.A.; Kruesemann, B.A.M.; Van der Werf, S.Y.; Woertche, H.J.; Amos, K.; Deb, P.K.; Ellinghaus, F.; Frekers, D.; Rakers, S.; Schmidt, R.; Hagemann, M.

    2001-01-01

    Cross sections and analyzing powers for the 11 B(p.p') reaction have been measured using a 150 MeV polarized proton beam from the AGOR cyclotron at KVI. For the stronger inelastic transitions, also spin-flip probabilities have been extracted. A fully microscopic distorted-wave analysis of the elastic and inelastic data has been made, using density-dependent effective interactions and input from shell-model calculations in a complete (0+2) ℎω model space for normal parity transitions and in a 1 ℎω model space for non-normal parity transitions. With the help of these model calculations spin-isovector M1 strengths for the negative-parity states at excitation energies of 2.125 MeV (J π = 1/2 - ), 4.445 MeV (J π 5/2 - ), 5.020 MeV (J π = 3/2 - ) and 8.920 MeV (J π 5/2 - ) have been extracted and compared to known Gamow-Teller strengths for the analog transitions to 11 C

  16. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  17. Medical applications of cyclotrons

    International Nuclear Information System (INIS)

    Jean, R.; Fauchet, M.

    1978-01-01

    Isochronous cyclotrons used to accelerate different charged particles (protons, deuterons, alphas...) at variable energies, have important medical applications, for neutron teletherapy, in vivo or in vitro activation analysis or production of short-lived radioisotopes for nuclear medicine. The characteristics of the cyclotron presently available are described for these three applications (low energy 'compact' cyclotrons, cyclotrons of intermediate and high energies), and their advantages are discussed from the points of view of the medical requirements, the financial investments and the results obtained. (orig.) [de

  18. Contribution of giant resonances in elastic and inelastic scattering of polarized protons on 12C between 19 and 23MeV

    International Nuclear Information System (INIS)

    Gaillard, Y.R.

    1975-01-01

    Angular distributions of analyzing power and differential cross section have been measured for the elastic and inelastic scattering of polarized protons on 12 C, up to 12.7MeV excitation energy. Incident energy varied from 19 to 23MeV by steps of about 200keV, the cyclotron beam energy, varying by steps of about 1MeV, was measured using crossover techniques. Fine steps of energy were obtained by use of carbon absorbers. Elastic scattering data were analyzed using a linear energy-dependent optical model. Data for the level at 4.4MeV excitation energy were analyzed using coupled channel calculations. Preliminary results for the level (1 - , Esub(x)=12.7MeV) were analyzed including giant resonances as doorways states in inelastic scattering, according to Geramb-Amos formalism. This analysis shows that it should be possible to study high-lying giant resonances through their contribution to low-lying state excitation [fr

  19. Interactions of 29 MeV. He{sup 3} particles with light nuclei; Interacciones de un haz de particulas 3{sup H}e de 29 MeV sobre nucleos ligeros

    Energy Technology Data Exchange (ETDEWEB)

    Rubia de la Pacheco, J.

    1964-07-01

    The interactions of 29 MeV He{sup 3} particles with 32{sup S}, 19{sup F} and 12{sup C}, irradiated in the Nuffield cyclotron (Birmingham University) have been studied using the nuclear emulsion technique. The first excitation levels of 12{sup C} and 32{sup S} have been obtained and the pick-up reaction 12{sup C}(3{sup H}e, 4{sup H}e) 11{sup C} has been studied and used to calculate its Q-values and the first levels of 1{sup C}. (Author) 24 refs.

  20. Simulation of operation modes of isochronous cyclotron by a new interactive method

    International Nuclear Information System (INIS)

    Taraszkiewicz, R.; Talach, M.; Sulikowski, J.; Doruch, H.; Norys, T.; Sroka, A.; Kiyan, I.N.; )

    2007-01-01

    Operation mode simulation methods are based on selection of trim coil currents in the isochronous cyclotron for formation of the required magnetic field at a certain level of the main coil current. The traditional current selection method is based on finding a solution for all trim coils simultaneously. After setting the calculated operation mode, it is usually necessary to perform a control measurement of the magnetic field map and to repeat the calculation for a more accurate solution. The new current selection method is based on successively finding solutions for each particular trim coil. The trim coils are taken one by one in reverse order from the edge to the center of the isochronous cyclotron. The new operation mode simulation method is based on the new current selection method. The new method, as against the traditional one, includes iterative calculation of the kinetic energy at the extraction radius. A series of experiments on proton beam formation within the range of working acceleration radii at extraction energies from 32 to 59 MeV, which were carried out at the AIC144 multipurpose isochronous cyclotron (designed mainly for the eye melanoma treatment and production of radioisotopes) at the INP PAS (Cracow), showed that the new method makes unnecessary any control measurements of magnetic fields for getting the desired operation mode, which indicates a high accuracy of the calculation. (authors)

  1. Export of radiopharmaceuticals and establishment of export base of cyclotron

    International Nuclear Information System (INIS)

    Jung, Kyungil; Kim, Youngsik

    2006-01-01

    Sam young Unit ech has seized an opportunity to advance into the radiopharmaceuticals market through successful transfer of radiopharmaceuticals manufacturing technology and medical cyclotron, an original technology in nuclear medicine that is the core of less developed areas in nuclear-related fields. The company has continued to push for research development and establishment of market base through industry-academia-research center cooperation with an aim to complement relatively less developed domestic technology and market than in advanced countries, and is making efforts to establish export base in the overseas market based on stabilized supply in the domestic market. As for radiopharmaceuticals, the company is exporting Tc-99m generator to Vietnam, Thailand and the Philippines and preparing itself to export manufacture facilities for Tc-99m generator to Syria and Kazakhstan. In addition, it plans to export 13Mev Cyclotron that has been commercialized after being developed in the domestic market to the U. S. The company plans to grow up to play a pivotal role in the domestic RT area by conducting proactive business activities with an aim to revitalize the domestic market and further domestic original technologies and products in the global market

  2. Alignment of mapping system for magnet cyclotron DECY-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik; Kurnia Wibowo

    2016-01-01

    A cyclotron is composed of some main and specific components, such as magnet system, ion source, RF system and extractor. A magnet is one of important component in a cyclotron that serves as ion beam bending so the ion beam trajectory is circular. Magnet design should with the requirement of cyclotron that proton energy is 13 MeV. In the construction of the cyclotron magnet, a mapping tool of the magnetic field is required for analysis in shimming process in order to optimize the magnetic field. The magnetic field mapping process is carried out in the median plane of the magnet poles. The magnetic field mapping is carried out repeatedly during the shimming process. During this process, the mapping tool is possible to experience a shift or change in position, for that it is necessary to alignment in order to make sure that the probe is in the median plane of magnet poles and to ensure their positions are always the same on each repetition mapping. During this process, it is possible to experience a shift mapping tool or change the position, for this it is needed to process alignment to ensure the position of the probe is in the median plane magnetic poles and ensure their positions are always the same on each repetition mapping. Alignment on the mapping tool are the height position, zeroing tesla meter and two hall probe mapping. The parameters form the basis for magnetic field measurements based on the three elements: an alignment system on the engine mapping, mapping tool reference point and stage movement of x-y coordinates. Shifts occur due to change in elevation mapping tool table and center coordinates x and y in the mapping process. Changes made to shift mapping coordinates can be shifted as far as 1 to 2 mm for each hall probe in the x and y coordinates with altitude changes 0.05° mapping table and measurement of tesla meter changes in 0.002 T. (author)

  3. The Comparing of Psychological Status of Active and Inactive Relief Workers in Traffic Accident in Red Cross of Karaj Township in 1391

    Directory of Open Access Journals (Sweden)

    N. Amini

    2013-10-01

    Full Text Available Background: Traffic accidents are major result of death and disability that their victims need relief Relief worker who do this, are at risk of psychological disorder because of Overwhelming accident and rescue work-related stress .It is necessary to be evaluated their psychological status for giving them psychological support. This study was conducted to compare the mental state in active and inactive relief workers in traffic accident in Karaj red cross in1391. Methods: This descriptive-analytic cross-sectional study was done among both of active and inactive relief worker in traffic accident in Karaj red cross. Data collection tool were demographic questionnaire and Standard questionnaire for measuring depression, anxiety and stress. Collected data was analysed by SPSS16. Results: Result showed that there is no significant difference between mean of depression, stress and anxiety score in both of them(P>0.05, also there is no significant relationship between psychological status with age, educational level, work backward and marital status but stress and marital status in inactive group was significant(P<0.05. Conclusion: It appears besides traffic accident relief worker, inactive relief worker need more attention and scale up psychological support programs and psychological disorder screening. Also it is proposed to do similar study in larger scale.

  4. Neutron and gamma radiation levels analysis for 18 MeV cyclotron operation at IPEN-CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Paula P.N.; Fernandes, Ivani M.; Silva, Amanda J. da; Rodrigues, Demerval L.; Romero Filho, Christovam R., E-mail: ppsilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Accelerator Cyclotron Facility provides activities that involve exposure to ionizing radiation, so it is necessary to establish a monitoring program that allows the dose control of the workers, based on the principles of the radiation protection. Besides the individual monitoring, the area monitoring is carried out aiming to evaluate the dose rates in areas that are occupied by workers during the execution of their tasks. This study aims to present the levels of neutron and gamma radiation results, obtained by monitoring the Accelerator Cyclotron Facility areas, during the Cyclone-18 operation. The study was based on data gathered from the area monitoring reports conducted by the radioprotection team in the years 2010 and 2011. To determine the dose rate, specific equipment was used. It was monitored 09 spots (from A to I), totalizing 280 and 205 measurements at each spot in the years 2010 and 2011, respectively. The 'B' spot showed the least influence for gamma and neutron radiation in both years. The spots with the highest neutron and gamma dose rates, in both years, were the 'E' and 'I' spots, respectively. With these results, we can say that the area monitoring is carrying out with its goal of preventing the doses that can be accumulated by the workers during the course of their work. (author)

  5. A light, superconducting H- cyclotron for medical diagnostics and neutron radiography

    International Nuclear Information System (INIS)

    Finlan, M.F.; Kruip, M.; Wilson, M.N.

    1987-01-01

    Oxford Instruments, working in close collaboration with Amersham International are developing a compact, lightweight, low radiation field superconducting cyclotron. The combination of superconductivity, H - acceleration and no internal yoke as such makes this possible. It is intended for use as a generator of short half lived isotopes for use in hospitals for PET and other imaging procedures, for use in industrial PET imaging, and as a neutron generator for neutron radiography. With a weight of 2000 kg, it is transportable and comparitively easy to handle and is capable in the 17 MeV version of generating 1.8 10 13 neutrons/second for neutron radiography. (author)

  6. 123 I production using CV-28 cyclotron from IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Mestnik, S.A.C.; Mengatti, J.; Nieto, W.; Yanagawa, S.I.; Sumiya, L.C.A.; Silva, C.P.G.; Osso Junior, J.A.

    1992-01-01

    The main conditions for iodine 123 production by 124 Te (p,2 n) 123 I reaction were presented, using the cyclotron CV-28 at IPEN-CNEN/SP, with protons of E max = 24 MeV. Two types of targets (Te O 2 and Te O 2 + 2% Al 2 O 3 ) and the influence of Al 2 O 3 in iodine release were studied. After the selection, the 124 Te O 2 (96,2%) target, was melted in platinum support and irradiated with proton current until 12 mu A. The separation of 123 I was made by dry distillation, using induction furnace and O 2 atmosphere. (C.G.C.)

  7. Nuclear elemental analyses with a cyclotron on biomedical samples

    International Nuclear Information System (INIS)

    Quaedackers, J.A.; Voigt, M.J.A. de; Mutsaers, P.H.A.; Goeij, J.J.M. de; Vusse, G.J. van der

    1999-01-01

    The Eindhoven scanning proton microprobe enables the determination of the ion content of heart tissue on a sub-cellular scale. It is shown that intra-cellular elemental concentrations can be determined. Measurements are carried out for physiological and patho-physiological rat heart muscle tissue. Important alterations in Na and K concentrations are reported as measured with PIXE, RBS and NFS techniques employing a variable energy cyclotron (3-30 MeV). However, quantitative intra-cellular determinations are hampered by the presence of extra-cellular space (ECS). For this purpose, cobaltic ethylene-diamine-tetra-acetic-acid (Co(III)EDTA) was used as an exogenic ECS marker. The intra-cellular ion concentrations of normoxic tissue after correction for the ECS agree well with the literature values

  8. Fission of {sup 209}Bi and {sup 197}Au nuclei induced by 30 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, Houshyar; Soheyli, Saeed [Amir-Kabir University of Technology, Physics and Nuclear Science Department, Tehran (Iran); Lamehi-Rachti, Mohammad [Atomic Energy Organization of Iran (AEOI), Nuclear Research Center, Van de Graaff Laboratory, Tehran (Iran)

    2001-10-01

    Thin targets of {sup 209}Bi and {sup 197}Au were bombarded with 30 MeV protons at the Cyclotron Department of Nuclear Research Center for Agriculture and Medicine (NRCAM). Correlated measurements of kinetic energies of fission fragment pairs, and their time-of-flights were made using pair spectrometry. The fission cross sections, fragment mass distributions, and total kinetic energy distributions of the fragments were measured in our experiment. The accurate values of cross sections for fission of {sup 209}Bi and {sup 197}Au nuclei with 30 MeV protons were obtained to be 1,100{+-}100 and 62{+-}5.6 {mu}b, respectively. The cross section of {sup 209}Bi fission with its associated error, through using this method, has not been reported previously. The interpretation in terms of liquid-drop model of fissioning nucleus {sup 210}Po at the excitation energy of 35 MeV was confirmed by the dispersion of the distribution in fragment mass for bismuth fission. (author)

  9. Automation in irradiating target systems for cyclotrons

    International Nuclear Information System (INIS)

    Araujo, Sumair G.; Sciani, Valdir; Almeida, Rosemeire S.

    2000-01-01

    Nowadays, two cyclotron are being operated at IPEN-CNEN/SP: one model CV-28, capable of accelerating p, d, 3 He 4 and α, with energies of 24, 14, 36 and 28 MeV, respectively, and beam currents up to 30 μA; the other one, model cyclone 30, accelerates protons with energy of 30 MeV and currents up to 350 μ A. Both have the objective of irradiating targets both for radioisotope production for use in Nuclear Medicine, such as 67 Ga, 201 Tl, 111 In, 123 I, 18 F, and general research. The development of irradiating systems completely automatized was the objective of this work, always aiming to reduce the radiation exposition dose to the workers and to increasing the reliability of use of these systems, because very high activities are expected in these processes. In the automation, a Programmable Logical Controller (PLC) was used connected to a feedback net, to manage all the variables involved in the irradiation processes. The program of the PLC was developed using Simatic Step Seven (S7), Software from Siemens, where all the steps are supervised in screens at a microcomputer. The assembling and sequence of leading were developed using the software from Unisoft, that keeps the operator informed about the work being carried out, at any time. (author)

  10. Assessing Differentiating Aspects of Karaj Citizens' Orientation to Buy from Fruits and Vegetables Market and Its Parallel Market

    Directory of Open Access Journals (Sweden)

    H. Aghasafari

    2015-05-01

    Full Text Available The main objective of the present study is to assess distinct aspects of citizens' intention to buy fruits and vegetables from municipal markets and its parallel markets within Karaj city. The required data was collected by completing 150 questionnaires from Karaj citizens in 2013. Using the multi-Group discriminant analysis, analysis ofthe study results within the three groups including buyers from municipal markets, local shops and fruit pickups show that possibility for non-cash payment, presenting printed purchase receipts, a higher quality of product, degree of fruit importance in the household basket, seller’s behaviour, more openning hours, use the benefit of the more familiar seller, and length of time allocated to buy fruit play the greatest role in making a distinction between two groups of buyers including buyers from local shops and buyers from municipal markets against buyers from fruit pickups. In addition, the results of this study indicate that monthly household expenditures, number of monthly fruit purchase, possibility for customers to select his desired items , a reasonable price comapared to the product’s quality, appropriate packing, education, how often a household buy fruits in a month a wide variety of products, trust to the offered prices, distance to the market play the greatest role in making a distinction between two groups of buyers from local shops and buyers from municipal markets, respectively. Ultimately, it is suggested to train sellers how to behave properly withcustomers. In addition, it should be paid more attention to appropriate packing and to make it possible for the citizens to select their desired items themselves.

  11. Injection and extraction for cyclotrons

    International Nuclear Information System (INIS)

    Heikkinen, P.

    1994-01-01

    External ion sources for cyclotrons are needed for polarised and heavy ions. This calls for injection systems, either radial or axial. Radial injection is also needed when a cyclotron works as a booster after another cyclotron or a linear accelerator (usually tandem). Requirements for injection differ from separated sector cyclotrons where there is plenty of room to house inflectors and/or strippers, to superconducting cyclotrons where the space is limited by a small magnet gap, and high magnetic field puts other limitations to the inflectors. Several extraction schemes are used in cyclotrons. Stripping injection is used for H - and also for heavy ions where the q/m ratio is usually doubled. For other cases, electric and magnetic deflection has to be used. To increase the turn separation before the first deflector, both resonant and non-resonant schemes are used. In this lecture, external injection systems are surveyed and some rules to thumb for injection parameters are given. Extraction schemes are also reviewed. (orig.)

  12. Manufacture and analysis of exciter RF generator for proton cyclotron Decy-13

    International Nuclear Information System (INIS)

    Prajitno

    2011-01-01

    Exciter of the RF generator for 13 MeV proton cyclotron have been analyzed and manufactured. RF generator will be used as a source of alternating voltage accelerating of the Decy-13 cyclotron which designed by PTAPB-BATAN. Based on the basic design documents that have been made, the Decy-13 cyclotron will use 1.275 Tesla magnetic field so that the RF generator frequency when using the fourth harmonic is 77.667 MHz. One of the radio frequency signal generation technique where the output frequency is very stable and easy to set up and is currently being developed is the technique of Direct Digital Synthesizer (DDS). DDS technology is an innovative circuit architecture that allows fast and precise frequency manipulation of its output, under full digital control. Prototype of the RF generator exciter that was created using DDS type AD9851 manufactured by Analog Devices with a fundamental frequency of 30 MHz and controlled by the ATmega16 micro controller. To avoid unexpected frequency of its output, the output signal of the DDS is passed to the passive band pass filter circuit. The test results showed that the exciter output frequency range is 2 MHz with center frequency of 77.667 MHz. and stop band -3 dB. While RF power output 10 Watt require 12 V power supply with current 1,6 A. Although the exciter prototype still needs improvement but the results are as expected. (author)

  13. Recent performance of the TRIUMF cyclotron and status of the facility

    International Nuclear Information System (INIS)

    Dutto, G.; Blackmore, E.W.; Carey, J.

    1995-09-01

    In December 1994, TRIUMF celebrated 20 years of operation. The peak intensity has been increased over the years to the present level of approximately 200 μA on beam line 1A. Polarized beam currents in excess of 20 μA are available although most users prefer lower intensity, higher quality slit-tailored polarized beams. The cyclotron simultaneously extracts three beams: one at 500 MeV for meson production, a lower intensity beam on beam line 4 for nuclear physics, nuclear chemistry, or astrophysics experiments, and a low energy beam (65-120 MeV, from a few nA up to 100 μA) on beam line 2C for isotope production or proton therapy. The yearly total integrated extracted beam current is now in the order of 600 mAh per year. Beam delivery is in excess of 5000 hours per year with beam availability consistently around 90%, serving as many as 8 experimental stations simultaneously. An additional simultaneous extraction line is planned for the new ISAC facility. With the present polarized beam current capability, the operation of polarized beams for the beam line 4 experiments will be possible simultaneously with the operation of the ISAC facility up to levels of 20 μA, 500 MeV, on target. Recent facility developments will also be reported. (author)

  14. Model of Dees and Rotco for the 600 MeV SC

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The accelerating frequency of the 600 MeV Synchro-Cyclotron (SC) was modulated by the varying capacity of a rotating condenser ("Rotco", the most delicate component of the SC). A 1/5-scale model, dating from the design-period of the SC, was used to study improvements to the SC RF-system, and also the acceleration of ions, first Helium and, at the time of this picture, Carbon. In the middle of the picture is the case containing the Dees. To the left, at the wide end of the cone, a rotco. Reinhold Hohbach is busy with measurements. See also 7805235 (Annual Report 1978, p.110).

  15. Medical cyclotron: why, where, how

    International Nuclear Information System (INIS)

    Scheer, Kurt; Comar, Dominique; Kellershohn, Claude

    1976-01-01

    Cyclotrons for medical purposes are particularly useful for the production of radioactive isotopes of elements normally constituting organic matter ( 15 O, 13 N, 11 C). The short half-life and positron emission of those elements are of great interest in medical diagnosis. Many others carrier-free radioisotopes can be produced by cyclotrons. Three categories of cyclotrons are mentioned. Desk top cyclotron only adapted to the production of short-lived radioisotopes in a hospital; low energy and average energy cyclotrons which require well-entrained personnel for their operation and are best adapted to the production of radioelements on a regional or even national scale. Examples relative to the interest of short-lived radioisotopes in lung and brain investigations and tumor detection are given

  16. Measurement of {sup 232}Th(n, 5nγ) cross sections from 29 MeV to 42 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M.; Baumann, P.; Dessagne, P.; Rudolf, G. [Universite de Strasbourg, IPHC, Strasbourg (France); CNRS, UMR7178, Strasbourg (France); Nolte, R.; Reginatto, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Jericha, E. [Technische Universitaet Wien, Atominstitut, Wien (Austria); Jokic, S.; Lukic, S. [Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Koning, A.J. [Nuclear Research and Consultancy Group, Petten (Netherlands); Meulders, J.P. [Institut de Physique Nucleaire, Louvain-la-Neuve (Belgium); Nachab, A. [Universite Cadi Ayyad, Departement de physique, Faculte Poly-disciplinaire de Safi, Safi (Morocco); Pavlik, A. [Faculty of Physics, University of Vienna, Wien (Austria)

    2014-10-15

    The excitation function of the reaction {sup 232} Th(n, 5nγ){sup 228} Th from 29 to 42 MeV has been measured for the first time at the quasi-monoenergetic neutron beam of the UCL cyclotron CYCLONE employing the {sup 7}Li(p,n) source reaction. Taking advantage of the good energy resolution of the planar High-Purity Germanium (HPGe) detectors, prompt γ-ray spectroscopy was used to detect the γ-rays resulting from the decay of excited states of nuclei created by the (n,xn) reactions. The neutron beam was characterized by a combination of time of flight measurements carried out using a liquid scintillation detector and a {sup 238}U fission ionization chamber. Fluence measurements were performed using a proton recoil telescope. The results are compared with TALYS-1.4 code calculations. (orig.)

  17. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    Science.gov (United States)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  18. Preparation of 199Tl radionuclide on U-120 (R-7M) cyclotron

    International Nuclear Information System (INIS)

    Glukhov, G.G.; Komov, A.I.; Maslennikov, Yu.S.; Malinin, A.B.; Skuridin, V.S.

    1989-01-01

    The possibility of preparation of 199 Tl radionuclide, which can be successfully used instead of thallium-201 in radiopharmaceutical compound for medicine diagnosis due to nuclear-physical characteristics, is studied. It is established that thallium-199 free from thallium-298, but with thallium-200 impurity, is formed under irradiation of gold-197 target by 27.2-28 MeV energy α-particles. The construction of a thin-layer gold target allowing to decrease thallium-200 impurity up to >0.5 % is developed and tested. Perspectivity of thallium-199 production at domestic cyclotrons P-7M and u-120 is shown. 4 refs.; 2 figs.; 3 tabs

  19. An analytical approach of thermodynamic behavior in a gas target system on a medical cyclotron.

    Science.gov (United States)

    Jahangiri, Pouyan; Zacchia, Nicholas A; Buckley, Ken; Bénard, François; Schaffer, Paul; Martinez, D Mark; Hoehr, Cornelia

    2016-01-01

    An analytical model has been developed to study the thermo-mechanical behavior of gas targets used to produce medical isotopes, assuming that the system reaches steady-state. It is based on an integral analysis of the mass and energy balance of the gas-target system, the ideal gas law, and the deformation of the foil. The heat transfer coefficients for different target bodies and gases have been calculated. Excellent agreement is observed between experiments performed at TRIUMF's 13 MeV cyclotron and the model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Isochronous cyclotron data base description

    International Nuclear Information System (INIS)

    Kiyan, I.N.; Vorozhtsov, S.B.; Tarashkevich, R.

    2004-01-01

    The relational data base of the control parameters of the isochronous cyclotron, Isochronous Cyclotron Data Base (ICDB), is described. The relational data base under consideration, written in Transact SQL for the MS SQL Server 2000 with the use of MS Enterprise Manager and MS Query Analyzer, was installed on the server of the AIC144 isochronous cyclotron in Krakow, which operates under the control of the operating system MS Windows Server 2003 (Standard Edition). The interface of the data base under considerations is written in C++ with the use of Visual C++ .NET and is built in the Cyclotron Operator Help Program (COHP), which is used for modeling the operational modes of the isochronous cyclotron. Communication between the COHP and the relational data base is realised on the base of the Open Data Base Connectivity protocol. The relational data base of the control parameter of the isochronous cyclotron is intended: firstly, for systematization and automatic use of all measured and modelled magnetic field maps in the process of modeling the operational modes; secondly, for systematization and convenient access to the stored operational modes; thirdly, for simplifying the operator's work. The relational data base of the control parameter of the isochronous cyclotron reflects its physical structure and the logic of its operator's work. (author)

  1. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    Science.gov (United States)

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  2. Advances in superconducting cyclotrons at MSU

    International Nuclear Information System (INIS)

    Blosser, H.; Antaya, T.; Au, R.

