WorldWideScience

Sample records for mev injector linac

  1. The RF system for the 70 MeV linac injector

    International Nuclear Information System (INIS)

    Planner, C.W.

    1975-12-01

    The Radio Frequency System for the 70 MeV Linac Injector for Nimrod is required to power the four Accelerating Cavities and the Buncher and Debuncher Cavities. The frequency of operation is 202.5 MHz and is determined by the use of existing equipment from the redundant 50 MeV Proton Linac for the second and third accelerating cavities and the buncher and de-buncher cavities. The subject is discussed under the following headings: low power drive chain; RF feed lines; cavity field level stabilisation. Circuit diagrams are presented. (U.K.)

  2. Updating the CSNS injector linac to 250 MeV with superconducting double-spoke cavities

    International Nuclear Information System (INIS)

    Li Zhihui; Fu Shinian

    2015-01-01

    In order to update the beam power from 100 kW to 500 kW in the China Spallation neutron source (CSNS) Phase Ⅱ, one of the important measures is to replace the 80 m long beam transport line between the present 80 MeV linac injector and the rapid cycling synchrotron (RCS) to another kind of acceleration structure. In this paper, we proposed a scheme based on 324 MHz double-spoke superconducting cavities. Unlike the superconducting elliptical cavity and normal conducting coupled cavity linac (CCL) structure, the double-spoke cavity belongs to the TE mode structure and has a smaller transverse dimension compared with that of the TH mode one. It can work at base frequency as the drift tube Linac (DTL) section, so that the cost and complexity of the RF system will be much decreased, and the behaviors of the beam dynamics are also improved significantly because of the low charge density and larger longitudinal acceptance. Furthermore, because of the relatively longer interactive length between the charged particle and the electromagnetic field per cell, it needs relatively less cell numbers and it has larger velocity acceptance compared with the double frequency TH structures. The superconducting section consists of 14 periods, each of which includes 3 superconducting cavities encapsulated in one cryomodule and a doublet in room temperate. The general considerations on cavity and beam dynamics design are discussed and the main results are presented. (authors)

  3. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  4. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  5. Performance of the 100 MeV injector linac for the electron storage ring at Kyoto University

    International Nuclear Information System (INIS)

    Shirai, T.; Sugimura, T.; Iwashita, Y.; Kakigi, S.; Fujita, H.; Tonguu, H.; Noda, A.; Inoue, M.

    1996-01-01

    An electron linear accelerator has been constructed as an injector of a 300 MeV electron storage ring (Kaken Storage Ring, KSR) at Institute for Chemical Research, Kyoto University. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the 1 μsec long pulse mode. The transverse and longitudinal emittance are measured to evaluate the beam quality for the beam injection into the KSR. They are observed by the profile monitors combined with quadrupole magnets or an RF accelerator. The results are that the normalized transverse emittance is 120 π.mm.mrad. The longitudinal emittance is 15 π.deg.MeV and the energy spread is ±2.2 %. (author)

  6. Free electron laser facilities employing a 150-MeV linac injector for Saga synchrotron light source

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yasumoto, M.; Ochiai, Y.; Ishibashi, M.; Murayama, T.

    1999-01-01

    Free electron laser (FEL) facilities as the FELI FEL Facility are proposed, for which a 150-MeV linac type injector for a Saga synchrotron light source (SLS) is employed in FEL mode. The linac has two operating modes; short macropulse mode a 1 μs at 150 MeV for injection to a 1 - 1.3-GeV third generation type storage ring and long macropulse mode of 12 μs at 100 MeV for four FEL Facilities. The macropulse beam consists of a train of several ps, 0.6 nC microbunches (peak current 100 A) repeating at 89.25 MHz. We are aiming to supply high power level photon beams covering an attractive wavelength range from 0.05 nm (25 keV) to 200 μm (0.006 eV) for scientific researches, bio-medical and industrial applications, using the Saga third generation type SLS with a superconducting wiggler and the proposed four FEL Facilities. (author)

  7. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  8. Injector linac of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Hori, T.; Suzuki, S.; Yanagida, K.; Itoh, Y.; Mizuno, A.; Taniuchi, T.; Sakaki, H.; Kuba, A.; Fukushima, S.; Kobayashi, T.; Asaka, T.; Yokomizo, H.

    1996-01-01

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  9. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  10. An induction linac injector for scaled experiments

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Pike, C.; Brodzik, D.; Johnson, R.M.; Vanecek, D.; Hewett, D.W.

    1991-04-01

    An injector is being developed at LBL that would serve as the front end of a scaled induction linac accelerator technology experiment for heavy ion fusion. The ion mass being used is in the range 10--18. It is a multi-beam device intended to accelerate up to 2 MeV with 500 mA in each beam. The first half of the accelerating column has been built and experiments with one carbon beam are underway at the 1 MeV level. 5 refs., 1 fig

  11. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  12. The injector linac for the Mainz microtron

    International Nuclear Information System (INIS)

    Euteneuer, H.; Braun, H.; Herminghaus, H.; Scholer, H.; Weis, T.

    1988-01-01

    The design and setup of a 3.5 MeV, 100μA injector for a cascade of race track microtrons is presented. It replaces a 2.1 MeV Van De Graaff for getting higher reliability, improved beam dynamics in the first RTM by increased and more stable input energy, as well as an easier access and a better vacuum to launch a beam of polarized electrons. In this paper, the considerations which led under given boundary conditions to the final design concept are discussed and its realization with PARMELA is described. Details of the linac setup are given. First operation showed a good longitudinal performance (energy stability ≤ ±2 star 10 -4 , spectrum ≤ 1 star 10 -3 FWHM, bunch length ≤ ± 1.5 degrees) and an excellent reproducibility of machine operation

  13. The Pre-Injector Linac for the Diamond Light Source

    CERN Document Server

    Christou, C

    2004-01-01

    The Diamond Light Source is a new medium-energy high brightness synchrotron light facility which is under construction on the Rutherford Appleton Laboratory site in the U.K. The accelerator facility can be divided into three major components; a 3 GeV 561 m circumference storage ring, a full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the linac design and plans for operation. The linac is supplied by ACCEL Instruments GmbH under a turn-key contract, with Diamond Light Source Ltd. providing linac beam diagnostics, control system hardware and standard vacuum components. Commissioning of the linac will take place in early 2005 and user operation of the facility will commence in 2007.

  14. LINAC4, A New $H^{-}$ Linear Injector at CERN

    CERN Document Server

    Garoby, R; Hanke, K; Lombardi, A M; Rossi, C; Vretenar, M

    2004-01-01

    Linac2, the present injector of the CERN PS Booster, limits the performance of the proton accelerator complex because of its low output energy (50 MeV). To remove this bottleneck, a higher energy linac is proposed (called â€ワLinac4†) which will double the brightness and the intensity of the beam delivered by the PSB and ensure the â€ワultimate” beam is available for LHC. Linac4 will deliver H- ions at a kinetic energy of 160 MeV. It is designed to be usable as the front-end of a future multi-GeV multi-MW linear accelerator, the â€ワSuperconducting Proton Linac” (SPL). R&D for Linac4 is now actively taking place with the support of the European Union through the Joint Research Activity HIPPI (â€ワHigh Intensity Pulsed Proton Injectors”), and of three ISTC projects involving three major Russian laboratories (BINP, IHEP and ITEP) and two nuclear centres (VNIIEF and VNIITF). The design of this new accelerator and the on-going developments are described.

  15. The CLIC Positron Capture and Acceleration in the Injector Linac.

    CERN Document Server

    Vivoli, Alessandro; Chehab, Robert; Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Rinolfi, Louis; Strakhovenko, Vladimir; Variola, Alessandro

    2010-01-01

    The baseline of the CLIC study considers non-polarized e+ for the 3 TeV centre of mass energy. The e+ source is based on the hybrid targets scheme, where a crystal-radiator target is followed by an amorphous-converter target. Simulations have been performed from the exit of the amorphous target up to the entrance of the Pre-Damping Ring. Downstream the amorphous target, there is an Adiabatic Matching Device (AMD) followed by a Pre-Injector Linac accelerating the e+ beam up to around 200 MeV. Then a common Injector Linac (for both e+ and e-) accelerates the beams up to 2.86 GeV before being injected into the Pre-Damping Ring. In this note, the characteristics of the AMD and the other sections are described and the beam parameters at the entrance of the Pre-Damping Ring are given.

  16. Linac4, a New Injector for the CERN PS Booster

    CERN Document Server

    Garoby, R; Gerigk, F; Hanke, K; Lombardi, A; Pasini, M; Rossi, C; Sargsyan, E; Vretenar, M

    2006-01-01

    The first bottle-neck towards higher beam brightness in the LHC injector chain is due to space charge induced tune spread at injection into the CERN PS Booster (PSB). A new injector called Linac4 is proposed to remove this limitation. Using RF cavities at 352 and 704 MHz, it will replace the present 50 MeV proton Linac2, and deliver a 160 MeV, 40 mA H- beam. The higher injection energy will reduce space charge effects by a factor of 2, and charge exchange will drastically reduce the beam losses at injection. Operation will be simplified and the beam brightness required for the LHC ultimate luminosity should be obtained at PS ejection. Moreover, for the needs of non-LHC physics experiments like ISOLDE, the number of protons per pulse from the PSB will increase by a significant factor. This new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios. It is also designed to become the low energy part of a future 3.5 GeV, multi-megawatt superconducting linac (SPL). The present desig...

  17. Commissioning the Linac Coherent Light Source injector

    Directory of Open Access Journals (Sweden)

    R. Akre

    2008-03-01

    Full Text Available The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  18. Two-pulse acceleration for BEPCII injector linac

    International Nuclear Information System (INIS)

    Pei Shilun; Wang Shuhong; Lu Weibin

    2007-01-01

    In order to double the injection rate of positron beam from the linac to the storage ring of BEPC II, a two-pulse generation and acceleration scheme has been proposed. The two-pulse simulation by programs including LIAR, PARMELA, EGUN and TRANSPORT is described first and the method is applied in the beam dynamics studies of BEPC II linac. The experiment of two-pulse acceleration was performed in BEPC II linac and some preliminary results are obtained, which provides a good reference for further upgrading of BEPC II injector linac. (authors)

  19. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Kwan, J.W.; Ahle, L.; Beck, D.N.; Bieniosek, F. M.; Faltens, A.; Grote, D.P.; Halaxa, E.; Henestroza, E.; Herrmannsfeldt, W.B.; Karpenko, V.; Sangster, T.C.

    2000-01-01

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  20. Design of injector section for SPring-8 linac

    International Nuclear Information System (INIS)

    Yoshikawa, Hiroshi; Nakamura, Naoki; Mizuno, Akihiko; Suzuki, Shinsuke; Hori, Toshihiko; Yanagida, Kenichi; Mashiko, Katsuo; Yokomizo, Hideaki

    1993-07-01

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  1. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  2. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  3. The ANL 50 MeV H- Injector: 35 year anniversary

    International Nuclear Information System (INIS)

    Stipp, V.; Brumwell, F.; McMichael, G.

    1996-01-01

    The H - Injector at ANL consists of a 750 keV Cockcroft-Walton preaccelerator and an Alvarez type 50 MeV Linac. The accelerator was originally constructed as the source of protons for the Zero Gradient Synchrotron (ZGS). The first proton beam was extracted from the preaccelerator in 1961. The accelerator is presently used as the injector for the Intense Pulsed Neutron Source (IPNS), a 500 MeV rapid cycling synchrotron with a spallation-neutron target. During most of the time since turn-on over 15 years ago, the IPNS facility availability has rarely dropped below 90% and has averaged 95% over the last ten years. During the same period, the 50 MeV injector availability has averaged 99%. Performance and improvements over the 35 year period is discussed

  4. A hot-spare injector for the APS linac

    International Nuclear Information System (INIS)

    Lewellen, J. W.

    1999-01-01

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades

  5. Release the beams! - Linac4 ready to hit the 50 MeV mark

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    The Linac4 accelerator is now prepared to reach 50 MeV. This milestone energy - expected in the coming weeks - will allow the machine to act as a replacement for the ageing Linac2, four years before it takes over at the head of the accelerator chain in 2020.    Inside the Linac4 tunnel, the final DTL cavities will guide beams to 50 MeV.  (Image: Stephan Russenschuck.) The Linac4 accelerator will bring H- ion beams (hydrogen atoms with an extra electron) up to 160 MeV for injection into the PS Booster. As a key part of the LHC injector upgrade programme, Linac4 will allow the PS Booster to double its beam brightness, which will contribute to increasing the LHC’s luminosity. Linac4 will soon bring beams up to 50 MeV - the current energy delivered by the Linac2 accelerator. This milestone follows on from another recent accomplishment: the installation and commissioning of the final Drift Tube Linac (DTL) tank. Using an innovati...

  6. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    CERN Multimedia

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  7. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  8. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, D.; Wiedemann, H.; Youngmann, B.; Miller, R.H.

    1991-01-01

    A 120 MeV, 2,856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The RF system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring RF system are highlighted

  9. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, H.; Wiedemann, H.; Youngmann, B.

    1991-05-01

    A 120 MeV, 2856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The rf system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring rf system are highlighted. 8 refs., 6 figs

  10. Experience with a radio frequency gun on the SSRL Injector Linac

    International Nuclear Information System (INIS)

    Weaver, J.N.; Genin, R.D.; Golceff, P.; Morales, H.; Sebek, J.

    1993-04-01

    A-SSRL/Varian-Associates-built, one-and-a-half cavity microwave, thermionic-cathode gun has operated on the SSRL Injector Linac reliably without changing the cathode for over 10,000 hours, with no significant decrease in emission. Thus, for a pulsed electron beam, with a maximum of 0.5 A peak at 2 to 3 MeV from a 3.5 MW peak rf pulse of 2 μs pulse width at 10 pps, the apparent but small amount of back bombardment of the cathode has been tolerable. Use of a bunch-compression alpha magnet and a stripline chopper after the gun produces the required S-band 3 to 5 microbunches of electrons for injection into a standard 10-m-long linac and on into a booster synchrotron, which in turn is used to fill SPEAR. Component limitations and operating characteristics of the gun and the linac's rf system are discussed

  11. LINAC4 - Views of the 3 MeV Front-end (H- Source, LEBT, RFQ, MEBT) with Test Bench.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    The Linac4 is the new linear accelerator that will replace Linac2 as proton low energy injector in the LHC accelerator chain. On 14 November, members of the Linac4 collaboration and the CERN Operation Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved marked the start of one of the most critical commissioning phases for the new accelerator.

  12. Argonne tandem as injector to a superconducting linac

    International Nuclear Information System (INIS)

    Yntema, J.L.; Den Hartog, P.K.; Henning, W.; Kutschera, W.

    1980-01-01

    The Argonne Tandem uses Pelletron chains, NEC accelerator tubes, and a dual closed-corona system. Its main function is to be an injector for a superconducting linear accelerator. As long as the transverse and longitudinal emittances are within the acceptance of the linac, the output beam quality of the tandem-linac system is essentially determined by the tandem. The sensitivity of the linac to the longitudinal emittance ΔEΔt of the incident beam makes the output beam quality dependent on the negative-ion velocity distribution in the source, transit-time effects in the tandem, molecular-beam dissociation, and stripper-foil uniformity. This paper discusses these beam-degrading effects

  13. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  14. Design of a 120 MeV $H^{-}$ Linac for CERN High-Intensity Applications

    CERN Document Server

    Gerigk, F

    2002-01-01

    The SPL (Superconducting Proton Linac) study at CERN foresees the construction of a 2.2 GeV linac as a high beam-power driver for applications such as a second-generation radioactive ion beam facility or a neutrino superbeam. At the same time such a high-performance injector would both modernize and improve the LHC injection chain. The 120 MeV normal-conducting section of the SPL could be used directly in a preliminary stage for H- charge-exchange injection into the PS Booster. This would increase the proton flux to the CERN experiments while also improving the quality and reliability of the beams for the LHC. The 120 MeV linac consists of a front-end, a conventional Drift Tube Linac (DTL) to 40 MeV and a Cell Coupled Drift Tube Linac (CCDTL) to the full energy. All the RF structures will operate at 352 MHz, using klystrons and RF equipment recovered from the LEP collider. This paper concentrates on the design of the 3 to 120 MeV section. It introduces the design criteria for high-stability beam optics and th...

  15. Radiation protection studies for a high-power 160 MeV proton linac

    CERN Document Server

    Mauro, Egidio

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H− linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of ...

  16. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  17. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  18. The Fermilab 400-MeV Linac Upgrade

    International Nuclear Information System (INIS)

    Schmidt, C.W.

    1993-05-01

    The Fermilab Linac Upgrade will increase the linac energy from 201 MeV to 401.5 MeV. Seven accelerating modules, composed of 805-MHz side-coupled cells, will accelerate H - beams from 116.5 to 401.5 MeV. The side-coupled structure (SCS) has been built, tuned, tested to full power, and placed in the linac enclosure along side the operating Linac. All seven accelerating modules, each containing four sections of sixteen cells, have been connected to 12-MW power klystrons and tested to full power for a significant period. The transition section to match the beam from the 201.25-MHz drift-tube linac to the SCS, consisting of a sixteen-cell cavity and a vernier four-cell cavity, has also been tested at full power. A new import line from the Linac to the Booster synchrotron with a new Booster injection girder is to be installed. Removal of the last four Alvarez linac tanks (116.5 to 201 MeV) and beam-line installation of the Upgrade components is to begin in early June 1993 and should take about 12 weeks. Beam commissioning of the project will follow and normal operation is expected in a short period. In preparation for beam commissioning, studies are being done with done operating linac to characterize the beam at transition and prepare for phase, amplitude and energy measurements to commission the new linac. The past, present and future activities of the 400-MeV Upgrade will be reviewed

  19. NSRL 200 MeV linac beam energy stabilization system

    International Nuclear Information System (INIS)

    Huang Guirong; Pei Yuanji; Dong Sai

    2001-01-01

    By using the computer image processing technology and RF phase auto-shifting system, the ESS (Energy Stabilization System) was applied to 200 MeV Linac. the ESS adjusts beam energy automatically in a range of +-4 MeV. After adjustment beam energy stability is improved to +-6%

  20. Beam dynamics studies of a 30 MeV RF linac for neutron production

    Science.gov (United States)

    Nayak, B.; Krishnagopal, S.; Acharya, S.

    2018-02-01

    Design of a 30 MeV, 10 Amp RF linac as neutron source has been carried out by means of ASTRA simulation code. Here we discuss details of design simulations for three different cases i.e Thermionic , DC and RF photocathode guns and compare them as injectors to a 30 MeV RF linac for n-ToF production. A detailed study on choice of input parameters of the beam from point of view of transmission efficiency and beam quality at the output have been described. We found that thermionic gun isn't suitable for this application. Both DC and RF photocathode gun can be used. RF photocathode gun would be of better performance.

  1. Evolution of the 400 MeV linac design

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1987-01-01

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also

  2. Evolution of the 400 MeV linac design

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, J.A.

    1987-11-09

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  3. Software of the System Protection for the PEFP 20MeV Proton Linac

    International Nuclear Information System (INIS)

    Song, Young-Gi; Hong, In-Seok; Cho, Yong-Sub

    2007-01-01

    A 20 MeV proton linear accelerator (linac) has been developed at Proton Engineering Frontier Project (PEFP). A 20 MeV linac consists of 50 keV proton injector, 3 MeV radio frequency quadrupole (RFQ), and 20 MeV drift tube linac (DTL). PEFP control system is developed with several sub-systems (e.g. machine control, diagnostic control, timing control, and interlock systems). These systems have each EPICS based control system which provides a network-based real time distributed control. For stable and harmonic operation, we had developed sequential logic by using state notation language (SNL) and database records with alarm fields for warning signal. The various control system can drop a transmission rate of the control network traffic. We need to manage control signals by a control network gateway and protect values of control servers by security management. In this paper, the stabilization methods of the control signals are described and the results of the stabilized signals are presented

  4. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  5. Beam measurements on Argonne linac for collider injector design

    International Nuclear Information System (INIS)

    Mavrogenes, G.; James, M.B.; Koontz, R.F.; Miller, R.H.

    1980-01-01

    The 20 MeV electron linac at Argonne produces 5 x 10 10 electrons in a single bunch. This amount of charge per bunch is required for the proposed single pass collider at SLAC. For this reason the characteristics of the beam from this machine are of interest. The longitudinal charge distribution has been measured by a new technique. The technique is a variation on the deduction of bunch shape from a spectrum measurement. Under favorable conditions a resolution of about 1 0 of phase is possible, which is considerably better than can be achieved with streak cameras. The bunch length at 4.5 x 10 10 e - per bunch was measured to be 15 0 FWHM. The transverse emittance has also been measured using standard techniques. The emittance is 16 mm-mrad at 17.2 MeV. (Auth.)

  6. Charge measurement system at 100 MeV linac

    International Nuclear Information System (INIS)

    Li Dongmei; Chinese Academy of Sciences, Beijing; Yin Chongxian; Ye Kairong

    2005-01-01

    A charge measurement system of 100 Mev linac is introduced in this paper. After describing the characteristics and functions of the system's components, the authors analyze the methods of data processing and systematic error in detail. Basing on these, the authors get system resolution in the lab. The actual measurement results are presented at last. (authors)

  7. 200 MeV RF linac for synchrotron injection

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Lyons, S.; Manca, J.; Miller, R.; Treas, P.; Zante, T.; Miller, R.

    1992-01-01

    Construction has been completed on an electron linear accelerator for the Brookhaven National Laboratory. This accelerator will be used for the injection of a 200 MeV electron beam into a synchrotron for lithography experiments. This paper describes the conceptual design of the linac, its e-gun pulser, and its control and timing systems. 3 figs., ref

  8. 70 MeV injector auto tuning system handbook

    International Nuclear Information System (INIS)

    Ellis, J.E.; Munn, R.W.; Sandels, E.G.

    1976-06-01

    The handbook is in three sections: (1) description and location; (2) operating instructions; and (3) design notes on the tank and debuncher auto tuning systems for the 70 MeV injector. The purpose of the auto tuning system is to maintain the 'tune' of the four tanks and debuncher to within a few Hz, stabilizing against changes of temperature and other physical factors affecting the resonant frequency of the tanks. (U.K.)

  9. Commissioning of the Linac4 RFQ at the 3 MeV test stand

    CERN Document Server

    Rossi, C; Bellodi, G; Broere, J; Brunner, O; Lombardi, A M; Balula, J M; Yanez, P M; Noirjean, J; Pasquino, C; Raich, U; Roncarolo, F; Vretenar, M; Desmons, M; France, A; Piquet, O

    2013-01-01

    Linac4, the future 160 MeVinjector to the CERN Proton Synchrotron Booster, is presently under construction at CERN as a first step of the planned upgrade of the LHC injectors. The low energy section of LINAC4, consisting of an ion source, a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a chopper line is being commissioned in a dedicated test stand before installation in its final position in the tunnel. The RFQ is designed to accelerate a 45 keV, 70 mA, Hˉ beam to 3 MeV, with an efficiency of 95% while preserving the transverse emittance. The RFQ, a four-vane structure 3 m in length, has been designed in collaboration with CEA/IRFU and is has been fabricated at the CERN workshop. The precise fabrication has allowed achieving a field flatness of 1%. The completion of the accelerating structure in September 2012 was followed by a complete series of bead-pull measurements and by high-power conditioning to the nominal power of 0.39 MW corresponding to a voltage of 78 kV across the 3 meters. Measurements wi...

  10. Operation of the Brookhaven 200 MeV Linac

    International Nuclear Information System (INIS)

    Fewell, N.M.; LoDestro, V.

    1979-01-01

    During the past three years the 200 MeV linear accelerator has continued to operate at a high level of performance and reliability. The linac output beam current has been limited to 60 mA in order to obtain the maximum rf power tube life without compromising the output performance of the AGS. Despite a reduction in pulse repetition rate, total beam current to the BLIP facility has increased to an average of 300 mA hours/year

  11. Linac-beam characterizations at 600 MeV using optical transition radiation diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.

    1998-05-27

    Selected optical diagnostics stations were upgraded in anticipation of low-emittance, bright electron beams from a thermionic rf gun or a photoelectric rf gun on the Advanced Photon Source (APS) injector linac. These upgrades include installation of optical transition radiation (OTR) screens, transport lines, and cameras for use in transverse beam size measurements and longitudinal profile measurements. Using beam from the standard thermionic gun, tests were done at 50 MeV and 400 to 650 MeV. Data were obtained on the limiting spatial ({sigma} {approximately} 200 {micro}m) and temporal resolution (300 ms) of the Chromox (Al{sub 2}O{sub 3} : Cr) screen (250-{micro}n thick) in comparison to the OTR screens. Both charge-coupled device (CCD) and charge-injection device (CID) video cameras were used as well as the Hamamatsu C5680 synchroscan streak camera operating at a vertical deflection rate of 119.0 MHz (the 24th subharmonic of the S-band 2856-MHz frequency). Beam transverse sizes as small as {sigma}{sub x} = 60 {micro}m for a 600-MeV beam and micropulse bunch lengths of {sigma}{sub {tau}}<3 ps have been recorded for macropulse-averaged behavior with charges of about 2 to 3 nC per macropulse. These techniques are applicable to linac-driven, fourth-generation light source R and D experiments including the APS's SASE FEL experiment.

  12. Control system for 10 MeV irradiation electron linac

    International Nuclear Information System (INIS)

    Zeng Ziqiang; Zhang Lifeng; Lu Weixing; Gao Zhenjiang; Zhang Yan; Han Guangwen; Wang Shuxian

    2005-01-01

    Control system of the 10 MeV electron linac using Distributed Control System (DCS) was studied. The hardware of control system consists of four SIEMENS PLCs and monitor computer, the software bases on STEP 7, Labwindows/CVI and SQL Server. The bus between the monitor computer and the main PLC is 100 M industrial networks, between PLCs is MPI bus, between PLC and remote partner is PROFIBUS, between PLC and terminals is RS485/422. The software of control system can provide a friendly human machine interface to operate the machine, protect the human and equipment from risk, and storage the status of the accelerator real time to the database. The monitor and maintenance of the linac can been carried out not only on local computer or local network, but also in internet. (author)

  13. An operator-console system of the photon factory injector LINAC

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Abe, Isamu; Furukawa, Kazuro; Kamikubota, Norihiko

    1990-01-01

    It is sometimes difficult to unify accelerator control systems constructed in different ways. This problem arose in unifying the control systems of the injector linac and the storage ring making up the Photon Factory of the National Laboratory for High Energy Physics. One easy approach is to unify only the operator consoles; the unified console is connected to both separate control systems using gateways. The operator-console system of the Photon Factory injector linac has been designed and constructed using this approach. It consists of several workstations interconnected via a local-area network, a gateway to the old linac control network and a CATV system for the real-time display of the accelerator status. In this way the linac will be controlled from the control center of the Photon Factory storage ring. (orig.)

  14. Acceleration characteristics of the injector Linacs for the Hyogo Hadrontherapy Center

    International Nuclear Information System (INIS)

    Inoue, J.; Sawada, K.; Sakata, T.

    2000-01-01

    Hyogo Hadrontherapy center in Harima Science Garden City is a cancer therapy facility with proton, helium and carbon beams. The beams are supplied by a synchrotron, which has manufactured by Mitsubishi Electric Corporation, with RF 1inacs as an injector, which has manufactured by Sumitomo Heavy Industries Ltd.(SHI). The injector consists of the identical ECR ion sources, a RFQ linac, and an Alvarez linac, which are connected by beam transport systems including vacuum systems, and some kinds of beam monitoring equipments. The results accomplished for the beam conditioning are described in this paper. (author)

  15. ENERGY CORRECTION FOR HIGH POWER PROTON/H MINUS LINAC INJECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    RAPARIA, D.; LEE, Y.Y.; WEI, J.

    2005-05-16

    High-energy proton/H minus energy (> GeV) linac injector suffer from energy jitter due to RF amplitude and phase stability. Especially in high power injectors this energy jitter result beam losses more than 1 W/m that require for hand on maintenance. Depending upon the requirements for next accelerator in the chain, this energy jitter may or may not require to be corrected. This paper will discuss the sources of this energy jitter, correction schemes with specific examples.

  16. Class structure of the Injector Linac control system of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Itoh, Y.; Tamezane, K.; Sakaki, Y.; Kodera, M.; Yokomizo, H.

    1994-01-01

    The first section of the Injector Linac for SPring-8 has been constructed and the initial beam meets the specification. This section, from the electron gun to the buncher and monitors, is also used as a test stand for the control software. The concept of Object-Oriented programming was adopted because of the special requirements for the accelerator control. We present an overview of the linac control system and the software architecture. ((orig.))

  17. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    Howard Bender; Dave Schwellenbach; Ron Sturges; Rusty Trainham

    2008-01-01

    We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials

  18. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-01-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials

  19. Recent operation and modifications on the CPS - 50 MeV linac (old linac)

    International Nuclear Information System (INIS)

    Haseroth, H.; Tetu, P.

    1976-01-01

    Mainly to satisfy the requirements of the Booster synchrotron substantial improvements have been achieved on the Linac since 1970. The pulse length was increased to 100 μs and modifications on the rf system and on the pre-injector allowed the production of a stable beam without active feedback. These and further changes to the equipment have had a very beneficial effect on the fault rate. An emittance line providing one measurement per pulse and a spectrometer line furnishing ten spectra per pulse are important tools for beam adjustments. Without additional drastic changes to the machine beams of deuterons and alphas have been produced recently and successfully accelerated by the PS. (author)

  20. Beam dynamics design of the 211 MeV APT normal conducting linac

    International Nuclear Information System (INIS)

    Young, L.M.; Billen, J.H.; Takeda, H.; Wood, R.L.

    1998-01-01

    This paper describes the normal conducting linac design that is part of the Accelerator for Production of Tritium (APT) project. The new version of PARMILA designed this linac. This linac accepts the beam from the 6.7 MeV radio frequency quadrupole without a separate matching section. At about 10 MeV, it has a smooth transition in the length of period from 8βλ to 9βλ in quadrupole focusing lattice. This adjustment of the period was needed to provide sufficient space for the quadrupole focusing magnets and beam diagnostic equipment. The linac consists of the coupled cavity drift tube linac up to 97 MeV and coupled cavity linac above 97 MeV

  1. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Science.gov (United States)

    Yan, Fang; Pei, Shilun; Geng, Huiping; Meng, Cai; Zhao, Yaliang; Sun, Biao; Cheng, Peng; Yang, Zheng; Ouyang, Huafu; Li, Zhihui; Tang, Jingyu; Wang, Jianli; Sui, Yefeng; Dai, Jianping; Sha, Peng; Ge, Rui

    2015-05-01

    The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC) spoke cavities with β =0.12 . The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β =0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ˜5 MeV . Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  2. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters

    International Nuclear Information System (INIS)

    Prome, M.

    1968-12-01

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author) [fr

  3. Neutrons leaked from a 45 MeV linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Kitaichi, Masatoshi; Sawamura, Sadashi; Yamada, Takuma; Sawamura, Teruko; Kaneko, Junnichi H. [Hokkaido Univ., Sapporo (Japan); Nojiri, Itiro [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2002-07-01

    Dose evaluation for skyshine from nuclear facilities is an issue in environmental evaluations. Therefore, benchmark data for skyshine and well-investigated codes for skyshine would be useful in the rational evaluations of nuclear facilities. The purpose of this study is to obtain benchmark data of skyshine and to investigate the effect of source spectra and angular distribution on the skyshine process. In this study spatial and time distributions of neutrons leaked from the Hokkaido University 45 MeV electron linac facility were measured and compared with calculations. Neutrons were emitted from the ( ,n) reaction produced by bremsstrahlung radiation in a lead target irradiated with electrons from the linac. The skyshine process of neutrons transported through the facility building to the outside was investigated. The source spectrum of the skyshine process was evaluated using a cylindrical multi-moderator spectrometer and unfolding code, the SAND-II, and the results were compared. Measurements were carried out to a distance of 330 m from the facility. The measured spatial dose distribution was found not to coincide with the calculations. The discrepancy is discussed based on an analysis of the spatial and time distributions, and the energy spectrum which suggests that the source spectrum and the angular distribution assumed in the calculation was not sufficiently similar to simulate the experimental situation. The time distribution introduced in this study appears to be useful in discussions of the skyshine process and its sources.

