WorldWideScience

Sample records for mev electron trapping

  1. Bias dependent charge trapping in MOSFETs during 1 and 6 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Department of Chemical Engineering, Mie University, 5148507 (Japan); Kulkarni, V.R.; Mathakari, N.L.; Bhoraskar, V.N. [Department of Physics, Univeristy of Pune, Pune 411007 (India); Dhole, S.D. [Department of Physics, Univeristy of Pune, Pune 411007 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-06-15

    To study irradiation-induced charge trapping in SiO{sub 2} and around the SiO{sub 2}-Si interface, depletion n-MOSFETs (metal-oxide-semiconductor field effect transistor) were used. The devices were gate biased during 1 and 6 MeV pulsed electron irradiation. The I{sub D}-V{sub DS} (drain current versus drain voltage) and I{sub D}-V{sub GS} (drain current versus gate voltage) characteristics were measured before and after irradiation. The shift in threshold voltage {delta}V{sub T} (difference in threshold voltage V{sub T} before and after irradiation) exhibited trends depending on the applied gate bias during 1 MeV electron irradiation. This behavior can be associated to the contribution of irradiation-induced negative charge {delta}N{sub IT} buildup around the SiO{sub 2}-Si interface to {delta}V{sub T}, which is sensitive to the electron tunneling from the substrates. However, only weak gate bias dependence was observed in 6 MeV electron irradiated devices. Independent of the energy loss and applied bias, the positive oxide trapped charge {delta}N{sub OT} is marginal and can be associated to thin and good quality of SiO{sub 2}. These results are explained using screening of free and acceptor states by the applied bias during irradiation, thereby reducing the total irradiation-induced charges.

  2. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  3. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    International Nuclear Information System (INIS)

    Lee, E.Y.; Brunett, B.A.; Olsen, R.W.; Van Scyoc, J.M. III; Hermon, H.; James, R.B.

    1998-01-01

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10 -16 cm 2 is detected and three hole traps having energies of 70 ± 20 meV, 105 ± 30 meV and 694 ± 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence

  4. Identification of defects in GaAs induced by 1 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, S.T.; Nener, B.D.; Faraone, L.; Nassibian, A.G. [Western Australia Univ., Nedlands, WA (Australia); Hotchkis, M.A.C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    This paper shows that 1 MeV electron irradiation on n-type vapor phase epitaxial (VPE) GaAs creates three electron traps E1, E2 and EL6, and results in the splitting of the EL2 center into two levels EL2-A and EL2-B. A 15 minutes isochronal anneal results in the annihilation of the E1 and E2 traps, a reduction in EL6 trap concentration, and the return of EL2 to a single level EL2-A. A defect model is outlined which correlates with the observed results. 4 refs., 2 tabs., 3 figs.

  5. Identification of defects in GaAs induced by 1 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, S T; Nener, B D; Faraone, L; Nassibian, A G [Western Australia Univ., Nedlands, WA (Australia); Hotchkis, M A.C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    This paper shows that 1 MeV electron irradiation on n-type vapor phase epitaxial (VPE) GaAs creates three electron traps E1, E2 and EL6, and results in the splitting of the EL2 center into two levels EL2-A and EL2-B. A 15 minutes isochronal anneal results in the annihilation of the E1 and E2 traps, a reduction in EL6 trap concentration, and the return of EL2 to a single level EL2-A. A defect model is outlined which correlates with the observed results. 4 refs., 2 tabs., 3 figs.

  6. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  7. Revealing by secondary electronic emission of internal electric fields in the yttriated zirconia, irradiated by electrons of 1 MeV

    International Nuclear Information System (INIS)

    Blaise, G.; Paris-11 Univ., 91 - Orsay

    2007-01-01

    The defects due to irradiation in a dielectric material present an activity which can generate macroscopic internal electric fields. A method of investigation of these fields, based on the measure of the Secondary Electronic Emission coefficient, has been developed on a scanning electric microscope. This ones contains two low noise detectors which respectively measure the influence current I IC produced by the charges trapping in the material and the current I SB due to secondary and backscattered electrons which come from the sample. The Secondary Emission coefficient is given by σ=I SB /(I SB +I IC ). The charges trapping during an electrons injection leads to a variation of σ for its intrinsic value σ 0 relative to the uncharged material, until the stationary value σ st =1 corresponding to the auto-regulated condition. This variation is due to the development of an internal electric field produced by the accumulation of the charges trapped during injection. In comparing the evolutions of σ of a fresh yttriated zirconia and of an yttriated zirconia irradiated by electrons of 1 MeV with a dose rate of 10 18 e/cm 2 , it has been revealed that an internal field (due to irradiation) of about 0.5*10 6 V/m exists at a depth of the micron order. This field, directed towards the outside of the material surface, is attributed to the F + defects and to the T centers produced by the impact of the electrons of 1 MeV. In carrying out annealings until 1000 K, a progressive disappearance of this field is observed in the temperature range of 400-600 K, directly due to the F + defects and T centers recovery, as it has been observed by ESR. An internal field three times weaker than the preceding ones has been revealed at a few nm under the surface. Its disappearance from a temperature of 1000 K suggests that it is due to the redistribution of the chemical species into the surface, during the irradiation with electrons of 1 MeV. (O.M.)

  8. Formation of hydrogen-related traps in electron-irradiated n-type silicon by wet chemical etching

    International Nuclear Information System (INIS)

    Tokuda, Yutaka; Shimada, Hitoshi

    1998-01-01

    Interaction of hydrogen atoms and vacancy-related defects in 10 MeV electron-irradiated n-type silicon has been studied by deep-level transient spectroscopy. Hydrogen has been incorporated into electron-irradiated n-type silicon by wet chemical etching. The reduction of the concentration of the vacancy-oxygen pair and divacancy occurs by the incorporation of hydrogen, while the formation of the NH1 electron trap (E c - 0.31 eV) is observed. Further decrease of the concentration of the vacancy-oxygen pair and further increase of the concentration of the NH1 trap are observed upon subsequent below-band-gap light illumination. It is suggested that the trap NH1 is tentatively ascribed to the vacancy-oxygen pair which is partly saturated with hydrogen

  9. Low energy spread 100 MeV-1 GeV electron bunches from laser wakefield acceleration at LOASIS

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Esarey, E.; Michel, P.; Nagler, B.; Nakamura, K.; Plateau, G.R.; Schroeder, C.B.; Shadwick, B.A.; Toth, Cs.; Van Tilborg, J.; Leemans, W.P.; Hooker, S.M.; Gonsalves, A.J.; Michel, E.; Cary, J.R.; Bruhwiler, D.

    2006-01-01

    Experiments at the LOASIS laboratory of LBNL recently demonstrated production of 100 MeV electron beams with low energy spread and low divergence from laser wakefield acceleration. The radiation pressure of a 10 TW laser pulse guided over 10 diffraction ranges by a plasma density channel was used to drive an intense plasma wave (wakefield), producing acceleration gradients on the order of 100 GV/m in a mm-scale channel. Beam energy has now been increased from 100 to 1000 MeV by using a cm-scale guiding channel at lower density, driven by a 40TW laser, demonstrating the anticipated scaling to higher beam energies. Particle simulations indicate that the low energy spread beams were produced from self trapped electrons through the interplay of trapping, loading, and dephasing. Other experiments and simulations are also underway to control injection of particles into the wake, and hence improve beam quality and stability further

  10. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  11. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  12. Trapping of self-interstitials at manganese atoms in electron-irradiated dilute AlMn alloys

    International Nuclear Information System (INIS)

    Bartels, A.; Dworschak, F.

    1985-01-01

    Dilute AlMn alloys were irradiated isothermally at different temperatures in stage II with 1.8 MeV electrons and the resistivity damage rates were measured as a function of the residual resistivity increase. The results demonstrate that Mn atoms provide deep traps at least up to 150 K for mobile interstitials. A quantitative evaluation of the data with respect to trapping radii is somewhat handicapped by the fact that the resistivity contribution of a Mn-Al interstitial complex was found to be considerably less than the sum of the resistivity contributions of an isolated solute Mn atom and an Al self-interstitial. The results can be explained by a model which assumes that both the trapping radius and the resistivity contribution of solute-self-interstitial complexes increase with the number of trapped interstitials. (author)

  13. Electron trapping during irradiation in reoxidized nitrided oxide

    International Nuclear Information System (INIS)

    Mallik, A.; Vasi, J.; Chandorkar, A.N.

    1993-01-01

    Isochronal detrapping experiments have been performed following irradiation under different gate biases in reoxidized nitrided oxide (RNO) MOS capacitors. These show electron trapping by the nitridation-induced electron traps at low oxide fields during irradiation. A difference in the detrapping behavior of trapped holes and electrons is observed, with trapped holes being detrapped at relatively lower temperatures compared to trapped electrons. Electron trapping shows a strong dependence on tile magnitude of the applied gate bias during irradiation but is independent of its polarity. Conventional oxide devices, as expected, do not show any electron trapping during irradiation by the native electron traps. Finally, a comparison of the isochronal detrapping behavior following irradiation and following avalanche injection of electrons has been made to estimate the extent of electron trapping. The results show that electron trapping by the nitridation-induced electron traps does not play the dominant role in improving radiation performance of RNO, though its contribution cannot be completely neglected for low oxide field irradiations

  14. Deuterium trapping at vacancy clusters in electron/neutron-irradiated tungsten studied by positron annihilation spectroscopy

    Science.gov (United States)

    Toyama, T.; Ami, K.; Inoue, K.; Nagai, Y.; Sato, K.; Xu, Q.; Hatano, Y.

    2018-02-01

    Deuterium trapping at irradiation-induced defects in tungsten, a candidate material for plasma facing components in fusion reactors, was revealed by positron annihilation spectroscopy. Pure tungsten was electron-irradiated (8.5 MeV at ∼373 K and to a dose of ∼1 × 10-3 dpa) or neutron-irradiated (at 573 K to a dose of ∼0.3 dpa), followed by post-irradiation annealing at 573 K for 100 h in deuterium gas of ∼0.1 MPa. In both cases of electron- or neutron-irradiation, vacancy clusters were found by positron lifetime measurements. In addition, positron annihilation with deuterium electrons was demonstrated by coincidence Doppler broadening measurements, directly indicating deuterium trapping at vacancy-type defects. This is expected to cause significant increase in deuterium retention in irradiated-tungsten.

  15. Electron beam irradiation effect on GaN HEMT

    International Nuclear Information System (INIS)

    Lou Yinhong; Guo Hongxia; Zhang Keying; Wang Yuanming; Zhang Fengqi

    2011-01-01

    In this work, GaN HEMTs (High Electron Mobility Transistor) were irradiated by 0.8 and 1.2 MeV electron beams, and the irradiation effects were investigated. The results show that the device damage caused by 0.8 MeV electrons is more serious than that by 1.2 MeV electrons. Saturation drain current increase and threshold voltage negative shift are due to trapped positive charge from ionization in the AlGaN layer and N, Ga vacancy from non-ionizing energy loss in the GaN layer. Electron traps and trapped positive charges from non-ionizing in the AlGaN layer act as trap-assisted-tunneling centers that increase the gate leakage current.(authors)

  16. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  17. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  18. Stability of trapped electrons in SiO2

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Flament, O.; Leray, J.L.

    1998-01-01

    Electron trapping near the Si/SiO 2 interface plays a crucial role in mitigating the response of MOS devices to ionizing radiation or high-field stress. These electrons offset positive charge due to trapped holes, and can be present at densities exceeding 10 12 cm -2 in the presence of a similar density of trapped positive charge. The nature of the defects that serve as hosts for trapped electrons in the near-interfacial SiO 2 is presently unknown, although there is compelling evidence that these defects are often intimately associated with trapped holes. This association is depicted most directly in the model of Lelis et al., which suggests that trapped electrons and holes occupy opposite sides of a compensated E center in SiO 2 . Charge exchange between electron traps and the Si can occur over a wide range of time scales, depending on the trap depth and location relative to the Si/SiO 2 interface. Here the authors report a detailed study of the stability of electron traps associated with trapped holes near the Si/SiO 2 interface

  19. Prognoz 4 observations of electrons accelerated up to energies <=2 MeV and of the cold plasma between the magnetopause and the bow shock

    International Nuclear Information System (INIS)

    Mineev, Yu.V.; Spir'kova, E.S.

    1980-05-01

    The experimental data from Prognoz 4 satellite obtained on a layer of electrons with energies <=2 MeV in the magnetosheath adjacent to magnetopause at different latitudes are given. At moderate latitudes the data are in favour of the leakage of electrons from the outer radiation belt as a source of the layer considered. At high latitudes these electrons apparently arrive along magnetosheath magnetic field lines trapping the magnetopause. (author)

  20. Upper limit on the inner radiation belt MeV electron intensity

    Science.gov (United States)

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  1. Stability of Trapped Electrons in SiO(2)

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.

    1999-01-01

    Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metal-oxide-semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of ∼3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and seem to be at least qualitatively consistent with the model of Lelis et al. Deeper traps maybe part of a fundamentally distinct dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si

  2. Irradiation effects of 6 MeV electron on electrical properties of Al/Al2O3/n-Si MOS capacitors

    International Nuclear Information System (INIS)

    Laha, P.; Banerjee, I.; Bajaj, A.; Chakraborty, P.; Barhai, P.K.; Dahiwale, S.S.; Das, A.K.; Bhoraskar, V.N.; Kim, D.; Mahapatra, S.K.

    2012-01-01

    The influence of 6 MeV electron irradiation on the electrical properties of Al/Al 2 O 3 /n-Si metal–oxide–semiconductor (MOS) capacitors has been investigated. Using rf magnetron sputtering deposition technique, Al/Al 2 O 3 /n-Si MOS capacitors were fabricated and such twelve capacitors were divided into four groups. The first group of MOS capacitors was not irradiated with 6 MeV electrons and treated as virgin. The second group, third group and fourth group of MOS capacitors were irradiated with 6 MeV electrons at 10 kGy, 20 kGy, and 30 kGy doses, respectively, keeping the dose rate ∼1 kGy/min. The variations in crystallinity of the virgin and irradiated MOS capacitors have been compared from GIXRD (Grazing Incidence X-ray Diffraction) spectra. Thickness and in-depth elemental distributions of individual layers were performed using Secondary Ion Mass Spectrometry (SIMS). The device parameters like flat band voltage (V FB ) and interface trap density (D it ) of virgin and irradiated MOS capacitors have been calculated from C vs V and G/ω vs V curve, respectively. The electrical properties of the capacitors were investigated from the tan δ vs V graph. The device parameters were estimated using C–V and G/ω–V measurements. Poole–Frenkel coefficient (β PF ) of the MOS capacitors was determined from leakage current (I)–voltage (V) measurement. The leakage current mechanism was proposed from the β PF value. - Highlights: ► The electron irradiation effects make variation in the device parameters. ► The device parameters changes due to percentage of defects and charge trapping. ► Leakage current of Al/Al 2 O 3 /n-Si changes due to interface dangling bonds. ► The leakage current mechanism of MOS structures is due to Poole-Frenkel effect.

  3. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  4. CIGS Solar Cells for Space Applications: Numerical Simulation of the Effect of Traps Created by High-Energy Electron and Proton Irradiation on the Performance of Solar Cells

    Science.gov (United States)

    Dabbabi, Samar; Ben Nasr, Tarek; Turki Kamoun, Najoua

    2018-02-01

    Numerical simulation is carried out using the Silvaco ATLAS software to predict the effect of 1-MeV electron and 4-MeV proton irradiation on the performance of a Cu(In, Ga)Se2 (CIGS) solar cell that operates under the air mass zero spectrum (AM0). As a consequence of irradiation, two types of traps are induced including the donor- and acceptor-type traps. Only one of them (the donor-type trap) is found responsible for the degradation of the open-circuit voltage (V OC), fill factor (FF) and efficiency (η), while the short circuit current (J SC) remains essentially unaffected. The modelling simulation validity is verified by comparison with the experimental data. This article shows that CIGS solar cells are suited for space applications.

  5. Evolution of defects in a multicomponent glass irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Wang Qingyan; Geng Hongbin; Sun Chengyue; Zhang Zhonghua; He Shiyu

    2010-01-01

    The optical properties and microstructural degradation of a multicomponent glass after exposure to 1 MeV electrons for fluences of 10 13 to 10 16 e - /cm 2 , as well as the recovery during annealing at room temperature (RT) for the fluence of 10 16 e - /cm 2 , are investigated. The non-bridging oxygen hole centers (NBOHCs), as well as trapped electrons (TEs), are mainly attributed to optical absorption bands and paramagnetic spectra. In comparison of the exponential curves, the in-growth kinetics for each type of defect with increasing fluence are separable, and a new linearly-combined exponential model is used to describe the structural responses during irradiation. Accordingly, RT bleaching curves of defects follow a linearly-combined exponential decay function. Consistent results from optical and paramagnetic signals suggest that this linearly-combined model provides a reasonable kinetic description of the growth and bleaching process of defects.

  6. Trapping effects and acoustoelectric current saturation in ZnO single crystals

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    1970-01-01

    Measurements of current-voltage characteristics for ZnO single crystals at temperatures between 77 and 640 °K are reported. Because of the buildup of an intense acoustic flux, a strong current saturation sets in when the trap-controlled electron drift velocity is equal to the velocity of sound....... The temperature dependence of the saturated current is discussed in terms of a trapping model which includes nonlinear trapping effects. Our results indicate the presence of a shallow-donor level with an ionization energy of 50 meV and a deep-donor level approximately 230 meV below the conduction-band edge...

  7. Variations of electron fluxes in the outer radiation belt near the boundary of a trapping region during substorms

    International Nuclear Information System (INIS)

    Ginzburg, E.A.; Malyshev, A.B.

    1979-01-01

    Variations of electron fluxes with the energy Esub(e) > 0.7 MeV have been investigated near the high-latitude boundary of electron trapping region in the night and day sections of the magnetosphere. It is found that during substorms the natural changes of the structure of electron fluxes take place. On the night side of the magnetosphere after the flux boundary drift to the equator at the preliminary phase, its sharp drift to the pole at the explosion phase takes place with further slow ( during 1-2 hours) shift to the initial position. The boundary position reconstruction period coincide by duration with the life time of negative bays at magnetograms of the night section stations. On the day side the boundary of electron fluxes recorded drifts to the pole in 30-60 min after the beginning of the substorm exposion phase. The results obtained are interpreted within the framework of the theory of adiabatic drift of trapped electrons and their pitch-angular diffusion under the effect of very low frequency waves

  8. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  9. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  10. Investigation of transversal nuclear excitation in 208Pb at excitation energies between 6 MeV and 8 MeV using inelastic electron scattering

    International Nuclear Information System (INIS)

    Frey, R.W.

    1978-01-01

    Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)

  11. Novel extension of the trap model for electrons in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Jamal, M.A.; Watt, D.E.

    1981-01-01

    A novel extension for the trap model of electron mobilities in liquid hydrocarbons is described. The new model assumes: (a) two main types of electron trap exist in liquid hydrocarbons, one is deep and the second is shallow; (b) these traps are the same in all liquid alkanes. The difference in electron mobilities in different alkanes is accounted for by the difference in the frequency of electron trapping in each state. The probability of trapping in each state has been evaluated from the known structures of the normal alkanes. Electron mobilities in normal alkanes (C 3 -C 10 ) show a very good correlation with the probability of trapping in deep traps, suggesting that the C-C bonds are the main energy sinks of the electron. A mathematical formula which expresses the electron mobility in terms of the probability of trapping in deep traps has been found from the Arrhenius relationship between electron mobilities and probability of trapping. The model has been extended for branched alkanes and the relatively high electron mobilities in globular alkanes has been explained by the fact that each branch provides some degree of screening to the skeleton structure of the molecule resulting in reduction of the probability of electron interaction with the molecular skeleton. (author)

  12. Electron Cooling of Protons in a Nested Penning Trap

    International Nuclear Information System (INIS)

    Hall, D.S.; Gabrielse, G.

    1996-01-01

    Trapped protons cool via collisions with trapped electrons at 4 K.This first demonstration of sympathetic cooling by trapped species of opposite sign of charge utilizes a nested Penning trap. The demonstrated interaction of electrons and protons at very low relative velocities, where recombination is predicted to be most rapid, indicates that this may be a route towards the study of low temperature recombination. The production of cold antihydrogen is of particular interest, and electron cooling of highly stripped ions may also be possible. copyright 1996 The American Physical Society

  13. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  14. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    International Nuclear Information System (INIS)

    Jayamani, J; Aziz, M Z Abdul; Termizi, N A S Mohd; Kamarulzaman, F N Mohd

    2017-01-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 10 7 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 10 7 to 20 × 10 7 . In this study, 5 MeV electron cut-off with 10 × 10 7 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy. (paper)

  15. Trapped electron losses by interactions with coherent VLF waves

    International Nuclear Information System (INIS)

    Walt, M.; Inan, U.S.; Voss, H.D.

    1996-01-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population. copyright 1996 American Institute of Physics

  16. Trapped electron losses by interactions with coherent VLF waves

    Science.gov (United States)

    Walt, M.; Inan, U. S.; Voss, H. D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.

  17. Number transmission of 0.6 and 0.8MeV electrons in elemental materials

    International Nuclear Information System (INIS)

    Harami, Taikan; Takagaki, Torao; Matsuda, Koji; Nakai, Yohta.

    1975-01-01

    The number transmissions of electrons in Be, Al, Cu and Ag were obtained experimentally for well collimated electron beams of 0.6 and 0.8 MeV. Experimental results of the present work join smoothly to the previous ones of 1.0 MeV to 2.0 MeV electrons. The ratios of extrapolated range Rsub(ex) to true range R 0 give generally minimum values near 1 MeV (approximately 2mc 2 ) as well as the stopping power. An investigation was done for empirical equation of the form eta=exp(-xP/CEsup(m)), where E is the incident electron energy, x, penetration depth, and p, C and m are the parameters determined from experimental data. (author)

  18. Crosslinking of commercial polyethylenes by 10 MeV electrons

    International Nuclear Information System (INIS)

    Singh, A.; Lopata, V.J.; Kremers, W.; Sze, Yu-keung

    1995-08-01

    Commercial polyethylenes were irradiated with 10 MeV electrons to induce crosslinking. The gel fraction data measured as a function of total dose suggests that crosslinking proceeds on irradiation, as expected. A number of the properties of the irradiated polyethylenes, such as the degree of oxidation, crystallinity and thermal degradation, were studied by Fourier transform infrared/photo acoustic spectroscopy, X-ray diffraction, and a pyrolysis technique coupled with gas chromatography and mass spectrometry. The results of this study suggest that commercial polyethylenes can be crosslinked to a gel fraction of ∼70%, required for wire and cable applications, by 10 MeV electrons. (author). 35 refs., 6 figs

  19. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  20. Spectroscopic analysis of electron trapping levels in pentacene field-effect transistors

    International Nuclear Information System (INIS)

    Bum Park, Chang

    2014-01-01

    Electron trapping phenomena have been investigated with respect to the energy levels of localized trap states and bias-induced device instability effects in pentacene field-effect transistors. The mechanism of the photoinduced threshold voltage shift (ΔV T ) is presented by providing a ΔV T model governed by the electron trapping. The trap-and-release behaviour functionalized by photo-irradiation also shows that the trap state for electrons is associated with the energy levels in different positions in the forbidden gap of pentacene. Spectroscopic analysis identifies two kinds of electron trap states distributed above and below the energy of 2.5 eV in the band gap of the pentacene crystal. The study of photocurrent spectra shows the specific trap levels of electrons in energy space that play a substantial role in causing device instability. The shallow and deep trapping states are distributed at two centroidal energy levels of ∼1.8 and ∼2.67 eV in the pentacene band gap. Moreover, we present a systematic energy profile of electron trap states in the pentacene crystal for the first time. (paper)

  1. Deep-level defects introduced by 1 MeV electron radiation in AlInGaP for multijunction space solar cells

    International Nuclear Information System (INIS)

    Lee, H.S.; Yamaguchi, M.; Ekins-Daukes, N. J.; Khan, A.; Takamoto, T.; Agui, T.; Kamimura, K.; Kaneiwa, M.; Imaizumi, M.; Ohshima, T.; Itoh, H.

    2005-01-01

    Presented in this paper are 1 MeV electron irradiation effects on wide-band-gap (1.97 eV) (Al 0.08 Ga 0.92 ) 0.52 In 0.48 P diodes and solar cells. The carrier removal rate estimated in p-AlInGaP with electron fluence is about 1 cm -1 , which is lower than that in InP and GaAs. From high-temperature deep-level transient spectroscopy measurements, a deep-level defect center such as majority-carrier (hole) trap H2 (E ν +0.90±0.05 eV) was observed. The changes in carrier concentrations (Δp) and trap densities as a function of electron fluence were compared, and as a result the total introduction rate, 0.39 cm -1 , of majority-carrier trap centers (H1 and H2) is different from the carrier removal rate, 1 cm -1 , in p-AlInGaP. From the minority-carrier injection annealing (100 mA/cm 2 ), the annealing activation energy of H2 defect is ΔE=0.60 eV, which is likely to be associated with a vacancy-phosphorus Frenkel pair (V p -P i ). The recovery of defect concentration and carrier concentration in the irradiated p-AlInGaP by injection relates that a deep-level defect H2 acts as a recombination center as well as compensator center

  2. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  3. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  4. Construction of 100 MeV electron linac in Kyoto University

    International Nuclear Information System (INIS)

    Shirai, Toshiyuki; Sugimura, Takeshi; Kando, Masaki

    1995-01-01

    An electron linear accelerator and a compact storage ring have been constructed at Kyoto University. The beam energy of the storage ring is 300 MeV and will be utilized as a synchrotron radiation source. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the pulse width of 1 μsec. The construction of the linac had been finished and the test is under going. The electron beam of 300 mA is extracted from the electron gun and the peak RF power of 20 MW is successfully fed to the accelerating structures at the pulse width of 2 μsec. (author)

  5. A sub-picosecond pulsed 5 MeV electron beam system

    International Nuclear Information System (INIS)

    Farrell, J. Paul; Batchelor, K.; Meshkovsky, I.; Pavlishin, I.; Lekomtsev, V.; Dyublov, A.; Inochkin, M.; Srinivasan-Rao, T.

    2001-01-01

    Laser excited pulsed, electron beam systems that operate at energies from 1 MeV up to 5 MeV and pulse width from 0.1 to 100 ps are described. The systems consist of a high voltage pulser and a coaxial laser triggered gas or liquid spark gap. The spark gap discharges into a pulse forming line designed to produce and maintain a flat voltage pulse for 1 ns duration on the cathode of a photodiode. A synchronized laser is used to illuminate the photocathode with a laser pulse to produce an electron beam with very high brightness, short duration, and current at or near the space charge limit. Operation of the system is described and preliminary test measurements of voltages, synchronization, and jitter are presented for a 5 MeV system. Applications in chemistry, and accelerator research are briefly discussed

  6. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    Science.gov (United States)

    Abel, Bob; Thorne, Richard M.

    1994-10-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  7. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    International Nuclear Information System (INIS)

    Wang, L.

    2011-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism (2). Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the

  8. Hydration of excess electrons trapped in charge pockets on molecular surfaces

    Science.gov (United States)

    Jalbout, Abraham F.; Del Castillo, R.; Adamowicz, Ludwik

    2007-01-01

    In this work we strive to design a novel electron trap located on a molecular surface. The process of electron trapping involves hydration of the trapped electron. Previous calculations on surface electron trapping revealed that clusters of OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), while the hydrogen atoms on the opposite side of the surface form pockets of positive charge that can attract extra negative charge. The excess electron density on such surfaces can be further stabilized by interactions with water molecules. Our calculations show that these anionic systems are stable with respect to vertical electron detachment (VDE).

  9. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  10. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  11. Calorimetry for absorbed dose measurement at 1-4 MeV electron accelerators

    International Nuclear Information System (INIS)

    Miller, A.

    2000-01-01

    Calorimeters are used for dose measurement, calibration and intercomparisons at industrial electron accelerators, and their use at 10 MeV electron accelerators is well documented. The work under this research agreement concerns development of calorimeters for use at electron accelerators with energies in the range of 2-4 MeV. The dose range of the calorimeters is 3-40 kGy, and their temperature stability after irradiation was found to be sufficient for practical use in an industrial environment. Measurement uncertainties were determined to be 5% at k = 2. (author)

  12. Reactivity of Trapped and Accumulated Electrons in Titanium Dioxide Photocatalysis

    Directory of Open Access Journals (Sweden)

    Shigeru Kohtani

    2017-10-01

    Full Text Available Electrons, photogenerated in conduction bands (CB and trapped in electron trap defects (Tids in titanium dioxide (TiO2, play crucial roles in characteristic reductive reactions. This review summarizes the recent progress in the research on electron transfer in photo-excited TiO2. Particularly, the reactivity of electrons accumulated in CB and trapped at Tids on TiO2 is highlighted in the reduction of molecular oxygen and molecular nitrogen, and the hydrogenation and dehalogenation of organic substrates. Finally, the prospects for developing highly active TiO2 photocatalysts are discussed.

  13. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  14. A technique for determining electron losses for a 20 MeV microtron

    International Nuclear Information System (INIS)

    Harisha, P.; Nayak, A.R.; Mehta, S.K.; Soni, H.C.; Siddappa, K.

    1999-01-01

    A 22 orbit, 20 MeV electron microtron is used as a preaccelerator for the 700 MeV booster synchrotron at INDUS-1, CAT, Indore. Estimation of electron losses at the RF cavity from each orbit is important in obtaining the radiation doses from the body of the microtron. Radiation mapping of the microtron can be used to estimate these loss terms as an alternate to actual measurement by using a measuring probe. (author)

  15. The 600 MeV Saclay electron linac: 40000 hour operation

    International Nuclear Information System (INIS)

    Netter, F.

    1977-01-01

    After 40000 hours of operation, the 600 MeV Saclay's electron linac (ALS) does appear as an efficient and versatile tool, for high resolution work (20 μA in ΔE = 40 keV at E = 200MeV), for high power pion production (300 μA in 20 μs pulses at 1000 Hz and 400 MeV or 240 μA in 4 μs pulses at 3000 Hz and 390 MeV), for highly reliable positron beams acceleration, a.s.o. Main improvements made in the recent years are described in particular the automatic beam switching between any two ways among the beam handling system; and the computer newly installed in the control room with a powerful visual display allowing an easy and flexible dialogue of the operators with the computer [fr

  16. Nonlinear ion-mixing-mode particle transport in the dissipative trapped electron regime

    International Nuclear Information System (INIS)

    Ware, A.S.; Terry, P.W.

    1993-09-01

    The nonlinear particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined for trapped electron collisionality regimes. The renormalized dissipative nonadiabatic trapped electron phase space density response is derived and used to calculate the nonlinear particle flux along with an ansatz for the turbulently broadened frequency spectrum. In the lower temperature end of this regime, trapped electrons are collisional and all components of the quasilinear particle flux are outward (i.e., in the direction of the gradients). Nonlinear effects can alter the phase between the nonadiabatic trapped electron phase space density and the electrostatic potential, producing inward components in the particle flux. Specifically, both turbulent shifting of the peak of the frequency spectrum and nonlinear source terms in the trapped electron response can give rise to inward components. However, in the dissipative regime these terms are small and the trapped electron response remains dominantly laminar. When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven component of the quasilinear particle flux changes sign and becomes inward. For finite amplitude turbulence, however, turbulent broadening of both the electron collisional resonance and the frequency spectrum removes tills threshold., and the temperature gradient driven component remains outward

  17. Thermoluminescence response of Ge-, Al- and Nd- doped optical fibers by 6 MeV - electron and 6 MeV - photon irradiations

    International Nuclear Information System (INIS)

    Hossain, I.; Moburak, A. A.; Saeed, M.A.; Wagiran, H.; Hida, N.; Yaakob, H.N.

    2015-01-01

    In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO 2 optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MeV - electron irradiations without requirement for experimental measurements. A technique has been developed to calculate prediction of 6 MeV - electron response of Neodymium-doped SiO 2 optical fibre by observing the measured TL response of 6 MV - photon and the ratio of known measured photon/electron yield ratio distribution for Ge-doped, Al-doped optical fibre and standard TLD 100 dosimeter. The samples were kept in gelatin capsule an irradiated with 6 MV - photon at the dose range from 0.5 Gy to 4.0 Gy. Siemens model Primus 3368 linear accelerator located at Hospital Sultan Ismail, Johor Bahru has been used to deliver the photon beam to the samples. We found the average response ratio of 6 MV - photon and 6 MeV - electron in Ge-doped, Al-doped optical fibre and standard TLD-100 dosimeter are 0.83(3). Observing the measured value of 6 MV - photon irradiation this average ratio is useful to find the prediction of thermoluminescence responses by 6 MeV - electron irradiation of Neodymium-doped SiO 2 optical fibre by the requirement for experimental measurements with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MV - photon irradiations.

  18. Energy monitoring device for 1.5-2.4 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Lavalle, M.; Martelli, A. [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O.Box 77, H-1525 Budapest (Hungary); Mehta, K. [Arbeiterstrandbad Strasse 72, Vienna, A-1210 (Austria); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France)

    2010-03-11

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  19. Energy monitoring device for 1.5-2.4 MeV electron beams

    Science.gov (United States)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  20. Atomic physics measurements in an electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Beiersdorfer, P.; Bennett, C.

    1989-01-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q ≤ 70/+/) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized. 13 refs., 10 figs

  1. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-01-01

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed

  2. Measurements and characterization of a hole trap in neutron-irradiated silicon

    International Nuclear Information System (INIS)

    Avset, B.S.

    1996-04-01

    The report describes measurements on a hole trap in neutron irradiated silicon diodes made one high resistivity phosphorus doped floatzone silicon. The hole trap was detected by Deep Level Transient Spectroscopy. This measurement gave a trap activation energy of 0.475 MeV. Other measurements showed that the trap has very small capture cross sections for both holes and electrons (10 -18 to 10 -20 cm 2 ) and that the hole capture cross section is temperature dependent. The energy level position of the trap has been estimated to be between 0.25 and 0.29 eV from the valence band. 25 refs., 21 figs., 4 tabs

  3. Radiation Dose from Reentrant Electrons

    Science.gov (United States)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  4. The drive system of 100 MeV electron linear accelerator

    International Nuclear Information System (INIS)

    Sun Yuzhen; Su Guoping; Wang Xiulong; Tianlu

    1988-06-01

    The principle, structure, measurement results and technical performances of microwave drive system for 100MeV electron linear accelerator are presented. In this system the peak power of 15 kW is produced by the S bank middle power klystron. The output power of the klystron is divided into six subdrive lines that drive six high power klystrons respectively. The results show the system with simple structure and good characteristics completely meets the requirements of 100 MeV Linac

  5. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    International Nuclear Information System (INIS)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm 3 thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm 3 active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response

  6. Laboratory X-ray Studies with Trapped Highly Charged Ions Using Synchrotrons and Free-electron Lasers

    Science.gov (United States)

    Crespo López-Urrutia, José R.

    2018-06-01

    Laboratory studies on highly charged ions (HCI) using electron beam ion traps (EBITs) can cover all charge states and chemical elements found in astrophysical sources. Since their introduction in 1986, a wealth of emission measurements from the optical to the x-ray range has been carried out by different groups. In most of the work, electron-impact excitation was the driving mechanism, and high resolution spectrometers were used for the diagnostic of the emitted radiation. Other recent studies included x-ray emission following charge exchange, a mechanism which is present in many astrophysical environments and can help explain some of the unknown spectral features at 3.55 keV.In the last decade, excitation and photoionization have also been investigated by exposing HCI trapped in an EBIT to intense, monochromatic radiation from free-electron lasers and synchrotron sources. Here, advanced monochromators in powerful undulator beamlines allowed us to work at photon energies from 50 eV to 15 keV while resolving the natural linewidths of x-ray transitions like the Kα complex of Fe up to the highest charge states, and to measure the oscillator strengths of, e. g., the neonlike Fe16+ spectrum. Photoionization studies have been performed for those species as well. Very recently, our novel compact EBIT with an off-axis electron gun allows for simultaneously using the photon beam downstream, enabling exact wavelength determinations referenced to HCI with accurately calculable transitions. We have performed a recalibration of the molecular and atomic oxygen soft x-ray absorption lines in the 500 eV range with an uncertainty estimate of 30 meV. This revealed a 600 meV calibration error that propagated through the literature for decades with the consequence of a 200 km/s misfit of the velocity in interstellar oxygen absorbers. Other possibilities for the compact EBIT are investigations of resonant photorecombination processes with excellent energy resolution. With the

  7. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  8. Modeling of radiation-induced charge trapping in MOS devices under ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, M. A., E-mail: m.a.petukhov@gmail.com; Ryazanov, A. I. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The numerical model of the radiation-induced charge trapping process in the oxide layer of a MOS device under ionizing irradiation is developed; the model includes carrier transport, hole capture by traps in different states, recombination of free electrons and trapped holes, kinetics of hydrogen ions which can be accumulated in the material during transistor manufacture, and accumulation and charging of interface states. Modeling of n-channel MOSFET behavior under 1 MeV photon irradiation is performed. The obtained dose dependences of the threshold voltage shift and its contributions from trapped holes and interface states are in good agreement with experimental data.