    1987-01-01

    Intensive work on superconducting cyclotrons began at MSU in late 1973 (a brief earlier study had occurred in the early 1960's) and continues vigorously at present. One large cyclotron, the ''K500'', has been operating for a number of years, a second, the ''K800'', is nearing completion, the first operating tests of its magnet having occurred at the time of the previous conference, and a third, the ''medical cyclotron'', is now also nearing completion with first operation of its magnet expected just after the present conference. These cyclotrons like other superconducting cyclotrons are all dramatically smaller than comparable room temperature machines; overall weight is typically about 1/20th of that of room temperature cyclotrons of the same energy. This large reduction in the quantities of materials is partially offset by added complexity, but finally, a net overall cost savings of 50 to 70 % typically results; as a consequence the superconducting cyclotron is widely viewed as the cyclotron of the future. The thirteen years of experience at MSU involving three of these cyclotrons, together with much important work at other laboratories, gives a rather clear view of the advantages and disadvantages of various design approaches including by now a rather significant period of long term evaluation. This paper reviews highlights of this program. (author)

  3. Andromede project: Surface analysis and modification with probes from hydrogen to nano-particles in the MeV energy range

    International Nuclear Information System (INIS)

    Eller, Michael J.; Cottereau, Evelyne; Rasser, Bernard; Verzeroli, Elodie; Agnus, Benoit; Gaubert, Gabriel; Donzel, Xavier; Delobbe, Anne; Della-Negra, Serge

    2015-01-01

    The Andromede project is the center of a multi-disciplinary team which will build a new instrument for surface modification and analysis using the impact of probes from hydrogen to nano-particles (Au 400 +4 ) in the MeV range. For this new instrument a series of atomic, polyatomic, molecular and nano-particle ion beams will be delivered using two ion sources in tandem, a liquid metal ion source and an electron cyclotron resonance source. The delivered ion beams will be accelerated to high energy with a 4 MeV van de Graaff type accelerator. By using a suite of probes in the MeV energy range, ion beam analysis techniques, MeV atomic and cluster secondary ion mass spectrometry can all be performed in one location. A key feature of the instrument is its ability to produce an intense beam for injection into the accelerator. The commissioning of the two sources shows that intense beams from atomic ions to nano-particles can be delivered for subsequent acceleration. The calculations and measurements for the two sources are presented.

  4. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  5. Development of Medical Cyclotron in KIRAMS

    International Nuclear Information System (INIS)

    Chai, Jong Seo; Jung, In Su; An, Dong Hyun

    2005-01-01

    This paper is presented on the development and status of medical cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) at present. We have developed medical cyclotron which is KIRAMS-13. And the improvement of KIRAMS-13 is presented. Furthermore, the design of new cyclotrons, such as KIRAMS-5 and KIRAMS-30 cyclotron, are presented, and R and D studies for future plan of heavy ion accelerator are discussed

  6. All-magnetic extraction for cyclotron beam reacceleration

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  7. Trends in cyclotrons for radionuclide production

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Lambrecht, R.M.

    1999-01-01

    The IAEA recently concluded a worldwide survey of the cyclotrons used for radionuclide production. Most of the institutions responded to the questionnaire. The responses identified technical, utilisation and administrative information for 206 cyclotrons. Compiled data includes the characteristics, performance and popularity of each of the different commercial cyclotrons. Over 20 cyclotrons are scheduled for installation in 1998. The expansion in the number of cyclotron installations during the last decade was driven by the advent of advances in medical imaging instrumentation (namely, positron emission tomography (PET), and more recently by 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons; and recent governmental decisions that permit reimbursement for cyclotron radiopharmaceutical studies by the government or insurance companies. The priorities for the production of clinical, commercial and research radionuclides were identified. The emphasis is on radionuclides used for medical diagnosis with SPET (e.g. 123 I, 201 Tl) and PET (e.g. 11 C, 13 N, 15 O, 18 F) radiopharmaceuticals, and for individualized patient radiation treatment planning (e.g. 64 Cu, 86 Y, 124 I) with PET. There is an emerging trend to advance the cyclotron as an alternative method to nuclear reactors for the production of neutron-rich radionuclides (e.g. 64 Cu, 103 Pd, 186 Re) needed for therapeutic applications. (authors)

  8. Future cyclotron systems : an industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modem cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, we investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century. (author)

  9. Future cyclotron systems: An industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century

  10. A MATHEMATICAL MODEL TO PREDICT NICKEL CONCENTRATION IN KARAJ RIVER SEDIMENTS

    Directory of Open Access Journals (Sweden)

    R. Ramezankhani, A. A. M. Sharif, M. T. Sadatipour, R.Abdolahzadeh

    2008-04-01

    Full Text Available The contamination of surface waters through human activities has been intensified over the past years as population density has increased. Nickel is a metallic element and fuel combustion, nickel mining, refining waste, sewage sludge, and incineration are the major sources of nickel propagation. Nickel from various industrial wastewaters and other sources finally are disposed into water bodies. In this work, Karaj river was considered from 50º to 50º 14´longitudes and 35º 45´ to 35º 58´ latitudes and the presence of nickel was also assessed in this area. Sixteen stations were randomly selected and sediment samples were collected in polyethylene containers. Some water quality parameters such as pH, temperature, dissolved oxygen, electrical conductivity, were determind by direct on-site measurements. To measure COD, 16 water samples were collected in dark bottles and transferred to laboratory spatial parameters such as slope and distance from start point were also calculated by ARCGIS 9.2. The relation between Ni concentration with spatial parameters and water quality parameters were obtained by multivariate analysis. Results showed that there was a significant relation between Ni concentration in sediments and distance from start point and electrical conductivity.

  11. Measurements and Monte Carlo calculations of neutron production cross-sections at 180o for the 140 MeV proton incident reactions on carbon, iron, and gold

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki; Yashima, Hiroshi; Nakane, Yoshihiro; Tamii, Atsushi; Iwase, Hiroshi; Endo, Akira; Nakashima, Hiroshi; Sakamoto, Yukio; Hatanaka, Kichiji; Niita, Koji

    2010-01-01

    The neutron production cross-sections of carbon, iron, and gold targets with 140 MeV protons at 180 o were measured at the RCNP cyclotron facility. The time-of-flight technique was used to obtain the neutron energy spectra in the energy range above 1 MeV. The carbon and iron target results were compared with the experimental data from 113 MeV (p,xn) reactions at 150 o reported by Meier et al. Our data agreed well with them in spite of different incident energies and angles. Calculations were then performed using different intra-nuclear cascade models (Bertini, ISOBAR, and JQMD) implemented with PHITS code. The results calculated using the ISOBAR and JQMD models roughly agreed with the experimental iron and gold target data, but the Bertini could not reproduce the high-energy neutrons above 10 MeV.

  12. Computer design of a compact cyclotron

    International Nuclear Information System (INIS)

    Bing Wang; Huanfeng Hao; Qinggao Yao; Jinquan Zhang; Mingtao Song; Vorozhtsov, S.B.; Smirnov, V.L.; Hongwei Zhao

    2011-01-01

    Here we present results of the computer design of the structural elements of a compact cyclotron by the example of HITFiL cyclotron selected as the driving accelerator that is under construction at the Institute of Modern Physics (Lanzhou, China). In the article a complex approach to modeling of the compact cyclotron, including calculation of electromagnetic fields of the structural elements and beam dynamics calculations, is described. The existing design data on the axial injection, magnetic, acceleration and extraction systems of the cyclotron are used as a starting point in the simulation. Some of the upgrades of the cyclotron structural elements were proposed, which led to substantial improvement of the beam quality and transmission

  13. Experimental study and nuclear model calculations on the $^{192}Os (p, n)^{192}$Ir reaction Comparison of reactor and cyclotron production of the therapeutic radionuclide $^{192}$Ir

    CERN Document Server

    Hilgers, K; Sudar, S; 10.1016/j.apradiso.2004.12.010

    2005-01-01

    In a search for an alternative route of production of the important therapeutic radionuclide /sup 192/Ir (T/sub 1/2/=78.83 d), the excitation function of the reaction /sup 192/Os(p, n)/sup 192/Ir was investigated from its threshold up to 20MeV. Thin samples of enriched /sup 192/Os were obtained by electrodeposition on Ni, and the conventional stacked-foil technique was used for cross section measurements. The experimental data were compared with the results of theoretical calculations using the codes EMPIRE-II and ALICE-IPPE. Good agreement was found with EMPIRE-II, but slightly less with the ALICE-IPPE calculations. The theoretical thick target yield of /sup 192/Ir over the energy range E/sub p/=16 to 8MeV amounts to only 0.16MBq/ mu A.h. A comparison of the reactor and cyclotron production methods is given. In terms of yield and radionuclidic purity of /sup 192/Ir the reactor method appears to be superior; the only advantage of the cyclotron method could be the higher specific activity of the product.

  14. 57 Co produced in cyclotron

    International Nuclear Information System (INIS)

    Landini, Liliane; Osso Junior, Joao Alberto

    2000-01-01

    The Cyclotron CV-28 of IPEN-CNEN/SP is a particle accelerator, used mainly in the radioisotope production, applied in 'in vivo' diagnosis in nuclear medicine. Some of them are employed in the calibration of Diagnosis equipment, such as gamma and X-rays detectors. Co-57 is an example of this application. A natural nickel foil was used as target and irradiated with proton beams of 24 MeV energy. The radioactivity analysis of the irradiated target was performed by Gamma Spectroscopy with a HPGe detector. A 259,74MBq (7,02 mCi) Co-57 source was prepared, 67 days after the last bombardment, with impurity levels of 1.13% for Co-56 and 1.29% for Co-58. The thick target yields for Co-57 and for the main radionuclidic impurities were measured, after the chemical separation of the irradiated target, extrapolated to the last EOB: 1.076 MBq (29.09 mCi)/mA.h, 0.012 MBq (0.33 mCi)/mA.h and 0.014 MBq (0.37 mCi)/mA.h, for Co-57, Co-56 and Co-58, respectively. (author)

  15. Transmission test of the polyethylene shield against 40 and 65 MeV quasi monochrome neutron

    International Nuclear Information System (INIS)

    Nakao, Makoto; Nakamura, Takashi; Sakuya, Yoshimasa; Nauchi, Yasushi; Nakao, Noriaki; Tanaka, Susumu; Sakamoto, Yukio; Nakajima, Hiroshi; Nakane, Yoshihiro.

    1996-01-01

    Using 40 and 65 MeV quasi monochrome neutron of the AVF cyclotron installed at Takasaki Laboratory, Japan Atomic Energy Research Institute, the neutron energy spectra were measured after transmitting the polyethylene shield. Results of the shielding experiments using concrete and iron recognized as main shielding material were proposed previously. As data obtained in the experiments were useful for a bench-mark experiment to investigate for shielding calculation and sectional data set, a shielding calculation simulated with new experiment to compare with and investigate for the previous experimental data. As a result, it was found that calculation result of neutron flux transmitting through the polyethylene shield showed difference with increase of the shield thickness. And, reducing distance of the peak neutron was also found to be over-estimated in its calculation value, such as three and five times on 43 MeV at 120 and 180 cm thick, respectively. (G.K.)

  16. Solid targets for 99mTc production on medical cyclotrons

    International Nuclear Information System (INIS)

    Hanemaayer, V.; Buckley, K.R.; Klug, J.; Ruth, T.J.; Schaffer, P.; Zeisler, S.K.; Benard, F.; Kovacs, M.; Leon, C.

    2014-01-01

    Recent disruptions in the molybdenum-technetium generator supply chain prompted a review of non-reactor based production methods for both 99 Mo and 99m Tc. Small medical cyclotrons (E p ∼ 16-24 MeV) are capable of producing Curie quantities of 99m Tc from isotopically enriched 100 Mo using the 100 Mo(p,2n) 99m Tc reaction. Unlike most other metallic target materials for routine production of medical radioisotopes, molybdenum cannot be deposited by reductive electroplating from aqueous salt solutions. To overcome this issue, we developed a new process for solid molybdenum targets based on the electrophoretic deposition of fine 100 Mo powder onto a tantalum plate, followed by high temperature sintering. The targets obtained were mechanically robust and thermally stable when irradiated with protons at high power density. (author)

  17. (p,2p) experiments at the University of Maryland cyclotron

    International Nuclear Information System (INIS)

    Roos, P.G.

    1976-11-01

    Some of the (p,2p) work which has been carried out at the Maryland Cyclotron is discussed. A brief introduction to the (p,2p) reaction is presented, and the types of experimental techniques utilized in (p,2p) studies are discussed. A brief introduction is given to the various theoretical treatments presently available to analyze (p,2p) reaction data. Secondly, experimental and theoretical studies of (p,2p) on d, 3 He, and 4 He carried out by the Maryland group are presented. Thirdly, (p,2p) results are discussed for 6 Li, 7 Li, and 12 C at 100 MeV. Fourthly, the effects of distortion on the experimental data are considered by presenting theoretical calculations for 12 C and 40 Ca at various bombarding energies

  18. Practicality of the cyclotron production of radiolanthanide 142Pr. A potential for therapeutic applications and biodistribution studies

    International Nuclear Information System (INIS)

    Mahdi Sadeghi; Bakht, M.K.; Leila Mokhtari

    2011-01-01

    Radiolanthanide praseodymium-142 (T 1/2 = 19.12 h, E β - = 2.162 MeV (96.3%), E γ = 1575 keV (3.7%)) due to its high β-emission and low specific γ-emission could not only be a therapeutic radionuclide, but also a suitable radionuclide in order for biodistribution studies. Conventionally, 142 Pr produces via 141 Pr(n,γ) 142 Pr reaction by irradiation in a low-fluence reactor and this study evaluates cyclotron reaction production of it. 142 Pr excitation function via nat La(α,n) 142 Pr, 142 Ce(p,n) 142 Pr, and nat Pr(d,p) 142 Pr reactions were calculated by TALYS-1.2 and EMPIRE-2.19beta codes, and with the data taken from the TENDL-2010 database. In addition, we compared them with the reported measurement by experimental data. Requisite thickness of targets was obtained by SRIM-2010 code for each reaction. The 142 Pr production yield was evaluated with attention to excitation function and stopping power. Similar to reactor produced 142 Pr; 141 Pr impurity exists in cyclotron produced 142 Pr while it could not be separated by chemical methods. Therefore, cyclotron and reactor produced 142 Pr will be in carrier added form. (author)

  19. A 250-GHz CARM [Cyclotron Auto Resonance Maser] oscillator experiment driven by an induction linac

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.; Bubp, D.G.; McDermott, D.; Luhmann, N.

    1990-01-01

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE 11 mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%)

  20. Design of an induction linac driven CARM [Cyclotron Auto Resonance Maser] oscillator at 250 GHz

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.

    1990-01-01

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE 11 mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 μm corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs

  1. Measurements and Monte Carlo calculations of neutron production cross-sections at 180{sup o} for the 140 MeV proton incident reactions on carbon, iron, and gold

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.j [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Satoh, Daiki [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [KEK (Japan); Yashima, Hiroshi [Kyoto University (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Tamii, Atsushi [Research Center for Nuclear Physics, Osaka University (Japan); Iwase, Hiroshi [KEK (Japan); Endo, Akira; Nakashima, Hiroshi; Sakamoto, Yukio [Japan Atomic Energy Agency, 2-4, Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hatanaka, Kichiji [Research Center for Nuclear Physics, Osaka University (Japan); Niita, Koji [Research Organization for Information Science and Technology (Japan)

    2010-08-21

    The neutron production cross-sections of carbon, iron, and gold targets with 140 MeV protons at 180{sup o} were measured at the RCNP cyclotron facility. The time-of-flight technique was used to obtain the neutron energy spectra in the energy range above 1 MeV. The carbon and iron target results were compared with the experimental data from 113 MeV (p,xn) reactions at 150{sup o} reported by Meier et al. Our data agreed well with them in spite of different incident energies and angles. Calculations were then performed using different intra-nuclear cascade models (Bertini, ISOBAR, and JQMD) implemented with PHITS code. The results calculated using the ISOBAR and JQMD models roughly agreed with the experimental iron and gold target data, but the Bertini could not reproduce the high-energy neutrons above 10 MeV.

  2. A study on the proton beam energy(50 MeV) measurement and diagnosis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Suh; Lee, Dong Hoon; Kim, Yoo Suk; Park, Chan Won; Lee, Yong Min; Hong, Sung Suk; Lee, Min Yong; Lee, Ji Sub; Hah, Hang Hoh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1995-02-01

    The main purpose of this project is the precise ion measurement of proton beam energy extracted at RF 25.89 MHz from the MC-50 cyclotron of SF type. There are several method for particle energy measurement. We measured the 50 MeV proton energy by using the E-{Delta}E method in 1993. And also in our experiment used range, reapproval of energy of extracted proton beam at RF 25.89 MHz was performed, which attained the same energy with the result used elastic scattering within the error range. 10 figs, 2 pix, 3 tabs, 3 refs. (Author).

  3. The Berkeley Accelerator Space Effects (BASE) Facility - A new mission for the 88-Inch Cyclotron at LBNL

    International Nuclear Information System (INIS)

    McMahan, M.A.

    2005-01-01

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R and D in accelerator technology and a test facility for the National Security Space (NSS) community (the US Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator Space Effects (BASE) Facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 A MeV 'cocktail' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades

  4. Reduction in 14 MeV neutron generation rate by ICRF injection in D-3He burning plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki; Nakao, Yasuyuki

    2004-01-01

    The triton distribution function during ion cyclotron range of frequency (ICRF) waves injection in D- 3 He plasmas is examined by solving the 2-dimensional Fokker-Planck equation. Triton distribution function originally has a non-Maxwellian (tail) component around 1.01 MeV birth energy range due to D(d,p)T fusion reaction. Owing to the extension of the original tail by ICRF injection, the high-energy resonance tritons further increase, and the velocity-averaged T(d,n) 4 He fusion reaction rate coefficient, i.e. 14 MeV neutron generation rate, decreases from the values when triton is assumed to be Maxwellian. It is shown that when tritons absorb ∼1/200 of the fusion power from the waves in typical D- 3 He plasma, i.e. T=80 keV, n D =2x10 20 m -3 , τ E0 =3 sec and B=6T, the 14 MeV neutron generation rate is reduced by about ∼20% from the values for Maxwellian plasmas. (author)

  5. Production of residual nuclides by proton-induced reactions on target W at the energy of 72 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Moazzem Hossain [Univ. of Chittagong, Dept. of Physics, Chittagong (Bangladesh); Kuhnhenn, Jochen; Herpers, Ulrich [Univ. of Cologne, Dept. of Nuclear Chemistry, Cologne (Germany); Michel, Rolf [University of Hannover, Centre for Radiation Protection and Radioecology (Germany); Kubik, Peter [Paul Scherrer Inst., c/o Institute for Particle Physics, ETH Hoenggerberg, Zuerich (Switzerland)

    2002-08-01

    Investigations of cross-sections for residual nuclide production on the target element W by proton-induced reactions were performed by irradiating the target with 72 MeV protons using the cyclotron facilities at Paul-Scherrer Institute, Zurich, Switzerland. Residual nuclides were measured by gamma-spectrometry of HpGe detectors calibrated with standard gamma sources. The measured data contains 104 individual cross-sections for 20 identified nuclides in the proton energies between 52.5 - 68.9 MeV. These nuclear data is important in the study of spallation neutron source and in accelerator driven technologies such as waste transmutation and energy amplification. The present data are compared with the shape of the excitation functions of earlier only one measurement at higher energies and they are in good agreement to each other. (author)

  6. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    Science.gov (United States)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  7. Neutronigen target study and realization for medical cyclotron using proton reactions on lithium deuteride

    International Nuclear Information System (INIS)

    Filhol, J.M.

    1984-02-01

    The new idea, used for this source realization, consists of replacing the classical beryllium targets (usuals in neutronotherapy cyclotrons) by a half-thick lithium deuteride target. The target is bombarded by high energy 150 MeV) protons which are beyond the target, deviated out of the neutron beam by a permanent magnet, before to be stopped in a graphite block. Target cooling conditions study and optimisation is presented, followed by the proton deflection block study and realization. The permanent magnet used (SmCo 5 ) is adapted to this target use conditions. Many series of neutronic and dosimetric characteristics measurements allow to verify the theoretical predictions concerning the neutron flux obtained [fr

  8. Status and perspectives for the Pd-103 radioactive seeds production at the cyclotron IFIN-HH from Bucharest

    International Nuclear Information System (INIS)

    Dudu, D.; Popa, V.; Racolta, P.M.; Tetcu, N.; Voiculescu, Dana

    2001-01-01

    Historically, 103 Pb, a short-lived isotope for permanent implant treatment of early stage prostate cancer, was generated via the 102 Pd(n,γ) 103 Pd reaction which relied on the availability of 1% naturally abundant 102 Pd in an enriched form and its moderately high neutron capture cross section. For the last 12 years, the accelerator production method for 103 Pd has been based on the irradiation of the rhodium metal with rather low energy protons via the reaction 103 Rh(p,n) 103 Pd. Big corporations from USA operate more than 10 dedicated accelerators to produce this nuclide. The prostate cancer market with 180,000 new cases reported annually justifies the effort for this radionuclide production. Recently, a manufacture in Europe also brought the USA patented type of 103 Pd seed implants on the world market. Our interest for this radioisotope production was started in 2000, as a result of the demand of two big hospitals from Bucharest and the opportunity to participate in a research programme (333-F2-RC 832) co-ordinated by the IAEA in Vienna. The U-120 Cyclotron, made in 1956 and brought from Russia, was quite a reliable machine. The accelerator is a classical cyclotron with adjustable energy. Now at the level of our technology, we can maintain it by ourselves and operate it quite independently. The experiments for the first year were focused on obtaining homemade data on cross-section, thick target yields and possible contaminants for the nuclear reaction 103 Rh (p,n) 103 Pb in the proton energy region 5-14 MeV. The experiments were performed at our Van de Graaff HV Tandem FN 15 accelerator (8 MV on terminal) by using proton beams up to 14 MeV with a current intensity of 100 nA. Design and adaptation of a dedicated beam line at IFIN-HH Cyclotron for the 103 production was a priority in our work planning for the first year

  9. Evaluation of the production capabilities of 18F, 11C, 13N and 15O PET isotopes at the PET-cyclotron-radiochemistry site of Messina University

    Directory of Open Access Journals (Sweden)

    Lucrezia Auditore

    2017-02-01

    Full Text Available The production of 18F, 11C, 13N, and 15O positron emitting radionuclides for PET imaging is usually accomplished in Nuclear Medicine Departments through direct nuclear reactions induced by protons accelerated by compact medical cyclotrons on liquid or gaseous targets. Messina University has funded the construction of a PET-cyclotron-radio-chemistry plant at the Messina University Hospital, equipped with a 11 MeV self-shielded cyclotron. We estimated the expected production yields of these nuclides, accounting for target thickness, production of other radioactive nuclides, and time effects on the irradiated target purity. To this aim, both TALYS code (v. 1.8 and an analytical approach based on EXFOR experimental data were used. The general agreement between the two approaches, and with the available literature data, allows to assess the expected yields at the End of Bombardment, and relative target purities, to be used for further radiopharmaceutical preparation steps.

  10. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  11. Method and apparatus for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  12. Commercial compact cyclotrons in the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. We will also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA. (author)

  13. Commercial compact cyclotrons in the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA

  14. Nucleon-induced reactions at intermediate energies: new data at 96 MeV and theoretical status

    Energy Technology Data Exchange (ETDEWEB)

    Blideanu, V.; Lecolley, F.R.; Lecolley, J.F.; Lefort, T.; Marie, N.; Ban, G.; Louvel, M. [Caen Univ., Lab. de Physique Corpusculaire, ENSICAEN, IN2P3-CNRS ISMRA, 14 (France); Atac, A.; Bergenwall, B.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Hohansson, C.; Klug, J.; Nilsson, L.; Ollson, N.; Pomp, S.; Tippawan, U.; Osterlund, M. [Uppsala Univ., Nykoeping (Sweden). Dept. of Neutron Research; Tippawan, U. [Chiang Mai University, Fast Neutron Research Facility (Thailand); Elmgren, K.; Olsson, N. [Swedish Defense Research Agency, Stokholm (Sweden); Eudes, Ph.; Guertin, A.; Haddad, F.; Kirchner, T.; Lebrun, C.; Riviere, G. [Nantes Univ., Subatech, 44 (France); Foucher, Y. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Jonsson, O.; Prokofiev, A.V.; Renberg, P.U. [Uppsala Univ., Svedberg Laboratory (Sweden); Kerveno, M.; Stuttge, L. [IReS, Strasbourg (France); Le Brun, Ch. [Laboratoire de Physique Subatomique et de Cosmologie, 38 - Grenoble (France); Nadel-Turonski, P. [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Slypen, I. [Universite Catholique de Louvain (UCL), Institut de Physique Nucleaire, Louvain-la-Neuve (Belgium)

    2004-04-01

    Double-differential cross sections for light charged particle production (up to A = 4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide annular range (20 - 160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approaches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature. (authors)

  15. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  16. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  17. Developing the smallest possible medical cyclotron

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Imagine a portable medical cyclotron operated in a conventional radioactive facility at a hospital. Imagine a nurse or technician switching it on and producing isotopes at the patient’s bedside. Sounds like science fiction? Think again.   CERN has teamed up with Spain’s national scientific research centre (CIEMAT) to develop an avant-garde cyclotron to be used for Positron Emission Tomography (PET). “We plan to make a cyclotron that doesn't need an insulated building or ‘vault’: a cyclotron small enough to fit inside a hospital lift,” explains Jose Manuel Perez, who is leading the CIEMAT/CERN collaboration. “It will be the smallest possible medical cyclotron for single patient dose production and will dramatically reduce costs for hospitals.” While PET technology has transformed imaging techniques, many of its medical benefits have remained confined to highly specialised hospitals. “Studies have foun...