  4. 400 MeV upgrade for the Fermilab linac

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1989-01-01

    Fermilab has plans for a comprehensive accelerator upgrade to open new possibilities for both the fixed target and collider experimental programs. An early step in this program is to increase the energy of the linac from 200 to 400 MeV by replacing the last four of its nine 201 MHz Alvarez tanks with twenty-eight 805 MHz side-coupled cavity chains operating at about 8 MV/m average axial field. The principal purpose is to reduce the incoherent spacecharge tuneshift at injection into the Booster which currently limits both the brightness of the beam, an important determinant of collider luminosity, and total intensity to produce both the antiprotons for the collider and the beams to fixed target experimental areas. Other consequences of higher Booster injection energy expected to contribute to some degree of higher intensity limits and improved operational characteristics include improved quality of the guide field at injection, reduced frequency swing for the rf systems, and smaller emittance for the injected beam. The linac upgrade project has moved from a 1986 study through a development project including structure models and numerical studies to a full-feature module prototyping starting this year

  5. Design of LINAC4, A New Injector for the CERN Booster

    CERN Document Server

    Garoby, R; Lombardi, A M; Rossi, C; Vretenar, M; Gerigk, F

    2004-01-01

    A new H- linac (Linac4) is presently under study at CERN. This accelerator, based on normal conducting structures at 352 and 704 MHz, will provide a 30 mA 160 MeV H- beam to the CERN PS Booster (PSB), thus overcoming the present space-charge bottleneck at injection with a 50 MeV proton beam. Linac4 is conceived as the first stage of a future 2.2 GeV superconducting linac (SPL) and it is therefore designed for a higher duty cycle than necessary for the PSB. This paper discusses the design choices, presents the layout of the facility and illustrates the advantages for the LHC and other CERN users. The R&D and construction strategy, which mainly relies upon international collaborations, is also presented.

  6. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  7. Injection study of the Radiance 330 synchrotron with a 1.6 MeV RFQ linac

    Science.gov (United States)

    Wang, F.; Flanz, J.; Hamm, R.

    2012-09-01

    The ProTom Radiance 330 proton radiotherapy system provides the most advanced proton delivery capability to date. It supports true three-dimensional beam scanning with dynamic energy and intensity modulation. Most of the protons extracted from the synchrotron are used to treat the patient, which results in minimal neutron background in the treatment room. The patient dose rate depends upon the number of protons injected and the acceleration cycle time. Therefore, one can boost the dose rate by increasing the beam intensity at injection. Improvements to the existing tandem accelerator injector are already underway. However, an alternative way to attain higher intensity beam is to use an RFQ linac as an injector. To this end, a novel 1.6 MeV RFQ linac has been designed to specifically satisfy the small energy acceptance limits of the synchrotron. Simulations of the beam line optics and injection matching to the synchrotron have been performed using the computer codes PARMILA and TRACE-3D to determine if an additional bunching cavity is needed. Assessments of the space charge limit at the relatively low injection energy of 1.6 MeV and RF capture simulations have also been performed. Results of these studies are presented.

  8. 6 MeV RF Linac for cargo scanning and industrial radiography

    International Nuclear Information System (INIS)

    2017-01-01

    RF Linac-based X-ray sources are very widely used for cargo-scanning and industrial X-ray radiography applications. A 6 MeV on-axis coupled-cavity S-band RF linac has been designed, developed and tested successfully at Electron Beam Centre, Navi Mumbai. This facility falls under the purview of BARC Safety Council, which has conducted safety reviews and awarded regulatory clearances for the operation of the linac system. This paper outlines the salient features of the 6 MeV linac, its safety aspects and test results. A brief history of regulatory aspects is also presented

  9. Design and performance of the 40 MeV linac and beam transport system for the 1 GeV synchrotron radiation source at SORTEC

    International Nuclear Information System (INIS)

    Shiota, M.; Hiraki, A.; Mizota, M.; Iida, T.; Haraguchi, M.; Kuno, K.; Nakamura, S.; Ohno, M.; Tomimasu, T.

    1990-01-01

    A 1 Gev synchrotron radiation source (SOR) system has been installed and is now being adjusted at SORTEC corporation. This paper reports the configuration and the beam test results of the 40 MeV electron linac (pre-injector) and the beam transport line to the electron synchrotron used in this system. The output beam from the linac must be low emittance, small energy spread, and stable in energy. The beam transport line must also efficiently lead the beam from the linac to the electron synchrotron. This linac produced the beam current of 130 mA, with an energy spread of 1.3 % (FWHM), and an emittance of 0.7 πmm·mrad. The beam characteristics were verified by various beam monitors on the beam transport line. (author)

  10. Thermionic RF Gun and Linac Pre-Injector for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.

    2003-08-11

    Preparations are underway to upgrade the Spear2 to the third generation light source. Installation of all the subsystems will start in April 2003. Although the Spear3 RF system is entirely different from the present form, the pre-injector gun/linac and booster synchrotron will remain the same even after the upgrade. The thermionic rf gun reliability and stability are to be improved to inject 500 mA of stored current in shortest possible time. When a top-up mode is enforced, where the stored beam decay is replenished to maintain the constant current and thus constant light intensity, the Spear3 will take injection every few minutes. In that case the gun, linac, and booster must stay on at all times. In this report we will describe some improvements made on the gun and linac in the recent past, as well as their present performance and future upgrade to be made.

  11. NSLS 3: Conceptual design report: 750 MeV e+ or e- injector

    International Nuclear Information System (INIS)

    1986-05-01

    The 750 MeV positron or electron injector is comprised of an electron linear accelerator which accelerates an intense beam of electrons to an energy of about 250 MeV, a positron converter, a second linear accelerator that boosts the final positron energy to 750 MeV, and a damping ring in which radiation damping is used to reduce the emittance of the positron beam for injection into the storage rings. The reasons for the need of a new injector are enumerated. The conceptual design of the system and its component systems are described, as well as project cost, schedule, and manpower requirements

  12. Design report on PF injector linac upgrade for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Isamu; Anami, Shozo; Enomoto, Atsushi; Fukuda, Shigeki; Kobayashi, Hitoshi; Nakahara, Kazuo [eds.

    1966-03-01

    The purpose of the B Factory project is to verify the physical problem `Is there difference in the physical laws of particle world and anti-particle world?` The outline of the KEK B Factory project (KEKB) is explained. The condition of injection corresponding to the KEKB, the increase of the energy of the PF injector and the augmentation of positron beam intensity for the KEKB, the guideline for, the most important problems of and the schedule of energy augmentation are described. Buildings and utilities, various problems related to large current electron beam acceleration, the generation of positrons, the examination of acceleration method, beam transport system, acceleration unit, vacuum system, high frequency source, the high frequency phase control between beam and acceleration high frequency wave, electron beam injection system, trigger system, beam monitors, the precision alignment of acceleration tube, electromagnets and beam monitors, the extension of control system, rise and adjustment, and radiation safety and the application related to radiation are described. Efforts are exerted for the development of klystron, the capability of high frequency power compression system, and the withstanding to pressure of acceleration tube. (K.I.)

  13. Superconducting low-velocity linac for the Argonne positive-ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab

  14. Superconducting low-velocity linac for the Argonne positive-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab.

  15. Design and construction of an injector for an electron/positron Linac optimized for positron yield and minimal particle loss

    International Nuclear Information System (INIS)

    Liebig, Clemens

    2014-11-01

    The Linac II is the first part of the accelerator chain supplying PETRA III. Since the start of PETRA III operation, highest reliability is demanded and several updates are required. Part of these is the new injection system. Beam loss at high energies and the associated activation have to be avoided. At energies above 80 MeV particle loss of 20% occurred. Additionally, an alternative to the old gun, operating in an oil bath and for which cathode preparation is not available, is required. The new system will be commissioned while the old bombarder gun injector is kept for redundancy. In order to obtain the space for joining the beam lines of both electron sources, one accelerator section must be removed. Electron pulses of 6 A beam current and 2 to 30 ns length are provided by the new injection system. The gun uses a thermionic cathode, 100 kV voltage for acceleration and is built as a triode. Longitudinal focusing is performed by a prebuncher and a hybrid buncher structure, both operating at 3 GHz. The buncher is a traveling wave structure to which a short cell has been added, operated in π mode with a standing wave. That way, better electron capture is achieved. A magnetic chicane serves for energy filtering. The design of the injection system, as well as the old injector, have been optimized in simulations and transmission in the linac has been compared. Possible reasons for beam loss are beam loading and misaligned components. For the bombarder gun particle tracking, a loss of 1% at high energies was observed due to beam loading. The additional beam optics and steering options in the beam line allow for compensation of the misalignment of preceding and succeeding components. The complete new injection system has been operated in a test stand and has undergone extensive tests. After successive enhancement of technically critical components, reliable operation was possible. Investigations of the electron capture and bunching procedure have been carried out by

  16. Present status of the TOHOKU 300 MeV linac

    International Nuclear Information System (INIS)

    Takahashi, Shigenobu; Oyamada, Masayuki; Urasawa, Shigekazu; Nakazato, Toshiharu; Kurihara, Akira; Mutoh, Masakatu; Shibasaki, Yoshinobu; Oonuma, Tadahiro

    1993-01-01

    The TOHOKU linac that was constructed about a quarter century before has been operated without serious trouble recently. This report describes as follows: main trouble, maintenance, present performance of the machine and status of operation. (author)

  17. Studies on the construction of a new 80 MeV injector and a new injection scheme for the synchrotron of the Bonn accelerator facility ELSA

    International Nuclear Information System (INIS)

    Raecke, K.

    2001-09-01

    At the ELSA Accelerator Facility exists the opportunity to install a 80 MeV linear accelerator as an injector for the 2,5 GeV Booster Synchrotron. Because of its length the new structure cannot replace one of the linacs used today so possibilities to built up the accelerator and the transfer channels are worked out. Calculations comparing the injection efficiency of the present layout and the possible new layout show a recognizable improvement. The injection efficiency can be further improved using a single turn injection scheme. A septum magnet and a fast kicker for this injection scheme is designed. (orig.)

  18. Instrumentation and control system for PLS-IM-T 60 MeV LINAC

    International Nuclear Information System (INIS)

    Liu, D.K.; Yei, K.R.; Cheng, H.J.

    1992-01-01

    The PLSIMT is a 60 MeV LINAC as a preinjector for 2 GeV LINAC of PLS project. The instrumentation and control system have been designed under the institutional collaboration between the IHEP (Beijing, China) and POSTECH (Pohang, Korea). So far, the I and C system are being set up nowadays at the POSTECH of Pohang. This paper describes its major characteristics and present status. (author)

  19. Fermilab 200 MeV linac control system hardware

    International Nuclear Information System (INIS)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac

  20. Fermilab 200 MeV linac control system hardware

    Energy Technology Data Exchange (ETDEWEB)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac.

  1. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  2. Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...

    Indian Academy of Sciences (India)

    2016-10-11

    Oct 11, 2016 ... We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear ... linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three- ... structures are preferred for relatively higher energy ... klystron in a TW linac, which results in cost reduction.

  3. Design problems of a continuous injector of many amperes of MeV deuterium neutrals

    International Nuclear Information System (INIS)

    Fink, J.H.

    1976-10-01

    A continuous injector of many amperes of MeV deuterium neutrals will require high currents of negative deuterium ions to be generated, accelerated and stripped of electrons by methods that are not fully developed. Each of these processes as briefly described in this report, introduce constraints upon the ion optics, beam line pumping, and high voltage stand-off that must be mutually resolved. Although the design of such an injector represents a difficult task, there is no fundamental reason that very high current beams cannot be handled

  4. Design and development of low level S-Band RF control system for IRFEL injector LINAC

    International Nuclear Information System (INIS)

    Mohania, Praveen; Mahawar, Ashish; Singh, Adarsh Pratap; Namdeo, Rajkumar; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    A low level RF system has been designed and developed for phase and amplitude stabilization of S- Band microwave power being fed to fundamental buncher cavity and the injector LINAC structure of the Infra Red Free Electron Laser being developed at RRCAT Indore. The system uses analog phase shifters and voltage variable attenuators to control the phase and amplitude respectively, the control voltages for phase shifters and attenuators are generated using a 12 Bit ADC and is software controlled. The system has a slow feedback to correct phase and amplitude drifts occurring due to thermal variations and a fast feed forward mechanism to vary amplitude and phase of the output pulse to compensate beam loading and to shape the klystron output power. The present paper describes the design aspects of the LLRF system. (author)

  5. 7-MeV electron LINAC based pulse radiolysis facility at RPCD, BARC

    International Nuclear Information System (INIS)

    Naik, C.B.; Nadkarni, S.A.; Toley, M.A.; Shinde, S.J.; Naik, P.D.

    2017-01-01

    7-MeV electron LINAC based pulse radiolysis facility is operational in Chemistry Group of BARC since 1986. The Accelerator is housed in B-132 room in basement of Modular Labs. BARC Accelerator was procured from Radiation Dynamics Inc. UK and its detection system was indigenously developed

  6. A Faraday Cup with high frequency response for a 200 MeV LINAC proton beam

    International Nuclear Information System (INIS)

    Zucker, M.S.; Bittner, J.W.

    1991-01-01

    The purpose of this device, composed essentially of coaxial line elements, is monitoring, on a per micropulse basis, the beam intensity of a 200 MeV LINAC at the BNL Radiation Effects Facility. The center conductor of the coaxial line acts as a beam stop. The output pulses are suitable for fast timing. 2 refs., 5 figs

  7. Physics design of a 10 MeV, 6 kW travelling wave electron linac

    Indian Academy of Sciences (India)

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2 π / 3 mode constant impedance travelling wave structure, which ...

  8. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su [WCU Department of Energy Science, Suwon 440-746 (Korea, Republic of); Lee, Byeong-No; Lee, Byung-Chul [Radiation Instrumentation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212 (Korea, Republic of); Park, Hyung-dal; Song, Ki-back [Radiation Technology eXcellence (RTX), Daejeon 305-500 (Korea, Republic of); Song, Ho-seung; Mun, Sangchul; Ha, Donghyup [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Chai, Jong-Seo, E-mail: jschai@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-04-21

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  9. Sawtooth-wave prebuncher with dual-gaps in Linac injector for HIRFL-SSC

    Science.gov (United States)

    Zhang, Xiaohu; Yuan, Youjin; Xia, Jiawen; Yin, Xuejun; Jin, Peng; Xu, Zhe; Du, Heng; Li, Zhongshan; Qiao, Jian; Wang, Kedong

    2018-01-01

    An RFQ structure is normally composed of radial matcher, shaper, gentle buncher and accelerator section with changing cell geometry. Bunching is started in the shaper, and adiabatic bunching is done in gentle buncher section. The beam preforms from DC beam to bunch beam through the RFQ and the longitudinal emittance for the ions linacs is defined initially in the RFQ, in which the beam bunch has been shaped. In the present SSC-Linac injector, an RFQ has been designed to accelerate the continuous beam from 3.728 keV/u to 143 keV/u. The heavy ions beam is injected into the SSC (Separated Sector Cyclotron) with the kinetic energy of 1.025 MeV/u after four IH DTLs. The rf frequency of the SSC is 13.417 MHz, and the frequency of the heavy ions RFQ is set to four times of the rf frequency of the SSC. In order to increase the longitudinal capture efficiency of the SSC and suppress the longitudinal emittance at the exit of RFQ, an external MHB (Multi-Harmonics Buncher) is proposed in front of the RFQ. The fundamental frequency of the MHB is the same as the rf frequency of the cyclotron. The scheme of dual-gaps prebuncher with the sawtooth waveform is firstly carried out through multi-harmonics synthetic technology. The multi-particle beam dynamic simulations of the MHB have been done by the BEAMPATH code.

  10. The 665 KeV preinjector for the Nimrod 70 MeV injector

    International Nuclear Information System (INIS)

    Fowler, R.G.; Sidlow, R.; West, N.D.

    1976-09-01

    The preinjector for the new 70 MeV injector is described. A small duoplasmatron ion source supplies protons to the medium gradient accelerating column which is inside a glass fibre outer tube. The interspace between the column and outer tube contains sulphur hexafluoride gas as insulant. An HT platform, located close to the ion source end of the preinjector, contains the electronic power supplies necessary for the source. (author)

  11. Self-modulation of an intense electron beam in an injector of a linac with a feedback

    International Nuclear Information System (INIS)

    Ajzatskij, N.I.

    1989-01-01

    This paper reports the results of the analysis of the time structure of the beam versus the RF power supplied to the injector of the linac with a feedback. Using a nonstationary model of acceleration, we have performed a mathematical simulation of the dynamics of prebunched electron beam acceleration. The results of the mathematical simulation demonstrate that in the self-modulation acceleration regime of a linac with feedbacks there exists a possibility of adjusting the current pulse length, the pulse-to-pulse time being nearly the same. 4 refs., 2 figs

  12. Demonstration of low emittance in the Cornell energy recovery linac injector prototype

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2013-07-01

    Full Text Available We present a detailed study of the six-dimensional phase space of the electron beam produced by the Cornell Energy Recovery Linac Photoinjector, a high-brightness, high repetition rate (1.3 GHz DC photoemission source designed to drive a hard x-ray energy recovery linac (ERL. A complete simulation model of the injector has been constructed, verified by measurement, and optimized. Both the horizontal and vertical 2D transverse phase spaces, as well as the time-resolved (sliced horizontal phase space, were simulated and directly measured at the end of the injector for 19 and 77 pC bunches at roughly 8 MeV. These bunch charges were chosen because they correspond to 25 and 100 mA average current if operating at the full 1.3 GHz repetition rate. The resulting 90% normalized transverse emittances for 19   (77  pC/bunch were 0.23±0.02 (0.51±0.04  μm in the horizontal plane, and 0.14±0.01 (0.29±0.02  μm in the vertical plane, respectively. These emittances were measured with a corresponding bunch length of 2.1±0.1 (3.0±0.2  ps, respectively. In each case the rms momentum spread was determined to be on the order of 10^{-3}. Excellent overall agreement between measurement and simulation has been demonstrated. Using the emittances and bunch length measured at 19  pC/bunch, we estimate the electron beam quality in a 1.3 GHz, 5 GeV hard x-ray ERL to be at least a factor of 20 times better than that of existing storage rings when the rms energy spread of each device is considered. These results represent a milestone for the field of high-brightness, high-current photoinjectors.

  13. Construction of 100 MeV electron linac in Kyoto University

    International Nuclear Information System (INIS)

    Shirai, Toshiyuki; Sugimura, Takeshi; Kando, Masaki

    1995-01-01

    An electron linear accelerator and a compact storage ring have been constructed at Kyoto University. The beam energy of the storage ring is 300 MeV and will be utilized as a synchrotron radiation source. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the pulse width of 1 μsec. The construction of the linac had been finished and the test is under going. The electron beam of 300 mA is extracted from the electron gun and the peak RF power of 20 MW is successfully fed to the accelerating structures at the pulse width of 2 μsec. (author)

  14. The 600 MeV Saclay electron linac: 40000 hour operation

    International Nuclear Information System (INIS)

    Netter, F.

    1977-01-01

    After 40000 hours of operation, the 600 MeV Saclay's electron linac (ALS) does appear as an efficient and versatile tool, for high resolution work (20 μA in ΔE = 40 keV at E = 200MeV), for high power pion production (300 μA in 20 μs pulses at 1000 Hz and 400 MeV or 240 μA in 4 μs pulses at 3000 Hz and 390 MeV), for highly reliable positron beams acceleration, a.s.o. Main improvements made in the recent years are described in particular the automatic beam switching between any two ways among the beam handling system; and the computer newly installed in the control room with a powerful visual display allowing an easy and flexible dialogue of the operators with the computer [fr

  15. Accelerating structure of the CERN new 50 MeV linac

    International Nuclear Information System (INIS)

    Warner, D.J.

    1976-01-01

    The design of the post-coupled Alvarez structure is presented with emphasis on features which are novel and critical especially as regards acceleration of high currents (150 mA) to 50 MeV. Among topics treated are the sequence of computational techniques leading from unit cell (e.m. field) calculations to dynamics of the complete linac, and model measurements which justify the drift-tube girder support approach and our particular post-coupler arrangement. (author)

  16. Characterization of 10 MeV electron linac for radiation processing

    International Nuclear Information System (INIS)

    Petwal, V.C.; Rao, J.N.; Kaul, A.; Bapna, S.C.; Mulchandani, J.K.; Wanmode, Y.; Pandiyar, M.; Srivastava, P.; Jain, Akhilesh; Hanurkar, P.R.

    2006-01-01

    A radiation processing facility based on a 10 MeV LINAC is being set-up at RRCAT. In the course of commissioning various experiments have been carried-out to characterize the radiation field generated by the accelerator and subsequently to derive the operating parameters of the facility for radiation processing of various items. Results of the experiments are presented in the paper. (author)

  17. Biomedical user facility at the 400-MeV Linac at Fermilab

    International Nuclear Information System (INIS)

    Chu, W.T.

    1993-12-01

    In this paper, general requirements are discussed on a biomedical user facility at the Fermilab's 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients

  18. Design of the MYRRHA 17-600 MeV Superconducting Linac

    CERN Document Server

    Biarrotte, J-L; Bouly, F; Carneiro, J-P; Vandeplassche, D

    2013-01-01

    The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100MWth Accelerator Driven System (ADS) by building a new flexible irradiation complex in Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton flux of 4 mA in continuous operation, with an additional requirement for exceptional reliability. This paper will briefly describe the beam dynamics design of the main superconducting linac section which covers the 17 to 600 MeV energy range and requires enhanced fault-tolerance capabilities.

  19. The booster linac of the Sparkle Company 18 MeV Cyclotron: main design elements

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.

    2009-01-01

    The Sparkle Company (Casarano, Le) that is setting up a centre for production and research on radioisotopes for medical use, has requested to the ENEA Accelerator Laboratory a specific design of a linear accelerator for boosting the energy of its commercial cyclotron from 18 to 24 MeV, with the aim of implementing a small proton irradiation facility for radiobiology studies. This is the first case of coupling a cyclotron beam to a linac, that, if successful, can give rise to a new class of accelerators for proton therapy. The linac can accelerate only a very small portion of the cyclotron beam, due to the intrinsic mismatching of the two kind of accelerators both in the vertical and in the longitudinal phase planes. A beam transport line has been studied that besides matching at best the beam to the linac in the transverse plane, is equipped with a chopping system to lower drastically the primary beam power in order to protect the linac structure. The linac is SCDTL type, and operates at 3 GHz. In the following the results of the design are presented. [it

  20. First operational tests of the positive-ion injector for ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Den Hartog, P.K.; Pardo, R.C.

    1989-01-01

    This paper summarizes the status and first operational experience with the positive-ion injector for ATLAS. The new injector consists of an ECR ion source on a 350-kV platform, followed by a superconducting injector linac of a new kind. In Phase I of this project, the ECR source, voltage platform, bunching system, beam-transport system, and a 3-MV injector linac were completed and tested in early 1989 by a successful acceleration of an 40 Ar 12+ beam. Most of the new system operated as planned, and the longitudinal emittance of the 36-MeV beam out of the injector was measured to be only 5 π keV-ns, much smaller than the emittance for the present tandem injector. When completed in 1990, the final injector linac will be enlarged to 12 MV, enough to allow the original ATLAS linac to accelerate uranium ions up to 8 MeV/u. 8 refs., 2 figs

  1. 3.5 MeV pulsed power system for LIA injector

    International Nuclear Information System (INIS)

    Li Jin; Dai Guangsen; Liu Xiaoping; Zhang Kaizhi; Li Xin; Li Yuan; Xia Liansheng; Xie Min; Zhang Linwen; Deng Jianjun; Ding Bonan

    2005-01-01

    A 3.5 MeV injector for linear induction accelerator has been built up at Institute of Fluid Physics, China Academy of Engineering Physics. The injector is based on the principle of inductive adder. It consists of 12 induction cells. Seven induction cells are on the cathode stem side, which are connected in series, and provide about 2 MV on the cathode of the diode. The other five are connected in series on the anode stem side and provide about 1.5 MV on the anode of the diode. A 3.5 MV pulsed power system to provide energy for the injector has been designed, which consists of two Marx generators, 12 water insulated Blumleins, and trigger system. Charge voltage of each water insulated Blumlein is 200 kV. A 300 kV/90 ns high voltage pulse is fed into one induction cell since load impedance is higher. The pulsed power system can generate an intense electron beam with 2-3 kA. (authors)

  2. Radiation chemical research around a 15 MeV high average power linac

    International Nuclear Information System (INIS)

    Lahorte, P.; Mondelaers, W.; Masschaele, B.; Cauwels, P.

    1998-01-01

    Complete text of publication follows. The Laboratory of Subatomic and Radiation Physics of the University of Gent is equipped with a 15 MeV 20 kW linear electron accelerator (linac) facility. This accelerator was initially designed for fundamental nuclear physics research but was modified to generate beams for new experimental interdisciplinary projects. In its present configuration the accelerator is used as a multipurpose apparatus for research in the fields of polymer chemistry (crosslinking), biomaterials (hydrogels, drug delivery systems, implants), medicine (extracorporeal bone irradiation, human grafts), biomedical materials, food technology (package materials, food preservation), dosimetry (EPR of alanine systems, geldosimetry), solid-state physics, agriculture and nuclear and radiation physics. In this paper an overview will be presented of both the various research projects around our linac facility involving radiation chemistry and the specialised technologies facilitating this research

  3. SORE - a pulse stretcher for the Saskatchewan 300-MeV linac

    International Nuclear Information System (INIS)

    Bergstrom, J.C.; Caplan, H.S.; Norum, B.E.; Servranckx, R.V.

    1983-01-01

    A design study has been made of a pulse stretcher to increase the duty factor of the 300 MeV electron accelerator of the Saskatchewan Accelerator Laboratory. The design was constrained by the desire to house the pulse stretcher within the existing accelerator building and to make maximal use of existing beam transport lines. The pulse stretcher ring consists of two 180 0 bend regions connected by achromatic straight sections. The overall length is 50.49 m and the width is 6.64m. The modes of injection and extraction will be available. In the first mode a shortened linac pulse of 300 ns duration will be injected during a single turn directly into the closed orbit of the pulse stretcher. A second mode of injection/extraction involves use of a longer linac pulse. The basic geometry of the PSR is dictated by the dimensions of the accelerator vault and access room

  4. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  5. Analysis of thermionic DC electron gun for 125 MeV linac

    International Nuclear Information System (INIS)

    Kanno, K.; Sato, Isamu; Sato, K.

    2000-01-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  6. Analysis of thermionic DC electron gun for 125 MeV linac

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, K. [Graduate School of Science and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, Isamu; Sato, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst] [and others

    2000-07-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  7. Optimization calculations for slow neutron production with the 136 MeV Harwell electron linac

    International Nuclear Information System (INIS)

    Needham, J.; Sinclair, R.N.

    1978-10-01

    The new 136 MeV Harwell electron linac is to be used to produce pulsed beams of slow neutrons for condensed matter research. Design details and performance of the two types of moderator which will be available have been optimised using a Monte Carlo neutronics code (TIMOC). The choice of reflector, the necessary decoupling energy to prevent pulse broadening and the influence of γ shields and moderator shape have been investigated. The predicted yield of leakage neutrons of energy 1 eV is compared to published values for comparable facilities. (author)

  8. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  9. New newtron time-of-flight (NTOF) facilities at the Brookhaven 200-MeV Linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Snead, C.L.; Tsoupas, N.; Zucker, M.

    1988-01-01

    The installation of a new beam chopper and radio-frequency quadrupole (RFQ) preinjector (750 keV) at the Brookhaven National Laboratory (BNL) 200-MeV Linac will enable single micropulse selection (pulse width 9 pμ pulse with dc-average beam currents of 50 nA-1 μA routinely available. The NTOF facilities consists of 30-100 meter flight paths at angles of 0, 12, 30, 45, 90, and 135/degree/. Lower energies of 93, 117, 139, 161, and 181 MeV are also available as well as polarized beams at much reduced intensities. The present paper describes the new facilities, and the capabilities of future improvements and upgrades, for use in the BNL intermediate energy (p,n) experimental program. 7 refs., 2 figs., 1 tab

  10. A 100 MeV linac for the SR light source

    International Nuclear Information System (INIS)

    Iwata, H.; Takahashi, T.; Kaneko, N.; Nakashizu, T.; Hara, O.

    1992-01-01

    A 4 m long linear accelerator has been designed to operate with the energy gain of 100 MeV and a beam current of 100 mA. It is scheduled to be installed into the compact synchrotron radiation light source (LUNA) in near future. In this report, several pre-tests and the design of this linac are discussed. High power testing by a 0.5 m long test linac shows that it takes 110 hr aging to reach no arcing condition at an electric field strength of 25 MeV/m. Another diffusion bonding test shows that it is possible to make the deformation less than 5μm per cell under optimum conditions of temperature and pressure. This linac is composed of 5 units, made by diffusion bonding. Each unit is bolted together to form a 4 m long linear accelerator. The entire assembly is placed within a cylinder which serves both as a vacuum envelope and as the support structure. (Author) 5 figs., 2 tabs

  11. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  12. Microwave matching and tuning on the 20-MeV medical electron linac with feedback of rf power

    International Nuclear Information System (INIS)

    Yuan-ling, Wang

    1983-01-01

    This article describes the 20 Mev medical electron linac at Jiangsu Tumour Hospital. In the linac, feedback of rf power is used. In the linac with feedback (or with the resonator) the reflection affects the energy gain of the electron and the performance of the accelerator. By means of the theory of the traveling wave resonator, the field multiplication factor and the reflection coefficients inside and outside the feedback ring are calculated. The bands of the linacs without and with feedback are measured. In order to achieve a desirable band in front of the load (i.e. outside the feedback ring) a matching iris is added. After the linac with feedback has been matched, the band is given

  13. Pulse compression system for the ANL 20 MeV linac

    International Nuclear Information System (INIS)

    Mavrogenes, G.; Norem, J.; Simpson, J.

    1986-01-01

    This paper describes the pulse compression system being built on the Argonne 20 MeV electron linac. The system is designed to rotate the bunch from the present measured pulse length of 38 psec FWHM, to pulse lengths of 5 to 6 ps with the large instantaneous currents (1 to 4 kA) possible instantaneous current. This system was necessary to extend the study of reactive fragments of molecules to the time scale of a few picoseconds, in particular to examine the chemistry of electrons and ions before and during relaxation of the surrounding media. These experiments are not sensitive to the beam energy spread, High Energy Physics experiments studying wake fields have also been proposed using the short bunches and the facility was designed so that the wake field experiment could share the beam bunching system. The 20 MeV electron linac uses a double gap, 12th subharmonic prebuncher together with a one wavelength 1.3 Ghz prebuncher to produce a single pulse of 38 ps from one occupied rf bucket. Beam emittances of 15.7 mmmr have been measured for 40 nC of accelerated charge and 8 mmmr at 10 nC. The energy spread of dE/E = 1% (FWHM) has been measured at 40 nC. Thus the accelerated beam has excellent time structure, high current, and good emittance

  14. Technology for Fissionable Materials Detection by Use of 100 MeV Variable Linac

    CERN Document Server

    Karasyov, Sergey P; Dovbnja, Anatoliy N; Eran, L; Kiryukhin, Nikolay M; Melnik, Yu M; Ran'iuk, Yu; Shlyakhov, Il'ya N; Trubnikov, Sergiy V

    2005-01-01

    A new concept for a two-step facility to increase the accuracy/reliability of detecting heavily shielded fissionable materials (FM) in marine containers is presented. The facility will detect FM in two steps. An existing dual-view; dual-energy X-ray scanner, which is based on 7 MeV electron accelerator, will select the suspicious places inside container. The linac with variable energy (up to 100 MeV) will be used for the second step. The technology will detect fissionable nuclei by gamma induced fission reactions and delayed neutron registration. A little-known Ukrainian experimental data obtained in Chernobil' clean-up program will be presented to ground proposed concept. The theoretical calculations of neutron fluxes scale these results to marine container size. Modified GEANT code for electron/gamma penetration and authors' own software for neutron yield/penetration are used for these calculations. Available facilities (X-ray scanners; linac; detectors), which will be used for concept proof, are described....