  9. Evaluation of induced radioactivity in 10 MeV electron-irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Katayama, Tadashi; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1993-10-01

    In order to make clear appreciation to induced radioactivity in the irradiated foods, photonuclear reactions which could produce radioactivity at energies up to 10 MeV were listed up from elemental compositions of black pepper, white pepper, red pepper, ginger and turmeric. The samples were irradiated with 10 MeV electron from a linear accelerator to a dose of 100 kGy and radioactivity was measured. Induced radioactivity could not be detected significantly by gamma-ray spectrometry and beta-ray counting in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H[sub 50] according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from [sup 40]K contained in the samples. (J.P.N.).

  10. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    Science.gov (United States)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  11. Electrons in feldspar I: On the wavefunction of electrons trapped at simple lattice defects

    DEFF Research Database (Denmark)

    Poolton, H.R.J.; Wallinga, J.; Murray, A.S.

    2002-01-01

    The purpose of this article is to make an initial consideration of the physical properties of electrons trapped at classic hydrogenic lattice defects in feldspar. We are particularly interested to determine the radial extent of the electron wavefunctions in the ground and excited states. It is sh......The purpose of this article is to make an initial consideration of the physical properties of electrons trapped at classic hydrogenic lattice defects in feldspar. We are particularly interested to determine the radial extent of the electron wavefunctions in the ground and excited states...

  12. Out-of-ecliptic quiet time MeV electron increases: Ulysses COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Ferreira, S.E.S.; Potgieter, M.S.; Henize, V.K.; Moeketsi, D.M.; Fichtner, H.; Kissmann, R.

    2004-01-01

    The propagation of cosmic rays in turbulent magnetic fields can be studied in detail by way of in-situ measurements of energetic particles in the three-dimensional heliosphere. Measurements of 3-20 MeV electrons from 1990 to 2003 have been made by the Kiel Electron Telescope (KET) onboard the Ulysses spacecraft during varying solar conditions. In order to interpret these measurements, it is necessary to distinguish between solar, galactic and Jovian electrons and to investigate their propagation, by using sophisticated particle propagation models. The solar contribution to the MeV electron intensities can be excluded by analyzing the electron energy spectra and the nuclei time histories. The residual electron intensities can be reasonably described by modulation models taking into account galactic cosmic rays as well as Jovian electrons using different diffusion coefficients for solar minimum and maximum. The way in which the relative contribution of Jovian (point source in the ecliptic) and galactic electrons (isotropic source) varies along the Ulysses orbit is strongly dependent on the choice of these coefficients. Since the 1970's quiet time electron increases have been observed in the ecliptic and interpreted as Jovian electron increases. Therefore, the occurrence of such quiet time electron increases is an indicator for a dominant Jovian contribution to the measured MeV electron intensities. At solar minimum and maximum such events have been observed up to ∼30 deg. and ∼45 deg. These observations are crucial for a determination of the diffusion parameters. At solar maximum a more efficient latitude transport is needed to account for the electron intensity variations

  13. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Science.gov (United States)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  14. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  15. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  16. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  17. Precision electron polarimetry

    International Nuclear Information System (INIS)

    Chudakov, E.

    2013-01-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry

  18. Interaction of electron irradiation with nitrogen-related deep levels in InGaAsN

    International Nuclear Information System (INIS)

    Khan, Aurangzeb; Gou, J.; Imazumi, M.; Yamaguchi, M.

    2007-01-01

    The authors present an investigation of 1 MeV electron irradiation-induced defects in p-InGaAsN and their impact on nitrogen-related defects. A hitherto existing nitrogen-related electron trap E1 (0.20 eV) shows a significant increase in concentration after 1 MeV electron irradiation. In addition, 1 MeV electron irradiation induced a hole trap H1 at energy of about 0.75 eV above the valence band. Isothermal annealing analysis indicates that E1 is a complex defect involving an interstitial or a substitutional atom in combination with some other defect, whose concentration is enhanced by irradiation. A correlation exists between the recovery of free carrier concentration and recovery of the E1 center to preradiation concentrations, which indicates the possibility of the E1 as an acceptorlike center

  19. Electron trap annealing in neutron transmutation doped silicon

    DEFF Research Database (Denmark)

    Guldberg, J.

    1977-01-01

    Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five of these anne......Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five...

  20. Electron-trapping probability in natural dosemeters as a function of irradiation temperature

    DEFF Research Database (Denmark)

    Wallinga, J.; Murray, A.S.; Wintle, A.G.

    2002-01-01

    The electron-trapping probability in OSL traps as a function of irradiation temperature is investigated for sedimentary quartz and feldspar. A dependency was found for both minerals; this phenomenon could give rise to errors in dose estimation when the irradiation temperature used in laboratory...... procedures is different from that in the natural environment. No evidence was found for the existence of shallow trap saturation effects that Could give rise to a dose-rate dependency of electron trapping....

  1. Electron transfer from electronic excited states to sub-vacuum electron traps in amorphous ice

    International Nuclear Information System (INIS)

    Vichnevetski, E.; Bass, A.D.; Sanche, L.

    2000-01-01

    We investigate the electron stimulated yield of electronically excited argon atoms (Ar * ) from monolayer quantities of Ar deposited onto thin films of amorphous ice. Two peaks of narrow width ( - electron-exciton complex into exciton states, by the transfer of an electron into a sub-vacuum electron state within the ice film. However, the 10.7 eV feature is shifted to lower energy since electron attachment to Ar occurs within small pores of amorphous ice. In this case, the excess electron is transferred into an electron trap below the conduction band of the ice layer

  2. Color centers of a borosilicate glass induced by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray

    Science.gov (United States)

    Du, Jishi; Wu, Jiehua; Zhao, Lili; Song, Lixin

    2013-05-01

    Optical absorption spectra, electron paramagnetic resonance (EPR) spectra, Raman spectra of a borosilicate glass after irradiation by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray were studied. The process of irradiation inducing color centers in the glass was discussed. The band gap of the glass before and after 60Co-γ ray irradiation was studied using Mott and Davis's theory, and it was found that calculated change of the band gap introduced a paradox, because Mott and Davis's theory on the band gap cannot be adopted in the study on the irradiated glass.

  3. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  4. Effects of 6 MeV electron irradiation on the electrical properties and device parameters of Al/Al2O3/TiO2/n-Si MOS capacitors

    International Nuclear Information System (INIS)

    Laha, P.; Banerjee, I.; Barhai, P.K.; Das, A.K.; Bhoraskar, V.N.; Mahapatra, S.K.

    2012-01-01

    Highlights: ► The electron irradiation effects make variation in the device parameters. ► The device parameters changes due to percentage of defects and charge trapping. ► Leakage current of Al/Al 2 O 3 /TiO 2 /n-Si changes due to interface dangling bonds. ► The leakage current mechanism of MOS structures is due to Poole–Frenkel effect. - Abstract: The effects of 6 MeV electron irradiation on the electrical properties and device parameter characteristics of Al/Al 2 O 3 /TiO 2 /n-Si metal–oxide–semiconductor capacitors have been studied. Twelve Al/Al 2 O 3 /TiO 2 /n-Si MOS capacitors were fabricated using r.f. magnetron sputtering and divided into four groups. The first group was not irradiated and treated as virgin. The rest were irradiated with 6 MeV electrons at doses 10, 20, and 30 kGy, maintaining the dose rate at ∼1 kGy/min. Variations in crystallinity of the virgin and irradiated capacitors were studied using grazing incident X-ray diffraction. The thickness and in-depth elemental distributions of individual layers were determined using secondary ion mass apectrometry. Capacitance–voltage, conductance–voltage and leakage current–voltage characteristics of the virgin and irradiated samples were studied. The device parameters (flat band voltage, surface charge density and interface trap density of the virgin and irradiated structures) were determined. The electrical properties of the capacitors were investigated and the Poole–Frenkel coefficient of the capacitors was determined from leakage current measurements. The leakage current mechanism has been explained.

  5. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV

    Science.gov (United States)

    Krauss, A.; Kapsch, R.-P.

    2018-02-01

    For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  6. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV.

    Science.gov (United States)

    Krauss, A; Kapsch, R-P

    2018-02-06

    For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  7. Electron-positron collision physics: 1 MeV to 2 TeV

    International Nuclear Information System (INIS)

    Perl, M.L.

    1988-07-01

    An overview of electron-positron collision physics is presented. It begins at 1 MeV, the energy region of positronium formation, and extends to 2 TeV, the energy region which requires an electron- positron linear collider. In addition, the concept of searching for a lepton-specific forces is discussed. 18 refs., 15 figs., 1 tab

  8. Origin and behavior of main electron traps in Si-implanted GaAs

    International Nuclear Information System (INIS)

    Fang, Z.Q.; Yamamoto, H.; Look, D.C.

    1990-01-01

    The electron traps in Si-implanted active layers (n ∼ 10 17 cm -3 ) have been studied by capacitance and conductance DLTS techniques in conjunction with different anneal conditions, which include rapid thermal anneals at different temperatures and furnace anneals with Si 3 N 4 cap or capless in an AsH 3 atmosphere. As compared to the electron traps in as-grown bulk n-GaAs (n ∼ 4 x 10 16 cm -3 ), nearly the same electron traps, i.e. EL2, EL3, EL4, EL5, EL6, and EL9 can be observed in the Si-implanted layers. Through a comparison with the annealing behavior of the main electron traps in bulk n-GaAs, the processing associated origins of some of the traps (EL2, EL3, EL4, EL5 and EL9) observed in Si-implanted GaAs layers have been determined. For some Si-implanted capped with Si 3 N 4 and furnace annealed, traps EL3 and EL4 dominate the trap EL2. In such layers it is found that emission due to EL3 is reduced while emission from EL12 is augmented by increasing the filling pulse width from 10 μs to 5 x 10 3 μs. In this paper phenomenon is explained in terms of a defect reaction enhanced by electron capture, showing a metastability or bistability

  9. Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models

    International Nuclear Information System (INIS)

    Gisler, G.; Lemons, D.

    1990-01-01

    The authors consider the heating and acceleration of electrons trapped on magnetic field lines between approaching magnetic mirrors. Such a collapsing magnetic trap and consequent electron energization can occur whenever a curved (or straight) flux tube drifts into a relatively straight (or curved) perpendicular shock. The relativistic, three-dimensional, collisionless test particle simulations show that an initial thermal electron distribution is bulk heated while a few individual electrons are accelerated to many times their original energy before they escape the trap. Upstream field-aligned beams and downstream pancake distributions perpendicular to the field are predicted. In the appropriate limit the simulation results agree well with a nonrelativistic analytic model of the distribution of escaping electrons which is based on the first adiabatic invariant and energy conservation between collisions with the mirrors. Space science and astrophysical applications are discussed

  10. Neutralizing trapped electrons on the hydrogenated surface of a diamond amplifier

    Directory of Open Access Journals (Sweden)

    Xiangyun Chang

    2012-01-01

    Full Text Available We discuss our investigation of electron trapping in a diamond amplifier (DA. Our previous work demonstrated that some electrons reaching the DA’s hydrogenated surface are not emitted. The state and the removal of these electrons is important for DA applications. We found that these stopped electrons are trapped, and cannot be removed by a strong reversed-polarity electric field; to neutralize this surface charge, holes must be sent to the hydrogenated surface to recombine with the trapped electrons through the Shockley-Read-Hall surface-recombination mechanism. We measured the time taken for such recombination on the hydrogenated surface, viz. the recombination time, as less than 5 ns, limited by the resolution of our test system. With this measurement, we demonstrated that DA could be operated in an rf cavity with frequency of a few hundred megahertz.

  11. Effect of 1MeV electron beam on transistors and circuits

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1998-02-01

    It has been known that semiconductor devices operating in a radiation environment exhibited significant alterations of their electrical responses. Since an electron beam bombardment produces lattice damage in Si and charged defects in SiO 2 , several electrical parameters of transistors exhibit significant changes. Those parameters are the current gain of BJT (Bipolar Junction Transistor) and the threshold voltage of MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The degradation of transistors brings about that of circuits. This paper presents the results of experiments and simulations performed to study the effects of 1MeV electron beam irradiation on selected silicon transistors and circuits. For BJTs, the current gains of npn (2N3904) and pnp (2N3906) linearly decreased as the irradiation dose increased, and from this result, the damage constants, Ks were obtained as 13.65 for 2N3904 and 22.52 for 2N3906 in MGy, indicating a more stable operation in the electron radiation environment for pnp than that for npn. The decrease of current gain was due to that of minority-carrier lifetime in the base region. For MOSFETs (CD4007s), the threshold voltages of NMOS and PMOS shifted to the lower values, which was resulted from the accumulation of charge in SiO 2 . The charges could be categorized into fixed oxide charge and interfacial trap charge. From experimental results, the amounts of the induced charges could be quantitatively estimated. These degradations of transistors brought about the decrease in the voltage gain of CE (Common Emitter) amplifier and the shifts in the inverting voltage of inverter. Additionally, PSpice simulations of these circuits were carried out by modeling of irradiated transistors. The comparison of simulation with experiment showed the relatively good agreement of simulation for the degradation of circuits after irradiation

  12. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    International Nuclear Information System (INIS)

    Wang, Lanfa

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  13. Intrinsic electron traps in atomic-layer deposited HfO{sub 2} insulators

    Energy Technology Data Exchange (ETDEWEB)

    Cerbu, F.; Madia, O.; Afanas' ev, V. V.; Houssa, M.; Stesmans, A. [Laboratory of Semiconductor Physics, Department of Physics and Astronomy, University of Leuven, 3001 Leuven (Belgium); Andreev, D. V. [Laboratory of Semiconductor Physics, Department of Physics and Astronomy, University of Leuven, 3001 Leuven (Belgium); Bauman Moscow State Technical University—Kaluga Branch, 248000 Kaluga, Moscow obl. (Russian Federation); Fadida, S.; Eizenberg, M. [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 32000 Haifa (Israel); Breuil, L. [imec, 3001 Leuven (Belgium); Lisoni, J. G. [imec, 3001 Leuven (Belgium); Institute of Physics and Mathematics, Faculty of Science, Universidad Austral de Chile, Valdivia (Chile); Kittl, J. A. [Laboratory of Semiconductor Physics, Department of Physics and Astronomy, University of Leuven, 3001 Leuven (Belgium); Advanced Logic Lab, Samsung Semiconductor, Inc., Austin, 78754 Texas (United States); Strand, J.; Shluger, A. L. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-05-30

    Analysis of photodepopulation of electron traps in HfO{sub 2} films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around E{sub t} ≈ 2.0 eV and E{sub t} ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO{sub 2} layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behavior of HfO{sub 2}, suggesting that alternative defect models should be considered.

  14. Radiation of electrons in an electromagnetic axial trap

    International Nuclear Information System (INIS)

    Toropova, A.I.

    1998-01-01

    The version of a trap. wherein particles move in a homogeneous constant magnetic field and electrostatic field, formed by two equipotential planes and rotation axial surface, is proposed. The solution of canonic equations is found. It is shown that interaction of electrons with the radiation field leads to damping parametric resonance. The trap model, accounting for the finite conductivity of the resonator walls and losses by collisions with gas, is studied

  15. Role of trapped and solvated electrons in Ps formation

    International Nuclear Information System (INIS)

    Stepanov, S.V.; Byakov, V.M.; Mikhin, K.V.; He, C.; Hirade, T.

    2005-01-01

    Role of trapped and solvated electrons in Ps formation is discussed. Combination of thermalized positron with such electrons is possible from the view point of the energy balance and may results in Ps formation. This process proceeds during all e = lifetime matter. Fitting of raw experimental e + -e - annihilation spectra has to be based on an adequate physical input, which often leads to necessity of nonexponential deconvolution of the spectra. We have interpreted the Ps formation data in polyethylene, ethylene-methylmethacrylate and polymethylmethacrylate in dark and in light vs. tome of the measurement and temperature. parameters characterized accumulation of trapped electrons and their recombination with counter ions and positrons are obtained. (author)

  16. Monte-Carlo calculations of forward directed bremsstrahlung produced by 20 and 45 MeV electrons on tungsten

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1983-01-01

    The SANDYL Monte-Carlo code has been used to calculate the Bremsstrahlung photon production from beams of parallel electrons incident upon three target geometries. These are 20 MeV electrons onto 1 mm of tungsten + 59 mm of Be, which simulates the operating parameters of the FXR electron accelerator at LLNL Bldg. 801, 45 MeV electrons onto 1 mm of tungsten, and finally 45 MeV electrons onto 1 mm of tungsten and 147 mm of Be. The latter two situations simulate possible future modifications to the FXR accelerator. Graphs of the spectral shape of the Bremsstrahlung photons emitted with angles between 0 0 and 1 0 to the electron direction, the angular distribution of photon-MeV, and the dose reduction curves for each of the three geometries are given. The latter dose reduction curves allow one to calculate forward-directed photon fluxes in real-life situations where the electron beam has non-zero angular divergence

  17. Physical design of 9 MeV travelling wave electron linac accelerating tube

    International Nuclear Information System (INIS)

    Chen Huaibi; Ding Xiaodong; Lin Yuzheng

    2000-01-01

    An accelerating tube is described. It is a part of an accelerator used for inspection of vehicle cargoes in rail cars, trucks, shipping containers, or airplanes in customs. A klystron with power of 4 MW and frequency of 2856 MHz will be applied to supply microwave power. The electrons can be accelerated by a travelling wave in the accelerating tube about 220 cm long, with a buncher whose capture efficiency is more than 80%. Energy of electrons after travelling through the tube can reach 9 MeV (pulse current intensity 170 mA) or 6 MeV (pulse current intensity 300 mA). Physical design of the accelerating tube, including the calculations of longitudinal particle dynamics, structure parameter and working character is carried out

  18. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M. [Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine, 54 506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  19. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    Science.gov (United States)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  20. MOS Capacitance—Voltage Characteristics II. Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations

    International Nuclear Information System (INIS)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency Capacitance—Voltage (C—V) curves of Metal—Oxide—Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from > 0.01C OX to > 10C OX . Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, N DD , the ground state electron trapping energy level depth measured from the conduction band edge, E C –E D , the degeneracy of the trapped electron at the ground state, g D , the device temperature, T, and the gate oxide thickness, x OX . (invited papers)

  1. Design and development of 3 MeV, 30 kW DC industrial electron accelerator at Electron Beam Centre, Kharghar

    International Nuclear Information System (INIS)

    Mittal, K.C.; Nanu, K.; Jain, A.

    2006-01-01

    High power electron beam accelerators are becoming an important tool for industrial radiation process applications. Keeping this in mind, a 3 MeV, 10 mA, 30 kW DC industrial electron accelerator has been designed and is in advanced stage of development at Electron Beam Center, Kharghar, Navi Mumbai. The operating range of this accelerator is 1 MeV to 3 MeV with maximum beam current of 10 mA. Electron beam at 5 keV is generated in electron gun with LaB 6 cathode and is injected into accelerating column at a vacuum of 10 -7 torr. After acceleration the beam is scanned and taken out in air through a 100 cm X 7 cm titanium window for radiation processing applications. The high voltage accelerating power supply is based on a capacitive coupled parallel fed voltage multiplier scheme operating at 120 kHz. A 50 kW oscillator feeds power to high voltage multiplier column. The electron gun, accelerating column and high voltage multiplier column are housed in accelerator tank filled with SF 6 gas insulation at 6 kg/cm 2 . The accelerator is located in a RCC building with product conveyor for handling products. A central computerized control system is adopted for operation of the accelerator. Accelerator is in the advance stage of commissioning. Many of the subsystems have been commissioned and tested. This paper describes the design details and current status of the accelerator and various subsystems. (author)

  2. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.

    Science.gov (United States)

    Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun

    2016-10-12

    We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.

  3. Temperature-dependent photoluminescence analysis of 1-MeV electron irradiation-induced nonradiative recombination centers in GaAs/Ge space solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tiancheng, Yi; Pengfei, Xiao; Yong, Zheng; Juan, Tang; Rong, Wang, E-mail: wangr@bnu.edu.cn

    2016-03-01

    The effects of irradiation of 1-MeV electrons on p{sup +}–n GaAs/Ge solar cells have been investigated by temperature-dependent photoluminescence (PL) measurements in the temperature range of 10–290 K. The temperature dependence of the PL peak energy agrees well with the Varnish relation, and the thermal quenching of the total integrated PL intensity is well explained by the thermal quenching theory. Meanwhile, the thermal quenching of temperature-dependent PL confirmed that there are two nonradiative recombination centers in the solar cells, and the thermal activation energies of these centers are determined by Arrhenius plots of the total integrated PL intensity. Furthermore, the nonradiative recombination center, as a primary defect, is identified as the H3 hole trap located at E{sub v} + 0.71 eV at room temperature and the H2 hole trap located at E{sub v} + 0.41 eV in the temperature range of 100–200 K, by comparing the thermal activation and ionization energies of the defects.

  4. Scalability of the LEU-Modified Cintichem Process: 3-MeV Van de Graaff and 35-MeV Electron Linear Accelerator Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brossard, Tom [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Roussin, Ethan [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jonah, Charles [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hafenrichter, Lohman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krebs, John [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-31

    Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABO were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.

  5. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  6. Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Liu, Yaqi; Xu, Jun; Yu, Dapeng; Wan, Weishi; Zhu, Yimei; Xiang, Dao; Zhang, Jie

    2018-03-01

    An accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ˜3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10-19 s m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.

  7. Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies

    Science.gov (United States)

    Longfellow, Brenden

    2014-09-01

    Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles

  8. Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV

    DEFF Research Database (Denmark)

    Miller, A.; Kovacs, A.; Kuntz, F.

    2002-01-01

    Polystyrene (PS) calorimeters developed at Riso National Laboratory for use below 4 MeV have been modified due to irradiation technology requirements concerning both design principles and dimensions. The temperature-time relationship after irradiation was measured, and two ways of dose measurement...... the average and the surface dose and to prove the applicability of the new low energy calorimeter for calibration purposes at 1.5 and 2 MeV electron energy. Alanine dosimeters of 2 mm thickness were used to calibrate the calorimeters and their use for nominal dose measurements was demonstrated in a series...... of intercomparisons. The use as routine dosimeters at electron accelerators operating in the energy range of 1.5-4 MeV was also demonstrated. (C) 2002 Elsevier Science Ltd. All rights reserved....

  9. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    International Nuclear Information System (INIS)

    Delord, T; Nicolas, L; Schwab, L; Hétet, G

    2017-01-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects. (paper)

  10. The energy distribution function of excess electrons trapped in the pulse irradiated low density polyethylene (LDPE)

    International Nuclear Information System (INIS)

    Wysocki, S.; Mazurek, L.; Karolczak, S.; Kroh, J.

    1995-01-01

    Distribution function D (E) of electrons trapped in irradiated LDPE was calculated on the basis of time resolved absorption spectra recorded at temperatures of 20-250 K. Variation of absorption spectra with time and temperature were observed and discussed in terms of simultaneous decay and relocation of electrons from shallow to deeper traps. Results obtained imply domination of trap limited transport for shallowly trapped electrons. For deeper traps, hopping mechanism is prevailing. (author)

  11. POSITRON-ELECTRON DECAY OF SI-28, AT AN EXCITATION-ENERGY OF 50-MEV

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JC; BALANDA, A; VANDERPLOEG, H; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    The electron-positron pair decay of Si-28 at 50 MeV excitation produced by the isospin T=0 (alpha + Mg-24) and the mixed isospin T=0,1 (He-3 + Mg-25) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.

  12. Time-dependence hole and electron trapping effects in SIMOX buried oxides

    International Nuclear Information System (INIS)

    Boesch, H.E. Jr.; Taylor, T.L.; Hite, L.R.; Bailey, W.E.

    1990-01-01

    Back-channel threshold shift associated with the buried oxide layers of separation by implanted oxygen (SIMOX) and zone-melted recrystallization (ZMR) field-effect transistors (FETs) was measured following pulsed irradiation as a function of temperature and back-gate bias using a fast time-resolved I-V measurement technique. The SIMOX FETs showed large initial negative voltage shifts at 0.2 ms after irradiation followed by temperature- and bias-dependent additional negative shifts to 800s. Analysis and modeling of the results indicate efficient deep trapping of radiation-generated holes in the bulk of the oxide, substantial initial trapping of radiation-generated electrons in the oxide, and rapid removal of the trapped electrons by a thermal detrapping process. The ZMR FETs showed evidence of substantial trapping of holes alone in the oxide bulk

  13. Electrical behaviour of butyl acrylate/methyl methacrylate copolymer films irradiated with 1.5 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, R.M. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), P. O. Box 29, Nasr City, Cairo (Egypt)], E-mail: redaradwan_2000@yahoo.com; Fawzy, Y.H.A. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), P. O. Box 29, Nasr City, Cairo (Egypt); El-Hag Ali, A. [Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), P. O. Box 29, Nasr City, Cairo (Egypt)

    2008-02-15

    Electrical conductivity and dielectric parameters of the (BuA/MMA) copolymer films irradiated with 1.5 MeV electron beam (EB) have been studied. The samples were irradiated with different doses of the electron beam: 5, 10, 50, 125 and 200 kGy. The electrical conductivity of the samples was found to decrease as the irradiation dose increases. The temperature dependence of the direct current (dc) conductivity for unirradiated and irradiated samples has been obtained over a temperature range from 293 to 373 K. The activation energy values were calculated for all samples. Moreover, measurements of the dielectric constant, dielectric loss and alternating current (ac) conductivity were performed at a frequency range from 100 Hz to 5 MHz at room temperature. The results indicated that the EB irradiation has formed some traps in the energy gap, which reduce the movement of the charge carriers. Furthermore, a direct proportional relationship between the activation energy and the irradiation dose was estimated in two regions: below and above the glass transition temperature of the polymer. Dipole relaxation was observed in the samples, and the dose effect was found to shift this relaxation towards higher frequencies.

  14. Secondary electron emission from 0.5--2.5-MeV protons and deuterons

    International Nuclear Information System (INIS)

    Thornton, T.A.; Anno, J.N.

    1977-01-01

    Measurement of the secondary electron currents leaving Al, V, Fe, 316 stainless steel, Nb, and Mo foils undergoing 0.5--2.5-MeV proton and deuteron bombardment were made to determine the secondary electron emission ratios for these ions. The measured secondary electron yields were of the order of 1.0, with the deuterons producing generally higher yields than the protons

  15. The role of electron-phonon interaction and non-Gaussian transport in spectral changes of trapped electrons in glasses

    International Nuclear Information System (INIS)

    Funabishi, K.; Hamill, W.H.

    The continuous-time-random-walk (CTRW) model which was developed for electron scavenging reactions in polar glasses is extended to the phenomenon of spectral relaxation of electrons in shallow traps esub(t) - in a wider range of systems. The central role of electron-phonon coupling in understanding the initial electron localization, the ''pre-existing trap'', and electron transfer processes are emphasized. The reactivity of esub(t) - with scavengers, including protons, is discussed in terms of the theory of multi-phonon non-radiative transitions. (author)

  16. Interpretation of recent positron-electron measurements between 20 and 800 MeV

    International Nuclear Information System (INIS)

    Pellerin, C.J.; Hartman, R.C.

    1975-01-01

    The recent positron and negatron spectra measured by Hartman and Pellerin (see pages 402-407) are discussed with regard to the problem of solar modulation. At energies above 180 MeV, the spherically symmetric Fokker-Planck equation with a diffusion coefficient proportional to particle rigidity provides reasonable fits to both the positron and total electron data. At energies below 180 MeV the data are consistent with a continuation of the same diffusion coefficient and local source of negatrons, or a change in the diffusion coefficient to a constant value. (orig.) [de

  17. Intensity maps of MeV electrons and protons below the radiation belt

    International Nuclear Information System (INIS)

    Kohno, T.; Munakata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuchi, J.; Doke, T.

    1988-01-01

    The global distributions of energetic electrons (0.19 - 3.2 MeV) and protons (0.64 - 35 MeV) are shown in the form of contour maps. The data were obtained by two sets of energetic particle telescopes on board the satellite OHZORA. The observed altitude range is 350 - 850 Km. Ten degress meshes in longitude and latitude were used to obtain the intensity contours. A pitch angle distribution of J(α) = J(90). sin n α with n = 5 A is assumed to get the average intensity in each mesh. (author) [pt

  18. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    Science.gov (United States)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  19. Measurement of photon showers in lead produced by electrons of 150 MeV

    International Nuclear Information System (INIS)

    Goeringer, H.; Eyss, H.J. von; Schoch, B.

    1976-01-01

    The photon energy spectra induced by 150 MeV electrons in lead were measured in the energy range from 40 MeV up to the primary electron energy. The target thickness was varied between 0.1 and 2.5 radiation lengths X 0 . The photons were analyzed by use of a technique based on deuteron photodisintegration. Differential and integral shower spectra are presented and compared with Monte Carlo calculations of Nagel and Messel et al., both interpolated to our primary energy of 150 MeV. The measured spectra show good agreement with these Monte Carlo calculations for the thickest target of 2.5X 0 and with calculated bremsstrahlung spectra for the thinnest target of 0.1X 0 . Considerable discrepancies, however, are found for medium target thicknesses in the range 0 . Around the shower maxima, the shower spectra are narrower and the maxima are shifted about 0.3-0.4X 0 to lower target thicknesses, furthermore the number of photons at the shower maxima are up to 50% higher than calculated. (Auth.)

  20. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress

    Science.gov (United States)

    Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan

    2018-02-01

    Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.

  1. CESAR, 2 MeV electron storage ring.

    CERN Multimedia

    CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  2. Evaluation of BPW-34 photodiode answer for 10 MeV electron dosimetry

    International Nuclear Information System (INIS)

    Khoury, H.J.; Melo, F.A.; Hazin, C.A.

    1992-01-01

    The viability of commercial photodiodes used for dosimetry of high energy electron beams was studied. The measures were made in a linear accelerators of 10 MeV, using the BPW-34 photodiode. The average energy of electrons on phantom surface and their average range were determined with the photodiode, and the results were compared with the obtained with a ionization chamber of parallel plate. (C.G.C.)

  3. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  4. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  5. Microwave system of the 7-10 MeV electron linear accelerator ALIN for medical applications

    International Nuclear Information System (INIS)

    Martin, D.; Iliescu, E.; Stirbet, M.; Oproiu, C.; Vintan, I.

    1978-01-01

    A detailed description of the Central Institute of Physics 10 MeV linear microwave system and its associated subsystems are presented. Methods of impedance matching to obtain maximum power transfer are described along with broadband design methods for transmission-line impedance transformers. Experimental results for such microwave devices are included. With respect to microwave device performances, simultaneous high efficiency and high power capability with reliability and long life at relatively low unit cost have only recently been achieved as typical device characteristics. Industrial, medical and scientific application of microwave electron accelerators have markedly influenced microwave research progress. Radiographic linear accelerators have grown substantially mainly during the past few years. Following this, the improvements of microwave device performances solicit our attention. The first electron therapy Linear Accelerator ALIN 10 marks a new stage in the development of such instrumentation. Its subsequent ALIN 15 is designed to produce a maximum energy of 18 MeV to widen its applicability in radiotherapy. In addition, a new electron linear accelerator of 8 MeV for nondestructive testing has been started. (author)

  6. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  7. Electronic circuit provides automatic level control for liquid nitrogen traps

    Science.gov (United States)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  8. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  9. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    International Nuclear Information System (INIS)

    Cayton, Thomas E.

    2005-01-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, μ, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of μ and K, and for 3.5 R E E , the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R E for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits μ-dependent local minima around L = 5 R E . Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K c . Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons

  10. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  11. Reduction of charge trapping and electron tunneling in SIMOX by supplemental implantation of oxygen

    International Nuclear Information System (INIS)

    Stahlbush, R.E.; Hughes, H.L.; Krull, W.A.

    1993-01-01

    Silicon-on-insulator, SOI, technologies are being aggressively pursued to produce high density, high speed, radiation tolerant electronics. The dielectric isolation of the buried oxide makes it possible to design integrated circuits that greatly minimize single event upset and eliminate dose-rate induced latchup and upset. The reduction of excess-silicon related defects in SIMOX by the supplemental implantation of oxygen has been examined. The supplemental implant is 6% of the oxygen dose used to form the buried oxide, and is followed by a 1,000 C anneal, in contrast to the >1,300 C anneal used to form the buried oxide layer of SIMOX. The defects examined include shallow electron traps, deep hole traps, and silicon clusters. The radiation-induced shallow electron and deep hole trapping are measured by cryogenic detrapping and isothermal annealing techniques. The low-field (3 to 6 MV/cm) electron tunneling is interpreted as due to a two phase mixture of stoichiometric SiO 2 and Si clusters a few nm in size. Single and triple SIMOS samples have been examined. All of the defects are reduced by the supplemental oxygen processing. Shallow electron trapping is reduced by an order of magnitude. Because of the larger capture cross section for hole trapping, hole trapping is not reduced as much. The low-field electron tunneling due to Si clusters is also significantly reduced. Both uniform and nonuniform electron tunneling have been observed in SIMOX samples without supplement processing. In samples exhibiting only uniform tunneling, electron capture at holes has been observed. The nonuniform tunneling is superimposed upon the uniform tunneling and is characterized by current spiking

  12. Photoconductivity and bleaching of trapped electrons at 770C in irradiated methylcyclohexane

    International Nuclear Information System (INIS)

    Dolivo, G.; Gaeumann, T.

    1977-01-01

    The influence of the wavelength and intensity of the bleaching radiation on the thermoluminescence, thermoconductivity, optical absorption and photoconductivity of the methylcyclohexane, protonated and deuterated, was studied. The energy level scheme of the trapped electron in this alkane is very similar to that found in MTHF and 3-MP. The rate of bleaching of the trapped electrons is less in the deuterated product. (U.K.)

  13. Production of iodine-123 radiobiological specimen on 25 MeV electron beam

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Starodub, G.Ya.; Buklanov, G.V.; Korotkin, Yu.S.; Belov, A.G.

    1988-01-01

    The technique is described and experimental results are presented for production of radioactive specimen-iodine-123 for medical biological investigations. It is shown that in ten hour irradiation of 124 Xe enriched target of 10 g weight by the 25 MeV electron beam at MT-25 microtron short lived 123 I with activity of about 200 mCl can be accumulated. The procedure was developed for extraction of radioactive atoms and preparing the solution that permits to obtain during 1-1.5 h after the end of irradiation the specimen which satisfies all pharmacopeia requirements. It follows from the results that using small-size electron accelerators with the beam energy up to 25 MeV permits to organize economical and large-scale production of high quality radioactive specimen of 123 I for servicing a large region of this country. 14 refs.; 4 figs.; 1 tab

  14. Positron-electron decay of 28Si at an excitation energy of 50 MeV

    International Nuclear Information System (INIS)

    Buda, A.; Bacelar, J.C.; Balanda, A.; Ploeg, H. van der; Sujkowski, Z.; Woude, A. van der

    1993-01-01

    The electron-positron pair decay of 28 Si at 50 MeV excitation produced by the isospin T=0 (α+ 24 Mg) and the mixed isospin T=0, 1 ( 3 He+ 25 Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI. (orig.)

  15. Asymptotic theory of dissipative trapped electron mode overlapping many rational surfaces

    International Nuclear Information System (INIS)

    Rogister, A.; Hasselberg, G.

    1978-01-01

    The two dimensional eigenvalue equation describing the dissipative trapped electron mode is solved exactly in the limit of the mode overlapping many rational surfaces using the Pogutse model for the magnetic field and the pitch angle collision operator. The trapped electron contribution to the growth rate decreases, with respect to the standard theory, by a factor of order Δ/chi sub(T) << 1 where chi sub(T) is the position of the turning point and Δ the distance between rational surfaces

  16. Electron irradiation induced deep centers in hydrothermally grown ZnO

    International Nuclear Information System (INIS)

    Fang, Z.-Q.; Claflin, B.; Look, D. C.; Farlow, G. C.

    2007-01-01

    An n-type hydrothermally grown ZnO sample becomes semi-insulating (ρ∼10 8 Ω cm) after 1-MeV electron-irradiation. Deep traps produced by the irradiation were studied by thermally stimulated current spectroscopy. The dominant trap in the as-grown sample has an activation energy of 0.24 eV and is possibly related to Li Zn acceptors. However, the electron irradiation introduces a new trap with an activation energy of 0.15 eV, and other traps of energy 0.30 and 0.80 eV, respectively. From a comparison of these results with positron annihilation experiments and density functional theory, we conclude that the 0.15-eV trap may be related to V Zn

  17. Dependence of the confinement time of an electron plasma on the magnetic field in a quadrupole Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Dyavappa, B.M.; Datar, Durgesh; Prakash; Ananthamurthy, Sharath [Bangalore University, Department of Physics, Bangalore (India)

    2017-12-15

    A quadrupole Penning trap is used to confine electrons in weak magnetic fields. Perturbations due to space charge and imperfections in the trap geometry, as well as collisions with the background gas molecules, lead to loss of the electrons from the trap. We present in this work the results on measurements of the electron confinement time and its dependence on the magnetic field in a quadrupolar Penning trap. We describe a method to measure the confinement time of an electron cloud under weak magnetic fields (0.01 T - 0.1 T). This time is found to scale as τ ∝ B{sup 1.41} in variance with the theoretically expected confinement time that scales as τ ∝ B{sup 2} for trapped electrons that are lost through collisions with the neutrals present in the trap. A measurement of the expansion rate of the electron plasma in the trap through controlled variation of the trap voltage, yields expansion times that depend on the energy of escaping electrons. This is found to vary in our case in the scaling range B{sup 0.32} to B{sup 0.43}. Distorting the geometry of the trap, results in a marked change in the confinement time's dependence on the magnetic field. The results indicate that the confinement time of the electron cloud in the trap is limited by both, effects of collisions and perturbations that result in the plasma loss through expansion in the trap. (orig.)