  18. 20 years Rossendorf cyclotron

    International Nuclear Information System (INIS)

    1978-08-01

    On the occasion of the 20th anniversary of initiating of the Rossendorf cyclotron accounts are given of most important works and results in the field of accelerator engineering and utilization of this machine. The reports show the trend of development and actual spectrum of application. The enclosed literature lists give a survey of technical and experimental works at cyclotron. (author)

  19. Estimation of induced activity in super conducting cyclotron at VECC: Monte Carlo calculations

    International Nuclear Information System (INIS)

    Chatterjee, S.; Bandyopadhyay, T.

    2011-01-01

    Super Conducting Cyclotron (K500) at Variable Energy Cyclotron Centre, Kolkata (VECC) is at an advanced stage of commissioning and has successfully delivered many internal beams (light to heavy particles) up to the extraction radius. One of the external beam lines has already been completed and commissioned. The SCC along with the other subsystems is getting ready to deliver beam for experiments. Beam loss of during beam tuning and also during a steady beam delivery to the different experimental facilities due to many operational factors and requirements. Extraction of beam from the machine to the beam line is also a major player for the loss of beam. The interaction of the lost beam of accelerated charge particles with the machine parts will undergo different nuclear reaction and induced activity will be produced at the different parts of the machine. Moreover secondary neutrons produced having energy maximum limiting to the beam energy will also produce radioactivity in the different parts of the machine as well it will also induce radioactivity on the radiation shield constructed around the accelerator. Radio-activation of different parts of an accelerator, radiation shield walls around the machine and materials available in the room poses a radiation hazard inside the machine vault and experimental caves especially during maintenance of the machine. During the shutdown and maintenance period of the machine occupational workers will be exposed to these induced activity produced during operation of the machine. An effort was made to estimate these residual activity and dose for 80 MeV proton bombarded on Stainless Steel thereon activity produced on different materials like Cu, Al, Concrete and SS of different thickness. Cu, Al, SS are among many other materials which are widely used for fabrication of any accelerator. A simulation of the scenario was created using a Monte Carlo approach using FLUKA 2006.3b-general purpose multi particle transport code. Estimation

  20. Medical cyclotrons

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1976-01-01

    Cyclotrons as tools for therapy and for the production of radionuclides for use in nuclear medicine have been extensively reviewed in the literature. The current world status with respect to cyclotrons used primarily for research, development and application in nuclear medicine is reviewed here in the context of geographical distribution and type of use, presently available commercial types, machine characteristics and trends. Aspects of design requirements from a user perspective such as machine, beam and target characteristics are covered. Some special problems concerning many factors which can lead to effective production of the desired radionuclide or product are considered in light of machine characteristics. Consideration is also given to future directions for accelerators in nuclear medicine

  1. Application of superconductivity in cyclotron construction

    International Nuclear Information System (INIS)

    Blosser, H.G.

    1982-01-01

    This paper reviews major concepts and design features of the new class of cyclotrons which use superconducting coils to provide main magnet excitation. The discussion begins with a brief historical review tracing the evolution of these ''superconducting'' cyclotrons and the impact of this application of superconductivity in pushing back traditional cyclotron construction limits. This is followed by a review of the principal phenomena which come into play to set new limits on the operating regime, and the nature of these limits, some of which arise from orbit properties and some of which result from construction intricacies in the coil and in the rf system. Conclusions anticipate a future widely encompassing role in the application of superconductivity to cyclotron

  2. National Medical Cyclotron

    International Nuclear Information System (INIS)

    Boyd, Rex.

    1991-01-01

    The National Medical Cyclotron, under construction at Sydney's Royal Prince Alfred Hospital(RPAH) is to be operated by the Australian Nuclear Science and Technology Organization in collaboration with the hospital. Its main purpose is to produce radioisotopes on commercial basis for distribution to hospitals through Australia as well as short-lived radioisotopes (2 minutes to 2 hours) for immediate application at RPAH in Positron Emission Tomography, to study the dynamics of human physiology and metabolism in organs, bones and soft tissues. A list of the principal cyclotron-produced radionuclides is provided. ills

  3. How cyclotrons work

    International Nuclear Information System (INIS)

    Nolan, D.

    1992-01-01

    The operating principles of a cyclic accelerator are presented based on the IBA Cyclone 30 negative ion cyclotron, selected for the Australia's first medical cyclotron. Its main features are: acceleration with variable energy of between 15-30 million electron volts, the capability of extracting two beams simultaneously, low power consumption, easy maintenance. Other aspects not directly related to the principle of operation discussed include the vacuum and the radio-frequency systems as well as the complex computerized control system used to automatically control start-up and shut-down operations. ills

  4. Cyclotrons and positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  5. Possibilities of 140Nd production by the VINCY cyclotron

    International Nuclear Information System (INIS)

    Comor, J.J.; Dakovic, M.

    2000-01-01

    Application of positron emission tomography (PET) in modern medical diagnosis relies on the application of short lived radionuclides 11 C, 13 N, 15 O and 18 F, presuming their production in the close vicinity of the PET camera. Application of long-lived positron emitters would enable the regional distribution of PET radiopharmaceuticals, which would significantly lower the price of PET diagnosis, as well as enable its application in fields currently inhibited by the short half-life of available positron emitters. One of the candidates for application in PET is the generator system 140 Nd/ 140 Pr, due to the long half-life of 140 Nd (3,37 days). Theoretical calculations confirm that this radionuclide can be produced with high yields by protons accelerated to energies bellow 30 MeV. Due to its optimal operating parameters, the VINCY Cyclotron could produce enough 140 Nd for its regional distribution to a number of PET centers (author)

  6. Production of *sp67*Ga at the Oslo Cyclotron

    International Nuclear Information System (INIS)

    Bjoernstad, T.; Holtebekk, T.

    1983-01-01

    A method for production of *sp67*Ga at the Oslo Cyclotron is described. The method is based on the nuclear reaction *sp68*Zn (p,2n)*sp67*Ga. The target is natural zinc metal of thickness 1.3 mm fixed by a thin alloy layer to a copper disc for efficient cooling during irradiation. By applying a beam of 29 MeV protons, a maximum production yield of approx. 1.8 mCi/*my*Ah was obtained. By demanding a contamination level of *sp66*Ga <=1%, the ''useful'' yield after a decaytime of 88 h is approx. 0.8 mCi/*my*Ah. Gallium has been separated carrierfree from the zinc matrix by cation exchange from 7.5M hydrocloric acid solutions and prepared as citrate complex at pH 5.5. After sterile filtering, autoclavation, pyrogene testing and analysis for iron and zinc, the *sp67*Ga-radiopharmaceutical has been applied in human investigations at the Ullevaal hospital in Oslo. (Auth.)

  7. The RBE of Fractionated Fast Neutron on Walker 256 Carcinosarcoma with KCCH-Cyclotron

    International Nuclear Information System (INIS)

    Yoo, Seong Yul; Koh, Kyoung Hwan; Cho, Chul Koo; Park, Charn Il; Kang, Wee Saing

    1987-01-01

    For evaluation of biological effect of p+(50.5 MeV) Be neutron beam produced by Korea Cancer Center Hospital(KCCH) cyclotron the RBE had been measured in experimental tumor Walker 256 carcinosarcoma as well as normal tissue, mouse intestine and bone marrow, in single and fractionated irradiation. As pilot study, the RBE had been measured for the mouse jejunal crypt cells in single whole body irradiation of which the result was 2.8. The obtained RBE values of TCD 50 of Walker 256 tumor, bone marrow and intestine in single irradiation were 1.9, 1.9 and 1.5 respectively. In fractionated irradiation, the RBE value of tumor Walker 256 was decreased as increasing of fraction number and increased as increasing of fraction size

  8. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    Science.gov (United States)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  9. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  10. Comparing Brain Behavioral Systems in Couples Engaged in Infidelity and Normal Couples in Tabriz, Tehran and Karaj

    Directory of Open Access Journals (Sweden)

    Alireza Karimpour Vazifehkhorani

    2017-10-01

    Full Text Available Background and Objectives: This study aimed to compare Gary Behavioral Systems (behavioral activation system and behavioral inhibition system in normal couples and those engaged in marital infidelity. Material and Methods: The research was descriptive and causal-comparative. Study population consisted of normal couples and couples who were betrayed in the cities of Tehran, Karaj and Tabriz that were referred to counseling clinics. Study sample consisted of 100 clients; 50 normal couples and 50 couples who were involved in marital infidelity. Sampling was targeted. To collect data, Grey-Wilson's and wife infidelity questionnaires were used. Results: Inhibition of behavior in normal couples was higher than couples involved in marital infidelity which was significant at P Conclusion: Couples who have activation system of high sensitivity are more involved in the phenomenon of marital infidelity compared to the couples who are at high behavioral inhibition system.

  11. The production of iodine-123 on the Harwell variable energy cyclotron

    International Nuclear Information System (INIS)

    Cuninghame, J.G.; Hill, J.I.S.; Nichols, A.L.; Taylor, N.K.

    1978-01-01

    123 I has often been called the isotope of choice for dynamic body function studies in nuclear medicine. There has therefore, been a keen interest in the possibility of regular supply of high purity 123 I produced by the Harwell Variable Energy Cyclotron (VEC) and Synchrocyclotron (SC). This report describes a three year research and development programme on the VEC which has resulted in a method for the safe and reliable large scale production of 123 I by irradiation of di-iodomethane with 58 MeV protons. The quality of the product, and the medical trials which have been carried out with it, are also discussed. The processing and handling of the hundreds of millicuries produced during a run presents serious handling problems. These have been solved and the methods and equipment developed are described. (author)

  12. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  13. Creep tests of AISI 316 stainless steel irradiated by alpha particles of 28 MeV

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.

    1986-01-01

    He-embrittlement effect in AISI 316 SS type throught creep tests performed with annealed and cold worked thin specimens is analized. Measurements were carried out at 700 and 750 0 C, stress of 100 MPa in vacuum better than 10 -5 torr. The He-implantations were made with the cyclotron CV-28 IPEN-CNEN/SP. Using an alpha-particle beam of 28 MeV, with concentration of 26 appm. From the valves of rupture deformation, epsilon sub(R), and rupture time, t sub(R), it was verified that he had a great effect on the operational life and ductility of this material. (Author) [pt

  14. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  15. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  16. Ponderomotive force near cyclotron resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Mitsuo; Sanuki, Heiji

    1987-01-01

    The ponderomotive force, which is involved in the excitation of macroscopic behaviors of plasma caused by wave motion, plays an important role in various non-linear wave motion phenomena. In the present study, equations for the pondermotive force for plasma in a uniform magnetic field is derived using a renormalization theory which is based on the Vlasov equation. It is shown that the pondermotive force, which diverges at the cyclotron resonence point according to adiabatic approximation, can be expressed by a non-divergent equation by taking into account the instability of the cyclotron orbit due to high-order scattering caused by a wave. This is related with chaotic particle behaviors near cyclotron resonance, where the pondermotive force is small and the diffusion process prevails. It is assumed here that the amplitude of the high-frequency electric field is not large and that the broadening of cyclotron levels is smaller than the distance between the levels. A global chaos will be created if the amplitude of the electric field becomes greater to allow the broadening to exceed the distance between the levels. (Nogami, K.).

  17. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  18. arXiv Cyclotrons: Magnetic Design and Beam Dynamics

    CERN Document Server

    Zaremba, Simon

    Classical, isochronous, and synchro-cyclotrons are introduced. Transverse and longitudinal beam dynamics in these accelerators are covered. The problem of vertical focusing and iscochronism in compact isochronous cyclotrons is treated in some detail. Different methods for isochronization of the cyclotron magnetic field are discussed. The limits of the classical cyclotron are explained. Typical features of the synchro-cyclotron, such as the beam capture problem, stable phase motion, and the extraction problem are discussed. The main design goals for beam injection are explained and special problems related to a central region with an internal ion source are considered. The principle of a Penning ion gauge source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different methods of (axial) injection are briefly outlined. Different solutions for beam extraction are described. These include the internal target, extracti...

  19. Recent development and progress of IBA cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kleeven, W., E-mail: Willem.Kleeven@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Abs, M., E-mail: Michel.Abs@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Delvaux, J.L., E-mail: Jean-Luc.Delvaux@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Forton, E., E-mail: Eric.Forton@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Jongen, Y., E-mail: Yves.Jongen@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Medeiros Romao, L., E-mail: Luis.MedeirosRomao@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nactergal, B., E-mail: Benoit.Nactergal@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nuttens, V., E-mail: Vincent.Nuttens@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Servais, T., E-mail: Thomas.Servais@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Vanderlinden, T., E-mail: Thierry.Vanderlinden@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Zaremba, S., E-mail: Simon.Zaremba@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium)

    2011-12-15

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for {sup 201}Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H{sup -}, D{sup -} and also {alpha}-particles. The {alpha}-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. {sup 211}At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy (K = 70) and allows research on new types of medical isotopes.

  20. Synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The electromagnetic coil which forms the first section of the proton extraction channel in the improved synchro-cyclotron. The photograph shows the positioning gear and the current septum. An extraction efficiency above 50% is expected.

  1. Compact superconducting cyclotron C400 for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Abs, M.; Blondin, A.; Kleeven, W.; Zaremba, S.; Vandeplassche, D. [IBA, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve (Belgium); Aleksandrov, V.; Gursky, S.; Karamyshev, O. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Karamysheva, G., E-mail: gkaram@nu.jinr.r [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Kazarinov, N.; Kostromin, S.; Morozov, N.; Samsonov, E.; Shirkov, G.; Shevtsov, V.; Syresin, E.; Tuzikov, A. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation)

    2010-12-01

    The compact superconducting isochronous cyclotron C400 has been designed by the IBA-JINR collaboration. It will be the first cyclotron in the world capable of delivering protons, carbon and helium ions for cancer treatment. The cyclotron construction is started this year within the framework of the Archade project (Caen, France). {sup 12}C{sup 6+} and {sup 4}He{sup 2+} ions will be accelerated to 400 MeV/uu energy and extracted by the electrostatic deflector, H{sub 2}{sup +} ions will be accelerated to the energy of 265 MeV/uu and extracted by stripping. The magnet yoke has a diameter of 6.6 m, the total weight of the magnet is about 700 t. The designed magnetic field corresponds to 4.5 T in the hills and 2.45 T in the valleys. Superconducting coils will be enclosed in a cryostat; all other parts of the cyclotron will be warm. Three external ion sources will be mounted on the switching magnet on the injection line located below the cyclotron. The main parameters of the cyclotron, its design, the current status of the development work on the cyclotron systems are presented.

  2. Study of {sup 24}Na activity in concrete using 20-MeV proton beam on Cu

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtanri; Jung, Nam Suk; Lee, Arim; Heo, Tae Min; Bakhtian, Mahdi; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2017-04-15

    The number of medical cyclotrons capable of accelerating protons to about 20 MeV is increasing in Korea. In such facilities, various radionuclides could be induced in shielding materials like concrete from secondary neutrons which Causes problems from the view point of radiation safety. Among these radionuclides, gamma-ray from {sup 24}Na (Tz1/2 = 15 h) is the most important origin of radiation exposure. {sup 24}Na could be produced from secondary neutrons on Na, Al and Mg component which exist in the concrete. {sup 24} Na Could be produced from thermal neutrons on Na and fast neutron with energy lower than 20 MeV on Al and Mg. Due to interaction of 20 MeV protons on Cu target, secondary neutrons with the energy of less than 20 MeV were produced. therefore, among the concrete components, Na, Al and Mg are only corespondent to produce {sup 24}Na. In this work, {sup 24}Na activity induced in concrete and chemical reagents of concrete (NaHCO{sub 3}, Al{sub 2}O{sub 3} and MgO) were measured. To produce neutrons, Cu target was irradiated by 20 MeV protons. Measured data were compared with results of simulations by FLUKA and MARS as well as earlier works and theocratical data. In the case of Mg and Al chemical reagents, FLUKA code overestimates our measurements by approximately four times, while, for Na sample, FLUKA underestimates the experimental data by almost 0.5. Data from FLUKA and measurement for the concrete are consistent. Calculation from TALYS for Mg overestimates the measured data by a factor of 2.5.

  3. Study of the source term of radiation of the CDTN GE-PET trace 8 cyclotron with the MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Benavente C, J. A.; Lacerda, M. A. S.; Fonseca, T. C. F.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Vega C, H. R., E-mail: jhonnybenavente@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Full text: The knowledge of the neutron spectra in a PET cyclotron is important for the optimization of radiation protection of the workers and individuals of the public. The main objective of this work is to study the source term of radiation of the GE-PET trace 8 cyclotron of the Development Center of Nuclear Technology (CDTN/CNEN) using computer simulation by the Monte Carlo method. The MCNPX version 2.7 code was used to calculate the flux of neutrons produced from the interaction of the primary proton beam with the target body and other cyclotron components, during 18F production. The estimate of the source term and the corresponding radiation field was performed from the bombardment of a H{sub 2}{sup 18}O target with protons of 75 μA current and 16.5 MeV of energy. The values of the simulated fluxes were compared with those reported by the accelerator manufacturer (GE Health care Company). Results showed that the fluxes estimated with the MCNPX codes were about 70% lower than the reported by the manufacturer. The mean energies of the neutrons were also different of that reported by GE Health Care. It is recommended to investigate other cross sections data and the use of physical models of the code itself for a complete characterization of the source term of radiation. (Author)

  4. Directory of cyclotrons used for radionuclide production in Member States

    International Nuclear Information System (INIS)

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that 15 O-oxygen PET studies in Japan, and 18 F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies

  5. Directory of cyclotrons used for radionuclide production in Member States

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that {sup 15}O-oxygen PET studies in Japan, and {sup 18}F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies.

  6. Status report on cyclotron operation

    International Nuclear Information System (INIS)

    Kovacs, P.; Szuecs, I.; Ander, I.; Lakatos, T.; Fenyvesi, A.; Ditroi, F.; Takacs, S.; Tarkanyi, F.

    2004-01-01

    The operation of the cyclotron in 2003 was again concentrated to 9 months; January, July and August were reserved for maintenance, renewal works and holidays. The overall working time of the accelerator was 4051 hours. The cyclotron was available for users for 3682 hours. In order to improve the circumstances of the irradiations renewal and improvements were done. (N.T.)

  7. Slow wave cyclotron maser

    International Nuclear Information System (INIS)

    Kho, T.H.; Lin, A.T.

    1988-01-01

    Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application

  8. Cross-sections for sup 3 sup 6 Cl from Ti at E sub p =35-150 MeV Applications to in-situ exposure dating

    CERN Document Server

    Fink, D; Hotchkis, M

    2000-01-01

    We have measured the low-energy yield of sup 3 sup 6 Cl from Ti for proton energies from 35 to 150 MeV. Thin Ti foil irradiations were performed at the Harvard University Cyclotron Laboratory and sup 3 sup 6 Cl concentrations were determined using the ANTARES AMS facility at ANSTO. Cross-sections ranged smoothly with energy from 0.32+-0.05 mb at 35 MeV to 5.3+-0.4 mb at 150 MeV. Results for E<110 MeV are new, while the upper region from 110 to 150 MeV agrees well with overlapping data from other studies. The in-situ production rate for sup 3 sup 6 Cl from Ti at the earth's surface and high latitude based on this excitation function and calculations of Masarik and Reedy (normalised to the mean measured yield of sup 3 sup 6 Cl from Ca) is estimated at approx(13+-3) atoms sup 3 sup 6 Cl (g Ti yr) sup - sup 1. We thus conclude that in Ti-rich, Ca-poor rocks or in typical basalts, sup 3 sup 6 Cl yield from Ti can amount to approx 5-10% of total. This is similar to the contribution from slow muon capture on sup ...

  9. A national medical cyclotron facility: report to the Minister of Health by the Medical Cyclotron Committee

    International Nuclear Information System (INIS)

    1985-01-01

    Research and training in nuclear medicine in Australia are both limited by the lack of a medical cyclotron facility. The Committee recommends the establishment of a national medical cyclotron to provide a supply of short-lived radioisotopes for research in relevant fields of medicine, and for diagnostic use in nuclear medicine

  10. Radiation shielding and health physics instrumentation for PET medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Modern Medical Cyclotrons produce a variety of short-lived positron emitting PET radioisotopes, and as a result are the source of intense neutron and gamma radiations. Since such cyclotrons are housed within hospitals or medical clinics, there is significant potential for un-intentional exposure to staff or patients in proximity to cyclotron facilities. Consequently, the radiological hazards associated with Cyclotrons provide the impetus for an effective radiological shielding and continuous monitoring of various radiation levels in the cyclotron environment. Management of radiological hazards is of paramount importance for the safe operation of a Medical Cyclotron facility. This work summarised the methods of shielding calculations for a compact hospital based Medical Cyclotron currently operating in Canada, USA and Australia. The design principle and operational history of a real-time health physics monitoring system (Watchdog) operating at a large multi-energy Medical Cyclotron is also highlighted

  11. Beam stability of cyclotron accelerator for therapy at National Cancer Center Hospital East

    International Nuclear Information System (INIS)

    Nishio, T.; Ogino, T.; Shinbo, M.; Ikeda, H.; Tachikawa, T.; Kumata, Y.

    2000-01-01

    In 1997, the proton-treatment facility that has the therapeutic AVF cyclotron accelerator (C235), is constructed at National Cancer Center Hospital East. The facility has 3-irradiation ports (rooms) that are 2-rotationg gantry ports and 1-horizontal fixed port. The C235 can accelerate proton to 235 MeV with the beam intensity of 300 nA. The external diameter is a very compact with about 4 m. The radio frequency is 106 MHz, the accelerating voltage is about 60 kV, and the harmonic number is 4. A beam stability of the C235 has an important relation with the uniformity of an irradiation field and is a very difficulty. The measured result indicated that the incident beam position must be into the 0.5-mmφ circle. (author)

  12. Regulatory Compliance to Assure the Safety of the Operation of a Medical Cyclotron

    International Nuclear Information System (INIS)

    Dela Cruz, Joselito

    2015-01-01

    Khealth Corporation, in Partnership with the National Kidney and Transplant Institute, has established a medical cyclotron facility to accommodate the up-and-coming needs of tracers for PET/CT in different centers and hospitals all over the country. This facility houses a 16.5 MeV GE PET trace 880 particle accelerator that can produce 14 Ci (518 GBq) of Fluorine-18. Its structure has adopted global standard designs in meeting the safety during its use, radiopharmaceutical production and distribution. Compliances were remarkably fulfilled from the building construction, machine acquisition, commissioning, operations up to the quality control and assurance. Furthermore, various regulatory challenges during the current standardization of radiopharmaceutical utilization were encountered however time dedication and efforts were wielded until all have been successfully justified and acquired. (author)

  13. Measurement of cross sections for the 63Cu(α,γ)67Ga reaction from 5.9-8.7 MeV

    International Nuclear Information System (INIS)

    Basunia, M. Shamsuzzoha; Norman, Eric B.; Shugart, Howard A.; Smith, Alan R.; Dolinski, Michelle J.; Quiter, Brian J.