  15. Preliminary conceptual design for a 510 MeV electron/positron injector for a UCLA φ factory

    International Nuclear Information System (INIS)

    Dahlbacka, G.; Hartline, R.; Barletta, W.; Pellegrini, C.

    1991-01-01

    UCLA is proposing a compact suer conducting high luminosity (10 32-33 cm -2 sec -1 ) e + e - collider for a φ factory. To achieve the required e + e - currents, full energy injections from a linac with intermediate storage in a Positron Accumulator Ring (PAR) is used. The elements of the linac are outlined with cost and future flexibility in mind. The preliminary conceptual design starts with a high current gun similar in design to those developed at SLAC and at ANL (for the APS). Four 4-section linac modules follow, each driven by a 60 MW klystron with a 1 μsec macropulse and an average current of 8.6 A. The first 4-section model is used to create positrons in a tungsten target at 186 MeV. The three remaining three modules are used to accelerate the e + e - beam to 558 MeV (no load limit) for injection into the PAR

  16. Generation and application of 15 to 30 MeV parametric X-ray by linac

    CERN Document Server

    Akimoto, T

    2002-01-01

    15 to 30 MeV parametric X-ray (PXR) was generated using Si single crystal by 45 MeV electron LINAC. To obtain good monochromatic hard X-ray field, the appropriate conditions were determined by theoretical analysis and experiments. The intensity of PXR was increased with increasing electron energy and crystal rotation angle. However, PXR energy is independent of electron energy. By increasing measurement angle, energy of PXR decreased, but its intensity increased. 15 to 30 keV PXR energy and about 10 sup - sup 5 to 10 sup - sup 6 photon/electron of intensity were observed at 15 to 22 deg detection angle under the operation conditions of 45 MeV electron energy and 4 to 8 nA of beam current. The mass attenuation coefficient of photon of Zr, Nb and Mo, in K absorption edge was measured. Application to determine lattice distortion of target sample and off-angle of crystal was investigated. Generation and detection of PXR, measurement of characteristic properties: crystal rotation angle, detection angle, electron e...

  17. Performance of the 2 MeV microwave gun for the SSRL 150 MeV linac

    International Nuclear Information System (INIS)

    Borland, M.; Weaver, J.N.; Wiedemann, H.; Miller, R.H.; Tanabe, E.

    1990-09-01

    As described in a previous article, the preinjector linac for SSRL's 3 GeV synchrotron is fed by a 2 MeV, 1.5 A, low-emittance microwave gun, consisting of a thermionic cathode mounted in the first cell of a 1-1/2-cell S-band cavity. In this article, we report on the successful operation of the low-emittance gun, the longitudinally-bunching alpha-magnet, and the three-microbunch FET-pulsed beam-chopper. Simulations predict a normalized rms emittance at the gun exit of less than 10 π·m e c·μm; chromatic effects in transport optics increase this to approximately 30 π·m e c·μm. The gun was specifically designed to have a longitudinal phase-space suited to magnetic compression, as a result of which we predict that peak currents in excess of 300 A in a 1 ps bunch are feasible with the existing alpha-magnet. Results of simulations and experiments will be presented and compared. 13 refs., 9 figs

  18. Microwave proton source development for a high-current linac injector

    International Nuclear Information System (INIS)

    Sherman, J.; Bolme, G.; Geisik, C.

    1995-01-01

    Powerful CW proton linear accelerators (100-mA at 0.5--1.0 GeV) are being proposed for spallation neutron-source applications. A 75-keV, 110-mA dc proton injector using a microwave ion source is being tested for these applications. It has achieved 80-keV, 110-mA hydrogen-ion-beam operation. Video and dc beam-current toroid diagnostics are operational, and an EPICS control system is also operational on the 75-keV injector. A technical base development program has also been carried out on a 50-keV injector obtained from Chalk River Laboratories, and it includes low-energy beam transport studies, ion source lifetime tests, and proton-fraction enhancement studies. Technical base results and the present status of the 75-keV injector will be presented

  19. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1988-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1--20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30--100 meter at 0/degree/, 12/degree/, 30/degree/, 45/degree/, 90/degree/ and 135/degree/ are available, as well as a zero degree swinger capable of an angular range of 0--25/degree/. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper, as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  20. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1989-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1 to 20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30 to 100 meters at 0 degree, 12 degree, 30 degree, 45 degree, 90 degree and 135 degree are available as well as a zero-degree beam swinger capable of an angular range of 0 degree to 25 degree. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  1. Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II

    Science.gov (United States)

    Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan

    2018-05-01

    The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.

  2. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    CERN Document Server

    Zhuikov, B L; Konyakhin, N A; Vincent, J

    1999-01-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 mu A and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial sup 8 sup 2 Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry ...

  3. Modification of Modulating Anode Voltage Supply of Klystron for PEFP 20 MeV Linac

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2011-01-01

    The klystron (TH2089F, THALES) for PEFP 20MeV proton linear accelerator has a triode type electron gun and the modulating anode voltage should be supplied. The klystron has gone through some modification in the modulating anode voltage supply circuit. Formerly, the mod-anode voltage was supplied by using the tetrode-controlled voltage divider. This system requires addition power supply for the tetrode and the grid control circuit. Recently we modified the mod-anode supply from the tetrode-controlled voltage divider to a resistive voltage divider. The resistors for the previous voltage divider were installed at a supporter with high voltage bushing structure next to the klystron. In the previous system, the resistors were exposed to the air and their size was very bulky, length of which was about 1m long. To reduce the space occupied by the voltage divider and to improve the electrical insulation performance, the voltage dividing resistors were moved into the oil tank of the klystron. During the operation of the 20 MeV linac, the klystron parameters were measured. In this paper, the modification of the voltage divider and the operational characteristics of the klystron with modified voltage divider circuit are presented

  4. Linac4 Technical Design Report

    CERN Document Server

    Arnaudon, L; Baylac, M; Bellodi, G; Body, Y; Borburgh, J; Bourquin, P; Broere, J; Brunner, O; Bruno, L; Carli, C; Caspers, Friedhelm; Cousineau, S M; Cuvet, Y; De Almeida Martins, C; Dobers, T; Fowler, T; Garoby, R; Gerigk, F; Goddard, B; Hanke, K; Hori, M; Jones, M; Kahle, K; Kalbreier, Willi; Kroyer, T; Küchler, D; Lombardi, A M; López-Hernandez, L A; Magistris, M; Martini, M; Maury, S; Page, E; Paoluzzi, M; Pasini, M; Raich, U; Rossi, C; Royer, J P; Sargsyan, E; Serrano, J; Scrivens, R; Silari, M; Timmins, M; Venturini-Delsolaro, W; Vretenar, M; Wegner, R; Weterings, W; Zickler, T

    2006-01-01

    Linac4 is an H- linear accelerator, intended to replace Linac2 as injector to the PS Booster (PSB). By delivering to the PSB a beam at 160 MeV energy, Linac4 will provide the conditions to double the brightness and intensity of the beam from the PSB, thus removing the first bottleneck towards higher brightness for the LHC and simplifying operation. Moreover, this new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios and could open the way to future extensions of the CERN accelerator complex towards higher performance. This Technical Design Report presents a detailed technical overview of the Linac4 design as it stands at end 2006.

  5. Beam dynamics simulation of injector for high power CW electron linac in PNC

    International Nuclear Information System (INIS)

    Nomura, Masahiro; Yamazaki, Yoshio; Toyama, Shin-ichi

    1994-01-01

    The injector consists of a 200 kV DC gun, a RF chopper, a chopper slit, a prebuncher and a buncher. Solenoid coils covered from the exit of gun to accelerating tube 1 except between the RF chopper and chopper slit. Beam trajectories are simulated by PARMELA in order to design the injector. In this report, two simulation results are shown. One is for a beam trajectory from gun to solenoid coils. There is thick concrete wall between gun to RF chopper. Low energy electrons are transported through long solenoid coil area. The other is for a chopper part. The novel chopper system is designed to reduce the emittance growth. (author)

  6. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    International Nuclear Information System (INIS)

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  7. Fabrication, Tuning, Treatment and Testing of Two 3.5 Cell Photo-Injector Cavities for the ELBE Linac

    International Nuclear Information System (INIS)

    Arnold, A.; Murcek, P.; Teichert, J.; Xiang, R.; Eremeev, G. V.; Kneisel, P.; Stirbet, M.; Turlington, L.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Thomas Jefferson Lab National Accelerator Facility (TJNAF) we have fabricated and tested two 1.3 GHz 3.5 cell photo-injector cavities from polycrystalline RRR niobium and large grain RRR niobium, respectively. The cavity with the better performance will replace the presently used injector cavity in the ELBE linac. The cavities have been fabricated and pre-tuned at TJNAF, while the more sophisticated final field tuning, the adjustment of the external couplings and the field profile measurement of transverse electric modes for RF focusing was done at HZDR. The following standard surface treatment and the vertical test was carried out at TJNAF's production facilities. A major challenge turned out to be the rinsing of the cathode cell, which has small opening (O-slash10mm) to receive the cathode stalk. Another unexpected problem encountered after etching, since large visible defects appeared in the least accessible cathode cell. This contribution reports about our experiences, initial results and the on-going diagnostic work to understand and fix the problems

  8. Inner structure of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows the inner structure of Linac 2, with drift-tubes hanging on stems under a rigid support structure, soon to be mounted inside tank 1 (750 keV to 10 MeV, the lowest-energy one of 3). Frank Malthouse is standing in the background.

  9. Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system

    Science.gov (United States)

    Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik

    2017-12-01

    A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.

  10. Work on the high voltage platform of the pre-injector of PS Linac 1

    CERN Multimedia

    1974-01-01

    Henry Charmot adjusting the electronics of the ion source on a platform which, during operation, was at 520 kV to ground. The cage containing the electronics is opened by hydraulic jacks. Visible on the left is the ion source (pill box structure) attached to the corrugated acceleration column, where the protons pass from 520 kV to ground potential. See 7403120 and for more details on the pre-injector see 7403064X and 7403066X.

  11. On-site bridge inspection with partial CT by 3.95Mev X-band linac source

    International Nuclear Information System (INIS)

    Wu, Wenjing; Zhu, Haito; Jin, Ming

    2012-01-01

    Since more and more bridges built several decades ago in Japan have become aged and dangerous, the non-destructive evaluation of those bridges is really an urgent problem. CT system with portable 3.95MeV linacs for bridge inspection is considered to work on-site, considering the law of Japanese radiation protection allows using linacs up to 4MeV outside radiation controlled area. The system would confirm the internal steel situation of bridges and analyze structural strain and stress with 3D model built from sectional imaging to evaluate load-bearing performance. The reconstruction process of bridge imaging is based on partial scanned data because bridge shape confines possible scanning angle to smaller than 180deg and a few translations. A small concrete sample with internal steel bars and attachment accessories is scanned in laboratory as preliminary work. (author)

  12. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications

    International Nuclear Information System (INIS)

    Kulkarni, Nita S.; Dhingra, Rinky; Kumar, Vinit

    2016-01-01

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2π/3 mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three dimensional transient simulations of the accelerating structure along with the input and output couplers have been performed using the software CST-MWS to explicitly demonstrate this feature. (author)

  13. Work on the high voltage platform of the pre-injector of Linac 1

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Henry Charmot adjusting the electronics of the ion source on a platform which, during operation, was at a potential of 520 kV to ground. The cage containing the electronics is opened by hydraulic jacks. Visible on the right is the ion source (pill box structure) attached to the corrugated acceleration column, where the protons pass from 520 keV to ground potential. For more details on the pre-injector see 7403064X, 7403066X, 7403067X, 7403070, 7403071X, 7403124.

  14. Operating experience with the ALS linac

    International Nuclear Information System (INIS)

    Selph, F.; Massoletti, D.

    1991-05-01

    The linac injector for the Advanced Light Source (ALS) at LBL was recently put into operation. Energy is 50 MeV, frequency 3 GHz. The electron gun delivers up to 6nC in a 3.0-ns bunch at 120 kV. A train of bunches is injected into a 1-Hz booster and accelerated to 1.5 GHz for storage ring injection. A magnetic analysis system is used for optimizing the linac. Measured beam properties from the gun and after acceleration in the linac are described. 9 refs., 3 figs

  15. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters; Determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne. Choix des parametres electriques, dynamique des particules

    Energy Technology Data Exchange (ETDEWEB)

    Prome, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-12-15

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author) [French] Dans le contexte general de la determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne, ce rapport traite de la partie relative au mecanisme de l'acceleration des particules; a partir des caracteristiques souhaitees pour le faisceau a la sortie de cet accelerateur, on determine successivement les longueurs des cellules, compte tenu du choix d'un angle de phase synchrone variable, les caracteristiques du groupeur et du degroupeur et les emittances du faisceau en sortie dans les differents plans de phase. (auteur)

  16. State-of-the-Art Electron Guns and Injector Designs for Energy Recovery Linacs (ERL)

    CERN Document Server

    Todd, Alan; Ben-Zvi, Ilan; Benson, Stephen V; Blüm, Hans; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Campisi, Isidoro E; Chang, Xiangyun; Christina, Vincent; Cole, Michael; Colestock, Patrick L; Daly, Edward; Douglas, David; Dylla, Fred H; Falletta, Michael; Hahn, Harald; Hernandez-Garcia, Carlos; Hogan, John; Holmes, Douglas; Janssen, Dietmar; Kayran, Dmitry; Kelley, John P; Kewisch, Jorg; Kneisel, Peter; Kurennoy, Sergey; Lewellen, John W; Litvinenko, Vladimir N; Mammosser, John; McIntyre, Gary; Neil, George R; Nguyen, Dinh C; Nicoletti, Tony; Peterson, Ed; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Reass, William; Rees, Daniel; Rimmer, Robert; Rode, Claus; Russell, Steven; Scaduto, Joseph; Schrage, Dale L; Schultheiss, Tom; Sekutowicz, Jacek; Siggins, Tim; Warren Funk, L; Whitlach, Timothy; Wiseman, Mark; Wong, Robert; Wood, Richard L; Wu, Kuo-Chen; Young, Lloyd M; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    A key technology issue of ERL devices for high-power free-electron laser (FEL) and 4th generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Ongoing programs that target up to 1 Ampere injector performance at emittance values consistent with the requirements of these applications are described. We consider that there are three possible approaches that could deliver the required performance. The first is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. Such a 750 MHz device is being integrated and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility beginning in 2007. The second approach is a high-current normal-conducting RF photoinjector. A 700 MHz gun will undergo thermal test in 2006 at the Los Alamos National Laboratory, which, if successful, when equipped with a suitable cathode, would be capable of 1 Ampere operation. The last option is an SRF gun. A half-cell 703 MHz SRF gun capable of delivering 1.0...

  17. Design and development of collimator for 9 MeV BARC-ECIL linac

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Barnwal, Rajesh; Mahendra Kumar; Nayak, Susanta; Barje, S.R.; Sinha, A.K.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.; Baiswar, Rishabh

    2011-01-01

    High Energy electron beam technology is useful for both fundamental and applied research in the sciences, and also in many technical and industrial fields. It has been estimated that there are approximately 26,000 accelerators worldwide. The collimator is designed to function with a 9 MeV LINAC Test Facility (LTF) at ECIL, Hyderabad. The accelerated electron beam hits a tantalum target and X-Rays generated though the target are fed to the collimator. Thereafter, collimated high energy X-Rays will be used for cargo scanning. The X-ray collimator will complement the existing system at LTF, ECIL to get collimated fan beam. A collaborative effort has been made to identify novel and advanced materials to achieve low coefficient of friction for various lateral and angular movements of collimator plates weighing nearly 5 tons. Complex numerical calculations simulating extreme conditions and experimental tests have been undertaken using Ansys. In parallel, an innovative modular design concept of the assembly has been developed to allow fitting in alternative materials, minimizing the load induced deformations, withstanding accidents and accepting desired radiation doses. The collimator plates are made up of mild steel blocks of IS 2062A grade ensuring high geometrical stability. The assembly structures for the collimator are made up of high stiffness I-beams ISMB 150. Each plate has been machined with high precision Electric Discharge Machining (EDM) and Surface Grinding processes. The plates are also hard chrome plated to provide corrosion resistance and increase surface hardness. A full scale collimator prototype has been manufactured to validate each feature of the new design at the LTF, ECIL, Hyderabad. (author)

  18. The CH section of the 17 MeV injector for MYRRHA

    International Nuclear Information System (INIS)

    Maeder, Dominik

    2015-01-01

    The newly developed beam-dynamics design for the MYRRHA injector was optimized in view of a high reliability and availability and fulfills all requirements of the nuclear reactor. The basic concept of the EUROTRANS injector was revised and further developed. Ar result of this work among others the quality of the excite beam could be distrinctly improved. In the statistical error analysis the beam dynamics have been shown as extremely robust and yields even under most pessimistic error assumptions a transmission of above 99.9 %. The new injector concept offers essential advances against the injector design presented in ''MAX Referenzdesign 012'' and is applied as new ''MAX Referenzdesign 2014''. The development history until the new reference design was a successive process with numerous iterative intermediate steps. With the altrnative design (C1) and the consolidated alternative design (C2) in this thesis also the milestones of the injector development are described. The good beam-dynamical properties of the new injector design (C3) could be confirmed in comparison calculations with TraceWin at the IN2P3 rate at CNRS. Beside the beam dynamics the required accelerator cavities were developed and optimized for a high reliability and availability too. The RF design of the CH structures is layed out for a most possible breakdown safety in the operation with low electrical field gradients far below the technical power limits and possibilities of each cavity.

  19. Study on transient beam loading compensation for China ADS proton linac injector II

    Science.gov (United States)

    Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom

    2016-05-01

    Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)

  20. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    Energy Technology Data Exchange (ETDEWEB)

    Magistris, Matteo [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: matteo.magistris@cern.ch; Silari, Marco [CERN, CH-1211 Geneva 23 (Switzerland)

    2006-06-23

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  1. Operational parameters of a 2.0-MeV RFQ linac

    International Nuclear Information System (INIS)

    Sander, O.R.; Purser, F.O.; Rusthoi, D.P.

    1984-01-01

    After extensive upgrading, our radio-frequency quadrupole (RFQ) linac is again installed on the accelerator test stand (ATS). The measured parameters of the RFQ, such as the output transverse emittance, transmitted beam, average energy, and energy spread is presented

  2. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  3. Electromagnetic design and beam dynamics studies for a 10 MeV, 10 kW electron linac

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2013-01-01

    Bi-periodic on-axis coupled standing wave linac is seen as an attractive choice for low energy (∼10 MeV) electron accelerators for industrial applications. In this paper, we present the physics design of an S-band bi-periodic on-axis coupled standing wave structure operating in π/2 mode. The structure operates at 2856 MHz and can accelerate electrons to 10 MeV. The 2D optimization of structure cells carried out using SUPERFISH is reported. Magnetic coupling is achieved through bean shaped coupling slots. Analytical calculations have been carried out to fix the dimensions of coupling slots. The paper discusses the complete 3D design of accelerating structure with coupling slots carried out using CST-MWS. The approach used to achieve confluence is outlined. Finally, the beam dynamics studies carried out using PARMELA are also discussed. (author)

  4. Optimization of the microwave coupler and microwave measurements of the microtron cavity for 20 MeV pre-injector microtron for INDUS-I SRS

    International Nuclear Information System (INIS)

    Wanmode, Y.D.; Shrivastava, Purushottam; Hannurkar, P.R.

    2003-01-01

    A 20 MeV microtron was developed indigenously by CAT for pre-injection of 20 MeV electrons to the 450 MeV/700 MeV Booster Synchrotron for INDUS-I and INDUS-II Synchrotron Radiation Sources. The injector microtron uses a high Q microwave cavity for acceleration of electrons. The microwave power is fed to the microtron cavity through an iris type coupler whose dimensions are optimized for the coupling factor and resonant frequency for the accelerator. The present paper gives the procedure details for coupling factor optimization, tuning of the resonant frequency and results achieved. (author)

  5. Structural analysis and evaluation of actual PC bridge using 950 keV/3.95 MeV X-band linacs

    Science.gov (United States)

    Takeuchi, H.; Yano, R.; Ozawa, I.; Mitsuya, Y.; Dobashi, K.; Uesaka, M.; Kusano, J.; Oshima, Y.; Ishida, M.

    2017-07-01

    In Japan, bridges constructed during the strong economic growth era are facing an aging problem and advanced maintenance methods have become strongly required recently. To meet this demand, we develop the on-site inspection system using 950 keV/3.95 MeV X-band (9.3 GHz) linac X-ray sources. These systems can visualize in seconds the inner states of bridges, including cracks of concrete, location and state of tendons (wires) and other imperfections. At the on-site inspections, 950 keV linac exhibited sufficient performance. But, for thicker concrete, it is difficult to visualize the internal state by 950 keV linac. Therefore, we proceeded the installation of 3.95 MeV linac for on-site bridge inspection. In addition, for accurate evaluation, verification on the parallel motion CT technique and FEM analysis are in progress.

  6. A Compact 5 MeV S-Band Electron Linac Based X-Ray Source for Industrial Radiography

    CERN Document Server

    Auditore, Lucrezia; De Pasquale, Domenico; Emanuele, Umberto; Italiano, Antonio; Trifirò, Antonio; Trimarchi, Marina

    2005-01-01

    A compact and reliable X-ray source, based on a 5 MeV, 1 kW, S-band electron linac, has been set up at the Dipartimento di Fisica, Universit\\'a di Messina. This source, coupled with a GOS scintillator screen and a CCD camera, represents an innovative transportable system for industrial radiography and X-ray tomography. Optimization of the parameters influencing the e-gamma conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 code. The converter choice is the result of the study of the e-gamma conversion performances for different materials and materials thicknesses. Also the converter position with respect to the linac exit window was studied. The chosen converter consists in a Ta-Cu target inserted close to the linac window. The Cu layer acts as a filter both on the electrons from the source and on the low energy X-rays. The X-ray beam angular profile was studied by means of GafChromic films with and without collimation. In the final source project, a collimation system pr...

  7. Developmental efforts of RF collinear load for 10 MeV, 6 kW travelling wave Linac

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Kumar, Harish; Soni, R.K.; Dwivedi, Jishnu; Thakurta, A.C.; Wanmode, Y.D.; Pareek, Prashant; Senthil Kumar, S; Shinde, R.S.

    2015-01-01

    RRCAT is developing a 10 MeV, 6 kW Travelling Wave Electron Linac for radiation processing applications. The remnant RF power from the Linac structure is taken out by output RF coupler and absorbed by the waveguide load. RF collinear load is an improved technique for absorption of the remnant RF power. It replaces the output RF coupler, RF window and waveguide load leading to reduction in size of magnetic elements and less transverse beam instabilities. In addition, it uses the remnant RF power to increase the electron beam energy. The collinear load consists of a number of copper cavities coated with microwave absorbing material at inner surfaces and brazed to the Linac structure at the end. Development of the collinear load has been started at RRCAT and a prototype low power collinear load using Kanthal (FeCrAl alloy) coating has been developed. Further works are going on the development of high power collinear load using FeSiAl alloy. The paper describes the development of the Kanthal based prototype low power collinear load as well as the works for the development of FeSiAl alloy based high power collinear load. (author)

  8. Studies on the construction of a new 80 MeV injector and a new injection scheme for the synchrotron of the Bonn accelerator facility ELSA; Studien zum Aufbau eines neuen 80 MeV-Injektors und eines neuen Injektionsschemas fuer das Synchroton der Bonner Beschleunigeranlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Raecke, K.

    2001-09-01

    At the ELSA Accelerator Facility exists the opportunity to install a 80 MeV linear accelerator as an injector for the 2,5 GeV Booster Synchrotron. Because of its length the new structure cannot replace one of the linacs used today so possibilities to built up the accelerator and the transfer channels are worked out. Calculations comparing the injection efficiency of the present layout and the possible new layout show a recognizable improvement. The injection efficiency can be further improved using a single turn injection scheme. A septum magnet and a fast kicker for this injection scheme is designed. (orig.)

  9. An automatic frequency control system of 2-MeV electronic LINAC

    International Nuclear Information System (INIS)

    Hu Xue; Zhang Junqiang; Zhong Shaopeng; Zhao Minghua

    2013-01-01

    Background: In electronic LINAC, the magnetron is often used as power source. The output frequency of magnetron always changes with the environment and the frequency difference between the output of magnetron and the frequency of accelerator, which will result in the bad performance of LINAC systems. Purpose: To ensure the performance of the work of entire LINAC system effectively, an automatic frequency control system is necessary. Methods: A phase locked frequency discriminator is designed to discriminate the frequency of accelerator guide and magnetron, and analogue circuit is used to process the output signals of frequency discriminator unit. Results: Working with the automatic frequency control (AFC) system, the output frequency of magnetron can be controlled in the range of (2998 MHz, 2998 MHz + 70 kHz) and (2998 MHz, 2998 MHz - 30 kHz). Conclusions: Under the measurement and debug, the functionality of frequency discriminator unit and signal processor circuit is tested effectively. (authors)

  10. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  11. Status and plans for Linac4 installation and commissioning

    CERN Document Server

    Vretenar, M; Arnaudon, L; Baudrenghien, P; Bellodi, G; Broere, J; Brunner, O; Comblin, J F; Coupard, J; Dimov, V A; Fuchs, J F; Funken, A; Gerigk, F; Granemann Souza, E; Hanke, K; Hansen, J; Yarmohammadi Satri, M; Kozsar, I; Lallement, J B; Lenardon, F; Lettry, J; Lombardi, A M; Maglioni, C; Midtun, O; Mikulec, B; Nisbet, D; Paoluzzi, M; Raich, U; Ramberger, S; Roncarolo, F; Rossi, C; Sanchez Alvarez, J L; Scrivens, R; Tan, J; Valerio-Lizarraga, C A; Vollaire, J; Wegner, R; Weisz, S; Zocca, F

    2014-01-01

    Linac4 is a normal conducting 160 MeV Hˉ linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam brightness in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to...

  12. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lombardi, Alessandra; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  13. Fission cross section measurements at the LLL 100-MeV linac

    International Nuclear Information System (INIS)

    Browne, J.C.

    1975-01-01

    The fission cross section for 235 U was measured from thermal energy to 20 MeV in several steps. First, the cross section was measured from 8 MeV to 20 MeV relative to the n,p scattering cross section and then from thermal to one MeV relative to 6 Li(n,α). In addition, a measurement of the ratio of the fission cross sections of 235 U and 238 U relative to 235 U has been completed in the range 1 keV to 30 MeV for 233 U and 100 keV to 30 MeV for 238 U. Statistical uncertainties are less than 4 percent. (U.S.)

  14. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  15. Progress in the Development of the TOP Linac

    CERN Document Server

    Picardi, L

    2004-01-01

    The TOP Linac (Oncological Therapy with Protons), under development by ENEA and ISS is a sequence of three pulsed (5 msec, 300 Hz) linear accelerators: a 7 MeV, 425 MHz RFQ+DTL (AccSys Model PL-7), a 7–65 MeV, 2998 MHz Side Coupled Drift Tube Linac (SCDTL) and a 65–200 MeV, variable energy 2998 MHz Side Coupled Linac (SCL). The first SCDTL module is composed by 11 DTL tanks coupled by 10 side cavities. The tanks has modified to overcome vacuum leakage that occurred during brazing, and now the module has been completed, and is ready to be tested with protons. The 7 MeV injector has been recently installed in the ENEA Frascati laboratories for preliminary test, before being transferred to the main Oncologycal Hospital in Rome, Istituto Regina Elena.

  16. The quasi-monochromatic photon beam used in photoneutron experiments from 20-120 MeV at the 600 MeV Saclay Linac

    International Nuclear Information System (INIS)

    Veyssiere, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Lepretre, A.; Ahrens, J.

    1979-01-01

    A beam of 20-130 MeV positrons, with average intensities between 10 nA and 50 nA, is used at the 600 MeV Saclay Linac to create a quasi-monochromatic photon beam with a continuously variable energy. This beam was used to measure photoneutron cross sections and the corresponding photonuclear facility is first described. The computer-controlled methods, implemented to measure the energy spectrum and the emittance of the positron beam are described. The quasi-monochromatic photon lines are produced by the annihilation in flight of monoenergetic positrons in two annihilation radiators with different Z successively. The photon beam emission angle theta is shown to be the most critical parameter in the search for an optimum overall signal to background ratio for a specific photoneutron experiment. The choice of an angle theta approximately 4 0 is explained for absolute measurements of sigma(γ, xn) cross-sections, for which the used average intensities of monochromatic photons were thus purposely reduced to approximately 5 X 10 3 s -1 , with an energy resolution approximately 12%. (Auth.)

  17. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  18. Continued conditioning of the Fermilab 400 MeV linac high-gradient side-coupled cavities

    International Nuclear Information System (INIS)

    Kroc, Thomas; McCrory, Elliott; Moretti, Alfred; Popovic, Milorad

    1996-01-01

    The high-energy portion of the Fermilab 400 MeV Linac is made of high gradient (37 MV/meter surface field) side-coupled cavity sections which were conditioned over a 10 month period before their installation in August of 1993. We have continued to monitor the conditioning of these cavities since that time while the cavities have been in operation, and those results are presented here. The sparking rate and the X-ray production are measured and compared with the 1992/3 pre-operational and 1993/4 early operational measurements. These rates are consistent with a continued diminishing of these phenomena. Predictions and spark management strategies presented in earlier reports are evaluated in light of present experiences. We also have been measuring the sparking rate within this structure with and without our 50 mA peak beam. We find that the sparking rate is 20% higher with beam in the accelerator. (author)

  19. Study of the beam of the 60MeV LINAC and automation of the accelerator operation

    International Nuclear Information System (INIS)

    Roland, Sixte.

    1975-07-01

    The on-line automation of a Linac depends essentially on a very extensive use of measuring and control devices. In particular, peak currents from 15 mA to 6 A to pulse configuration from 2 μs to 6 ns respectively are continuously monitored by ferrite transformers at the end of each section. A special study of low intensity beams, of the order of 0.1 μA, has also been made by means of transition radiation phenomena which produce visible radiation whenever an electron beam traverses thin metallic foils (5μ). Thus electron energies, beam profile position and energy as well as pulse widths have been measured by appropriately adapted detectors. A precise knowledge of the behavior of the above cited beam characteristics then enabled the linac performances to attain a stability of the order of one per cent over periods of several weeks. The beam monitoring is performed numerically, analogically and by an ''on-off'' system coupled to a mini-computer. If some error is detected in a section one can then replace the fast numerical controls by the slower analogical ones. The beam control is initiated through monitoring data obtained from certain experimental results which in turn affect the beam energy and intensity. A fully automatic operation for a 4 μA beam covering the 28 MeV - 60 MeV energy range has thus been performed by means of an automatic phase control of the last section together with the appropriate automatic adjustment of the associated magnetic guidance system [fr

  20. Emittance reconstruction technique for the Linac4 high energy commissioning

    CERN Document Server

    Lallement, JB; Posocco, PA

    2012-01-01

    Linac4 is a new 160 MeV linear accelerator for negative Hydrogen ions (H-) presently under construction which will replace the 50 MeV proton Linac2 as injector for the CERN proton accelerator complex. Linac4 is 80 meters long and comprises a Low Energy Beam Transport line, a 3 MeV RFQ, a MEBT, a 50 MeV DTL, a 100 MeV CCDTL and a PIMS up to 160 MeV. The commissioning of the Linac is scheduled to start in 2013. It will be divided into several steps corresponding to the commissioning of the different accelerating structures. A temporary measurement bench will be dedicated to the high energy commissioning from 30 to 100 MeV (DTL tanks 2 and 3, and CCDTL). The commissioning of the PIMS will be done using the permanent equipment installed in between the end of the Linac and the main dump. This note describes the technique we will use for reconstructing the transverse emittances and the expected results.