  18. Tuning the Electronic and Dynamical Properties of a Molecule by Atom Trapping Chemistry.

    Science.gov (United States)

    Pham, Van Dong; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Abad, Enrique; Dappe, Yannick J; Smogunov, Alexander; Lagoute, Jérôme

    2017-11-28

    The ability to trap adatoms with an organic molecule on a surface has been used to obtain a range of molecular functionalities controlled by the choice of the molecular trapping site and local deprotonation. The tetraphenylporphyrin molecule used in this study contains three types of trapping sites: two carbon rings (phenyl and pyrrole) and the center of a macrocycle. Catching a gold adatom on the carbon rings leads to an electronic doping of the molecule, whereas trapping the adatom at the macrocycle center with single deprotonation leads to a molecular rotor and a second deprotonation leads to a molecular jumper. We call "atom trapping chemistry" the control of the structure, electronic, and dynamical properties of a molecule achieved by trapping metallic atoms with a molecule on a surface. In addition to the examples previously described, we show that more complex structures can be envisaged.

  19. Microdosimetry of 0.5 to 2.0 MeV electron beams

    International Nuclear Information System (INIS)

    Braby, L.A.; Roesch, W.C.

    1980-08-01

    The energy imparted in microscopic volumes by electron beams with initial energies from 0.5 to 2.0 MeV has been measured at various depths in plastic. The problems associated with measuring energy deposition spectra of low LET radiations are serious, but the potential importance of these measurements in radiation biophysics justifies the effort required to obtain them. Recent results obtained by Goodhead et al. indicate an RBE greater than 2 for 0.3 keV x-rays compared to 250 kV x-rays, and our results with Chlamydomonas reinhardi indicate an RBE of 1.6 for a 1.5 MeV electron beam at a depth of 400 gm/cm 2 in lucite compared to the same beam at the surface. Development of a theory which appears to explain these results in terms of the microscopic distribution of energy deposition has motivated a detailed study of energy deposition spectra for an electron beam attenuated by various thicknesses of lucite. Simulated sites from 0.5 to 1.9 μm in diameter were studied. The values of anti y determined in these single event measurements compare favorably with those calculated from direct measurements of z reported previously. As expected, the means of the distributions increase significantly with increasing depth in an absorber

  20. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  1. Color centers of a borosilicate glass induced by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray

    International Nuclear Information System (INIS)

    Du, Jishi; Wu, Jiehua; Zhao, Lili; Song, Lixin

    2013-01-01

    Optical absorption spectra, electron paramagnetic resonance (EPR) spectra, Raman spectra of a borosilicate glass after irradiation by 10 MeV proton, 1.85 MeV electron and 60 Co-γ ray were studied. The process of irradiation inducing color centers in the glass was discussed. The band gap of the glass before and after 60 Co-γ ray irradiation was studied using Mott and Davis's theory, and it was found that calculated change of the band gap introduced a paradox, because Mott and Davis's theory on the band gap cannot be adopted in the study on the irradiated glass. - Highlights: ► All the three types of irradiation induce the same types of color centers. ► Calculated change of the band gap introduced a paradox. ► Mott and Davis's theory on band gap cannot be adopted in the irradiated glass

  2. Effects of 6 MeV electron irradiation on the electrical properties and device parameters of Al/Al{sub 2}O{sub 3}/TiO{sub 2}/n-Si MOS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Laha, P.; Banerjee, I.; Barhai, P.K. [Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835215 (India); Das, A.K. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Ganeshkhind, Pune 411007 (India); Mahapatra, S.K., E-mail: skm@physics.ucla.edu [Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835215 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer The electron irradiation effects make variation in the device parameters. Black-Right-Pointing-Pointer The device parameters changes due to percentage of defects and charge trapping. Black-Right-Pointing-Pointer Leakage current of Al/Al{sub 2}O{sub 3}/TiO{sub 2}/n-Si changes due to interface dangling bonds. Black-Right-Pointing-Pointer The leakage current mechanism of MOS structures is due to Poole-Frenkel effect. - Abstract: The effects of 6 MeV electron irradiation on the electrical properties and device parameter characteristics of Al/Al{sub 2}O{sub 3}/TiO{sub 2}/n-Si metal-oxide-semiconductor capacitors have been studied. Twelve Al/Al{sub 2}O{sub 3}/TiO{sub 2}/n-Si MOS capacitors were fabricated using r.f. magnetron sputtering and divided into four groups. The first group was not irradiated and treated as virgin. The rest were irradiated with 6 MeV electrons at doses 10, 20, and 30 kGy, maintaining the dose rate at {approx}1 kGy/min. Variations in crystallinity of the virgin and irradiated capacitors were studied using grazing incident X-ray diffraction. The thickness and in-depth elemental distributions of individual layers were determined using secondary ion mass apectrometry. Capacitance-voltage, conductance-voltage and leakage current-voltage characteristics of the virgin and irradiated samples were studied. The device parameters (flat band voltage, surface charge density and interface trap density of the virgin and irradiated structures) were determined. The electrical properties of the capacitors were investigated and the Poole-Frenkel coefficient of the capacitors was determined from leakage current measurements. The leakage current mechanism has been explained.

  3. Application of clear polymethylmethacrylate dosimeter Radix W to a few MeV electron in radiation processing

    International Nuclear Information System (INIS)

    Seito, Hajime; Ichikawa, Tatsuya; Hanaya, Hiroaki; Sato, Yoshishige; Kaneko, Hirohisa; Haruyama, Yasuyuki; Watanabe, Hiroshi; Kojima, Takuji

    2009-01-01

    Characteristics of clear PMMA dosimeter (Radix W) were studied for electron irradiation and compared with the response for gamma irradiation. The dose-response curves were nearly linear up to 30 kGy and become sublinear at higher doses. The radiation-induced absorbance was reduced with 6% within 4 h after irradiation. Dose comparisons were performed for 2, 3, 4 and 5 MeV electron irradiation using cellulose triacetate dosimeter (CTA) (FTR-125) and Radix W dosimeters which were independently calibrated for 2 MeV electrons and 60 Co gamma-rays using calorimeter and ionizing chamber, respectively. The doses estimated by CTA and Radix W were different by about 20%. The magnitude of this difference was, however, independent of electron energy.

  4. MeV energy electron beam induced damage in isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Mathakari, N.L.; Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune 411007 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-06-15

    A few thin films of isotactic polypropylene were irradiated with 6 MeV energy electrons, in the fluence range from 5 x 10{sup 14} to 2 x 10{sup 15} electrons/cm{sup 2}. The structural, optical and mechanical properties were characterized by techniques such as FTIR, UV-vis, XRD, SEM, hardness and contact angle measurements. The FTIR spectra indicate that C-H and C-C bonds are scissioned and an isotactic arrangement of chains is partially destroyed. Moreover, the new carbonyl groups (C=O) are observed, which signifies oxidation. The UV-vis spectra shows a red shift in the absorption edge from pristine value of 240 to 380 nm, which corresponds to decrease in the optical band gap from 5.17 to 3.27 eV. This is because of the formation of conjugated double bonds as well as carbonization. The crystalline properties were analysed using XRD and it shows no profound change. This result may attribute that the radiation-induced changes have probably occurred to a large extent in amorphous regions. However, surface morphology by SEM and contact angle measurements showed considerable surface roughening, which indicates an uneven evolution of gases from the surface. Interestingly, the surface hardness of the films was found to increase with fluence and it may be due to crosslinking and carbonization on the surface. Overall, in conclusion this study shows considerable modifications in the physicochemical properties of isotactic polypropylene irradiated by 6 MeV energy pulsed electrons.

  5. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  6. 7-MeV electron LINAC based pulse radiolysis facility at RPCD, BARC

    International Nuclear Information System (INIS)

    Naik, C.B.; Nadkarni, S.A.; Toley, M.A.; Shinde, S.J.; Naik, P.D.

    2017-01-01

    7-MeV electron LINAC based pulse radiolysis facility is operational in Chemistry Group of BARC since 1986. The Accelerator is housed in B-132 room in basement of Modular Labs. BARC Accelerator was procured from Radiation Dynamics Inc. UK and its detection system was indigenously developed

  7. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  8. Identification of electron and hole traps in KH2PO4 crystals

    International Nuclear Information System (INIS)

    Garces, N. Y.; Stevens, K. T.; Halliburton, L. E.; Demos, S. G.; Radousky, H. B.; Zaitseva, N. P.

    2001-01-01

    Electron paramagnetic resonance (EPR) has been used to characterize a hole trap and several electron traps in single crystals of potassium dihydrogen phosphate (KH 2 PO 4 or KDP). The paramagnetic charge states of these centers are produced by ionizing radiation (e.g., x rays or a 266 nm beam from a pulsed Nd:YAG laser) and are stable for days and even weeks at room temperature. One center consists of a hole trapped on an oxygen ion adjacent to a silicon impurity located on a phosphorus site. This defect has a small, but easily observed, hyperfine interaction with the adjacent substitutional proton. The other centers are formed when an electron is trapped at an oxygen vacancy. These latter defects are best described as (PO 3 ) 2- molecular ions, where the primary phosphorus nucleus is responsible for a large hyperfine splitting (500--800 G in magnitude). Five EPR spectra representing variations of these oxygen vacancy centers are observed, with the differences being attributed to the relative position of a nearby cation vacancy, either a missing proton or potassium. An angular study of the EPR spectra, conducted at room temperature, provided principal values and principal directions for the g matrices and hyperfine matrices for the hole center and two of the electron centers

  9. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  10. A way for evaluating parameters of electron transport in non-polar molecular liquids derived from analysis of the trapped electron recombination kinetics

    International Nuclear Information System (INIS)

    Lukin, L.V.

    2012-01-01

    The geminate recombination kinetics of electron-ion pairs produced by high energy radiation in liquid hydrocarbons is considered in the two state model of electron transport. The purpose of the study is to relate the trapped electron transient optical absorption, observed in the pulse radiolysis experiments, to fundamental parameters of electron transport in liquid. It is shown that measurements of the half-life time and amplitude of the trapped electron decay curve allow one to find the electron life time in a localized state. - Highlights: ► A two state electron model is applied to geminate charge recombination. ► Time dependence of trapped electrons is computed for liquid isooctane and squalane. ► Electron decay kinetics depends on electron life time in a localized state. ► Key parameters of electron transport are found from the pulse radiolysis studies.

  11. CESAR, 2 MeV electron storage ring; construction period; general view.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    A general view of the 2-MeV electron storage-ring model during the last stages of assembly. The injection line for the electrons enters at the bottom of the picture (under the ladder) and meets the ring at the back, to the right. Near there, Joseph Karouanton (S.G.T.E, Paris) (inside the ring), and Marcel Bernasconi (AR Division) are seen testing for leaks in the vacuum system. In white coats are Mervin Barnes (left) and Boony Bruggerman (AR Division), considering the reading shown by one of the vacuum gauges.

  12. Atomic physics of highly charged ions in an electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1990-07-01

    Two electron beam ion traps are in use at LLNL for the purpose of studying the properties of very highly charged ions and their interactions with electrons. This paper reviews the operation of the traps and discusses recent experiments in three areas: precision transition energy measurements in the limit of very high ion charge, dielectronic recombination measurements for the He-like isoelectronic sequence, and measurements of x-ray polarization. 22 refs., 11 figs., 1 tab

  13. Temperature and 8 MeV electron irradiation effects on GaAs solar cells

    Indian Academy of Sciences (India)

    1Department of Physics, Mangalore Institute of Technology and Engineering, ... strate were irradiated with 1 MeV electrons, they showed high radiation tolerance ... under both forward and reverse bias in the temperature range of 270–315 K ...

  14. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of ...

  15. A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime

    International Nuclear Information System (INIS)

    Kostyukov, I; Nerush, E; Pukhov, A; Seredov, V

    2010-01-01

    We present a theory for electron self-injection in nonlinear, multidimensional plasma waves excited by a short laser pulse in the bubble regime or by a short electron beam in the blowout regime. In these regimes, which are typical for electron acceleration in the last impressive experiments, the laser radiation pressure or the electron beam charge pushes out plasma electrons from some region, forming a plasma cavity or a bubble with a huge ion charge. The plasma electrons can be trapped in the bubble and accelerated by the plasma wakefields up to a very high energy. We derive the condition of the electron trapping in the bubble. The developed theory predicts the trapping cross section in terms of the bubble radius and the bubble velocity. It is found that the dynamic bubble deformations observed in the three-dimensional (3D) particle-in-cell (PIC) simulations influence the trapping process significantly. The bubble elongation reduces the gamma-factor of the bubble, thereby strongly enhancing self-injection. The obtained analytical results are in good agreement with the 3D PIC simulations.

  16. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  17. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Chi, Li-Feng, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  18. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    International Nuclear Information System (INIS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-01-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process

  19. 12 MeV, 4.3 kW electron linear accelerator irradiation application

    International Nuclear Information System (INIS)

    Hang Desheng; Lai Qiji

    2000-01-01

    Characteristics of an electron linear accelerator, which has 6-12 MeV energy, 4.2 kW average beam power is introduced. Results show that it has advantages on improving the characteristics of semiconductor devices such as diodes, triodes, SCR, preventing garlic from sprout, preservation of food, and so on

  20. Deep electron traps in HfO_2-based metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Salomone, L. Sambuco; Lipovetzky, J.; Carbonetto, S.H.; García Inza, M.A.; Redin, E.G.; Campabadal, F.

    2016-01-01

    Hafnium oxide (HfO_2) is currently considered to be a good candidate to take part as a component in charge-trapping nonvolatile memories. In this work, the electric field and time dependences of the electron trapping/detrapping processes are studied through a constant capacitance voltage transient technique on metal-oxide-semiconductor capacitors with atomic layer deposited HfO_2 as insulating layer. A tunneling-based model is proposed to reproduce the experimental results, obtaining fair agreement between experiments and simulations. From the fitting procedure, a band of defects is identified, located in the first 1.7 nm from the Si/HfO_2 interface at an energy level E_t = 1.59 eV below the HfO_2 conduction band edge with density N_t = 1.36 × 10"1"9 cm"−"3. A simplified analytical version of the model is proposed in order to ease the fitting procedure for the low applied voltage case considered in this work. - Highlights: • We characterized deep electron trapping/detrapping in HfO_2 structures. • We modeled the experimental results through a tunneling-based model. • We obtained an electron trap energy level of 1.59 eV below conduction band edge. • We obtained a spatial trap distribution extending 1.7 nm within the insulator. • A simplified tunneling front model is able to reproduce the experimental results.

  1. A study of the profile of the E3 electron trap in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kourkoutas, C.D. (TEI Athens (Greece). Dept. of Physics Chemistry and Material Technology); Kovacs, B.; Szentpali, B.; Somogyi, K. (Research Inst. for Technical Physics, Budapest (Hungary)); Euthymiou, P.C. (Athens Univ. (Greece)); Giakoumakis, G.E. (Ioannina Univ. (Greece). Dept. of Physics)

    1994-01-01

    Electron irradiation at room temperature introduces in GaAs a donor type electronic state Tx at 0.18 eV, which is associated with the E3 electron trap. The presence of Tx is observed at depths d > 1.5 [mu]m, which correspond to the limits of the depletion region under the highest applied reverse bias voltage, while the E3 trap concentration drops off into the same region. (author).

  2. A study of the profile of the E3 electron trap in GaAs

    International Nuclear Information System (INIS)

    Kourkoutas, C.D.; Euthymiou, P.C.; Giakoumakis, G.E.

    1994-01-01

    Electron irradiation at room temperature introduces in GaAs a donor type electronic state Tx at 0.18 eV, which is associated with the E3 electron trap. The presence of Tx is observed at depths d > 1.5 μm, which correspond to the limits of the depletion region under the highest applied reverse bias voltage, while the E3 trap concentration drops off into the same region. (author)

  3. Ion production and trapping in electron rings

    International Nuclear Information System (INIS)

    Gluckstern, R.C.; Ruggiero, A.G.

    1979-08-01

    The electron beam in the VUV and X-ray rings of NSLS will ionize residual gas by collisions. Positive ions will be produced with low velocity, and will be attracted by the electron beam to the beam axis. If they are trapped in stable (transverse) orbits, they may accumulate, thereby increasing the ν/sub x,z/ of the individual electrons. Since the accumulated ions are unlikely to be of uniform density, a spread in ν/sub x,z/ will also occur. Should these effects be serious, it may be necessary to introduce clearing electrodes, although this may increase Z/n in the rings, thereby adding to longitudinal instability problems. The seriousness of the above effect for the VUV and X-ray rings is estimated

  4. Electronic properties of hafnium oxide: A contribution from defects and traps

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, Vladimir A., E-mail: grits@isp.nsc.ru; Perevalov, Timofey V.; Islamov, Damir R., E-mail: damir@isp.nsc.ru

    2016-02-15

    In the present article, we give a review of modern data and latest achievements pertaining to the study of electronic properties of oxygen vacancies in hafnium oxide. Hafnium oxide is a key dielectric for use in many advanced silicon devices. Oxygen vacancies in hafnium oxide largely determine the electronic properties of the material. We show that the electronic transitions between the states due to oxygen vacancies largely determine the optical absorption and luminescent properties of hafnium oxide. We discuss the role of oxygen vacancies as traps that facilitate charge transport in hafnium oxide films. Also, we demonstrate the fact that the electrical conductivity in hafnium oxide is controlled by the phonon-assisted tunnelling of charge carriers between traps that were identified as oxygen vacancies.

  5. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    International Nuclear Information System (INIS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-01-01

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10 17  cm −3 to (2–5) × 10 14  cm −3 . The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10 13  cm −3 versus 2.9 × 10 16  cm −3 in the standard samples, with a similar decrease in the electron traps concentration

  6. Jovian electrons as an instrument of investigation of the interplanetary medium structure

    International Nuclear Information System (INIS)

    Daibog, E; Lazutin, L; Logachev, Yu; Kecskemety, K

    2016-01-01

    Electrons accelerated in the Jupiter magnetosphere are usually registered by near-earth spacecraft under optimal magnetic connection between the Earth and Jupiter, taking place once in 13 months (Earth- Jupiter synodic period). During the period of minimal solar activity between 23 and 24 cycles in 2007-2009 electrons of MeV energies were observed practically at each of 14 solar rotations (more than a year), which requires extremely long quasistationary state of inner heliosphere with constant Earth- Jupiter connection. To explain this situation the model with long living magnetic trap, co-rotating with the Sun, was suggested. Passing by the Jupiter this trap captures electrons, which then are registered by subsequent passing of the trap by the Earth. (paper)

  7. High-resolution inelastic electron scattering on 208Pb at 50 and 63.5 MeV and fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Knuepfer, W.; Frey, R.; Richter, A.; Schwierczinski, A.; Spamer, E.; Titze, O.

    1977-12-01

    High-resolution inelastic electron scattering (FWHM approximately equal to 33 keV) with 50 MeV and 63.5 MeV electrons on 208 Pb has been used to study magnetic excitations between Esub(x) = 6 MeV and 8 MeV. Angular distributions were analyzed in terms of the DWBA with RPA wave functions. Eight Isup(π) = 2- states carrying a total strength ΣB(M2) = 8500 μ 2 sub(K) fm 2 have been found. The strong fragmentation is in qualitative agreement with theoretical predictions. (orig.) [de

  8. Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interaction correction

    International Nuclear Information System (INIS)

    Du Jincheng; Rene Corrales, L.; Tsemekhman, Kiril; Bylaska, Eric J.

    2007-01-01

    Density functional theory (DFT) calculations were employed to understand the refractive index change in germanium doped silica glasses for the trapped states of electronic excitations induced by UV irradiation. Local structure relaxation and excess electron density distribution were calculated upon self-trapping of an excess electron, hole, and exciton in germanium doped silica glass. The results show that both the trapped exciton and excess electron are highly localized on germanium ion and, to some extent, on its oxygen neighbors. Exciton self-trapping is found to lead to the formation of a Ge E' center and a non-bridging hole center. Electron trapping changes the GeO 4 tetrahedron structure into trigonal bi-pyramid with the majority of the excess electron density located along the equatorial line. The self-trapped hole is localized on bridging oxygen ions that are not coordinated to germanium atoms that lead to elongation of the Si-O bonds and change of the Si-O-Si bond angles. We carried out a comparative study of standard DFT versus DFT with a hybrid PBE0 exchange and correlation functional. The results show that the two methods give qualitatively similar relaxed structure and charge distribution for electron and exciton trapping in germanium doped silica glass; however, only the PBE0 functional produces the self-trapped hole

  9. Estimation of the measurement effective point in cylindrical ionization chamber used in electron beams with energies between 6 and 20 MeV

    International Nuclear Information System (INIS)

    Araujo, M.M. de.

    1984-01-01

    The radial displacement was determined in a water phantom for electrons beams at energies from 6 to 20 MeV for three commercial cylindrical ionization chambers of internal diameters varying from 3.5 to 9.0 mm. The chambers were irradiated with the main axis perpendicular to the direction of the beam. A 300 V bias voltage was applied and readings were taken with both polarities. It was observed that, with increasing depth in the water phantom, the radial displacement remains constant for the 8.9 MeV beam, it increases for the 12.6 MeV electrons and decreases for those of 16.8 and 19.7 MeV. A theoretical model was built in order to calculate the displacement of the effective point of measurement. The Fermi-Eyges multiple scattering theory and a retangular beam normalism developed by Jette (1983) for therapeutic electron beam are used. It was found that the radial displacement stays constant with increasing depth and it decreases with increasing average energy of the incident beam. The model also predicts that the displacement is dependent on the chamber radius. The experimental and theoretical results are compared. They show good agreement for 8.9 and 12.6 MeV electrons, while for 16.8 and 19.7 MeV electrons they indicate that modifications in the theoretical model are necessary. (Author) [pt

  10. Trapped electrons as a free energy source for the auroral kilometric radiation

    International Nuclear Information System (INIS)

    Louarn, P.; Roux, A.; de Feraudy, H.; Le Queau, D.; Andre, M.; Matson, L.

    1990-01-01

    Simultaneous measurements of electromagnetic fields and particle distributions, measured during the crossing by the Swedish spacecraft Viking of an auroral kilometric radiation (AKR) source, are presented. It is shown that AKR is generated within an acceleration region characterized by an upward directed parallel electric field, as evidenced by its signature on the proton and electron distributions. From particle observations inside the AKR source it is clear that the potential drop below the spacecraft produces upward moving field-aligned ion beams and a depletion in the density of low energy electrons. The potential drop above the spacecraft produces downward accelerated electrons. A large fraction of these electrons have small parallel velocities; they mirror above the ionosphere. These trapped electrons lie in a region of velocity space which should be empty in a simple adiabatic theory. The authors suggest that these electrons get trapped when they experience a time-varying (or space-varying) parallel electric field. This conclusion is supported by the comparison between the observed electron distribution function and a model distribution function built by applying Liouville theorem. Since trapped electrons can cause positive gradients (∂f e /∂V perpendicular > 0) over a broad range of parallel velocities, around v parallel ∼ 0, it is suggested that they are the free energy source for the AKR. This conclusion is substantiated by an evaluation of the convective growth rate, where the various input parameters have been determined by fitting particle data

  11. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  12. Design of scan-horn and beam extraction window for a 3 MeV electron accelerator

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Acharya, S.; Puthran, G.P.; Majumder, R.; Mittal, K.C.; Mahendra Kumar; Sethi, R.C.

    2003-01-01

    A 3 MeV, 30 kW D.C. electron accelerator is being developed for installation at the Electron Beam Center at Khargar, Navi Mumbai to cater to industrial uses like cable irradiation. This paper describes the design of the scan horn and beam extraction window of this accelerator. (author)

  13. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length

    Science.gov (United States)

    Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph

    2018-02-01

    The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.

  14. High-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap

    International Nuclear Information System (INIS)

    Robbins, D.L.; Chen, H.; Beiersdorfer, P.; Faenov, A.Ya.; Pikuz, T.A.; May, M.J.; Dunn, J.; Smith, A.J.

    2004-01-01

    A compact high-resolution (λ/Δλ≅10 000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured

  15. Study of heliumlike neon using an electron beam ion trap

    International Nuclear Information System (INIS)

    Wargelin, B.J.; Kahn, S.M.; Beiersdorfer, P.

    1992-01-01

    The 2-to-1 spectra of several astrophysically abundant He-like ions are being studied using the Electron Beam Ion Trap (EBIT) at Lawrence Livermore National Laboratory. Spectra are recorded for a broad range of plasma parameters, including electron density, energy, and ionization balance. We describe the experimental equipment and procedure and present some typical data

  16. Evaluating Origin of Electron Traps in Tris(8-hydroxyquinoline) Aluminum Thin Films using Thermally Stimulated Current Technique

    OpenAIRE

    Matsushima, Toshinori; Adachi, Chihaya

    2008-01-01

    We measured the energy distributions and concentrations of electron traps in O_2-unexposed and O_2-exposed tris(8-hydroxyquinoline) aluminum (Alq_3) films using a thermally stimulated current (TSC) technique to investigate how doping O_2 molecules in Alq_3 films affect the films' electron trap and electron transport characteristics. The results of our TSC studies revealed that Alq_3 films have an electron trap distribution with peak depths ranging from 0.075 to 0.1 eV and peak widths ranging ...

  17. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    International Nuclear Information System (INIS)

    Schneider, D.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA's astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th 80+ can be performed routinely. Measurements of the rates and cross sections for electron transfer from H 2 performed to determine the lifetime of HCI up to Xe q+ and Th q+ (35 ≤ q ≤ 80) have been studied at mean energies estimated to be ∼ 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events

  18. Acceleration of Electrons in a Diffraction Dominated IFEL

    CERN Document Server

    Musumeci, Pietro; Pellegrini, Claudio; Ralph, J; Rosenzweig, J B; Sung, C; Tochitsky, Sergei Ya; Travish, Gil

    2004-01-01

    We report on the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected ina 50 cm long undulator strongly tapered both in period and field amplitude. A CO2 10 μ m laser with power >300 GW is used as the IFEL driver. The Rayleigh range of the laser (1.8cm) is shorter than the undulator length so that the interaction is diffraction dominated. Few per cent of the injected particles are trapped in stable accelerating buckets and electrons with energies up to 35 MeV are detected on the magnetic spectrometers. Experimental results on the scaling of the accelerator characteristics versus input parameters like injection energy, laser focus position and laser power are discussed. Three dimensional simulations are in good agreement with the electron energy spectrums observed in the experiment and indicate that substantial energy exchange between laser and electron beam only occurs in the firs...

  19. Calibration of a silicon semiconductor detecter using a 2 MeV electron accelerator beam

    International Nuclear Information System (INIS)

    Fleurot, N.; Gouard, P.; Mazataud, E.; Nail, M.; Savy, C.; Bayer, C.; Cauchois, Y.; Kherouf, R.; Mathieu, D.

    1981-01-01

    This paper describes the current mode calibration, carried out on a 2 MeV electron accelerator, of PIN detectors involved in electron spectrum measurements for laser-matter interaction experiments. A theoretical analysis simulating the interaction between the incident electrons and the irradiated medium has been carried out using the FOTELEC code. It accounts well for the experimental results giving a reasonable value for the mean electron-hole pair formation energy when back-scattering corrections are included. This work provides the transfer function data required for a plasma diagnostic spectrometer. (orig.)

  20. Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory

    Science.gov (United States)

    Berger, Richard; Chapman, Thomas; Brunner, Stephan

    2013-10-01

    The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 vph = +/-ωbe , where vph =ω0 /k0 and ωbe is the bounce frequency of a deeply trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.

  1. Experimental demonstration and visual observation of dust trapping in an electron storage ring

    Directory of Open Access Journals (Sweden)

    Yasunori Tanimoto

    2009-11-01

    Full Text Available Sudden decreases in the beam lifetime, which are attributed to the dust trappings, sometimes occur at the electron storage ring Photon Factory Advanced Ring (PF-AR. Since these dust events cause difficulties in user operations, we have been carefully observing this phenomenon for many years. Our observations indicated that the dust trappings could be caused by electric discharges in vacuum ducts. In order to demonstrate this hypothesis experimentally, we designed a new vacuum device that intentionally generates electric discharges and installed it in PF-AR. Using this device, we could repeatedly induce sudden decreases in the beam lifetime because of the generated electric discharge. We also detected decreases in the beam lifetime caused by mechanical movement of the electrodes in the device. Moreover, we could visually observe the dust trapping phenomenon; the trapped dust particle was observed by two video cameras and appeared as a luminous body that resembled a shooting star. This was the first direct observation of a luminous dust particle trapped by the electron beam.

  2. Natural variations in the geomagnetically trapped electron population

    Science.gov (United States)

    Vampola, A. L.

    1972-01-01

    Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.

  3. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  4. Photoreactivity in Saccharomyces cerevisiae cells after irradiation with 25 MeV electrons

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Seleva, N.G.; Myasnik, M.N.; Kabakova, N.M.

    1986-01-01

    Significant photoreactivation was noted in radio- and UV-sensitive rad-mutants of Saccharomyces cerevisiae cells exposed to 25 MeV electrons. In order to make the photoreactivable damage be manifest anoxic conditions of irradiation should be chosen as optimal ones. It was shown that the low oxygen effect was partially associated with the photoreactivable damage involved in the lethal effect of ionizing radiation

  5. Nonlinear trapped electron mode and anomalous heat transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1982-01-01

    We take the phenomenological point of view that the anomalous electron thermal conductivity produced by the non-linear trapped electron mode should also influence the stability properties of the mode itself. Using a model equation, we show that this effect makes the mode self-stabilizing. A simple expression for the anomalous thermal conductivity is derived, and its scaling properties are discussed. (orig.)

  6. 6 MeV pulsed electron beam induced surface and structural changes in polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Mathakari, Narendra L.; Bhoraskar, Vasant N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India); Dhole, Sanjay D., E-mail: sanjay@physics.unipune.ernet.i [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India)

    2010-04-15

    Thin films of polyimide (PMDA-ODA, Kapton) having 50 mum thickness were irradiated with 6 MeV pulsed electron beam. The bulk and surface properties of pristine and irradiated samples were characterized by several techniques such as stress-strain measurements, Fourier Transform Infrared (FTIR), UV-vis spectroscopy, contact angle, atomic force microscopy (AFM) and profilometry. The tensile strength, percentage elongation and strain energy show an enhancement from pristine value of 73-89 MPa, 10-22% and 4.75-14.2 MJ/m{sup 3} respectively at the maximum fluence of 4 x 10{sup 15} electrons/cm{sup 2}. This signifies that polyimide being an excessively aromatic polymer is crosslinked due to high-energy electron irradiation. In surface properties, the contact angle shows a significant decrease from 59 deg. to 32 deg. indicating enhancement in hydrophilicity. This mainly attributes to surface roughening, which is due to the electron beam induced sputtering. The surface roughening is confirmed in AFM and profilometry measurements. The AFM images clearly show that surface roughness increases after electron irradiation. Moreover, the roughness average (R{sub a}) as measured from surface profilograms is found to increase from 0.06 to 0.1. The FTIR and UV-vis spectra do not show noticeable changes as regards to scissioning of bonds and the oxidation. This work leads to a definite conclusion that 6 MeV pulsed electron beam can be used to bring about desired changes in surface as well as bulk properties of polyimide, which is considered to be a high performance space quality polymer.

  7. Electron self-injection and trapping into an evolving plasma bubble.

    Science.gov (United States)

    Kalmykov, S; Yi, S A; Khudik, V; Shvets, G

    2009-09-25

    The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble's expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble's expansion and contraction results in monoenergetic electron beams.

  8. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  9. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  10. A measurement of auroral electrons in the 1–10 MeV range

    NARCIS (Netherlands)

    Gils, J.N. van; Beek, H.F. van; Fetter, L.D. de; Hendrickx, R.V.

    Particle fluxes have been measured by means of shielded Geiger-Müller telescopes mounted m a rocket, which was launched from ESRANGE(Kiruna) into a diffuse aurora. The analysis of the dependence of the counting rates on altitude indicates that a weak flux of energetic electrons, 1–10 MeV, has been

  11. Origin of the main deep electron trap in electron irradiated InP

    International Nuclear Information System (INIS)

    Sibille, A.

    1986-01-01

    The electrical activity and annealing behavior of the main electron trap in electron irradiated InP p + n junctions has been investigated. A very marked depth dependence of the annealing rate has been found. Moreover, this center apparently acts as if it were a deep donor, leading to an increase of carrier concentration on the n side. All these results are coherently interpreted with a model in terms of radiation defect D(P) (phosphorus interstitial or vacancy), residual shallow acceptor complexing, the final annealing resulting from a dissociation of the complex followed by a diffusion and either recapture or annihilation of D(P)

  12. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  13. Utilization of 5 MeV electron accelerator center and perspective

    International Nuclear Information System (INIS)

    Tanaka, Hiromi

    1990-01-01

    Electron beam process gives instantaneous effect as compared with heating process, and has such merits that energy consumption is very small, objects can be treated from outside, harmful chemicals are not used and treatment can be done as packed. The spread of electron beam process is largely due to the results of the development of highly reliable accelerators and utilization technologies, but as observed from all industrial fields, it is limited to only a part. In order to contribute to the solution of problems and the spread of electron beam process, Sumitomo Heavy Industries, Ltd. installed a 5 MeV, 200 kW large power accelerator developed by RDI in USA in the Electron Irradiation Application and Development Center opened in Tsukuba City. The Center was completed in June, 1989, and has carried out the activities of the development of irradiation utilization technologies, test irradiation and entrusted irradiation service. The features of electron beam process are high dose rate, the possibility of on and off as occasion demands, the preparation of radiation sources and the disposal of wastes being unnecessary, and no environmental problem. The industrialized processes, the types, energy and use of electron accelerators, the Tsukuba irradiation facilities and others are reported. (K.I.)

  14. Radiation damage of silicon structures with electrons of 900 MeV

    CERN Document Server

    Rachevskaia, I; Bosisio, L; Dittongo, S; Quai, E; Rizzo, G

    2002-01-01

    We present first results on the irradiation of double-sided silicon microstrip detectors and test structures performed at the Elettra synchrotron radiation facility at Trieste, Italy. The devices were irradiated with 900 MeV electrons. The test structures we used for studying bulk, surface and oxide irradiation damage were guard ring diodes, gated diodes and MOS capacitors. The test structures and the double-sided microstrip detectors were produced by Micron Semiconductor Ltd. (England) and IRST (Trento, Italy). For the first time, bulk-type inversion is observed to occur after high-energy electron irradiation. Current and inter-strip resistance measurements performed on the microstrip detectors show that the devices are still usable after type inversion.

  15. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  16. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    International Nuclear Information System (INIS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  17. CESAR, 2 MeV electron storage ring; general view.

    CERN Multimedia

    CERN PhotoLab

    1964-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  18. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D. [ed.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  19. Performance of the 100 MeV injector linac for the electron storage ring at Kyoto University

    International Nuclear Information System (INIS)

    Shirai, T.; Sugimura, T.; Iwashita, Y.; Kakigi, S.; Fujita, H.; Tonguu, H.; Noda, A.; Inoue, M.

    1996-01-01

    An electron linear accelerator has been constructed as an injector of a 300 MeV electron storage ring (Kaken Storage Ring, KSR) at Institute for Chemical Research, Kyoto University. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the 1 μsec long pulse mode. The transverse and longitudinal emittance are measured to evaluate the beam quality for the beam injection into the KSR. They are observed by the profile monitors combined with quadrupole magnets or an RF accelerator. The results are that the normalized transverse emittance is 120 π.mm.mrad. The longitudinal emittance is 15 π.deg.MeV and the energy spread is ±2.2 %. (author)

  20. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    Science.gov (United States)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  1. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  2. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  3. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  4. Experimental evaluation of quantum computing elements (qubits) made of electrons trapped over a liquid helium film

    International Nuclear Information System (INIS)

    Rousseau, E.