    2004-01-01

    We have measured cross sections for the 63Cu(alpha,gamma)67Ga reaction in the 5.9-8.7 MeV energy range using an activation technique. Natural Cu foils were bombarded with alpha beams from the 88 Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Activated foils were counted using gamma spectrometry system at LBNL's Low Background Facility. The 63Cu(alpha,gamma)67Ga cross-sections were determined and compared with the latest NON-SMOKER theoretical values. Experimental cross sections were found to be in agreement with theoretical values

  14. Decontamination of the activation product based on a legal revision of the cyclotron vault room on the non-self-shield compact medical cyclotron

    International Nuclear Information System (INIS)

    Komiya, Isao; Umezu, Yoshiyuki; Fujibuchi, Toshiou; Nakamura, Kazumasa; Baba, Shingo; Honda, Hiroshi

    2016-01-01

    The non-self-shield compact medical cyclotron and the cyclotron vault room were in operation for 27 years. They have now been decommissioned. We efficiently implemented a technique to identify an activation product in the cyclotron vault room. Firstly, the distribution of radioactive concentrations in the concrete of the cyclotron vault room was estimated by calculation from the record of the cyclotron operation. Secondly, the comparison of calculated results with an actual measurement was performed using a NaI scintillation survey meter and a high-purity germanium detector. The calculated values were overestimated as compared to the values measured using the Nal scintillation survey meter and the high-purity germanium detector. However, it could limit the decontamination area. By simulating the activation range, we were able to minimize the concrete core sampling. Finally, the appropriate range of radioactivated area in the cyclotron vault room was decontaminated based on the results of the calculation. After decontamination, the radioactive concentration was below the detection limit value in all areas inside the cyclotron vault room. By these procedures, the decommissioning process of the cyclotron vault room was more efficiently performed. (author)

  15. Annual report June 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report reviews the activities of the National Accelerator Centre until June 1988. The 200 MeV cyclotron facility, the Pretoria cyclotron facility and the Van De Graaff facility are discussed in detail. Aspects of the 200 MeV cyclotron facility examined are, inter alia: the injector cyclotrons, the separated-sector cyclotron, the control system, the beam transport system and radioisotope production. Separate abstracts were prepared for the various subdivisions contained in this annual report

  16. Cyclotron production of {sup 64}Cu by deuteron irradiation of {sup 64}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, K. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: kamel.abbas@jrc.it; Kozempel, J. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Charles University Prague, Faculty of Science, Department of Organic and Nuclear Chemistry, 128 43 Prague (Czech Republic); Bonardi, M. [LASA, Radiochemistry Laboratory, University and INFN, via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Groppi, F. [LASA, Radiochemistry Laboratory, University and INFN, via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Alfarano, A. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Holzwarth, U. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Simonelli, F. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Hofman, H. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Horstmann, W. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Menapace, E. [ENEA, Applied Physics Division, Bologna (Italy); Leseticky, L. [Charles University Prague, Faculty of Science, Department of Organic and Nuclear Chemistry, 128 43 Prague (Czech Republic); Gibson, N. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy)

    2006-09-15

    The short-lived (12.7 h half-life) {sup 64}Cu radioisotope is both a {beta} {sup +} and a {beta} {sup -} emitter. This property makes {sup 64}Cu a promising candidate for novel medical applications, since it can be used simultaneously for therapeutic application of radiolabelled biomolecules and for diagnosis with PET. Following previous work on {sup 64}Cu production by deuteron irradiation of natural zinc, we report here the production of this radioisotope by deuteron irradiation of enriched {sup 64}Zn. In addition, yields of other radioisotopes such as {sup 61}Cu, {sup 67}Cu, {sup 65}Zn, {sup 69m}Zn, {sup 66}Ga and {sup 67}Ga, which were co-produced in this process, were also measured. The evaporation code ALICE-91 and the transport code SRIM 2003 were used to determine the excitation functions and the stopping power, respectively. All the nuclear reactions yielding the above-mentioned radioisotopes were taken into account in the calculations both for the natural and enriched Zn targets. The experimental and calculated yields were shown to be in reasonable agreement. The work was carried out at the Scanditronix MC-40 Cyclotron of the Institute for Health and Consumer Protection of the Joint Research Centre of the European Commission (Ispra site, Italy). The irradiations were carried out with 19.5 MeV deuterons, the maximum deuteron energy obtainable with the MC-40 cyclotron.

  17. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  18. Progress report: Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    1999-01-01

    This volume of the progress report brings out the scientific and technical activities of Variable Energy Cyclotron Centre, Calcutta during the year 1999. This includes brief review of the various R and D activities of the Centre and outside users of the cyclotron from the universities and other research institutes. The operational activities of the cyclotron with ECR ion sources, accelerator oriented research activities, activities on detector, target and electronics are reported. The activities of the Computer and Informatics group are described. The status report of the ongoing projects is also provided. The main activities of the superconducting cyclotron project, radioactive ion beam project, heavy ion experimental facility, advanced computational facility, recovery and analysis of helium from hot springs and material science research are described

  19. 10 GHz ECRIS for Warsaw Cyclotron

    CERN Document Server

    Sudlitz, K

    1999-01-01

    Cusp type, 10 GHz ECRIS has been built and tested earlier. For obtaining intensive beams, more relevant for cyclotron, cusp geometry has been replaced by hexapole. Discharge chamber (stainless steel, 50 mm diameter, 250 mm long) is an extension of a coaxial line, feeding RF (9,6 GHz, up to 200 W) to the plasma. The NdFeB hexapole (0,52 T on the surface) has been used. The axial magnetic field is created by water cooled coils. The axial injection line dedicated to K160 isochronous heavy ion cyclotron has been constructed. The line consists of Glaser lenses, double focusing magnet, solenoid and mirror type inflector. The system provides sufficient transmission of the beam from ECR ion source to the firsts orbits of the cyclotron for m/q ranging from 7 to 2. After successful initial tests which were done in July 1997 the ECRIS serves as an external source for Warsaw Cyclotron.

  20. Electron cyclotron harmonic wave acceleration

    Science.gov (United States)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  1. Electron cyclotron harmonic wave acceleration

    International Nuclear Information System (INIS)

    Karimabadi, H.; Menyuk, C.R.; Sprangle, P.; Vlahos, L.; Salonika Univ., Greece)

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts. 31 references

  2. 83-inch cyclotron research program. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.C.

    1983-07-01

    In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan

  3. Recycling and recommissioning a used biomedical cyclotron

    International Nuclear Information System (INIS)

    Carroll, L.R.; Ramsey, F.; Armbruster, J.; Montenero, M.

    2001-01-01

    Biomedical Cyclotrons have a very long life, but there eventually comes a time when any piece of equipment has to be retired from service. From time to time, we have the opportunity to help find new homes for used cyclotrons which, with relatively modest overhaul and refurbishment, can have many additional years of productive service, and thus represent a very valuable asset. The reasons for retiring a cyclotron vary, of course, but in our experience it is often due to an institution's changing priorities or changing needs, rather than the due to any fundamental age-related deficiency in the cyclotron itself. In this paper we will report on the relocation and successful restoration of a used TCC CP-42 cyclotron, which was moved from M.D. Anderson Hospital in Houston to Denton, Texas in early 1998, where it is presently being used for R and D and commercial production of biomedical isotopes. Ownership of the machine has been transferred to the University of North Texas; facility, manpower, and operational resources are provided by International Isotopes, Inc

  4. Case Record of a Teaching Hospital in Karaj; A 35-Year Old Man With Taenia saginata Infection Treated With Niclosamide

    Directory of Open Access Journals (Sweden)

    Aliehsan Heidari

    2016-11-01

    Full Text Available Taeniasaginata can cause severe health and economic problems particularly in endemic areas. The disease cause by this cestode is related to poor sanitary conditions, inadequate hygiene, open defecation, inadequately cooked beef and poverty. A 35 years man found yellowish white tapeworm proglottids moving in his feces and consulted to the Department of Emergency, ShahidRajaei hospital, Karaj, Iran. He complained of lower abdominal discomfort, anal itching and moving something in the stomach. He was given wrong prescription. The patients had the history of eating undercooked beef. We report one case of T. saginata infection based on adult tapeworm recovery from the patients. The specific identification of the worm was based on based on standard procedures. Three months after expelling the tapeworm, the man felt better and returned to his normal life.

  5. Diagnostic system for the nuclear medicine with baby cyclotron

    International Nuclear Information System (INIS)

    Kashihara, Masao; Wakasa, Shyuichiro

    1982-01-01

    The system of cyclotron nuclear medicine consists of ''RI-production by using the cyclotron'', ''production of radio-pharmaceuticals labeled with RI'', ''positron tomography''. On the other hand, Ultra compact cyclotron (Baby cyclotron) itself, RI production technique and positron tomography have been rapidly developed and advanced. We think that these three functions must be balance in the development in order to spread this system into the routine work in the hospital. However, since the technology of the synthesis for the labeled compounds is not so developed so far, more advance can be strongly expected. In this report, construction of the cyclotron nuclear medicine, utility for the practical use of RI produced by using the cyclotron, technique of RI production, and the studies on automated and efficient productions of radio-pharmaceuticals labeled with short-lived positron emitters for medical diagnostic use are described. (author)

  6. Simulations of beam trajectory for position target optimization of extraction system output beams cyclotron proton Decy-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik

    2015-01-01

    Positioning and track simulation beam the cyclotron Decy-13 for laying optimization the target system have been done using lorentz force function and scilab 5.4.1 simulation. Magnetic field and electric field is calculated using Opera3D/Tosca as a simulation input. Used radio frequency is 77.66 MHz with the amplitude voltage is 40 kV is obtained energy 13 MeV. The result showed that the coordinates of the laying of the target system in a vacuum chamber is located at x = -389 mm and y = 445 mm with the width of the output beam is 10 mm. The laying stripper position for the output in center target is located at x = -76 mm and y =416 mm from the center coordinate on the center of dee with the energy of proton is 13 MeV at the point of beam extraction carbon foil. The changes position laying is carried out on range x = -70; y = 424 mm until x = - 118; y = 374 mm result for shifting area stripper which is still capable of deflection the electron beam. (author)

  7. Gamma radiation measurements in F-18 production in the RDS-111 Cyclotron from the Nuclear Engineering Institute

    International Nuclear Information System (INIS)

    Taam, Ilka H.; Bellido, Luis F.; Vinagre Filho, Ubirajara M.

    2005-01-01

    With the acquisition of RDS-111 particle accelerator, the Institute of Nuclear Engineering in Rio de Janeiro city (IEN) operates a new cyclotron to produce 1 8F to obtain the fluorodeoxyglucose (FDG), a radiopharmaceutical used in positron emission tomography (PET), a technique well advanced which allows obtaining images with high resolution for diagnoses in medicine. To evaluate and detect the gamma exposure during 1 8F production, in the routine operation, i.e. current of 30 μA and the operating time 120 minutes, it was used a portable detector hyperpure germanium (HPGe) coupled to an electronic system for acquisition of 4096 data channels. To obtain a wide energy spectrum from 0.1 to 20 MeV were performed measurements with different gains of amplification. The energy average of gamma radiation, calculated from the energy spectra of gamma rays obtained, was 1.59 ± 0.05 MeV. Meanwhile, measurements were made with a MIR 7026 monitor and with thermoluminescent detectors (TLD) of LiF: Mg, Cu, P to calculate the dose equivalent rates H * (10) of the installation

  8. Development of a Medical Cyclotron Production Facility

    Science.gov (United States)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  9. Development of a Medical Cyclotron Production Facility

    International Nuclear Information System (INIS)

    Allen, Danny R.

    2003-01-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes

  10. Method and apparatuses for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  11. Cyclotron radiation by a multi-group method

    International Nuclear Information System (INIS)

    Chu, T.C.

    1980-01-01

    A multi-energy group technique is developed to study conditions under which cyclotron radiation emission can shift a Maxwellian electron distribution into a non-Maxwellian; and if the electron distribution is non-Maxwellian, to study the rate of cyclotron radiation emission as compared to that emitted by a Maxwellian having the same mean electron density and energy. The assumptions in this study are: the electrons should be in an isotropic medium and the magnetic field should be uniform. The multi-group technique is coupled into a multi-group Fokker-Planck computer code to study electron behavior under the influence of cyclotron radiation emission in a self-consistent fashion. Several non-Maxwellian distributions were simulated to compare their cyclotron emissions with the corresponding energy and number density equivalent Maxwellian distribtions

  12. Low energy cyclotron for radiocarbon dating

    International Nuclear Information System (INIS)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity 14 C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate 14 C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect 14 C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible

  13. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    International Nuclear Information System (INIS)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm 3 thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm 3 active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response

  14. PIXE analysis by baby cyclotron

    International Nuclear Information System (INIS)

    Yoshida, Hyogo; Tanaka, Teruaki; Ito, Takashi; Toda, Yohjiro; Wakasa, Hideichiro

    1988-01-01

    The Japan Steel Works, Ltd. has been supplying a very small sized cyclotron (Baby Cyclotron) to hospitals and research facilities. The cyclotron is designed to produce short-lived radioisotopes for medical use. In the present study, this cyclotron is modified so that it can serve for PIXE analysis. The PIXE (particle induced X-ray emission) technique has the following features: (1) Down to 1 ng of trace material in a sample (mg - μg) can be detected, (2) An analysis run is completed in one to ten minutes, permitting economical analysis for a large number of samples, (3) Several elements can be analyzed simultaneously, with an almost constant sensitivity for a variety of elements ranging from aluminum to heavy metals, (4) Analysis can be performed nondestructively without a chemical process, and (5) The use of microbeam can provide data on the distribution of elements with a resolution of several μm. Software for analysis is developed to allow the modified equipment to perform peak search, background fitting, and identification and determination of peaks. A study is now being conducted to examine the performance of the equipment for PIXE analysis of thin samples. Satisfactory results have been obtained. The analysis time, excluding the background correction, is 5-10 min. (Nogami, K.)

  15. Operation of the Karlsruhe Isochronous Cyclotron in 1975

    International Nuclear Information System (INIS)

    Schulz, F.; Schweickert, H.

    1976-06-01

    The operation of the Karlsruhe Isochronous Cyclotron in 1975 is briefly surveyed. The main reasons for a very short period for maintenance, repair and installation, and several additional efforts to improve the reliability of the accelerator installation, are discussed. The status and the results of several technical developments for the cyclotron are described: 1) the axial injection system; 2) computer aided cyclotron operation; 3) ion source development; 4) capacitive current measurement at the external beam; 5) new correction coils for the cyclotron; 6) improvement of the neutron time-of-flight spectrometer. As there is an increasing interest in using this type of accelerator for research in fields other than nuclear physics, it was felt appropriate to present short surveys on investigations at our cyclotron in 1975 in the fields of: 1) solid state physics; 2) engineering; 3) materials research; 4) nuclear medicine; 5) nuclear chemistry. (orig.) [de

  16. Present and future superconducting cyclotrons

    International Nuclear Information System (INIS)

    Nolen, J.A. Jr.

    1987-01-01

    This paper begins with a brief review of the status of present superconducting (SC) cyclotron projects, including the two which are currently operating and the six which are under construction. The next section summarizes the main features shared by five of these machines, while the third section presents recent developments and new concepts introduced in the other three ''second generation'' SC cyclotrons. Projects in early stages of development are discussed in the fourth section

  17. NIRS-Chiba isochronous cyclotron 1975

    International Nuclear Information System (INIS)

    Ogawa, H.; Kumamoto, Y.; Yamada, T.; Hiramoto, T.

    1976-02-01

    The cyclotron facility installed according to the recommendation of the Atomic Energy Committee of Japan is used for neutron therapy and production of short-lived radioisotopes. Construction on the facility was started in the autumn of 1972, and completed in March 1974. Described are the following: beam transport and the experimental hall, machine research and improvement, machine time sharing and the particles and energies, characteristics of the cyclotron, and facility personnel. (auth.)

  18. Knowledge based operation assist system for JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Agematsu, T.; Okumura, S.; Yokota, W.; Arakawa, K.; Murakami, T.; Okamura, T.

    1992-01-01

    We have developed two operation assist systems for easy and rapid operation of the JAERI AVF cyclotron. One is a knowledge based expert system guiding the sequence of parameter adjustment to inexperienced cyclotron operators. The other is a real-time simulation of the beam trajectories which are calculated from actual operating parameters. It graphically indicates feasible setting range of parameters that satisfies the acceptance of the cyclotron. These systems provide a human interface to adjust the parameters of the cyclotron. (author)

  19. Isochronous cyclotron for thermonuclear reactors driving

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.

    1998-01-01

    The main requirements to an accelerator as a part of an electronuclear power plant are considered. The range of the parameters of the accelerated proton and deuteron beams, for which the isochronous cyclotron is the most profitable, is proposed. An opportunity of using the cyclotron to drive the research reactors of various types is considered

  20. Status and perspectives at the cyclotron IFIN-HH Bucharest for diagnostic and therapeutic radionuclides production

    International Nuclear Information System (INIS)

    Dudu, Dorin; Racolta, Petru Mihai

    2000-01-01

    section. However this method would not produce sufficient amounts of this short-lived isotope, which needed a regular supply cycle of 2-4 weeks. So a new method was devised based on the reaction 103 Rh(p,n) 103 Pd. For this charged particle production route, it was necessary to convert an existing external beam 18 MeV PET cyclotron to high intensity internal target operation at the optimum reaction energy of 16-18 MeV. This was successfully achieved on the IBA Cyclone-18 machine by changing the ion source from negative ion to high intensity positive ion mode, increasing the RF power capability for acceleration and installing high intensity production targets on the outer peripheral orbit of the cyclotron for internal target operation. The 100% naturally occurring raw material - 103 Rh - proved an advantage, but the short radius of curvature of the cyclotron led to compromises between target length with lower power densities and increased glancing angle proton scattering at the target face

  1. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  2. The production of He-3 and heavy ion enrichment in He-3-rich flares by electromagnetic hydrogen cyclotron waves

    Science.gov (United States)

    Temerin, M.; Roth, I.

    1992-01-01

    A new model is presented for the production of He-3 and heavy ion enrichments in He-3-rich flares using a direct single-stage mechanism. In analogy with the production of electromagnetic hydrogen cyclotron waves in earth's aurora by electron beams, it is suggested that such waves should exist in the electron acceleration region of impulsive solar flares. Both analytic and test-particle models of the effect of such waves in a nonuniform magnetic field show that these waves can selectively accelerate He-3 and heavy ions to MeV energies in a single-stage process, in contrast to other models which require a two-stage mechanism.

  3. Feasibility study of the implementation of a neutron beam from the cyclotron accelerator of the CRCN-NE/CNEN-PE; Estudo da viabilidade da implementação de um feixe neutrônico a partir do acelerador Cíclotron do CRCN-NE/CNEN-PE

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, W.G., E-mail: wellington.gandrade@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Vilela, E.C.; Lima, F.R.A., E-mail: ecvilela@cnen.gov.br, E-mail: falima@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife-PE (Brazil)

    2017-07-01

    A cyclotron accelerator operating at the National Nuclear Energy Commission's facility is capable of accelerating protons up to 18 MeV and deuterons up to 9 MeV. This accelerator is equipped with channels used for the production of radiopharmaceuticals and an experimental research channel. This work studies the feasibility of implementing the neutron beam from this experimental channel, since other neutron generating sources are not able to provide a continuous and uniform flow of neutrons. Soon, a computational simulation with the code GEANT4 version 10.0.1.p03 was carried out using as data characteristics of this accelerator; primary beam of protons, energy in MeV and adopted as target Beryllium-9, which has a thickness of 2.5 mm. The generated neutrons were measured at a distance of 50 cm and under the angles of 0°, 15°, 30°, 45°, °, 70°, and 90°, with respect to the incident beam. The example was based on experimental studies and validated through the paired statistical method t as described in the literature. Thus, this work resulted in the assertion that it is possible to implement a monoenergetic neutron beam from an experimental channel of the cyclotron accelerator.

  4. Cyclotron production of {sup 44}Sc for clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, S.; Bilewicz, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Cydzik, I. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); European Commission Joint Research Center, Ispra (Italy). Inst. for Health and Consumer Protection; Warsaw Univ. (Poland). Heavy Ion Lab.; Abbas, K. [European Commission Joint Research Center, Ispra (Italy). Institute for Transuranium Elements; Bulgheroni, A.; Simonelli, F.; Holzwarth, U. [European Commission Joint Research Center, Ispra (Italy). Inst. for Health and Consumer Protection

    2013-08-01

    {sup 44} is a promising {beta}{sup +}-emitter for molecular imaging with intermediate half-life of 4 h. Due to the chemical similarity of Sc{sup 3+} to the Lu{sup 3+} and Y{sup 3+} cations, {sup 44}Sc-DOTA bioconjugates are expected to demonstrate similar properties in vivo as the {sup 177}Lu- and {sup 90}Y-bioconjugates, what is important in planning the radionuclide therapy. {sup 44}Sc can be obtained from the {sup 44}Ti/{sup 44}Sc generator. An alternative method for {sup 44}Sc production can be the irradiation of {sup 44}Ca target at small cyclotrons. The aim of our work was to optimize the parameters of {sup 44}CaCO{sub 3} irradiation and to develop a simple procedure for {sup 44}Sc separation from the calcium target. For optimization study, {sup 44}CaCO{sub 3} targets were irradiated by protons in the energy range of 5.6-17.5 MeV with 9 MeV being found to be the best energy for {sup 44}Ca irradiations. A simple and fast separation procedure of {sup 44}Sc from calcium target was developed using chelating resin Chelex 100. DOTATATE conjugate was successfully radiolabelled with high yield at elevated temperature using the produced {sup 44}Sc. While {sup 44}CaCO{sub 3} is relatively expensive, the cost of {sup 44}Sc-DOTATATE production can be reduced by target recovery. Due to low proton energy required to produce GBq activity level of {sup 44}Sc, the availability of {sup 44}Sc radioisotope could be enhanced to open new opportunities for applications in medical imaging. (orig.)

  5. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  6. Status Report on Cyclotron Operation

    International Nuclear Information System (INIS)

    Kovacs, P.; Szuecs, I.; Ander, I.; Lakatos, T.; Tarkanyi, F.

    2004-01-01

    Complete text of publication follows. The operation of the cyclotron in 2004 was concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 3554 hours, the time used for systematic maintenance was 450 hours. The breakdown periods amounted to 70 hours last year, included in it a 50 hours repair of RF control module under guarantee. The cyclotron was available for users during 3034 hours. The effectively used beam-on-target time statistics is summarized in Table 1. Developments: A new measuring site with a HPGe detector based gamma spectrometer is under installation in the basement of the Cyclotron Laboratory. A two channel pneumatic rabbit system is also under development to enable fast transport of samples between the new measuring site and two irradiation sites (the low intensity fast neutron irradiation site and the beam line used for Thin Layer Activation). (author)

  7. Radioisotope production with a medical cyclotron

    International Nuclear Information System (INIS)

    Silvester, D.J.

    1974-01-01

    The cyclotron of Hammersmith hospital in England was completed and started the operation in 1955. The feature is in its design operable at high beam current, reaching 500μA in internal beam and 300μA in external beam. In 1960's, twelve nuclides of radioactive pharmaceuticals were produced with the cyclotron. C-11, N-13 and O-15 have been used in the form of radioactive gases such as CO or H 2 O to test lung functions. F-18 has been used for bone scanning. K-43 is employed in the research of electrolyte balancing together with Na-24 and Br-77. Fe-52 is utilized in iron ion researches as a tracer. Cs-129 is highly evaluated as an isotope for imaging cardiac clogging part. Radioisotopes must be much more used in the examination of in vivo metabolic function. For this purpose, peculiarly labelled compounds should be further developed. It is welcome that the persons paying attention to the medical prospect of cyclotrons are increasing. The author hopes to continue his endeavour to find new products made with the cyclotron for human welfare. (Wakatsuki, Y.)

  8. NORTICA - a new code for cyclotron analysis

    International Nuclear Information System (INIS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-01-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state

  9. NORTICA—a new code for cyclotron analysis

    Science.gov (United States)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-12-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.

  10. Survey on radionuclide producing using cyclotron method in Malaysia

    International Nuclear Information System (INIS)

    Mohd Fadli Mohammad Noh

    2008-01-01

    This research discuss about basic design and systems of medical cyclotron that Malaysia currently have, its applications in radionuclide production and upcoming technologies of cyclotron. Surveys have been carried out on cyclotron facilities at Hospital Putrajaya and Wijaya International Medical Center, WIMC as well as reactor facility at Malaysia Nuclear Agency. The sources in this research also involves on-line and library searches. Information obtained are recorded, categorized, synthesized and discussed. systems of cyclotron of Hospital Putrajaya are further discussed in details. Based from the surveys carried out, it is found out that cyclotron facilities both in Hospital Putrajaya and WIMC only produce ( 18 F)FDG with radioactivity of 18 F produced in 2007 are 16479 mCi and 92546 mCi respectively. Survey also revealed that radioisotope production at Nuclear Malaysia has had its operation been ceased. A new radiopharmaceutical, namely CHOL is suggested to be synthesized by both facilities as a new PET tracer. Latest developments concerning technologies of cyclotron as well as other accelerators such as laser for future medical accelerator, prospect of boron neutron capture and the potential of hadron therapy in Malaysia are discussed here. Radioisotope production in Malaysia is expected to keep booming in future due to increase in usage of PET techniques and the construction of more compact, easy to handle and less costly cyclotrons. (author)

  11. THE HIGH-ENERGY EMISSION OF THE CRAB NEBULA FROM 20 keV TO 6 MeV WITH INTEGRAL SPI

    International Nuclear Information System (INIS)

    Jourdain, E.; Roques, J. P.

    2009-01-01

    The SPI spectrometer aboard the International Gamma-Ray Astrophysics Laboratory mission regularly observes the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power-law models give a good description in the X-ray domain (mean photon index ∼ 2.05) and MeV domain (photon index ∼ 2.23), crucial information is contained in the evolution of the slope with energy between these two values. This study has been carried out through individual observations and long duration (∼ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power-law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions, respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power-law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.