  1. First operational tests of the positive-ion injector for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Den Hartog, P.K.; Pardo, R.C.; Shepard, K.W.; Benaroya, R.; Billquist, P.J.; Clifft, B.E.; Markovich, P.; Munson, F.H. Jr.; Nixon, J.M.

    1989-01-01

    This paper summarizes the status and first operational experience with the positive-ion injector for ATLAS. The new injector consists of an ECR ion source on a 350-kV platform, followed by a superconducting injector linac of a new kind. In Phase I of this project, the ECR source, voltage platform, bunching system, beam-transport system, and a 3-MV injector linac were completed and tested in early 1989 by a successful acceleration of an /sup 40/Ar/sup 12 +/ beam. Most of the new system operated as planned, and the longitudinal emittance of the 36-MeV beam out of the injector was measured to be only 5 ..pi.. keV-ns, much smaller than the emittance for the present tandem injector. When completed in 1990, the final injector linac will be enlarged to 12 MV, enough to allow the original ATLAS linac to accelerate uranium ions up to 8 MeV/u. 8 refs., 2 figs.

  2. 1-GeV Linac Upgrade Study at Fermilab

    International Nuclear Information System (INIS)

    Popovic, M.; Moretti, A.; Noble, R.; Schmidt, C.W.

    1998-09-01

    A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H - beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce ∼10 14 protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given

  3. Operational experience with the Fermilab Linac

    International Nuclear Information System (INIS)

    Allen, L.J.; Lennox, A.J.; Schmidt, C.W.

    1992-01-01

    The Fermilab 200-MeV Linac has been in operation for nearly 22 years as a proton injector to the Booster synchrotron. It presently accelerates H - ions to 200 MeV for charge-exchange injection into the Booster and to 66 MeV for the production of neutrons at the Neutron Therapy Facility (NTF). The beam intensity is typically 35 mA with pulse widths of 30 μsec for the Booster for high energy physics and 57 μsec for NTF at a maximum of 15 pulses per sec. During a typical physics run of nine to twelve months, beam is available for greater than 98% of the scheduled time. The Linac history, operation, tuning, stability and reliability will be discussed. (Author) 15 refs., 2 tabs

  4. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  5. Physical design of 9 MeV travelling wave electron linac accelerating tube

    International Nuclear Information System (INIS)

    Chen Huaibi; Ding Xiaodong; Lin Yuzheng

    2000-01-01

    An accelerating tube is described. It is a part of an accelerator used for inspection of vehicle cargoes in rail cars, trucks, shipping containers, or airplanes in customs. A klystron with power of 4 MW and frequency of 2856 MHz will be applied to supply microwave power. The electrons can be accelerated by a travelling wave in the accelerating tube about 220 cm long, with a buncher whose capture efficiency is more than 80%. Energy of electrons after travelling through the tube can reach 9 MeV (pulse current intensity 170 mA) or 6 MeV (pulse current intensity 300 mA). Physical design of the accelerating tube, including the calculations of longitudinal particle dynamics, structure parameter and working character is carried out

  6. Preinjector for Linac 1, Faraday cage

    CERN Multimedia

    1974-01-01

    The 50 MeV Linac 1 started up in 1958 as injector to the 26 GeV PS, with a 520 kV Cockcroft-Walton generator as its preinjector, housed in a vast Faraday cage, visible here. When the Cockcroft-Walton broke down in 1973, it was replaced by a much smaller SAMES generator, of the kind used for electrostatic separators. From 1980 on, Linac 2 took over as injector for the 800 MeV Booster, and Linac 1 continued as injector for LEAR. In 1984, the electrostatic preinjector (i.e. the Faraday cage with its contents, SAMES generator and all) was replaced by a 520 keV RFQ. At the lower left corner we see the HV connectors to the SAMES generator, at the right edge part of the opened electronics-platform. Jean-Luc Vallet sees to it that all parts are properly grounded. See also 7403073X, 7403074X, 7403081X, 7403083X.

  7. Design and Beam Dynamics Studies of a Multi-Ion Linac Injector for the JLEIC Ion Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P. N.; Plastun, A. S.; Mustapha, B.; Conway, Z. A.

    2016-01-01

    The electron-ion collider (JLEIC) being proposed at JLab requires a new ion accelerator complex which includes a linac capable of delivering any ion beam from hydrogen to lead to the booster. We are currently developing a linac which consists of several ion sources, a normal conducting (NC) front end, up to 5 MeV/u, and a SC section for energies > 5 MeV/u. This design work is focused on the beam dynamics and electrodynamics studies performed to design efficient and cost-effective accelerating structures for both the NC and SC sections of the linac. Currently, we are considering two separate RFQs for the heavy-ion and light-ion beams including polarized beams, and different types of NC accelerating structures downstream of the RFQ. Quarter-wave and half-wave resonators can be effectively used in the SC section.

  8. Design and Development of RF Structures for Linac4

    CERN Document Server

    Vretenar, M; Gerigk, F; Pasini, M; Wegner, R

    2006-01-01

    Linac4 is a new 160 MeV H− linac proposed at CERN to replace the 50 MeV Linac2 as injector to the PS Booster, with the goal of doubling its brightness and intensity. The present design foresees after RFQ and chopping line a sequence of three accelerating structures: a Drift Tube Linac (DTL) from 3 to 40 MeV, a Cell-Coupled DTL (CCDTL) to 90 MeV and a Side Coupled Linac (SCL) up to the final energy. The DTL and CCDTL operate at 352 MHz, while in the SCL the frequency is doubled to 704 MHz. Although the injection in the PS Booster requires only a low duty cycle, the accelerating structures are designed to operate at the high duty cycle required by a possible future extension to a high-power linac driver for a neutrino facility. This paper presents the different accelerating structures, underlining the progress in the design of critical resonator elements, like post-couplers in the DTL, coupling slots in the CCDTL and bridge couplers for the SCL. Prototyping progress for the different structures is reported...

  9. Advanced test accelerator (ATA), a 50 MeV, 10 kA induction linac

    International Nuclear Information System (INIS)

    Reginato, L.

    1983-01-01

    The ATA is an induction accelerator designed to produce 70 ns pulses of electrons at currents of 10 kA and energies in excess of 50 MeV. The accelerator is capable of operating at an average rate of 5 Hz or at 1 kHz for ten pulses. The parameters were chosen primarily to provide the experimental basis for advancing the understanding of electron beam propagation physics. The 85 m accelerator has been under construction for the past four years and has adopted mainly an improved version of the ETA technology to satisfy the required parameters. Initial operation of the facility and the energy conversion system from primary power to axial electric field will be described; recent advances in magnetic switching which have been incorporated in the innector will also be discussed

  10. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Mulchandani, J.; Mohania, P.; Baxy, D.; Wanmode, Y.; Hannurkar, P.R.

    2005-01-01

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  11. Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac

    CERN Document Server

    Sinclair, Charles K; Smith, Colin H

    2005-01-01

    The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun test...

  12. Prototype Digital Beam Position and Phase Monitor for the 100-MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Kim, Sung-Chul; Park, In-Soo; Park, Sung-Ju; Tae Kim, Do

    2005-01-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current (pulse width and max. repetition rate of 1 ms and 120 Hz respectively). We are developing a prototype digital BPPM (Beam Position and Phase Monitor) for the PEFP linac utilizing the digital technology with field programmable gate array (FPGA). The RF input signals are down converted to 10 MHz and sampled at 40 MHz with 14-bit ADC to produce I and Q data streams. The system is designed to provide a position and phase resolution of 0.1% and 0.1? RMS respectively. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the prototype digital beam position and phase monitor will be described with the performance test results.

  13. Feasibility study of a 2 GeV superconducting $H^{-}$ linac as injector for the CERN PS

    CERN Document Server

    Garoby, R; Hill, C E; Lombardi, A M; Ostroumov, P N; Tessier, J M; Vretenar, Maurizio

    1998-01-01

    This preliminary feasibility study is based on the availability of the CERN LEP2 superconducting RF system after LEP de-commissioning. The option that is explored is to use this system as part of a high energy H- linac injecting at 2 GeV into the CERN PS, with the aim of reliably providing at its output twice the presently foreseen transverse beam brightness at the ultimate intensity envisaged for LHC. This requires the linac to be pulsed at the PS repetition rate of 0.8 Hz with a mean beam current of 10 mA which is sufficient for filling the PS in 240 ms (i.e. about 100 turns) with the ultimate intensity foreseen for injection for the LHC. The linac is composed of two RFQs with a chopping section, a room temperature DTL, a superconducting section with reduced beta cavities up to 1 GeV, and a section of LEP2 cavities up to 2 GeV. This study deals, in particular, with the problems inherent in H- acceleration up to high energy and in the pulsed operation of SC cavities. Means for compensating microphonic vibrat...

  14. Update on the VECC-TRIUMF collaboration for superconducting e-Linac development

    International Nuclear Information System (INIS)

    Naik, V.; Dechoudhury, S.; Mondal, M.

    2013-01-01

    A 50 MeV 100 kW cw superconducting electron linac (e-Linac) will be used as photo-fission driver for the ANURIB facility at Variable Energy Cyclotron Centre. In the first phase a 10 MeV Injector is being developed in collaboration with TRIUMF Canada, who will also be using an e-Linac driver for their ARIEL (Advanced Rare IsotopE Laboratory) upgrade. The VECC e-Linac will be installed at the upcoming Rajarhat campus. For the initial R and D on the Injector an e-Linac test area is being set-up in one of the experimental caves of the K130 cyclotron at the Salt Lake campus. The Injector will be tested using a 100 kV gun. A Capture Cryo Module (CCM) consisting of two beta=1, 1.3 GHz, single-cell niobium cavities is being designed and built indigenously. The CCM will be used for pre-acceleration of the beam from the gun to around 400 keV before injection in to the ICM. The ICM will be built and tested at TRIUMF and a test area has been set-up at TRIUMF for the purpose. Detailed status report on various components of the e-Linac will be presented. (author)

  15. Space Charge Effects for the ERL Prototype Injector Line at Daresbury Laboratory

    CERN Document Server

    Muratori, Bruno; Owen, Hywel; de Loos, Marieke; van der Geer, Bas

    2005-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will operate at a beam energy of 35 MeV. In this paper we examine the space charge effects on the beam dynamics in the ERLP injector line. A Gaussian particle distribution is tracked with GPT (General Particle Tracer) through the injection line to the main linac to calculate the effect of 3Dspace charge in the dipoles. The nominal beam energy in the injection line is 8.3 MeV and the bunch charge 80 pC. The effects of space charge on the transverse and longitudinal emittance are studied for various electron beam parameter settings.

  16. Electron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G A; Schriber, S O [ed.

    1976-11-01

    A study was made of the present status of the thousand or so electron linacs in the world, and future trends in the field. These machines were classified according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for x-ray and electron therapy, and those which may in the future be used for negative pion therapy. Industrial machines discussed include linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a c-w, 1 GeV, 100..mu..A electron linac is raised, and various options using recirculation and stretchers are examined. In this connection, the status of rf superconductivity is summarized. A review is given of linacs for injectors into synchrotrons and e/sup +-/ storage rings, and recent work done to upgrade the only multi-GeV linac, namely SLAC, is described.

  17. Electron linacs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1976-01-01

    To study the present status of the thousand or so electron linacs in the world, and future trends in the field, we have classified these machines according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for X-ray and electron therapy, and those which may in the future be used for negative pion therapy. The section on industrial machines includes linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a C.W., 1 GeV, 100 μA electron linac is raised and various options using recirculation and stretchers are examined. In this connection, the status of RF superconductivity is summarized. Following, there is a review of linacs for injectors into synchrotrons and e +- storage rings. The paper ends with a description of recent work done to upgrade the only multi-GeV linac, namely SLAC. (author)

  18. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  19. Alignment and Field Error Tolerance in Linac4

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L; Lallement, J B; Lanzone, S; Lombardi, A M; Posocco, P; Sargsyan, E

    2011-01-01

    LINAC4 [1] is a linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton LINAC (LINAC2) as linear injector for the CERN accelerators. The higher output energy (160 MeV) together with charge-exchange injection will allow increasing beam intensity in the following machines. LINAC4 is about 80 m long, normal-conducting, and will be housed in a tunnel 12 m below ground on the CERN Meyrin site. The location has been chosen to allow using LINAC4 as the first stage of acceleration for a Multi-MegaWatt superconducting LINAC (SPL [2]). A 60 m long transfer line brings the beam towards the present LINAC2-to-PS Booster transfer line, which is joined at the position of BHZ20. The new transfer line consists of 17 new quadrupoles, an RF cavity and 4 bending magnets to adjust both the direction and the level for injection into the PS Booster. End-to-end beam dynamics simulations have been carried out in parallel with the codes PATH [3] and TRACEWIN[4]. Following the definition of the layout...

  20. Design Considerations for an MEBT Chopper Absorber of 2.1 MeV H- at the Project X Injector Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Awida, M.; Chen, A.; Eidelman, Y.; Lebedev, V.; Prost, L.; Shemyakin, A.; Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-14

    The Project X Injector Experiment (PIXIE) will be a prototype of the Project X front end that will be used to validate the design concept and decrease technical risks. One of the most challenging components of PIXIE is the wide-band chopping system of the Medium Energy Beam Transport (MEBT) section, which will form an arbitrary bunch pattern from the initially CW 162.5 MHz 5mA beam. The present scenario assumes diverting 80% of the beam to an absorber to provide a beam with the average current of 1mA to SRF linac. This absorber must withstand a high level of energy deposition and high ion fluence, while being positioned in proximity of the superconductive cavities. This paper discusses design considerations for the absorber. Thermal and mechanical analyses of a conceptual design are presented, and future plans for the fabrication and testing of a prototype are described.

  1. Present status of cryogenic system for e-linac at VECC

    International Nuclear Information System (INIS)

    Ahammed, Manir; Mondal, Manas; Pal, Sandip; Duttagupta, Anjan; Bandyopadhyay, Arup; Naik, Vaishali; Chakrabarti, Alok; Laxdal, Robert E.; Koveshnikov, Alexy

    2015-01-01

    VECC is constructing a 50 MeV, 100 kW, superconducting electron linear accelerator (e-Linac) for the upcoming ANURIB (Advanced National facility for Unstable and Rare Isotope Beams) project at the new campus. Presently a 10 MeV injector for the e-Linac is being developed in collaboration with TRIUMF laboratory in Canada.The Injector comprises a 300 kV electron gun, low energy beam transport (LEBT) line and an injector cryo-module (ICM) that houses one 9-cell beta=1, 1.3 GHz niobium elliptical cavity operated at 2K. Alternatively, a capture cryo-module (CCM) having two single cell beta=1, 1.3 GHz niobium cavities that will allow the electron gun to be operated at 100 kV is also being developed. The e-Linac has been jointly designed by VECC and TRIUMF. The ICM is being built by TRIUMF whereas front-end of the injector is being built indigenously at VECC. In this report the details and present status of the cryogenic system for the e-Linac will be presented

  2. The Digital Feedback RF Control System of the RFQ and DTL1 for 100 MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Cho, Yong-Sub; Han, Yeung-Jin; Kang Heung Sik; Kim, Sung-Chul; Kwon, Hyeok-Jung; Park, In-Soo; Tae Kim, Do; Tae Seol, Kyung

    2005-01-01

    The 100 MeV Proton linear accelerator (Linac) for the PEFP (Proton Engineering Frontier Project) will include 1 RFQ and 1 DTL1 at 350 MHz as well as 7 DTL2 cavities at 700 MHz. The low level RF system with the digital feedback RF control provides the field control to accelerate a 20mA proton beam from 50 keV to 20 MeV with a RFQ and a DTL1 at 350M Hz. The FPGA-based digital feedback RF control system has been built and is used to control cavity field amplitude within ± 1% and relative phase within ± 1°. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the digital feedback RF control system will be described with the performance test results.

  3. NBS-LANL RTM injector installation

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Lindstrom, E.R.; Martin, E.R.; Mohr, D.L.; Penner, S.; Yoder, N.R.; Young, L.M.

    1983-01-01

    The injector for the NBS-LANL CW racetrack microtron consists of a 100 KeV electron gun and beam transport line followed by a 5 MeV linac. The function of the gun and transport line, which have been installed at NBS, is to provide a chopped and bunched 100 KeV and up to 0.67 mA dc or pulsed beam of very low transverse emittance for matched insertion into the linac. In this paper the authors present both the design and construction details of the 100 KeV system and the results of preliminary beam tests. The tests conducted thus far show the gun and transport system to be performing well within design specifications

  4. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  5. Design Study of Control System for Radiation Therapy System Based on 6 MeV X-band LINAC

    International Nuclear Information System (INIS)

    Kim, Sehee; Kim, Jaehyun; Chae, Moonsik; Lee, Byeongno; Oh, Kyeongmin; Lee, Soomin; Ju, Jinsik; Park, Sangjoon; Kim, Hansoo; Jeong, Kyeongmin

    2017-01-01

    Linear accelerator(LINAC) is used in various fields such as industrial, defense, medical, etc because it is easy to control radiation energy or flow rate. KAERI developed a robot-based radiation therapy system that can efficiently irradiate radiation in a short period of time. Unlike the old type which uses a single robot arm, two robot arms are used and the smart bed is linked to track the respiration. This paper discusses the development of system of integrated X-band LINAC modules installed in smart robot therapy machines. In this study, total control program for integrating and controlling the medical LINAC modules was developed and verified. Future research will continue to reduce delays between transmissions and receptions and minimize interference between the modules.

  6. Design and Results of a Time Resolved Spectrometer for the 5 MeV Photo-Injector Phin

    CERN Document Server

    Dabrowski, A; Egger, D; Mete, O; Lefevre, T

    2010-01-01

    The CLIC Test Facility 3 (CTF3) drive beam injector should provide high intensity and high quality electron beams. The present installation relies on a thermionic gun followed by a complex RF bunching system. As an upgrade to improve the beam emittance and the energy spread and to minimize the beam losses, a photo-injector is being developed and tested at CERN. One of the major challenges is to provide a 3.5A beam with a stable (0.1%) beam energy over 1.2 μs and a relative energy spread smaller than 1%. A 90◦ spectrometer line consisting of a segmented dump and an Optical Transition Radiation screen has been built in order to study these issues. The following paper describes its design and shows performances during the beam commissioning.

  7. Electron diodes and cavity design for the new 4-MeV injector of the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Bennett, L.F.; Olson, W.R.; Turman, B.N.

    1991-01-01

    The authors have designed and constructed four types of electron-beam diodes for the new 4-MV RLA injector: a non-immersed foilless diode, a magnetically immersed foilless diode, a foil diode and an ion-focused foilless diode, They are tailored to fit the new injector cavity. The design goals were to produce high quality 10-kA to 20-kA electron beams with a β perpendicular smaller than 0.2 and a beam radius of the order of 2 cm. These beams will be matched to the RLA IFR channel so β perpendicular must be equal to or smaller than the square root of the ratio of the beam current versus Alfven current for f e = 1. A reentrant anode geometry was selected for the injector cavity design, because it offers substantial savings on the required amount of feromagnetic cores. The inner radius of the outside shell, now only 30 cm, would have been twice as large (60 cm) if a coaxial non-reentrant geometry had been adopted. The shape of the anode and cathode electrodes were carefully selected to minimize the electric field stresses. The field stresses on the inner surface of the outer shell do not exceed 200 kV/cm

  8. The S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Bahlo, Thore; Bangert, Phillip; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Burandt, Christoph; Eichhorn, Ralf; Enders, Joachim; Espig, Martin; Platz, Markus; Poltoratska, Yuliya; Roth, Markus; Schneider, Fabian; Wagner, Markus; Weber, Antje; Zwicker, Benjamin [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet, Darmstadt (Germany); Aulenbacher, Kurt [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2011-07-01

    A source of polarized electrons has been installed at the superconducting 130 MeV Darmstadt electron linac S-DALINAC. Polarized electrons are generated by irradiating a GaAs cathode with pulsed Ti:Sapphire and diode lasers and preaccelerated to 100 keV. A Wien filter and 100 keV Mott polarimeter are used for spin manipulation and polarization measurement and various beam diagnostic elements are installed. To measure the beam polarization downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter and a Compton-transmission polarimeter have been developed. We report on the status of the polarized electron source and foreseen experiments.

  9. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    International Nuclear Information System (INIS)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-01-01

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz

  10. Performance potential of the injectors after LS1

    International Nuclear Information System (INIS)

    Bartosik, H.; Carli, C.; Damerau, H.; Garoby, R.; Gilardoni, S.; Goddard, B.; Hancock, S.; Hanke, K.; Lombardi, A.; Mikulec, B.; Raginel, V.; Rumolo, G.; Shaposhnikova, E.; Vretenar, M.

    2012-01-01

    The main upgrades of the injector chain in the framework of the LIU Project will only be implemented in the second long shutdown (LS2), in particular the increase of the PSB-PS transfer energy to 2 GeV or the implementation of cures/solutions against instabilities/e-cloud effects etc. in the SPS. On the other hand, Linac4 will become available by the end of 2014. Until the end of 2015 it may replace Linac2 at short notice, taking 50 MeV protons into the PSB via the existing injection system but with reduced performance. Afterwards, the H - injection equipment will be ready and Linac4 could be connected for 160 MeV H - injection into the PSB during a prolonged winter shutdown before LS2. The anticipated beam performance of the LHC injectors after LS1 in these different cases is presented. Space charge on the PS flat-bottom will remain a limitation because the PSB-PS transfer energy will stay at 1.4 GeV. As a mitigation measure new RF manipulations are presented which can improve brightness for 25 ns bunch spacing, allowing for more than nominal luminosity in the LHC. (authors)

  11. NSLS-II injector commissioning and initial operation

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, B.; Blum, E.; Bassi, B.; Bengtsson, J.; Blednykh, A.; Buda, S.; Cheng, W.; Choi, J.; Cuppolo, J.; D Alsace, R.; Davidsaver, M.; DeLong, J.; Doom, L.; Durfee, d.; fliller, R.; Fulkerson, M.; Ganetis, G.; Gao, F.; Gardner, C.; Guo, W.; Heese, R.; Hidaka, Y.; Hu, Y.; Johanson, M.; Kosciuk, B.; Kowalski, S.; Dramer, S.; Krinsky, S.; Li, Y.; Louie, W.; Maggipinto, M.; Marino, P.; Mead, J.; Oliva, G.; Padrazo, D.; Pedersen, K.; Podobedov, B.; Rainer, R.; Rose, J.; Santana, M.; Seletskiy, S.; Shaftan, T.; Singh, O.; Singh, P.; Smalyuk, V.; Smith, R.; Summers, T.; Tagger, J.; Tian, Y.; Wahl, W.; Wang, G.; Weiner, G.; Willeke, F.; Yang, L.; Yang, X.; Zeitler, E.; Zitvogel, E.; Zuhoski, P.

    2015-05-03

    The injector for the National Synchrotron Light Source II (NSLS-II) storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle in a train of bunches up to 300 ns long. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC, this has proven to be more than sufficient for storage ring commissioning and operation. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of linac and booster operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.

  12. 1974 view into the cage of the 520 keV electrostatic preaccelerator of Linac 1

    CERN Multimedia

    1974-01-01

    The condenser of the high voltage circuit (column in the foreground) is being serviced by Jean Luc Vallet. Standing on the electronics platform (the big, open metallic structure on insulating pillars, for details see 7403120) is Bob Nettelton. The column at the right edge of the photo is part of the bouncer (see also 7403066X) which compensated the voltage drop during acceleration of a proton pulse. In the background is the source (open pill box structure) attached to the accelerating column, barely visible) behind. The "old" 50 MeV Linac 1, the original PS injector built in the 1950s, was (since 1976) replaced by a new 50 MeV linac (Linac 2) with a 750 keV "Cockcroft-Walton" pre-injector(see 7602012X), later replaced by a 750 keV Radio Frequency Quadrupole (RFQ) preaccelerator. Linac 1 co-existed until mid 1992 (from 1982 onwards it was mainly used to inject "test-particles" into the Low Energy Antiproton ring LEAR). In 1984 the electrostatic preaccelerator of linac 1 was replaced by a 520 keV RFQ ( 8303511X...

  13. CEBAF Cryomodule Commissioning in the South Linac

    International Nuclear Information System (INIS)

    M. Drury; H. Lankford; T. Lee; J. Marshall; J. Preble; Q. Saulter; W. Schneider; Michael Spata; Mark Wiseman

    1993-01-01

    When complete, the Continuous Electron Beam Accelerator Facility will house a 4 GeV recirculating linear accelerator containing 42 1/4 cryomodules arrayed in two antiparallel linacs and an injector. Currently, 38 1/4 cryomodules have been installed. Each cryomodule contains eight superconducting niobium 5-cell rf cavities that operate at 1.497 GHz[1]. A cryomodule must provide an energy gain of 20 MeV to the 200 mu-A beam[2]. The resultant dynamic heat load must be less than 45 W. The cavity parameters that are measured during the commissioning process include the external Q's (Q(sub ext)) of the cavity ports, the unloaded Q (Q(sub 0)) of the cavity as a function of accelerating gradient, and the maximum operating gradient of the cavity[3]. Finally, the mechanical tuners are cycled and characterized. A portable test stand allows local control of the rf system and provides automated data acquisition. During the period from April 1993 through September 1993, 16 of the 20 cryomodules installed in the South Linac were commissioned. All cryomodules tested in the South Linac meet or exceed the CEBAF specifications. This paper describes the results of the commissioning of the first 10 cryomodules in the South Linac

  14. Workshop: Linac90

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyck, Olin

    1990-12-15

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight.

  15. Workshop: Linac90

    International Nuclear Information System (INIS)

    Van Dyck, Olin

    1990-01-01

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight

  16. Radiation Shielding Analyses of A 10 MeV, 15kW LINAC for Electron Beam and X-ray at KACST

    Energy Technology Data Exchange (ETDEWEB)

    Kang, W. G.; Pyo, S. H.; Han, B. S.; Kang, C. M. [EB Tech Co., Daejeon (Korea, Republic of); Alkhuraiji, T. S. [King AbdulAziz City for Science and Technology, Riyadh (Saudi Arabia)

    2016-10-15

    The King AbdulAziz City for Science and Technology (KACST) in the Kingdom of Saudi Arabia has a plan to build a 10 MeV, 15kW linear accelerator (LINAC) for electron beam and X-ray, which is to be supplied by EB Tech in Republic of Korea. The design and construction of the accelerator building will be carried out jointly between EB Tech and KACST. Recommendations for the design and installation of radiation shielding for x-ray and gamma-ray can be found in NCRP No. 49(1976) and for accelerators with energies over 10 MeV in NCRP No. 151 (2005). Monte Carlo calculations were conducted using the MCNP6 code to determine photon fluxes and doses at the point detectors locations around the accelerator building. The problem was run as an electron, photon and neutron transport problem to account for all reactions including the (γ,n) reaction. The detectors where the DXTRAN spheres were used are indicated in the table. The computation was continued until electrons reached a total of 1x10{sup +8} histories.

  17. Preliminary design of high-power wave-guide/transmission system for multimegawatt CW requirements of 100 MeV proton Linac

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.

    2002-01-01

    Development of a 100 MeV CW proton Linac has been planned at CAT. This Linac will be needing CW rf power in the frequency ranges of 350 MHz and 700 MHz for its RFQ and DTL/CCDTL/SFDTL structures respectively. The power to the accelerating structures will be produced by either 1 MW CW or 250 kW CW klystron/inductive output tubes (HOM IOTs). The power needed by respective feed points in the structure is max. 250 kW which will be powered by splitting the power from 1 MW klystron/klystrode into four channels by using a wave-guide system. In case of using 250 kW tubes the power to the structures will be provided directly from each tube. Two types of wave-guide transmission system have been considered, viz WR 2300 for 350 MHz rf needs and WR 1500 for 700 MHz rf needs. The typical wave-guide system has been designed using the 1 MW CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window. The circulator and each power divider is terminated into the isolated ports by high power CW loads. Out of the four channels three channels have phase shifters. Present paper describes the technological aspects and design specifications-considerations for these stringent requirements. (author)

  18. submitter Radiation Protection Studies for CERN LINAC4/SPL Accelerator Complex

    CERN Document Server

    Mauro, Egidio; Silari, Marco

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H$^-$ linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This thesis summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed 1) to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, 2) to estimate the radiological i...

  19. Radiological Safety Aspects of the operation of the Electron Linear Accelerator Linac CIRCE III 10 MeV

    International Nuclear Information System (INIS)

    Naceur, Ahmed

    2014-01-01

    This document is a report about safety and security for the electron accelerator Linac-CIRCE III of the National Center for Nuclear Sciences and Technologies of Tunis. The paper aims to introduce the standards of the International Atomic Energy Agency (IAEA) to the installation in question. Overall, it draws its profit from the official security reports of the IAEA. First, we study the anatomy of the accelerator by breaking it down into various compartments and examining the case of leaks that may arise. This part introduces the particularity of this installation and allows us to meet and provide procedures for some typical scenarios of mechanical malfunction. Second, we recall and adapt some theoretical concepts related to the quantification of the radioactivity, the thickness of the armoring, the utilization factor, and the quality factor. Thus, we become able to list of types of these radiations, dangers, risks and their sources. We also examine the phenomenon of compartments activation, toxic gases production (including ozone), the process of elimination, the danger associated with X-rays generated by high voltage system and the risk of electrocution. In light of this study, we handle mathematically the question of the armoring and the concept of radiation protection. Therefore, we present a practical methodology to implement a monitoring system and a technicality in the interpretation of the measurements. Finally, we discuss the practical aspect by introducing security governance to CIRCE III, and establishing a program of general, radiological and specific security. Then, we evaluate the areas of typical security, and present a comparative radiological study between the results obtained by the IAEA standards and those by the German DIN 6847 standard for direct Bremsstrahlung radiation and scattered radiation.

  20. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1981-10-01

    Detailed measurement of acceleration characteristics has been performed on a 15 MeV electron linac as the injector of the electron synchrotron at Institute for Nuclear Study, University of Tokyo. Remarkable feature of the results is that the energy gain as well as the energy spread of the output beam, are optimized when the linac is operated with the microwave whose frequency is higher than the resonant frequency of the accelerator waveguide. The difference of this operating frequency from the resonant frequency grows up as the beam intensity is increased, and amounts to 250 KHz when the beam intensity is 350 mA. In order to clarify the mechanism of the phenomena, the interaction of electron beam with the microwave in the accelerator structure of traveling wave type, is examined on the linac and also on a test accelerator structure. For the analysis of the experimental results, the normal mode method which has been used for standing wave cavities, is developed so as to be applied to the accelerator structure of traveling wave type. The results of analysis show that the observed phenomena at INS linac are caused by the resonant frequency shift, detuning, due to the reactive beam loading and this detuning effects are compensated by use of the microwave of higher frequency. Thus the detuning effects are significant even in the traveling wave type linac composed of buncher and regular sections as well as in the standing wave type accelerator structure. (author)

  1. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  2. The NLC Injector System

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Clendenin, J.E.; Emma, P.; Frisch, J.; Jobe, R.; Kotseroglou, T.; Krejcik, P.; Kulikov, A.V.; Li, Z.; Maruyama, T.; Millage, K.K.; McKee, B.; Mulhollan, G.; Munro, M.H.; Rago, C.E.; Raubenheimer, T.O.; Ross, M.C.; Phinney, N.; Schultz, D.C.; Sheppard, J.C.; Spencer, C.M.; Vlieks, A.E.; Woodley, M D.; Bibber, K. van; Takeda, S.