    2006-12-01

    An electron on helium presents a quantized energy spectrum. The interaction with the environment is considered sufficiently weak in order to allow the realization of a quantum bit (qubit) by using the first two energy levels. The first stage in the realization of this qubit was to trap and control a single electron. This is carried out thanks to a set of micro-fabricated electrodes defining a well of potential in which the electron is trapped. We are able with such a sample to trap and detect a variables number of electrons varying between one and around twenty. This then allowed us to study the static behaviour of a small number of electrons in a trap. They are supposed to crystallize and form structures called Wigner molecules. Such molecules have not yet been observed yet with electrons above helium. Our results bring circumstantial evidence for of Wigner crystallization. We then sought to characterize the qubit more precisely. We sought to carry out a projective reading (depending on the state of the qubit) and a measurement of the relaxation time. The results were obtained by exciting the electron with an incoherent electric field. A clean measurement of the relaxation time would require a coherent electric field. The conclusion cannot thus be final but it would seem that the relaxation time is shorter than calculated theoretically. That is perhaps due to a measurement of the relaxation between the oscillating states in the trap and not between the states of the qubit. (author)

  5. Thermal and optical excitation of trapped electrons in high-density polyethylene (HDPE) studied through positron annihilation

    International Nuclear Information System (INIS)

    Nahid, F.; Zhang, J.D.; Yu, T.F.; Ling, C.C.; Fung, S.; Beling, C.D.

    2011-01-01

    Positronium (Ps) formation in high-density polyethylene (HDPE) has been studied below the glass transition temperature. The formation probability increases with positron irradiation time due to an increasing number of inter-track trapped electrons becoming available for positron capture. The temperature variation of the saturated Ps level is discussed in different models. The quenching of trapped electrons by light has been studied and the optical de-trapping cross-section for different photon energies has been estimated over the visible region.

  6. Calibration of imaging plates to electrons between 40 and 180 MeV

    International Nuclear Information System (INIS)

    Rabhi, N.; Batani, D.; Boutoux, G.; Ducret, J.-E.; Bohacek, K.; Guillaume, E.; Thaury, C.; Jakubowska, K.; Thfoin, I.

    2016-01-01

    This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d’Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate charge calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.

  7. Detection of electrons in the 10 MeV range by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, G; Champagne, A; Jeremie, H; Lessard, L

    1986-09-10

    Response functions for electrons from 1 to 12 MeV have been measured with a plastic scintillator telescope. A parametrization model for these response functions has been found to give good results at all energies. Furthermore it was established that the type of reflector used for the scintillator has a considerable influence on the response functions. A mechanism for this influence has been proposed and tested by Monte Carlo calculations.

  8. Emerging science and technology of antimatter plasmas and trap-based beams

    International Nuclear Information System (INIS)

    Surko, C.M.; Greaves, R.G.

    2004-01-01

    Progress in the ability to accumulate and cool positrons and antiprotons is enabling new scientific and technological opportunities. The driver for this work is plasma physics research - developing new ways to create and manipulate antimatter plasmas. An overview is presented of recent results and near-term goals and challenges. In atomic physics, new experiments on the resonant capture of positrons by molecules provide the first direct evidence that positrons bind to 'ordinary' matter (i.e., atoms and molecules). The formation of low-energy antihydrogen was observed recently by injecting low-energy antiprotons into a cold positron plasma. This opens up a range of new scientific opportunities, including precision tests of fundamental symmetries such as invariance under charge conjugation, parity, and time reversal, and study of the chemistry of matter and antimatter. The first laboratory study of electron-positron plasmas has been conducted by passing an electron beam through a positron plasma. The next major step in these studies will be the simultaneous confinement of electron and positron plasmas. Although very challenging, such experiments would permit studies of the nonlinear behavior predicted for this unique and interesting plasma system. The use of trap-based positron beams to study transport in fusion plasmas and to characterize materials is reviewed. More challenging experiments are described, such as the creation of a Bose-condensed gas of positronium atoms. Finally, the future of positron trapping and beam formation is discussed, including the development of a novel multicell trap to increase by orders of magnitude the number of positrons trapped, portable antimatter traps, and cold antimatter beams (e.g., with energy spreads ≤1 meV) for precision studies of positron-matter interactions

  9. Experience with the Alderson Rando phantom. [17-MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Somerwil, A; Kleffens, H.J. Van [Rotterdams Radio Therapeutisch Instituut (Netherlands)

    1977-04-01

    The dose delivered to the spinal cord is of particular interest in electron beam therapy of medulloblastoma. Lithium fluoride thermoluminescent dosimetry has been used in an assessment of the dose distributions from a 17 MeV electron beam in an Alderson Rando Phantom (Alderson, S.W., Lanzl, L.H., Rollins, M., and Spira, J., 1962, American J. of Roentgenology, Radium Therapy and Nuclear Medicine, vol. 87, 185). Measurements were also made on three autopsy specimens immersed in water. There were substantial differences between the two sets of results. The density of the bony part of the phantom seemed to be markedly lower than that of the water; radiographs of various parts of the phantom confirmed that large areas of low density existed. The manufacturers have stated that in order to simulate true in vivo conditions, an artificial skeleton would have to be introduced into the tissue-like material of the phantom, and that the real skeletons now used appear to be unsuitable for electron beam dosimetry. It is therefore doubtful whether this electron beam dosimetry justifies the expense associated with the insertion of these unsatisfactory skeletons into the soft tissue-equivalent material.

  10. Effect of trapped electrons on the transient current density and luminance of organic light-emitting diode

    Science.gov (United States)

    Lee, Jiun-Haw; Chen, Chia-Hsun; Lin, Bo-Yen; Shih, Yen-Chen; Lin, King-Fu; Wang, Leeyih; Chiu, Tien-Lung; Lin, Chi-Feng

    2018-04-01

    Transient current density and luminance from an organic light-emitting diode (OLED) driven by voltage pulses were investigated. Waveforms with different repetition rate, duty cycle, off-period, and on-period were used to study the injection and transport characteristics of electron and holes in an OLED under pulse operation. It was found that trapped electrons inside the emitting layer (EML) and the electron transporting layer (ETL) material, tris(8-hydroxyquinolate)aluminum (Alq3) helped for attracting the holes into the EML/ETL and reducing the driving voltage, which was further confirmed from the analysis of capacitance-voltage and displacement current measurement. The relaxation time and trapped filling time of the trapped electrons in Alq3 layer were ~200 µs and ~600 µs with 6 V pulse operation, respectively.

  11. Design and modelling of a 5 MeV radio frequency electron gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Sheehan, J.; Woodle, M.

    1988-01-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory is a linac-laser complex for research into laser acceleration and for the generation of coherent radiation from electron beams. In order to achieve the design 50 MeV output emittance (γσ/sub x/σ/sub x/') of less than 3 /times/ 10/sup /minus/5/ m rad a high brightness electron gun is required. This paper describes computations and measurements made on a full scale brass model of a 1-1/2 cell, π-mode, resonant, disc loaded, radiofrequency gun structure which has been designed for this purpose. 7 refs., 9 figs., 6 tabs

  12. First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takabayashi, Y., E-mail: takabayashi@saga-ls.jp [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Fiks, E.I. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-06-12

    The first experiment on Cherenkov light from 255-MeV electrons passing through a 50-μm-thick diamond crystal in a special geometry allowing extraction of 500-nm Cherenkov light at a right angle with respect to the electron beam direction has been performed at the injector linac of SAGA Light Source accelerator facility. The dependence of 500-nm Cherenkov light intensity (separated by a band-pass filter) on the crystal rotation angle was measured by a CCD detector. The experimentally obtained rocking curve with an intense maximum is theoretically explained as the projector effect of Cherenkov light deflected by the exit surface of the crystal. The width of the rocking curve is explained by the convolution of the standard Tamm–Frank angular distribution of Cherenkov radiation with chromatic aberration, the multiple scattering of electrons in a crystal, and initial electron beam angular divergence. In addition, it is found that the Cherenkov light intensity did not change under the (220) planar channeling condition, which is consistent with a recent theory. - Highlights: • Cherenkov light from 255-MeV electrons in a diamond crystal has been investigated. • The Cherenkov light from channeled electrons has been observed for the first time. • The experimental results are in good agreement with theory.

  13. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Singh, Gurnam; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2008-01-01

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  14. Metastable self-trapping of positrons in MgO

    Science.gov (United States)

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1997-01-01

    Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.

  15. Subnanosecond pulsing of an 1 MeV ELIT electron accelerator by beam deflection

    International Nuclear Information System (INIS)

    Vasserman, S.B.; Kuzenko, V.; Mehnert, R.; Hermann, R.

    1984-01-01

    Operation principle and performance of a beam deflection system developed for subnanosecond pulsing of an 1 MeV ELIT resonance transformer accelerator are described. Using this system a minimum pulse duration of 0.5 ns (FWHM) and a dose per pulse of about 20 Gy were obtained. As an example the fluorescence of cyclohexane excited by the subnanosecond electron pulse was measured. (author)

  16. Electronic relaxation of deep bulk trap and interface state in ZnO ceramics

    International Nuclear Information System (INIS)

    Yang Yan; Li Sheng-Tao; Ding Can; Cheng Peng-Fei

    2011-01-01

    This paper investigates the electronic relaxation of deep bulk trap and interface state in ZnO ceramics based on dielectric spectra measured in a wide range of temperature, frequency and bias, in addition to the steady state response. It discusses the nature of net current flowing over the barrier affected by interface state, and then obtains temperature-dependent barrier height by approximate calculation from steady I—V (current—voltage) characteristics. Additional conductance and capacitance arising from deep bulk trap relaxation are calculated based on the displacement of the cross point between deep bulk trap and Fermi level under small AC signal. From the resonances due to deep bulk trap relaxation on dielectric spectra, the activation energies are obtained as 0.22 eV and 0.35 eV, which are consistent with the electronic levels of the main defect interstitial Zn and vacancy oxygen in the depletion layer. Under moderate bias, another resonance due to interface relaxation is shown on the dielectric spectra. The DC-like conductance is also observed in high temperature region on dielectric spectra, and the activation energy is much smaller than the barrier height in steady state condition, which is attributed to the displacement current coming from the shallow bulk trap relaxation or other factors. (fluids, plasmas and electric discharges)

  17. The Electronic McPhail Trap

    Science.gov (United States)

    Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos

    2014-01-01

    Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412

  18. Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs

    Science.gov (United States)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred

    2017-10-01

    MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet

  19. Effects of irradiation and isochronal anneal temperature on hole and electron trapping in MOS devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Shaneyfelt, M.R.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1998-02-01

    Capacitance-voltage and thermally-stimulated-current techniques are used to estimate trapped hole and electron densities in MOS oxides as functions of irradiation and isochronal anneal temperature. Trapped-charge annealing and compensation effects are discussed

  20. Radiation from 39 and 45 MEV electrons channeled in lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Diedrich, E.; Kufner, W.; Buschhorn, G. (Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany). Werner-Heisenberg-Inst. fuer Physik)

    1991-12-01

    Channeling radiation from 39 and 45 MeV electrons channeled along the (0001) axis, the (0110) plane and the (1210) plane of a 30 {mu}m thick LiNbO{sub 3} crystal has been measured. Calculations of the planar crystal potentials were performed by means of the many-beam formalism. Good agreement between theory and experiment is obtained for the planar channeling radiation. Associated with channeling, additional radiation lines have been observed, which may be explained by a periodic perturbation of the continuum potential. (author).

  1. Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, M., E-mail: matteo.meneghini@dei.unipd.it; Bisi, D.; Meneghesso, G.; Zanoni, E. [Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova (Italy); Marcon, D.; Stoffels, S.; Van Hove, M.; Wu, T.-L.; Decoutere, S. [IMEC, Kapeldreef 75, 3001 Heverlee (Belgium)

    2014-04-07

    This paper describes an extensive analysis of the role of off-state and semi-on state bias in inducing the trapping in GaN-based power High Electron Mobility Transistors. The study is based on combined pulsed characterization and on-resistance transient measurements. We demonstrate that—by changing the quiescent bias point from the off-state to the semi-on state—it is possible to separately analyze two relevant trapping mechanisms: (i) the trapping of electrons in the gate-drain access region, activated by the exposure to high drain bias in the off-state; (ii) the trapping of hot-electrons within the AlGaN barrier or the gate insulator, which occurs when the devices are operated in the semi-on state. The dependence of these two mechanisms on the bias conditions and on temperature, and the properties (activation energy and cross section) of the related traps are described in the text.

  2. Angular distributions for the charged components in a cascade shower induced by 350 MeV electrons

    International Nuclear Information System (INIS)

    Kobayashi, S.; Itoh, H.; Murakami, A.; Muto, T.

    1978-01-01

    The angular distributions of secondary electrons contained in a cascade shower are studied by using a streamer chamber. The primary electrons with energy of about 350 MeV are incident on a lead converter of various thickness. The angular data are analyzed for the number of electrons in a shower, and for the converter thickness. The obtained distributions show a systematic agreement with the Monte Carlo calculations presented by Messel and Crawford. (Auth.)

  3. Positron lifetime studies of electron irradiated copper

    International Nuclear Information System (INIS)

    Hadnagy, T.D.

    1976-01-01

    Single-crystal copper was irradiated with 4.5-MeV electrons producing simple Frenkel defects as well as a significant concentration of divacancies. Mean positron lifetime characteristics, which are sensitive to the presence of vacancies and multivacancies in copper, was monitored after isochronal anneals between 80 and 800 0 K to determine the relative change of characteristic mean lifetimes and their associated intensities. Also a study of the dependence of the mean positron lifetime on the total electron fluence was made and compared with existing theories relating these lifetimes to vacancy or multivacancy concentrations. Numerical data from curve fitting procedures using a conventional trapping model for defect-induced changes in positron lifetimes indicate that upon irradiation with 4.5-MeV electrons at 80 0 K, about 8 percent of the defects produced are divacancy units. Divacancy units appear to be several times more effective in trapping positrons than are monovacancies. Further, the experimental data suggest that the stage III annealing processes in electron-irradiated copper most probably involve the motion and removal of both monovacancies and divacancies. A conglomerate (multivacancy) unit appears to exist as a stable entity even after annealing procedures are carried out at temperatures slightly above the stage III region. Such a stable unit could serve as a nucleation center for the appearance of voids

  4. Coherent bremsstrahlung and channeling radiation from electrons of one to three MeV in silicon and gold

    International Nuclear Information System (INIS)

    Watson, J.E.

    1981-01-01

    The observation of sharp peaks in the x-ray spectrum from 1 to 3 MeV electrons striking thin single crystals of silicon and gold is reported. These peaks were observed in the range 1 to 25 keV. The peaks are of two different origins, both direct results of the periodic nature of the target crystals. The first kind of radiation is caused by the interference of incoming and scattered electron wave functions. Because of the periodicity of the target material there is a coherence effect for certain bremsstrahlung wave vectors. This coherent bremsstrahlung, though well known at very high electron energies, has never been adequately studied at electron energies below several hundred MeV. Detailed agreement between theoretical prediction and observation in silicon is shown. The second kind of radiation is caused by electrons channeled along major crystal axes. The electrons enter certain quantized orbits as they channel and may emit photons as a consequence of transitions between the various orbits. Observations of channeling radiation for various crystal axes in silicon are presented. Both phenomena were observed in gold, the first such observation for any metallic target

  5. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  6. Physics design of a 10 MeV, 6 kW travelling wave electron linac

    Indian Academy of Sciences (India)

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2 π / 3 mode constant impedance travelling wave structure, which ...

  7. Molecular dynamics simulation of electron trapping in the sapphire lattice

    International Nuclear Information System (INIS)

    Rambaut, C.; Oh, K.H.; Fayeulle, S.; Kohanoff, J.

    1995-10-01

    Energy storage and release in dielectric materials can be described on the basis of the charge trapping mechanism. Most phenomenological aspects have been recently rationalized in terms of the space charge mode. Dynamical aspects are studied here by performing Molecular Dynamics simulations. We show that an excess electron introduced into the sapphire lattice (α -Al 2 O 3 ) can be trapped only at a limited number of sites. The energy gained by allowing the electron to localize in these sites is of the order of 4-5 eV, in good agreement with the results of the space charge model. Displacements of the neighboring ions due to the implanted charge are shown to be localized in a small region of about 5 A. Detrapping is observed at 250 K. The ionic displacements turn out to play an important role in modifying the potential landscape by lowering, in a dynamical way, the barriers that cause localization at low temperature. (author). 18 refs, 7 figs, 2 tabs

  8. Effect of 6 MeV electrons on luminescence properties of Y{sub 2}O{sub 3}:Tb{sup 3+} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Sunitha, D.V., E-mail: sunithaprasad8@gmail.com [School of Physics, Reva University, Yelahanka, Bangalore 560064 (India); Nagabhushana, H. [Prof. C.N.R. Rao Centre for Advanced Materials Research, Tumkur University, Tumkur 572103 (India); Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-09-15

    Y{sub 2}O{sub 3}:Tb{sup 3+} nanophosphors were synthesized by solution combustion technique and irradiated with 6 MeV energetic electrons in the fluence range 2–10×10{sup 13} e{sup −}cm{sup −2}. Powder X-ray diffraction (PXRD) patterns confirm cubic phase of Y{sub 2}O{sub 3}. The crystallite size was estimated using Scherrer method and was found to be in the order of ~39 nm. SEM micrographs revealed the formation of non-uniform spherical shaped particles for higher electron fluence. Photoluminescence spectra (PL) of pristine and Tb{sup 3+} doped Y{sub 2}O{sub 3} were recorded in the fluence range 2–10×10{sup 13} e{sup −}cm{sup −2}. PL intensity was found to increase up to 4×10{sup 13} e{sup −}cm{sup −2} and thereafter it decreases with further increase in electron fluence. This may be attributed to lattice disorder produced by dense electronic excitation under electron irradiation. The characteristic emission peaks of Tb{sup 3+} were observed at ~ 484–490 nm ({sup 5}D{sub 4}→{sup 7}F{sub 6}), 548 nm ({sup 5}D{sub 4}→{sup 7}F{sub 5}) and 587 nm ({sup 5}D{sub 4}→{sup 7}F{sub 4}) at excited wavelength 397 nm. Two TL glow peaks were recorded in both pristine and electron irradiated samples indicate that two types of traps were created. The color co-ordinate values (x, y) were located in the green region of the CIE diagram suggests that electron irradiated Y{sub 2}O{sub 3}:Tb{sup 3+} phosphor could be used in white LEDs.

  9. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  10. The Electronic McPhail Trap

    Directory of Open Access Journals (Sweden)

    Ilyas Potamitis

    2014-11-01

    Full Text Available Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi, that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect’s wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it.

  11. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  12. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    Science.gov (United States)

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  13. 238U and 237Np nuclear fission by 90-270 MeV electrons

    International Nuclear Information System (INIS)

    Kuznetsov, V.L.; Nedorezov, V.G.; Nikitina, N.V.; Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Smirnov, A.N.; Ehjsmont, V.P.

    1981-01-01

    A technique for measuring cross sections of 238 U and 237 Np nuclei fission caused by 90-270 MeV electrons is described. Measurement results are given. The results obtained are discussed on the basis of the virtual photon method. It is shown that the difference in cross sections of 238 U and 237 Np electrofission is due to the different contribution of the giant resonance [ru

  14. Optimization of beam parameters of electron gun for 2.5 MeV/100 kW high power industrial accelerator

    International Nuclear Information System (INIS)

    Pramod, R.; Petwal, V.C.

    2009-01-01

    A 2.5 MeV/100 kW transformer type industrial accelerator is being developed at RRCAT. A Pierce type electron gun consisting of 10 mm diameter LaB 6 disc (indirectly heated) is used as a source of electron beam. The cathode assembly is put on the top of the accelerating structure, which consists of many electrostatic lenses of which the first lens acts as anode of the gun. The quality of the beam injected into the accelerating structure depends on the anode voltage, shape and size of anode and its distance from the cathode. The anode is subjected to variable voltage during the operation of accelerator from energy 1 MeV to 2.5 MeV, which results in variable emittance at the exit of the electron gun. The electron beam from the gun should provide parallel or slightly convergent beam with long focal length and the emittance of the beam at the exit of electron gun should match the beam acceptance limit of the accelerating structure. The EGUN code is used to optimize the shape and size of the anode, its distance from the cathode to achieve above objectives. Our study suggests that the desired beam parameters at the exit of the anode can be obtained by reducing the aperture size of the anode and by applying suitable voltage gradient to the anode. (author)

  15. Electromagnetic design and beam dynamics studies for a 10 MeV, 10 kW electron linac

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2013-01-01

    Bi-periodic on-axis coupled standing wave linac is seen as an attractive choice for low energy (∼10 MeV) electron accelerators for industrial applications. In this paper, we present the physics design of an S-band bi-periodic on-axis coupled standing wave structure operating in π/2 mode. The structure operates at 2856 MHz and can accelerate electrons to 10 MeV. The 2D optimization of structure cells carried out using SUPERFISH is reported. Magnetic coupling is achieved through bean shaped coupling slots. Analytical calculations have been carried out to fix the dimensions of coupling slots. The paper discusses the complete 3D design of accelerating structure with coupling slots carried out using CST-MWS. The approach used to achieve confluence is outlined. Finally, the beam dynamics studies carried out using PARMELA are also discussed. (author)

  16. Dislocation Loops with a Burgers Vector Produced by 1 MeV Electron Irradiation in FCC Copper-Nickel

    DEFF Research Database (Denmark)

    Leffers, Torben; Barlow, P.

    1975-01-01

    Dislocation loops with Burgers vector a are formed in Cu-Ni alloys during 1 MeV electron irradiation in a high-voltage electron microscope at 350°-400°C. The dislocation loops are of interstitial type and pure edge in character with line vectors. Some of the loops are seen to dissociate into loop...

  17. Study of point defect clustering in electron and ion irradiated zirconium alloys

    International Nuclear Information System (INIS)

    Hellio, C.; Boulanger, L.

    1986-09-01

    Dislocation loops created by 500 keV Zr + ions and 1 MeV electrons in zirconium have a/3 type Burgers vectors, and in ion irradiated samples, loops lie preferentially on planes close to (1010). From in-situ observations of loop growth under 1 MeV electron irradiation in zirconium and dilute Zr (Nb,O) alloys, a strong increase of the vacancy migration energy with oxygen concentration was observed, from 0.72 eV for pure zirconium to 1.7 eV for Zr and Zr-1% Nb doped with 1800 ppm weight oxygen, indicating large trapping of vacancies by O single interstitials or clusters

  18. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    CERN Document Server

    Lotov, K.V.; Petrenko, A.V.; Amorim, L.D.; Vieira, J.; Fonseca, R.A.; Silva, L.O.; Gschwendtner, E.; Muggli, P.

    2014-01-01

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  19. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    Science.gov (United States)

    Voros, Marton; Brawand, Nicholas; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).

  20. Energy distribution of 0. 279 MeV gamma rays Compton scattered from bound electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B; Singh, P; Singh, G; Ghumman, B S

    1984-11-01

    Energy and intensity distribution of 0.279 MeV gamma rays Compton scattered from K-shell electrons of tantalum is measured at scattering angle of 70deg. The experimental results are compared with the available theoretical data. Spectral distribution is also obtained as a function of scatterer thickness to account for the contribution of false events. 13 refs.

  1. Study of imaging plate detector sensitivity to 5-18 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boutoux, G., E-mail: boutoux@celia.u-bordeaux1.fr; Rabhi, N.; Batani, D.; Ducret, J.-E. [Univ. de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Binet, A.; Nègre, J.-P.; Reverdin, C.; Thfoin, I. [CEA DAM DIF, F-91297 Arpajon (France); Jakubowska, K. [Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw (Poland)

    2015-11-15

    Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.

  2. Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.; Kalboussi, A. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Aimez, V. [Université de Sherbrooke, Laboratoire Nanotechnologies et Nanosystémes (UMI-LN2 3463), Université de Sherbrooke—CNRS—INSA de Lyon-ECL-UJF-CPE Lyon, Institut Interdisciplinaire d’Innovation Technologique (Canada); Drouin, D. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Souifi, A. [Institut des Nanotechnologies de Lyon—site INSA de Lyon, UMR CNRS 5270 (France)

    2016-09-15

    In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) we show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.

  3. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O. [Peoples’ Friendship University of Russia (Russian Federation)

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  4. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovski, V.V. [St. Petersburg State Polytechnic University, St. Petersburg 195251 (Russian Federation); Lebedev, A.A., E-mail: shura.lebe@mail.ioffe.ru [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); National Research University of Information Technologies, Mechanics, and Optics, St. Petersburg 197101 (Russian Federation); Emtsev, V.V.; Oganesyan, G.A. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6–9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the “source” of silicon ions generating these ions uniformly across the sample thickness.

  5. Defects in low temperature electron irradiated InP

    International Nuclear Information System (INIS)

    Suski, J.; Bourgoin, J.

    1984-01-01

    n and p-InP has been irradiated at 25K with 1MeV electrons and the created defects were studied by deep level transient spectroscopy (DLTS) in the range 25K-400K. In n-InP, four traps are directly observed, with low introduction rates except for one. They anneal in three stages, and four new centers of still lower concentration appear after 70 0 C heat treatment. In p-InP, two dominant traps stable up to approx.= 400K with introduction rates close to the theoretical ones, which might be primary defects are found, while another one is clearly a secondary defect likely associated to Zn dopant. At least two of the low concentration irradiation induced electron traps, created between 25K and 100K are also secondary defects, which implies a mobility of some primary defects down to 100K at least. (author)

  6. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    Science.gov (United States)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  7. Diffusion of interstitial atoms in FCC metals after irradiation with 2 MeV electrons

    International Nuclear Information System (INIS)

    Kornmann, H.

    1980-01-01

    Selfdiffusion in nickel after electron irradiation has been restudied. The diffusion velocity near the surface and the diffusion constant in the interior of the crystal have been determined as a function of radiation flux and temperature. A special method for the measurement of diffusion has been improved, which is based on radioactive tracer atoms for indication and on ion etching for the removal of thin films. To improve additionally the accuracy of the technique tracer atoms are induced into the crystal by thermal diffusion and then irradiated with 2 MeV electrons. (orig./GSCH) [de

  8. Lateral propagation of MeV electrons generated by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Seely, J. F.; Szabo, C. I.; Audebert, P.; Brambrink, E.; Tabakhoff, E.; Hudson, L. T.

    2010-01-01

    The propagation of MeV electrons generated by intense (≅10 20 W/cm 2 ) femtosecond laser irradiation, in the lateral direction perpendicular to the incident laser beam, was studied using targets consisting of irradiated metal wires and neighboring spectator wires embedded in electrically conductive (aluminum) or resistive (Teflon) substrates. The K shell spectra in the energy range 40-60 keV from wires of Gd, Dy, Hf, and W were recorded by a transmission crystal spectrometer. The spectra were produced by 1s electron ionization in the irradiated wire and by energetic electron propagation through the substrate material to the spectator wire of a different metal. The electron range and energy were determined from the relative K shell emissions from the irradiated and spectator wires separated by varying substrate lateral distances of up to 1 mm. It was found that electron propagation through Teflon was inhibited, compared to aluminum, implying a relatively weak return current and incomplete space-charge neutralization. The energetic electron propagation in the direction parallel to the electric field of the laser beam was larger than perpendicular to the electric field. Energetic electron production was lower when directly irradiating aluminum or Teflon compared to irradiating the heavy metal wires. These experiments are important for the determination of the energetic electron production mechanism and for understanding lateral electron propagation that can be detrimental to fast-ignition fusion and hard x-ray backlighter radiography.

  9. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  10. Dosimetric evaluation of multi-sided irradiation on HDPE pipes under 2 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Benny, P.G., E-mail: bennypg@yahoo.com; Khader, S.A.; Sarma, K.S.S.

    2014-03-01

    The use of electron beam technology has enabled the production of heat resistant pipe for hot water circulation. One of the difficulties in the irradiation of pipe products is the uneven penetration of electrons. Quality of the radiation process depends on radiation dose and homogeneity of the dose distribution, which becomes a major concern when treatments of circular objects like pipes are performed. One method to achieve uniformity in the absorbed dose in the product is to use multi-sided irradiation. The paper discusses the importance of dosimetry mapping in industrial electron beam radiation processing and outlines the challenges in delivering a uniform dose to cylindrical objects. In this study, HDPE pipe of 5 mm thickness of homogeneous material (40 mm outer diameter and 30 mm inner diameter) has been chosen for multi-sided irradiation under 2 MeV scanned electron beam from the ILU-6 accelerator. - Highlights: • The paper outlines the challenges in delivering uniform dose to cylindrical objects at 2 MeV industrial electron beam facility. • HDPE pipe of 40 mm outer diameter and 30 mm inner diameter has been chosen for the study. • The circumferential dose distribution inside and outside of the pipes were evaluated by using calibrated CTA dosimeter strips. • Using stack of dosimeter strips, changes in circumferential dose distribution in the annular region of the pipe was evaluated. • Optimization of multi-sided irradiation on the HDPE pipes for better dose homogeneity is reported in the paper.

  11. Dosimetric evaluation of multi-sided irradiation on HDPE pipes under 2 MeV electron beam

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2014-01-01

    The use of electron beam technology has enabled the production of heat resistant pipe for hot water circulation. One of the difficulties in the irradiation of pipe products is the uneven penetration of electrons. Quality of the radiation process depends on radiation dose and homogeneity of the dose distribution, which becomes a major concern when treatments of circular objects like pipes are performed. One method to achieve uniformity in the absorbed dose in the product is to use multi-sided irradiation. The paper discusses the importance of dosimetry mapping in industrial electron beam radiation processing and outlines the challenges in delivering a uniform dose to cylindrical objects. In this study, HDPE pipe of 5 mm thickness of homogeneous material (40 mm outer diameter and 30 mm inner diameter) has been chosen for multi-sided irradiation under 2 MeV scanned electron beam from the ILU-6 accelerator. - Highlights: • The paper outlines the challenges in delivering uniform dose to cylindrical objects at 2 MeV industrial electron beam facility. • HDPE pipe of 40 mm outer diameter and 30 mm inner diameter has been chosen for the study. • The circumferential dose distribution inside and outside of the pipes were evaluated by using calibrated CTA dosimeter strips. • Using stack of dosimeter strips, changes in circumferential dose distribution in the annular region of the pipe was evaluated. • Optimization of multi-sided irradiation on the HDPE pipes for better dose homogeneity is reported in the paper

  12. The electron beam characteristics of energies up to 20 MeV and comparison of electron parameters of linear accelerators

    International Nuclear Information System (INIS)

    Awada, M.; Elleithy, M.A.; ElWihady, G.F.; Mostafa, K.A.

    2005-01-01

    The electron beams characteristics studded for the energies 4-20 MeV of Varian 23 EX ,experimental results are presented and compared with the published data. The CADD curves are measured for all energies and carried out the PDD of different applicator sizes ,that compared with the PDD of in the BJR. The quality beam parameters are determined from the CADD curves and calculated the yielded parameters of the corresponding electron energies which compared with the published data of other accelerators and theoretical Monte-Carlo calculation. The beam profiles are measured at different depths to construct the isodose distribution

  13. Control system for 10 MeV irradiation electron linac

    International Nuclear Information System (INIS)

    Zeng Ziqiang; Zhang Lifeng; Lu Weixing; Gao Zhenjiang; Zhang Yan; Han Guangwen; Wang Shuxian

    2005-01-01

    Control system of the 10 MeV electron linac using Distributed Control System (DCS) was studied. The hardware of control system consists of four SIEMENS PLCs and monitor computer, the software bases on STEP 7, Labwindows/CVI and SQL Server. The bus between the monitor computer and the main PLC is 100 M industrial networks, between PLCs is MPI bus, between PLC and remote partner is PROFIBUS, between PLC and terminals is RS485/422. The software of control system can provide a friendly human machine interface to operate the machine, protect the human and equipment from risk, and storage the status of the accelerator real time to the database. The monitor and maintenance of the linac can been carried out not only on local computer or local network, but also in internet. (author)

  14. Negative pion trapping by metastable state in liquid helium

    International Nuclear Information System (INIS)

    Nakamura, S.N.; Iwasaki, M.; Outa, H.

    1991-11-01

    We found long-lived metastable states of stopped π - 's in liquid helium by measuring time spectra of two different delayed products: 1) protons emitted after π - absorption by 4 He nuclei and 2) 70-MeV electrons originating from free π - → e - (ν e )-bar decay. The lifetime and fraction of delayed π - absorption obtained by emitted protons are 7.26±0.12 nsec and 1.66±0.05%, respectively. The free-decay fraction was calculated to be 0.64±0.03% from this result, which is consistent with the observed free-decay fraction of π e2 decay. These results imply that 2.30±0.07% of stopped π - are trapped in metastable states which have an overall lifetime of 10.1±0.2 nsec. The same experiment and analysis were performed for stopped π - in liquid neon. No evidence for trapping was found in liquid neon. (author)

  15. Polarized electrons from GaAs for parity nonconservation studies and Moeller scattering at 250 MeV

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1987-01-01

    A description is given of a polarized electron source based on photoemission from GaAs with circularly polarized light, which was developed for use in the study of parity nonconservation (PNC) in e- 12 C scattering at 250 MeV at the MIT Bates Linear Accelerator Center. A multi-chamber vacuum system houses up to four GaAs crystals simultaneously, and is contained in a Faraday cage to provide 365 KeV in electrostatic acceleration. Stable operation is achieved through the use of a modulated cw laser. The PNC experiment is discussed, particularly with regards to its requirements on the source. The peak current from the source is 20 mA, resulting in a current in excess of 6 mA at high energy. The electron beam polarization has been measured to be 0.36 ± 0.004 using Moeller scattering at 250 MeV

  16. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  17. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  18. Analysis of thermionic DC electron gun for 125 MeV linac

    International Nuclear Information System (INIS)

    Kanno, K.; Sato, Isamu; Sato, K.

    2000-01-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  19. Analysis of thermionic DC electron gun for 125 MeV linac

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, K. [Graduate School of Science and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, Isamu; Sato, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst] [and others

    2000-07-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  20. Zonal flow generation in collisionless trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Anderson, J; Nordman, H; Singh, R; Weiland, J

    2006-01-01

    In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical expression for the zonal flow growth rate is derived and compared with the linear TEM growth, and its scaling with plasma parameters is examined for typical tokamak parameter values

  1. In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap

    CERN Document Server

    Amole, C; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J.S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J.T.K.; Menary, S.; Napoli, S.C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2014-01-01

    We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.

  2. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goosman, D.R.

    1984-08-14

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table.

  3. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1984-01-01

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table

  4. Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes.

    Science.gov (United States)

    Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee

    2016-11-10

    We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.

  5. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  6. Dependence of secondary electron emission on surface charging in sapphire and polycrystalline alumina: Evaluation of the effective cross sections for recombination and trapping

    International Nuclear Information System (INIS)

    Said, K.; Damamme, G.; Si Ahmed, A.; Moya, G.; Kallel, A.

    2014-01-01

    Highlights: • A novel approach for the analysis of the secondary electron emission in connection with the surface density of trapped charges. • Experimental estimation of the effective cross section for electron–hole recombination and electron trapping in defects. • A simplified charge transport and trapping model which corroborates qualitatively the interpretation of the results. - Abstract: The evolution of the secondary electron emission from sapphire and polycrystalline alumina during electron irradiation, achieved in a scanning electron microscope at room temperature, is derived from the measurement of the induced and the secondary electron currents. The semi-logarithmic plot of the secondary electron emission yield versus the surface density of trapped charges displays a plateau followed by a linear variation. For positive charging, the slope of the linear part, whose value is of about 10 −9 cm 2 , is independent of the primary electron energy, the microstructure and the impurities. It is interpreted as an effective microscopic cross section for electron–hole recombination. For negative charging of sapphire, the slope is associated with an effective electron trapping cross section close to 10 −11 cm 2 , which can be assigned to the dominant impurity trap. These effective values reflect the multiple interactions leading to the accumulation of charges. The yield corresponding to the plateau is controlled by the initial density of impurity traps. A charge transport and trapping >model, based on simplifying assumptions, confirms qualitatively these inferences

  7. Numerical simulation of electrons dynamics in a microtron on 6 - 10 MeV

    Science.gov (United States)

    Bashmakov, Y. A.; Dyubkov, V. S.; Lozeev, Y. Y.

    2017-12-01

    Electron dynamics in 6.5 MeV classic microtron of the Lebedev Physics Institute (LPI) is investigated by means of numerical methods. Particular emphasis is placed on the formation mechanism of electron bunches at the first circular orbits. An effect of microtron main parameters such as accelerating RF field amplitude, DC magnetic field, as well as a geometry and a position of a thermal emitter on characteristics of electron beam extracted from the microtron are studied. In the space of mentioned parameters a region corresponding an optimal microtron operation mode is found. It is noted that the unique geometric and energy characteristics of accelerated beam makes use of microtron attractive not only as injector into a synchrotron, but also as a driver in experiments on generation of coherent terahertz electromagnetic radiation.

  8. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2009-08-01

    Full Text Available An electric solar wind sail is a recently introduced propellantless space propulsion method whose technical development has also started. The electric sail consists of a set of long, thin, centrifugally stretched and conducting tethers which are charged positively and kept in a high positive potential of order 20 kV by an onboard electron gun. The positively charged tethers deflect solar wind protons, thus tapping momentum from the solar wind stream and producing thrust. The amount of obtained propulsive thrust depends on how many electrons are trapped by the potential structures of the tethers, because the trapped electrons tend to shield the charged tether and reduce its effect on the solar wind. Here we present physical arguments and test particle calculations indicating that in a realistic three-dimensional electric sail spacecraft there exist a natural mechanism which tends to remove the trapped electrons by chaotising their orbits and causing them to eventually collide with the conducting tethers. We present calculations which indicate that if these mechanisms were able to remove trapped electrons nearly completely, the electric sail performance could be about five times higher than previously estimated, about 500 nN/m, corresponding to 1 N thrust for a baseline construction with 2000 km total tether length.