  12. Study to master "1"8F-FDG radiopharmaceutical production process by Korean Cyclotron KOTRONS 13 MeV at Hanoi Irradiation Center

    International Nuclear Information System (INIS)

    Nguyen Quang Anh; Tran Manh Thang; Dam Thi Tam; Mai Van Vinh

    2016-01-01

    A PET Cyclotron center is built in Hanoi Irradiation Center (HIC), VINATOM and expectation put in operation in the middle of 2016. Three main processes in "1"8F-FDG synthesis general process of Samyoung Unitech synthesizer module were studied as: effect of time to water removal process, effect of time to nucleophilic substitution reaction, and effect of temperature and time to hydrolysis process. The optimum parameters are collected and re-installed for "1"8F-FDG synthesizer module to achieve highest yield. The human resource was trained basic to advanced theoretical and practical training programs of 18F-FDG Radiopharmaceutical Production by Vietnamese and Korean senior experts in HICs facility for this project. After training courses, the human resource is able to produce and quality control "1"8F-FDG Radiopharmaceutical in different modules and quality control systems such as GE-MX (GE), Synthera (IBA), and Samyoung Unitech (SYU). "1"8F-FDG Radiopharmaceutical was produced in HIC achieves British Pharmacopeia (BP) standards and tested in animals. Animal PET/CT scanner images show clearly distribution of FDG according to physiological characters. Besides, this project were establishing "1"8F-FDG Radiopharmaceutical Production Process by cyclotron KOTRONS13 and Samyoung Unitech synthesizer module and Quality Assurance, Quality Control Process attain BP standards at Hanoi Irradiation Center; and establishing the training documents for practical production human resource training, "1"8F-FDG radiopharmaceutical Quality Assurance Process, Quality Control Process which attain BP standards. (author)

  13. Production of /sup 77/Br for nuclear medicine using the CV-28 cyclotron of Instituto de Engenharia Nuclear (RJ, Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, M A.V.; Silva, A.G. da [Instituto de Engenharia Nuclear, Rio de Janeiro (Brazil); Newton, W A [Manchester Univ. (UK)

    1984-06-01

    The reaction /sup 75/As (..cap alpha..,2n)/sup 77/Br with 28 MeV alpha particles is used to obtain /sup 77/Br with the CV-28 cyclotron of Instituto de Engenharia Nuclear (Rio de Janeiro, Brazil). A production method has been developed, using 200 mg of arsenium metal, electroplated on platinum. These targets can withstand 25 ..mu..A beams for several hours, yielding 0.29 mCi/..mu..A h. The /sup 77/Br which is separated by coprecipitation with AgCl, is recovered as NaBr with yields better than 98%. Measures have been taken to obtain a product which is pure, sterile and carrier-free.

  14. An experimental study on cyclotron-Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C Y; Masuzaki, M; Yoshida, H; Toyosugi, N; Kamada, K; Ando, R [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Dielectric-loaded cylindrical waveguide configurations with an injected electron beam in which the growth rate of the cyclotron-Cherenkov instability surpasses that of the Cherenkov instability were sought by numerical treatment, and one configuration of this kind was found. This configuration consists of a metallic core and an outer metallic cylinder with a dielectric liner on the inner surface. Based on the calculations, an experimental device was designed and assembled to investigate experimentally radiation due to the cyclotron-Cherenkov instability. Beam propagation in the dielectric-loaded coaxial waveguide and microwave radiation due to the cyclotron-Cherenkov instability and the Cherenkov instability were studied. (author). 6 figs., 10 refs.

  15. Cyclotron Development and Technical Aspects on Accelerator Based Laboratory Development

    International Nuclear Information System (INIS)

    Sunarhadijoso

    2000-01-01

    BATAN is planning to establish an accelerator-based laboratory at P3TM Yogyakarta as an effort in the development and use of accelerator technology for improving industrial performance and public welfare. This paper reviews several aspects of cyclotron technology and describes the combination of a linear accelerator - cyclotron system as an alternative to be considered in the planing of the laboratory. The progress of cyclotron technology is discussed covering three generations, i.e. conventional cyclotron, synchrocyclotron and AVF cyclotron generations. The planning should not consider the accelerator application for radioisotope production because it is established in Serpong with the existing negative ion cyclotron. The proposed facility at P3TM may comprise two linear accelerators coupled with a positive ion cyclotron of synchrocyclotron generation. In fact, the attachment of the synchrocyclotron unit is flexible and it can be installed subsequently if the higher energy particle beam, which can not be produced by the linear accelerators, is extremely needed. Some technical aspects related to ion beam application, building construction and infrastructure, human resources, and specification of function test are discussed for additional information in the implementation of the planning. (author)

  16. Cyclotrons in developing countries

    International Nuclear Information System (INIS)

    Vera Ruiz, Hernan

    2004-01-01

    Cyclotron accelerators are prolific sources of charged particle for the production of radionuclides and have become an essential tool in the practice of modern nuclear medicine by providing reliable radiotracers for SPECT and PET studies. In a recent survey conducted by the IAEA in 2001, the growth in the number of cyclotron facilities installed in laboratories and hospitals in developed as well as developing countries was recorded. This trend, which started in the late 70's, continues in the present time also and all indications are that it will continue in the next five to ten years. The reasons for this growth are several: technology involved has become more user or 'hospital friendly', third party reimbursement for several clinical studies based on F-18 PET radiopharmaceuticals at least in some of the advanced countries started in 1998 and above all, the clear irrefutable and demonstrable conclusion of the positive cost/benefit outcomes of PET studies in the field of oncology to a lesser degree, thus far, for cardiology and neurology. It is however recognizable that the overall financial cost of the technology, which comprises the premises to house the facility, the cyclotron accelerator, the corresponding radiochemistry and quality control equipment and the PET cameras can be nevertheless an expensive proposition that requires careful advance planning. This fact is even more relevant when the facility is planned for installation in a developing country, which, frequently, in addition to having a lack of sufficient financial resources, do have shortage of qualified human resources to efficiently run the facility. In spite of the above, it is fact that more and more public as well as private organizations in the developing countries are setting up cyclotron/PET programmes or are seriously considering the installation of such a facility

  17. Crosschecking of alpha particle monitor reactions up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Takács, S., E-mail: stakacs@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Ditrói, F.; Szűcs, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Haba, H.; Komori, Y. [Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Saito, M. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan)

    2017-04-15

    Selected reactions with well-defined excitation functions can be used to monitor the parameters of charged particle beams. The frequently used reactions for monitoring alpha particle beams are the {sup 27}Al(α,x){sup 22,24}Na, {sup nat}Ti(α,x){sup 51}Cr, {sup nat}Cu(α,x){sup 66,67}Ga and {sup nat}Cu(α,x){sup 65}Zn reactions. The excitation functions for these reactions were studied using the activation method and stacked target irradiation technique to crosscheck and to compare the above six reactions. Thin metallic foils with natural isotopic composition and well defined thickness were stacked together in sandwich targets and were irradiated at the AVF cyclotron of RIKEN with an alpha particle beam of 51.2 MeV. The activity of the target foils were assessed by using high-resolution gamma spectrometers of high purity Ge detectors. The data sets of the six processes were crosschecked with each other to provide consistent, cross-linked numerical cross section data.

  18. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  19. Initial operation of the cyclotron CYTRACK

    International Nuclear Information System (INIS)

    Denisov, Yu.N.; Dolya, S.N.; Kalinichenko, V.V.; Karamysheva, G.A.; Kostromin, S.A.; Fedorenko, S.B.

    2005-01-01

    The industrial cyclotron CYTRACK is dedicated to produce the track membranes. It is the basic instrument for the industry of membrane products to be consumed in medicine, biotechnology, pharmacology, microelectronics and many other industries. Cyclotron CYTRACK started working in August 2002. Argon ions were accelerated to the project energy - 2.4 MeV/nucleon, the extracted beam intensity was about 200 nA, the extraction efficiency totaled ∼50%

  20. Operational experience and recent developments at the National Medical Cyclotron, Sydney

    International Nuclear Information System (INIS)

    Conard, E.M.; Arnott, D.W.

    1996-01-01

    The National Medical Cyclotron, Sydney, Australia commenced operation in mid 1991, with a mission to provide PET and SPECT radionuclides throughout Australia. The realization of the present production capacity has been synonymous with the development of the facility's industrial cyclotron (IBA Cyclone 30). The choice of cyclotron was based on the Cyclone 30's virtues as a compact, user-friendly, energy efficient cyclotron, offering the beam quality characteristic of negative ion technology. Development of the cyclotron has improved reliability and increased beam capacity, while improvements to targetry have increased production reliability. More recently, the installation and commissioning of a new solid target irradiation facility has provided much needed redundancy. This paper describes the major cyclotron and targetry developments carried out to date. (orig.)

  1. Manufacturing on the radiopharmaceuticals produced by cyclotron

    International Nuclear Information System (INIS)

    Ueda, Nobuo

    1994-01-01

    Radiopharmaceutical (RP) produced by cyclotrons are widely used for the in vivo diagnosis of various diseases such as cancer, cerebral vascular disorders and cardiac diseases. The nuclides used as RPs and their nuclear reactions, and the quantity of RPs supplied in Japan in the last five years are shown. These RPs are delivered to about 1,100 hospitals in Japan. Thallium-201 and iodine-123 showed very high growth rate. Recently, two new I-123 RPs, BMIPP and MIBG which are heart-imaging agents, have been supplied. It suggests that the quantity of I-123 will increase much more in future. The image diagnostic method using RPs is called in vivo nuclear medicine, and has become the indispensable means for medical institutions together with X-ray CT, nuclear magnetic resonance imaging and ultrasonic diagnosis. The RPs for in vivo diagnosis generally used at present are classified into those labeled with the RIs produced with cyclotrons and those labeled with Tc-99m formed by the decay of Mo-99. The quantity being used is overwhelmingly more in the latter, but the former shows the tendency of growth. The commercial production of cyclotron RIs for medical use, the chemical forms and the diagnostic purposes of the RPs using cyclotron RIs, and the state of use of the cyclotron-produced RPs are reported. (K.I.)

  2. Induced radioactivity in air-estimation of ventilation rates at the vault and experimental areas of the proposed K-500 superconducting cyclotron, Calcutta

    International Nuclear Information System (INIS)

    Ravishankar, R.

    1999-01-01

    Guidelines are given for the necessary ventilation rates in vault and experimental areas from radiological safety point of view, for the proposed K-500 super-conducting cyclotron at Calcutta. A method is presented for estimating the amount of short lived radioisotopes like 13 N and 15 O taking the (n,2n) mode of productions. Considering the operating conditions of K-500 machine for the production of maximum neutron flux (300 MeV, 50pnA Li beam on Ta target) the energy differential neutron flux and the energy differential production cross section of 13 N and 15 O have been generated using ALICE-91 computer code. The differential cross sections have been folded with radial neutron flux distribution and then integrated over the entire volume of the cyclotron vault, to obtain the total production of the two radioactive gases. The DAC values have been obtained by considering the immersion dose in a semi-infinite hemispherical cloud. Natural decay and removal due to ventilation have been considered to get the recommended ventilation rates. (author)

  3. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  4. Mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron; Mapeamento do fluxo e estimativa do termo fonte de radiação de campos neutrônicos gerados pelo cíclotron GE PETtrace-8

    Energy Technology Data Exchange (ETDEWEB)

    Benavente Castillo, Jhonny Antonio

    2017-07-01

    The use of spectrometric techniques in a cyclotron facility is strongly advised for the complete characterization of the neutron radiation field. In recent years, several studies of neutron spectrometry have been carried out at the Cyclotron of the Development Center of Nuclear Technology (CDTN). The main objective of this work is to propose a methodology for mapping of the flux and estimate of the radiation source term of neutron fields generated by the GE PETtrace-8 cyclotron. The method of neutron activation analysis with gold, indium and nickel activation foils was used to measure the activities induced at specific points in the cyclotron bunker. The irradiations of the activation foils were performed using the intermittent irradiation method to optimize the radiation field during {sup 18}F production. The study of the neutron spectrum was performed using three radiation source terms. The first source term was constructed based on data provided by the cyclotron manufacturer using the neutron cross sections of the ENDF/B-VII library. The other two were proposed considering the irradiation process used in the routine of {sup 18}F production. Both radiation source terms used the LA150H proton cross sections and for the {sup 18}O, the cross sections of the physical model CEM03 (Cascade-exciton model) and TENDL (TALYS-based Evaluated Nuclear Data Library) were used. The results of the source terms in relation to the experimental results, in terms of neutron fluence rates, reaction rates and dose equivalent rates, showed that are in the same order of magnitude as those obtained by Ogata et al, Fujibuchi et al, and Gallerani et al., for the same cyclotron; and by Mendez et al. for a different manufacturing cyclotron. The models of the proposed radiation source terms were validated to obtain the spectra generated during the {sup 18}F production when water enriched at {sup 18}O is bombarded with a proton beam of 16.5 MeV. Finally, the model of the LA150H - TENDL - 2015

  5. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1989-06-01

    This report contains papers on the following topics: Heavy ion reactors, nuclear structure and fundamental interactions; atomic and materials studies; nuclear theory; and superconducting cyclotron and instrumentation

  6. A small low energy cyclotron for radioisotope measurements

    International Nuclear Information System (INIS)

    Bertsche, K.J.

    1989-11-01

    Direct detection of 14 C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the ''cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of 14 C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring 14 C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting 14 C in some biomedical experiments by a factor of 10 4 . Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as 3 H, and 10 Be, and 26 Al, are discussed. 70 refs

  7. U-2g0 cyclotron operational experience and improvement

    International Nuclear Information System (INIS)

    Gigal, B.N.; Gul'bekyan, G.G.; Kozlov, S.I.; Oganesyan, R.Ts.

    1983-01-01

    Brief description of main syste's of the U-200 isochronous 2-m cyclotron put into opera ion in 1968 is given and its operational characteristics a e presented. The cyclotron is used for conducting inve tigations in the field of nuclear physics. Ions from d uterium to argon have been accelerated in the cyclotro'. Annual time of target irradiation constitutes 2000-4000. The specific features of the cyclotron are: high l vel of a magnetic field (of about 20 kOe), possibili y of acceleration of ions with different mass-to-charge ratio a low correcting winding power, simple and high-e fective beam extraction by the method of charge exchange on a thin target allowing to vary smoothly energy of extracted ons. An experience in the U-200 cyclotron development and o eration is used as the basis for designing and choosing basic parameters of the U-200P, U-250, U-400 heavy ion cyclotrons

  8. Electron-Cyclotron Waves

    NARCIS (Netherlands)

    Westerhof, E.

    1994-01-01

    The essential elements of the theory of electron cyclotron waves are reviewed, The two main electro-magnetic modes of propagation are identified and their dispersion and absorption properties are discussed. The importance of the use of the relativistic resonance condition is stressed.

  9. Development of HM12 cyclotron for PET

    International Nuclear Information System (INIS)

    Morita, Takuzo; Kawama, Tetsuo; Fujii, Kazuo

    2000-01-01

    In Japan, there are at present more than 30 PET (Positron Emission Tomography) facilities. The movements of medical insurance application to the PET diagnosis using [ 18 F] FDG (2-[ 18 F]-fluoro-2-deoxy-glucose) by the Ministry of Health and Welfare are being enhanced by PET related people. Therefore, more clinical centers using PET system are expected to be built in the near future. HM12 cyclotron was developed to meet such market demands for PET, and the prototype machine has been rent to Cyclotron Radio Isotope Center (CYRIC) of Tohoku University since Oct. 1998 for their use of clinical research with positron emitters like 11 C, 13 N, 15 O and 18 F. We got many technical data of HM12 Cyclotron on the clinical base. The data was enough to establish the reliability of HM12 system operation under the clinical condition. The first commercial product of HM12 Cyclotron was delivered to National Cancer Center in March 2000. The final performance test will be finished by the end of June 2000. (author)

  10. Study of the /sup 12/N 2. 43 MeV level. [Differential cross sections; 44 MeV /sup 3/He; 52 MeV p

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Sercely, R R; Peterson, R J [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; King, N S.P. [California Univ., Davis (USA). Crocker Nuclear Lab.

    1976-10-11

    The differential cross sections have been measured for the reactions /sup 12/C(/sup 3/He, /sup 3/He')/sup 12/C(17.77 MeV 0/sup +/ T = 1) and /sup 12/C(/sup 3/He, t)/sup 12/N(2.43 MeV) at Esub(/sup 3/He) = 44 MeV. The similar shapes of the angular distributions and the relative magnitudes of the cross sections suggest that the /sup 12/N 2.43 MeV level is the 0/sup +/ T = 1 analog to the /sup 12/C 17.77 MeV level. The reaction /sup 14/N(p, t)/sup 12/N(2.43 MeV) at Esub(p) = 52 MeV is also studied. The strength with which this level is excited in this reaction is consistent with reasonable two-step calculations assuming the 2.43 MeV level to have Jsup(..pi..) = 0/sup +/.

  11. Lower-hybrid absorption at the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Puri, S.

    1975-01-01

    In the presence of magnetic field gradients, the lower-hybrid wave can be absorbed through linear collisionless damping at the location of cyclotron or cyclotron harmonic resonances acting as singular turning points in the path of the advancing wave-front. (Auth.)

  12. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  13. A mobile superconducting cyclotron for PET and neutron radiography

    International Nuclear Information System (INIS)

    Griffiths, R.

    1988-01-01

    The report addresses the development of a mobile superconducting cyclotron for PET (positron emission tomography) and neutron radiography. Proposals for an ultralight cyclotron were made by Finlan et al., who suggested a novel technique of utilising a superconducting magnet with RF acceleration and iron sectors contained within the room temperature bore of the magnet. Detailed design of a cyclotron based on this concept has progressed well at Oxford Instruments. The main design priorities were to minimise the weight and power consumption of the cyclotron. The cyclotron required a large amount of shielding to reduce either radiation background levels or stray magnetic field. Thus low background levels of radiation and magnetic field are key design criteria. The superconducting magnet has a mean field of 2.35 Tesla and a room temperature bore diameter of 500 mm. Three pairs of profiled iron sectors placed in the center of the warm bore of the magnet provide an azimuthally varying magnetic field. This permits the use of high beam currents with low background. A novel technique is incorporated to reduce the stray magnetic field and radiation from the cyclotron. The RF system consists of three pairs of resonators mounted within the warm bore of the magnet between the iron sectors. (Nogami, K.)

  14. Fabrication of beam diagnostic components for Superconducting Cyclotron at Kolkata

    International Nuclear Information System (INIS)

    Roy, S.; Bhattacharya, S.; Das, T.; Bhattacharyya, T.K.; Pal, S.; Pal, G.; Mallik, C.; Bhandari, R.K.

    2009-01-01

    The viewer probe and main probe are used for determining the position and current of charged particles as it is accelerated inside the superconducting cyclotron. The viewer probe is used to visually observe the shape of the charged particle beam inside the cyclotron with the help of a borescope. The main probe measures the distribution of charged particles. The viewer probe and main probe are bellow sealed. They can be positioned with an accuracy of 0.5 mm at different radii within the superconducting cyclotron. M9 slit is placed after the exit flange of the cyclotron. It determines the position of the beam leaving the cyclotron. The beam line has slits, faraday cup, beam viewers, collimators, etc. for beam diagnostics. This paper presents the mechanical design and details of beam diagnostic components. (author)

  15. Fission properties of actinide nuclei from proton-induced fission at 26.5 and 62.9 MeV incident proton energies

    International Nuclear Information System (INIS)

    Demetriou, P.; Keutgen, Th.; Prieels, R.; El Masri, Y.

    2010-01-01

    Fission properties of proton-induced fission on 232 Th, 237 Np, 238 U, 239 Pu, and 241 Am targets, measured at the Louvain-la-Neuve cyclotron facility at proton energies of 26.5 and 62.9 MeV, are compared with the predictions of the state-of-the-art nuclear reaction code talys. The code couples the multimodal random neck-rupture model with the pre-equilibrium exciton and statistical models to predict fission fragment mass yields, pre- and post-scission neutron multiplicities, and total fission cross sections in a consistent approach. The sensitivity of the calculations to the input parameters of the code and possible improvements are discussed in detail.

  16. Building 211 cyclotron characterization survey report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  17. Cyclotron beam dynamic simulations in MATLAB

    International Nuclear Information System (INIS)

    Karamysheva, G.A.; Karamyshev, O.V.; Lepkina, O.E.

    2008-01-01

    MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators

  18. Studies of electron cyclotron emission on text

    International Nuclear Information System (INIS)

    Gandy, R.F.

    1990-07-01

    The Auburn University electron cyclotron emission (ECE) system has made many significant contributions to the TEXT experimental program during the past five years. Contributions include electron temperature information used in the following areas of study: electron cyclotron heating (ECH), pellet injection, and impurity/energy transport. Details of the role which the Auburn ECE system has played will now be discussed

  19. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  20. Wave fronts of electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.

    1982-01-01

    In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed

  1. Cyclotron produced radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kopicka, K.; Fiser, M.; Hradilek, P.; Hanc, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides /compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed. (author)

  2. System analysis of industrial waste management: A case study of industrial plants located between Tehran and Karaj

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Karami

    2015-01-01

    Full Text Available Aims: In this study, management of industrial waste in industries located between Tehran and Karaj in 2009-2010 was examined. Materials and Methods: This is a cross-sectional study which was done by site survey (Iranian environmental protection organization questionnaire usage and results analysis. This questionnaire was consisted of 45 questions about industrial waste, quantity, quality, and management. A total number of industries with over 50 employees was 283, and Stratified sampling method was used. Sample of size 50 was selected from 283cases. Results: The major hazardous waste-generating industries include chemical and plastic. Private sectors disposed 45% of generated waste. Majority of wastes were buried (62%, and only 17% of industrial waste was recycled. Conclusion: For hazardous waste reduction in this zone and health and economic attractions, the opportunity for reuse and recovery for these wastes must maximize in short-term and burial of industrial waste must be minimized. Industries such as chemical-plastic and electronics which have higher hazardous waste, in long-term, must be replaced with other industries such as wood cellulose and paper that have lower hazardous waste production rate.

  3. Emergency situation in a medical cyclotron facility

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Bhat, M.K.; Singh, D.K.; Pthania, B.S.; Pandit, A.G.; Jacob, M.J.

    2010-01-01

    Full text: Medical cyclotron is a particle accelerator used in producing short lived radioisotopes such as 18 F, 11 C, 15 O, 13 N, 18 F-2 gas etc. Positron Emission Tomography (PET) is a nuclear imaging modality that has rapidly gained favour. 18 F-FDG is the most widely used radiopharmaceutical with a half-life of 109.8 min. Having more than five years experience in this field we face lots of emergency conditions in the medical cyclotron facility. On the basis of harm we have divided in to three categories i.e. Harm of (a) working personnel, (b) Equipment and (c) environment. Radioactive gas leak and Target foil rupture is considered as the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. Recommendations have also been made to reduce personal exposure while handling the radioactive gas leak and target foil rupture conditions

  4. Status report on the cyclotron

    International Nuclear Information System (INIS)

    Kormany, Z.

    2002-01-01

    Complete text of publication follows. The operation of the cyclotron in 2001 was again concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4300 hours, the breakdown periods amounted to 66 hours last year. The cyclotron was available for users during 3751 hours, the effectively used beam-on-target time is summarized in Table 1. The total time required for machine setup and beam tuning or spent waiting for the start of an irradiation was 272 hours. The control of the adjustable collimators applied in the beam transport system of the cyclotron was renewed during the winter maintenance period. They have been connected to the programmable logic controllers (PLC) and their new control code frees the operators from the long and slow manual setting process. The successful renewal of the control of this and other subsystems (cyclotron and beam transport power supplies) made lots of adjusting and measuring elements on the original control desk needless. To provide more space for the control PCs and remove all unnecessary devices, the unused part of the control desk has been dismantled. The short beam line used mainly for radiation hardness studies was equipped with a new oil-diffusion vacuum system during the summer maintenance. Its components are also connected to the PLC and the same automatic control has been provided like for the other vacuum stands of- the beam transport system. Another short beam line - basically a mirror image of the first one - has also been installed and successfully tested by trial irradiations. (R.P.)

  5. Statistical fluctuations in cooperative cyclotron radiation

    Science.gov (United States)

    Anishchenko, S. V.; Baryshevsky, V. G.

    2018-01-01

    Shot noise is the cause of statistical fluctuations in cooperative cyclotron radiation generated by an ensemble of electrons oscillating in magnetic field. Autophasing time - the time required for the cooperative cyclotron radiation power to peak - is the critical parameter characterizing the dynamics of electron-oscillators interacting via the radiation field. It is shown that premodulation of charged particles leads to a considerable narrowing of the autophasing time distribution function for which the analytic expression is obtained. When the number of particles Ne exceeds a certain value that depends on the degree to which the particles have been premodulated, the relative root-mean-square deviation (RMSD) of the autophasing time δT changes from a logarithmic dependence on Ne (δT ∼ 1 / lnNe) to square-root (δT ∼ 1 /√{Ne }). A slight energy spread (∼4%) results in a twofold drop of the maximum attainable power of cooperative cyclotron radiation.

  6. Decommissioning analyzis of a university cyclotron

    International Nuclear Information System (INIS)

    Eggermont, G.X.; Buls, N.; Hermanne, A.

    1996-01-01

    In the widespread use of some medical nuclear facilities, such as cyclotrons for isotope production, Life cycle analyzis, including decommissioning, was not taken into account. The structural materials of an accelerator and the concrete shielding of the bunker are activated by neutrons. This could yield a considerable volume of nuclear waste and needs radiation protection concern for occupational workers and the environment during some decennia. At the university of Brussels (WB) a prospective radiation protection and waste analyzis is being made for the later decommissioning of their cyclotron. Only few similar studies have been published. In Belgium future nuclear dismantling operations will be submitted to a radiation protection authorization procedure. Meanwhile the nuclear waste authorities insist on dismantling planning, including financial provisioning. An optimization exercise was made at the VUB-cyclotron, taking into account international trends to clearance levels for low level nuclear waste. Conceptual prevention opportunities e.g. selective material choice could be identified for future accelerator constructions. (author)

  7. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  8. Cyclotron will not survive yet this year without state support

    International Nuclear Information System (INIS)

    Marcan, P.