    1999-01-01

    The Next Linear Collider (NW) Injector System is designed to produce low emittance, 10 GeV electron and positron beams at 120 hertz for injection into the NLC main linacs. Each beam consists of a train of 9.5 bunches spaced by 2.8 ns; each bunch has a population of 1.15 x 10 10 particles. At injection into the main linacs, the horizontal and vertical emittances are specified to be γ var e psilon x = 3 x 10 -6 m-rad and γ var e psilon

  3. Design development of the SCDTL structure for the TOP linac

    CERN Document Server

    Picardi, L; Spataro, B

    1999-01-01

    The Side Coupled Drift Tube Linac (SCDTL) is an attractive 3 GHz accelerating structure composed of short DTL tanks coupled together by side coupling cavities, in the course of development of the 200 MeV proton linear accelerator for proton therapy planned for the Terapia Oncologica con Protoni (TOP) program of the Italian National Institute of Health (Istituto Superiore di Sanita, ISS). The TOP Linac will be used to boost to 70 MeV the 7 MeV proton beam from a linac injector. Our main concern is to investigate in detail the characteristics of the structure in terms of RF properties of the accelerating mode, like longitudinal and transverse shunt impedance and quality factor, and of the other modes that cause the origin of the tank dispersion curve, in order to stabilize the behaviour under operating conditions. Calculations performed with the computer three-dimensional (3D) codes MAFIA and SOPRANO on the smallest unit of the system (a single DTL tank without coupling cavities) and experimental measurements m...

  4. The ATLAS positive ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs

  5. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  6. Conversion of the AGS linac to H- acceleration

    International Nuclear Information System (INIS)

    Witkover, R.L.; Barton, D.S.; Reece, R.K.

    1983-01-01

    The AGS 200 MeV linac was converted to an H - accelerator during the summer of 1982 using a magnetron-type source in the column of the second pre-injector pit. Because of the re-entrant electrode design, a 20 keV transport line was required to carry the beam to the first electrode. Several changes were made to the source which enhanced its performance over previous designs. The same H - beam current is available at 2.75 times the duty factor with reduced deterioration of its output over several months of operation. The source, 750 keV transport, and linac modifications and performance will be presented

  7. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, S.; Kobayashi, K.; Tojyo, E.; Yoshida, K.

    1979-01-01

    A 15-MeV traveling wave type electron linac is used as the injector for the 1.3-GeV electron synchrotron at the Institute for Nuclear Study, University of Tokyo. The resonant frequency of this accelerator waveguide is 2758.00 MHz at 30 0 C. The performance of the linac,however, is improved when it is operated with a frequency which is higher than the design value by 200 to 400 KHz. It is shown that the detuning due to the beam loading is serious in such an accelerator waveguide in which the buncher and regular sections are combined, and the detuning effect can approximately be compensated by changing the operating frequency. The detuning effect in the traveling wave-type accelerator waveguide was studied both from experimental and theoretical aspects by using a short test waveguide

  8. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  9. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  10. Machine development studies for PSB extraction at 160 MeV and PSB to PS beam transfer

    CERN Document Server

    Forte, V; Bartmann, W; Borburgh, J; Ferrero Colomo, A; Damerau, H; Di Giovanni, G P; Coralejo Feliciano, L M; Fraser, M A; Gamba, D; Mikulec, B; Guerrero Ollacarizqueta, A; Serluca, M; Sermeus, L; Sterbini, G

    2017-01-01

    This paper collects the machine development (MD) activities for the beam transfer studies in 2016 concerning the PSB extraction and the PSB-to-PS transfer. Many topics are covered: from the 160 MeV extraction from the PSB, useful for the future commissioning activities after the connection with Linac4, to new methodologies for measuring the magnetic waveforms of kickers and dispersion reduction schemes at PS injection, which are of great interest for the LHC Injectors Upgrade (LIU) [1] project.

  11. Beam dynamics simulations for linacs driving short-wavelength FELs

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  12. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  13. Neutron detection time distributions of multisphere LiI detectors and AB rem meter at a 20 MeV electron linac

    International Nuclear Information System (INIS)

    Liu, J.C.; Rokni, S.; Vylet, V.; Arora, R.; Semones, E.; Justus, A.

    1997-01-01

    Neutron detection time distribution is an important factor for the dead-time correction for moderator type neutron detectors used in pulsed radiation fields. Measurements of the neutron detection time distributions of multisphere LiL detectors (2''3'' , 5'', 8'', 10'' and 12'' in diameter) and an AB rem meter were made inside an ANL 20 MeV electron linac room. Calculations of the neutron detection time distributions were also made using Monte Carlo codes. The first step was to calculate the neutron energy spectra at the target and detector positions, using a coupled EGS4-MORSE code with a giant-resonant photoneutron generation scheme. The calculated detector spectrum was found in agreement with the multisphere measurements. Then, neutrons hitting the detector surface were scored as a function of energy and the travel time in the room using MCNP. Finally, the above neutron fluence as a function of energy and travel time was used as the source term, and the neutrons detected by 6 Li or 10 B in the sensor were scored as a function of detection time for each detector using MCNP. The calculations of the detection time distributions agree with the measurements. The results also show that the detection time distributions of detectors with large moderators depend mainly on the moderator thickness and neutron spectrum. However, for small detectors, the neutron travel time in the field is also crucial. Therefore, all four factors (neutron spectrum, neutron travel time in the field, detector moderator thickness and detector response function) may play inter-related roles in the detection time distribution of moderator type detectors. (Author)

  14. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  15. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-01-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500keV-1MeV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the open-quotes energy effectclose quotes: in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the open-quotes energy effectclose quotes by proper shaping of the quadrupoles electrodes. In order to check the physics of the open-quotes energy effectclose quotes of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 KeV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  16. Initial use of the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Den Hartog, P.K.; Munson, F.H. Jr.; Pardo, R.C.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    The positive-ion injector of ATLAS consists of an ECR heavy-ion source coupled to a 12-MV superconducting injector linac. The ECR source and a 3-MV version of the partially completed linac have been used to accelerate successfully several species of heavy ions. The operating experience is summarized, with emphasis on the excellent beam quality of beams from the new injector. Two new fast-timing detectors are described. 9 refs., 5 figs., 1 tab

  17. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  18. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  19. Status Report on the 5 Mev Iphi RFQ

    OpenAIRE

    Ferdinand, R.; Beauvais, P-Y.; Duperrier, R.; France, A.; Gaiffier, J.; Lagniel, J-M.; Painchault, M.; Simoens, F.; CEA-Saclay; DSM-DAPNIA-SEA; Balleyguier, P.; Chatel, CEA-Bruyeres le; DAM

    2000-01-01

    A 5-MeV RFQ designed for a proton current up to 100-mA CW is now under construction as part of the High Intensity Proton Injector project (IPHI). Its computed transmission is greater than 99 %. The main goals of the project are to verify the accuracy of the design codes, to gain the know-how on fabrication, tuning procedures and operations, to measure the output beam characteristics in order to optimise the higher energy part of the linac, and to reach a high availability with minimum beam tr...

  20. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  1. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  2. Development of the low energy linac systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, H. J.; Kim, Y. H.

    2005-08-01

    The project 'Development of the Low Energy Linac System' is aiming to develop the 20 MeV proton linac system. This consists of a 50 keV proton injector, a 3 MeV RFQ, and a 20 MeV DTL. We obtained the first beam signal after the 20 MeV linac. The high power switch installed in the ion source supplies the pulsed beam into the following LEBT. The pulse operation was successfully tested. The main role of the LEBT is to match the beam into the 3 MeV RFQ. The total length of the four-vane type RFQ is about 3.26m. For the field stabilization, we used the resonant coupling scheme and dipole stabilizer rods. An 1 MW klystron supplies the RF power into the RFQ. After tuning, the field deviation of the quadrupole mode is less than 2% of the design value and the dipole fraction is less than 5% of the operating mode. The following accelerating structure is DTL which accelerate 20 mA proton beams up to 20 MeV. It consists of 4 tanks and the length of each tank is less than 5 m. The lattice is FFDD type and the integrated fields of the quadrupole magnets are 1.75 T. The inner walls of the tanks are copper-plated by PR plating method. The thickness is 100m with the roughness of 0.3m. Each drift tube consists of 6 parts and assembled by e-beam welding. The tanks and drift tubes are aligned under the installation limit of 50m by using the laser-tracker. The tuning by the slug tuners and post couplers results in the field uniformity of 2% and field sensitivity of 100%/MHz. In order to detect the beam signal, we installed the Faraday cup after the RFQ or the DTL. For the RFQ, we observed the beam of 12 A under the forward RF power of 450 kW. The beam current after DTL is about 0.5 A when RF power of 150 kW was fed into each tank

  3. Linacs for medical isotope production

    International Nuclear Information System (INIS)

    Pramudita, A.

    2012-01-01

    This paper reviews efforts on using high energy (25-30 MeV) and high power (10-20 kW) electron linacs and lower energy (7 MeV) proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography) radioisotopes are produced through photonuclear reactions such as 19 F(γ,n) 18 F, which also allow production of other PET radionuclides 11 C, 13 N, and 15 O. Other mostly used medical radionuclides 99m Tc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18 F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons. (author)

  4. Light ion linacs for medical applications

    International Nuclear Information System (INIS)

    Bradbury, J.N.; Knapp, E.A.; Nagle, D.E.

    1975-01-01

    Recent advances in linear accelerator technology point to the feasibility of designing and developing practical medical linacs for producing protons, neutrons, or π mesons for the radiation therapy of cancer. Additional uses of such linacs could include radioisotope production and charged particle radiography. For widespread utilization medical linacs must exhibit reasonable cost, compactness, reliability, and simplicity of operation. Possible extensions of current accelerator technology which might provide these characteristics are discussed in connection with linac design, fabrication techniques, materials, power sources, injectors, and particle collection and delivery systems. Parameters for a medical proton linac for producing pions are listed. (U.S.)

  5. Linac4: injecting new life into the LHC

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    Construction work is nearing completion on the ion source for Linac4, the new linear accelerator that forms part of the LHC injector upgrade programme. Here we find out more about this essential component of the accelerator chain, designed and built at CERN.     The image shows the Linac4 H- source. The red light is the alpha line of the visible hydrogen emission spectrum. The ion source is a key component of Linac4, the linear accelerator that from 2018 will supply H- ions (hydrogen atoms with an extra electron) at 160 MeV for injection into the accelerator complex. As the only ion source at CERN, Linac4 must be highly reliable, which requires a full understanding of the production mechanisms, the simulation of physical processes and the validation of those processes through experimentation. “This source is the result of much fruitful collaboration,” says Jacques Lettry of the BE department. “Its design was inspired by the many sources of th...

  6. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  7. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  8. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  9. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  10. Progress in the study and construction of the TESLA test facility injector

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T. [Paris-11 Univ., 91 - Orsay (France). Lab. de l`Accelerateur Lineaire; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Buhler, S.; Junquera, T. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire] [and others

    1995-12-31

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.). 7 refs.

  11. Progress in the study and construction of the TESLA test facility injector

    International Nuclear Information System (INIS)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T.; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F.; Buhler, S.; Junquera, T.

    1995-01-01

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.)

  12. High field electron linacs

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-12-01

    High field electron linacs are considered as potential candidates to provide very high energies beyond LEP. Since almost twenty years not much improvement has been made on linac technologies as they have been mostly kept at low and medium energies to be used as injectors for storage rings. Today, both their efficiency and their performances are being reconsidered, and for instance the pulse compression sheme developed at SLAC and introduced to upgrade the energy of that linac is a first step towards a new generation of linear accelerators. However this is not enough in terms of power consumption and more development is needed to improve both the efficiency of accelerating structures and the performances of RF power sources

  13. The positive-ion injector of ATLAS: design and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M [Physics Div., Argonne National Lab., IL (United States); Pardo, R C [Physics Div., Argonne National Lab., IL (United States); Shepard, K W [Physics Div., Argonne National Lab., IL (United States); Billquist, P J [Physics Div., Argonne National Lab., IL (United States); Bogaty, J M [Physics Div., Argonne National Lab., IL (United States); Clifft, B E [Physics Div., Argonne National Lab., IL (United States); Harkewicz, R [Physics Div., Argonne National Lab., IL (United States); Munson, F H [Physics Div., Argonne National Lab., IL (United States); Nolen, J A [Physics Div., Argonne National Lab., IL (United States); Zinkann, G P [Physics Div., Argonne National Lab., IL (United States)

    1993-06-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS is a replacement for the tandem injector of the present tandem-linac system. Unlike the tandem, the new injector provides ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and experience in the operation of ATLAS with its new injector is discussed. (orig.)

  14. The positive-ion injector of ATLAS: Design and operating experience

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The recently completed Positive-Ion Injector for the heavy-ion accelerator ATLAS is a replacement for the tandem injector of the present tandem-linac system. Unlike the tandem, the new injector provides ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and experience in the operation of ATLAS with its new injector is discussed

  15. Approach of a failure analysis for the MYRRHA linac

    International Nuclear Information System (INIS)

    Carneiro, J.P.; Medeiros-Romao, L.; Salemne, R.; Vandeplassche, D.; Biarotte, J.L.; Bouly, F.; Uriot, D.

    2015-01-01

    The MYRRHA project currently under development at SCK-CEN (Mol, Belgium) is a subcritical research reactor that requires a 600 MeV proton accelerator as a driver. This linac is expected to produce a beam power of 1.5 MW onto a spallation target for the reactor to deliver a thermal power around 70 MW. Thermomechanical considerations of the spallation target set stringent requirements on the beam trip rate which should not exceed 40 trips/year for interruptions longer than three seconds. The 3 underlying principles in the design of the MYRRHA linac are elements redundancy (like the dual-injector), elements operation at de-rated values (like cavities operating at about 30% from their nominal operating points) and the fault tolerance concept, which allows the failure of a beamline component to be compensated by its neighbouring elements. Studies presented in this document show that in the event of a failure of the first cryo-module or the first quadrupole doublet the linac can resume nominal operation with a re-matched lattice. Since the fault tolerance procedure is expected to work more efficiently at higher energies (due to lower space charge effects) we can extrapolate from our studies that the MYRRHA linac is expected to operate with the failure of any cryo-module or quadrupole doublet in the main linac. A virtual accelerator-based control system is mandatory for the operation of the MYRRHA linac to ensure the very fast implementation (<3 seconds) of the fault tolerance procedure. The virtual accelerator uses a beam dynamics code (like TRACEWIN or TRACK) to compute the model of the real accelerator in operation and interacts with this later through the accelerator control command

  16. Fermilab Linac Upgrade Conceptual Design: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1989-07-01

    The goal of the Tevatron Collider Upgrade program is to improve the Collider luminosity and the fixed-target intensity. The Linac portion of this project will increase the energy of the existing 200- MeV linac to 400 MeV in order to reduce beam emittance degradation in the Booster.

  17. Linac4 45 keV Proton Beam Measurements

    CERN Document Server

    Bellodi, G; Hein, L M; Lallement, J-B; Lombardi, A M; Midttun, O; Scrivens, R; Posocco, P A

    2013-01-01

    Linac4 is a 160 MeV normal-conducting H- linear accelerator, which will replace the 50 MeV proton Linac2 as injector for the CERN proton complex. Commissioning of the low energy part - comprising the H - source, a 45 keV Low Energy Beam Transport line (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) - will start in fall 2012 on a dedicated test stand installation. In preparation to this, preliminary measurements were taken using a 45 keV proton source and a temporary LEBT setup, with the aim of characterising the output beam by comparison with the predictions of simulations. At the same time this allowed a first verification of the functionalities of diagnostics instrumentation and acquisition software tools. Measurements of beam profile, emittance and intensity were taken in three different setups: right after the source, after the first and after the second LEBT solenoids respectively. Particle distributions were reconstructed from emittance scan...

  18. Linac4 H− ion sources

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.

    2016-01-01

    CERN’s 160 MeV H − linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H − source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H − source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described

  19. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  20. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  1. Fermilab: Linac upgrade

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab linear accelerator (Linac) was conceived 20 years ago, produced its first 200 MeV proton beam on 30 November 1970 and has run without major interruption ever since. Demands have steadily increased through the added complexity of the downstream chain of accelerators and by the increased patient load of the Neutron Therapy Facility

  2. TOP LINAC design; Progetto del TOP LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita`, ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given.

  3. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  4. Plasma production for the 50 MeV plasma lens experiment at LBL

    International Nuclear Information System (INIS)

    Leemans, W.; van der Geer, B.; de Loos, M.; Conde, M.; Govil, R.; Chattopadhyay, S.

    1994-06-01

    The Center for Beam Physics at LBL has constructed a Beam Test Facility (BTF) housing a 50 MeV electron beam transport line, which uses the linac injector from the Advanced Light Source, and a terawatt Ti:Al 2 O 3 laser system. The linac operates at 50 MeV and generates 15 ps long electron bunches containing a charge of up to 2 nC. The measured unnormalized beam emittance is 0.33 mm-mrad. These parameters allow for a comprehensive study of focusing of relativistic electron beams with plasma columns, in both the overdense and underdense regime (adiabatic and tapered lenses). A study of adiabatic and/or tapered lenses requires careful control of plasma density and scale lengths of the plasma. We present experimental results on the production of plasmas through resonant two-photon ionization, with parameters relevant to an upcoming plasma lens experiment

  5. Linac design for intense hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan

    2009-12-14

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-{beta} region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the {phi}{sub s}=0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs

  6. Linac design for intense hadron beams

    International Nuclear Information System (INIS)

    Zhang, Chuan

    2009-01-01

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-β region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the φ s =0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs, no beam

  7. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  8. Simulation studies of the LAMPF proton linac

    International Nuclear Information System (INIS)

    Garnett, R.W.; Gray, E.R.; Rybarcyk, L.J.; Wangler, T.P.

    1995-01-01

    The LAMPF accelerator consists of two 0.75-MeV injectors, one for H + and the other for H - , a separate low-energy beam transport (LEBT) line for each beam species, a 0.75 to 100-MeV drift-tube linac (DTL) operating at 201.25-MHz, a 100-MeV transition region (TR), and a 100 to 800-MeV side-coupled linac (SCL) operating at 805-MHz. Each LEBT line consists of a series of quadrupoles to transport and transversely match the beam. The LEBT also contains a prebuncher, a main buncher, and an electrostatic deflector. The deflector is used to limit the fraction of a macropulse which is seen by the beam diagnostics throughout the linac. The DTL consists of four rf tanks and uses singlet FODO transverse focusing. The focusing period is doubled in the last two tanks by placing a quadrupole only in every other drift-tube. Doublet FDO transverse focusing is used in the SCL. The TR consists of separate transport lines for the H + and H - beams. The pathlengths for the two beams differ, by introducing bends, so as to delay arrival of one beam relative to the other and thereby produce the desired macropulse time structure. Peak beam currents typically range from 12 to 18-mA for varying macropulse lengths which give an average beam current of 1-mA. The number of particles per bunch is of the order 10 8 . The work presented here is an extension of previous work. The authors have attempted to do a more complete simulation by including modeling of the LEBT. No measurements of the longitudinal structure of the beam, except phase-scans, are performed at LAMPF. The authors show that, based on simulation results, the primary causes of beam spill are inefficient longitudinal capture and the lack of longitudinal matching. Measurements to support these claims are not presently made at LAMPF. However, agreement between measurement and simulation for the transverse beam properties and transmissions serve to benchmark the simulations

  9. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-05-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500 keV-1MeV diode preinjector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the ''energy effect'': in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the ''energy effect'' by proper shaping of the quadrupoles electrodes. In order to check the physics of the ''energy effect'' of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 keV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  10. PIP-II Injector Test: Challenges and Status

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, P. F. [Fermilab; Carneiro, J. P. [Fermilab; Edelen, J. [Fermilab; Lebedev, V. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab

    2016-10-04

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the Injector Test warm front end, including results of the beam commissioning through the installed components, and progress with SRF cryomodules and other systems.

  11. The SSRL linacs for injection to the storage ring and rf gun testing

    International Nuclear Information System (INIS)

    Park, Sanghyun; Weaver, James N.

    1996-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) operates two linac systems. One has three SLAC type linac sections powered by two klystrons for injection of electrons at 120 MeV into the booster ring, boosting the energy to 2.3 GeV to fill the SPEAR. After the ramping, the SPEAR stores up to 100 mA of the beam at 3.0 GeV. The preinjector consists of a thermionic RF gun, an alpha magnet, and a chopper along with focusing magnets. The other has one 10 foot section powered by the injector klystron for the testing of RF gun with photocathode, which is driven by a separate klystron. This paper describes present systems with their operational parameters, followed by plans for the upgrades and RF gun development efforts at the SSRL. (author)

  12. The EBIS-RFQ couple: a fully matched heavy ion 3rd pre-injector for Saturne

    International Nuclear Information System (INIS)

    Olivier, M.; Faure, J.; Laclare, J.L.; Lefebvre, J.M.; Leleux, G.; Ropert, A.; Tkatchenko, A.; Tkatchenko, M.

    1983-01-01

    Since 1978, the 3 GeV Synchrotron Saturne is routinely operated with proton, deuteron, helium beams and, since 1981 with polarized protons and deuterons. Heavy ions are expected in the Summer of 1983 by using a new pre-injector presently under construction. As already proposed by R.W.Hamm, the marriage of an EBIS and an RFQ can be looked upon generally as a very good means of production of heavy ion beams at low energy because it combines high charges states, therefore low voltage on the terminal, and low velocity acceleration. After the RFQ, the beam is injected into Saturne through 20 MeV Alvarez linac

  13. MBE-4: an induction linac experiment for heavy ion fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brodzik, D.A.

    1986-06-01

    The multiple-beam induction linac approach to a heavy ion fusion driver features continuous current amplification along the accelerator and a minimum of transverse beam manipulation from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. This driver approach exploits developments in electron induction linac technology that have occurred within the last 15 years at LBL, LLNL and NBS. MBE-4 is a four beam induction linac that models much of the accelerator physics of the electrostatically focused section of a considerably longer induction accelerator. Four parallel Cs + beams are electrostatically focussed and will be accelerated from 200 keV to approximately one MeV when the experiment is complete in the spring of 1987. The current in each of the four beams will increase from 10 to 40 mA due to both increase in beam speed and shortening of the bunch length. Results of experiments with the injector and first eight accelerating gaps are presented

  14. History, developments and recent performance of the CERN linac 1

    International Nuclear Information System (INIS)

    Haseroth, H.; Hill, C.E.; Langbein, K.; Tanke, E.; Tylor, C.; Tetu, P.; Warner, D.; Weiss, M.

    1992-01-01

    In early June 1992 the original CERN 50 MeV proton Linac accelerated its last beam after nearly 33 years of loyal service. Although conceived as a proton machine and commissioned in 1959 as an injector for the 26 GeV Proton Synchrotron, it finished its life as a light-ion source for the Super Proton Synchrotron (SPS) and as a cheap source of particles for tests in the Low Energy Anti-Proton Ring (LEAR). Highlights in its recent history were the installation of RFQs and the upgrading with an ECR source for O 6+ and S 12+ ions. The early parameters and the subsequent modifications as well as the performance are reviewed in this paper. (Author) 8 refs., 3 figs., tab

  15. TOP LINAC design

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita', ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given

  16. Status of the Warm Front End of PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, Alexander [Fermilab; Alvarez, Matthew [Fermilab; Andrews, Richard [Fermilab; Baffes, Curtis [Fermilab; Carneiro, Jean-Paul [Fermilab; Chen, Alex [Fermilab; Derwent, Paul [Fermilab; Edelen, Jonathan [Fermilab; Frolov, Daniil [Fermilab; Hanna, Bruce [Fermilab; Prost, Lionel [Fermilab; Saewert, Gregory [Fermilab; Saini, Arun [Fermilab; Scarpine, Victor [Fermilab; Sista, V. Lalitha [Fermilab; Steimel, Jim [Fermilab; Sun, Ding [Fermilab; Warner, Arden [Fermilab

    2017-05-01

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H⁻ SRF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10 mA DC, 30 keV H⁻ ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end.

  17. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  18. New linac technology - for SSC, and beyond

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1983-01-01

    With recent agreement on the high priority of seeking funding for a Superconducting Super Collider (SSC), it is appropriate to consider the injector linac requirements for such a machine. In so doing, the status of established technique and advantages of near-term R and D with relatively clear payoff are established, giving a base line for some speculation about linac possibilities even further in the future

  19. System design of a proton linac for the neutron science project at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hasegawa, Kazuo; Mizumoto, Motoharu; Ouchi, Nobuo; Honda, Yoichiro; Ino, Hiroshi

    1999-01-01

    The Japan Atomic Energy Research Institute has been proposing the Neutron Science Project (NSP). The NSP requires pulse and CW proton beams with an energy of 1.5 GeV and an average beam power up to 8MW. This paper describes design concepts and parameters of the linac. A front end part of the linac, which consists of RFQ, DTL and SDTL sections, uses normal conducting structures and a high energy part uses superconducting (SC) structures. The linac has two injector lines for the pulse and the CW modes, respectively, and the two lines merge at 7 MeV. The total linac length is approximately 900 m and most of the part (>75%) is the superconducting section. An equipartitioning design, which is a new idea to suppress an emittance growth for high power linacs, has been taken for the DTL, the SDTL and the SC sections. Compared with the conventional constant phase advance design scheme, the equipartitioning design scheme is proved to be a good approach to suppress the longitudinal emittance growth. (author)

  20. Progress in the fabrication of the RFQ accelerator for the CERN Linac4

    CERN Document Server

    Rossi, C; Lallement, J B; Lombardi, A M; Mathot, S; Pugnat, D; Timmins, M; Vandoni, G; Vretenar, M; Desmons, M; France, A; Le Noa, Y; Novo, G; Piquet, O

    2010-01-01

    The construction of Linac4, the new 160 MeV CERN H- injector, has started with the goal of improving the LHC injection chain from 2015 with a new higher energy linac. The low energy front end of Linac4 is based on a 352 MHz, 3-m long Radiofrequency Quadrupole (RFQ) accelerator [1]. The RFQ accelerates the 70 mA, 45 keV H- beam from the RF source to the energy of 3 MeV. The fabrication of the RFQ has started at CERN in 2009 and is presently in progress, aiming at the completion of the full structure by early 2011. The RFQ consists of three modules, one meter each; the fabrication alternates machining phases and stress relief cycles, for copper stabilization. Two brazing steps are required: one to assemble the four parts composing a module, and a second one to install the stainless steel flanges. In order to monitor that the tight mechanical and alignment budget is not exceeded, metrology measurements at the CERN workshop and RF bead-pull measurements are performed during the fabrication process. In this paper ...

  1. Properties of high current RFQ injectors

    International Nuclear Information System (INIS)

    Schempp, A.; Goethe, J.W.

    1996-01-01

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author)

  2. Properties of high current RFQ injectors

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, A.; Goethe, J.W. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1996-12-31

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author) 2 refs.

  3. Beam dynamics pre-design with KONUS principle for the DTL of SPPC p-Linac

    Science.gov (United States)

    Liu, Jing; Li, Haipeng; Lu, Yuanrong; Su, Jiancang; Liu, Xiaolong; Fu, Qi

    2018-04-01

    As the Higgs bosons were observed on the LHC in 2012, a two-stage particle collider program named CEPC-SPPC is proposed for precise measurement of Higgs properties and exploring the new physics models. In order to deliver a 2.1-TeV proton beam into the Super Proton-Proton Collider (SPPC), the injector chain will use a 1.2-GeV proton linac (p-Linac) and three synchrotrons of p-RCS, MSS and SS. This paper focuses on the preliminary conceptual design of the DTL within the p-Linac and mainly concerns about the beam dynamics studies. Taking advantages of the KONUS principle and LORASR code, a 325 MHz, 50.65 MeV DTL design which is composed of three tanks in 15.6 m will be presented. The whole DTL contains 129 gaps for beam acceleration, one quadruple doublet which is behind the buncher and eight quadruple triplets of which three are located after each tank, respectively. The aims of this pre-study are to optimize the acceleration electric field distribution together with the focusing magnetic field parameters, enhance the beam transmission quality of beam envelopes, particle distribution and energy spread, then improve the DTL performance in terms of transmission efficiency and so on. The results of the analyses show that the DTL pre-design achieves 16.8 times high energy gain and meets all the p-Linac requirements well.

  4. Effect of the transverse parasitic mode on beam performance for the ADS driver linac in China

    International Nuclear Information System (INIS)

    Cheng Peng; Pei Shilun; Wang Jiuqing; Li Zhihui

    2015-01-01

    The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS driver linac may make the beam unstable or deteriorate the beam performance. To evaluate the parasitic mode effect on the beam dynamics systematically, simulation studies using the ROOT-based numerical code SMD have been conducted. The longitudinal beam instability induced by the HOMs (High Order Modes) and SOMs (Same Order Modes) has little effect on the longitudinal beam performance for the current ADS driver linac design based on the 10 MeV/325 MHz injector I from previous studies. Here the transverse parasitic mode (i.e., dipole HOM) effect on the transverse beam performance at the ADS driver linac exit is investigated. To more reasonably quantify the dipole mode effect, the multi-bunch effective emittance is introduced in this paper. (authors)

  5. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  6. Industrial RF Linac Experiences and Laboratory Interactions

    CERN Document Server

    Peiniger, M

    2004-01-01

    Since more than two decades ACCEL Instruments GmbH at Bergisch Gladbach (formerly Siemens/Interatom) is supplying the worldwide accelerator labs with key components like rf cavities and power couplers, s.c. magnets, insertion devices, vacuum chambers and x-ray beamline equipment. Starting with the design and production of turn key SRF accelerating modules in the late 80th, meanwhile ACCEL is engineering, manufacturing, on site commissioning and servicing complete accelerators with guaranteed beam performance. Today, with a staff of more than 100 physicists and engineers and about the same number of manufacturing specialists in our dedicated production facilities, ACCEL's know how and sales volume in this field has accumulated to more than 2000 man years and several hundred Mio €, respectively. Basis of our steady development is a cooperative partnership with the world leading research labs in the respective fields. As an example, for the supply of a turn key 100 MeV injector linac for the Swiss Ligh...

  7. Development of the Medium Energy Linac Systems

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Park, Bum Sik; Seol, Kyung Tae; Song, Young Gi; Yun, Sang Pil; Cho, Yong Sub; Hong, In Seok

    2008-05-01

    The main purpose of this project is developing 100-MeV proton linear accelerator (linac) for proton engineering frontier project (PEFP). In the first phase of the PEFP, the development of the 20-MeV linac has successfully finished. Hence the work scope of this project is designing the linac to accelerate proton beams from 20-MeV up to 100-MeV, fabricating the linac up to 45 MeV, fabricating one set of the medium energy beam transport (MEBT) tank, and developing the low level radio frequency (LLRF) system and the control system. The basic role of the new proton accelerator is accelerating 20-mA proton beams from 20 MeV up to 100 MeV. The first step of the design procedure is optimizing and determining the accelerator parameters. The beam loss is also main concern in the design stage. The drift tube (DT) and the quadrupole magnets are designed to be optimized to the new linac design. The other purpose is confirming the new design by fabricating and tuning the drift tube linac (DTL). The 20MeV proton beam divided into two directions. One is supplying the beams to user group by turning on the 45-degree bending magnet. The other is guided into the 100-MeV DTL by tuning off the dipole magnet. That is why the PEFP MEBT located after 20-MeV DTL. The MEBT is realized as two small DTL tanks with three cells and a 45-degree bending magnet. The fabrication of one MEBT tank is another purpose of this project. The other purposes of this project is developing the LLRF system to control the RF signal and control system to monitor and control the vacuum system, magnet power supply, etc

  8. Compact 250-kV injector system for PIGMI

    International Nuclear Information System (INIS)

    Hamm, R.W.; Stevens, R.R. Jr.; Mueller, D.W.; Lederer, H.M.