  9. Thermoluminescent response of LiF: Mg, Cu, P (GR-200) below an electron beam of 6 MeV

    International Nuclear Information System (INIS)

    Torijano C, E.F.S.; Azorin N, J.; Villasenor N, I.; Lujan C, P.J.; Rivera M, T.

    2007-01-01

    Full text: In this work the experimental results of studying the thermoluminescent response (TL) of LiF:Mg,Cu,P (GR-200) previously irradiated with 6 MeV electrons are presented. The electrons beam was generated by a Lineal Accelerator VARIAN I for medical use. The lineal accelerator is installed in the General Hospital of Mexico (HGM). A lot of 25 thermoluminescent dosemeters (DTL) was used. The mass and volume of each one of them were determined. Obtaining a variation of 14% in standard deviation (SD). The DTLs were irradiated to an energy of 6 MeV. The dose given to the DTL was of 50 c Gy. The linearity of the response of the GR-200 also was determined. (Author)

  10. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  11. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  12. Open trap with ambipolar mirrors

    International Nuclear Information System (INIS)

    Dimov, G.I.; Zakajdakov, V.V.; Kishinevskij, M.E.

    1977-01-01

    Results of numerical calculations on the behaviour of a thermonuclear plasma, allowing for α-particles in a trap with longitudinal confinement of the main ions by ambipolar electric fields are presented. This trap is formed by connecting two small-volume ''mirrortrons'' to an ordinary open trap. Into the extreme mirrortrons, approximately 1-MeV ions are introduced continuously by ionization of atomic beams on the plasma, and approximately 10-keV ions are similarly introduced into the main central region of the trap. By a suitable choice of injection currents, the plasma density established in the extreme mirrortrons is higher than in the central region. As a result of the quasi-neutrality condition, a longitudinal ambipolar field forming a potential well not only for electrons but also for the central ions is formed in the plasma. When the depth of the well for the central ions is much greater than their temperature, their life-time considerably exceeds the time of confinement by the magnetic mirrors. As a result, the plasma density is constant over the entire length of the central mirrortron, including the regions near the mirrors, and an ambipolar field is formed only in the extreme mirrortrons. The distribution of central ions and ambipolar potential in the extreme mirrortrons is uniquely determined by the density distribution of fast extreme ions. It is shown in the present study that an amplification coefficient Q as high as desired can, in principle, be reached in the trap under consideration, allowing for α-particles. However, this requires high magnetic fields in the mirrors and a sufficient length of the central mirrotron. It is shown that for moderate values of Q=3-8, it is desirable not to confine the central fast α-particles. To achieve a coefficient of Q=5, it is necessary to create fields of 250 kG in the mirrors, and the length of the trap must not be greater than 100 m. (author)

  13. Defects in electron irradiated vitreous SiO2 probed by positron annihiliation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao; Itoh, Hisayoshi

    1994-01-01

    Defects in 3 MeV electron irradiated vitreous SiO 2 (v-SiO 2 ) were probed by the positron annihilation technique. For unirradiated v-SiO 2 specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author)

  14. Characterization and optimization of laser-driven electron and photon sources in keV and MeV energy ranges

    International Nuclear Information System (INIS)

    Bonnet, Thomas

    2013-01-01

    This work takes place in the framework of the characterization and the optimization of laser-driven electron and photon sources. With the goal of using these sources for nuclear physics experiments, we focused on 2 energy ranges: one around a few MeV and the other around a few tens of keV. The first part of this work is thus dedicated to the study of detectors routinely used for the characterization of laser-driven particle sources: Imaging Plates. A model has been developed and is fitted to experimental data. Response functions to electrons, photons, protons and alpha particles are established for SR, MS and TR Fuji Imaging Plates for energies ranging from a few keV to several MeV. The second part of this work present a study of ultrashort and intense electron and photon sources produced in the interaction of a laser with a solid or liquid target. An experiment was conducted at the ELFIE facility at LULI where beams of electrons and photons were accelerated up to several MeV. Energy and angular distributions of the electron and photons beams were characterized. The sources were optimized by varying the spatial extension of the plasma at both the front and the back end of the initial target position. In the optimal configuration of the laser-plasma coupling, more than 1011 electrons were accelerated. In the case of liquid target, a photon source was produced at a high repetition rate on an energy range of tens of keV by the interaction of the AURORE Laser at CELIA (10 16 W.cm -2 ) and a melted gallium target. It was shown that both the mean energy and the photon number can be increased by creating gallium jets at the surface of the liquid target with a pre-pulse. A physical interpretation supported by numerical simulations is proposed. (author)

  15. The study of 1 MeV electron irradiation induced defects in N-type and P-type monocrystalline silicon

    Science.gov (United States)

    Babaee, S.; Ghozati, S. B.

    2017-12-01

    Despite extensive use of GaAs cells in space, silicon cells are still being used. The reason is that not only they provide a good compromise between efficiency and cost, but also some countries do not have the required technology for manufacturing GaAs. Behavior of a silicon cell under any levels of charged particle irradiation could be deducted from the results of a damage equivalent 1 MeV electron irradiation using the NASA EQflux open source software package. In this paper for the first time, we have studied the behavior of a silicon cell before and after 1 MeV electron irradiation with 1014, 1015 and 1016 electrons-cm-2 fluences, using SILVACO TCAD simulation software package. Simulation was carried out at room temperature under AM0 condition. Results reveal that open circuit voltage and efficiency decrease after irradiation while short circuit current shows a slight increase in the trend around 5 × 1016 electrons-cm-2, and short circuit current loss plays an important role on efficiency changes rather than open circuit voltage.

  16. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  17. Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...

    Indian Academy of Sciences (India)

    2016-10-11

    Oct 11, 2016 ... We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear ... linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three- ... structures are preferred for relatively higher energy ... klystron in a TW linac, which results in cost reduction.

  18. Formation of Deep Electron Trap by Yb3+ Codoping Leads into Super-Long Persistent Luminescence in Ce3+-doped Yttrium Aluminum Gallium Garnet Phosphors.

    Science.gov (United States)

    Ueda, Jumpei; Miyano, Shun; Tanabe, Setsuhisa

    2018-05-23

    The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Cr 3+ compound is one of the brightest persistent phosphors, but its persistent luminescence (PersL) duration is not so long due to the relatively shallow Cr 3+ electron trap. Comparing the vacuum referred binding energy of the electron trapping state by Cr 3+ and those by lanthanide ions, we selected Yb 3+ as a deeper electron trapping center. The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Yb 3+ phosphors show Ce 3+ :5d→4f green persistent luminescence after ceasing blue light excitation. The formation of Yb 2+ was confirmed by the increased intensity of absorption at 585 nm during the charging process. This result indicates that the Yb 3+ ions act as electron traps by capturing an electron. From the thermoluminescence glow curves, it was found the Yb 3+ trap makes much deeper electron trap with 1.01 eV depth than the Cr 3+ electron trap with 0.81 eV depth. This deeper Yb 3+ trap provides much slower detrapping rate of filled electron traps than the Cr 3+ -codoped persistent phosphor. In addition, by preparing transparent ceramics and optimizing Ce 3+ and Yb 3+ concentrations, the Y 3 Al 2 Ga 3 O 12 :Ce 3+ (0.2%)-Yb 3+ (0.1%) as-made transparent ceramic phosphor showed super long persistent luminescence for over 138.8 hours after ceasing blue light charging.

  19. Comparative time-series analysis of MeV electron data by Ulysses and Pioneer 10/11 in the Jovian magnetosphere

    International Nuclear Information System (INIS)

    Dunzlaff, P.; Kiel Univ.; Heber, B.; Kopp, A.; North-West Univ., Potchefstroom; Potgieter, M.S.

    2013-01-01

    The dynamics of the Jovian magnetosphere is dominated by the planet's fast rotation with a period of ∝ 10 h.Within the magnetosphere, this periodicity can in particular be seen in the temporal variation of the spectral index of MeV electrons: every ∝ 10 h the counting rates show a maximum (minimum), while the spectral index shows a minimum (maximum) known as the Jovian ''clock'' mechanism. In this study we re-analyse Ulysses and Pioneer 10/11 data and show that another periodic modulation in the MeV electrons can be identified, manifested by local maxima of the spectral index and local minima of the counting rates. For Ulysses, this modulation can be observed throughout the magnetosphere near the magnetic equator, suggesting an azimuthal asymmetric distribution of MeV electrons near the current sheet. This modulation is found to trail the ''clock'' mechanism by ∝ 3.25 h. The Pioneer 10 data, however, only show occasional evidence of the presence of these local maxima while there is no evidence of this modulation in the Pioneer 11 data. A comparison of the times of observed minor peaks and Ulysses' distance from the current sheet using a simple rigid disc model as well as the model of Khurana and Schwarzl (2005) is performed.

  20. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Mulchandani, J.; Mohania, P.; Baxy, D.; Wanmode, Y.; Hannurkar, P.R.

    2005-01-01

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  1. Free electron laser facilities employing a 150-MeV linac injector for Saga synchrotron light source

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yasumoto, M.; Ochiai, Y.; Ishibashi, M.; Murayama, T.

    1999-01-01

    Free electron laser (FEL) facilities as the FELI FEL Facility are proposed, for which a 150-MeV linac type injector for a Saga synchrotron light source (SLS) is employed in FEL mode. The linac has two operating modes; short macropulse mode a 1 μs at 150 MeV for injection to a 1 - 1.3-GeV third generation type storage ring and long macropulse mode of 12 μs at 100 MeV for four FEL Facilities. The macropulse beam consists of a train of several ps, 0.6 nC microbunches (peak current 100 A) repeating at 89.25 MHz. We are aiming to supply high power level photon beams covering an attractive wavelength range from 0.05 nm (25 keV) to 200 μm (0.006 eV) for scientific researches, bio-medical and industrial applications, using the Saga third generation type SLS with a superconducting wiggler and the proposed four FEL Facilities. (author)

  2. Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wilfried Nörtershäuser

    2010-03-01

    Full Text Available The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state lifetimes. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain.

  3. Interplanetary electrons: what is the strength of the Jupiter source

    International Nuclear Information System (INIS)

    Fillius, W.; Ip, Wing-Huen; Knickerbocker, P.

    1977-01-01

    Because there is not enough information to support a rigorous answer, we use a phenomenological approach and conservative assumptions to address the source strength of Jupiter for interplanetary electrons. We estimate that Jupiter emits approximately 10 24 - 10 26 electrons s -1 of energy > 6 MeV, which source may be compared with the population of approximately 3 x 10 28 electrons of the same energy in Jupiter's outer magnetosphere. We conclude that Jupiter accelerates particles at a rate exceeding that of ordinary trapped particle dynamical processes. (author)

  4. Positron lifetime measurements on electron irradiated amorphous alloys

    International Nuclear Information System (INIS)

    Moser, P.; Hautojaervi, P.; Chamberod, A.; Yli-Kauppila, J.; Van Zurk, R.

    1981-08-01

    Great advance in understanding the nature of point defects in crystalline metals has been achieved by employing positron annihilation technique. Positrons detect vacancy-type defects and the lifetime value of trapped positrons gives information on the size of submicroscopic vacancy aglomerates and microvoids. In this paper it is shown that low-temperature electron irradiations can result in a considerable increase in the positron lifetimes in various amorphous alloys because of the formation of vacancy-like defects which, in addition of the pre-existing holes, are able to trap positrons. Studied amorphous alloys were Fe 80 B 20 , Pd 80 Si 20 , Cu 50 Ti 50 , and Fe 40 Ni 40 P 14 B 6 . Electron irradiations were performed with 3 MeV electrons at 20 K to doses around 10 19 e - /cm 2 . After annealing positron lifetime spectra were measured at 77 K

  5. Impact of electron trapping on RF current drive in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Engelmann, F.

    1987-01-01

    The impact of the presence of trapped electrons on noninductive current drive by RF waves in tokamak plasmas is investigated. The appropriate response function, allowing to express the current drive efficiency J/P by a simple analytical formula, has been derived. The approach displays the reasons for the degradation of the current drive efficiency away from the plasma axis in the case of methods relying on the diffusion of electrons in the velocity component perpendicular to the confining magnetic field. It is shown that this degradation is appreciable even for large resonant parallel velocities. (author) [pt

  6. Overview of the Livermore electron beam ion trap project

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Behar, E.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gendreau, K.C.; Graf, A.; Gu, M.-F.; Harris, C.L.; Kahn, S.M.; Kelley, R.L.; Lepson, J.K.; May, M.J.; Neill, P.A.; Pinnington, E.H.; Porter, F.S.; Smith, A.J.; Stahle, C.K.; Szymkowiak, A.E.; Tillotson, A.; Thorn, D.B.; Traebert, E.; Wargelin, B.J.

    2003-01-01

    The Livermore electron beam ion trap facility has recently been moved to a new location within LLNL, and new instrumentation was added, including a 32-pixel microcalorimeter. The move was accompanied by a shift of focus toward in situ measurements of highly charged ions, which continue with increased vigor. Overviews of the facility, which includes EBIT-I and SuperEBIT, and the research projects are given, including results from optical spectroscopy, QED, and X-ray line excitation measurements

  7. Preliminary examination of induced radioactivity in pepper by 10 MeV electron irradiation

    International Nuclear Information System (INIS)

    Katayama, Tadashi; Furuta, Masakazu; Sibata, Setsuko; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Toratani, Hirokazu; Takeda, Atsuhiko.

    1991-01-01

    β-ray measurement was performed on 10 MeV electron-irradiated black pepper and white pepper with liquid scintillation counter in order to reconfirm the wholesomeness of irradiated foods and present unambiguous data to general consumers concerning about the induced radioactivity in the irradiated foods. In irradiated black pepper no radioactivity other than from natural source, un-irradiated one, was detected. But in irradiated white pepper, it was suggested that induced radioactivity might be detected if the detection method was more improved. (author)

  8. CESAR, 2 MeV electron storage ring; general view from above.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  9. High-resolution Auger spectroscopy on 79 MeV Ar5+, 89 MeV Ar6+, and 136 MeV Ar7+ ions after excitation by helium

    International Nuclear Information System (INIS)

    Schneider, T.

    1988-01-01

    In this thesis the atomic structure of highly excited Ar 6+ and Ar 7+ ions was studied. For this 79 MeV Ar 5+ , 89 MeV Ar 6+ , and 136 MeV Ar 7+ ions of a heavy ion accelerator were excited by a He gas target to autoionizing states and the Auger electrons emitted in the decay were measured in highly-resolving state. The spectra were taken under an observational angle of zero degree relative to the beam axis in order to minimize the kinematical broadening of the Auger lines. (orig./HSI) [de

  10. Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles

    Science.gov (United States)

    Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.

    2018-03-01

    The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.

  11. Estimation of Electron Dose Delivered by a 0.4 MeV Accelerator from Bremsstrahlung Dose Measurements

    DEFF Research Database (Denmark)

    Karadjov, A. G.; Hansen, Jørgen-Walther

    1980-01-01

    Determination of a 0.4 MeV electron dose from a bremsstrahlung dose measurement using a converter-detector system is considered. The detector used is a Frickle dosimeter, and the converters are aluminum, copper and lead foils. Optimal converter thickness is ascertained experimentally for each mat...... materials within a Z-range of 13–82. A linear relation is found between bremsstrahlung dose and electron dose ranging from 2 to 20 Mrad. Finally the effect of converter area on detector response is studied....

  12. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  13. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Matteson, S.; Nicolet, M.A.

    1979-01-01

    The magnitude and characteristics of the currents which flow in the target and the chamber of an MeV ion backscattering spectrometer are examined. Measured energy distributions and the magnitude of high-energy secondary electron currents are reported. An empirical universal curve is shown to fit the energy distribution of secondary electrons for several combinations of ion energy, targets and ion species. The magnitude of tertiary electron currents which arise at the vacuum vessel walls is determined for various experimental situations and is shown to be non-negligible in many cases. An experimental arrangement is described which permits charge integrations to 1% arruracy without restricting access to the target as a Faraday cage does. (Auth.)

  14. METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD

    Science.gov (United States)

    Christofilos, N.C.

    1962-05-29

    An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)

  15. Trapped electron decay by the thermally-assisted tunnelling to electron acceptors in glassy matrices. A computer simulation study

    International Nuclear Information System (INIS)

    Feret, B.; Bartczak, W.M.; Kroh, J.

    1991-01-01

    The Redi-Hopefield quantum mechanical model of the thermally-assisted electron transfer has been applied to simulate the decay of trapped electrons by tunnelling to electron acceptor molecules added to the glassy matrix. It was assumed that the electron energy levels in donors and acceptors are statistically distributed and the electron excess energy after transfer is dissipated in the medium by the electron-phonon coupling. The electron decay curves were obtained by the method of computer simulation. It was found that for a given medium there exists a certain preferred value of the electronic excess energy which can be effectively converted into the matrix vibrations. If the mismatch of the electron states on the donor and acceptor coincides with the ''resonance'' energy the overall kinetics of electron transfer is accelerated. (author)

  16. Dynamic trapping of electrons in space plasmas

    International Nuclear Information System (INIS)

    Brenning, N.; Bohm, M.; Faelthammar, C.G.

    1989-12-01

    The neutralization of positive space charge is studied in a case where heavy positive ions are added to a limited region of length L in a collisionfree magnetized plasma. It is found that electrons which become accelerated towards the positive space charge can only achieve a partial neutralization: they overshoot, and the positive region becomes surrounded by negative space charges which screen the electric field from the surroundings. The process is studied both analytically and by computer simulations with consistent results: large positive potentials (U>>kT e /e) can be built up with respect to the surrounding plasma. In the process of growth, the potential maximum traps electrons in transit so that quasineutrality is maintained. The potential U is proportional to the ambient electron temperature and the square of the plasma density increase, but independent of both the ion injection rate and the length L. The process explains several features of the Porcupinge xenon beam injection experiment. It could also have importance for the electrodynamic coupling between plasmas of different densities, e.g. the injection of neutral clouds in the ionosphere of species that becomes rapidly photoionized, or penetration of dense plasma clouds from the solar wind into the magnetosphere. (31 refs.) (authors)

  17. Characterization of a power bipolar transistor as high-dose dosimeter for 1.9-2.2 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Lavalle, M.; Corda, U. [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France); Gombia, E. [IMEM-CNR Institute, Viale delle Scienze 37 A, Loc. Fontanini, 43010 Parma (Italy)

    2010-04-15

    Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a {sup 60}Co source and tested in industrial irradiation plants having high-activity {sup 60}Co gamma-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5-50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from -104 to +22 deg. C, dependence on temperature during reading in the range 20-50 deg. C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.

  18. Electron beam ion trap bi-annual report 1996/1997

    International Nuclear Information System (INIS)

    Schneider, D.

    1999-01-01

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U 92+ ), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime and

  19. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    Science.gov (United States)

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  20. A dominant electron trap in molecular beam epitaxial InAlN lattice-matched to GaN

    Science.gov (United States)

    Pandey, Ayush; Bhattacharya, Aniruddha; Cheng, Shaobo; Botton, Gianluigi A.; Mi, Zetian; Bhattacharya, Pallab

    2018-04-01

    Deep levels in lattice-matched undoped and Si-doped InAlN/GaN grown by plasma-assisted molecular beam epitaxy have been identified and characterized by capacitance and photocapacitance measurements. From x-ray diffraction, reflectance measurements, electron energy loss spectroscopy and high-resolution transmission electron microscopy it is evident that the material has two distinct phases with different compositions. These correspond to In compositions of 18.1% and 25.8%, with corresponding bandgaps of 4.6 eV and 4.1 eV, respectively. The lower bandgap material is present as columnar microstructures in the form of quantum wires. A dominant electron trap with an activation energy of 0.293  ±  0.01 eV, a small capture cross-section of (1.54  ±  0.25)  ×  10-18 cm2, and density increasing linearly with Si doping density is identified in all the samples. The characteristics of the electron trap and variation of diode capacitance are discussed in the context of carrier dynamics involving the dominant trap level and the quantum wires.

  1. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  2. Secondary electron emission from metals irradiated by 0.4-3 MeV gamma-quanta

    International Nuclear Information System (INIS)

    Grudskij, M.Ya.; Malyshenkov, A.V.; Smirnov, V.V.

    1975-01-01

    Experimental and calculational data were considered on the secondary electron emission outgoing from metal targets of an equilibrium thickness irradiated by gamma-quanta fluxes with the energies from 0.4 to 3 MeV. New experimental data are presented. Characteristics of emission were measured by two methods: by magnetic spectrometers with a transverse magnetic field, and by means of an electrometric device with using radioisotopic gamma-sources of 198 Au, 137 Cs, 60 Co and 24 Na. The dependence of the electron emission on the atomic number of the target material was studied. For this purpose the parameters of emissions outgoing from Al-, Cu-, Cd-, Pb- and Au-targets were measured. The advantages and shortcomings of the known methods of calculating the second electron emission were discussed. The obtained experimental and calculational results on studying electrons were compared with those known from literature, and possible sources of systematic errors were discussed

  3. Comparative time-series analysis of MeV electron data by Ulysses and Pioneer 10/11 in the Jovian magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dunzlaff, P. [North-West Univ., Potchefstroom (South Africa). Centre for Space Research; Kiel Univ. (Germany). Inst. fuer Experimentelle und Angewandte Physik; Heber, B. [Kiel Univ. (Germany). Inst. fuer Experimentelle und Angewandte Physik; Kopp, A. [Kiel Univ. (Germany). Inst. fuer Experimentelle und Angewandte Physik; North-West Univ., Potchefstroom (South Africa). Centre for Space Research; Potgieter, M.S. [North-West Univ., Potchefstroom (South Africa). Centre for Space Research

    2013-11-01

    The dynamics of the Jovian magnetosphere is dominated by the planet's fast rotation with a period of {proportional_to} 10 h.Within the magnetosphere, this periodicity can in particular be seen in the temporal variation of the spectral index of MeV electrons: every {proportional_to} 10 h the counting rates show a maximum (minimum), while the spectral index shows a minimum (maximum) known as the Jovian ''clock'' mechanism. In this study we re-analyse Ulysses and Pioneer 10/11 data and show that another periodic modulation in the MeV electrons can be identified, manifested by local maxima of the spectral index and local minima of the counting rates. For Ulysses, this modulation can be observed throughout the magnetosphere near the magnetic equator, suggesting an azimuthal asymmetric distribution of MeV electrons near the current sheet. This modulation is found to trail the ''clock'' mechanism by {proportional_to} 3.25 h. The Pioneer 10 data, however, only show occasional evidence of the presence of these local maxima while there is no evidence of this modulation in the Pioneer 11 data. A comparison of the times of observed minor peaks and Ulysses' distance from the current sheet using a simple rigid disc model as well as the model of Khurana and Schwarzl (2005) is performed.

  4. Electron spin-lattice relaxation mechanisms of radiation produced trapped electrons and hydrogen atoms in aqueous and organic glassy matrices. Modulation of electron nuclear dipolar interaction by tunnelling modes in a glassy matrix. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, M K; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry

    1977-01-01

    The spin lattice relaxation of trapped electrons in aqueous and organic glasses and trapped hydrogen atoms in phosphoric acid glass has been directly studied as a function of temperature by the saturation recovery method. Below 50 to 100 K, the major spin lattice relaxation mechanism involves modulation of the electron nuclear dipolar (END) interaction with nuclei in the radical's environment by tunnelling of those nuclei between two or more positions. This relaxation mechanism occurs with high efficiency and has a characteristic linear temperature dependence. The tunnelling nuclei around trapped electrons do not seem to involve the nearest neighbor nuclei which are oriented by the electron in the process of solvation. Instead the tunnelling nuclei typically appear to be next nearest neighbors to the trapped electron. The identities of the tunnelling nuclei have been deduced by isotopic substitution and are attributed to: Na in 10 mol dm/sup -3/ NaOH aqueous glass, ethyl protons in ethanol glass, methyl protons in methanol glass and methyl protons in MTHF glass. For trapped hydrogen atoms in phosphoric acid, the phosphorus nuclei appear to be the effective tunnelling nuclei. Below approximately 10 K the spin lattice relaxation is dominated by a temperature independent cross relaxation term for H atoms in phosphoric acid glass and for electrons in 10 mol dm/sup -3/ NaOH aqueous glass, but not for electrons in organic glasses. This is compared with recent electron-electron double resonance studies of cross relaxation in these glasses. The spin lattice relaxation of O/sup -/ formed in 10 mol dm/sup -3/ NaOH aqueous glass was also studied and found to be mainly dominated by a Raman process with an effective Debye temperature of about 100 K.

  5. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    International Nuclear Information System (INIS)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-01-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85 I 0:15 :Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  6. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Lu Xianhai; Du Yingchao; Huang Wenhui; Tang Chuanxiang

    2014-01-01

    transverse ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled. (authors)

  7. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    Science.gov (United States)

    Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang

    2014-12-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  8. Design and simulation of a 1.2MeV electron accelerator used for desulfuration and denitrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Zhu, D.J.; Liu, S.G.; Wang, H.B.; Xu, Z.; Liu, X.S. [University of Electrical Science & Technology of China, Chengdu (China)

    2005-07-01

    This paper presents the structural design and functional analysis of a new kind of 1.2MeV industrial electron accelerator. PIC (Particle-In-Cell) method is used to simulate this accelerator and to optimize the design. The results show that the optics property of this accelerator has been improved. This electron accelerator is used for desulfurisation and denitrification in environmental industry. This application purifies flue gases of the thermal power stations from sulphur oxide and nitrogen oxides in order to reduce air pollution.

  9. Electron angular distributions in He single ionization impact by H2+ ions at 1 MeV

    International Nuclear Information System (INIS)

    Zhang Shaofeng; Ma Xinwen; Suske, J; Fischer, D; Kuehnel, K U; Voitkiv, A; Najjaril, B; Krauss, A; Moshammer, R; Ullrich, J; Hagmann, S

    2009-01-01

    For the first time we investigated in a kinematically complete experiment the ionization of helium in collisions with H 2 + -molecular ions at 1 MeV. Using two separate detectors, the orientation of the projectile H 2 + -molecular ions was determined at the instance of the collision. The electron angular distribution was measured by a R eaction Microscope . The observed structures are found in agreement with theoretical calculations, indicating that the ionized electron of He shows a slight preferential emission direction parallel to the molecular axis.

  10. Electron irradiation of near-UV GaN/InGaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Hwan; Cho, Han-Su [Department of Materials Science and Engineering, Korea University, Seoul (Korea, Republic of); Polyakov, Alexander Y.; Smirnov, N.B.; Shchemerov, I.V.; Zinovyev, R.A.; Didenko, S.I.; Lagov, P.B. [National University of Science and Technology MISiS, Moscow (Russian Federation); Shmidt, N.M.; Shabunina, E.I. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Tal' nishnih, N.A. [Submicron Heterostructures for Microelectronics Research and Engineering Center, St. Petersburg (Russian Federation); Hwang, Sung-Min [Soft-Epi, Inc., Opo-ro 240, Gwangju-si, Gyeonggi-do (Korea, Republic of); Pearton, S.J. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL (United States)

    2017-10-15

    Irradiation with 6 MeV electrons of near-UV (peak wavelength 385-390 nm) multi-quantum-well (MQW) GaN/InGaN light emitting diodes (LEDs) causes an increase in density of deep electron traps near E{sub c} -0.8 and E{sub c} -1 eV, and correlates to a 90% decrease of electroluminescence (EL) efficiency after a fluence of 1.1 x 10{sup 16} cm{sup -2}. The likely origin of the EL efficiency decrease is this increase in concentration of the E{sub c} -0.8 eV and E{sub c} -1 eV traps. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. EPR reversible signature of self-trapped holes in fictive temperature-treated silica glass

    Science.gov (United States)

    Lancry, Matthieu; Ollier, Nadège; Babu, B. H.; Herrero, Christian; Poumellec, Bertrand

    2018-03-01

    Post-mortem electron paramagnetic resonance spectroscopy experiments have been carried out between room temperature and 20 K to examine the radiation-induced defects in fictive temperature (Tf) treated Heraeus F300 silica (0.1 ppm OH, 1500 ppm Cl2). In particular, we focus our attention on Self-Trapped Hole (STH) centers detected in 1000 °C, 1100 °C, and 1200 °C Tf treated samples irradiated at room temperature by gamma rays at 6 kGy. By repeating annealing cycles between 77 and 300 K on the same samples, we observed that the EPR signal attributed to STH decreases as the temperature increases but in a reversible manner. We evidenced a deviation from the Curie law for T > 70 K and suggested an interpretation based on the decrease in the "strain-assisted TH" population by reversible excitation of the trapped hole to a delocalized state with an activation energy of 7.8 meV. This also means that the precursors of hole trapping sites (a local strain atomic configuration) remain stable until 300 K at least.

  12. Defects in electron irradiated vitreous SiO[sub 2] probed by positron annihiliation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro (Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science); Kawano, Takao (Tsukuba Univ., Ibaraki (Japan). Radioisotope Centre); Itoh, Hisayoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1994-10-10

    Defects in 3 MeV electron irradiated vitreous SiO[sub 2] (v-SiO[sub 2]) were probed by the positron annihilation technique. For unirradiated v-SiO[sub 2] specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author).

  13. Confinement of 2,4 MeV deuterons by plasmoids and focalization of electron beams in plasma focus discharges

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.; Prior, W.; Feugeas, J.; Bortolotti, A.

    1982-01-01

    A detailed analysis has been completed on the internal structure of ions and electron beams which are efected, along the system axis, in opposite directions (0 0 and 180 0 ). An image (contact print) of plasmoids which emit MeV deuterons is formed by the deuteron emission and it is revealed by etching deuteron tracks in a target of plastic material (CR-39). Ion-imaging with different energy filters discriminates between tracks of plasmoid ions and tracks of charged products of D-D fusion reactions. Ions-imaging can also discriminate plasmoid deuterons from MeV deuterons of a directed beam. (L.C.) [pt

  14. Relaxation oscillations induced by amplitude-dependent frequency in dissipative trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Ware, A.S.; Newman, D.E.

    1994-01-01

    A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure for the coupled evolution of ion momentum and electron density response is developed to describe the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises from time-history integrals common to statistical closures. The memory associated with a finite time of energy transfer between coupled spectrum components does not sustain the oscillation in the simple model. Solutions of the model agree qualitatively with the time-dependent numerical solutions of the original dissipative trapped electron model, yielding oscillations with the proper phase relationship between the fluctuation energy and the frequency shift, the proper evolution of the wave number spectrum shape and particle flux, and a realistic period

  15. Results from preliminary experiments of the 1 MeV 0.1 A D- project at CEA-Cadarache

    International Nuclear Information System (INIS)

    Simonin, A.; Fumelli, M.; Jequier, F.; Pamela, J.; Bucalossi, J.; Bottereau, J.M.; Brugnetti, R.

    1994-01-01

    A 1 MeV 0.1 A D - -beam acceleration experiment under preparation is described. It will study a simplified concept of negative ion beam electrostatic accelerator called SINGAP. Some critical HV components, like a large MV bushing or protection systems against the HV vacuum breakdowns will also be tested. The experiments reported here have been conducted during the preparatory phase of this MeV project. A negative ion source was developed and produced 1 A D - beams and j(D - )=12 mA/cm 2 beams. A new type of extraction grid was designed which traps almost 100% of the stray electrons extracted from the source plasma. A new emittance diagnostic has been successfully tested with 60-100 keV D - beams. A 1 MV 120 mA Haefely power supply has been moved from KfK, adapted and operated on a resistive load at the nominal operating characteristics. (author) 5 refs.; 6 figs

  16. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    Science.gov (United States)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  17. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    International Nuclear Information System (INIS)

    Peri, E.; Orion, I.

    2014-01-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D 3 ,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  18. Design and simulation of a 1.2 MeV electron accelerator used for desulfuration and denitrogenation

    International Nuclear Information System (INIS)

    Zhou Jun; Zhu Dajun; Liu Shenggang

    2005-01-01

    This paper presents the structural design and functional analysis of a new kind of 1.2 MeV industrial electron accelerator. PIC (Particle-In-Cell) method is used to simulate this accelerator and to optimize the design, the results show that the optics property of this accelerator has been improved. This electron accelerator is used for desulfuration and denitrogenation in environmental industry. This application purifies flue gases of the thermal power station from Sulphurous oxide and Nitrogen oxide in order to reduce the pollution in the air. (author)

  19. First experiments with the Greifswald electron-beam ion trap

    Science.gov (United States)

    Schabinger, B.; Biedermann, C.; Gierke, S.; Marx, G.; Radtke, R.; Schweikhard, L.

    2013-09-01

    The former Berlin electron-beam ion trap (EBIT) was moved to Greifswald. In addition to x-ray studies the setup will be used for the investigation of interaction processes between highly charged ions and atomic clusters such as charge exchange and fragmentation. The EBIT setup has now been reassembled and highly charged ions have been produced from Xe-Ar gas mixtures to study the ‘sawtooth effect’. In addition, the layout of the extraction beamline, the interaction region and product analysis for interaction studies with highly charged ions are presented.

  20. Product conveying system for 10 MeV electron beam accelerator for electron beam centre, Kharghar, Navi Mumbai

    International Nuclear Information System (INIS)

    Bandi, L.N.; Lavale, D.S.; Sarma, K.S.S.; Khader, S.A.; Assadullah, M.; Sabharwal, S.

    2003-01-01

    In industrial radiation processing applications using accelerators, product conveying system plays a vital role in exposing the product to high energy electron beam for imparting specified dose to the product and delivering required through puts. The speed of the conveyor corresponds to a definite time of exposure of the product in the radiation zone. Design of suitable conveyor system for a variety of products with differing dose requirements call for a conveyor with wide speed range. This paper discusses the design features of a suitable under beam conveyor system for 10 MeV, 10 kW accelerator for processing a range of products including medical and food products

  1. High efficiency charge recuperation for electron beams of MeV energies

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1996-05-01

    Electron cooling of ion beams with energies of some GeV per nucleon requires high-quality electron beams of MeV energies and currents as high as several amperes. The enormous beam power dictates that the beam current be returned to the high voltage terminal which provides the accelerating potential. The beam is returned to a carefully designed collector within the terminal and biased a few kV positive with respect to it. Thus the load on the HV supply is only the accelerating potential times the sum of the beam current loss and the current used to maintain a graded potential on the accelerating structure. If one employs an electrostatic HV supply like a Van de Graaff with maximum charging current of a few hundred microA, the permissible fractional loss is ∼ 10 -4 . During the 15 years or so the concept of medium energy electron cooling has been evolving, the need to demonstrate the practicability of such high efficiency beam recovery has been recognized. This paper will review some experimental tests and further experiments which have been proposed. The design and status are presented for a new re-circulation experiment at 2 MV being carried out by Fermilab at National Electrostatics Corp

  2. Ultra high vacuum system of the 3 MeV electron beam accelerator

    International Nuclear Information System (INIS)

    Puthran, G.P.; Jayaprakash, D.; Mishra, R.L.; Ghodke, S.R.; Majumder, R.; Mittal, K.C.; Sethi, R.C.

    2003-01-01

    Full text: A 3 MeV electron beam accelerator is coming up at the electron beam centre, Kharghar, Navi Mumbai. A vacuum of the order of 1x10 -7 mbar is desired in the beam line of the accelerator. The UHV system is spread over a height of 6 meters. The total surface area exposed to vacuum is 65,000 cm 2 and the volume is 200 litres. Distributed pumping is planned, to avoid undesirable vacuum gradient between any two sections of the beam-line. The electron beam is scanned in an area of 6 cms x 100 cms and it comes out of the scan-horn through a titanium foil of 50 micron thick. Hence the vacuum system is designed in such a way that, in the event of foil rupture during beam extraction, the electron gun, accelerating column and the pumps can be protected from sudden air rush. The vacuum in the beam-line can also be maintained in this condition. After changing the foil, scan-horn area can be separately pumped to bring the vacuum level as desired and can be opened to the beam-line. The design, vacuum pumping scheme and the safety aspects are discussed in this paper

  3. Effects of the radial electric field on confinement and trapping for non collisional electrons in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1998-01-01

    The effects of radial electric fields on the non collisional losses, asymmetries at plasma border and on the Vacuum Vessel and trapping fractions for 0.1 1 KeV electrons in TJ-II are analysed. This study complements a series, already published, for ions, therefore only the main differences are stressed. Many of these effect are similar for electrons and ions, mainly the drastic decrease of losses with the electric field, the increasing peripherical loss concentration, the strong accumulation on the Hard Core (HC), the modification in the direction of the induced poloidal rotation, similar angular distributions for trapped particles, etc. Nevertheless, there appear also important differences, that in many cases are originated by the higher electron mobility, in particular a higher sensitivity to the electric field, as well to the intensity as to the sign, producing a faster drop in electron losses for positive potential and a higher asymmetry in the sign dependence. Most of these electron losses exit through the upper side of the plasma, the opposite happens for ions. The strong concentration on the HC appears, many, on the PL-1 plate (the one that is placed upside for toroidal angle φ=0 degree centigree), instead of the opposite PL-2 plate for ions.Finally, for the analysed energy range, there is no variation of electron trapping with the potential nor resonant effect. (Author) 8 refs

  4. Preparation of a tritium Q-value measurement in a double penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Christoph; Orth, Christoph; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Pinegar, David [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert Jr. [Department of Physics, University of Washington, Seattle (United States)

    2009-07-01

    A precise determination of the Q-value of tritium ({sup 3}H) is of relevance for the determination of the electron anti-neutrino mass as aspired by the Karlsruhe Tritium Neutrino Experiment (KATRIN). In our double Penning trap mass spectrometer we aim to measure the mass ratio of {sup 3}H and its {beta}-decay product {sup 3}He to an accuracy of 10{sup -11}, which would determine the Q-value to an accuracy of 30 meV. The spectrometer we utilize is an enhanced version of the University of Washington Penning trap mass spectrometer (UW-PTMS) and was recently transfered from Seattle to Heidelberg, where it is set up at the moment as the MPIK/UW-PTMS. We present the necessary preparation work at the Max-Planck-Institut fuer Kernphysik. This includes major reconstructions of the building as well as studies and control of environmental parameters in the laboratory, like temperature and magnetic field.