    2005-01-01

    In this paper the project of the Cyclotron Center of the Slovak republic is described. On the basis of this project the state joint-stock company Biont was constituted. Small cyclotron is in operation; big cyclotron is in process of manufacture and it will be put in operation in 2007. Small cyclotron will be used for production of radiopharmaceuticals. Positron emission tomograph (PET) in Oncological Institute of St. Elizabeth (in Bratislava) and gamma camera in Central Military Hospital (in Ruzomberok) are constituents of the Biont. The PET will be also in Biont. The hadron therapy of ophthalmic tumors is planned. Financial plans of the Biont up to 2009 are presented

  9. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  10. The Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Ruzicka, J.; Macasek, F.; Makaiova, I.; Saro, S.; Kristiak, J.; Fulup, M.

    2001-01-01

    The Cyclotron Center of the Slovak Republic was established at the beginning of August 1999 - within the Slovak-Office of Standards, Metrology and Testing (SOSMT), in Bratislava, Slovak Republic. It will have two cyclotrons - a large heavy and light cyclotron DC-72, which will be constructed by the Joint Institute for Nuclear Research (JINR), Dubna, Russian Federation, and a small commercial light ion cyclotron IBA 18/9. The heavy ion source of the electron resonance type (DECRS-2M) will be used for low and medium energy experiments in physics. The small electron accelerator is planned for different applications, including improving the properties of plastics, increasing the resistance of cables to fire and temperature, the sterilization of medical disposables in the CC SR. The main purpose of the Cyclotron Center of the Slovak Republic (CC SR) is to catch the present approach and trends in the area of improving of inhabitants life and health quality using the progressive technology, which is introduced by bringing into practice of the physical equipment - accelerators, producing beams of high energy particles. Experts of nuclear physics and of the related branches have no experimental basis in Slovakia, as after dissolution of the former the Czech and Slovak Federal Republic all bigger nuclear equipment were left in the Czech Republic. The Slovak Republic is one of the European countries where cancer and cardiovascular diseases have a rapidly increasing tendency (the rate of new oncological cases is approximately 20,000/year at the population of 5 million inhabitants) - early diagnostics of population is necessary to be updated urgently. The Slovak Republic use a great part of electricity (about 60 %) from its own nuclear power stations and thus it is in need of education of rising generations of experts from different nuclear fields. The Government of the Slovak republic on June 18, 1996 approved the strategic aim of building up the Cyclotron Laboratory at the

  11. A radioisotope production cyclotron designed to minimize dose

    International Nuclear Information System (INIS)

    Szlavik, F.F.; Moritz, L.E.

    1992-01-01

    This paper describes a radioisotope production cyclotron which has been designed to minimize the dose to personnel during operation and maintenance. The design incorporates lessons learned from the operation of a CP42 cyclotron and has resulted in a reduction of the dose by a factor of more than 10. (author)

  12. Cyclotron based nuclear science. Progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Youngblood, D.H.

    1986-08-01

    Progress report for cyclotron based nuclear science cyclotron facility are summarized. Research is described under the headings heavy ion reactions, nuclear theory, atomic studies and activation analysis, superconducting cyclotron and instrumentation. Publications are listed

  13. Health physics aspects of the 1.5M cyclotron

    International Nuclear Information System (INIS)

    Song, W.J.; Du, H.L.; Wei, Z.Q.; Xia, X.S.; Zheng, H.Z.; Jiang, G.F.; Liu, Y.Y.

    1987-01-01

    The 1.5m cyclotron in Institute of Modern Physics, Academia Sinica had operated for about 20 years until 1984 then converted to 1.7m sector focusing cyclotron. In this period it mainly used for fast neutron physics, light ion induced nucleus reactions, radioisotope production and heavy ion reactions. The health physics performed on this cyclotron including personnel dose monitoring, area monitoring (radiation field, radioactive aerosol, surface contamination and activated components etc.), maintenance inspection, environment survey and waste disposal is presented in this paper

  14. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    Science.gov (United States)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  15. Routine production of 18F using 16.5 MeV cyclotron for synthesis of 2-(18F)fluro-2-deoxy-d-glucose (FDG)

    International Nuclear Information System (INIS)

    Abd Jalil Abd Hamid; Soni, P.S.; Rajan, M.G.R.

    2006-01-01

    A medium energy cyclotron with maximum of 75 mA beam current is capable of producing most common Positron Emission Tomography (PET) radionuclides in sufficient quantities. The cyclotron has two targets for production of Flourine-18. One is high yield target system (HYT) (1.2 mL) and the other is HYT Generation II (Gen-II) (2.2 mL) and capable of producing 110 and 170 GBq respectively. Enriched 18 O water (>95%) is used for the routine production of Flourine-18 using the 18 O(p,n) 18 F nuclear reaction and irradiated under helium gas pressurized at 59-65 kPa at a beam current of 35 mA - 55 mA for 20-67 minutes. The [ 18 F]fluoride ion produced are used for the synthesis of 2-fluoro-2-deoxy-D-glucose (2-[ 18 F]FDG). Various factors that may effect the production of PET radionuclides and one such factor includes the silver target body often introduce impurity such as silver oxides in form of black particles that can impede the (ID 0.75 mm) delivery line. Such contaminants would reduce the quantity of the available useful radioisotopes, and hinder the subsequent radiopharmaceutical processes. Used of HYT and HYT Gen-II for the routine production of 18 F- in few ten GBq quantities were reported

  16. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the μ → eγ decay rate and determination of the Michel parameter in normal μ decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z projectile -- Z target combinations. Studies of the (α,2α) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references

  17. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  18. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  19. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  20. Biomedical cyclotron facility

    International Nuclear Information System (INIS)

    MacDonald, N.S.; Birdsall, R.; Takahaski, J.; McConnel, L.; Wood, R.; Wakakuwa, S.

    1976-01-01

    During the fifth year of operation the mechanical performance of the cyclotron and accessory equipment was excellent. Major items put into operation were a small computer system interfaced with Ge-Li gamma spectrometer and a pneumatic-tube system for fast delivery of short-lived radionuclides. A table is presented listing the radionuclides produced

  1. Preparation of carrier-free radioactive thallium for medical use

    International Nuclear Information System (INIS)

    Comar, D.; Crouzel, C.

    1975-01-01

    Radioactive thallium for medical use have been prepared by proton or deuteron bombardment of HgO or metallic Hg. The carrier free thallium is separated from mercury by ether extraction of the chloride. The yield of production for the isotopes 198m to 202 is given for different energies of protons and deuterons. The irradiated substances consisted of red mercury oxide containing less than 1 ppm iron, and high-purity (99.999%) metallic mercury. The red mercury oxide targets were irradiated with 15 MeV deuterons (M.R.C. cyclotron, Hammersmith Hospital-London and Saclay Van de Graff tandem) or 50 and 14 MeV protons (Grenoble Nuclear Physics Institute cyclotron and S.H.F.J. compact cyclotrons). The metallic mercury target was irradiated with 14, 16 and 20 MeV protons (S.H.F.J. compact cyclotron and Saclay variable-energy cyclotron). The particle current never exceeded 10 μA for irradiation times between 15 minutes and a few hours. (F.Gy.)

  2. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    Science.gov (United States)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  3. AGOR: A superconducting cyclotron for light and heavy ions plans for experimental facilities and physics program

    International Nuclear Information System (INIS)

    Gales, S.

    1991-01-01

    The construction of the K600 superconducting cyclotron AGOR, a joint undertaking of the KVI Groningen and the Institut de Physique Nucleaire at Orsay, has reached the stage where the assembly of major subsystems is underway. Field measurements are scheduled to start in the fall of this year, beam tests should start at Orsay by the end of 1992 before AGOR final installation at Groningen. The beam guiding system, the location and equipments of the main experimental areas are currently being designed. Taking advantage of the broad range of ions and energies that AGOR will made available (from 200 MeV protons to 100 MeV/A α down to 6 MeV/A Pb ions), the first ideas about the physics research to be done will be presented. (author) 28 refs., 15 figs., 2 tabs

  4. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 1

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  5. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 2

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  6. A visual assistance environment for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru; Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo.

    1993-01-01

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  7. Radiation safety and operational health physics of hospital based medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Compact, low energy, high current Medical Cyclotrons are now primarily used to produce large activities of short lived, neutron deficient, positron- emitting radioisotopes. These isotopes constitute the key ingredients of important PET (Positron Emission Tomography) radiopharmaceuticals used in diagnostic nuclear medicine. The PET-radioisotope producing Medical Cyclotrons are now increasingly installed in modern urban hospitals in many countries of the world. Modern Medical Cyclotrons run at a very high beam current (∼100-200 micro Amp) level and thereby produce intense fields of parasitic gamma rays and neutrons, causing the activation of cyclotron components, ambient air and radiation exposure to patients and members of the public. This report highlights the important operational aspects and the characteristics of the radiation fields produced by Medical Cyclotrons. The pathways of personnel radiation exposure are also analyzed. The above information constitutes the scientific basis of a sound operational health physics service, which is manifested in an effective dose reduction and an enhanced radiological safety of the Medical Cyclotron facility within the framework of ALARA

  8. Radiation shielding analysis of medical cyclotron at Radiation Medicine Centre, Parel

    International Nuclear Information System (INIS)

    Gathibandhe, M.V.; Agrawal, R.A.; Utge, C.G.

    2003-01-01

    Full text: PET (Positron Emission Tomography) is a diagnostic method to obtain 3-D functional images of the distribution of radio-nuclides introduced in the human body as tracers for specific biological processes. Tracers are produced by bombardment of different target nuclides by protons and deuterons of high energy produced in the cyclotron. A Wipro-GE medical cyclotron was installed in the basement of RMC, Parel. Shielding around the cyclotron is provided in the form of borated concrete walls of required thickness to limit dose rates to design values as per AERB criteria. The roof of the cyclotron room is made of heavy concrete. Entry in to the room is through a maze. Shielding analysis for the cyclotron room has been carried out using computer code ANISN. The maze has been analyzed using code MCNP. Based on the analysis carried out additional shielding was recommended to meet the design requirements. The paper discusses the shielding analysis carried out for the cyclotron room and the maze. Dose rate estimated at various locations are highlighted

  9. Calculation of proton beam initial orbit at cyclotron central region

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2012-01-01

    A calculation of proton beam initial orbits at cyclotron central region was carried out using Scilab 5.2.0. The calculation was done in 2 dimensions in a homogeneous magnetic field of 1.66 tesla at frequency of fourth harmonics. The positions of ion source, dees, and dummy dees follow those of GE Minitrace cyclotron, peak dee voltage 30 kV. The calculation yields result comparable to those simulated at KIRAMS-13 cyclotron. (author)

  10. The development of cyclotron radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to developthe radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with {sup 12}'3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism.

  11. The development of cyclotron radiopharmaceuticals

    International Nuclear Information System (INIS)

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to develop the radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with 12 '3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism

  12. Ion cyclotron emission in tokamak plasmas; Emission cyclotronique ionique dans les plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fraboulet, D.

    1996-09-17

    Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.

  13. Irradiation creep under 60 MeV alpha irradiation

    International Nuclear Information System (INIS)

    Reiley, T.C.; Shannon, R.H.; Auble, R.L.

    1980-01-01

    Accelerator-produced charged-particle beams have advantages over neutron irradiation for studying radiation effects in materials, the primary advantage being the ability to control precisely the experimental conditions and improve the accuracy in measuring effects of the irradiation. An apparatus has recently been built at ORNL to exploit this advantage in studying irradiation creep. These experiments employ a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). The experimental approach and capabilities of the apparatus are described. The damage cross section, including events associated with inelastic scattering and nuclear reactions, is estimated. The amount of helium that is introduced during the experiments through inelastic processes and through backscattering is reported. Based on the damage rate, the damage processes and the helium-to-dpa ratio, the degree to which fast reactor and fusion reactor conditions may be simulated is discussed. Recent experimental results on the irradiation creep of type 316 stainless steel are presented, and are compared to light ion results obtained elsewhere. These results include the stress and temperature dependence of the formation rate under irradiation. The results are discussed in relation to various irradiation creep mechanisms and to damage microstructure as it evolves during these experiments. (orig.)

  14. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    International Nuclear Information System (INIS)

    Fraser, B.J.; Samson, J.C.; Hu, Y.D.; McPherron, R.L.; Russell, C.T.

    1992-01-01

    Pc 2 electromagnetic ion cyclotron waves at 0.1 waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE 1 and 2 between L = 7.6 and 5.8 on an inbound near-equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ∼ 1.5 R E and penetrated ∼1 R E into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He + and the warm (0.1-16 keV/e) O + and He + heavy ion populations. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities (E x B)/B 2 were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Poynting fluxes calculated during the first 15 min of the event show wave energy propagation directions both parallel and antiparallel to the field. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event may be attributed to the modulation of this energy source by the Pc 5 waves seen at the same time. Overall, the results are considered an example of an electromagnetic ion cyclotron wave-particle interaction occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase

  15. Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1977-04-01

    For the ion-ion hybrid resonance it is shown that: (1) the energy absorption occurs via a sequence of mode conversions; (2) a poloidal field component normal to the ion-ion hybrid mode conversion surface strongly influences the mode conversion process so that roughly equal electron and ion heating occurs in the present proton-deuterium experiments, while solely electron heating is predicted to prevail in deuterium-tritium reactors; (3) the ion-ion hybrid resonance suppresses toroidal eigenmodes; and (4) wave absorption in minority fundamental ion-cyclotron heating experiments will be dominated by ion-ion hybrid mode conversion absorption for minority concentrations exceeding roughly 1 percent. For the ion-cyclotron resonance, it is shown that: (1) ion-cyclotron mode conversion leads to surface electron heating; and (2) ion-cyclotron mode conversion absorption dominates fundamental ion-cyclotron absorption thereby preventing efficient ion heating

  16. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  17. Present status of device controls and hardware interfaces for the RCNP ring cyclotron

    International Nuclear Information System (INIS)

    Yamazaki, T.; Tamura, K.; Hosono, K.

    1994-01-01

    Since the first proton beam from the injector AVF cyclotron was injected to the ring cyclotron in 1991, the computer control system has been used for the beam acceleration of the ring cyclotron. Some device control modules have been updated, and computer configuration has been changed in 1992. Total control system performs basic facilities almost satisfactory under actual cyclotron operation. (author)

  18. Cyclotron based nuclear science: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This report discusses experiment run on the K500 cyclotron and 88 in cyclotron at Texas AandM University. The main topics of these experiments are: Heavy ion reactions; Nuclear structure and fundamental interactions; Atomic and material science; Nuclear theory; and Superconducting cyclotron and instrumentation

  19. Studying the Relationship between Personality Traits of HSE Managers and Burnout. Case Study: Industry Leaders in Karaj Road

    Directory of Open Access Journals (Sweden)

    Shahnaz Mohammadi

    2015-06-01

    Full Text Available The aim of this study is to investigate the relationship between personality traits of HSE managers and burnout. In this order, a general hypothesis and five secondary hypotheses are formed. Research method is applied kind and is descriptive aspect of data collection and cross correlation and model-based structural equation. The sample of study has been considered using Cochran formula and included 200 industry executives in Karaj road. The research data were collected using a questionnaire and the validity and reliability is appropriate. Alpha Cronbach coefficients of questionnaire for burnout and personality traits of managers are 0.85 and 0.79 respectively. Findings show that there is a significant relationship between personality traits of managers (OCD - extroversion- Flexibility - Adaptability - Generosity with burnout and are -0.27, 0.38, -0.41, -0.25, 0.36, and 0.49 respectively. Results suggest that whatever the personality traits of managers be more positive and productive, job burnout in managers becomes less and equals 0.27. In other words, with an increase of one unit in the personality traits of managers, burnout in these people decreases to 0.27.

  20. Progress report on the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    Acerbi, E.; Alessandria, F.; Baccaglioni, G.; Bellomo, G.; Birattari, C.; Bosotti, A.; Broggi, F.; Cortesi, G.; DeMartinis, C.; Fabrici, E.; Ferrari, A.; Giove, D.; Giussani, A.; Giussani, W.; Michelato, P.; Pagani, C.; Rivoltella, G.; Rossi, L.; Serafini, L.; Sussetto, A.; Torri, V.; Varisco, G.; Cuttone, G.; Raia, G.; Kai, L.

    1988-01-01

    This paper reports on the construction of the K800 superconducting cyclotron at the University of Milan underway since February 1981. The delay in the construction of the new building and a defect of the weldings of the helium vessel have caused a shift in the project schedule of about two years. Currently, the cyclotron magnet and the cryogenic plant have been completed and installed. First operation of the magnet and magnetic field mapping are to begin shortly

  1. Scientific instruments, scientific progress and the cyclotron

    International Nuclear Information System (INIS)

    Baird, David; Faust, Thomas

    1990-01-01

    Philosophers speak of science in terms of theory and experiment, yet when they speak of the progress of scientific knowledge they speak in terms of theory alone. In this article it is claimed that scientific knowledge consists of, among other things, scientific instruments and instrumental techniques and not simply of some kind of justified beliefs. It is argued that one aspect of scientific progress can be characterized relatively straightforwardly - the accumulation of new scientific instruments. The development of the cyclotron is taken to illustrate this point. Eight different activities which promoted the successful completion of the cyclotron are recognised. The importance is in the machine rather than the experiments which could be run on it and the focus is on how the cyclotron came into being, not how it was subsequently used. The completed instrument is seen as a useful unit of scientific progress in its own right. (UK)

  2. Experimental thin-target and thick-target yields for natOs(α, xn)Pt, natOs(α, X)Os, Ir and natMo(p, xn)Tc nuclear reactions from threshold up to 38 and 45 MeV, by combined single and stacked foil techniques

    International Nuclear Information System (INIS)

    Birattari, Claudio; Bonardi, Mauro; Gini, Luigi; Groppi, Flavia; Menapace, Enzo

    2002-01-01

    The experimental values of thin-target excitation functions for the nuclear reactions: nat Os(α, X) 188,189,191 Pt, 192g,194m Ir in the energy range 11 - 38 MeV and nat Mo(p, xn) 94g,95g,95m,96(m+g) Tc in the energy range 5 - 44 MeV are presented. The experimental values were obtained by cyclotron activation followed by off-line HPGe γ-spectrometry and corrected at the End Of an Instantaneous Bombardment, EOIB. In different cases use was made of single foil and stacked foil techniques, which present significantly different advantages and disadvantages. The thin-target yield values can be easily either numerically or analytically integrated, as a function of both incoming particle energy and energy loss in target itself, in order to calculate apriori the thick-target yield of various radionuclides under any different experimental condition. Moreover, the thin-target yields are directly related to the effective cross-sections of various nuclear reaction channels involved. The data are of relevant interest for optimizing cyclotron production of platinum and technetium radionuclides to be used as radiotracers for metallo-biochemical, biomedical, toxicological and environmental studies. (author)

  3. Cyclotrons at the Institute of Physical and Chemical Research

    International Nuclear Information System (INIS)

    Imamura, Masashi.

    1989-01-01

    In this article the destruction by American forces, during World War II, of the Japanese cyclotrons and the subsequent construction of new cyclotrons at the Institute of Physical and Chemical Research, Japan is described. Their use for biological and medical radiation chemistry studies is summarized. (UK)

  4. Dynamic effects on cyclotron scattering in pulsar accretion columns

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs

  5. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  6. Intelligent CAE system of CYCLONE type cyclotron main magnet and its applications

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1993-01-01

    The main magnet that features the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solving magnetic field computation problems, the results depend on the user's skill and experience very much. To help a cyclotron magnet designer get acceptable results, an intelligent CAE system for CYCLONE type cyclotron magnet design and machining has been developed. Reasonable good results could be got even the designer with the help from an expert knowledge library installed in the program

  7. Passive cyclotron current drive for fusion plasmas

    International Nuclear Information System (INIS)

    Kernbichler, W.

    1995-01-01

    The creation of toroidal current using cyclotron radiation in a passive way is, together with the well known bootstrap current, an interesting method for stationary current drive in high-temperature fusion reactors. Here, instead of externally applied RF-waves, fish-scale like structures at the first wall help to create enough asymmetry in the self generated cyclotron radiation intensity to drive a current within the plasma. The problem of computing passive cyclotron current drive consists of actually two linked problems, which are the computation of the electron equilibrium under the presence of self-generated radiation, and the computation of the photon equilibrium in a bounded system with a distorted electron distribution. This system of integro-differential equations cannot be solved directly in an efficient way. Therefore a linearization procedure was developed to decouple both sets of equations, finally linked through a generalized local current drive efficiency. The problem of the exact accounting for the wall profile effects was reduced to the solution of a Fredholm-type integral equation of the 2 nd -kind. Based on all this an extensive computer code was developed to compute the passively driven current as well as radiation losses, radiation transport and overall efficiencies. The results therefrom give an interesting and very detailed insight into the problems related to passive cyclotron current drive

  8. On the coupling of cyclotron motion to ion internal degrees of freedom

    International Nuclear Information System (INIS)

    Dunbar, R.C.

    1979-01-01

    A possibility of significant coupling between gas-phase ion cyclotron motion and two internal angular momentum terms is explored. The first case, coupling with ion spin, is treated via the relativistic Hamiltonian, and found to produce only relativistic perturbations which are entirely negligible. The second case, coupling with ion rotation, is developed via its equivalence to a Stark effect. Small shifts in the cyclotron resonances frequency , ωsub(c) and the appearance of a weak cyclotron resonance at 2ωsub(c) are predicted, but these effects are negligible in general. If the cyclotron frequency is near an ion rotational transition, however, a shift of 10 -5 in cyclotron frequency may be observed, and could provide a means of investigating low-frequency rotational transitions of ions. (Auth.)

  9. ECR heavy-ion source for the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Clark, D.J.; Kalnins, J.G.; Lyneis, C.M.

    1983-03-01

    An Electron Cyclotron Resonance (ECR) heavy-ion source is under construction at the LBL 88-Inch Cyclotron. This source will produce very-high-charge-state heavy ions, such as 0 8 + and Ar 12 + , which will increase cyclotron energies by a factor of 2-4, up to A = 80. It is a two-stage source using room-temperature coils, a permanent-magnet sextupole, and a 6-9 GHz microwave system. Design features include adjustable first-to-second-stage plasma coupling, a variable second-stage mirror ratio, high-conductance radial pumping of the second stage, and a beam-diagnostic system. A remotely movable extraction electrode will optimize extraction efficiency. The project includes construction of a transport line and improvements to the cyclotron axial-injection system. The construction period is expected to be two years

  10. Study of axial injection of polarized protons into the grenoble cyclotron; Contribution a l'etude de l'injection axiale pour protons polarises sur le cyclotron de Grenoble

    Energy Technology Data Exchange (ETDEWEB)

    Pabot, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [French] L'injection axiale d'ions dans un cyclotron permet d'accelerer des particules (particules polarisees, ions lourds... ) difficiles a obtenir avec une source interne d'ions. Dans ce travail, apres avoir justifie le choix d'un dispositif d'injection axiale equipe d'un deflecteur 'pseudo-cylindrique' pour le cyclotron de Grenoble, nous avons etudie, du point de vue theorique, le principe d'un tel deflecteur, le choix de ses parametres, et l'incidence de ce choix sur les conditions d'acceleration du faisceau par le cyclotron. Du point de vue experimental, ce rapport decrit deux manipulations qui ont permis de verifier le bon fonctionnement du dispositif d'injection retenu, qualitativement d'abord (modele a electrons), quantitativement ensuite (maquette a protons). En conclusion, nous estimons que le cyclotron de Grenoble ainsi equipe, peut fournir un faisceau relativement intense de protons polarises. (auteur)

  11. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    Science.gov (United States)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  12. Directory of cyclotrons used for radionuclide production in Member States [2006 update

    International Nuclear Information System (INIS)

    2006-10-01

    The present directory of cyclotron facilities used for the production of radionuclides in Member States is an update of the one compiled by the International Atomic Energy Agency (IAEA) in late 2001 and published in 2002. This directory was prepared through information collected by questionnaires that the IAEA sent to known institutions operating cyclotrons for radionuclide production. Technical as well as administrative data supplied to the IAEA as of November 2005 were taken into account. The directory is considered to include most of the cyclotrons of the world that are used at least partially for radionuclide production. There are 262 entries for cyclotrons operating in 39 Member States of the IAEA. This is an increase of 7% over the 246 reported in the 2002 cyclotron directory. This can be compared to the 350 or so cyclotrons believed to be presently operating in the world, which are involved in some aspects of radionuclide production. The increase has been in the number of cyclotrons in developed countries, but even more so in the developing countries. The increase in number during the last four years was driven by several factors, i.e. advent of advances in medical imaging, introduction of compact, user friendly medical cyclotron, and a recent decision that costs for 15 O-oxygen position emission tomography (PET) studies in Japan and 18 F-FDG PET studies in Germany and the United States of America are eligible for reimbursement by government or health insurance companies. There is no doubt that the fastest growing segment of the market is in the commercial distribution of FDG to local hospitals. The IAEA is promoting cyclotron technology as applied to nuclear medicine. Requests for cyclotron technology is steadily increasing; many developing Member States are interested in this technology. There is need to stimulate, build and maintain consulting capability in interested developing Member States. There are good reasons to believe that the number of cyclotron

  13. A dedicated beam line for Rutherford backscattering analysis at IFIN-HH cyclotron

    International Nuclear Information System (INIS)

    Ivanov, E. A.; Dudu, D.; Plostinaru, D.; Catana, D.; Vata, I.