    1978-01-01

    A 250-kV proton injector to be used in the development of a linac suitable for medical applications has been constructed. This injector utilizes a spherical Pierce geometry to produce a converging beam. A gas insulated accelerating column is cantilevered on a grounded vacuum system, with a separate high voltage equipment dome connected to a 300-kV Cockcroft-Walton power supply. The injector can be operated locally or remotely, with the remote control accomplished by a microprocessor system linked to a central control minicomputer. This injector has been designed as a low-cost compact system. The design details and the data obtained during initial operation are presented

  9. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  10. S-band and X-band integrated PWT photoelectron linacs

    International Nuclear Information System (INIS)

    Yu, D.; Newsham, D.; Zeng, J.; Rosenzweig, J.

    2001-01-01

    A compact high-energy injector, which has been developed by DULY Research Inc., will have wide scientific, industrial, and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator. By focusing the beam with solenoids or permanent magnets, and producing high current with low emittance, high brightness and low energy spread are achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerances and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. Cold test results for this device are presented. DULY Research is also actively engaged in the development of an X-band photoelectron linear accelerator in a SBIR project. When completed, the higher frequency structure will be approximately three times smaller. Design considerations for this device are discussed following the S-band cold test results

  11. Statistical simulations of machine errors for LINAC4

    CERN Document Server

    Baylac, M.; Froidefond, E.; Sargsyan, E.

    2006-01-01

    LINAC 4 is a normal conducting H- linac proposed at CERN to provide a higher proton flux to the CERN accelerator chain. It should replace the existing LINAC 2 as injector to the Proton Synchrotron Booster and can also operate in the future as the front end of the SPL, a 3.5 GeV Superconductingg Proton Linac. LINAC 4 consists of a Radio-Frequency Quadrupole, a chopper line, a Drift Tube Linac (DTL) and a Cell Coupled DTL all operating at 352 MHz and finally a Side Coupled Linac at 704 MHz. Beam dynamics was studied and optimized performing end-to-end simulations. This paper presents statistical simulations of machine errors which were performed in order to validate the proposed design.

  12. Comparison between the calculated and measured dose distributions for four beams of 6 MeV linac in a human-equivalent phantom

    Directory of Open Access Journals (Sweden)

    Reda Sonia M.

    2006-01-01

    Full Text Available Radiation dose distributions in various parts of the body are of importance in radiotherapy. Also, the percent depth dose at different body depths is an important parameter in radiation therapy applications. Monte Carlo simulation techniques are the most accurate methods for such purposes. Monte Carlo computer calculations of photon spectra and the dose ratios at surfaces and in some internal organs of a human equivalent phantom were performed. In the present paper, dose distributions in different organs during bladder radiotherapy by 6 MeV X-rays were measured using thermoluminescence dosimetry placed at different points in the human-phantom. The phantom was irradiated in exactly the same manner as in actual bladder radiotherapy. Four treatment fields were considered to maximize the dose at the center of the target and minimize it at non-target healthy organs. All experimental setup information was fed to the MCNP-4b code to calculate dose distributions at selected points inside the proposed phantom. Percent depth dose distribution was performed. Also, the absorbed dose as ratios relative to the original beam in the surrounding organs was calculated by MCNP-4b and measured by thermoluminescence dosimetry. Both measured and calculated data were compared. Results indicate good agreement between calculated and measured data inside the phantom. Comparison between MCNP-4b calculations and measurements of depth dose distribution indicated good agreement between both.

  13. New developments of HIF injector

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-01-01

    Full Text Available The ultra-high intensity heavy-ion beam is highly pursued for heavy-ion researches and applications. However, it is limited by heavy-ion production of ion source and space-charge-effect in the low energy region. The Heavy-ion Inertial Fusion (HIF facilities were proposed in 1970s. The HIF injectors have large cavity number and long total length, e.g., there are 27 injectors in HIDIF and HIBLIC is 30 km in length, and the corresponding HIF facilities are too large and too expensive to be constructed. Recently, ion acceleration technologies have been developing rapidly, especially in the low energy region, where the acceleration of high intensity heavy-ions is realized. Meanwhile, superconducting (SC acceleration matures and increases the acceleration gradient in medium and high energy regions. The length of HIF injectors can be shortened to a buildable length of 2.5 km. This paper will present a review of a renewed HIF injector, which adopts multi-beam linac-based cavities. Keywords: Heavy-ion inertial fusion (HIF, Radio frequency quadrupole (RFQ, IH cavity, Heavy-ion, Multi-beam accelerator, PACS Codes: 52.58.Hm, 28.52.Av, 29.20.Ej, 29.27.-a, 29.27.Ac, 41.75.Lx

  14. Ion source and injector development

    International Nuclear Information System (INIS)

    Curtis, C.D.

    1976-01-01

    This is a survey of low energy accelerators which inject into proton linacs. Laboratories covered include Argonne, Brookhaven, CERN, Chalk River, Fermi, ITEP, KEK, Rutherford, and Saclay. This paper emphasizes complete injector systems, comparing significant hardware features and beam performance data, including recent additions. There is increased activity now in the acceleration of polarized protons, H + and H - , and of unpolarized H - . New source development and programs for these ion beams is outlined at the end of the report. Heavy-ion sources are not included

  15. Status of the positive-ion injector for ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.

    1986-01-01

    The planned positive-ion injector for ATLAS consists of an ECR ion source on a 350-kV platfrom and a superconducting injector linac of a new kind. The objective is to replace the present tandem injector with a system that can increase beam intensities by two orders of magnitude and extend the mass range up to uranium. In the first, developmental stage of the work, now in progress, the ECR source will be built, the technology of superconducting accelerating structures for low-velocity ions will be developed, and these structures will be used to form a 3-MV prototype injector linac. Even this small system, designed for ions with A < 130, will be superior to the present FN tandem as a heavy-ion injector. In later phases of the work, the injector linac will be enlarged enough to allow ATLAS to effectively accelerate uranium ions. The injector system is expected to provide exceptional beam quality. The status of the work, expected performance of the accelerator system, and the technical issues involved are summarized

  16. 1974 view into the cage of the 520 keV preaccelerator of the PS Linac 1

    CERN Multimedia

    1974-01-01

    The "open pill box" (in the background at the left) contains the ion source, where for many years all protons accelerated at CERN were "born". It is directly attached to the acceleration column where the protons pass from 520 kV to earth potential. The "electronics platform" (big metal structure on insulating pillars in the middle of the picture, for details see 7403120 and 7403071X) contains all the equipment that has to be at the same potential as the source itself. It is being admired by Helmut Haseroth and Jean Luc Vallet (during servicing). The smaller metal box in the foreground is part of the "bouncer" which compensated the voltage drop during acceleration of a proton pulse. The high voltage supply (not included in this photo) was originally a Cockcroft-Walton generator. In 1973 it was replaced by a Sames generator (see 7403074X). The "old" 50 MeV Linac 1, the original PS injector built in the 1950s, was (since 1976) replaced by a new 50 MeV linac (Linac 2). It had a 750 keV "Cockcroft-Walton" (see 760...

  17. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  18. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  19. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  20. Installation Progress at the PIP-II Injector Test at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Chen, A. [Fermilab; Czajkowski, J. [Fermilab; Derwent, P. [Fermilab; Edelen, J. [Fermilab; Hanna, B. [Fermilab; Hartsell, B. [Fermilab; Kendziora, K. [Fermilab; Mitchell, D. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab; Zuchnik, T. [Fermilab; Edelen, A. [Colorado State U.

    2016-10-04

    A CW-compatible, pulsed H- superconducting linac “PIP-II” is being planned to upgrade Fermilab's injection complex. To validate the front-end concept, a test acceler-ator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Con-tinuous Wave (CW) mode, and a 10 m-long Medium En-ergy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.

  1. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  2. Effects of Field Distortions in IH-APF Linac for a Compact Medical Accelerator

    CERN Document Server

    Kapin, Valery; Yamada, Satoru

    2004-01-01

    The project on developing compact medical accelerators for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is a doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-Mev/u 200-MHz IH-APF linac are considered. The intrinsic field distortions in the IH-cavity are caused by an asymmetry of the gap fields due to presence of the stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the gap voltages from programmed values. The RF fields in the IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically. The intrinsic field distortions a...

  3. View into the cage of the 520 keV preaccelerator of the PS Linac 1

    CERN Multimedia

    1974-01-01

    The "open pill box" (in the background at the left) contains the ion source, where for many years all protons accelerated at CERN were "born". It is directly attached to the acceleration column where the protons pass from 520 kV to earth potential. The "electronics platform" (big metal structure on insulating pillars in the middle of the picture, for details see 7403120 and 7403071X) contains all the equipment that has to be at the same potential as the source itself. The smaller metal box in the foreground is part of the "bouncer", which compensated the voltage drop during acceleration of a proton pulse. The high voltage generator (not included in this photo)was originally a Cockcroft-Walton column. In 1973 it was replaced by a Sames generator (see 7403074X). Visible at the bottom right of the picture is the conductor from the "Sames". The "old" 50 MeV Linac 1, the original PS injector built in the 1950s, was (since 1976) replaced by a new 50 keV linac (Linac 2). It had a 750 keV "Cockcroft-Walton" pre-injec...

  4. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M; Pardo, R C; Shepard, K W; Bogaty, J M; Clifft, B E; Munson, F H; Zinkann, G [Argonne National Lab., IL (United States)

    1993-04-15

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized. (orig.).

  5. First operational experience with the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-01-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized

  6. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-08-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized.

  7. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-01-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized.

  8. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  9. Long-term residual radioactivity in an intermediate-energy proton linac

    CERN Document Server

    Blaha, J; Silari, M; Vollaire, J

    2014-01-01

    A new 160 MeV H−H− linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling w...

  10. Long-term residual radioactivity in an intermediate-energy proton linac

    Science.gov (United States)

    Blaha, J.; La Torre, F. P.; Silari, M.; Vollaire, J.

    2014-07-01

    A new 160 MeV H- linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities.

  11. Long-term residual radioactivity in an intermediate-energy proton linac

    International Nuclear Information System (INIS)

    Blaha, J.; La Torre, F.P.; Silari, M.; Vollaire, J.

    2014-01-01

    A new 160 MeV H − linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities

  12. Calculation of the beam injector steering system using Helmholtz coils

    International Nuclear Information System (INIS)

    Passaro, A.; Sircilli Neto, F.; Migliano, A.C.C.

    1991-03-01

    In this work, a preliminary evaluation of the beam injector steering system of the IEAv electron linac is presented. From the existing injector configuration and with the assumptions of monoenergetic beam (100 keV) and uniform magnetic field, two pairs of Helmholtz coils were calculated for the steering system. Excitations of 105 A.turn and 37 A.turn were determined for the first and second coils, respectively. (author)

  13. A magnetized Einzel lens electron dump for the Linac4 H− ion source

    CERN Document Server

    Midttun, O; Kronberger, M; Lettry, J; Pereira, H; Scrivens, R

    2013-01-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H−) into CERN’s Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H− and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  14. An overview of BARC-TIFR pelletron linac facility

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2014-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A∼60 region with E∼5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  15. An overview of BARC-TIFR Pelletron-Linac Facility

    International Nuclear Information System (INIS)

    Gupta, A. K.

    2015-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A~60 region with E~5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  16. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  17. Upgrade of the AGS H- linac

    International Nuclear Information System (INIS)

    Alessi, J.G.; Buxton, W.; Kponou, A.; LoDestro, V.; Mapes, M.; McNerney, A.J.; Raparia, D.

    1994-01-01

    The AGS linac presently accelerates 25 mA of H - to 200 MeV at a 5 Hz rep-rate and 500 μs pulse width. The Booster takes 4 pulses every 3.8 seconds, and the remaining pulses are used for isotope production. The authors are in the process of upgrading the linac to increase the average current delivered for isotope production by more than a factor of two, while at the same time expecting to decrease linac downtime. Various aspects of this upgrade are discussed, including the upgrade of the control system, new high power transmission line, transport line vacuum, and rf power supply system upgrades

  18. The LHC Lead Injector Chain

    CERN Document Server

    Beuret, A; Blas, A; Burkhardt, H; Carli, Christian; Chanel, M; Fowler, A; Gourber-Pace, M; Hancock, S; Hourican, M; Hill, C E; Jowett, John M; Kahle, K; Küchler, D; Lombardi, A M; Mahner, E; Manglunki, Django; Martini, M; Maury, S; Pedersen, F; Raich, U; Rossi, C; Royer, J P; Schindl, Karlheinz; Scrivens, R; Sermeus, L; Shaposhnikova, Elena; Tranquille, G; Vretenar, Maurizio; Zickler, T

    2004-01-01

    A sizeable part of the LHC physics programme foresees lead-lead collisions with a design luminosity of 1027 cm-2 s-1. This will be achieved after an upgrade of the ion injector chain comprising Linac3, LEIR, PS and SPS machines [1,2]. Each LHC ring will be filled in 10 min by almost 600 bunches, each of 7×107 lead ions. Central to the scheme is the Low Energy Ion Ring (LEIR) [3,4], which transforms long pulses from Linac3 into high-brilliance bunches by means of multi-turn injection, electron cooling and accumulation. Major limitations along the chain, including space charge, intrabeam scattering, vacuum issues and emittance preservation are highlighted. The conversion from LEAR (Low Energy Antiproton Ring) to LEIR involves new magnets and power converters, high-current electron cooling, broadband RF cavities, and a UHV vacuum system with getter (NEG) coatings to achieve a few 10-12 mbar. Major hardware changes in Linac3 and the PS are also covered. An early ion scheme with fewer bunches (but each at nominal...

  19. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  20. Linac 1 in the process of being pulled back

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1985-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions and, from 1981 to 1996, of protons and negative hydrogen ions for LEAR. In 1984, its Cockcroft-Walton preinjector was replaced by a much smaller RFQ, which allowed it to be moved to a more convenient location.

  1. Development of a superconducting radio frequency photoelectron injector

    International Nuclear Information System (INIS)

    Arnold, A.; Buettig, H.; Janssen, D.; Kamps, T.; Klemz, G.; Lehmann, W.D.; Lehnert, U.; Lipka, D.; Marhauser, F.; Michel, P.; Moeller, K.; Murcek, P.; Schneider, Ch.; Schurig, R.; Staufenbiel, F.; Stephan, J.; Teichert, J.; Volkov, V.; Will, I.; Xiang, R.

    2007-01-01

    A superconducting radio frequency (RF) photoelectron injector (SRF gun) is under development at the Research Center Dresden-Rossendorf. This project aims mainly at replacing the present thermionic gun of the superconducting electron linac ELBE. Thereby the beam quality is greatly improved. Especially, the normalized transverse emittance can be reduced by up to one order of magnitude depending on the operating conditions. The length of the electron bunches will be shortened by about two orders of magnitude making the present bunchers in the injection beam line dispensable. The maximum obtainable bunch charge of the present thermionic gun amounts to 80pC. The SRF gun is designed to deliver also higher bunch charge values up to 2.5nC. Therefore, this gun can be used also for advanced facilities such as energy recovery linacs (ERLs) and soft X-ray FELs. The SRF gun is designed as a 312 cell cavity structure with three cells basically TESLA cells supplemented by a newly developed gun cell and a choke filter. The exit energy is projected to be 9.5MeV. In this paper, we present a description of the design of the SRF gun with special emphasis on the physical and technical problems arising from the necessity of integrating a photocathode into the superconducting cavity structure. Preparation, transfer, cooling and alignment of the photocathode are discussed. In designing the SRF gun cryostat for most components wherever possible the technical solutions were adapted from the ELBE cryostat in some cases with major modifications. As concerns the status of the project the design is finished, most parts are manufactured and the gun is being assembled. Some of the key components are tested in special test arrangements such as cavity warm tuning, cathode cooling, the mechanical behavior of the tuners and the effectiveness of the magnetic screening of the cavity

  2. Beam transport of PF (Positron Factory) 2.5-GeV linac

    International Nuclear Information System (INIS)

    Shiraga, Takahiro; Asami, Akira; Suwada, Tsuyoshi; Kobayashi, Hitoshi.

    1993-01-01

    The beam transport is one of the most important problems in the linac to be used as the injector for the B-FACTORY accelerators. A basic problem of the beam transport is how to correct transport parameters immediately when a klystron becomes off. This is studied with the PF (Positron Factory) 2.5-GeV linac. (author)

  3. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  4. Characteristics of short pulse grid pulser for an electron LINAC

    International Nuclear Information System (INIS)

    Wang Guicheng; Fang Zhigao; Hong Jun

    1996-01-01

    An equivalent circuit is used to obtain the output waveform of a short pulse grid pulser for an electron LINAC, and the amplitude of the output pulse is studied as a function of number of switching transistors for some kinds of transistor. Two pulsers were fabricated to fulfill the requirements of the 200 MeV LINAC at NSRL

  5. Shunt impedance measurement of the APS BBC injector

    International Nuclear Information System (INIS)

    Sun, Y.E.; Lewellen, J.W.

    2006-01-01

    The injector test stand (ITS) at Advanced Photon Source (APS) presently incorporates a ballistic bunch compression (BBC) gun, and it is used as a beam source for a number of experiments, including THz generation, beam position monitor testing for the Linac Coherent Light Source (LCLS), novel cathode testing, and radiation therapy source development. The BBC gun uses three independently powered and phased rf cavities, one cathode cell, and two full cells to provide beam energies from 2 to 10 MeV with variable energy spread, energy chirp, and, to an extent, bunch duration. The shunt impedance of an rf accelerator determines how effectively the accelerator can convert supplied rf power to accelerating gradient. The calculation of the shunt impedance can be complicated if the beam energy changes substantially during its transit through a cavity, such as in a cathode cell. We present the results of direct measurements of the shunt impedance of the APS BBC gun on an individual cavity basis, including the cathode cell, and report on achieved gradients. We also present a comparison of the measured shunt impedance with theoretical values calculated from the rf models of the cavities.

  6. ATA injector-gun calculations

    International Nuclear Information System (INIS)

    Paul, A.C.

    1981-01-01

    ATA is a pulsed, 50 ns 10 KA, 50 MeV linear induction electron accelerator at LLNL. The ETA could be used as an injector for ATA. However the possibility of building a new injector gun for ATA, raised the question as to what changes from the ETA gun in electrode dimensions or potentials, if any, should be considered. In this report the EBQ code results for the four electrode configurations are reviewed and an attempt is made to determine the geometrical scaling laws appropriate to these ETA type gun geometries. Comparison of these scaling laws will be made to ETA operation. The characteristic operating curves for these geometries will also be presented and the effect of washer position determined. It will be shown that emittance growth will impose a limitation on beam current for a given anode potential before the virtual cathode limit is reached

  7. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  8. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    Lavender, W.; Baird, S.; Brennan, S.; Borland, M.; Hettel, R.; Nuhn, H.D.; Ortiz, R.; Safranek, J.; Sebek, J.; Wermelskirchen, C.; Yang, J.

    1991-01-01

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  9. Academic Training: A walk through the LHC injector chain

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 21, 22, 23 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  10. Autopilot regulation for the Linac4 H- ion source

    Science.gov (United States)

    Voulgarakis, G.; Lettry, J.; Mattei, S.; Lefort, B.; Costa, V. J. Correia

    2017-08-01

    Linac4 is a 160 MeV H- linear accelerator part of the upgrade of the LHC injector chain. Its cesiated surface H- source is designed to provide a beam intensity of 40-50mA. It is operated with periodical Cs-injection at typically 30 days intervals [1] and this implies that the beam parameters will slowly evolve during operation. Autopilot is a control software package extending CERN developed Inspector framework. The aim of Autopilot is to automatize the mandatory optimization and cesiation processes and to derive performance indicators, thus keeping human intervention minimal. Autopilot has been developed by capitalizing on the experience from manually operating the source. It comprises various algorithms running in real-time, which have been devised to: • Optimize the ion source performance by regulation of H2 injection, RF power and frequency. • Describe the performance of the source with performance indicators, which can be easily understood by operators. • Identify failures, try to recover the nominal operation and send warning in case of deviation from nominal operation. • Make the performance indicators remotely available through Web pages.Autopilot is at the same level of hierarchy as an operator, in the CERN infrastructure. This allows the combination of all ion source devices, providing the required flexibility. Autopilot is executed in a dedicated server, ensuring unique and centralized control, yet allowing multiple operators to interact at runtime, always coordinating between them. Autopilot aims at flexibility, adaptability, portability and scalability, and can be extended to other components of CERN's accelerators. In this paper, a detailed description of the Autopilot algorithms is presented, along with first results of operating the Linac4 H- Ion Source with Autopilot.

  11. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    Science.gov (United States)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  12. Linac4 H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J., E-mail: Jacques.lettry@cern.ch; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C. [CERN-ABP, 1211 Geneva 23 (Switzerland); and others

    2016-02-15

    CERN’s 160 MeV H{sup −} linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H{sup −} source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H{sup −} source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  13. Variable-energy drift-tube linacs

    International Nuclear Information System (INIS)

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    1982-01-01

    Practical applications of ion linacs are more viable now than ever before because of the recent development of the radio-frequency quadrupole accelerating structure, as well as other technological advances developed under the Pion Generator for Medical Irradiations program. This report describes a practical technique for varying the energy of drift-tube linacs and thus further broadening the possibilities for linac applications. This technique involves using the post couplers (normally used to flatten and stabilize the electric fields) to create a step in the fields, thus terminating the acceleration process. In the examples given for a 70-MeV accelerator design, when using this technique the energy is continually variable down to 20 MeV, while maintaining a small energy spread

  14. Focussing magnets for proton Linac of ADS

    International Nuclear Information System (INIS)

    Malhotra, Sanjay; Mahapatra, U.; Singh, Pitamber; Choudhury, R.K.; Goel, Priyanshu; Verma, Vishnu; Bhattacharya, S.; Srivastava, G.P.; Kailas, S.; Sahni, V.C.

    2009-01-01

    A linear accelerator comprising of Radio frequency quadruple (RFQ) and drift tube linac (DTL) is being developed by BARC. The Alvarez type post-coupled cw DTL accelerates protons from an energy of 3 MeV to 20 MeV. The drift tube linac is excited in TM010 mode, wherein the particles are accelerated by longitudinal electric fields at the gap crossings between drift tubes. The particles are subjected to transverse RF defocusing forces at the gap crossings due to the increasing electric fields in the gap. The transverse defocusing is corrected by housing magnetic quadrupole focussing lenses inside the drift tubes. The permanent magnet quadrupoles (PMQs) are placed inside the hermetically sealed drift tubes and provide a constant magnetic field gradient in the beam aperture. This paper discusses various aspects of magnetic design, selection of magnetic materials and the engineering development involved in the prototype development of these drift tubes for proton Linac. (author)

  15. History of the JAERI linac facility for 33 years

    International Nuclear Information System (INIS)

    Ohkubo, Makio; Mizumoto, Motoharu; Nakajima, Yutaka; Mashiko, Katsuo

    1994-01-01

    The JAERI electron linear accelerator will be shutdown and disassembled at the end of 1993. At the JAERI, a prototype 20 MeV linac was constructed at 1960, and was used for the neutron time-of-flight experiments and for the isotope productions. An upgraded 120 MeV linac was constructed at 1972, and was used for many fields of research works until 1993. History of the JAERI Linac and the results of the works made using these facilities are reviewed, and also R/D on the accelerator engineering are described briefly. (author)

  16. Linac4: the final assembly stage is under way

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152 last August. After an assembly phase and tests that concluded last March with the acceleration of a hydrogen beam to 3 MeV, the module has just been permanently installed in the new Linac4 tunnel (Building 400). The installation of the MEBT (Medium Energy Beam Transport) will begin shortly, followed by the start of the first Linac4 commissioning phase.     To find out more about the Linac4 RFQ module, read the previous Bulletin articles published in Nos. 21-22/2010 and 35-36/2012.

  17. Photon and photoneutron spectra produced in radiotherapy Linacs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.; Benites R, J. L.; Lallena, A. M.

    2011-10-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 -6 and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  18. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  19. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  20. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    International Nuclear Information System (INIS)

    Koveshnikov, A; Bylinskii, I; Hodgson, G; Kishi, D; Laxdal, R; Ma, Y; Nagimov, R; Yosifov, D

    2015-01-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience. (paper)

  1. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  2. Integrated numerical modeling of a laser gun injector

    International Nuclear Information System (INIS)

    Liu, H.; Benson, S.; Bisognano, J.; Liger, P.; Neil, G.; Neuffer, D.; Sinclair, C.; Yunn, B.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ''conditioning for final bunching'' is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source

  3. Injector for the University of Maryland Electron Ring (UMER)

    Energy Technology Data Exchange (ETDEWEB)

    Kehne, D. E-mail: dkehne@gmu.edu; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O' Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I

    2001-05-21

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  4. Injector for the University of Maryland Electron Ring (UMER)

    Science.gov (United States)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  5. Low-energy linac structure for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Stovall, J.E.

    1977-01-01

    The higher radio frequency (450 MHz) and lower injection energy (250 keV) of the PIGMI (Pion Generator for Medical Irradiations) linac design seriously compound the problem of beam containment in the first few meters of the structure. The conventional quadrupole-focused, drift-tube linac represents the best solution for beam energies above 8 MeV, but because of the small space available for quadrupoles in the PIGMI designs, cannot provide the required focusing at lower energies. A satisfactory solution to this focusing problem has been found based on pure alternating phase focusing for the first few MeV, followed by a smooth transition to a pure permanent magnet quadrupole-focused structure at 8 MeV. The structure and its calculated performance are described

  6. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  7. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  8. Source and LINAC3 studies

    CERN Document Server

    Bellodi, G

    2017-01-01

    In the framework of the LHC Ion Injector Upgrade pro-gramme (LIU), several activities have been carried out in2016 to improve the ion source and Linac3 performance,with the goal to increase the beam current routinely deliv-ered to LEIR. The extraction region of the GTS-LHC ionsource was upgraded with enlarged vacuum chamber aper-tures and the addition of an einzel lens, yielding highertransmission through the rest of the machine. Also, a seriesof experiments have been performed to study the effects ofdouble frequency mixing on the afterglow performance ofthe source after installation of a Travelling Wave Tube Am-plifier (TWTA) as secondary microwave source at variablefrequency. Measurements have been carried out at a dedi-cated oven test stand for better understanding of the ionsource performance. Finally, several MD sessions werededicated to the study and characterization of the strippingfoils, after evidence of degradation in time was discoveredin the 2015 run.

  9. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  10. Update of the Linac4-PSB Transfer Line

    CERN Document Server

    HEIN, Lutz

    2010-01-01

    The installation of Linac4 represents the first step of the upgrade plans of the CERN accelerator complex for the future in order to raise the available proton flux to attain amongst others the LHC ultimate luminosity. This linac is capable to accelerate H--ions from 45keV to 160MeV, which will be injected into the Proton Synchrotron Booster (PSB). The increase of energy from 50MeV (Linac2) to 160MeV (Linac4) allows to overcome the space charge limitations at the PSB injection, which is the main bottleneck towards higher beam brightness in the downstream accelerator chain. In order to preserve beam quality from the outlet of Linac4 to PSB injection the design of the transfer line becomes crucial. As the location of Linac4 was chosen in view of upgrade scenarios, the construction of a new transfer line is foreseen, see ref.[1] and ref.[2]. Here part of the Linac2-PSB transfer line will be re-used. In the new part of the transfer line the beam is horizontally and vertically adjusted towards the bending magnet B...

  11. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  12. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  13. Status of the positive ion injector for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P K; Benaroya, R; Bogaty, J M; Bollinger, L M; Clifft, B E; Craig, S L; Henderson, D; Markovich, P; Munson, F; Nixon, J M; Pardo, R C; Phillips, D; Shepard, K W; Tilbrook, I; Zinkann, G [Argonne National Lab., IL (USA). Physics Div.

    1989-04-01

    The positive ion injector project will replace a High Voltage Engineering Corp. model FN 9 MV tandem electrostatic accelerator as the injector into the ATLAS superconducting heavy ion linear accelerator. It consists of an electron cyclotron resonance (ECR) ion source on a 350-kV platform injecting into a linac of individually phased superconducting resonators which have been optimized for ions with velocities as low as {beta} = 0.009. The resulting combination will extend the useful mass range of ATLAS to projectiles as heavy as uranium, while increasing the beam currents available by a factor of 100. (orig.).

  14. Status of the positive ion injector for ATLAS

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Benaroya, R.; Bogaty, J.M.

    1988-01-01

    The positive ion injector project will replace a High Voltage Engineering Corp. model FN 9 MV tandem electrostatic accelerator as the injector into the ATLAS superconducting heavy ion linear accelerator. It consists of an electron cyclotron resonance (ECR) ion source on a 350-kV platform injecting into a linac of individually phased superconducting resonators which have been optimized for ions with velocities as low as β = 0.009. The resulting combination will extend the useful mass range of ATLAS to projectiles as heavy as uranium, while increasing the beam currents available by a factor of 100. (2 refs., 2 figs., 1 tab.)

  15. Plans for the upgrade of the LHC injectors

    CERN Document Server

    Garoby, R; Goddard, B; Hanke, K; Meddahi, M; Vretenar, M

    2011-01-01

    The LHC injectors upgrade (LIU) project has been launched at the end of 2010 to prepare the CERN accelerator complex for reliably providing beam with the challenging characteristics required by the high luminosity LHC until at least 2030. Based on the work already started on Linac4, PS Booster, PS and SPS, the LIU project coordinates studies and implementation, and interfaces with the high luminosity LHC (HL-LHC) project which looks after the upgrade of the LHC itself, expected by the end of the present decade. The anticipated beam characteristics are described, as well as the status of the studies and the solutions envisaged for improving the injector performances.

  16. Summary, Working Group 1: Electron guns and injector designs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Bazarov, I.V.

    2006-01-01

    We summarize the proceedings of Working Group 1 of the 2005 Energy Recovery Linac (ERL) Workshop. The subject of this working group, the electron gun and injector design, is arguably the most critical part of the ERL as it determines the ultimate performance of this type of accelerators. Working Group 1 dealt with a variety of subjects: The technology of DC, normal-conducting RF and superconducting RF guns; beam dynamics in the gun and injector; the cathode and laser package; modeling and computational issues; magnetized beams and polarization. A short overview of these issues covered in the Working Group is presented in this paper

  17. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  18. The FERMI @ Elettra Technical Optimization Study: General Layoutand Parameters and Physics Studies of Longitudinal Space Charge, theSpreader, the Injector, and Preliminary FEL Performance

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox,Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-09-01

    The FERMI {at} Elettra facility will make use of the existing GeV linac at Sincrotrone Elettra, which will become available for dedicated FEL applications following the completion of construction of a new injector booster complex for the storage ring. With a new rf photocathode injector, and some additional accelerating sections, this linac will be capable of providing high brightness bunches at 1.2 GeV and up to 50 Hz repetition rates.