  5. Low field leakage current on ultra-thin gate oxides after ion or electron beam irradiations; Courant de fuite aux champs faibles d'oxydes ultra-minces apres irradiations avec des faisceaux d'ions et d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ceschia, M.; Paccagnella, A.; Sandrin, S. [Universita di Padova, Dipt. di Elettronica e Informatica, Padova (Italy); Paccagnella, A. [Istituto Nazionale per la Fisica della Materia, INFM, Unita di Padova (Italy); Ghidini, G. [ST-Microelectronics, Agrate Brianza (Italy); Wyss, J. [Universita di Padova, Dipt. di Fisica, Padova (Italy)

    1999-07-01

    In contemporary CMOS 0.25-{mu}m technologies, the MOS gate oxide (thickness {approx_equal} 5 nm) shows a low-field leakage current after radiation stresses, i.e. the radiation induced leakage current (RILC). RILC is generally attributed to a trap assisted tunneling (TAT) of electrons through neutral oxide traps generated by radiation stress. RILC has been investigated on ultra-thin oxides irradiated with 158 MeV {sup 28}Si ions or 8 MeV electrons. 3 main results are worth being quoted: 1) ion or electron beam irradiation can produce RILC with similar characteristics. Even the dose dependence of RILC is similar in the 2 cases, despite the large LET difference (about a factor of 10{sup +4}), 2) RILC is not a constant as a function of time, it tends to decrease when an oxide field (few MV/cm) is applied for (tens of) thousands seconds. On the other hand, RILC stays constant in devices kept at low bias, and 3) if a pulsed gate voltage is applied during irradiation, RILC is reduced with respect to the zero-field case. (A.C.)

  6. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma

    International Nuclear Information System (INIS)

    Heidari, E; Aslaninejad, M; Eshraghi, H

    2010-01-01

    Using a set of relativistic equations for plasmas with warm electrons and cold ions, we have investigated the effects of trapped electrons in the propagation of an electrosound wave and discussed the possibility of the formation of electromagnetic solitons in a plasma. The effective potential energy and deviations of the electron and ion number densities in this relativistic model have been found. We have obtained the governing equations for the amplitude of the HF field with relativistic corrections. In order to show the destructive impact of the trapped electrons on the solitary wave, a relativistic effective potential and the governing equation have been found. It is shown that for certain values of the parameters the condition of localization of the HF amplitude is violated. In addition, it is shown that as the flow velocity of the plasma changes, the shape of the solitary wave shows two opposing behaviours, depending on whether the solitary wave velocity is larger than the flow velocity or smaller. Also, the existence of stationary solitary waves which are prohibited for nonrelativistic plasma has been predicted. Finally, we have obtained the Korteweg-de Vries equation showing the relativistic, trapping and nonlinearity effects.

  7. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    Science.gov (United States)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  8. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications

    International Nuclear Information System (INIS)

    Kulkarni, Nita S.; Dhingra, Rinky; Kumar, Vinit

    2016-01-01

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2π/3 mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three dimensional transient simulations of the accelerating structure along with the input and output couplers have been performed using the software CST-MWS to explicitly demonstrate this feature. (author)

  9. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  10. Design and Fabrication of Cryostat Interface and Electronics for High Performance Antimatter Trap (HI-PAT)

    Science.gov (United States)

    Smith, Gerald A.

    1999-01-01

    Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.

  11. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    Science.gov (United States)

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  12. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  13. Test calculations of photoneutrons emission from surface of uranium sphere irradiated by 28 MeV electrons

    International Nuclear Information System (INIS)

    Blokhin, A.I.; Degtyarev, I.I.

    2002-01-01

    In this paper the results of physical verification for the BOFOD photonuclear data files are reported, available for the uranium isotopes U 235 , U 238 . These results were compared with calculated data by the parameterization driven model of photonuclear reaction and experimental data. Experimental data of photoneutron yields from surface of uranium sphere irradiated by 28 MeV electrons are used for a verification. Both calculations have been carried out with the RTS and T general purpose Monte Carlo code with detailed electron-photon-nucleon transport simulation using the ENDF/B-VI and EPDL evaluated data libraries

  14. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    Science.gov (United States)

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-07

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  15. Nonextensive statistical mechanics approach to electron trapping in degenerate plasmas

    Science.gov (United States)

    Mebrouk, Khireddine; Gougam, Leila Ait; Tribeche, Mouloud

    2016-06-01

    The electron trapping in a weakly nondegenerate plasma is reformulated and re-examined by incorporating the nonextensive entropy prescription. Using the q-deformed Fermi-Dirac distribution function including the quantum as well as the nonextensive statistical effects, we derive a new generalized electron density with a new contribution proportional to the electron temperature T, which may dominate the usual thermal correction (∼T2) at very low temperatures. To make the physics behind the effect of this new contribution more transparent, we analyze the modifications arising in the propagation of ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction, our plasma model allows the possibility of existence of quantum ion-acoustic solitons with velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive parameter q increases, the critical temperature Tc beyond which coexistence of compressive and rarefactive solitons sets in, is shifted towards higher values.

  16. Two-dimensional spatial structure of the dissipative trapped-electron mode

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.; Frieman, E.A.

    1976-09-01

    This paper deals with the complete two-dimensional structure of the dissipative trapped-electron mode over its full width, which may extend over several mode-rational surfaces. The complete integro-differential equation is studied in the limit k/sub r/rho/sub i/ less than 1, where rho/sub i/ is the ion gyroradius, and k/sub r/, the radial wavenumber, is regarded as a differential operator. This is converted into a matrix equation which is then solved by standard numerical methods

  17. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  18. MeV Mott polarimetry at Jefferson Lab

    International Nuclear Information System (INIS)

    Steigerwald, M.

    2001-01-01

    In the recent past, Mott polarimetry has been employed only at low electron beam energies (≅100 keV). Shortly after J. Sromicki demonstrated the first Mott scattering experiment on lead foils at 14 MeV (MAMI, 1994), a high energy Mott scattering polarimeter was developed at Thomas Jefferson National Accelerator Facility (5 MeV, 1995). An instrumental precision of 0.5% was achieved due to dramatic improvement in eliminating the background signal by means of collimation, shielding, time of flight and coincidence methods. Measurements for gold targets between 0.05 μm and 5 μm for electron energies between 2 and 8 MeV are presented. A model was developed to explain the depolarization effects in the target foils due to double scattering. The instrumental helicity correlated asymmetries were measured to smaller than 0.1%

  19. Kβ spectra of heliumlike chromium from an electron-beam ion trap

    International Nuclear Information System (INIS)

    Decaux, V.; Beiersdorfer, P.; Elliott, S.; Osterheld, A.

    1993-01-01

    Kβ spectra of heliumlike chromium have been recorded using the Livermore electron-beam ion trap (EBIT) with a high-resolution Bragg crystal spectrometer in the von Hamos configuration, in the wavelong range from 1.870 Angstrom. Measurements have been made both for direct excitation at an electron beam energy of 8 k and dielectronic recombination around the KLM resonance energy of 5 keV. In order to evaluate the resonance strength the lithiumlike dielectronic satellites, we used a data routine technique to accumulate spectra at 15 different beam energies between 4.96 and 5.28 keV. Results are compared to theoretical calculations using the multiconfiguration parametric potential method

  20. Computation of transverse muon-spin relaxation functions including trapping-detrapping reactions, with application to electron-irradiated tantalum

    International Nuclear Information System (INIS)

    Doering, K.P.; Aurenz, T.; Herlach, D.; Schaefer, H.E.; Arnold, K.P.; Jacobs, W.; Orth, H.; Haas, N.; Seeger, A.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1986-01-01

    A new technique for the economical evaluation of transverse muon spin relaxation functions in situations involving μ + trapping at and detrapping from crystal defects is applied to electron-irradiated Ta exhibiting relaxation maxima at about 35 K, 100 K, and 250 K. The long-range μ + diffusion is shown to be limted by traps over the entire temperature range investigated. The (static) relaxation rates for several possible configurations of trapped muons are discussed, including the effect of the simultaneous presence of a proton in a vacancy. (orig.)

  1. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Büchner, J.; Bárta, M., E-mail: zhou@mps.mpg.de, E-mail: liusm@pmo.ac.cn, E-mail: buechner@mps.mpg.de [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-08-20

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  2. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    Science.gov (United States)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  3. Investigation of ionization losses of shower electrons in electron-photon shower developed in liquid xenon by gamma quanta in the energy range 1600-3400 MeV

    International Nuclear Information System (INIS)

    Okhrymenko, L.S.; Slowinski, B.; Strugalski, Z.; Sredniawa, B.

    1975-01-01

    Results of the investigation of differential distributions of ionization losses and the corresponding fluctuations for shower electrons in the longitudinal development of electron-photon showers produced by gamma-quanta of energies Esub(γ)=1600-3400 MeV in liquid xenon are given. A simple and convenient from the methodical point of view two-parametric function, approximating the observed distribution has been obtained. The independence of the fluctuations of ionization losses of shower electrons on the energy of gamma-quanta in the investigated interval of Esub(γ) values has been found

  4. Simulation of energy deposit distribution in water for 10 and 25 MeV electron beams

    International Nuclear Information System (INIS)

    Borrell Carbonell, Maria de los Angeles.

    1977-01-01

    The Monte Carlo method was applied to transport simulation of electron beams from the exit window of a linear accelerator till the absorption by a water phantom. The distribution of energy deposit is calculated for ideal apparatus and experimental conditions. Calculations are made for a distance window-water surface of one meter, for 10 and 25 MeV monoenergetic incident electrons, and for different fields (15x15 cm 2 to 4x4 cm 2 ). Comparisons with experimental measurements obtained in comparable conditions with a Sagittaire accelerator (C.G.R.-MeV), show a good agreement concerning radial distribution and depth distribution around isodose 100%. However a certain disagreement appears in the end of depth penetration [fr

  5. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    Science.gov (United States)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  6. Optimization calculations for slow neutron production with the 136 MeV Harwell electron linac

    International Nuclear Information System (INIS)

    Needham, J.; Sinclair, R.N.

    1978-10-01

    The new 136 MeV Harwell electron linac is to be used to produce pulsed beams of slow neutrons for condensed matter research. Design details and performance of the two types of moderator which will be available have been optimised using a Monte Carlo neutronics code (TIMOC). The choice of reflector, the necessary decoupling energy to prevent pulse broadening and the influence of γ shields and moderator shape have been investigated. The predicted yield of leakage neutrons of energy 1 eV is compared to published values for comparable facilities. (author)

  7. An 8 MeV H- cyclotron to charge the electron cooling system for HESR

    International Nuclear Information System (INIS)

    Pakhomchuk, V.; Papash, A.

    2006-01-01

    A compact cyclotron to accelerate negative hydrogen ions up to 8 MeV is considered as optimal solution to the problem of charging the high-voltage terminal of the electron cooling system for High Energy Storage Ring at GSI (HESR Project, Darmstadt). Physical as well as technical parameters of the accelerator are estimated. Different types of commercially available cyclotrons are compared as a possible source of a 1 mA H - beam for the HESR. An original design based on the application of well-established technical solutions for commercial accelerators is proposed

  8. Dissipative dust-acoustic shock waves in a varying charge electronegative magnetized dusty plasma with trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, Mustapha [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-08-15

    The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (∼10{sup 4} km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.

  9. Number distribution of emitted electrons by MeV H+ impact on carbon

    Science.gov (United States)

    Ogawa, H.; Koyanagi, Y.; Hongo, N.; Ishii, K.; Kaneko, T.

    2017-09-01

    The statistical distributions of the number of the forward- and backward-emitted secondary electrons (SE's) from a thin carbon foil have been measured in coincidence with foil-transmitted H+ ions of 0.5-3.0 MeV in every 0.5 MeV step. The measured SE energy spectra were fitted by assuming a Pólya distribution for the simultaneous n-SE emission probabilities. For our previous data with a couple of the carbon foils with different thicknesses, a similar analysis has been carried out. As a result, it was found that the measured spectra could be reproduced as well as by an analysis without placing any restriction on the emission probabilities both for the forward and backward SE emission. The obtained b-parameter of the Pólya distribution, which is a measure of the deviation from a Poisson distribution due to the cascade multiplication by high energy internal SE's, increases monotonically with the incident energy of proton beams. On the other hand, a clear foil-thickness dependence is not observed for the b-parameter. A theoretical model which could reproduced the magnitude of the b-parameter for the SE energy spectra obtained with thick Au, Cu and Al targets is found to overestimates our values for thin carbon foils significantly. Another model calculation is found to reproduce our b-values very well.

  10. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  11. NSLS 3: Conceptual design report: 750 MeV e+ or e- injector

    International Nuclear Information System (INIS)

    1986-05-01

    The 750 MeV positron or electron injector is comprised of an electron linear accelerator which accelerates an intense beam of electrons to an energy of about 250 MeV, a positron converter, a second linear accelerator that boosts the final positron energy to 750 MeV, and a damping ring in which radiation damping is used to reduce the emittance of the positron beam for injection into the storage rings. The reasons for the need of a new injector are enumerated. The conceptual design of the system and its component systems are described, as well as project cost, schedule, and manpower requirements

  12. Radiation Shielding Analyses of A 10 MeV, 15kW LINAC for Electron Beam and X-ray at KACST

    Energy Technology Data Exchange (ETDEWEB)

    Kang, W. G.; Pyo, S. H.; Han, B. S.; Kang, C. M. [EB Tech Co., Daejeon (Korea, Republic of); Alkhuraiji, T. S. [King AbdulAziz City for Science and Technology, Riyadh (Saudi Arabia)

    2016-10-15

    The King AbdulAziz City for Science and Technology (KACST) in the Kingdom of Saudi Arabia has a plan to build a 10 MeV, 15kW linear accelerator (LINAC) for electron beam and X-ray, which is to be supplied by EB Tech in Republic of Korea. The design and construction of the accelerator building will be carried out jointly between EB Tech and KACST. Recommendations for the design and installation of radiation shielding for x-ray and gamma-ray can be found in NCRP No. 49(1976) and for accelerators with energies over 10 MeV in NCRP No. 151 (2005). Monte Carlo calculations were conducted using the MCNP6 code to determine photon fluxes and doses at the point detectors locations around the accelerator building. The problem was run as an electron, photon and neutron transport problem to account for all reactions including the (γ,n) reaction. The detectors where the DXTRAN spheres were used are indicated in the table. The computation was continued until electrons reached a total of 1x10{sup +8} histories.

  13. Two-section linear direct-current accelerator of 1.2 MeV electrons. Mean beam current of 50 mA

    International Nuclear Information System (INIS)

    Alimov, A.S.; Ermakov, D.I.; Ishkhanov, B.S.; Shvedunov, V.I.; Sakharov, V.P.; Trower, W.P.

    2002-01-01

    The theoretical and experimental results, obtained by simulation, creation and start-up of the two-section linear electron accelerator, are presented. The following beam parameters: beam current of 49 mA, mean energy of 1.2 MeV, of 59 kV, normalized emittance of 11 mm mrad are determined on the basis of the data on the beam dynamics simulation and the accelerating structure optimization. Special attention is paid to the choice of the version of the SHF-supply system of the two-section accelerator. The version of the SHF-supply system, based on the sections phasing, operating in the auto-oscillation model by means of the synchronizing signal from the feedback chain of the first section into the feedback chain of the second section, is considered. The electron beam parameters on the accelerator outlet (beam current - 44 mA, beam energy - 1.15 MeV, beam efficiency - 50.6 kW) proved to be close to the simulation results [ru

  14. Defects in CdSe thin films, induced by high energy electron irradiation

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, S.; Tutuc, D.; Antohe, V.A.; Tazlaoanu, C.

    2004-01-01

    Defects induced in CdSe thin films by high energy electron irradiation are investigated by means of thermally stimulated currents (TSC) spectroscopy. Films were obtained by vacuum deposition from a single source and irradiated with a 5 x 10 13 electrons/cm 2 s -1 beam of 6-MeV energy. It was found that electrical properties of the films are controlled by a deep donor state, located at 0.38 eV below the bottom edge of the conduction band. Parameters of the traps responsible for the recorded TSC peaks were determined. (authors)

  15. Application of the Ethanol-Chlorobenzene Dosimeter to Electron Beam Dosimetry: Pulsed 10 MeV Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Dvornik, I.; Razem, D.; Baric, M. [Institute ' ' Ruder Boskovic' ' , Zagreb, Yugoslavia (Croatia)

    1969-12-15

    With gamma irradiation, the ethanol-chlorobenzene chemical dosimetric systems have shown valuable properties. They are simple to prepare and analyse, the G(HC1) values are not sensitive to normal impurities and are constant within the dose range of interest for processing. This paper describes the experiments performed with 10 MeV pulsed electrons from the linear accelerator of the Research Establishment Riso, Denmark (7 microsecond pulses repeated 300 times per second, 10{sup 9} rad/sec in the pulse). The irradiations were calibrated calorimetrically. The G(HC1) values independent of dose up to 40 Mrad are given as a function of chlorobenzene concentration. The comparison with gamma irradiations shows only insignificant differences in the G-values. Above 10 vol. % chlorobenzene the G-values are approximately constant up to 20 Mrad or more, and are to within 2% equal to those obtained for gamma rays with free access of air. The addition of 0.04% of acetone or benzene to the systems had within the experimental error, no influence upon the G(HC1). The results show the applicability of ethanol-chlorobenzene dosimeters to the dosimetry of electron beam irradiations at dose rates as high as 10{sup 9} rad/sec and dosages up to 6 Mrad. (author)

  16. Phase-Space Density Analysis of the AE-8 Traped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Cayton

    2005-08-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  17. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Azzoni, C.B.; Paleari, A.

    1989-01-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y 2 O 3 ) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the left-angle 111 right-angle direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects

  18. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B.; Paleari, A. (Dipartimento di Fisica, Alessandro Volta dell' Universita di Pavia, via Bassi 6, 27100 Pavia, Italy (IT))

    1989-10-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y{sub 2}O{sub 3}) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the {l angle}111{r angle} direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects.

  19. Trapping and Evolution Dynamics of Ultracold Two-Component Plasmas

    International Nuclear Information System (INIS)

    Choi, J.-H.; Knuffman, B.; Zhang, X. H.; Povilus, A. P.; Raithel, G.

    2008-01-01

    We demonstrate the trapping of a strongly magnetized, quasineutral ultracold plasma in a nested Penning trap with a background field of 2.9 T. Electrons remain trapped in this system for several milliseconds. Early in the evolution, the dynamics are driven by a breathing-mode oscillation in the ionic charge distribution, which modulates the electron trap depth. Over longer times scales, the electronic component undergoes cooling. Trap loss resulting from ExB drift is characterized

  20. Study of interactions of a electron beam of 10 MeV energy and matter

    International Nuclear Information System (INIS)

    Askri, Boubaker

    2002-01-01

    In this work, we tried to extend the algorithm of the Monte Carlo method to the case of relativistic electrons of energy 10 MeV through the material, after appropriate to the simple case of non-relativistic electrons of energy 20 keV. It was determined the coefficients of reflection, transmission and absorption of electrons through the middle in both cases. As the energy and angular distributions of electrons transmitted. The results show a fairly good precision on the determination of the three coefficients. For the non-relativistic case, it was in 1000 simulations of 1000 lots electrons for gold and aluminum, it has reached an accuracy of about 0.5 pour cent. For the relativistic case, it was 20 lots of simulations for 500 electrons carbon and aluminum. we reached an accuracy of about 2, 5 pour cent determining the coefficients. The energy and angular distributions of electrons transmitted, are close those derived from the program GEANT, taken as a reference and as comparison tool. It hopes to increase the accuracy by increasing the number of lots and the size of each batch of electrons. However, the process took six days to simulate ten miles electrons under normal conditions on the HP9000 machine calculation takes a greatest time of execution for a statistical sample of smaller great. Several criteria are necessary to optimize the study. About improving the theoretical model and the algorithm, and implementation the procedure on a machine more powerful computing. (Author)

  1. A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Arshiya; Vinayakprasanna, N.H.; Pradeep, T.M. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore 570025 (India); Krishna, J.B.M. [IUC-DAE CSR, Kolkota 700098 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India)

    2016-07-15

    N-channel depletion MOSFETs were irradiated with 4 MeV Proton and Co-60 gamma radiation in the dose range of 100 krad(Si) to 100 Mrad(Si). The electrical characteristics of MOSFET such as threshold voltage (V{sub th}), density of interface trapped charges (ΔN{sub it}), density of oxide trapped charges (ΔN{sub ot}), transconductance (g{sub m}), mobility (μ), leakage current (I{sub L}) and drain saturation current (I{sub D} {sub Sat}) were studied as a function of dose. A considerable increase in ΔN{sub it} and ΔN{sub ot} and decrease in V{sub th,}g{sub m}, μ, and I{sub D} {sub Sat} was observed after irradiation. The results of 4 MeV Proton irradiation were compared with that of Co-60 gamma radiation and it is found that the degradation is more for the devices irradiated with 4 MeV Protons when compared with the Co-60 gamma radiation. This indicates that Protons induce more trapped charges in the field oxide region when compared to the gamma radiation.

  2. Study of the motion of electrons in non polar classical liquids. Measurement of Hall effect and f.i.r. search for low energy traps. Progress report

    International Nuclear Information System (INIS)

    1981-01-01

    Progress is reported on experiments aimed at the measurement of the Hall mobility of injected electrons in classical non polar insulating liquids and the optical absorption associated with electrons captured by shallow traps in the liquefied rare gases. Theoretical work aimed at a better understanding of the trapping kinetics of electrons by SF 6 and O 2 dissolved in rare gas liquids was also carried out. Its conclusion is that the electric field dependence of the trapping probability can be explained, basically without adjustable parameters, by considering the Poole-Frenkel-Schotky ionization of the excited state of the traps. From the analysis of published data on the motion of electrons in liquid ethane it is tentatively concluded that at low temperatures the trapping of electrons in the liquid involves a Jahn-Teller like distortion of a single ethane molecule while at higher temperatures it is necessary to consider a small molecular cluster, possibly made up of 2 molecules

  3. Experimental evaluation of quantum computing elements (qubits) made of electrons trapped over a liquid helium film; Evaluation experimentale d'elements de calcul quantique (qubit) formes d'electrons pieges sur l'helium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, E

    2006-12-15

    An electron on helium presents a quantized energy spectrum. The interaction with the environment is considered sufficiently weak in order to allow the realization of a quantum bit (qubit) by using the first two energy levels. The first stage in the realization of this qubit was to trap and control a single electron. This is carried out thanks to a set of micro-fabricated electrodes defining a well of potential in which the electron is trapped. We are able with such a sample to trap and detect a variables number of electrons varying between one and around twenty. This then allowed us to study the static behaviour of a small number of electrons in a trap. They are supposed to crystallize and form structures called Wigner molecules. Such molecules have not yet been observed yet with electrons above helium. Our results bring circumstantial evidence for of Wigner crystallization. We then sought to characterize the qubit more precisely. We sought to carry out a projective reading (depending on the state of the qubit) and a measurement of the relaxation time. The results were obtained by exciting the electron with an incoherent electric field. A clean measurement of the relaxation time would require a coherent electric field. The conclusion cannot thus be final but it would seem that the relaxation time is shorter than calculated theoretically. That is perhaps due to a measurement of the relaxation between the oscillating states in the trap and not between the states of the qubit. (author)

  4. Dose Mapping of Frozen Chickens Using 10 MeV Electrons

    International Nuclear Information System (INIS)

    Eichenberger, C.; Haider, S.A.; Maxim, J.; Miller, R.B.

    2005-09-01

    Irradiation of locally produced and imported food products was approved in the Kingdom of Saudi Arabia (KSA) in 2002. SureBeam Middle East (SME) has constructed the first food irradiation facility in Riyadh, KSA and will begin production irradiation in Q4 of 2005. In an effort to find efficient and cost effective means of irradiating frozen whole body chickens, SME has sponsored dose mapping studies using a 10 MeV dual electron beam processing system at the Electron Beam Food Research Facility at Texas A and M University (TAMU). Frozen chickens available to consumers in KSA range in size from nominal 600 grams to 1400 grams. Poultry processors typically provide retailers with equal weight birds packaged ten to a box (2 rows of 5 birds). Areal densities of the packages increase with the weight of the birds. For this study equivalent size birds were grown and processed by the Department of Poultry Science at TAMU and packaged in the same manner as in KSA. The goal of this investigation was to determine which size birds could be processed at a minimum dose of 2.5 kGy and not have the maximum dose exceed the level where negative sensory effects become noticeable. The minimum dose was chosen to reduce the population of any salmonella contamination by more than a factor of 1000. A description of the experimental set up and results of the dose mapping of frozen whole body chickens are reported herein, as are the results which indicate that electron beam processing of frozen chickens up to approximately 1000 grams can be readily accomplished and that processing of chickens up to 1400 grams may be possible Salmonella

  5. Preliminary examination of induced radio activity in pepper by 10 MeV electron irradiation

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Katayama, Tadashi; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Toratani, Hirokazu; Takeda, Atsuhiko

    1989-01-01

    β-ray measurement was performed on 10 MeV electron-irradiated black pepper and white pepper in order to reconfirm the wholesomeness of irradiated food and present unambiguous data to general consumers concerning about the induced radioactivity in the irradiated foods. From elemental composition of the samples and investigation of photonuclear reactions, several β-emmitters were listed up. But no radioactivity other than from natural sources was detected in the irradiated sample by β-ray counting with 2 π gass flow counter, suggesting that the induced β-emmitters in the irradiated sample was below the detection limit of its induced radioactivity. (author)

  6. Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray Mev Electrons and Protons Observed at Voyager 1 Beyond 111 AU in the Heliosheath

    Science.gov (United States)

    Webber, W. R.; Mcdonald, F. B.; Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.

    2012-01-01

    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheathat a distance of about 111 AU from the Sun. The low energy 614 MeV galactic electron intensity increased by 20over a time period 10 days and the electron radial intensity gradient abruptly decreased from 19AU to 8AU at2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of25 was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to18AU. This large positive gradient and the 13 day periodic variations of 200 MeV particles observed near theend of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these resultsregarding the proximity of the heliopause are discussed.

  7. The effects of electron spiraling on the anisotropy and polarization of photon emission from an electron beam ion trap

    International Nuclear Information System (INIS)

    Savin, D.W.; Gu, M.F.; Beiersdorfer, P.

    1998-01-01

    We present a theoretical formalism for calculating the anisotropy and polarization of photon emission due to a spiraling beam of electrons in an electron beam ion trap (EBIT). We present measurements of the polarization for the Fe XXIV 4p 2 P 3/2 → 2s 2 S 1/2 X-ray transition due to electron impact excitation. We discuss these results, together with previously reported EBIT polarization measurements, in the light of electron spiraling. We find that spiraling effects cannot yet be discerned in these measurements. This is important for many EBIT measurements concerned with X-ray line intensity measurements. While the amount of spiraling is not accurately known, neglecting its effects introduces an error typically no larger than that given by counting statistics. (author)

  8. Towards a Measurement of the n=2 Lamb Shift in Hydrogen-like Nitrogen Using an Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Hosaka, K.; Crosby, D. N.; Gaarde-Widdowson, K.; Smith, C. J.; Silver, J. D.; Myers, E. G.; Kinugawa, T.; Ohtani, S.

    2003-01-01

    Using a 14 C 16 O 2 laser the 2s 1/2 -2p 3/2 (fine structure - Lamb shift) transition has been induced in 14 N 6+ ions trapped in an electron beam ion trap. Prospects for a measurement of the Lamb shift in hydrogen-like nitrogen are discussed.

  9. Multiple ionization of noble gases by 2.0 MeV proton impact: comparison with equi-velocity electron impact ionization

    International Nuclear Information System (INIS)

    Melo, W.S.; Santos, A.C.F.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2002-01-01

    Absolute single- and multiple-ionization cross sections of rare gases (He, Ne, Ar, Kr and Xe) have been measured for collisions with 2.0 MeV p + . A comparison is made with equi-velocity electron impact ionization cross sections as well as with the available proton impact data. For the light rare gases the single-ionization cross sections are essentially the same for both proton and electron impacts, but increasing differences appear for the heavier targets. (author). Letter-to-the-editor

  10. On the correct implementation of Fermi-Dirac statistics and electron trapping in nonlinear electrostatic plane wave propagation in collisionless plasmas

    Science.gov (United States)

    Schamel, Hans; Eliasson, Bengt

    2016-05-01

    Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.

  11. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    Science.gov (United States)

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  12. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  13. Confirm calculation of 12 MeV non-destructive testing electron linear accelerator target

    International Nuclear Information System (INIS)

    Ma Shudong; Zhang Rutong; Guo Yanbin; Zhou Yuan; Li Xuexian; Chen Yan

    2012-01-01

    The confirm calculation of 12 MeV non-destructive testing (NDT) electron linear accelerator (LINAC) target was studied. Firstly, the most optimal target thickness and related photon dose yield, distributions of dose rate, and related photon conversion efficiencies were got by calculation with specific analysis of the physical mechanism of the interactions between the beam and target; Secondly, the photon dose rate distribution, converter efficiencies, and thickness of various kinds of targets, such as W, Au, Ta, etc. were verified by MCNP simulation and the most optimal target was got using the MCNP code; Lastly, the calculation results of theory and MCNP were compared to confirm the validity of target calculation. (authors)

  14. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  15. Electron collisions in the trapped gyro-Landau fluid transport model

    International Nuclear Information System (INIS)

    Staebler, G. M.; Kinsey, J. E.

    2010-01-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  16. Trapping and dark current in plasma-based accelerators

    International Nuclear Information System (INIS)

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-01-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed

  17. 14 MeV proton activation analysis

    International Nuclear Information System (INIS)

    Constantinescu, B.; Ivanov, E.; Plostinaru, D.; Popa-Nemoiu, A.; Pascovichi, G.

    1985-01-01

    A fast nuclear nondestructive method for protein analysis using the 14 MeV proton activation has been developed. The total nitrogen content was measured through the reaction: 14 N (p,n) 14 O, (Tsub(1/2)=71 s). The 14 O activity was detected by means of its characteristic 2.312 MeV gamma-ray line with a NaI(Tl) detector. For a fast determination of a large number of samples a mechanized sistem reacting a rate of one sample per minute has been developed. The laboratory electronics comprises a multichannel analyser, a PDP computer and an electronic module comtroller. Comparison of the results obtained by the method described and the classical Kjeldal technique for samples of various cereal grains (soya bean seads, wheat, barley and corn) showed good correlation. A problem of the analysis of the whole protein region on corn and soya-bean seads, where this region is thicker (0,2 - 2 mm), is mentioned. In this case flour was proposed to be used to obtain a protein homogeneous sample and the irradiaton dose for a sample was about 33,000 Gy, mainly (99%) from protons (27 s x 100 nA x 14 MeV)

  18. 1-MeV electron beam propagation experiments in neutral gas

    International Nuclear Information System (INIS)

    Greenspan, M.A.; Rose, E.A.

    1984-01-01

    Experiments were performed studying the propagation of a 1-MeV, 10-ns electron beam at currents of 2-8 kA. Propagation was studied in a 7.6-cm-diam glass guide tube, the same tube with a conducting screen inside, and in a 3.4-m-diam chamber. In the guide tube with the screen, ion-focused propagation is observed at low pressures (≤ 40 Pa) with net current equal to beam current. At higher pressures (55-130 Pa), a notch in beam current is observed for pressure time products of ≅ 100 Pa-ns. Between 270 Pa and 1070 Pa, good propagation is again observed with net currents of 50-70% of the beam current. The net current fraction of beam current increases with increasing pressure and with decreasing beam current. At pressure above 1070 Pa, hose instability occurs, and net current nearly equal to beam current is observed. The hose frequency is in reasonable accord with theory. Nose erosion is minimized at pressures for 1000-2000 Pa depending on beam current, and increases at lower and higher pressures

  19. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.; Thon, S. M.; Ip, A. H.; Sargent, E. H.

    2013-01-01

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  20. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2013-03-21

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers\\' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  1. Scattering of 14. 0 MeV electrons. Fundamental study of the scattering foil. [Angular distribution, 14. 0 MeV, gaussian distribution

    Energy Technology Data Exchange (ETDEWEB)

    Takei, C [Kyushu Univ., Fukuoka (Japan). School of Health Sciences; Yoshimoto, S

    1977-07-01

    The angular distribution of 14.0 MeV electrons scattered by thin Al and Pb foils has been measured, since the beam flatness is important on the high energy electron therapy. These distributions measured were almost completely Gaussian. The root mean square scattering angles were obtained and were compared with the theories of Williams and Rossi. In our experiments the root mean square scattering angles obtained have the experimental errors of about 4% and 1% for 5/sup 0/ and 10/sup 0/, respectively. For Al foils of 0.5 mm to 3.0 mm the experimental values of the root mean square scattering angles are 5.49/sup 0/ and 12.43/sup 0/ and are 30% to 10% higher than those predicted by Williams. Although, these values are 4% to 9% lower than those calculated from the theory of Rossi. The root mean square scattering angles obtained with Pb foils of 0.1 mm to 0.3 mm are 9.62/sup 0/ to 18.05/sup 0/ and are 14% to 18% higher than Williams, and are 14% to 7% lower than those theoretically calculated by Rossi.

  2. The new generations of power components will depend on neutron and/or electron bombardment techniques

    International Nuclear Information System (INIS)

    Lilen, H.

    1976-01-01

    Neutron and electron bombardment techniques for materials doping, newly introduced in the fabrication of power semiconductor components: diodes, transistors, thyristors, and triacs are briefly outlined. A neutron bombardment of high purity silicon results in a short-lived 31 Si isotope (from 30 Si) decaying into 31 P. The phosphorus with its five peripheral electrons induces a negative doping (N), and the neutron technique gives a homogeneous doping. Furthermore, silicon bombardment with 1 to 2MeV electrons induces micro-ruptures in the lattice, that act as recombination traps reducing carrier lifetimes. Consequently, gold diffusion techniques can be replaced by electron bombardment with a gain in controlling carrier lifetimes [fr

  3. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    Science.gov (United States)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  4. An application of random field theory to analysis of electron trapping sites in disordered media

    International Nuclear Information System (INIS)

    Hilczer, M.; Bartczak, W.M.

    1993-01-01

    The potential energy surface in a disordered medium is considered a random field and described using the concepts of the mathematical theory of random fields. The preexisting traps for excess electrons are identified with certain regions of excursion (extreme regions) of the potential field. The theory provides an analytical method of statistical analysis of these regions. Parameters of the cavity-averaged potential field, which are provided by computer simulation of a given medium, serve as input data for the analysis. The statistics of preexisting traps are obtained for liquid methanol as a numerical example of the random field method. 26 refs., 6 figs

  5. Preliminary microstructural characterization by transmission electron microscopy of 14 MeV neutron irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Echer, C.J.

    1977-01-01

    Substantial changes in the mechanical properties of 316 stainless steel were observed after neutron irradiation (phi/sub t/ = 2.3 x 10 21 n/m 2 and E = 14 MeV) at 25 0 C. Comparison of microstructures of the unirradiated and neutron irradiated materials were evaluated using transmission electron microscopy. Evidence of small defect clusters in the irradiated material was found. These findings are consistent with other investigators also evaluating low dose irradiations

  6. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  7. Investigation of defects in electron-irradiated diamond of the type Ia by positron annihilation

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ositinskaya, T.D.; Mikhalenkov, V.S.; Chernyashevskij, A.V.; Shakhovtsov, V.I.; AN Ukrainskoj SSR, Kiev; AN Ukrainskoj SSR, Kiev

    1997-01-01

    To produce vacancy defects, type Ia diamond was irradiated with 3.5 MeV electrons at doses of 5 centre dot 10 16 , 2 centre dot 10 17 , 4 centre dot 10 17 , and 2 centre dot 10 18 e/cm -2 . After each dose, the specimen was investigated using positron annihilation (ACAR), optical spectroscopy in IR, visible regions, and EPR. From ACAR spectra, the S-parameters were found and positron trapping rates were determined. Their behaviour with increasing irradiation doses shows that, in type Ia diamond along with neutral vacancies V degree, deeper traps of positrons are formed, which are most likely vacancies in the negative charge state V - . Specific trapping rates of the V 0 and V - defects are found to be 1.3 centre dot 10 15 and 3.8 centre dot 10 15 s -1 , respectively; trapping cross sections for these defects are also estimated

  8. Calculation of energy and angular distributions of the bremsstrahlung of 10 MeV electrons bombarding a thick tungsten target

    International Nuclear Information System (INIS)

    Tsovbun, V.I.