    2003-01-01

    Rutherford back-scattering technique (RBS) is an analytical tool that uses elastic scattering of 1-5 MeV charged particles for analysis of the surface and the outer few micrometers of solids. IFIN-HH RBS system consists of the U-120 Cyclotron, a dedicated beam line and a scattering chamber with sample manipulators and particle detectors. In our RBS system the samples are bombarded with 2-5 alpha particles accelerated by U-120 Cyclotron (in 3-rd subharmonic regime) while the scattered particles are detected by a surface barrier detector. The signal from the detector is processed by common nuclear electronics and the particle energy spectra are stored in a computer based multichannel analyser. The data evaluation is accomplished using standard procedures and computer codes. The necessary vacuum inside chamber is obtained with an oil-free turbo pump. The beam spot dimension on the target is 1x1 mm. The standard measurement are done at Θ = 165 angle. The samples are electrically insulated and can be rotated around a vertical axis. The advantage of the RBS technique lies in the quantitative analysis of major and minor constituents lying in the first 0.5 to 2.0 micrometers of a material. Depending on the sample structure and composition, the detection limits vary from 10 11 to 10 15 at. cm -2 for heavy and light elements, respectively. The depth distribution of constituents can be reconstructed with a depth resolution of 10-20 nm. The RBS technique is non-destructive since the erosion and the radiation degradation of the sample material by the particle impact is negligible. The most extensive use of the RBS technique is in the field of electronic and optical materials, special coatings and in the study of various physico-chemical processes on the solid surfaces. (authors)

  14. Next customers to cyclotron center meanwhile are not entered

    International Nuclear Information System (INIS)

    Bato, R.; Zackova, K.

    2004-01-01

    In this paper the financial aspects of construction of the Cyclotron Centre of the Slovak Republic (CC SR) are analysed. This building represents the problems of exploitation of commodity deblocation of Russian Federation debt to Slovakia. The estimated expenses have risen from original planned 2 billion Slovak crowns to 6 billion Slovak crowns. Devices which should be part of centre - a cyclotron used for radiopharmaceuticals production for oncological purposes and a big cyclotron for industrial purposes, a centre of positron emissive tomography (PET), a laboratory of nano-technologies, a source of heavy ions - they indicates that the oncological institutes, departments of health service, of education, of economy, of defence, of environment, also Nuclear Regulatory Authority of Slovak Republic and Slovak Academy of Sciences should become the customers principally. Around 2.2 billion of Slovak crowns from deblocation have been spent for a construction of Cyclotron Centre of SR yet. The national budget has contributed by 95 million Slovak crowns; 90.5 million USD will be obtained from deblocation of Russian debt yet. IAEA has supported this centre by grant of almost 800 thousand USD. Budget of Cyclotron Centre of SR is still rising also because of rising of VAT from 10 percent to 19 percent. VAT will be paid also for goods imported within the framework of deblocation after integration of Slovak Republic to European Union; besides also 10 percent duty is paid. Project of CC SR has not passed the state expert opinion. Agreement for construction of Cyclotron Centre of SR was issued by State Health Institute of Bratislava, therefore it was confirmed also by the main hygienist of Slovak Republic

  15. Evidence for two narrow pp resonances at 2020 MeV and 2200 MeV

    CERN Document Server

    Benkheiri, P; Bouquet, B; Briandet, P; D'Almagne, B; Dang-Vu, C; De Rosny, G; Eisenstein, B I; Ferrer, A; Fleury, P; Grossetête, B; Irwin, G; Jacholkowski, A; Lahellec, A; Nguyen, H; Petroff, P; Richard, F; Rivet, P; Roudeau, P; Rougé, A; Rumpf, M; Six, J; Thénard, J M; Treille, D; Volte, A; Yaffe, D; Yiou, T P; Yoshida, H

    1977-01-01

    From the study of the reaction pi /sup -/p to p/sub F/pp pi /sup -/ using a fast proton (p/sub F/) trigger device in the CERN Omega spectrometer, the authors find evidence for two narrow pp states produced mainly in association with a Delta degrees (1232) and a N degrees (1520). The statistical significance of each peak is greater than 6 standard deviations. Masses and natural widths of these resonances are respectively M/sub 1/=2020+or-3 MeV, Gamma /sub 1 /=24+or-12 MeV and M/sub 2/=2204+or-5 MeV, Gamma /sub 2/=16/sub -16 //sup +20/ MeV. The data are consistent with a small production of the narrow approximately 1935 MeV resonance already reported. Production cross sections for these new pp resonances are given. (8 refs).

  16. Mass measurements with the CIME cyclotron at GANIL

    International Nuclear Information System (INIS)

    Hornillos, M B Gomez; Chartier, M; Mittig, W; Blank, B; Chautard, F; Demonchy, C E; Gillibert, A; Jacquot, B; Jurado, B; Lecesne, N; Lepine-Szily, A; Orr, N A; Roussel-Chomaz, P; Savajols, H; Villari, A C C

    2005-01-01

    A new direct technique using the CIME cyclotron as a high-resolution mass spectrometer is being developed in order to measure the masses of exotic nuclei. Tests have been performed to check the feasibility of the method with a mixed beam of stable ions extracted from the SPIRAL ion source and injected into the CIME cyclotron. Preliminary results obtained with this new technique are presented and discussed

  17. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  18. Relativistic nonlinear waves of cyclotron in electron and electron-ion plasmas

    International Nuclear Information System (INIS)

    Bruno, R.

    1981-12-01

    Dispersion relations for electron-cyclotron and ion-cyclotron waves are examined in two models of plasmas, the first propagating in fluent electronic plasmas (''streaming'') as well as in fluent electron-ionic plasmas, and the last in fluent electron-ionic plasmas. The identification of the propagation modes is realized with the aid of a special technique of polinomial expantion of the dispersion relation in the limit of large frequencies and short wavelenghts. The analisys so developed on these dispersion relations for fluent plasmas show that: (i) the wave amplitudes are frequency dependent; (ii) the ''resonances'' frequencies of the respective estationary plasmas must be re-examined with the relations between wave amplitudes and the propagation frequencies near these frequencies; (iii) the electric field amplitudes for the non-linear waves of electron-cyclotron and ion-cyclotron go to zero in the limits of the respective cyclotron frequencies in both fluent plasma models. (M.W.O.) [pt

  19. Transparency of Magnetized Plasma at Cyclotron Frequency

    International Nuclear Information System (INIS)

    G. Shvets; J.S. Wurtele

    2002-03-01

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration

  20. Potential of cyclotron based accelerators for energy production and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Stammbach, T.; Adam, S.; Fitze, H.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  1. Development and application of intelligent CAE system for cyclotron main magnet

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1993-01-01

    The main magnet that represents the feature of the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solve magnetic field computation problems, the results from them are depended on user's skill and experience very much. To help cyclotron magnet designer get acceptable result an intelligent CAE system for cyclotron main magnet design and machining has been developed. A reasonable good results in design could be get even the designer is a beginner with the help from an expert knowledge library installed in the program. The codes include following functions: 1. Intelligent CAD; 2. 2D and 3D magnetic field computation; 3. Beam dynamics analysis; 4. CAM for main magnet

  2. Evaluation of neutron flux in the WWR-SM reactor channel and in the irradiating zone of U-150 cyclotron

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: For effective work of a reactor, and correct planning of experiments related to the reactor irradiation of various materials it is required to control a neutron flux in the given irradiation point for a long irradiation period. For realization of research works on topazes ennobling under irradiation by reactor neutrons as well as by secondary neutrons produced in a cyclotron it is necessary to know the total neutron flux and spectra. To resolve the problem a technique for registration of neutrons with different energy and calculation of a neutrons spectrum in the given irradiation points in reactor channels and in cyclotron behind the nickel target has been developed. Neutron flux density and energy spectra were monitored by use of the following nuclear reactions: 59 Co(n,γ) 60 Co, 197 Au(n,γ) 198 Au, 58 Ni(n,p) 58 Co, 24 Mg(n,p) 24 Na, 48 Ti(n,p) 48 Sc, 46 Ti(n,p) 46 Sc, 54 Fe(n,p) 54 Mn, 89 Y(n,2n) 88 Y, 60 Ni(np) 60 Co. Gamma spectrometer composed of HPGe detector (Rel. Eff. - 15%) and Digital Spectra Analyzer DSA-1000 (Canberra Ind., USA) was used to measure gamma activity of irradiated samples. Acquired gamma spectra were processed by means of Genie 2000 standard software package. The σ(E) functions and neutron spectra were calculated by using the least squares method and approximating the tabular and experimental data with power polynomials. The developed technique was applied for the adjustment of the topazes irradiation regimes in the reactor core and under secondary neutrons flux from a nickel target in the cyclotron. The given technique allows to calculate a logarithmic spectrum of neutrons in a energy range from 0,025 eV up to 12 MeV with the uncertainty of about 10 %. (author)

  3. Cyclotron-Resonance-Maser Arrays

    International Nuclear Information System (INIS)

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  4. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    International Nuclear Information System (INIS)

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  5. Magnetic field optimisation and orbit calculation for VEC superconducting cyclotron

    International Nuclear Information System (INIS)

    Debnath, J.; Dey, M.K.; Mallik, C.; Bhandari, R.K.

    2003-01-01

    At VECC, Kolkata preparations are underway to measure the magnetic field of the cyclotron. Also once the superconducting cyclotron is assembled prediction of beam related parameters will be a very important exercise to carry out. Considering this the beam behaviour in the cyclotron will be crucial to achieve these goals. The present paper deals with the efforts in this direction and using a test beam of He 1+ 20 MeV/n the trim coil currents, the tune variation and the (r,Pr) behaviour of the central trajectory

  6. Automation of {sup 64}Cu preparation using IBA 18/9 cyclotron; Automatizacia pripravy {sup 64}Cu vyuzitim IBA 18/9 cyklotronu

    Energy Technology Data Exchange (ETDEWEB)

    Ometakova, J; Rajec, P [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    {sup 64}Cu (T{sub 1/2} = 12.7 h, 37.1% {beta}{sup -}, {beta}{sup +} 17.9%) is a suitable radioisotope for use in positron emission tomography, due to its physical properties, which make it ideal for therapy ({beta}{sup -}) and for use in diagnosis ({beta}{sup +}), e.g. of hypoxic tumors. Its production is possible in biomedical cyclotrons (with protons' energy 11-18 MeV). We used for its preparation a nuclear reaction {sup 64}Ni(p,n) because it has a large cross section also at the energies of small biomedical cyclotrons. A disadvantage of this reaction is the high price of the target material, eliminated by developing a very simple way of {sup 64}Ni recycling. Ion exchange chromatography (adsorbent Bio-Rad AG1-X8) was used for separation of {sup 64}Cu from target material. Separation was carried out on the separation module developed by us. Yield of {sup 64}Cu for 100 mg {sup 64}Ni (99.09%) on the gold target was 104 MBq /{mu}Ah. To measure the product activity and for determination of radioisotope contamination there were used: a ionization chamber (Curiementor), gamma-spectrometry (HPGe detector) and liquid scintillation spectrometry (TDCR method). (authors)

  7. Construction of a time-of-flight neutron spectrometer for reaction angles 000 and study of the reaction 65Cu(p,xn) 65Zn for Esub(p)=26.7 MeV

    International Nuclear Information System (INIS)

    Holler, Y.

    1984-01-01

    At the Hamburg Isochronous Cyclotron a novel time-of-flight neutron spectrometer was designed, constructed, and tested by means of a for the planned application typical nuclear reaction. The apparature was optimized for the measurement of continuous, structure-deficient neutron spectra in a wide angular range at a reproducible, as low as possible scattering neutron background. Such a facility is fitted to the strengths of the Hamburg cyclotron and allows to study questions on the precompound emission and on the inelastic projectile ( 3 He) breakup. The final test was performed with the reaction 65 Cu(p,xn) 65 Zn at Esub(p)=26.7 MeV for which already comparable data over a smaller angular range were present. In the analysis of the measurement results performed regarding the precompound effects the hybrid-exciton model calculations let recognize essential deviations at high neutron energies in the range of the extreme reaction angles. (orig./HSI) [de

  8. Study of the peripheral projectile-like fragments from the reaction 129Xe on 27Al, natCu, 139La and 165Ho, at E/A = 50 MeV

    International Nuclear Information System (INIS)

    Garcia-Solis, E.J.; Russ, D.E.; Madani, H.

    1996-01-01

    There are several reaction mechanisms identified for peripheral heavy-ion collisions. For low bombarding energies (E/A ∼ 10 MeV) the predominant reaction channel is the deep-inelastic reaction mechanism. In this process, the projectile and target form a rotating binary system, interchanging nucleons and angular momentum until they separate. At higher bombarding energies (E/A ∼ 50 to 100 MeV) incomplete fusion is thought to be the prevailing reaction channel. In this type of interaction part of the projectile merges with the target during the collision. Finally, for energies greater than 100 MeV/A, the main reaction channel is characterized by the formation of a highly-excited separate fragment (fireball) produced during the overlap between the projectile and the target. The data set studied was from an experiment designed to characterize the projectile-like products of the 27 Al, nat Cu, 139 La, and 165 Ho reactions at E/A = 50 MeV, which was performed at the Michigan State University Super Cyclotron Laboratory (MSU-NSCL). The Maryland Forward Array (MFA), was used to measure projectile-like fragments in coincidence with target-like fragments and light-charge particles in the MSU 4π detector

  9. On 'conflict of conservation laws in cyclotron radiation'

    International Nuclear Information System (INIS)

    White, S.M.; Parle, A.J.

    1985-01-01

    The authors reconsider the apparent conflict of conservation laws in cyclotron radiation, and show that earlier workers in this field did not correctly include the effects of radiation reaction in their calculations. When a 'recoil' term, calculated using relativistic quantum theory, is included in the angular momentum of the particle the conflict disappears. It is found that the guiding centre of the particle drifts outwards during cyclotron radiation. (author)

  10. Channel of Axial Injection of DC-60 Cyclotron

    CERN Document Server

    Gikal, B N; Bogomolov, S L; Borisenko, A N; Borisov, O N; Gulbekyan, G G; Ivanenko, I A; Kalagin, I V; Kazacha, V I; Kazarinov, N Yu; Khabarov, M V; Lysukhin, S N; Melnikov, V N; Paschenko, S V; Tikhomirov, A V

    2006-01-01

    The design study and realization of the axial injection beam line of DC-60 cyclotron constructed at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research are given. The channel allows one to transport and to inject into the cyclotron ions with mass-to-charge ratio $A/Z$ being within interval A/Z=6-12 and kinetic energy up to 17 $Z/A$ keV/m.u.

  11. Basic Research and Feasibility Study of Radioisotope Production using 100 MeV Proton Beam

    International Nuclear Information System (INIS)

    Yoo, K. H.; Yoon, K. S.; Cho, W. J.; Park, S. I.; Han, H. S.; Yang, S. D.; Jeon, K. S.; Kim, J. H.; Yang, T. K.

    2010-04-01

    Results of the project are various nuclei, such as 82 Rb, 68 Ga, 67 Cu, 22 Na and so on, can be produced by irradiating 100 MeV proton beam, by irradiating proton beam to the nat Ga target, the 68 Ge, mother nucleus of positron emitting 68 Ga, is produced based on the nat Ga(p,x) 68 Ge reaction, the target system for the high-energy of proton beam can produce more than 2 species of radioisotope at the same time by employing tandem targets, 68 Ge/ 68 Ga generator, 82 Sr(25.34d)/ 82 Rb generator - 67 Cu production method, 70 Zn electroplating technology based on the electrochemistry, the container, whose weight is about 3 ton, is made by depleted uranium and because of the unstable situation for the supply and demand of reactor produced radioisotope, the need for the cyclotron produced radioisotopes is dramatically increased all over the world.

  12. On the use of Indium ({sup 115}In) activation foils for the study of neutron radiation field surrounding a not shielded cyclotron; Sobre o uso de folhas de ativacao de Indio ({sup 115}In) para o estudo do campo de radiacao neutronica ao redor de um ciclotron nao blindado

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana, E-mail: amgr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencia e Tecnologia das Radiacoes, Minerais e Materiais; Rodrigues, Sergio Luiz Moreira; Andrade, Ricardo Severino [Centro de Desenvolvimento da Tecnologia Nuclear (SECPRA/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Pesquisa e Producao de Radiofarmacos; Lacerda, Marco Aurelio de Sousa [Centro de Desenvolvimento da Tecnologia Nuclear (SEPRA/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Protecao Radiologica; Silva, Teogenes Augusto da [Centro de Desenvolvimento da Tecnologia Nuclear (SERAS/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico das Radiacoes Aplicadas a Saude

    2011-10-26

    Use activation foils of {sup 115}In were evaluated for study of neutron radiation field surrounding a non shielded 16.5 MeV cyclotron, during the production of fluorine-18. Two foils of {sup 115}In were used which were exposed to the neutron flux of target-chamber of the GEPETtrace-8 of CDTN/CNEN, Brazil. The first foil were positioned in front of cyclotron beam, and the second one in the diametral opposed position to the beam. It was possible to distinguish for the first foil the 417 keV photo peaks, attributed to the thermal and the 417 keV neutrons attributed to the fast neutrons. On the second foil it was only distinguished the 417 keV photopeak. The results had shown that it is possible to evaluate the fast and thermal neutron fraction surrounding the cyclotron by using indium foils. However, the short half life of the {sup 115}In makes unviable the simultaneous irradiation of a great number of foils

  13. High resolution beam line of the U400M cyclotron and RIB accumulation and cooling in the K4 storage ring

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    The high resolution beam line ACCULINNA put into operation on a primary beam line of the JINR U400M cyclotron is discussed in the framework of the TREBLE project. The capability of the beam line for producing radioactive ion beams is demonstrated by means of nuclear fragmentation of the primary 14 N beam, with the energy of 51 MeV · A, on the 170 mg/cm 2 carbon target. Characteristics of the obtained 6 He, 8 He and 8 B radioactive beams are presented. A scheme of accumulation and cooling on the orbit of the storage ring K4 is proposed for a low intensity radioactive beam obtained from this beam line. 8 refs., 6 figs., 1 tab

  14. Intelligent CAE system of CYCLONE type cyclotron main magnet and its applications

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1992-07-01

    The main magnet that represents the feature of the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solve magnetic field computation problems, the results from them depend on the user's skill and experience very much. To help cyclotron magnet designer to get acceptable results, an intelligent CAE (computer aided engineering) system for CYCLONE type cyclotron magnet design and machining has been developed. A reasonable good results in the design could be got even if the designer is a beginner, because of the help from an expert knowledge library installed in the program

  15. Radiation safety and quality control in the cyclotron laboratory

    International Nuclear Information System (INIS)

    Sharma, S.; Krause, G.; Ebadi, M.

    2006-01-01

    Radiation safety was determined to maintain quality control in the cyclotron laboratory. Based on the results of 438 runs in the Faraday cup (20 μA for 10 min), 20 runs on 18 O-water target (40 μA for 2 h) and 10 runs on 18 O-gas targets (30 μA for 45 min), we have established that occupationally exposed workers remain 10 ± 5 times below federal regulatory limits (FRLs) in the cyclotron vault, 30 ± 8 times below FRL in the radiochemistry laboratory and 200 ± 10 times below the FRL outside the cyclotron laboratory during beam operation. (The FRL for unrestricted area are <20 μSv in 1 h.) The non-occupationally exposed workers serving in offices in the vicinity of the cyclotron vault within 100 m distance remained 200 times below the FRL irrespective of beam being on or off, suggesting that routine beam operation of 40 μA for 2 h once a day during office hours is safe provided quality control and system performance measures as discussed in this report are strictly maintained. (authors)

  16. Proceedings of the 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating

    International Nuclear Information System (INIS)

    Giruzzi, Gerardo

    2003-01-01

    The 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating was held in Aix-en-Provence (France) from 13 to 16 May 2002. The meeting was hosted by the Association Euratom-CEA sur la Fusion (CEA/Cadarache, France), with additional financial support from: - Region Provence-Alpes Cote d'Azur - The City of Aix-en-Provence - Communaute de l'Agglomeration du Pays d'Aix - Thales Electron Devices (France) - Alstom Magnets and Superconductors (France) - Spinner GmbH (Germany). The members of the local organizing committee were: G. Giruzzi, M. Lennholm, R. Magne and V. Poli, from CEA/Cadarache. The composition of the International Programme Committee was the following: M. Bornatici (Italy), A. Costley (ITER), E. de la Luna (Spain), G. Giruzzi (France), W. Kasparek (Germany), B. Lloyd (UK), J. Lohr (USA), K. Sakamoto (Japan). The subjects of the meeting were classified in four main topics: Electron Cyclotron Theory; Electron Cyclotron Emission; Electron Cyclotron Heating and Current Drive Experiments; Electron Cyclotron Technology. The results presented in these topics have been summarised in the closing session by E. Westerhof, A. Kraemer-Flecken, T. Goodman and G. Bosia, respectively. The workshop was attended by 85 participants from 18 countries, providing 10 invited talks, 30 oral presentations and 50 posters. The success of the workshop is mainly due to the amount and quality of their work and of their presentations. The generosity of the sponsors, the selection and advice work of the International Programme Committee, as well as the contribution of the chairmen and of the summary speakers should also be warmly acknowledged. The papers in this collection have been reproduced directly from the authors' manuscripts, provided either as camera-ready texts or as pdf files. The constraints on the papers lengths and formats have been kept to a minimum, on purpose. This series of workshops has now reached a good level of maturity, with well established

  17. Nonlinear cyclotron-resonance accelerations by a generalized EM wave

    International Nuclear Information System (INIS)

    Akimoto, K.; Hojo, H.

    2004-01-01

    Particle accelerations by a one-dimensional, electromagnetic, dispersive pulse in an external magnetic field are investigated. It is found that the well-known cyclotron resonance may be classified into three regimes as the length and/or the amplitude of the pulse are varied. Namely, as the pulse amplitude increases, the transit-time cyclotron-resonance acceleration (CRA) evolves to phase trapping, and reflect particles. The amplitude and wave dispersion as well as the pulse length strongly affect those accelerations. The interesting phenomena of quantization of resonance velocities in between the two regimes are also investigated. This new mechanism may lead to wave amplification at some discrete frequencies other than the cyclotron frequency. (authors)

  18. Neutron-proton scattering experiments and phase analyses for the n-p system in the energy range from 17 to 50 MeV

    International Nuclear Information System (INIS)

    Krupp, H.

    1986-01-01

    In the framework of the study of the nucleon-nucleon interaction neutron-proton scattering experiments were performed at the neutron collimator POLKA of the Karlsruhe cyclotron. Neutrons were produced by the source reaction D(d,n)X in the energy range between 17 and 50 MeV. Measured were the differential cross section, the analyzing power, and the spin correlation coefficient of the elastic n-p scattering. By means of the new data the knowledge of the isospin T=0 scattering phases could be improved. It is for the first time possible to determine the scattering phases for T=1 independently from n-p and p-p data with comparable accuracy. (orig./HSI) [de

  19. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  20. A 62-MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali del Sud-INFN

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Lojacono, P. A.; Lo Nigro, S.; Mongelli, V.; Patti, I. V.; Privitera, G.; Raffaele, L.; Rifuggiato, D.; Sabini, M. G.; Salamone, V.; Spatola, C.; Valastro, L. M.

    2004-06-01

    At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported.

  1. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru; Gribova, O. V., E-mail: gribova79@mail.ru; Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  2. Process of a cyclotron modeling with SNOP program

    International Nuclear Information System (INIS)

    Smirnov, V.L.

    2015-01-01

    The description of the SNOP program developed in JINR and intended for numerical modeling of a beam dynamics in accelerating setups of cyclotron type is presented. The main methods of work with program components, and also stages of numerical modeling of a cyclotron, the analysis of the main characteristics of the accelerated bunch by means of the SNOP are given. The explanation of some algorithms and procedures used in the program is given. [ru

  3. Power deposition for ion cyclotron heating in large tokamaks

    International Nuclear Information System (INIS)

    Hellsten, T.; Villard, L.