  19. The FERMI (at) Elettra Technical Optimization Study: General Layout and Parameters and Physics Studies of Longitudinal Space Charge, the Spreader, the Injector, and Preliminary FEL Performance

    International Nuclear Information System (INIS)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox, Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    The FERMI (at) Elettra facility will make use of the existing GeV linac at Sincrotrone Elettra, which will become available for dedicated FEL applications following the completion of construction of a new injector booster complex for the storage ring. With a new rf photocathode injector, and some additional accelerating sections, this linac will be capable of providing high brightness bunches at 1.2 GeV and up to 50 Hz repetition rates

  20. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M; Pardo, R C; Shepard, K W; Billquist, P J; Bogaty, J M; Clifft, B E; Harkewicz, R; Joh, K; Markovich, P K; Munson, F H; Zinkann, G; Nolen, J A [Physics Div., Argonne National Lab., IL (United States)

    1993-03-01

    A Positive-Ion Injector (PII) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structure. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to [approx equal] 1.1 MeV/u. When ions with q/A>0.1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating [sup 30]Si[sup 7+], [sup 40]Ar[sup 11+], [sup 132]Xe[sup 13+], and [sup 208]Pb[sup 24+]. For all of these, transmission through the injector linac was [approx equal] 100% of the pre-bunched beam, which corresponds to [approx equal] 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time. (orig.).

  1. Superconducting radiofrequency linac development at Fermilab

    International Nuclear Information System (INIS)

    Holmes, Stephen D.

    2009-01-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  2. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  3. ARIEL e-LINAC: Commissioning and Development

    Science.gov (United States)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  4. ARIEL e-LINAC: Commissioning and Development

    International Nuclear Information System (INIS)

    Laxdal, R.E.; Zvyagintsev, V.

    2016-01-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented. (paper)

  5. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  6. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  7. Range of Possible Beam Current in Linac4

    CERN Document Server

    Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    Linac4 is a new accelerator under construction at CERN. It is designed to accelerate H- ions to 160MeV, for injection into the existing Proton Synchrotron Booster (PSB). It is also the front-end of the SPL Linac, a high energy proton driver that will reach the energy of 5GeV. The Linac baseline design has been done for a nominal beam peak current of 70mA but it will certainly have to deal with different currents. 132 out of 155 quadrupoles in the Linac are permanent magnets, this choice of using PMQ having fixed gradient, mainly in the DTL and in the CCDTL may then entail issues concerning the beam transverse matching and quality from current different from the nominal one. In this paper, we present the beam dynamics performances in Linac4 obtained for different currents.

  8. First beam in Linac4 DTL

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following the installation of the Linac4 Drift Tube Linac (DTL) earlier this summer (see here), the first DTL tank saw beams at 12 MeV on 5 August.   Transverse emittance measured at 12 MeV after the DTL tank1 using a temporary slit-and-grid emittance device. You never forget your first beam. That was especially true for the Linac4 DTL team, as it followed years of design, construction and vigorous testing. "We performed countless measurements of the geometry, vacuum and magnet polarisation of the DTL tanks while we were in the workshop," says Suitbert Ramberger, project engineer for the Linac4 DTL. "Add that preparation to the excellent RF conditioning that we carried out in the weeks before the beam tests and I was confident that the acceleration with beam would fully meet expectations!" Indeed it did. Beam commissioning tests ran until 21 August and found the DTL operating with nominal transmission. This successful run has confirmed the innovative design ...

  9. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    International Nuclear Information System (INIS)

    Wang, Guimei

    2011-01-01

    at ∼5MeV. Simulation shows that in the 3+1/2 DC- C injector, there is a region the beam could be over focused by RF electromagnetic field and the transverse emittance in the transport line up to linac will increase instantly due to over focusing. In order to eliminate this effect on beam emittance, several solutions are investigated to avoid over focusing. This result is very important for beam loading experiment for low bunch charge operation. Meanwhile, different merger structures are compared in terms of error sensitivity and emittance increase with space charge effect. In recirculation beam line, a new symmetric 180 deg arc structure is designed. It fulfills the achromatic condition and adjustable bunch compression. These two parameters are controlled by different Quads knob. With this novel structure, the recirculation lattice can achieve path length adjustment, bunch compression and decompression in a large range. With beamline error, the beam central orbit will deviate from the designed trajectory. An orbit correction system is optimized, which balances between cost and performance of orbit after correction at design level. Different methods are used to estimate its robustness. The BBU instability, especially multi-pass BBU imposed a potentially severe limitation to the average current that can be accelerated in an ERL. Simulation gives the harmful HOMs and predicts that the threshold average current in this machine is much higher than the possible operation current. This work is based on the existing facility in PKU, so it provides guidelines for the facility operation and upgrade in the future. The theoretical analysis of ERL requirement and FEL requirement on beam transport line and beam property paves the way for future ERL research

  10. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    energy at ~5MeV. Simulation shows that in the 3+1/2 DC- C injector, there is a region the beam could be over focused by RF electromagnetic field and the transverse emittance in the transport line up to linac will increase instantly due to over focusing. In order to eliminate this effect on beam emittance, several solutions are investigated to avoid over focusing. This result is very important for beam loading experiment for low bunch charge operation. Meanwhile, different merger structures are compared in terms of error sensitivity and emittance increase with space charge effect. In recirculation beam line, a new symmetric 180{degree} arc structure is designed. It fulfills the achromatic condition and adjustable bunch compression. These two parameters are controlled by different Quads knob. With this novel structure, the recirculation lattice can achieve path length adjustment, bunch compression and decompression in a large range. With beamline error, the beam central orbit will deviate from the designed trajectory. An orbit correction system is optimized, which balances between cost and performance of orbit after correction at design level. Different methods are used to estimate its robustness. The BBU instability, especially multi-pass BBU imposed a potentially severe limitation to the average current that can be accelerated in an ERL. Simulation gives the harmful HOMs and predicts that the threshold average current in this machine is much higher than the possible operation current. This work is based on the existing facility in PKU, so it provides guidelines for the facility operation and upgrade in the future. The theoretical analysis of ERL requirement and FEL requirement on beam transport line and beam property paves the way for future ERL research.

  11. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  12. LHC Injectors Upgrade (LIU) Project at CERN

    CERN Document Server

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  13. First operation of the ATLAS positive-ion injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shephard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate that all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system. (Author) 5 refs., tab., fig

  14. First operation of the ATLAS Positive-Ion Injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate tat all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system

  15. Initial operation of the new bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-01-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV DC platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the Super HILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs

  16. Initial operation of the new Bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-05-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV dc platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the SuperHILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs. 5 refs

  17. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  18. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  19. Injector of solid indicator

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, G.I.; Luk' yanov, E.P.; Pruslin, Y.A.; Zabrodin, P.I.

    1981-04-25

    The injector can be used with remote introduction of indicators into a borehole for study in an oil well of the parameters of movement of fluid currents, control of the state of the equipment, and study of the properties of the rocks. Proposed is a method of increasing the reliability of operation of the injector by stabilizing the rate of its dispersing. Introduced to the injector of a solid indicator are auxiliary brackets and a cathode made from nonmetallic electrical conducting material and reinforced at the end by an elastic bracket. The auxillary cathode is attached to the end surface of the anode and cathode.

  20. Redirecting by Injector

    Science.gov (United States)

    Filman, Robert E.; Lee, Diana D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe the Object Infrastructure Framework, a system that seeks to simplify the creation of distributed applications by injecting behavior on the communication paths between components. We touch on some of the ilities and services that can be achieved with injector technology, and then focus on the uses of redirecting injectors, injectors that take requests directed at a particular server and generate requests directed at others. We close by noting that OIF is an Aspect-Oriented Programming system, and comparing OIF to related work.

  1. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  2. Exergetic analysis of refrigeration system of the Pelletron-Linac particle accelerator of the University of Sao Paulo

    International Nuclear Information System (INIS)

    Oliveira Filho, O.B. de

    1993-01-01

    The Pelletron-Linac accelerator of the University of Sao Paulo will use the existing electrostatic Pelletron accelerator as an injector for the linear superconducting accelerator (Linac), to increase the acceleration of the particles. The Linac uses a forced flow circulation helium system to promote continuous refrigeration for long periods of time, at temperatures below or equal to 4,9 K. This paper shows the exergetic analysis of the Pelletron-linac refrigerator, identifying the main sources of irreversibilities and evaluating energetic consumption of the system. An exergy-enthalpy diagram for the helium shows the thermodynamic processes that take place in the refrigeration plant and the exergy losses. (author)

  3. Construction of SPring-8 LINAC

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki; Yoshikawa, Hiroshi; Suzuki, Shinsuke; Yanagida, Ken-ichi; Mizuno, Akihiko; Hori, Toshihiko; Tamezane, Kenji; Kodera, Masahiko; Sakaki, Hironao; Mashiko, Katsuo

    1993-01-01

    Construction of the linac building has been started in February 1993. The components of the linac are under manufacturing. The preinjector of linac was already constructed and temporarily installed in Tokai Establishment in order to test the beam quality. (author)

  4. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Eylon, S.

    1995-04-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  5. Buried injector logic, a vertical IIL using deep ion implantation

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1987-01-01

    A vertically integrated alternative for integrated injection logic has been realized, named buried injector logic (BIL). 1 MeV ion implantations are used to create buried layers. The vertical pnp and npn transistors have thin base regions and exhibit a limited charge accumulation if a gate is

  6. Development of an Eddy Current Septum for LINAC4

    CERN Document Server

    Barnes, M; Borburgh, J; Fowler, T; Goddard, B; Ueda, A; Weterings, W

    2008-01-01

    A linear accelerator (linac) is the first stage of the CERN accelerator complex. The linac defines the beam quality for subsequent stages of acceleration and the reliability has to be high as a fault of the linac shuts down all other machines. The existing linacs at CERN were designed 30 or more years ago: recent upgrades allowed the linacs to reach LHC requirements but also showed that they are at the limit of their brightness and intensity capabilities. A replacement Superconducting Proton Linac (SPL) has been proposed; the initial part of the SPL is termed LINAC4. The LINAC4 injection bump would be made up of a set of four pulsed dipole magnets; the first of these magnets (BS1) must act as a septum with a thin element dividing the high-field region of the circulating beam from the field-free region through which injected $H^{-}$ beam must pass. The initial specifications for BS1 required; a deflection of 66 mrad at 160 MeV, achieved with a peak field of 628 mT and a length of 250 mm: the field fall time wa...

  7. Emittance measuring unit for 100% duty factor linac injector beams

    Energy Technology Data Exchange (ETDEWEB)

    Shubaly, M R; Pachner, J Jr; Ormrod, J H; Ungrin, J; Schriber, S O [ed.

    1976-11-01

    A description is given of a system to measure the emittance of a 750 keV 100 mA dc proton beam suitable for injection into a 100% duty factor linear accelerator. A relatively slowly pulsed 45/sup 0/ magnet switches the beam to a beam dump inside the emittance measuring unit for approx. 10 s. A fast pulsed 5/sup 0/ magnet then deflects the beam to a multiple aperture ''pepper-pot'' plate for 300 ..mu..s. Beamlets passing through the plate travel 520 mm and produce a pattern on a scintillator screen. A photograph of the pattern is analyzed to determine beam emittance. Preliminary results on low current beams show a gross increase in the emittance in the horizontal plane.

  8. Travelling wave accelerating structure design for TESLA positron injector linac

    CERN Document Server

    Jin, K; Zhou, F; Flöttmann, K

    2000-01-01

    A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.

  9. Beam pulsing of C60 electrostatic injector accelerator for linac

    International Nuclear Information System (INIS)

    Takahashi, Y.; Hattori, T.; Kashiwagi, H.; Hata, T.; Noda, K.

    2000-01-01

    The research which measured the energy loss by the interaction between C 60 fullerene beam and solid film using the TOF method was started. The beam pulsing equipment was manufactured in this reason. The method by the copping was adopted for the pulsing, and 10 kHz high frequency was applied between electrodes, and the 20 V maximum voltage between electrodes was obtained. The 600 keV acceleration will be carried out by the 200 kV accelerating column, after pulsing is sent to C 60 fullerene beam drawn from electron impact type ion source at 300 V in pulse intervals 50 μs and 4.6 μs pulse width. The APF-IH type linear accelerator that it settles the fullerene more and more using the APF focusing and accelerates at the high acceleration is designed and is manufactured, and this is made to be a linear accelerator of back step, the high energy acceleration will be carried out. (author)

  10. Achromatic beam transport of High Current Injector

    International Nuclear Information System (INIS)

    Kumar, Sarvesh; Mandal, A.

    2016-01-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time

  11. Pb injector at CERN

    International Nuclear Information System (INIS)

    Haseroth, H.D.

    1996-01-01

    For the CERN Lead Ion Accelerating Facility (achieved within a collaboration of several outside laboratories and with financial help of some member states) a new dedicated Linac has been built. This Linac has been installed in 1994 and served during two extended physics runs. This paper reviews the main characteristics of this machine and describes the first operational experience. Emphasis is put on new features of this accelerator, its associated equipment and on the peculiarities of heavy ions. (author)

  12. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  13. First operational experience with the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Joh, K.; Markovich, P.K.; Munson, F.H.; Zinkann, G.; Nolen, J.A.

    1992-01-01

    A Positive-Ion Injector (PH) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structures. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to ∼ 1.1 MeV/u. When ions with q/A > 0. 1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating 3O Si 7+ , 40 Ar ll+ , 132 Xe 13+ , and 208 Pb 24+ . For all of these, transmission through the injecter linac was ∼ 100% of the pre-bunched beam, which corresponds to ∼ 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time

  14. Heavy ion induction linac drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Lee, E.P.; Hovingh, J.

    1988-10-01

    Intense beams of high energy heavy ions (e.g., 10 GeV Hg) are an attractive option for an ICF driver because of their favorable energy deposition characteristics. The accelerator systems to produce the beams at the required power level are a development from existing technologies of the induction linac, rf linac/storage ring, and synchrotron. The high repetition rate of the accelerator systems, and the high efficiency which can be realized at high current make this approach especially suitable for commercial ICF. The present report gives a summary of the main features of the induction linac driver system, which is the approach now pursued in the USA. The main subsystems, consisting of injector, multiple beam accelerator at low and high energy, transport and pulse compression lines, and final focus are described. Scale relations are given for the current limits and other features of these subsystems. 17 refs., 1 fig., 1 tab

  15. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-01-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results of past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs are presented

  16. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs

  17. A Linac afterburner to supercharge the Fermilab booster

    International Nuclear Information System (INIS)

    Ankenbrandt M, Charles email = popovic@fnal.gov

    2002-01-01

    A Linac Afterburner is proposed to raise the energy of the beam injected into the Femrilab Booster from 400 MeV to about 600 MeV, thereby alleviating the longitudinal and transverse space-charge effects at low energy that currently limit its performance. The primary motivation is to increase the integrated luminosity of the Tevatron Collider in Run II, but other future programs would also recap substantial benefits. The estimated cost is $23M

  18. Injection schemes for the TOP Linac; Schemi di iniezione per il TOP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L.; Ronsivalle, C. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione; Bartolini, R. [Istituto Superiore di Sanita' , Rome (Italy)

    1999-07-01

    In this report two schemes are studied for the injection in the SCDTL section of the TOP Linac of the proton beam produced by a 7 MeV linear accelerator. The project derives by an agreement between ENEA (National Agency for New Technology, Energy and Environment) and ISS. In these new versions of the design the constraint of a synchronization of the radio frequencies of the two accelerators is suppressed. [Italian] In questo rapporto sono studiati due schemi di iniezione nella sezione accelerante SCDTL a 3 GHz del TOP (terapia oncologica con protoni) linac del fascio di protoni generato da un acceleratore lineare di 7 MeV. L'acceleratore e' frutto di una convenzione tra L'ENEA e l'Istituto Superiore di Sanita'. Rispetto a versioni precedenti del progetto, viene eliminato il vincolo della sincronizzazione delle radiofrequenze dei due acceleratori.

  19. Laser-driven injector of electrons for IOTA

    Science.gov (United States)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  20. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  1. Argonne National Laboratory 1980-1981 tandem-linac accelerator report

    International Nuclear Information System (INIS)

    Hartog, P.D.; Pardo, R.; Munson, F.; Heath, C.

    1981-01-01

    Performance of the facility is discussed. The FN tandem Van de Graaff is now used as an injector for the superconducting linac; heavy-ion beams are being injected. Stripper foil development is described, with fabrication by arc evaporation and by RF discharge compared. Facility modifications, such as the control room, are discussed

  2. Linac4 RFQ assembly is carried out before installation in Building 152

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    This series of pictures documents the assembly phase of the Linac4 RFQ (Radio Frequency Quadrupole), performed at the end of July 2012. The Linac4 RFQ is made of 3 modules, 1 meter each, assembled together to accelerate the H- or proton beam from the ion source extraction at 45 kV to the energy of 3 MeV. The RFQ is the first of the Linac4 accelerating structures, which will increase to 160 MeV the beam injection energy into the PS Booster as from the end of LS2.

  3. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  4. RF linac designs with beams in thermal equilibrium

    International Nuclear Information System (INIS)

    Reiser, M.; Brown, N.

    1996-01-01

    Beams in conventional radio-frequency linear accelerators (rf linacs) usually have a transverse temperature which is much larger than the longitudinal temperature. With high currents, space charge forces couple the transverse and longitudinal particle motions, driving the beam toward thermal equilibrium, which leads to emittance growth and halo formation. A design strategy is proposed in which the beam has equal transverse and longitudinal temperatures through the entire linac, avoiding these undesirable effects. For such equipartitioned linac beams, simple analytical relationships can be derived for the bunch size, tune depression, and other parameters as a function of beam intensity, emittance, and external focusing. These relations were used to develop three conceptual designs for a 938 MeV, 100 mA proton linac with different tune depressions, which are presented in this paper. copyright 1996 American Institute of Physics

  5. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  6. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  7. Redesign of the low energy section of the Fermilab linac to improve beam brightness

    International Nuclear Information System (INIS)

    Schmidt, C.; Noble, R.; Palkovic, J.; Mills, F.E.

    1988-10-01

    The critical parameters which limit the luminosity of the Fermilab Tevatron Collider are the beam emittances, both longitudinal and transverse, at each stage in the acceleration sequence. Improvements to reduce invariant emittance growth at earlier acceleration stages necessarily encourage improvements in all downstream stages. Recent advances in linac technology should permit a significant increase in the beam brightness of the Fermilab linac. A redesign of the low energy section of the linac is envisioned to include a circular aperture H/sup /minus// source, a short 30-keV transport line (solenoids, Gabor lenses or einzel lenses) for matching to a radio frequency quadrupole linac (RFQ), and injection at approximately 2 MeV into a new 200 MHz Alvarez linac tank for acceleration to 10 MeV. 9 refs., 1 fig

  8. Academic Training: A walk through the LHC injector chain

    CERN Document Server

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16 February from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on...

  9. Development of the 2-MV Injector for HIF

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M. E-mail: fmbieniosek@lbl.gov; Kwan, J.W.; Henestroza, E.; Kim, C

    2001-05-21

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated.

  10. Development of the 2-MV Injector for HIF

    Science.gov (United States)

    Bieniosek, F. M.; Kwan, J. W.; Henestroza, E.; Kim, C.

    2001-05-01

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated.

  11. Development of the 2-MV Injector for HIF

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Kwan, J.W.; Henestroza, E.; Kim, C.

    2001-01-01

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated

  12. Development of the 2-MV injector for HIF

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Kwan, J.W.; Henestroza, E.; Kim, C.

    2000-01-01

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated

  13. Injector upgrade for the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Kuerzeder, Thorsten; Brunken, Marco; Conrad, Jens; Eichhorn, Ralf; Graef, Hans-Dieter; Richter, Achim; Sievers, Sven [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany); Fuerst, Joel [Argonne National Laboratory, Argonne (United States)

    2009-07-01

    The injector section of the S-DALINAC currently delivers beams of up to 10 MeV w ith a current of up to 60{mu}A. The upgrade aims to increase both parameters to 14 MeV and 150{mu}A in order to allow more demanding experiments. Therefor e, a modified cryostat module equipped with two new cavities is required. Due to an increase in rf power to 2 kW the old coaxial rf input couplers, being design ed for a maximum power of 500 W, have to be replaced by new waveguide couplers. We review the design principles and report on the fabrication of the cavities an d the whole module.

  14. Current status of femtosecond triplet Linacs 2000

    International Nuclear Information System (INIS)

    Uesaka, M.; Watanabe, T.; Kobayashi, T.

    2000-01-01

    Femtosecond Ultrafast Quantum Phenomenon Research Facility has been commissioned in 2000. It consists the femtosecond linac-laser synchronization system, the 12 TW 50 fs laser system and the analyzing system. Laser photocathode RF gun produced l kA = 7 nC / 7 ps for 250 μJ 267 nm laser irradiation, synchronization of 300 fs (rms) for minutes and l.9 ps (rms) for hours was established. Efforts to avoid such long-term drift are under way. This system is applied to subpico- and picosecond pulseradiolysis for radiation chemistry of water and supercritical water. Laser plasma linac works are under way to generate 20 MeV 10 fs electron bunch and ps ion beam using the 12 TW 50 fs laser. Further, the time-resolved X-ray diffraction is close to dynamic visualization of atomic motions. (author)

  15. The source development lab linac at BNL

    International Nuclear Information System (INIS)

    Graves, W.S.; Johnson, E.D.

    1996-12-01

    A 210 MeV SLAC-type electron linac is currently under construction at BNL as part of the Source Development Laboratory. A 1.6 cell RF photoinjector is employed as the high brightness electron source which is excited by a frequency tripled Titanium:Sapphire laser. This linac will be used for several source development projects including a short bunch storage ring, and a series of FEL experiments based on the 10 m long NISUS undulator. The FEL will be operated as either a SASE or seeded beam device using the Ti:Sapp laser. For the seeded beam experiments; direct amplification, harmonic generation, and chirped pulse amplification modes will be studied, spanning an output wavelength range from 900 nm down to 100 nm. This paper presents the project's design parameters and results of recent modeling using the PARMELA and MAD simulation codes

  16. Research on backward traveling wave electron linac

    International Nuclear Information System (INIS)

    Chen Huaibi; Zheng Shuxin; Ding Xiaodong; Lin Yuzheng

    1999-01-01

    Future electron linacs require high gradient acceleration. The studies on the high shunt impedance backward traveling wave electron linac accelerating structure (BTW) are presented. At first, the characteristics of BTW are researched. The option of mode and optimal design methods of accelerating cavity for BTW are studied. A physical design method for BTW accelerators, including longitudinal and transversal particle dynamics, is given. Based on above studies, a 9 MeV BTW accelerating tube at 3π/4 mode with frequency 2856 MHz for inspecting large container as radiation source at customs is designed, and a comparison with disk-loaded waveguide accelerating tube is made. The result of research leads to the conclusion that backward traveling wave accelerating structure is preferable. Because BTW has higher effective shunt impedance, shorter filling time and more stable operation

  17. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  18. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  19. Improved Bevatron local injector ion source performance

    International Nuclear Information System (INIS)

    Stover, G.; Zajec, E.

    1985-05-01

    Performance tests of the improved Bevatron Local Injector PIG Ion Source using particles of Si 4 + , Ne 3 + , and He 2 + are described. Initial measurements of the 8.4 keV/nucleon Si 4 + beam show an intensity of 100 particle microamperes with a normalized emittance of .06 π cm-mrad. A low energy beam transport line provides mass analysis, diagnostics, and matching into a 200 MHz RFQ linac. The RFQ accelerates the beam from 8.4 to 200 keV/nucleon. The injector is unusual in the sense that all ion source power supplies, the ac distribution network, vacuum control equipment, and computer control system are contained in a four bay rack mounted on insulators which is located on a floor immediately above the ion source. The rack, transmission line, and the ion source housing are raised by a dc power supply to 80 kilovolts above earth ground. All power supplies, which are referenced to rack ground, are modular in construction and easily removable for maintenance. AC power is delivered to the rack via a 21 kVA, 3-phase transformer. 2 refs., 5 figs., 1 tab

  20. CERN Linac4 - The Space Charge Challenge Design and Commission

    CERN Document Server

    Hein, Lutz Matthias; Holzer, Bernhard

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting $H^-$ ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the low energy beam transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to re-construct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam...

  1. A new RFQ linac fabrication technique

    International Nuclear Information System (INIS)

    Schrage, D.; Roybal, P.; Young, L.; Clark, W.; DePaula, R.; Martinez, F.

    1994-01-01

    The use of hydrogen furnace brazing has been applied as a joining technology to the fabrication of a Radio-Frequency-Quadrupole (RFQ) linac for the Los Alamos Accelerator Performance Demonstration Facility (APDF). The design concept provides a monolithic cavity with no longitudinal rf, vacuum, or mechanical joints. A 530 MHz, 0.46 meter long engineering model RFQ has been fabricated and tested at the Los Alamos National Laboratory as a technical demonstration of this concept. It is planned that two funneled RFQ's for the APDF (7 MeV, 350 MHz, 100 mAmp CW, each eight meters in length) will be manufactured by this method

  2. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  3. Contraband detection technological complex with ion linac

    International Nuclear Information System (INIS)

    Gavrish, Yu.N.; Svistunov, Yu.A.; Sidorov, A.V.

    2004-01-01

    The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented

  4. Fermilab linac upgrade. Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-01-01

    The 805 MHz side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and discusses the near-on-line commissioning plans for this accelerator. (Author) ref., 4 figs

  5. Fermilab Linac Upgrade: Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator

  6. Heavy-Ion Injector for the High Current Experiment

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  7. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  8. First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takabayashi, Y., E-mail: takabayashi@saga-ls.jp [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Fiks, E.I. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-06-12

    The first experiment on Cherenkov light from 255-MeV electrons passing through a 50-μm-thick diamond crystal in a special geometry allowing extraction of 500-nm Cherenkov light at a right angle with respect to the electron beam direction has been performed at the injector linac of SAGA Light Source accelerator facility. The dependence of 500-nm Cherenkov light intensity (separated by a band-pass filter) on the crystal rotation angle was measured by a CCD detector. The experimentally obtained rocking curve with an intense maximum is theoretically explained as the projector effect of Cherenkov light deflected by the exit surface of the crystal. The width of the rocking curve is explained by the convolution of the standard Tamm–Frank angular distribution of Cherenkov radiation with chromatic aberration, the multiple scattering of electrons in a crystal, and initial electron beam angular divergence. In addition, it is found that the Cherenkov light intensity did not change under the (220) planar channeling condition, which is consistent with a recent theory. - Highlights: • Cherenkov light from 255-MeV electrons in a diamond crystal has been investigated. • The Cherenkov light from channeled electrons has been observed for the first time. • The experimental results are in good agreement with theory.

  9. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  10. IONS FOR LHC STATUS OF THE INJECTOR CHAIN

    CERN Document Server

    Manglunki, Django; Borburgh, J; Carli, C; Chanel, M; Dumas, L; Fowler, T; Gourber-Pace, M; Hancock, S; Hourican, M; Jowett, John M; Küchler, D; Mahner, E; Martini, M; Maury, S; Pasinelli, S; Raich, U; Rey, A; Royer, J-P; Scrivens, R; Sermeus, L; Tranquille, G; Vallet, J L; Vandorpe, B

    2007-01-01

    The LHC will, in addition to proton runs, be operated with Pb ions and provide collisions at energies of 5.5 TeV per nucleon pair, i.e. more than 1.1 PeV per event, to experiments. The transformation of CERN's ion injector complex (Linac3-LEIR-PS-SPS) to allow collision of ions in LHC in 2008 is well under way. The status of these modifications and the latest results of commissioning will be presented. The remaining challenges are reviewed.

  11. Status of Resistive Magnets in the LHC Injectors Chain

    CERN Document Server

    Tommasini, D; Thonet, P; Bauche, J; Zickler, T; Newborough, A; Sgobba, S; Lopez, R

    2010-01-01

    About 4650 normal conducting magnets are presently installed in the CERN accelerators complex, more than 3000 of them belonging to the LHC injector chain and 163 installed in the LHC. The oldest magnets have been in operation for 50 years, and some of them are submitted to aggressive conditions, either in terms of radiation, extreme water cooling conditions or temperature. The smallest magnets in the linacs weigh a few kilograms, whilst each of the main magnets of the Proton Synchrotron weighs 33 tons. The paper reviews the status of these magnets and gives some examples of findings and relevant recent actions undertaken to ensure their reliable operation in the coming years.

  12. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  13. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  14. NLCTA injector experimental results

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Adolphsen, C.; Miller, R.H.; Nantista, C.D.; Wang, J.W.

    1997-04-01

    The purpose of the Next Linear Collider Test Accelerator (NLCTA) at SLAC is to integrate the new technologies of X-band accelerator structures and RF systems for the Next Linear Collider (NLC), demonstrate multibunch beam-loading energy compensation and suppression of high-order deflecting modes, measure the transverse components of the accelerating field, and measure the dark current generated by RF field emission in the accelerator. For beam loading R and D, an average current of about 1 A in a 120 ns long bunch train is required. The initial commissioning of the NLCTA injector, as well as the rest of the accelerator have been progressing very well. The initial beam parameters are very close to the requirement and they expect that injector will meet the specified requirements by the end of this summer

  15. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  16. Injector MD Days 2017

    CERN Document Server

    Rumolo, G

    2017-01-01

    The Injector Machine Development (MD) days 2017 were held on 23-24 March, 2017, at CERN with thefollowing main goals:Give a chance to the MD users to present their results and show the relevant progress made in 2016 onseveral fronts.Provide the MD users and the Operation (OP) crews with a general overview on the outcome and theimpact of all ongoing MD activities.Identify the open questions and consequently define - with priorities - a list of machine studies in theinjectors for 2017 (covering the operational beams, LHC Injectors Upgrade, High Luminosity LHC,Physics Beyond Colliders, other projects).Create the opportunity to collect and document the highlights of the 2016 MDs and define the perspectivesfor 2017.Discuss how to make best use of the MD time, in particular let the main MD user express their wishesand see whether/how OP teams can contribute to their fulfilment.

  17. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  18. Fermilab Main Injector plan

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-07-15

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10{sup 31} per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research.

  19. Fermilab Main Injector plan

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10 31 per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research

  20. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  1. Development of a Laser Driven Photocathode Injector and Femtosecond Scale Laser Electron Synchronization for Next Generation Light Sources

    CERN Document Server

    Le Sage, G P; Ditmire, T R; Rosenzweig, J

    2000-01-01

    A high brightness photoinjector has been developed at LLNL. This injector combined with the 100 TW FALCON laser and the LLNL 100 MeV S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray probe for time-resolved material measurements, based on Thomson scattering. Short pulse x-rays enable time-resolved characterization of shock dynamics, and examination of materials under extremes of pressure and temperature. Examples include Equation of State characterization on high-density materials, Crystal disorganization and re-growth in shocked and heated materials, and measurement of short time scale phase transition phenomena. Single shot evaluation, requiring high peak flux, is important for complex experiments such as probing of laser shocked actinides. A low emittance electron beam synchronized with femtosecond accuracy to an intense laser will revolutionize x-ray dynamics studies of materials. This project will lead development of ultrafast x-ray dynamics research on ...

  2. An Injector for the CLIC Test Facility (CTF3)

    CERN Document Server

    Braun, H; Rinolfi, Louis; Zhou, F; Mouton, B; Miller, R; Yeremian, A D

    2000-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  3. An Injector for the CLIC Test Facility (CTF3)

    International Nuclear Information System (INIS)

    Miller, Roger H.

    2001-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed

  4. An injector for the CLIC test Facility (CTF3)

    CERN Document Server

    Braun, Hans-Heinrich; Rinolfi, L.; Zhou, F.; Mouton, B.; Miller, R.; Yeremian, D.

    2008-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  5. FERMILAB: Main Injector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10 31 cm -2 s -1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  6. FERMILAB: Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10{sup 31} cm{sup -2} s{sup -1} in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction.