    1977-01-01

    Computer calculations have been performed to extend the data available on energy and angular distribution of the 10 MeV electron bremsrahlung into a higher angle region. The ETRAN-16D program developed by R.G.Berger for calculation of electron-photon cascades passing through matter using computers IBM-360 and UNIVAC-1108 was modified to operate with the CDC-6500 computer. A brief summary of the program is provided. An angular distribution of the bremsstrahlung dose absorbed in the air has been also calculated. The results extended into the 90-180 deg region can be used to calculate the biological shield of electron accelerators

  9. Towards a Measurement of the n=2 Lamb Shift in Hydrogen-like Nitrogen Using an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, K.; Crosby, D. N.; Gaarde-Widdowson, K.; Smith, C. J.; Silver, J. D. [University of Oxford, Department of Physics (United Kingdom); Myers, E. G. [Florida State University (United States); Kinugawa, T.; Ohtani, S. [University of Electro-Communications, Cold Trapped Ions Project, JST (Japan)

    2003-03-15

    Using a {sup 14}C{sup 16}O{sub 2} laser the 2s{sub 1/2}-2p{sub 3/2} (fine structure - Lamb shift) transition has been induced in {sup 14}N{sup 6+} ions trapped in an electron beam ion trap. Prospects for a measurement of the Lamb shift in hydrogen-like nitrogen are discussed.

  10. Deuterium trapping in carbon fiber composites under high fluence

    International Nuclear Information System (INIS)

    Airapetov, A.A.; Begrambekov, L.B.; Kuzmin, A.A.; Shigin, P.A.; Zakharov, A.M.

    2010-01-01

    The paper is devoted to investigation of deuterium trapping in CFC, dance graphite MPG-8 and pyrolytic graphite (PG) under plasma ion- and electron irradiation. Number of specific features of deuterium trapping and retention under plasma ion and electron irradiation is presented and discussed. In particular it is shown that 1) deuterium trapping takes place even when energy of impinging ions approaches zero; 2) deuterium is trapped under irradiation by plasma electrons; 3) under irradiation at equal fluences deuterium trapping is higher, when ion flux is smaller. High energy ion penetrating the surfaces are trapped in the traps created at the expense of their kinetic energy. The process may be named 'kinetic trapping'. Under low energy (smaller than 200 eV) electron and/or ion irradiation the energy of inelastic interaction on the surface provides creation of active centers, which initiate dissociation of deuterium sorbed on the surface, penetration of deuterium atoms into graphite and their trapping in specific low energy traps. The term 'potential trapping' is proposed for this type of trapping. Under high energy irradiation such atoms can fill the traps formed through kinetic mechanism. Origination of moveable deuterium atoms from the layer of surface sorption seems to be time dependent process and it is a reason of increase of trapping along with irradiation time. New features of deuterium trapping and retention in graphite evaluated in this study offer new opportunities for analysis and correct estimation of hydrogen isotope trapping and retention in tokamaks having graphite tiles. (authors)

  11. Optimum design for 12 MeV linear induction accelerator diode

    International Nuclear Information System (INIS)

    Yu Haijun; Shi Jinshui; Li Qin; He Guorong; Ma Bing; Wang Jingsheng; Wang Liping

    2001-01-01

    A series of optimization designs of electron diode in 12 Mev linear induction accelerator are studied by using numerical simulation code MAGIC and experiment method in order to improve the electron beam quality. MAGIC code solves the Maxwell equations in the presence of charged particle, electron field distribution on cathode surface which influences electron emission is given, the optimum diode is obtained by comparing the results of experiment in 12 MeV linear induction accelerator. The author also gives SEM analysis and experiment comparison of velvet emission. Finally, emitted current I e = 8.52 kA, beam current I 8 ≥ 3.0 kA, targeted current I 0 ≥ 2.30 kA with optimum diode are obtained

  12. Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions

    Science.gov (United States)

    Cairncross, William B.; Gresh, Daniel N.; Grau, Matt; Cossel, Kevin C.; Roussy, Tanya S.; Ni, Yiqi; Zhou, Yan; Ye, Jun; Cornell, Eric A.

    2017-10-01

    We describe the first precision measurement of the electron's electric dipole moment (de) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on 180Hf 19F+ in its metastable 3Δ1 electronic state, we obtain de=(0.9 ±7. 7stat±1. 7syst)×10-29 e cm , resulting in an upper bound of |de|<1.3 ×10-28 e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |de|<9.4 ×10-29 e cm [J. Baron et al., New J. Phys. 19, 073029 (2017), 10.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

  13. Slow positron beam production by a 14 MeV C.W. electron accelerator

    Science.gov (United States)

    Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-10-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.

  14. Slow positron beam production by a 14 MeV c.w. electron accelerator

    International Nuclear Information System (INIS)

    Begemann, M.; Graeff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-01-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two Nal-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 x 10 5 slow positrons per second reaching the detector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons. (orig.)

  15. Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor.

    Science.gov (United States)

    Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan

    2018-05-16

    A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.

  16. Depth distribution of damage in copper irradiated with MeV, Ni and He ions

    International Nuclear Information System (INIS)

    Narayan, J.; Noggle, T.S.; Oen, O.S.

    1975-01-01

    Transmission electron microscopy was used to study radiation damage as a function of depth caused by 58 and 4-MeV 58 Ni and 1-MeV He ions in copper single crystals at ambient temperature. The experimental damage density vs penetration depth distributions were compared with calculations based on the atomic collision theory of Lindhard et al. (LSS). For 58-MeV Ni ions, the calculated damage profile using the theoretical LSS value of the electronic stopping parameter (k = 0.167) agrees well with experiment. However, for 4-MeV Ni ions it is necessary to use k = 0.12 to get agreement with the experimental data. In the case of 1-MeV He, the depth location of the calculated damage peak is in good agreement with experiment when the electronic stopping determined by Chu and Powers is used whereas it is about 15 percent too close to the surface using the tables of Northcliffe and Schilling. (auth)

  17. Proposed demonstration of the Einstein-Poldosky-Rosen paradox using trapped electrons

    International Nuclear Information System (INIS)

    Martins, Ana M.

    2002-01-01

    Correlations of the type discussed by Einstein, Poldosky, and Rosen in their original 1935 paradox may be generated between the positions and the momenta of two electrons confined in two spatially separated Penning traps when they are allowed to be coupled for a certain time interval. An experimental demonstration of the paradox could be done using the accurate techniques of manipulation and measurement of confined charged particles. The basic ideas presented in this paper might be extended in order to enable quantum information transfer of continuous variables between massive particles

  18. Study of the yield of the Fricke dosimetry for electron energies from 2 to 90 MeV

    International Nuclear Information System (INIS)

    Berkvens, I.P.

    1988-01-01

    The chemical yield for the ferrous sulphate dosimeters was determined for 60 Co-γ radiation and for electron beams of mean energies in the points of measurements, between 2.7 and about 9 MeV. As references, absolute determinations of absorbed dose based on calorimetric measurements, were used. The irradiation geometry for the ferrous sulphate dosimeter differ always due to technical reasons somewhat from that for the absorber of the calorimeter. The investigators took this difference into account. Perturbation correction factors that correct for the difference in electron scattering in the air gaps around the absorber of the calorimeter and in the graphite, were computed with the Monte Carlo method. Also the ''reference volume method'' recently introduced by the ICRU (report No.35), was applied to correct for the introduction of a ferrous sulphate dosimeter in a graphite phantom. This correction is necessary as the electrons are stopped and scattered in a different way in graphite and water. The results indicated that there is no energy dependence of the chemical yield (G-value) of the dosimeter in the energy range 2.7 to about 9 MeV. A mean G-value of 1,584 (± 0.006) μ mol/J was obtained. For 60 Co-γ a G-value of 1.601 μ mol/J was determined. However, this difference might not be real but due to the present uncertainty in the stopping-power ratios graphite to water. These ratios are thus made use of to determine the G-value from measurements of the absorbed dose to graphite. Previous investigations, by the group from Gent, indicated a small increase of the G-value with the electron energy. These more accurate determinations thus instead indicate a constant G-value. Refs, figs, tabs

  19. Screening conditions in a magnetized plasma with electron beam, with application to ripple trapped electron losses

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E.; Heuraux, S. [Nancy-1 Univ. Henri Poincare, LPMIA, UMR CNRS 7040, 54 (France); Colas, L.; Saint-Laurent, F.; Martin, G.; Basiuk, V. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    In Tore Supra, electrons are accelerated by lower hybrid waves in the direction parallel to the confinement magnetic field, in order to drive non-inductive current. But electrons have also on increase of their perpendicular velocity, then 10% of the most energetic electrons get trapped in the magnetic ripple between 2 adjacent toroidal coils, thus forming a beam. The electron beam follows a banana trajectory, the 20 mm wide protection represented by a cooled copper tube is assumed to protect the VP entrance from this energetic flux. Nevertheless, this beam is able to go beyond the copper tube and creates a hot spot on the steel panel edge able to melt the metal. Heat fluxes deposition on the vertical port (VP) can be understood with a beam+sheath theory including the fact that the sheaths can be obstructed when their length becomes greater than flux tube length. By this way, we identify 4 deposition regimes: 2 free sheath regimes and 2 obstructed sheath regimes. Beam flux deposits either at the entrance of the VP along first 2 cm behind the copper tube or until the end of the VP when beam flux is high and for free sheath. Obstructed sheaths make the repulsive, potential for electrons decrease and so accelerate the flux deposition. (authors)

  20. New experimental initiatives using very highly charged ions from an 'electron beam ion trap'

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    A short review of the experimental program in highly-charged heavy ion physics conducted at the Lawrence Livermore National Laboratory Electron Beam Ion Trap (EBIT) facility is presented. The heavy-ion research, involving ions up to fully stripped U 92+ , includes precision x-ray spectroscopy and lifetime studies, electron impact ionization and excitation cross section measurements. The investigations of ion-surface interactions following the impact of high-Z highly charged ions on surfaces are aimed to study the neutralization dynamics effecting the ion and the response of the surface as well. (author)

  1. Microwave matching and tuning on the 20-MeV medical electron linac with feedback of rf power

    International Nuclear Information System (INIS)

    Yuan-ling, Wang

    1983-01-01

    This article describes the 20 Mev medical electron linac at Jiangsu Tumour Hospital. In the linac, feedback of rf power is used. In the linac with feedback (or with the resonator) the reflection affects the energy gain of the electron and the performance of the accelerator. By means of the theory of the traveling wave resonator, the field multiplication factor and the reflection coefficients inside and outside the feedback ring are calculated. The bands of the linacs without and with feedback are measured. In order to achieve a desirable band in front of the load (i.e. outside the feedback ring) a matching iris is added. After the linac with feedback has been matched, the band is given

  2. Experimental evaluation of quantum computing elements (qubits) made of electrons trapped over a liquid helium film; Evaluation experimentale d'elements de calcul quantique (qubit) formes d'electrons pieges sur l'helium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, E

    2006-12-15

    An electron on helium presents a quantized energy spectrum. The interaction with the environment is considered sufficiently weak in order to allow the realization of a quantum bit (qubit) by using the first two energy levels. The first stage in the realization of this qubit was to trap and control a single electron. This is carried out thanks to a set of micro-fabricated electrodes defining a well of potential in which the electron is trapped. We are able with such a sample to trap and detect a variables number of electrons varying between one and around twenty. This then allowed us to study the static behaviour of a small number of electrons in a trap. They are supposed to crystallize and form structures called Wigner molecules. Such molecules have not yet been observed yet with electrons above helium. Our results bring circumstantial evidence for of Wigner crystallization. We then sought to characterize the qubit more precisely. We sought to carry out a projective reading (depending on the state of the qubit) and a measurement of the relaxation time. The results were obtained by exciting the electron with an incoherent electric field. A clean measurement of the relaxation time would require a coherent electric field. The conclusion cannot thus be final but it would seem that the relaxation time is shorter than calculated theoretically. That is perhaps due to a measurement of the relaxation between the oscillating states in the trap and not between the states of the qubit. (author)

  3. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    Science.gov (United States)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  4. (Anti)hydrogen recombination studies in a nested Penning trap

    International Nuclear Information System (INIS)

    Quint, W.; Kaiser, R.; Hall, D.; Gabrielse, G.

    1993-01-01

    Extremely cold antiprotons, stored in Penning trap at 4 K, open the way toward the production and study of cold antihydrogen. We have begun experimentally investigating the possibility to recombine cold positrons and antiprotons within nested Penning traps. Trap potentials are adjusted to allow cold trapped protons (and positive helium ions) to pass through cold trapped electrons. Electrons, protons and ions are counted by ejecting them to a cold channel plate and by nondestructive radiofrequency techniques. The effect of the space charge of one trapped species upon another trapped species passing through is clearly observed. (orig.)

  5. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei; Hijikata, Yasuto; Yaguchi, Hiroyuki [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku , Saitama 338-8570 (Japan); Mochizuki, Toshimitsu; Yoshita, Masahiro; Akiyama, Hidefumi [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Kuboya, Shigeyuki; Onabe, Kentaro [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Katayama, Ryuji [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  6. Operation of the APEX photoinjector accelerator at 40 MeV

    International Nuclear Information System (INIS)

    Feldman, D.W.; Bender, S.C.; Byrd, D.A.; Carlsten, B.E.; Early, J.W.; Feldman, R.B.; Goldstein, J.C.; Martineau, R.L.; O'Shea, P.G.; Pitcher, E.J.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.

    1992-01-01

    We have successfully operated the photoinjector and rf linear accelerator for the Los Alamos APEX free electron laser (FEL) at design energy, average macropulse current, and emittance. The accelerator, which operates at 1.3 GHz, consists of a 6 MeV photoinjector and three standing-wave structures with a total beam energy of 40 MeV. This paper presents performance characteristics of the APEX system. The results show that this technology is capable of providing reliable, high-peak current, ultra-high brightness electron beams

  7. Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma

    Directory of Open Access Journals (Sweden)

    L. Nikzad

    2012-02-01

    Full Text Available Simulation of x-ray generation from bombardment of various solid targets by quasimonoenergetic electrons is considered. The electron bunches are accelerated in a plasma produced by interaction of 500 mJ, 30 femtosecond laser pulses with a helium gas jet. These relativistic electrons propagate in the ion channel generated in the wake of the laser pulse. A beam of MeV electrons can interact with targets to generate x-ray radiation with keV energy. The MCNP-4C code based on Monte Carlo simulation is employed to compare the production of bremsstrahlung and characteristic x rays between 10 and 100 keV by using two quasi-Maxwellian and quasimonoenergetic energy distributions of electrons. For a specific electron spectrum and a definite sample, the maximum x-ray flux varies with the target thickness. Besides, by increasing the target atomic number, the maximum x-ray flux is increased and shifted towards a higher energy level. It is shown that by using the quasimonoenergetic electron profile, a more intense x ray can be produced relative to the quasi-Maxwellian profile (with the same total energy, representing up to 77% flux enhancement at K_{α} energy.

  8. 3 MeV DC accelerator, EBC Kharghar

    International Nuclear Information System (INIS)

    Bakhtsingh, R.I.; Acharya, S.

    2017-01-01

    The Accelerator and Pulse Power Division (APPD) has designed and developed a 3 MeV, 10 mA DC electron beam accelerator at Electron Beam Centre, Kharghar, Navi Mumbai. This machine has been utilized for reduction of SO_x and NO_x in simulated flue gases and treatment of waste water to reduce COD and BOD

  9. Lactose and sucrose aqueous solutions for high-dose dosimetry with 10-MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Amraei, R.; Kheirkhah, M.; Raisali, G.

    2012-01-01

    In the present study, dosimetric characterisation of aqueous solutions of lactose and sucrose was analysed by UV spectrometry following irradiation using 10-MeV electron beam at doses between 0.5 and 10.5 kGy. As a dosimetric index, absorbance is selected at 256 and 264 nm for lactose and sucrose aqueous solutions, respectively. The intensity of absorbance for irradiated solutions depends on the pre-irradiation concentration of lactose and sucrose. The post-irradiation stability of both solutions was investigated at room temperature for a measurement period of 22 d. (authors)

  10. Radiation-induced damage and recovery effects in GG17 glass irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Wang Qingyan; Zhang Zhonghua; Geng Hongbin; Sun Chengyue; Yang Dezhuang; He Shiyu; Hu Zhaochu

    2012-01-01

    The optical properties and microstructural damage of GG17 glasses, as well as their recovery during annealing at room temperature, are investigated after exposure to 1 MeV electrons with various fluences. Experimental results show that the electrons lead to severe optical degradation in the GG17 glass, and induce the formation of paramagnetic defects which can be mainly attributed to the boron–oxygen hole centers. With increasing annealing time at room temperature their decay serves as long-lived defects following first order kinetics. Except for the strong absorption bands located at 334–352 nm and 480 nm that corresponds to the boron–oxygen hole centers, weaker absorption bands appear at 780 nm or 794.6 nm after irradiation, inducing a decrease in transmittance by approximately 17% for a fluence of 1 × 10 16 cm −2 . It is shown that electron irradiation could cause a harmful effect on rubidium lamps when GG17 glass is used as the lamp envelope material.

  11. 2 MeV/20 kW industrial electron beam accelerator vis-s-vis its vacuum system

    International Nuclear Information System (INIS)

    Khader, S.A.; Assadullah, M.; Sarma, K.S.S.; Bandi, L.N.

    2003-01-01

    Full text: Electron beam accelerators in the energy range 200 keV to 10 MeV have been extensively used for many radiation processing applications that include polymerization, polymer modifications, radiation sterilization, food irradiation and gem coloration. The accelerator technology is a multidisciplinary one wherein production of stable vacuum in various accelerator systems is of utmost importance to achieve required output beam parameters like beam energy and current for processing industrial products at large through puts on continuous basis. A 2 MeV, 20 kW industrial electron beam accelerator has been in operation since 2001 at BARC-BRIT complex, Navi Mumbai for commercial and R and D applications like crosslinking of wire and cables, heat shrinkable tubes, PE O rings, PTEE degradation and color enhancement in diamonds. The machine is a ILU-6 type pulse RF accelerator consisting of a single resonator copper cavity of 1.2 m diameter and 1.2 m height (volume:∼ 1.5 m3) placed inside a stainless steel container (called cavity container) and a s.s. beam extraction window wherein vacuum needs to be maintained at a minimum 10-6 torr. Four sputter ion pumps are directly fixed on the cavity container to obtain maximum pumping efficiency. The fore vacuum is generated using a combination rotary and a roots pump. The beam extraction widow has a 50 and 956 m thick titanium foil acting as the exit window for electrons from the vacuum into air. Both the cavity and the beam extraction window are coupled through a gate valve which acts as a vacuum separator isolating the systems from each other during foil puncture, scanning system failure or any other related problems. This paper reports details of the vacuum system, measurements, vacuum leaks and detection and the operational experience related to maintenance and troubleshooting exercises that have been carried in the accelerator

  12. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  13. Electron shakeoff following the β+ decay of +19Ne and +35Ar trapped ions

    Science.gov (United States)

    Fabian, X.; Fléchard, X.; Pons, B.; Liénard, E.; Ban, G.; Breitenfeldt, M.; Couratin, C.; Delahaye, P.; Durand, D.; Finlay, P.; Guillon, B.; Lemière, Y.; Mauger, F.; Méry, A.; Naviliat-Cuncic, O.; Porobic, T.; Quéméner, G.; Severijns, N.; Thomas, J.-C.

    2018-02-01

    The electron shakeoff of 19F and 35Cl atoms resulting from the β+ decay of +19Ne and +35Ar ions has been investigated using a Paul trap coupled to a time of flight recoil-ion spectrometer. The charge-state distributions of the recoiling daughter nuclei were compared to theoretical calculations based on the sudden approximation and accounting for subsequent Auger processes. The excellent agreement obtained for 35Cl is not reproduced in 19F. The shortcoming is attributed to the inaccuracy of the independent particle model employed to calculate the primary shakeoff probabilities in systems with rather low atomic numbers. This calls for more elaborate calculations, including explicitly the electron-electron correlations.

  14. First results on dense plasma confinement at the multimirror open trap GOL-3-II

    International Nuclear Information System (INIS)

    Koidan, V.S.; Arzhannikov, A.V.; Astrelin, V.T.

    2001-01-01

    First results of experiments on plasma confinement in multimirror open trap GOL-3-II are presented. This facility is an open trap with total length of 17 m intended for confinement of a relatively dense (10 15 -10 17 cm -3 ) plasma in axially-symmetrical magnetic system. The plasma heating is provided by a high-power electron beam (1 MeV, 30 kA, 8 ms, 200 kJ). New phase of the experiments is aimed to confinement of high-β thermalized plasma. Two essential modifications of the facility have been done. First, plasma column was separated by vacuum sections from the beam accelerator and exit beam receiver. Second, the magnetic field on part of the solenoid was reconfigured into multimirror system with H max /H min ∼1.5 and 22 cm cell length. Results of the experiments at modified configuration of the device indicate that the confinement time of the plasma with n e ∼(0, 5/5)·10 15 cm -3 and T e ∼1 keV increases more than order of magnitude. (author)

  15. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  16. Galileo Measurements of the Jovian Electron Radiation Environment

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-12-01

    The Galileo spacecraft Energetic Particle Detector (EPD) has been used to map Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). The electron count rates from the instrument were averaged into 10-minute intervals over the energy range 0.2 MeV to 11 MeV to form an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and end of mission in 2003. These data were then used to provide differential flux estimates in the jovian equatorial plane as a function of radial distance (organized by magnetic L-shell position). These estimates provide the basis for an omni-directional, equatorial model of the jovian electron radiation environment. The comparison of these results with the original Divine model of jovian electron radiation and their implications for missions to Jupiter will be discussed. In particular, it was found that the electron dose predictions for a representative mission to Europa were about a factor of 2 lower than the Divine model estimates over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeded the Divine model by about 50% for thicker shielding for the assumed Europa orbiter trajectories. The findings are a significant step forward in understanding jovian electron radiation and represent a valuable tool for estimating the radiation environment to which jovian science and engineering hardware will be exposed.

  17. Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas

    Science.gov (United States)

    Chen, Hao-Tian; Chen, Liu

    2018-05-01

    Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.

  18. A Monte Carlo simulation code for calculating damage and particle transport in solids: The case for electron-bombarded solids for electron energies up to 900 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-15

    Current popular Monte Carlo simulation codes for simulating electron bombardment in solids focus primarily on electron trajectories, instead of electron-induced displacements. Here we report a Monte Carol simulation code, DEEPER (damage creation and particle transport in matter), developed for calculating 3-D distributions of displacements produced by electrons of incident energies up to 900 MeV. Electron elastic scattering is calculated by using full-Mott cross sections for high accuracy, and primary-knock-on-atoms (PKAs)-induced damage cascades are modeled using ZBL potential. We compare and show large differences in 3-D distributions of displacements and electrons in electron-irradiated Fe. The distributions of total displacements are similar to that of PKAs at low electron energies. But they are substantially different for higher energy electrons due to the shifting of PKA energy spectra towards higher energies. The study is important to evaluate electron-induced radiation damage, for the applications using high flux electron beams to intentionally introduce defects and using an electron analysis beam for microstructural characterization of nuclear materials.

  19. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  20. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    Science.gov (United States)

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets.

  1. Generation of 300 MeV Quasi-Monochromatic Electron Beams from Laser Wakefield and Initiation of Photonuclear Reactions

    Science.gov (United States)

    Maksimchuk, A.; Beene, J. R.

    2005-10-01

    In the interaction of 30 fs, 40 TW Ti:sapphire Hercules laser at the University of Michigan, which is focused to the intensity of 10^19 W/cm^2 onto a supersonic He gas jet with electron density close to the resonant density, we observed quasi-monoenergetic electron beams with energy up to 300 MeV and angular divergence of about 10 mrad. The results on characterization of relativistic electron beam in terms of energy spread, its charge, divergence and pointing stability will be presented. 2D PIC simulations performed for the parameters close to the experimental conditions show the evolution of the laser pulse in plasma, electron injection, and the specifics of electron acceleration observed in experiments. Resulted relativistic electron beams have been used to perform gamma-neutron activation of ^12C and ^63Cu and photo-fission of ^238U. We demonstrated that approximately 10^6 reaction per shot has been produced in each case. This work was supported by the NSF through the Physics Frontier Center FOCUS. JRB, DRS, DWS, and CRV acknowledge support by the DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  2. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids

    NARCIS (Netherlands)

    Boehme, Simon C.; Mikel Azpiroz, Jon; Aulin, Yaroslav V.; Grozema, Ferdinand C.; Vanmaekelbergh, Daniel; Siebbeles, Laurens D. A.; Infante, Ivan; Houtepen, Arjan J.

    Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact

  3. Density of trap states and Auger-mediated electron trapping in CdTe quantum-dot solids

    NARCIS (Netherlands)

    Boehme, Simon C.; Azpiroz, Jon Mikel; Aulin, Yaroslav V.; Grozema, Ferdinand C.; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J.

    2015-01-01

    Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact

  4. Dynamic investigation of electron trapping and charge decay in electron-irradiated Al sub 2 O sub 3 in a scanning electron microscope: Methodology and mechanisms

    CERN Document Server

    Fakhfakh, S; Belhaj, M; Fakhfakh, Z; Kallel, A; Rau, E I

    2002-01-01

    The charging and discharging of polycrystalline Al sub 2 O sub 3 submitted to electron-irradiation in a scanning electron microscope (SEM) are investigated by means of the displacement current method. To circumvent experimental shortcomings inherent to the use of the basic sample holder, a redesign of the latter is proposed and tests are carried out to verify its operation. The effects of the primary beam accelerating voltage on charging, flashover and discharging phenomena during and after electron-irradiation are studied. The experimental results are then analyzed. In particular, the divergence between the experimental data and those predicted by the total electron emission yield approach (TEEYA) is discussed. A partial discharge was observed immediately after the end of the electron-irradiation exposure. The experimental data suggests, that the discharge is due to the evacuation to the ground, along the insulator surface, of released electrons from shallow traps at (or in the close vicinity of) the insulat...

  5. Influence of 2 MeV electrons irradiation on gallium phosphide light-emitting diodes reverse currents

    Directory of Open Access Journals (Sweden)

    V. G. Vorobiov

    2015-10-01

    Full Text Available Results of reverse electrophysical characteristics study of red and green LEDs, initial and irradiated with 2 MeV electrons were given. It was found that reverse current was predominantly caused by carriers tunneling at Urev ≤ 9 V, and by the avalanche multiplication at Urev ≥ 13 V, in the range U = 9 ÷ 13 V both mechanisms are available. Current increase at high voltage areas (Urev > 19 V is limited by the base resistance of diode. In the case of significant reverse currents (I > 1 mA irradiation of diodes leads to the shift of reverse current-voltage characteristics into the high voltages direction.

  6. Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke

    2011-01-01

    In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.

  7. Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Nazari-Golshan, A.; Nourazar, S. S.

    2013-01-01

    The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v 0 , and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously

  8. First experiments with the 200 keV electron beam ion trap at LLNL

    International Nuclear Information System (INIS)

    Marrs, R.E.; Knapp, D.A.; Elliott, S.

    1993-01-01

    A high-energy electron beam ion trap (Super EBIT) is operating at electron energies up to 200 keV and currents up to 200 mA. Highly charged ions up to Li-like U 89+ and H-like Pb 81+ have been produced and studied. Ionization cross sections for H-like Dy 66+ at E e = 170 keV have been measured with respect to radiative recombination from the observed Dy 66+ /Dy 67+ equilibrium ionization balance. A Bragg crystal spectrometer has been used to measure 2s 1/2 -2p 3/2 transition energies in Li-like U 82+ with respect to the Lymann-series transitions in lower-Z hydrogenic ions

  9. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.

    2011-01-01

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.

  10. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    Science.gov (United States)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  11. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shang Jing [National Synchrotron Radiation Lab, University of Science and Technology of China (China); Li Juexin, E-mail: juexin@ustc.edu.cn [National Synchrotron Radiation Lab, University of Science and Technology of China (China); Xu Bing; Li Yuxiong [National Synchrotron Radiation Lab, University of Science and Technology of China (China)

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the {sup 60}Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  12. Fibre optic control for electron gun power supplies and data acquisition of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Chavan, R.B.; Yadav, Vivek; Dixit, K.P.; Bakhtsingh, R.I.; Rajan, Rehim; Nanu, K.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.

    2011-01-01

    A 3 MeV, 10 mA DC Industrial Electron Beam Accelerator is being commissioned at Electron Beam Centre, Navi Mumbai. The electron beam is generated by a triode electron gun and injected into the accelerating column at 5 keV. The gun and its power supplies, (5 kV anode, 3 kV grid and 15V/20A filament), are floating at 3 Million volts, and are situated in a tank which is pressurized with SF6 at 6 kg/cm 2 . These power supplies are required to be controlled remotely. The various accelerator parameters like Beam Energy, Beam Current, RF Electrode Voltage, Power Oscillator Plate Voltage / Current and Vacuum are required to be monitored during beam operation. The software was developed in VB.Net for control and data acquisition. The database is provided in SQL 2005 for storing the data. For this purpose, control system using ADAM modules and Optical fibre has been designed and developed. This paper describes the design features of the control system and experience of use of control software during initial beam trials. (author)

  13. TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples " Federico II," I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991 Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Felice, V. Di [INFN, Sezione di Rome " Tor Vergata," I-00133 Rome (Italy); Castellini, G., E-mail: alessandro.bruno@ba.infn.it [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others

    2015-01-20

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ∼70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  14. Charge generation and trapping in bisphenol-A-polycarbonate/N-isopropylcarbazole mixture: A study by electron bombardment-induced conductivity

    International Nuclear Information System (INIS)

    Santos, S.; Caraballo, D.

    2007-01-01

    Electron bombardment-induced conductivity measurements were carried out on cast films of N-isopropylcarbazole (NIPC) dispersed into an amorphous matrix of bisphenol-A-polycarbonate. The charge generation was studied by estimating the hole yield (g), the fraction of charge escaping recombination, as a function of electric field and concentration of NIPC at room temperature. The hole yield, besides increasing by increasing the content of NIPC, was observed to increase with the electric field in the manner predicted by the Onsager theory of geminate recombination. Deep trapping levels were studied by filling under electron bombardment and observing transients. The deep traps were neutral in nature with a concentration on the order of 8.0x10 14 cm -3 , which was low enough not to degrade transport under normal conditions

  15. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters

    Science.gov (United States)

    Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli

    2018-04-01

    Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.

  16. Investigation of diocotron modes in toroidally trapped electron plasmas using non-destructive method

    Science.gov (United States)

    Lachhvani, Lavkesh; Pahari, Sambaran; Sengupta, Sudip; Yeole, Yogesh G.; Bajpai, Manu; Chattopadhyay, P. K.

    2017-10-01

    Experiments with trapped electron plasmas in a SMall Aspect Ratio Toroidal device (SMARTEX-C) have demonstrated a flute-like mode represented by oscillations on capacitive (wall) probes. Although analogous to diocotron mode observed in linear electron traps, the mode evolution in toroids can have interesting consequences due to the presence of in-homogeneous magnetic field. In SMARTEX-C, the probe signals are observed to undergo transition from small, near-sinusoidal oscillations to large amplitude, non-linear "double-peaked" oscillations. To interpret the wall probe signal and bring forth the dynamics, an expression for the induced current on the probe for an oscillating charge is derived, utilizing Green's Reciprocation Theorem. Equilibrium position, poloidal velocity of the charge cloud, and charge content of the cloud, required to compute the induced current, are estimated from the experiments. Signal through capacitive probes is thereby computed numerically for possible charge cloud trajectories. In order to correlate with experiments, starting with an intuitive guess of the trajectory, the model is evolved and tweaked to arrive at a signal consistent with experimentally observed probe signals. A possible vortex like dynamics is predicted, hitherto unexplored in toroidal geometries, for a limited set of experimental observations from SMARTEX-C. Though heuristic, a useful interpretation of capacitive probe data in terms of charge cloud dynamics is obtained.

  17. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  18. 200 MeV RF linac for synchrotron injection

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Lyons, S.; Manca, J.; Miller, R.; Treas, P.; Zante, T.; Miller, R.

    1992-01-01

    Construction has been completed on an electron linear accelerator for the Brookhaven National Laboratory. This accelerator will be used for the injection of a 200 MeV electron beam into a synchrotron for lithography experiments. This paper describes the conceptual design of the linac, its e-gun pulser, and its control and timing systems. 3 figs., ref

  19. Measures of gamma rays between 0,3 MeV and 3,0 MeV and of the 0,511 MeV annihilation line coming from Galactic Center Region

    International Nuclear Information System (INIS)

    Jardim, M.V.A.

    1982-04-01

    The detection of the flux of the electron-positron annihilation line coming from the Galactic Center direction allows one to estimate the rate of positrons production and the corresponding luminosity. The results of measurements of the annihilation line flux intensity at 0.511 MeV, obtained with a balloon borne experiment to measure gamma rays in the energy interval 0.3 to 3 MeV are presented. The detector looked at the galactic disk in the longitude interval -31 0 0 and observed a flux intensity of (6.70 +- 0.85) x 10 -3 photons cm -2 s -1 , which is in good agreement with the flux value estimated assuming that the Galactic Center is a line source emitting uniformly. Some likely sources of positrons and annhilation regions are also discussed. The results for the continuum spectrum emitted from the Galactic Center in the energy interval 0.3 to 0.67 MeV are presented and compared with measurements had already made. (Author) [pt

  20. Penning-trap mass measurements of the neutron-rich K and Ca isotopes: Resurgence of the N=28 shell strength

    Science.gov (United States)

    Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.

    2012-02-01

    We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.

  1. Calculation of equivalent dose index for electrons from 5,0 to 22,0 MeV by the Monte Carlo method

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1979-01-01

    The index of equivalent dose in depth and in a sphere surface of a soft tissue equivalent material were determined by Monte Carlo method for electron irradiations from 5,0 to 22.00 MeV. The effect of different irradiation geometries which simulate the incidence of onedirectional opposite rotational and isotropic beams was studied. It is also shown that the detector of wall thickness with 0.5g/cm 2 and isotropic response com be used to measure index of equivalent dose for fast electrons. The alternative concept of average equivalent dose for radiation protection is discussed. (M.C.K.) [pt

  2. Dose measurements in the treatment of mycosis fungoides with total skin irradiation using a 4 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Poli, M.E.R. [Hospital Real e Benemerita Sociedade Portuguesa de Beneficencia (Brazil); Todo, A.S.; Campos, L.L. [Instituto de Pesquisas Energeticas e Nucleares, CNEN/SP Travessa R, Sao Paulo (Brazil)

    2000-05-01

    The total skin irradiation (TSI) is one of the most efficient techniques in the treatment administered with curative intent of the mycosis fungoides. The cure may be obtained in 10% to 40% of cases. The original Stanford University technique, created in 1960, was applied in a 4.8 MeV linear accelerator, that provided 2.5 MeV electrons in the patient, by the use of 4 couple beams with the patient placed in front of the beam, 3 meters distant from the apparatus. In this work we describe a 4 MeV electrons beam treatment method. We intend to improve the uniformity of the dose in the patient, as well, to reduce the problems with the overlapping treatment fields, that occurs in conventional treatment that uses 1 meter of focus-skin distance, and the treatment time to the patient. Only one modification was done in the apparatus: the dose rate for this treatment was doubled. The patient is placed on a rotative base and he assumes successively 6 positions: stand up and perpendicular to the beam, distant 2.83 meters from the gantry, with 60 degrees of interval between the rotations. In each position, the patient receives a couple of beams (the beam angulation is 19.5 degrees above the transversal axis in the middle of the patient and 19.5 degrees below it). The dosimetric data obtained were compared to the international protocols (AAPM). The delivered doses in the patient were measured with thermoluminescent dosimeters placed on skin surface and with Kodak XV-2 films placed between different slabs of an anthropomorphic phantom. The dose distribution in the phantom shows a good uniformity, in all thickness of interest, so it is possible to use this technique in the treatment of the mycosis fungoides as well Kaposi's sarcoma. (author)

  3. Mini ion trap mass spectrometer

    Science.gov (United States)

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  4. Projectile-charge-state dependence of 0 degree binary-encounter electron production in 30-MeV Oq++O2 collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Richard, P.; Wong, K.L.; Hidmi, H.I.; Sanders, J.M.; Liao, C.; Grabbe, S.; Bhalla, C.P.

    1994-01-01

    Double-differential cross sections (DDCS's) for the production of binary-encounter electrons (BEE's) are reported for 30-MeV O q+ +O 2 collisions. The BEE DDCS's were measured at θ=0 degree with respect to the beam direction for projectile charge states q=4--8. The measured BEE DDCS's were found to increase with decreasing charge state in agreement with other recent BEE results employing simpler H 2 and He targets. Impulse-approximation calculations of BEE production for θ=0 degree--45 degree are also presented, in which it is assumed that target electrons undergo elastic scattering in the screened Coulomb field of the projectile ion. These calculations are shown to be in agreement with our data at θ=0 degree where only 2s and 2p target electrons are considered

  5. X-ray spectroscopy of hydrogen-like ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Tarbutt, M.R.; Crosby, D.; Silver, J.D. [Univ. of Oxford, Clarendon Lab. (United Kingdom); Myers, E.G. [Dept. of Physics, Florida State Univ., Tallahassee, FL (United States); Nakamura, N.; Ohtani, S. [ICORP, JST, Chofu, Tokyo (Japan)

    2001-07-01

    The X-ray emission from highly charged hydrogen-like ions in an electron beam ion trap is free from the problems of satellite contamination and Doppler shifts inherent in fast-beam sources. This is a favourable situation for the measurement of ground-state Lamb shifts in these ions. We present recent progress toward this goal, and discuss a method whereby wavelength comparison between transitions in hydrogenlike ions of different nuclear charge Z, enable the measurement of QED effects without requiring an absolute calibration.

  6. Depth distribution of carrier lifetime in 65 MeV oxygen ion irradiated silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kanjilal, D. [Nuclear Science Centre, New Delhi (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in

    2006-03-15

    CZ-grown, n-doped crystalline Si(1 1 1) of resistivity 60 {omega} cm and 140 {omega} cm were irradiated with 65 MeV energy oxygen ions, in the fluence range of 2 x 10{sup 1}-10{sup 14} ions/cm{sup 2}. The depth and spatial profile of excess minority carrier recombination time {tau} (lifetime) was measured using photoconductive decay (PCD) method. Lifetime measurements were carried out before the stopping range of impinging ions. Results show a monotonous decrease in lifetime with fluence, which is attributed to defect creation mechanism by electronic energy loss based on the thermal spike model. Also, surface modification is expected with a small loss in crystalline quality. This surface is considered to be a multi-crystalline surface with large grain boundaries that act as trapping sites for excess holes in n-Si(1 1 1). Annealing of the irradiated samples showed a near complete recovery at 750 deg. C for a period of 1 h.

  7. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    Science.gov (United States)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  8. Generation and application of 15 to 30 MeV parametric X-ray by linac

    CERN Document Server

    Akimoto, T

    2002-01-01

    15 to 30 MeV parametric X-ray (PXR) was generated using Si single crystal by 45 MeV electron LINAC. To obtain good monochromatic hard X-ray field, the appropriate conditions were determined by theoretical analysis and experiments. The intensity of PXR was increased with increasing electron energy and crystal rotation angle. However, PXR energy is independent of electron energy. By increasing measurement angle, energy of PXR decreased, but its intensity increased. 15 to 30 keV PXR energy and about 10 sup - sup 5 to 10 sup - sup 6 photon/electron of intensity were observed at 15 to 22 deg detection angle under the operation conditions of 45 MeV electron energy and 4 to 8 nA of beam current. The mass attenuation coefficient of photon of Zr, Nb and Mo, in K absorption edge was measured. Application to determine lattice distortion of target sample and off-angle of crystal was investigated. Generation and detection of PXR, measurement of characteristic properties: crystal rotation angle, detection angle, electron e...

  9. Evaluating the Role and Effects of Precipitation on Relativistic Electron Losses during Storms

    Science.gov (United States)

    Chen, Y.; Fu, X.

    2016-12-01

    Theoretic studies have suggested that during storm times various waves (e.g., whistler-mode chorus and electromagnetic ion cyclotron waves) can cause significant precipitation of relativistic ( MeV) electrons that are originally trapped inside the outer radiation belt. However, the role of precipitation and its quantitative contribution to the losses of outer-belt electrons remain open questions. In this study, we tackle these questions by systemically examining the latest wave and electron in-situ, simultaneous observations made at different altitudes by Van Allen Probes from near equator, NOAA POES at low Earth orbits near/across electron loss cone, and BARREL under the mesosphere. After calibrating with DEMTER observations, we first confirm and quantify the response of POES MEPED proton channels to MeV electrons. Next, we identify a list of precipitation events from BARREL and POES measurements, examine the temporal adn spatial relation between the two data sets, and estimate the intensities of electron precipitation with ascertained uncertainties. Then, from Van Allen Probes data, we select another list of dropout events during storms. By cross checking the above two lists, we are able to determine the causal relation between precipitation and dropouts through individual case as well as statistical studies so as to quantify the contributions from precipitation. This study mainly focuses on the relatively small L-shells with positive phase space density radial gradient in order to alleviate the impacts from outward radial diffusion and adiabatic effects. Based upon the recent discovery of cross-energy cross-pitch angle coherence, we pay particular attention to the cross-term diffusions which may account for the extra "loss" needed by observed MeV electron dropouts. Results from this observational study will advance our knowledge on the loss mechanism of outer-belt electrons, and thus lay down another stepping stone towards high-fidelity physics-based models for

  10. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    CERN Multimedia

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  11. Influence of electron irradiation on hydrothermally grown zinc oxide single crystals

    Science.gov (United States)

    Lu, L. W.; So, C. K.; Zhu, C. Y.; Gu, Q. L.; Li, C. J.; Fung, S.; Brauer, G.; Anwand, W.; Skorupa, W.; Ling, C. C.

    2008-09-01

    The resistivity of hydrothermally grown ZnO single crystals increased from ~103 Ω cm to ~106 Ω cm after 1.8 MeV electron irradiation with a fluence of ~1016 cm-2, and to ~109 Ω cm as the fluence increased to ~1018 cm-2. Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 1018 cm-2, the normalized TSC signal increased by a factor of ~100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 °C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

  12. Correlated lifetimes of free paraexcitons and excitons trapped at oxygen vacancies in cuprous oxide

    International Nuclear Information System (INIS)

    Koirala, Sandhaya; Naka, Nobuko; Tanaka, Koichiro

    2013-01-01

    We have studied transients of luminescence due to free excitons and excitons trapped at oxygen vacancies in cuprous oxide. We find that both trapped and free paraexcitons have lifetime dependent on temperature and on the oxygen concentration. By using samples containing much less copper vacancies relative to oxygen vacancies, we find out the direct correlation between the free paraexciton lifetime and trapped exciton lifetime. - Highlights: ► We have investigated trapping of free excitons at oxygen vacancies in cuprous oxide. ► Lifetimes of free and trapped excitons exhibit correlative temperature dependence. ► Four-level model with the activation energy of 33 meV well explains the observation. ► Comparison is made using the four samples with different vacancy concentrations. ► We clarified the crucial role of the oxygen vacancy in shortening the lifetimes.

  13. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  14. Structural and electrical properties of polycrystalline CdSe thin films, before and after irradiation with 6 MeV accelerated electrons

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, V.A.; Tazlaoanu, C.; Antohe, S.; Scarlat, F.

    2004-01-01

    Structural and electrical properties of polycrystalline CdSe thin films irradiated with high-energy electrons are analyzed. The samples were prepared by vacuum deposition of CdSe powder onto optical glass substrate. Their structure and the temperature dependence of the electrical resistance were determined, both before and after irradiation with 6 MeV electrons at fluencies up to 10 16 electrons/cm 2 . There were no measurable changes in the crystalline structure of the films after irradiation. Electrical properties are controlled by the defect level of donor type, possibly a selenium vacancy, with two ionizing states having ionization energies of about 0.40 eV and 0.22 eV, respectively. The major effect of the irradiation is to increase significantly the concentration of these defects. (authors)

  15. Quasi-Linear Evolution of Trapped Electron Fluxes Under the Influence of Realistic Whistler-Mode Waves

    Science.gov (United States)

    Agapitov, O. V.; Mourenas, D.; Artemyev, A.; Krasnoselskikh, V.

    2014-12-01

    The evolution of fluxes of energetic trapped electrons as a function of geomagnetic activity is investigated using brand new statistical models of chorus waves derived from Cluster observations in the radiation belts. The new wave models provide the distributions of wave power and wave-normal angle with latitude as a function of either Dst or Kp indices. Lifetimes and energization of energetic electrons are examined, as well as the relevant uncertainties related to some of the wave models implicit assumptions.From the presented results, different implications concerning the characterization of relativistic flux enhancements and losses are provided.

  16. Compression of Antiproton Clouds for Antihydrogen Trapping

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  17. Construction of 35 MeV DSM at Nihon University

    International Nuclear Information System (INIS)

    Hayakawa, K.; Sato, K.; Tanaka, T.; Takeda, O.

    1988-01-01

    High quality electron beam is needed for the excitation of the free electron laser(FEL). Construction of the 35 MeV double-sided microtron for the FEL has been started at 1984. This accelerator will feed a electron beam which has narrow energy width and low emittance. A first one turn beam line has been completed. Beam accelerating experiments and high power microwave tests are performed. (author)

  18. Direct observation of 0.57 eV trap-related RF output power reduction in AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Arehart, A. R.; Sasikumar, A.; Rajan, S.; Via, G. D.; Poling, B.; Winningham, B.; Heller, E. R.; Brown, D.; Pei, Y.; Recht, F.; Mishra, U. K.; Ringel, S. A.

    2013-02-01

    This paper reports direct evidence for trap-related RF output power loss in GaN high electron mobility transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) through increased concentration of a specific electron trap at EC-0.57 eV that is located in the drain access region, as a function of accelerated life testing (ALT). The trap is detected by constant drain current deep level transient spectroscopy (CID-DLTS) and the CID-DLTS thermal emission time constant precisely matches the measured drain lag. Both drain lag and CID-DLTS measurements show this state to already exist in pre-stressed devices, which coupled with its strong increase in concentration as a function of stress in the absence of significant increases in concentrations of other detected traps, imply its role in causing degradation, in particular knee walkout. This study reveals EC-0.57 eV trap concentration tracks degradation induced by ALT for MOCVD-grown HEMTs supplied by several commercial and university sources. The results suggest this defect has a common source and may be a key degradation pathway in AlGaN/GaN HEMTs and/or an indicator to predict device lifetime.

  19. 26-Day Variations of 7 MeV Electrons at high Latitudes and their Implications on the Heliospheric Magnetic Field

    Science.gov (United States)

    Sternal, Oliver; Engelbrecht, Eugene; Burger, Renier; Dunzlaff, Phillip; Ferreira, Stefan; Fichtner, Horst; Heber, Bernd; Kopp, Andreas; Potgieter, Marius; Scherer, Klaus

    The transport of energetic particles in the heliosphere is usually described by the Parker trans-port equation including the physical processes of diffusion, drift, convection and adiabatic energy changes. The Ulysses spacecraft provides unique insight into the flux of MeV electrons at high latitudes. In this contribution, we compare our model results for the Parker HMF model and the Fisk-type Schwadron-Parker HMF model to Ulysses measurements. The elec-tron flux at high latitudes has been used as a remote sensing method to investigate the imprint of a Fisk-type HMF. We show here for the first time that such an imprint exists and deduce a limitation on the Fisk HMF angle β.

  20. Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-Li, E-mail: Tian-Li.Wu@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, Leuven (Belgium); Marcon, Denis; De Jaeger, Brice; Lin, H. C.; Franco, Jacopo; Stoffels, Steve; Van Hove, Marleen; Decoutere, Stefaan [imec, Kapeldreef 75, 3001 Leuven (Belgium); Bakeroot, Benoit [imec, Kapeldreef 75, 3001 Leuven (Belgium); Centre for Microsystems Technology, Ghent University, 9052 Gent (Belgium); Roelofs, Robin [ASM, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-08-31

    In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.

  1. Novel optical waveguides by in-depth controlled electronic damage with swift ions

    Science.gov (United States)

    Olivares, J.; García-Navarro, A.; Méndez, A.; Agulló-López, F.; García, G.; García-Cabañes, A.; Carrascosa, M.

    2007-04-01

    We review recent results on a novel method to modify crystalline dielectric materials and fabricate optical waveguides and integrated optics devices. It relies on irradiation with medium-mass high-energy ions (2-50 MeV) where the electronic stopping power is dominant over that one associated to nuclear collisions. By exploiting the processing capabilities of the method, novel optical structures can be achieved at moderate (1014 cm-2) and even low and ultralow (1012 cm-2) fluences. In particular, step-like waveguides with a high index jump Δn ∼ 0.1-0.2, guiding both ordinary and extraordinary modes, have been prepared with F and O ions (20 MeV) at moderate fluences. They present good non-linear and electrooptic perfomance and low losses. (1 dB/cm). Moreover, useful optical waveguiding has been also achieved at ultralow frequencies (isolated track regime), using Cl and Si ions (40-45 MeV). In this latter case, the individual amorphous nanotracks, whose radius increases with depth, create an effective optical medium causing optical trapping.

  2. Novel optical waveguides by in-depth controlled electronic damage with swift ions

    International Nuclear Information System (INIS)

    Olivares, J.; Garcia-Navarro, A.; Mendez, A.; Agullo-Lopez, F.; Garcia, G.; Garcia-Cabanes, A.; Carrascosa, M.

    2007-01-01

    We review recent results on a novel method to modify crystalline dielectric materials and fabricate optical waveguides and integrated optics devices. It relies on irradiation with medium-mass high-energy ions (2-50 MeV) where the electronic stopping power is dominant over that one associated to nuclear collisions. By exploiting the processing capabilities of the method, novel optical structures can be achieved at moderate (10 14 cm -2 ) and even low and ultralow (10 12 cm -2 ) fluences. In particular, step-like waveguides with a high index jump Δn ∼ 0.1-0.2, guiding both ordinary and extraordinary modes, have been prepared with F and O ions (20 MeV) at moderate fluences. They present good non-linear and electrooptic perfomance and low losses. (1 dB/cm). Moreover, useful optical waveguiding has been also achieved at ultralow frequencies (isolated track regime), using Cl and Si ions (40-45 MeV). In this latter case, the individual amorphous nanotracks, whose radius increases with depth, create an effective optical medium causing optical trapping

  3. Electron scavenging in ethylene glycol-water glass at 4 and 77 K: scavenging of trapped vs mobile electrons. [. gamma. -rays, x radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D P; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry; Steen, H B

    1976-01-01

    Electron scavenging efficiencies have been measured at 77 and 4 K in ethylene glycol-water glass for the following scavengers which span a 250-fold range of scavenger efficiencies at 77 K: HCl, NaNO/sub 3/ and K/sub 2/Cr0/sub 4/. The range of scavenging efficiencies decreases to 62 at 4 K with the largest relative change occurring for the less efficient scavengers. These results are suggested to be most consistent with a model in which scavenging occurs by tunneling from shallowly and deeply trapped electrons at 4 and 77 K, respectively.

  4. Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Andrew, E-mail: aehiggin@princeton.edu, E-mail: kahn@princeton.edu; Kahn, Antoine, E-mail: aehiggin@princeton.edu, E-mail: kahn@princeton.edu [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263 (United States); Mohapatra, Swagat K.; Barlow, Stephen; Marder, Seth R. [Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2015-04-20

    Charge transport in organic semiconductors is often inhibited by the presence of tail states that extend into the band gap of a material and act as traps for charge carriers. This work demonstrates the passivation of acceptor tail states by solution processing of ultra-low concentrations of a strongly reducing air-stable organometallic dimer, the pentamethylrhodocene dimer, [RhCp*Cp]{sub 2}, into the electron transport polymer poly([N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide) -2,6-diyl]-alt-5,5′-(2,2′-bithiophene)), P(NDI{sub 2}OD-T{sub 2}). Variable-temperature current-voltage measurements of n-doped P(NDI{sub 2}OD-T{sub 2}) are presented with doping concentration varied through two orders of magnitude. Systematic variation of the doping parameter is shown to lower the activation energy for hopping transport and enhance film conductivity and electron mobility.

  5. Trapping, self-trapping and the polaron family

    International Nuclear Information System (INIS)

    Stoneham, A M; Gavartin, J; Shluger, A L; Kimmel, A V; Ramo, D Munoz; Roennow, H M; Aeppli, G; Renner, C

    2007-01-01

    The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail

  6. Comparison of high-energy trapped particle environments at the earth and jupiter

    International Nuclear Information System (INIS)

    Jun, I.; Garrett, H. B.

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source - The Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (≥100 keV) and proton ≥1 MeV) populations - The dominant radiation particles in these environments. The models used are the AP8/ AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4. largest moon) for Jupiter. The results show that the dose rates are ∼0.1 krad(Si) d -1 at the geosynchronous orbit and ∼30 krad(Si) d -1 at Europa for a 2.5 mm spherical shell aluminium shield - a factor of ∼300 between the two planets. (authors)

  7. EBIT trapping program

    International Nuclear Information System (INIS)

    Elliott, S.R.; Beck, B.; Beiersdorfer, P.; Church, D.; DeWitt, D.; Knapp, D.K.; Marrs, R.E.; Schneider, D.; Schweikhard, L.

    1993-01-01

    The LLNL electron beam ion trap provides the world's only source of stationary highly charged ions up to bare U. This unique capability makes many new atomic and nuclear physics experiments possible. (orig.)

  8. Mechanical properties of organic composite materials irradiated with 2 MeV electrons

    International Nuclear Information System (INIS)

    Egusa, S.; Kirk, M.A.; Birtcher, R.C.; Argonne National Lab., IL; Hagiwara, M.; Kawanishi, S.

    1983-01-01

    Four kinds of cloth-filled organic composites (filter: glass or carbon fiber; matrix; epoxy or polyimide resin) were irradiated with 2 MeV electrons at room temperature, and were examined with regard to the mechanical properties. Following irradiation the Young's (tensile) modulus of these composites remains practically unchanged even after irradiation up to 15.000 Mrad. The shear modulus and the ultimate strength, on the other hand, begin to decrease after the absorbed dose reaches about 2.000 Mrad for the glass/epoxy composite and about 5.000-10.000 Mrad for the other composites. This result is ascribed to the decrease in the capacity of load transfer from the matrix to the fiber due to the radiation damage at the interface, and the dose dependence is interpreted and formulated based on the mechanics of composite materials and the target theory used in radiation biology. As to the fracture behavior, the propagation energy increases from the beginning of irradiation. This result is attributed to the radiation-induced decrease in the bonding energy at the interface. (orig.)

  9. Electron self-trapped at molybdenum complex in lead molybdate: An EPRand TSL comparative study

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Fasoli, M.; Moretti, F.; Trubitsyn, M.; Volnianskii, M.; Vedda, A.; Nikl, Martin

    2017-01-01

    Roč. 192, Dec (2017), s. 767-774 ISSN 0022-2313 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GA17-09933S EU Projects: European Commission(XE) 690599 - ASCIMAT Institutional support: RVO:68378271 Keywords : EPR * wavelength resolved TSL * self-trapped electron * lead molybdate * molecular orbitals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  10. Effects of antimony (Sb) on electron trapping near SiO{sub 2}/4H-SiC interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, P. M.; Jiang, Zenan; Basile, A. F. [Physics Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Zheng, Yongju; Dhar, Sarit [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2016-07-21

    To investigate the mechanism by which Sb at the SiO{sub 2}/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO{sub 2}/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO{sub 2}/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. These are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO{sub 2}, and O2 traps, suggested to be interstitial Si in SiO{sub 2}. However, electron trapping is reduced by a factor of ∼2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.

  11. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  12. Effect of cellular glutathione content on the induction of DNA double strand breaks by 25 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frankenberg, D.; Kistler, M.; Eckhardt-Schupp, F.

    1987-08-01

    The effect of endogenous glutathione (GSH) on the induction of DNA double strand breaks (dsb) by 25 MeV electrons was investigated using stationary haploid yeast cells defective in ..gamma..-glutamyl-cysteine-synthetase (gsh 1) containing less than 5 per cent of the normal GSH content. In gsh 1 cells the induction of dsb is increased by a factor of 1.5 under oxic and 1.8 under anoxic irradiation conditions whereas the oxygen enhancement ratio was only slightly decreased (1.9) compared to wild-type cells (2.4).

  13. Effect of cellular glutathione content on the induction of DNA double strand breaks by 25 MeV electrons

    International Nuclear Information System (INIS)

    Frankenberg, D.; Kistler, M.; Eckhardt-Schupp, F.

    1987-01-01

    The effect of endogenous glutathione (GSH) on the induction of DNA double strand breaks (dsb) by 25 MeV electrons was investigated using stationary haploid yeast cells defective in γ-glutamyl-cysteine-synthetase (gsh 1) containing less than 5 per cent of the normal GSH content. In gsh 1 cells the induction of dsb is increased by a factor of 1.5 under oxic and 1.8 under anoxic irradiation conditions whereas the oxygen enhancement ratio was only slightly decreased (1.9) compared to wild-type cells (2.4). (author)

  14. Enacting laws concerning radiation safety management for students using X-rays and electron beams under 1 MeV

    International Nuclear Information System (INIS)

    Nishizawa, Kunihide; Shibata, Michihiro; Saze, Takuya

    2004-01-01

    Laws concerning radiation safety management were analyzed from the point of view of defining precisely what is meant by radiation and what is meant by the subject. There are no laws to protect students from radiation hazards when using X-rays and electron beams under 1 MeV for research and/or education. The Law concerning Technical Standards for Preventing Radiation Hazards gives the authorities the power to enact new rules and regulations that will protect the students. The Radiation Council must take charge for enactment of all laws regarding radiation safety management. (author)

  15. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  16. Resilience of quasi-isodynamic stellarators against trapped-particle instabilities.

    Science.gov (United States)

    Proll, J H E; Helander, P; Connor, J W; Plunk, G G

    2012-06-15

    It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit. The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic instabilities and is thus independent of all other details of the magnetic geometry.

  17. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  18. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, T., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Matsuoka, Y. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Mizumura, Y. [Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Tanimori, T. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J.D.; Tomono, D.; Sonoda, S. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Miuchi, K. [Department of Physics, Kobe University, 658-8501 Kobe (Japan); Kurosawa, S. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan)

    2015-11-11

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm{sup 3} TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm){sup 3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm){sup 3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from ~10% to ~100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  19. Radiation damage measurements on nonmetals made during irradiation with 1 to 3 MeV electrons. Final Report

    International Nuclear Information System (INIS)

    Levy, P.W.

    1982-01-01

    To investigate the fundamental processes producing radiation damage in nonmetals a unique facility has been developed for making optical absorption, luminescence and other measurements during irradiation with 1 to 3 MeV electrons. Measurements are made with a 13 meter long double beam spectrometer arranged so that all sensitive components, e.g., phototubes, are outside of the irradiation chamber. A computer provdies automatic control and data recording. A 256 point absorption and a 256 point luminescence spectra are recorded as often as every 40 seconds in either the 200-400 or 400-800 mm wavelength range. Samples are irradiated, at temperatures between 20 and 900 C, in an electronically controlled chamber containing He exchange gas and equipped with thin Havar windows to transmit the electron beam and high purity fused silica windows for the spectrophotometer beams. Radiation induced luminescence and absorption in the chamber windows, etc. is eliminated by the double beam spectrophotometer. Studies made with this equipment demonstrate clearly that many of the processes occurring during damage formation are transient

  20. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    Science.gov (United States)

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  1. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    DEFF Research Database (Denmark)

    Sato, T.; Takahashi, T.; Saito, T.

    1993-01-01

    Graphite and water calorimeters, which were developed for use a 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found...... to be directly proportional to the beam current and the variation among three water calorimeters was less than +/- 2 % in the range of 10 to 40 kGy. CTA, PMMA, RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters Simultaneously. The water calorimeter was proved to be an useful tool...... at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95 % confidence level) for X-ray measurement....

  2. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    International Nuclear Information System (INIS)

    Sato, Toshio; Takahashi, Toru; Saito, Toshio; Takehisa, Masaaki; Miller, A.

    1993-01-01

    Graphite and water calorimeters, which were developed for use with 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found to be directly proportional to the beam current and the variation among three water calorimeters was less than ± 2% in the range of 10 to 40 kGy. CTA PMMA RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters simultaneously. The water calorimeter was proved to be an useful tool at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95% confidence level) for X-ray measurement. (Author)

  3. Challenges in designing a very compact 130 MeV Moeller polarimeter for the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Bahlo, Thore; Enders, Joachim; Kuerzeder, Thorsten; Pietralla, Norbert; Wissmann, Jan [Institut fuer Kernphysik, TU Darmstadt, Darmstadt (Germany)

    2016-07-01

    The Superconducting Darmstadt Linear Accelerator is capable of accelerating polarized electron beams produced by the S-DALINAC Polarized Injector (SPIN). For electron energies of up to 14 MeV it is possible to measure the absolute polarization of the electrons with two Mott polarimeters that are already mounted in the injector beamline. Until now it is not possible to measure the absolute electron beam polarization after the passage of the main accelerator. Therefore a Moeller polarimeter for energies between 50 MeV and 130 MeV is currently being developed. The rather low incident beam energy, the variability of the incident beam energy, and spatial restrictions necessitate a compact set-up with large acceptance. The very restrictive boundary conditions introduce technical and geometrical challenges. We will present the design of the target chamber, of the separation dipole magnet as well as the beam dump.

  4. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  5. Thermoluminescence spectra of natural CaF2 irradiated by 10MeV electrons

    International Nuclear Information System (INIS)

    Manrique, J.; Angulo, S.; Pardo, M.P.; Gastesi, R.; De la Cruz, A.; Perez, A.

    2006-01-01

    The spectra of thermoluminescence from natural and electron-irradiated fluorite in the 350-800nm spectral range were studied between room temperature and 500 o C. The sample came from Asturias (Spain) and was analyzed by X-ray diffractometry and inductively coupled plasma-mass spectrometry. Glow peaks appeared at 115, 205 and 310 o C. Main emissions occurred at 475, 575, 650 and 745nm, attributed to the Dy +3 ion and, at 410nm, from electron-hole recombination. The fractional glow technique and the general order model were employed to study the emission at 575nm in detail. The results showed that the 115 and 205 o C glow peaks originate at traps with activation energies of 1.6 and 1.9eV, respectively, on the kinetic order of 1.5 and 1.3 and frequency factors of 1.7x10 19 and 2.7x10 19 s -1 , respectively. Spectrally resolved fading produced by storage was observed, and we concluded that the emission was due to large defect complexes. The dosimetric study showed that there was saturation at doses higher than 2kGy

  6. XRD study of yttria stabilized zirconia irradiated with 7.3 MeV Fe, 10 MeV I, 16 MeV Au, 200 MeV Xe and 2.2 GeV Au ions

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, K.; Yoshizaki, H. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Ishikawa, N. [Tokai Research and Development Center, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A., E-mail: iwase@mtr.osakafu-u.ac.jp [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2016-03-01

    To simulate energetic neutron irradiation effects, yttria-stabilized zirconia (YSZ) which is one of the major materials for electrical corrosion potential sensors (ECP sensors) was irradiated with heavy ions at energies ranging from 7.3 MeV to 2.2 GeV. Ion irradiation effects on the lattice structure were analyzed using the X-ray diffraction (XRD). The increase in lattice constant was induced by the ion irradiation. It was dominated by the elastic collision process and not by the electronic excitation process. The lattice disordering which was observed as a broadening of XRD peaks was also induced by the irradiation especially for 200 MeV Xe ion irradiation. The present result suggests that the expansion and/or the disordering of YSZ lattice induced by energetic neutrons may affect the durability of a joint interface between a metal housing and YSZ membrane for the usage of ECP sensors in nuclear power reactors.

  7. Effect of OFF-state stress induced electric field on trapping in AlGaN/GaN high electron mobility transistors on Si (111)

    Science.gov (United States)

    Anand, M. J.; Ng, G. I.; Arulkumaran, S.; Manoj Kumar, C. M.; Ranjan, K.; Vicknesh, S.; Foo, S. C.; Syamal, B.; Zhou, X.

    2015-02-01

    The influence of electric field (EF) on the dynamic ON-resistance (dyn-RDS[ON]) and threshold-voltage shift (ΔVth) of AlGaN/GaN high electron mobility transistors on Si has been investigated using pulsed current-voltage (IDS-VDS) and drain current (ID) transients. Different EF was realized with devices of different gate-drain spacing (Lgd) under the same OFF-state stress. Under high-EF (Lgd = 2 μm), the devices exhibited higher dyn-RDS[ON] degradation but a small ΔVth (˜120 mV). However, at low-EF (Lgd = 5 μm), smaller dyn-RDS[ON] degradation but a larger ΔVth (˜380 mV) was observed. Our analysis shows that under OFF-state stress, the gate electrons are injected and trapped in the AlGaN barrier by tunnelling-assisted Poole-Frenkel conduction mechanism. Under high-EF, trapping spreads towards the gate-drain access region of the AlGaN barrier causing dyn-RDS[ON] degradation, whereas under low-EF, trapping is mostly confined under the gate causing ΔVth. A trap with activation energy 0.33 eV was identified in the AlGaN barrier by ID-transient measurements. The influence of EF on trapping was also verified by Silvaco TCAD simulations.

  8. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    International Nuclear Information System (INIS)

    Wang Xiaofang; Saleh, Ned; Krishnan, Mohan; Wang Haiwen; Backus, Sterling; Murnane, Margaret; Kapteyn, Henry; Umstadter, Donald; Wang Quandong; Shen Baifei

    2003-01-01

    Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ∼29 fs), intense (>10 18 W/cm 2 ) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1 deg. is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system

  9. Neutron generator based on adiabatic trap

    International Nuclear Information System (INIS)

    Golovin, I.N.; Zhil'tsov, V.A.; Panov, D.A.; Skovoroda, A.A.; Shatalov, G.E.; Shcherbakov, A.G.

    1988-01-01

    A possibility of 14 MeV neutron generator (NG) production on the basis of axial-symmetric adiabatic trap with MHD cusped armature for the testing of materials and elements of the DT reactor first wall and blanket structure is discussed. General requirements to NG are formulated. It is shown that the NG variant discussed meets the requirements formulated. Approximate calculation of the NG parameters has shown that total energy consumption by the generator does not exceed 220 MW at neutron flux specific capacity of 2.5 MW/m 2 and radiation test area of 5-6 m 2

  10. Microstructural Parameters in 8 MeV Electron-Irradiated BOMBYX MORI Silk Fibers by Wide-ANGLE X-Ray Scattering Studies (waxs)

    Science.gov (United States)

    Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.

    2010-01-01

    The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.

  11. Design study of a far-infrared free electron laser with a 20 MeV RF linear accelerator

    International Nuclear Information System (INIS)

    Nakata, S.; Tsukishima, C.; Hifumi, T.; Okuda, S.; Sato, S.; Yosojima, Y.

    1991-01-01

    A FEL in the far-infrared region has been designed using a low energy RF linear accelerator. First we estimate a small signal gain from spontaneous emission using the Madey's theorem. In the calculation following effects are included: an actual field distribution (using a measured magnetic field), beam envelope in the phase space through the undulator, energy spread, and electron beam mis-alignment to the undulator axis. We have developed a code which can simulate three dimensional processes of the electron interaction with multi-mode laser fields in the undulator. From this code we could obtain the time dependent bunching process of electrons and amplification of the laser field. During the calculation we assume an electron beam of 20 MeV, 100 mA with a pulse length of 3 μs, and an undulator of 28 periods, 6 cm periodic length and 2.5 kG peak field. The results from these calculations show that the small-signal gain over 40 % can be obtained, but mis-alignment of the beam severely degrades the gain. The results also show that the output power of several MW can be obtained under the above conditions. Considering the simulation results, a FEL beam line was constructed and the beam size at the undulator was measured. And electrons were focused enough for the FEL experiment. (author)

  12. Modifications in the structural and optical properties of nanocrystalline CaWO4 induced by 8 MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Aloysius Sabu, N.; Priyanka, K.P.; Ganesh, Sanjeev; Varghese, Thomas

    2016-01-01

    In this article we report the post irradiation effects in the structural and optical properties of nanocrystalline calcium tungstate synthesized by chemical precipitation and heat treatment. The samples were subjected to different doses of high-energy electron beam obtained from an 8 MeV Microton. Investigations using X-ray diffraction, scanning electron microscopy and Raman spectra confirmed changes in particle size and structural parameters. However, no phase change was detected for irradiated samples. The stretching/compressive strain caused by high energy electrons is responsible for the slight shift in the XRD peaks of irradiated samples. Modifications in the morphology of different samples were confirmed by scanning electron microscopy. Ultraviolet-visible absorption studies showed variations in the optical band gap (4.08–4.25 eV) upon electron-beam irradiation. New photoluminescence behaviour in electron beam irradiated nanocrystalline CaWO 4 was evidenced. A blue shift of the PL peak with increase in intensity was observed in all the irradiated samples. - Highlights: • Calcium tungstate nanocrystals are synthesized by simple chemical precipitation method. • Electron beam induced modifications in the structural and optical properties are investigated. • New photoluminescence behaviour is evidenced due to beam irradiation.

  13. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    Science.gov (United States)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  14. Progress In Research On Open - Ended Magnetic Traps

    International Nuclear Information System (INIS)

    Kruglyakov, E. P.; Burdakov, A. V.; Ivanov, A. A.

    2006-01-01

    At present, three modern types of mirror machines for plasma confinement and heating exist in Novosibirsk (Multi-mirror,-GOL-3, Gas Dynamic Trap,-GDT, and Tandem Mirror,- AMBAL-M). From the engineering point of view all these systems are very attractive because of simple axisymmetric geometry of magnetic configurations. In this paper, the status of GOL-3 and GDT machines is presented. The most crucial experiments for the mirror concept are described such as a demonstration of different principles of suppression of longitudinal electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of confinement of high β (more than 0.4) plasma in axisymmetric geometry of magnetic field, an effective heating of a dense plasma (of order of 10 21 m-3) by high current relativistic electron beam (GOL-3), etc. In the case of multi-mirror geometry (GOL-3) significant increase of confinement time of hot plasma (up to several tens times) was obtained in comparison with single mirror geometry. Besides, electron heating (up to 2 keV) in result of high current electron beam -- plasma interaction, the heating of ions (up to 2 keV) was discovered in the multi-mirror geometry (55 mirror cells with total length of the trap equal to 12 meters). There was no any effect of ion heating in the single mirror geometry. The reasons of appearance of the ion heating in multi-mirror geometry are discussed. It should be mentioned that on the basis of the GOL-3 and GDT one can obtain an important information for ITER and for future fusion program. In the case of GOL-3 the longitudinal energy density flux of plasma after heating by REB can be so high as 50 MJ/m2. A lot of experiments can be made on plasma-wall interaction (evaporation, erosion and ionization of wall material, propagation of the impurity ions along magnetic field lines at long distances, etc). Some of these experiments are described in this paper. Using principle of confinement of 'warm' collisional plasma placed in gas dynamic

  15. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    Science.gov (United States)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  16. Nonlinear theory of trapped electron temperature gradient driven turbulence in flat density H-mode plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1990-12-01

    Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs

  17. Status of THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    THe-Trap (short for Tritium-{sup 3}He Trap) is a Penning-trap setup dedicated to measure the {sup 3}H to {sup 3}He mass-ratio with a relative uncertainty of better than 10{sup -11}. The ratio is of relevance for the KArlsruhe TRItium Neutrino experiment (KATRIN), which aims to measure the electron anti-neutrino mass, by measuring the shape of the β-decay energy spectrum close to its endpoint. An independent measurement of the {sup 3}H to {sup 3}He mass-ratio pins down this endpoint, and thus will help to determine the systematics of KATRIN. The trap setup consists of two Penning-traps: One trap for precision measurements, the other trap for ion storage. Ideally, the trap content will be periodically switched, which reduces the time between the measurements of the two ions' motional frequencies. In 2012, a mass ratio measurement of {sup 12}C{sup 4+} to {sup 14}N{sup 5+} was performed to characterize systematic effects of the traps. This measurement yielded a accuracy of 10{sup -9}. Further investigations revealed that a major reason for the modest accuracy is the large axial amplitude of ∼100 μm, compared to a ideal case of 3 μm at 4 K. In addition, relative magnetic fluctuations at a 3 x 10{sup -10} level on a 10 h timescale need to be significantly improved. In this contribution, the aforementioned findings and further systematic studies will be presented.

  18. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of 10 MeV electron linac for radiation processing

    International Nuclear Information System (INIS)

    Petwal, V.C.; Rao, J.N.; Kaul, A.; Bapna, S.C.; Mulchandani, J.K.; Wanmode, Y.; Pandiyar, M.; Srivastava, P.; Jain, Akhilesh; Hanurkar, P.R.

    2006-01-01

    A radiation processing facility based on a 10 MeV LINAC is being set-up at RRCAT. In the course of commissioning various experiments have been carried-out to characterize the radiation field generated by the accelerator and subsequently to derive the operating parameters of the facility for radiation processing of various items. Results of the experiments are presented in the paper. (author)

  20. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baharin, R; Hobson, P R; Smith, D R, E-mail: ruzalina.baharin@brunel.ac.u [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2010-09-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.