    1988-01-01

    The power deposition profiles during minority ion cyclotron heating are analysed in large tokamaks by using the global, toroidal wave code LION. For tokamaks with large aspect ratio and with circular cross-section, the wave is focused on the magnetic axis and can be absorbed there by cyclotron absorption when the cyclotron resonance passes through the magnetic axis. The power deposition profile is then essentially determined by the Doppler broadening of the ion cyclotron resonance. For equilibria either non-circular or with a small aspect ratio the power deposition profile depends also on the strength of the damping. In this case the power deposition profile can be expressed as a sum of two power deposition profiles. One is related to the power absorbed in a single pass, and its shape is similar to that obtained for large aspect ratio and circular cross-section. The other profile is obtained by calculating the power deposition in the limit of weak damping, in which case the wave electric field is almost constant along the cyclotron resonance layer. A heuristic formula for the power deposition is given. The formula includes a number of calibration curves and functions which has been calculated with the LION code for JET relevant equilibria. The formula enables calculation of the power deposition profile in a simple way when the launched wave spectrum and damping coefficients are known. (author). 7 refs, 11 figs

  4. Preparation and procedures of pre-commissioning on DECY-13 cyclotron

    International Nuclear Information System (INIS)

    Silakhuddin

    2016-01-01

    A preparation and procedures for pre-commissioning of DECY-13 Cyclotron have been discussed and the steps for these have been arranged. Pre-commissioning is a testing stage of individual subsystems when all subsystems have been integrated into a cyclotron system. The discussion was taken from references, the next the readiness of devices was studied and then the preparation and procedures of the pre-commissioning were arranged. The results of the discussion are that for doing the pre-commissioning of the cyclotron DECY-13 still requires the completion of RF-dee subsystem and some components for testing are still to be completed. (author)

  5. Use of maze in cyclotron hoppers

    International Nuclear Information System (INIS)

    Fernandes, Fernando A.; Alves, Juliano S.; Fochesatto, Cintia; Cerioli, Luciane; Borges, Joao Alfredo; Gonzalez, Delfin; Silva, Daniel C.

    2013-01-01

    Introduction: the increasing number of cyclotrons in Brazil due to constitutional amendment 49 /06 that enabled the production of radiopharmaceuticals with a short half - life by private companies. The radionuclides used for PET - CT require production centers near or within the diagnostic centers. In order to minimize maintenance and operating risks, gaining efficiency, our facility was the first in Brazil to use the access to a cyclotron bunker via maze, rather than armored door stopper type. Materials: the design calculations were based on the Monte Carlo method (MCNP5 - Monte Carlo N-Particletransportcode version 5). At the ends of the labyrinth are installed a door of polyethylene, for thermalization of neutrons, and other of wood for limiting access. Both legs of the maze have wall thickness of 100cm. In inspection Brazilian CNEN realize measures of dose rate for neutrons and gamma 9 points: 7 around the bunker, 1 over the bunker and 1 in the exhaust with the cyclotron operating with maximum load, double beam of 50uA for 2 hours. After commissioning were carried out around the bunker, the following measures: cumulative dose in three months with dosimeters for neutron rate dose with a gas proportional detector type filled with 3 He and polyethylene neutron moderator and dose rate with a Geiger - Mueller detector for gamma radiation. Readings with neutron detectors were classified as background radiation and dose rates were always below the limits established in standard EN 3.01, and the calculation of the predicted regardless of the intensity of irradiation inside the bunker. Conclusion: the use of labyrinths as a way to access the bunkers cyclotron has been shown to be effective as the radiation shielding and efficient by allowing quick and easy access, virtually eliminating the maintenance

  6. Cyclotron/PET project in Uruguay

    International Nuclear Information System (INIS)

    Engler, H.

    2006-01-01

    The Positron Computed Tomography (PET) is a tri dimensional image technique which shows biochemical information. PET is used in neurology and cardiology diseases. The National Center Cyclotron PET has been found to research, development and health science applications.

  7. Estimation of the thermal neutron flux in a PET cyclotron room via radioactive analysis of the bolts of a wall socket in the room

    International Nuclear Information System (INIS)

    Ogata, Y.; Ishigure, N.; Mochizuki, S.; Ito, K.; Hatano, K.; Abe, J.; Miyahara, H.; Masumoto, K.; Nakamura, H.; Matsumura, H.

    2008-01-01

    Full text: Since positron emission nuclides for PET (Positron Emission Tomography) have short half-lives, they are mainly produced by on-site cyclotrons. Significant amounts of neutrons are generated together with the operating of the cyclotron, and then materials in the room are activated. To quantify the neutron flux density will lead the prediction of the extent of the activation. We tried to estimate the neutron flux of the room via the radioactive analysis of bolts in the room. The cyclotron (Cypris HM-18, Sumitomo Heavy Industry) is able to accelerate protons and deuterons up to 18 and 10 MeV, respectively. The routine charge current is 20μA. The cyclotron is housed in a room with 1 m thickness concrete wall. A couple of bolts of a wall socket were removed to investigate the components and the radioactivities, which were analyzed by fluorescent X-ray spectroscopy and by gamma-ray spectroscopy, respectively. We compared the neutron flux estimated by the bolts analysis with the results measured by the gold foil activation method. The weight sum of the bolts was 1.257 g. They were made of nickel plated brass, and predominantly consisted of Cu (63%) and Zn (34%). Four nuclides, 69m Zn, 65 Zn, 64 Cu, and 60 Co, were detected in the bolts. The activity of 64 Cu half-life of 12.7 h, led the last few days history of neutron flux, and the activity of 65 Zn, 244 d, led the last few years history. The analysis of the bolts activity estimated the thermal neutron flux at 4∼6x10 5 cm -2 s -1 . This figure agreed with the value, 6∼9x10 5 cm -2 s -1 , computed from the activated gold foil near the bolts. Bolts are quite generally installed in such a room. Therefore, the radioactive analysis of the bolts leads convenient and effective estimation of neutron flux there. Consequently, the radioactive analysis of the bolts in the cyclotron room allowed us to estimate the neutron flux in the room. (author)

  8. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    Science.gov (United States)

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  9. Modern compact cyclotrons for nuclear medicine designed and manufactured in NIIEFA

    International Nuclear Information System (INIS)

    Bogdanov, P.V.; Vasilchenko, I.N.; Gavrish, Yu.N.; Galchuk, A.V.; Grigorenko, S.V.; Kuzhlev, A.N.; Menshov, Yu.D.; Mudroyubov, V.G.; Ponomarenko, V.I.; Strokach, A.P.

    2012-01-01

    A series of compact cyclotrons, the CC-12, CC-18/9 and MCC-30/15, intended for the production of radionuclides for diagnostics and therapy directly in medical institutions has been designed and manufactured in NIIEFA. These cyclotrons provide the acceleration of negative hydrogen and deuterium ions injected from external sources. Beams of accelerated particles are extracted by stripping negative ions to protons and deuterons by carbon foils. Shielding-type electromagnets with the vertically located median plane are applied in these cyclotrons.

  10. Modular beam diagnostics instrument design for Cyclotrons

    International Nuclear Information System (INIS)

    Chaddha, N.; Bhole, R.B.; Sahoo, S.; Nandy, P.P.; Pal, S.

    2012-01-01

    The Cyclotrons at VECC, Kolkata i.e. Room Temperature Cyclotron (RTC) and Superconducting Cyclotron (SCC) comprise of internal and external Beam Diagnostic systems. These systems provide the beam developer with position, intensity, beam profile, a visual impression of the size and shape of ion beam, and operational control over diagnostic components like 3-finger probe, Beam Viewer probe, Deflector probe, Faraday cup, X-Y slit, Beam viewer etc. Automation of these components was initially done using customised modules for individual sub-system. An expansion of this facility and various levels of complexity demand modular design to cater easy modification and upgradation. The overall requirements are analysed and modular cards are developed based on basic functionalities like valve operation, probe/slit/viewer control, position read-out, Interlock, aperture control of beam line and communication. A 32-bit Advanced RISC Machine (ARM) based card with embedded EPICS is chosen as the master controller and FPGA/microcontroller is used for functional modules. The paper gives a comprehensive description of all modules and their integration with the control system. (author)

  11. A new, simple and precise method for measuring cyclotron proton beam energies using the activity vs. depth profile of zinc-65 in a thick target of stacked copper foils

    International Nuclear Information System (INIS)

    Asad, A.H.; Chan, S.; Cryer, D.; Burrage, J.W.; Siddiqui, S.A.; Price, R.I.

    2015-01-01

    The proton beam energy of an isochronous 18 MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming ‘thick’ targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the "6"5Zn activity vs. depth profile in the target, with the results obtained using "6"2Zn and "6"3Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25 µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using ‘energy’ as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using "6"5Zn activity profiles and 50-μm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98–18.08), and 18.06±0.12 MeV (95%CI=18.02–18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using "6"5Zn and 50-μm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05 MeV (95%CI=18.00–18.23; NS compared with ‘before’). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders. - Highlights: • Simple

  12. Computer modeling of magnetic structure for IC-35 cyclotron

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.; Morozov, N.A.

    1998-01-01

    An extensive series of calculations has been carried out in order to design the magnetic structure of the IC-35 cyclotron for radioisotope production. The calculations were carried out by 2-D POISCR code. The average magnetic field and its variation were produced with the help of two different calculation models. The parameters of the cyclotron magnetic system are presented

  13. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    Science.gov (United States)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  14. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    International Nuclear Information System (INIS)

    Camarlinghi, N; Sportelli, G; Belcari, N; Cecchetti, M; Ferretti, S; Kraan, A; Retico, A; Straub, K; Guerra, A Del; Rosso, V; Battistoni, G; Sala, P; Cirrone, G A P; Cuttone, G; Romano, F; Tramontana, A

    2014-01-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β + activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β + activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo

  15. Electron cyclotron waves, transport and instabilities in hot plasmas

    International Nuclear Information System (INIS)

    Westerhof, E.

    1987-01-01

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  16. The Medical Cyclotron Facility in RMC, Parel, BARC

    International Nuclear Information System (INIS)

    Gopalakrishna, Arjun; Banerjee, Sharmila

    2017-01-01

    The Medical Cyclotron Facility in Radiation Medicine Centre (RMC) is the first one of its kind, installed in 2002. "1"8F based radiotracers are produced in this facility on a routine basis for Positron Emission Tomography (PET), of in-house patients, as well as for supply to other nuclear medicine centers in Mumbai as well as Pune. The facility consists of the following sub parts - Cyclotron and support equipment; Radiochemistry synthesis laboratory; Quality control (QC) laboratory

  17. Parameters of the eigenellipsoid for separated sector cyclotrons

    International Nuclear Information System (INIS)

    Ferme, J.

    1989-01-01

    The analytical expressions of the elements of the beam matrix corresponding to the eigenellipsoid for a beam injected on an equilibrium orbit of a cyclotron are presented. The four dimensional phase space of the horizontal plane is only considered. Some restrictive hypotheses are made: there is no acceleration, and space charge effects are not taken into account. The beam matrix has been computed for the general case of spiraled sectors cyclotrons, and is valid for any given azimuth

  18. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  19. R and D using the heavy charged particle beam accelerators of the university in Louvain-la-Neuve

    International Nuclear Information System (INIS)

    Ryckewaert, G.H.

    1998-01-01

    The Cyclotron Research Centre (CRC) in Louvain-la-Neuve runs three cyclotrons: the first one (CYCLONE acronym for 'CYClotron de LOuvain la NEuve') is a multiparticle (protons-> Xenon), variable energy (80 MeV for protons, 110 * Q 2 /A MeV for heavy ions and down to 0.56 MeV/nucleon for light radioactive ions) isochronous cyclotron. The second one (CYCLONE30) is a fixed field, fixed frequency H - cyclotron capable of beam currents up to 500 μAat energies ranging from 15 to 30 MeV. It is the prototype of an industrial cyclotron for commercial isotope production developed at CRC. The third one is a home built isochronous, multiparticle, variable energy cyclotron (CYCLONE44) for the acceleration of intense, low energy RIB's for cross-section measurements of interest for Nuclear Astrophysics. After a brief description of the cyclotrons, the production of RIB's and neutron beams (both monoenergetic and high intensity), are presented. Some uses of the beams are illustrated: RIB's for Nuclear Astrophysics; neutron beams for cross-section measurements of interest for the energy amplifier/nuclear waste transmutation projects or for the production of neutron rich RIB's; heavy ions for Single Event Effects (SEE) testing in space components and for the production of track etched microporous membranes; proton and neutron beams for Medical Applications. Finally, the interaction between industrial development and fundamental research experienced in our laboratory are commented and future plans are sketched. (J.P.N.)

  20. Summary of EC-17: the 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (Deurne, The Netherlands, 7-10 May 2012)

    NARCIS (Netherlands)

    Westerhof, E.; Austin, M. E.; Kubo, S.; Lin-Liu, Y. R.; Plaum, B.

    2013-01-01

    An overview is given of the papers presented at the 17th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH). The meeting covered all aspects of the research field ranging from theory to enabling technologies. From the workshop, advanced control by

  1. Magnetic phenomena in F.F.A.G. cyclotrons; Phenomenes magnetiques dans les cyclotrons F.F.A.G

    Energy Technology Data Exchange (ETDEWEB)

    Beurtey, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    This study regroups and develops some experimental and theoretical results obtained with spiral tract cyclotrons. The method used has been studied previously by C. BLOCH, whom we thank for his helpful advice. We have tried to give the main useful results, which are also in accordance with the rather scarce experimental results obtained on spiral pole pieces. (author) [French] Cette etude regroupe et developpe des resultats experimentaux et theoriques sur les cyclotrons 'spirales'. La methode employee est celle etudiee par C. BLOCH, que nous remercions vivement pour sa bienveillance et ses conseils. Nous avons essaye de donner les resultats essentiels a la fois utilisables et compatibles avec les resultats experimentaux peu nombreux sur les pieces polaires spiralees. (auteur)

  2. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  3. New development of neutron radiography with a small cyclotron

    International Nuclear Information System (INIS)

    Ikeda, Yasushi; Ohkubo, Kohei; Kato, Toshihiko; Nakamura, Tomihisa; Fuji, Takayoshi.

    1990-01-01

    A series of neutron radiography testing has been performed for several years by using a small accelerator called 'Baby Cyclotron' manufactured by Japan Steel Works, Ltd. The Baby Cyclotron produces fast neutrons at the rate of 4x10 12 n/cm 2 s, and enables to perform neutron radiography imaging by various techniques. The most important application of this Baby Cyclotron radiography system is the non-destructive testing (NDT) of various explosive devices prepared for space launch vehicles. It is assured that thermal neutron radiography testing is a very useful means for the NDT. Also fast neutron radiography testing is in progress. The fast neutron radiography with a CR39 track-etch image recorder was developed, and it was shown to be the very useful NDT means when the thicker objects used for new H-2 launch vehicles had to be examined. Because thermal neutron radiography has the high detectability of hydrogenous materials, organic elastomers such as O-rings and explosive powder are clearly observable through the opaque steel walls of containers. The Baby Cyclotron and the neutron radiography facility, thermal neutron and fast neutron radiography testings and so on are reported. (K.I.)

  4. Preparation of 199Tl using the electroplating gold targets on the internal target installation of cyclotron

    International Nuclear Information System (INIS)

    Zhou Dehai; Xie Degao; Chao Yangshu; Liao Fuquan; Zhang Youfa; Wang Zefu

    1992-01-01

    The separative conditions of 199 Tl from Cu, Au and Ga by reaction 197 Au(α, 2n) 199 Tl on the internal target installation of cyclotron is studied. The α-particle energy is selected in the range of 24-15 MeV. The cumulative current intensities of such α-particle beams bombarding the gold target at 150-200 μA are 1200 μA · h and 1500 μA · h respectively. The radiochemical separation of 199 Tl is carried out with isopropyl ether extraction and anions exchange from the irradiated gold targets. The radioactivities of 199 Tl and 200 Tl are 2.3 x 10 5 Bq and 7.1 x 10 2 Bq, and 200 Tl makes up 0.29% of the total radioactivity. The impurity elements contained 1 ml of 199 TlCl injection solution are Au 199 TlCl has been used in clinical experiments in vivo and relatively good results have been obtained

  5. An investigation into the technical feasibility of cyclotron production of technetium-99m

    International Nuclear Information System (INIS)

    Egan, G.F.; Lagunas-Solar, M.C.

    1994-01-01

    The role of technetium-99m in nuclear medicine is well established with 80 per cent to 90 per cent of all nuclear medicine studies utilising this isotope. Technetium-99m is currently produced from nuclear reactors via production of the parent radionuclide molybdenum-99. The reactor production of 99m Tc has both significant financial and environmental costs, with unresolved problems in the areas of radioactive waste disposal and reactor decommissioning. Recent scientific publications have indicated that medical quality 99m Tc may be produced using cyclotrons without having the associated problems of waste disposal and decommissioning. Further scientific research is now required to demonstrate the feasibility of this cyclotron production technique. A collaboration between the Cyclotron and PET Centre, Austin Hospital, the National Medical Cyclotron, ANSTO, Sydney, and the Crocker Nuclear Laboratory, University of California, Davis, USA has been proposed. The general objective of the proposed collaboration is to acquire additional scientific data to evaluate the 99m Tc cyclotron production method and to determine the feasibility of cyclotron technology for Australian nuclear medicine. 16 refs., 2 tabs

  6. Optimisation of the radiation shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2000-01-01

    Effective radiation shielding is imperative for safe operation of modern Medical Cyclotrons producing large activities of short-lived radioisotopes on a commercial basis. The optimal cyclotron shielding design demands a careful balance between the radiological, economical and often the sociopolitical factors. One is required to optimize the cost of radiation protection and the cost of radiological-health detriment. The cost of radiation protection depends explicitly on a) the nature of the radiation field produced by the cyclotron, b) the cyclotron operation condition, c) the cost of shielding material, d) the level of dose reduction, e) the projected net revenue from the sale of the radioisotopes, and f) the depreciation rate of the cyclotron facility. The Genetic Algorithm (GA) is used for a cost -benefit analysis of this problem. The GA is a mathematical technique that emulates the Darwinian Evolution paradigm. It is ideally suited to search for a global optimum in a large multi-dimensional solution space, having demonstrated strength compared to the classical analytical methods. Furthermore the GA method runs on a PC in a Windows environment. This paper highlights an interactive spreadsheet macro program for the cost benefit analysis of the optimize Medical Cyclotron shielding using a GA search engine. (author)

  7. Study of axial injection of polarized protons into the grenoble cyclotron

    International Nuclear Information System (INIS)

    Pabot, J.

    1969-01-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [fr

  8. Atmospheric tracer study of the emissions from the University of Michigan Cyclotron/PET Facility

    International Nuclear Information System (INIS)

    Scofield, P.A.

    1986-01-01

    The University of Michigan (U of M) Cyclotron/Positron Emission Tomography (PET) facility consists of a cyclotron (Model CS-30, The Cyclotron Corporation), radiochemistry laboratory, and Pet scanner. Accelerator-produced radioactive materials, such as, carbon-11 and oxygen-15 are typically emitted from the Cyclotron/PET facility through short stacks located on the roof. This project studied the dispersion of emissions from the facility within the medical complex. To achieve this purpose, the research project had three phases: a physical modeling study; a preliminary field smoke release study; and, a field study using a tracer gas to simulate emission dispersion from the U of M Cyclotron/PET facility vault stack. The objective was to determine normalized concentrations, under selected wind directions and speeds, for use in establishing radionuclide concentrations at the air intakes of the Cyclotron/PET facility and surrounding buildings and at selected ground-level locations

  9. Princeton Cyclotron QDDD spectrograph system

    International Nuclear Information System (INIS)

    Kouzes, R.T.

    1985-01-01

    A review of experiments involving the Princeton Quadrupole-Dipole-Dipole- Dipole (QDDD) spectrograph is given. The QDDD is a high resolution, large solid angle device which is combined with the azymuthally varying field (AVF) cyclotron. Some reactions involving 3 He beams are discussed

  10. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  11. Neutron radiography with the cyclotron

    International Nuclear Information System (INIS)

    Tazawa, Shuichi; Asada, Yorihisa; Yano, Munehiko; Nakanii, Takehiko.

    1985-01-01

    Neutron radiography is well recognized as a powerful tool in nondestructive testing, but not widely used yet owing to lack of high intense thermal neutron source convenient for practical use. This article presents a new neutron radiograph facility, utilizing a sub-compact cyclotron as neutron source and is equipped with vertical and horizontal irradiation ports. The article describes a series of experiments, we conducted using beams of a variable energy cyclotron at Tohoku University to investigate the characteristics of thermal neutron obtained from 9 Be(p, n) reaction and thermalized by elastic scattering process. The article also describes a computer simulation of neutron moderator to analyze conditions getting maximal thermal neutron flux. Further, some of practical neutron radiograph examinations of aero-space components and museum art objects of classic bronze mirror and an attempt realizing real time imaging technique, are introduced in the article. (author)

  12. Cyclotron radiation from hot plasmas

    International Nuclear Information System (INIS)

    Pohl, F.; Henning, J.; Duechs, D.

    1975-11-01

    In calculating the energy transport and losses due to cyclotron radiation there are two major requirements: the absorption coefficient has to be known and the proper geometry of the plasma has to be taken into account. In this report Trubnikov's integral formulae for the absorption coefficient have been evaluated numerically and compared with the approximative formulas of previous authors. Deviations by a factor of 2 - 10 in various frequency regimes are not unusual. With these coefficients the rate of change of the energy density due to cyclotron radiation in a plasma as well as the radiation density at a plasma surface are computed for plasma slab and plasma cylinder. Sometimes considerable differences to the results of previons papers can found. Many simple formulae interpolating the numerical results are given in the text, and the FORTRAN computer programs have been reproduced in the appendices. (orig.) [de

  13. Radioisotope production by reactors and cyclotrons in Japan

    International Nuclear Information System (INIS)

    Murakami, Yukio

    1978-01-01

    Present status of radioisotope production in Japan and the increasing demand from various fields are generally reviewed. Future problems associated with the shortage of economical supply are also discussed. The first half of this report is devoted to general review of the increasing demand for various radioisotopes from increasing number of users. The present status and future trends of the distribution of users of specific radioisotopes and their demands are shown. The remaining half of this report reviews the production with reactors and cyclotrons. The Japanese reactors producing radioisotopes are limited to low flux (10 13 ) research reactors at JAERI. Some problems associated with the improvement of availability and with the organizational structure are discussed. As for the production with cyclotrons, available facilities and the method of production are explained in detail. For clinical use, especially for the production of short lived radioisotopes, the advantage of a small special purpose cyclotron at each medical organization is emphasized. (Aoki, K.)

  14. Transparency of Magnetized Plasma at Cyclotron Frequency; TOPICAL

    International Nuclear Information System (INIS)

    G. Shvets; J.S. Wurtele

    2002-01-01

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration

  15. Wave propagation through an electron cyclotron resonance layer

    International Nuclear Information System (INIS)

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N ' 'parallel to'' ≅ v t /c, an O-mode beam is shown to exhibit a strong wiggle in the trajectory of the centre of the beam when passing through the fundamental electron cyclotron resonance. The effects are largest for low temperatures and close to perpendicular propagation. Predictions from standard dielectric wave energy fluxes are inconsistent with the trajectory of the beam. Qualitatively identical results are obtained for the X-mode second harmonic. In contrast, the X-mode at the fundamental resonance shows significant deviations form cold plasma propagation only for strongly oblique propagation and/or high temperatures. On the basis of the obtained results a practical suggestion is made for ray tracing near electron cyclotron resonance. (Author)

  16. Control philosophy and diagnostic systems of Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Roy, Anindya; Bhattacharjee, Tanushyam; Chaddha, N.; Bhole, R.B.; Pal, Sarbajit; Samanta, N.C.; Dutta, C.D.; Mukhopadhyay, B.; Panda, U.S.; Sarkar, B.; Nabhiraj, P.Y.; Sarkar, D.

    2009-01-01

    The control system has the primary task of monitoring and control of all the important parameters of a machine comprises of various sub-systems. The paper describes the philosophy of the distributed control system of Superconducting Cyclotron implemented with the support of reliable and fast control network. The paper also describes the field hardware interfaced with various software platforms at different levels of individual sub-systems e.g. Main Magnet Power Supply, Trim-coil Power Supplies, He Liquefier/Refrigerator Plant, Cryogen Delivery System, RF System, ECR Ion source, Vacuum System, Radiation Monitoring System, Alarm Annunciation System, LCW System of SC Cyclotron. The database management system facilitating the exchange of control data among the sub-systems, serving as primary source of information to understand the behavior of the cyclotron, is also discussed. A brief description of various beam diagnostic instruments and their respective control systems e.g. Main Probe, Borescope, Beam viewer, Magnetic channel control system, Beam line slit control system, are briefly described. (author)

  17. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    Science.gov (United States)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  18. The Ion Cyclotron, Lower Hybrid, and Alfven Wave Heating Methods

    International Nuclear Information System (INIS)

    Koch, R.

    2004-01-01

    This lecture covers the practical features and experimental results of the three heating methods. The emphasis is on ion cyclotron heating. First, we briefly come back to the main non-collisional heating mechanisms and to the particular features of the quasilinear coefficient in the ion cyclotron range of frequencies (ICRF). The specific case of the ion-ion hybrid resonance is treated, as well as the polarisation issue and minority heating scheme. The various ICRF scenarios are reviewed. The experimental applications of ion cyclotron resonance heating (ICRH) systems are outlined. Then, the lower hybrid and Alfven wave heating and current drive experimental results are covered more briefly. Where applicable, the prospects for ITER are commented

  19. Stochasticity of the energy absorption in the electron cyclotron resonance

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    1998-01-01

    The energy absorption mechanism in cyclotron resonance of the electrons is a present problem, since it could be considered from the stochastic point of view or this related with a non-homogeneous but periodical of plasma spatial structure. In this work using the Bogoliubov average method for a multi periodical system in presence of resonances, the drift equations were obtained in presence of a RF field for the case of electron cyclotron resonance until first order terms with respect to inverse of its cyclotron frequency. The absorbed energy equation is obtained on part of electrons in a simple model and by drift method. It is showed the stochastic character of the energy absorption. (Author)

  20. Ion Cyclotron Heating on Proto-MPEX

    Science.gov (United States)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.