  7. Parallel Beam Dynamics Simulation Tools for Future Light Source Linac Modeling

    International Nuclear Information System (INIS)

    Qiang, Ji; Pogorelov, Ilya v.; Ryne, Robert D.

    2007-01-01

    Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Simulations with IMPACT-Z were performed using up to one billion simulation particles for the main linac of a future light source to study the microbunching instability. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future light sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources

  8. Generation and acceleration of high intensity beams in the SLC injector

    International Nuclear Information System (INIS)

    Ross, M.C.; Browne, M.J.; Clendenin, J.E.; Jobe, R.K.; Seeman, J.T.; Sheppard, J.C.; Stiening, R.F.

    1985-04-01

    A new gun pulser and substantially increased focusing have been added to the first 100 m of the SLAC linac in order to provide a pair of intense electron bunches to the SLC damping ring. Each bunch from this injector must have 5 x 10 10 electrons, an invariant emittance γepsilon less than or equal to 1.8 x 10 -3 m-rad and the pair must have an energy spread of less than 2%. Wakefield instabilities present in earlier versions of this injector have been controlled by reducing the transverse beam dimension by a factor of 3

  9. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  10. LINAC4 takes a tour of Europe

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Along the German Autobahnen, a truck carrying 20 tonnes of copper is on its way to Poland. The metal has already made a short tour of Europe, yet the drive across the high-speed highway is only the beginning of its transformation into CERN’s next linear accelerator, LINAC4.   Grzegorz Wrochna (left), director of the Andrzej Soltan Institute for Nuclear Studies (IPJ), and Rolf Heuer (right), CERN DG, sign the framework agreement between the two institutes. By the summer of 2012, the PI-Mode Structures (PIMS) will be constructed and completely installed in the LINAC4 tunnel. The PIMS cavities are the final accelerating structures needed for LINAC4, and have been designed to accelerate protons from 100 to 160MeV. While the first cavity was built entirely at CERN, construction of the remaining cavities has become a larger, multi-national operation. In a 1 million euro framework agreement signed on 11 February by the Director-General, the Andrzej Soltan Institute for Nuclear Studies in Swie...

  11. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    International Nuclear Information System (INIS)

    Haire, M.J.

    2000-01-01

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  12. Mechanical features of a 700 MHz bridge-coupled drift tube linac

    International Nuclear Information System (INIS)

    Liska, D.; Smith, P.; Carlisle, L.; Larkin, T.; Lawrence, G.; Garnett, R.

    1992-01-01

    Modem linac designs for treating radioactive waste achieve high proton currents through funneling at low energy, typically around 20 MeV. The resulting switch to a high-frequency accelerating structure poses severe performance and fabrication difficulties below 100 MeV. Above 100 MeV, proven coupled-cavity linacs (CCLS) are available. However, at 20 MeV one must choose between a high-frequency drift-tube linac (DTL) or a coupled-cavity linac with very short cells. Potential radiation damage from the CW beam, excessive RF power losses, multipactoring, and fabricability all enter into this decision. At Los Alamos, we have developed designs for a bridge-coupled DTL (BCDTL) that, like a CCL, uses lattice focusing elements and bridge couplers, but that unlike a CCL, accelerates the beam in simple, short, large-aperture DTL modules with no internal quadrupole focusing. Thus, the BCDTL consumes less power than the CCL linac without beam performance and is simpler and cheaper to fabricate in the 20 to 100 MeV range

  13. Mechanical features of a 700-MHz bridge-coupled drift-tube linac

    International Nuclear Information System (INIS)

    Liska, D.; Smith, P.; Carlisle, L.; Larkin, T.; Lawrence, G.; Garnett, R.

    1992-01-01

    Modern linac designs for treating radioactive waste achieve high proton currents through funneling at low energy, typically around 20 MeV. The resulting switch to a high-frequency accelerating structure poses severe performance and fabrication difficulties below 100 MeV. Above 100 MeV, proven coupled-cavity linacs (CCLs) are available. However, at 20 MeV one must choose between a high-frequency drift-tube linac (DTL) or a coupled-cavity linac with very short cells. Potential radiation damage from the CW beam, excessive RF power losses, multipactoring, and fabricability all enter into this decision. At Los Alamos, we have developed designs for a bridge-coupled DTL (BCDTL) that, like a CCL, uses lattice focusing elements and bridge couplers, but that unlike a CCL, accelerates the beam in simple, short, large-aperture DTL modules with no internal quadrupole focusing. Thus, the BCDTL consumes less power than the CCL linac without beam performance and is simpler and cheaper to fabricate in the 20 to 100 MeV range. (Author) ref., tab., 3 figs

  14. NLC electron injector beam dynamics

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.

    1995-10-01

    The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC

  15. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  16. Design of a Marx-Topology Modulator for FNAL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Butler, T. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Garcia, F. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kufer, M. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pfeffer, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wolff, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-28

    The Fermilab Proton Improvement Plan (PIP) was formed in late 2011 to address important and necessary upgrades to the Proton Source machines (Injector line, Linac and Booster). The goal is to increase the proton flux by doubling the Booster beam cycle rate while maintaining the same intensity per cycle, the same uptime, and the same residual activation in the enclosure. For the Linac, the main focus within PIP is to address reliability. One of the main tasks is to replace the present hard-tube modulator used on the 200 MHz RF system. Plans to replace this high power system with a Marx-topology modulator, capable of providing the required waveform shaping to stabilize the accelerating gradient and compensate for beam loading, will be presented, along with development data from the prototype unit.

  17. Important aspects of linac beams for food irradiation

    International Nuclear Information System (INIS)

    McKeown, J.; Jones, R.T.

    1987-01-01

    Linac based irradiators will require careful design before they can be routinely adopted for the radiation processing of food. The transverse emittance and energy spread from simple injectors provide a significant challenge to the design of a beam delivery system which must handle high power especially in photon mode. Any nonuniform current distribution at the plane of the product is further complicated by large dose variations near the air/product interface, even with simple geometries. The paper describes the use of methods developed at AECL to control and monitor linac behaviour as well as electron interactions at the product surface. It also reports on activation cross-section measurements and particularly on neutron yields from composite targets, designed to monitor the energy of accelerators used in food applications. (orig.)

  18. Redesign of CERN LINAC3 RFQ for Lead 29+

    CERN Document Server

    Benedetti, Stefano; Lallement, Jean-Baptiste; Lombardi, Alessandra; CERN. Geneva. ATS Department

    2018-01-01

    CERN Linac3 is at the heart of the CERN Heavy Ion Facility, providing 4.2 MeV/u ion beams to the Low Energy Ion Ring (LEIR). It mostly accelerates 208Pb29+, though in recent years runs were performed with 40Ar11+ and 129Xe22+, in view of the raising interest of the physics community towards lighter ions experiments. In the framework of the LHC Injectors Upgrade (LIU) project, measurements and beam dynamics simulations showed that a transmission bottleneck of Linac3 is represented by the RFQ. As this accelerator was originally designed for 208Pb25+, the lower beam rigidity of the heavy ions currently in used – and planned to be used – permits a redesign of the RFQ aimed at increasing its transverse acceptance, and thus the transmitted beam current. The methodology adopted and the results of this study are presented.

  19. Control system by the technological electron Linac KUT-20

    CERN Document Server

    Akchurin, Y I; Gurin, V A; Demidov, N V

    2001-01-01

    The high-power technological electron linac KUT-20 was developed at the Science Research Complex 'Accelerator' of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun,a klystron type buncher and an accelerating cavity.With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1A,the beam energy will be up to 20 MeV.An average beam power is planned to be 20 kW.All systems of the accelerator are controlled by a computerised control system. The program and technical complex consist of PC equipped with fast ADC control console, synchronization unit, microprocessor-operated complexes.

  20. Linac drift tube tank upgrade engineering - cooling solution

    International Nuclear Information System (INIS)

    Li, G.; Heilbrunn, W.; Potter, J.

    1999-01-01

    Components from the injector of the canceled SSC project are being modified by JPAW to make a commercial radioisotope production linac for I 3 in Denton, TX. The biggest challenge of the upgraded design is the increased average power of the DTL, 40 times the original. With the thermo-mechanical analysis backed by a thorough understanding of the thermal physics, 156 drift tubes have been redesigned according to the RF power deposition. Increasing flow rate in the original cooling channels and adding four flow paths reduces the average tank temperature to an acceptable level. The Δf tolerance budget is controlled without the use of additional temperature control units. The unfinished SSC endwall parts have been modified for additional cooling of the nose and the wall. The different LINAC cooling subsystems are connected to a manifold in parallel through independent flow control valves to balance the required flow rate for each branch

  1. Low-β SC linacs: past, present, and future

    International Nuclear Information System (INIS)

    Bollinger, L. M.

    1998-01-01

    This paper is a general review of superconducting low-β technology and applications from its beginning in 1969 into the near-term future. The emphasis is on studies of accelerating resonators and on SC linacs that boost the energy of heavy-ion beams from tandem electrostatic accelerators used for nuclear-physics research. Other topics are positive-ion SC injectors to replace tandems and the need for accelerating structures with β outside of the present proven range, 0.008 < β < 0.2

  2. The electron gun for the Daresbury SRS linac

    International Nuclear Information System (INIS)

    Dykes, D.M.

    1996-01-01

    The electron gun for the Daresbury SRS linac injector has been modified to use the cathode-grid assembly from the Eimac planar triode 8755. The gun now has improved beam characteristics, is more reliable and the cathode assembly is quicker and easier to change. This paper describes the assembly of the electron gun, and then the re-conditioning of the cathode highlighting the vacuum environment. The action of the grid modulation system on the electron beam, which pre-bunches the electron beam, is described, and typical gun characteristics are shown. Proposed developments to the gun system are discussed. (author)

  3. Performance of the advanced photon source (APS) linac beam position monitors (BPMs) with logarithmic amplifier electronics

    International Nuclear Information System (INIS)

    Fuja, R.E.; White, M.

    1995-01-01

    This paper discusses the performance of the logarithmic amplifier electronics system used with stripline BPMs to measure electron and positron beam positions at the APS linac. The 2856-MHz, S-band linac accelerates 30-nsec pulses of 1.7 A of electrons to 200 MeV, and focuses them onto a positron conversion target. The resulting 8 mA of positrons are further accelerated to 450 MeV by the positron linac. Beam position resolutions of 50 μm are easily obtainable in both the electron and positron linacs. The resolution of the 12-bit A/D converters limits the ultimate beam positron resolution to between 20 and 30 μm at this time

  4. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  5. Beam dynamics of alternating-phase-focused linac

    CERN Document Server

    Iwata, Y; Kapin, V

    2004-01-01

    A simple method to find an array of synchronous phases for alternating-phase-focused (APF) linacs is presented. The phase array is described with a smooth function having free parameters. With a set of the parameters, a simulation on the beam dynamics was made and distributions of the six-dimensional phase spaces were calculated for each set of the parameters. The parameters were varied, and numbers of the simulations have been performed. An optimum set of the parameters were determined so that the simulations of the beam dynamics yield large acceptances and small emittances of the extracted beams. Since the APF linac can provide both axial and radial stability of beams just with the rf acceleration-field, no additional focusing element inside of drift tubes are necessary. Comparing with conventional linacs having focusing elements, it has advantage in construction and operation costs as well as its acceleration rate. Therefore, the APF linacs would be suited for an injector of medical synchrotrons. A practic...

  6. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  7. Status and experiece with the alignment of Linac4

    CERN Document Server

    Fuchs, Jean-Frederic

    2016-01-01

    LINAC4 (L4) is an H- linear accelerator that will deliver, for the High Luminosity LHC (HL-LHC) project requirements, a beam of protons at 160 MeV energy to the PS complex and then to the LHC. Its connection to the PS booster will take place during the Long Shutdown 2 (LS2) in 2019-2020 or earlier if any major failure of the LINAC2. The Linac4 project requires the precise alignment with a tolerance of about +/- 0.2 mm in both the horizontal and vertical planes, of elements along approximately 150 m beam line. This paper will give a status, an overview of the challenges of the alignment, the issues solved by the survey section, the techniques and methodology used to realise the survey activities over the last five years.

  8. Personnel protection and beam containment systems for the 3 GeV Injector

    International Nuclear Information System (INIS)

    Yotam, R.; Cerino, J.; Garoutte, R.; Hettel, R.; Horton, M.; Sebek, J.; Benson, E.; Crook, K.; Fitch, J.; Ipe, N.; Nelson, G.; Smith, H.

    1991-01-01

    The 3 GeV Injector is the electron beam source for the SPEAR Storage Ring, and its personnel safety system was designed to protect personnel from both radiation exposure and electrical hazards. The Personnel Protection System (PPS) was designed and implemented with complete redundancy and is a relay based interlock system completely independent from the machine protection system. A comprehensive monitoring of the system status, and control of the Injector PPS from the SPEAR Control Room via the control computer is a feature. The Beam Containment System (BCS) is based on beam current measurements along the Linac and on Beam Shut Off Ion Chambers (BSOIC) installed outside the Linac, at several locations around the Booster, and around the SPEAR storage ring. An outline of the design criteria is presented with more detailed description of the philosophy of the PPS logic and the BCS

  9. SLC injector modeling

    International Nuclear Information System (INIS)

    Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.; Miller, R.H.

    1985-03-01

    The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results

  10. The concept of parallel input/output processing for an electron linac

    International Nuclear Information System (INIS)

    Emoto, Takashi

    1993-01-01

    The instrumentation of and the control system for the PNC 10 MeV CW electron linac are described. A new concept of parallel input/output processing for the linac has been introduced. It is based on a substantial number of input/output processors(IOP) using beam control and diagnostics. The flexibility and simplicity of hardware/software are significant advantages with this scheme. (author)

  11. The constructive and physical characteristics of the Linacs built at the Institute of atomic physics- Bucharest

    International Nuclear Information System (INIS)

    Martin, D.; Oproiu, C.; Radu, S.; Marghitu, S.; Cojocaru, G.; Indreias, I.; Margaritesc, A.

    1997-01-01

    Our research proved that by developing proper electron technologies it is expected to bring new and efficient applications in the near future with linacs of low output power (up to 1000 W) and high energy (up to 10 MeV). With the ALID-7 linac it could be possible to satisfy the required production of flocculants for municipal sludge dewatering in our country.(author)

  12. Essay of accelerator R and D in a small laboratory of a university. Prototype of IHQ linac 1985-1989

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki

    2004-01-01

    This is a series of stories on developing particle accelerators employing new acceleration principles at a university laboratory. In this paper the design, the cold-model test, the fabrication and the acceleration test of a linear accelerator (linac) of 'IHQ' type are described. The word IHQ is coined by combining 'Inter-digital H' and 'Radio-Frequency Quadrupole', which are the words for types of linacs. The linac of IHQ type can accelerate particles with rather low injection energy and can perform a high acceleration efficiency. In the acceleration test, the proton beam from an RFQ linac with an energy of 0.8MeV was injected to the IHQ linac and accelerated up to 2 MeV as designed. The effective shunt impedance of the accelerator structure was measured to be as high as 132MΩ/m as expected. (K.Y.)

  13. Researches with the 600MeV Linac. Chapter 4

    International Nuclear Information System (INIS)

    Argan, P.; Audit, G.; Bechade, J.; Bloch, A.; Botton, N. de; Laget, J.M.; Martin, J.; Schuhl, C.; Tamas, G.

    The anomalies found in the cross section of the D(γ,pπ - )p reaction are explained by a contamination of muons in the pion spectra. The cross section for high momentum values and fixed angle of the undetected nucleon is in good agreement with a simple model which can not explain the shape of the angular distribution [fr

  14. Deuterium pellet injector gun design

    International Nuclear Information System (INIS)

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging

  15. Plants for H- acceleration in the AGS Linac

    International Nuclear Information System (INIS)

    Barton, D.S.; Witkover, R.L.

    1979-01-01

    Since its commissioning in 1970, the 200 MeV Linac at the Brookhaven AGS has been capable of producing peak proton beam current of greater than 100 mA with pulse lengths up to 300 μsec at a repetition rate of 10 pulses/second. The linac typically runs at 5 pulses per second, providing a 60 mA pulse of 120 μsec duration every 1.6 to 2.4 seconds for conventional multiturn injection into the AGS. The intervening pulses of length up to 300 μsec are used by the radio-isotope production, chemistry and medical facilities. Preparations are now being made to inject and accelerate H - ions in order to implement charge exchange injection into the AGS. This paper describes the aspects of this work leading to an H - beam at 200 MeV

  16. SRF LINAC for future extension of the PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  17. SRF LINAC for future extension of the PEFP

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub

    2014-01-01

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  18. Multi-beam injector development at LBL

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Brodzik, D.A.; Johnson, R.M.; Pike, C.D.; Vanecek, D.L.; Humphries, S. Jr.; Meyer, E.A.; Hewett, D.W.

    1990-06-01

    LBL is developing a multi-beam injector that will be used for scaled accelerator experiments related to Heavy Ion Fusion. The device will produce sixteen 0.5 Amp beams of C+ at 2 MeV energy. The carbon arc source has been developed to the point where the emittance is within a factor of four of the design target. Modelling of the source behavior to find ways to reduce the emittance is discussed. Source lifetime and reliability is also of paramount importance to us and data regarding the lifetime and failure modes of different source configurations is discussed. One half of the accelerating column has been constructed and tested at high voltage. One beam experiments in this half column are underway. The second half of the column is being built and the transition 2 MV experiments should begin soon. In addition to beam and source performance we also discuss the controls for the injector and the electronics associated with the source and current injection. 3 refs., 2 figs

  19. Feedback system analysis for beam breakup in a multipass multisection electron linac

    International Nuclear Information System (INIS)

    Mosnier, A.; Aune, B.

    1986-06-01

    A recirculating electron accelerator based upon superconducting cavities technology is envisaged in different laboratories to produce a high duty cycle beam with energy in the GeV region. Beam break up is a severe limitation in this kind of accelerator due to the positive feedback of the returning beams. We present here an analysis based upon feedback system theory which takes into account the different cavities of the linac, the optics of the linac and of the recirculating path. An example is given for the Saclay proposal of a 2 GeV accelerator consisting of 4 passes in a 500 MeV, 100 m-long superconducting linac

  20. Basis for low beam loss in the high-current APT linac

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D.; Crandall, K.R.

    1998-01-01

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value

  1. Development of a commissioning plan for the APT linac

    International Nuclear Information System (INIS)

    Funk, L.W.; Crandall, K.R.; Gilpatrick, J.D.; Gray, E.R.; Regan, A.H.; Rohlev, A.; Rybarcyk, L.J.; Wangler, T.P.

    1998-01-01

    The Accelerator Production of Tritium (APT) facility is based on a linac which incorporates both normal-conducting and superconducting RF technology and accelerates a 100-mA cw proton beam to an energy of 1,030 MeV or higher, depending on the desired production rate. Commissioning plans to achieve full power operation with minimum beam-induced activation of components have been evolving. This paper presents the main issues and the basic approaches that are now being discussed

  2. A liquid nitrogen cooled polyethylene moderator for the Harwell Linac

    International Nuclear Information System (INIS)

    Boland, B.C.; Hey, P.D.; Houzego, P.J.; Mack, B.; Mildner, D.F.R.; Sinclair, R.N.

    1978-09-01

    A 40 mm thick polyethylene block has been maintained at a temperature close to 80 K by using a liquid nitrogen cryostat, and used to moderate neutrons from pulsed source. The assembly has been tested with a dummy heat load of 400W. The cryostat and cooling system was installed on the Harwell 45 MeV electron linac, and enabled the production of sharper pulses in the thermal neutron energy range. The design, safety considerations and performance are described. (author)

  3. Mechanical Engineering of the Linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Bultman, N.K.; Chen, Z.; Collier, M.; Erickson, J.L.; Guthrie, A.; Hunter, W.T.; Ilg, T.; Meyer, R.K.; Snodgrass, N.L.

    1999-01-01

    The linac for the Spallation Neutron Source (SNS) Project will accelerate an average current of 1 mA of H - ions from 20 MeV to 1GeV for injection into an accumulator ring. The linac will be an intense source of H - ions and as such requires advanced design techniques to meet project technical goals as well as to minimize costs. The DTL, CCDTL and CCL are 466m long and operate at 805 MHz with a maximum H - input current of 28 mA and 7% rf duty factor. The Drift Tube Linac is a copper-plated steel structure using permanent magnetic quadrupoles. The Coupled-Cavity portions are brazed copper structures and use electromagnetic quads. RF losses in the copper are 80 MW, with total rf power supplied by 52 klystrons. Additionally, the linac is to be upgraded to the 2- and 4-MW beam power levels with no increase in duty factor. The authors give an overview of the linac mechanical engineering effort and discuss the special challenges and status of the effort

  4. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  5. First operation of ATLAS using the PII linac and a comparison to tandem injection

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs

  6. Superconducting linac beam dynamics with high-order maps for RF resonators

    CERN Document Server

    Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177

    2004-01-01

    The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...

  7. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-12-31

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  8. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  9. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  10. End-to-end simulation of the C-ADS injector Ⅱ with a 3-D field map

    International Nuclear Information System (INIS)

    Wang Zhijun; He Yuan; Li Chao; Wang Wangsheng; Liu Shuhui; Jia Huan; Xu Xianbo; Chen Ximeng

    2013-01-01

    The Injector II, one of the two parallel injectors of the high-current superconducting proton driver linac for the China Accelerator-Driven System (C-ADS) project, is being designed and constructed by the Institute of Modern Physics. At present, the design work for the injector is almost finished. End-to-end simulation has been carried out using the TRACK multiparticle simulation code to check the match between each acceleration section and the performance of the injector as a whole. Moreover, multiparticle simulations with all kinds of errors and misalignments have been performed to define the requirements of each device. The simulation results indicate that the lattice design is robust. In this paper, the results of end-to-end simulation and error simulation with a 3-D field map are presented. (authors)

  11. Injector of the Utrecht EN tandem

    Energy Technology Data Exchange (ETDEWEB)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van (Rijksuniversiteit Utrecht (Netherlands). Fysisch Lab.)

    1984-02-15

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90/sup 0/ analysing magnet, m/..delta..m=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system.

  12. The injector of the Utrecht EN tandem

    International Nuclear Information System (INIS)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van

    1984-01-01

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90 0 analysing magnet, m/Δm=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system. (orig.)

  13. RF Photoelectric injectors using needle cathodes

    International Nuclear Information System (INIS)

    Lewellen, J.W.; Brau, C.A.

    2003-01-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2 , with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR

  14. RF Photoelectric injectors using needle cathodes

    Science.gov (United States)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  15. Performance of the LHC Pre-Injectors

    CERN Document Server

    Benedikt, Michael; Chanel, M; Garoby, R; Giovannozzi, Massimo; Hancock, S; Martini, M; Métral, Elias; Métral, G; Schindl, Karlheinz; Vallet, J L

    2001-01-01

    The LHC pre-injector complex, comprising Linac 2, the PS Booster (PSB) and the PS, has undergone a major upgrade in order to meet the very stringent requirements of the LHC. Whereas bunches with the nominal spacing and transverse beam brightness were already available from the PS in 1999 [1], their length proved to be outside tolerance due to a debunching procedure plagued by microwave instabilities. An alternative scenario was then proposed, based on a series of bunch-splitting steps in the PS. The entire process has recently been implemented successfully, and beams whose longitudinal characteristics are safely inside LHC specifications are now routinely available. Variants of the method also enable bunch trains with gaps of different lengths to be generated. These are of interest for the study and possible cure of electron cloud effects in both the SPS and LHC. The paper summarizes the beam dynamics issues that had to be addressed to produce beams with all the requisite qualities for the LHC.

  16. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  17. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  18. A novel electron gun for inline MRI-linac configurations

    International Nuclear Information System (INIS)

    Constantin, Dragoş E.; Fahrig, Rebecca; Holloway, Lois; Keall, Paul J.

    2014-01-01

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T

  19. Radio frequency linear accelerators for NDT applications: Basic overview of RF linacs

    International Nuclear Information System (INIS)

    Hansen, H.J.

    1998-01-01

    High energy X-ray radiography can be an important part of a quality control program. In this article the author will present an overview of the technology found in a typical high energy X-ray source, the radio frequency (RF) linear accelerator. In NDT, linacs are used primarily for the inspection of thick sections of materials. Linacs are also used in applications such as high energy computed tomography of specimens greater than 1 m thick and cargo container inspection. Recent developments in reliable portable linacs are opening up other applications such as field inspection of pipelines, ships, bridges, and other civil infrastructure. The replacement of isotopes (such as Co-60) by the linac is an area for growth in the future. The shorter exposure times, improved image capabilities, and greatly reduced regulatory requirements of the linac make a persuasive argument for the replacement of isotopes with a portable linac. The linacs discussed here are those with X-ray energies from 1 to 20 MeV intended for use in NDT applications. The discussion will be in very broad terms; it will be impossible to discuss every variation in linac design. In addition, some topics have been necessarily simplified to increase the comprehensibility for a wider audience

  20. Elements of the system for RF power input into linear accelerator-injector for booster

    International Nuclear Information System (INIS)

    Mazurov, E.V.; Mal'tsev, I.G.; Shalashov, I.M.

    1981-01-01

    The elements of the original system for RF power input into 30 MeV linear accelerator-injector for the IHEP proton synchrotron booster are considered. A 3 dB coaxial directional coupler (T-bridge) is describedd. The characteristics of the bridge containing elements and the parameters of ballast matched load are given [ru

  1. Chracterization of the beam from the RFQ of the PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Carneiro. J.-P., Carneiro. J.-P. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Scarpine, V. [Fermilab; Sista, V. L.S. [Bhabha Atomic Res. Ctr.; Steimel, J. [Fermilab

    2017-05-01

    A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at the Fermilab’s test accelerator known as PIP-II Injector Test. This report describes the measure-ments of the beam properties after acceleration in the RFQ, including the energy and emittance.

  2. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.

  3. CFD simulation of coaxial injectors

    Science.gov (United States)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  4. Essay of accelerator R and D in a small laboratory of an university. Head ion IH linac for fusion material. 1983-1985

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki

    2005-01-01

    The linear accelerator of Inter-Digital H type (IH linac) is known to have a high shunt impedance. Research Laboratory for Nuclear Reactors of Tokyo Institute of Technology introduced an IH linac for fusion materials irradiation test in 1983. The beam injector was a tandem electrostatic accelerator. The IH linac was designed and fabricated based on the developmental work at Institute for Nuclear Study of University of Tokyo. The processes of component alignment, cold test and start-up operation are described. Educational aspect of the project is also reviewed. (K.Y.)

  5. A low emittance and uniform density Cs+ source for heavy ion induction linacs

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.

    1990-01-01

    A heavy-ion induction linac experiment (MBE-4) in progress at LBL is studying the transport and acceleration of space-charge-dominated beams in a long alternate gradient focusing channel. Recent studies of the transverse beam dynamics suggested that characteristics of the injector geometry were contributing to the normalized transverse emittance growth. Phase space and current density distribution measurements of the beam extracted from the injector revealed aberrations and a hollow density profile. Based on EGUN calculations the authors redesigned the 10 mA injector for MBE-4 by modifying the cathode: Pierce electrode and using a curved emitting surface. The simulation predicts an extracted beam with less aberrations and a flat density profile. A test stand was used to check the new design. The density profile has measured and found to be in agreement with the numerical simulation

  6. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  7. CONFERENCE: Linacs at Seeheim

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-07-15

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories.

  8. CONFERENCE: Linacs at Seeheim

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories

  9. Radiation processing with the Messina electron linac

    International Nuclear Information System (INIS)

    Auditore, L.; Barna, R.C.; De Pasquale, D.; Emanuele, U.; Loria, D.; Morgana, E.; Trifiro, A.; Trimarchi, M.

    2008-01-01

    In the last decades radiation processing has been more and more applied in several fields of industrial treatments and scientific research as a safe, reliable and economic technique. In order to improve existing industrial techniques and to develop new applications of this technology, at the Physics Department of Messina University a high power 5 MeV electron linac has been studied and set-up. The main features of the accelerating structure will be described together with the distinctive features of the delivered beam and several results obtained by electron beam irradiations, such as improvement of the characteristics of polymers and polymer composite materials, synthesis of new hydrogels for pharmaceutical and biomedical applications, reclaim of culture ground, sterilization of medical devices, development of new dosimeters for very high doses and dose rates required for monitoring of industrial irradiations

  10. A hospital-based proton linac for neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1988-10-01

    Fermilab's Alvarez proton linac has been used routinely for neutron therapy since 1976. The Neutron Therapy Facility (NTF) operates in a mode parasitic to the laboratory's high energy physics program, which uses the linac as an injector for a synchrotron. Parasitic operation is possible because the linac delivers /approximately/1.2 /times/ 10 13 protons per pulse at a 15 Hz rate, while the high energy physics program requires beam at a rate not greater than 0.5 Hz. Protons not needed for physics experiments strike a beryllium target to produce neutrons for neutron therapy. Encouraging clinical results from NTF have led to a study of the issues involved in providing hospitals with a neutron beam of the type available at Fermilab. This paper describes the issues addressed by that study. 12 refs., 1 fig., 1 tab

  11. NPL superconducting Linac control system

    International Nuclear Information System (INIS)

    Swanson, H.E.; Howe, M.A.; Jackson, L.W.; LaCroix, J.M.; Readdy, H.P.; Storm, D.W.; Van Houten, L.P.

    1985-01-01

    The control system for the NPL Linac is based on a Microvax II host computer connected in a star network with 9 satellite computers. These satellites use single board varsions of DEC's PDP 11 processor. The operator's console uses high performance graphics and touch screen technology to display the current linac status and as the means for interactively controlling the operation of the accelerator

  12. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  13. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  14. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  15. Effects Of Field Distortions In Ih-apf Linac

    CERN Document Server

    Kapin, Valery; Yamada, S

    2004-01-01

    The project on developing compact medical accelera-tors for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-MeV/u 200 MHz IH-APF linac are considered. The intrinsic field distortions in IH-cavity are caused by the asymmetry of the gap field due to presence of the drift-tube supporting stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the voltage distribution from programmed law. The RF fields in IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically.

  16. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1994-01-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma-types and the porous plug and hot alumino--silicate surface source are the thermal types. The hot alumino--silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  17. Beam dynamics simulation of W-band photo injector

    International Nuclear Information System (INIS)

    Zhu Xiongwei

    2002-01-01

    The authors present a beam dynamics simulation study on 1.6 cell, high gradient W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz travelling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. The authors study the beam dynamics in high frequency and high gradient; due to the high gradient, the ponderomotive effect plays an important role in beam dynamics; the authors found the ponderomotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion

  18. LHC Report: imaginative injectors

    CERN Multimedia

    Pierre Freyermuth for the LHC team

    2016-01-01

    A new bunch injection scheme from the PS to the SPS allowed the LHC to achieve a new peak luminosity record.   Figure 1: PSB multi-turn injection principle: to vary the parameters during injection with the aim of putting the newly injected beam in a different region of the transverse phase-space plan. The LHC relies on the injector complex to deliver beam with well-defined bunch populations and the necessary transverse and longitudinal characteristics – all of which fold directly into luminosity performance. There are several processes taking place in the PS Booster (PSB) and the Proton Synchrotron (PS) acting on the beam structure in order to obtain the LHC beam characteristics. Two processes are mainly responsible for the beam brightness: the PSB multi-turn injection and the PS radio-frequency (RF) gymnastics. The total number of protons in a bunch and the transverse emittances are mostly determined by the multi-turn Booster injection, while the number of bunches and their time spacin...

  19. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  20. Transient Beam Dynamics in the LBL 2 MV Injector

    International Nuclear Information System (INIS)

    Henestroza, E; Grote, D

    1999-01-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 (micro)s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several (micro)s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented