WorldWideScience

Sample records for metrology triangle mark

  1. Experimental realization of the quantum metrological triangle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chenaud, B; Devoille, L; Steck, B; Feltin, N; Gonzalez-Cano, A; Poirier, W; Schopfer, F; Spengler, G; Djordjevic, S; Seron, O; Piquemal, F [Laboratoire national de metrologie et d' essais (LNE), Trappes (France); Lotkhov, S [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)], E-mail: laurent.devoille@lne.fr

    2009-02-01

    The quantum metrological triangle experiment (QMTE) consists in realizing Ohm's law with Josephson (JE), quantum Hall (QHE) and single electron tunneling (SET) effects. The aim is to check the consistency of the link among the phenomenological constants K {sub J}, R{sub K} and Q {sub X} involved in these effects and theoretically expressed with the fundamental constants e and h. Such an experiment could be a contribution for a new definition of the systeme international d'unites (SI) base units. In the QMTE, a current generated by a SET device flows through a resistor calibrated against QHE standard and the voltage induced at its terminals is compared to the metrological voltage generated by a Josephson junctions array. At LNE, the studied SET devices are 3 junctions single electron pumps with on chip resistors. The quantized current generated by this pump is theoretically equal to ef (f is the frequency of the driving signals applied on the gates) and is measured through a cryogenic current comparator (CCC), which allows to amplify the low pumping current with a metrological accuracy. We will present and discuss the experimental set-up developed at LNE and the first results. In addition to the main aim of QMTE described above, these preliminary results are also a first step towards a determination of e.

  2. Forensic surface metrology: tool mark evidence.

    Science.gov (United States)

    Gambino, Carol; McLaughlin, Patrick; Kuo, Loretta; Kammerman, Frani; Shenkin, Peter; Diaczuk, Peter; Petraco, Nicholas; Hamby, James; Petraco, Nicholas D K

    2011-01-01

    Over the last several decades, forensic examiners of impression evidence have come under scrutiny in the courtroom due to analysis methods that rely heavily on subjective morphological comparisons. Currently, there is no universally accepted system that generates numerical data to independently corroborate visual comparisons. Our research attempts to develop such a system for tool mark evidence, proposing a methodology that objectively evaluates the association of striated tool marks with the tools that generated them. In our study, 58 primer shear marks on 9 mm cartridge cases, fired from four Glock model 19 pistols, were collected using high-resolution white light confocal microscopy. The resulting three-dimensional surface topographies were filtered to extract all "waviness surfaces"-the essential "line" information that firearm and tool mark examiners view under a microscope. Extracted waviness profiles were processed with principal component analysis (PCA) for dimension reduction. Support vector machines (SVM) were used to make the profile-gun associations, and conformal prediction theory (CPT) for establishing confidence levels. At the 95% confidence level, CPT coupled with PCA-SVM yielded an empirical error rate of 3.5%. Complementary, bootstrap-based computations for estimated error rates were 0%, indicating that the error rate for the algorithmic procedure is likely to remain low on larger data sets. Finally, suggestions are made for practical courtroom application of CPT for assigning levels of confidence to SVM identifications of tool marks recorded with confocal microscopy. Copyright © 2011 Wiley Periodicals, Inc.

  3. Determination of the elementary charge and the quantum metrological triangle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Feltin, N.; Piquemal, F. [Laboratoire National de Metrologie et d' Essais (LNE), 78 - Trappes (France)

    2009-06-15

    The elementary charge e is of fundamental importance in physics. The determination of its value, which is closely linked to progress of the measurement techniques, started in the beginning of the twentieth century and is still on-going. Today, in the frame of the CODATA adjustment, the evaluation of the fundamental constant, e, is derived from a complex calculation and is no more related to a single experiment. But the development of single electron tunneling (SET) devices, started in the early nineties, has opened the path towards modern metrological systems as quantum current sources. Thus a new direct determination of e is possible by implementing an electron pump and the set-up of the quantum metrological triangle (QMT) in combination with the experiments linking mechanical and electrical units. Furthermore, we show how the QMT experiment can contribute to the establishment of a new system of units based on fundamental constants of physics. (authors)

  4. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  5. Radioactivity metrology

    International Nuclear Information System (INIS)

    Legrand, J.

    1979-01-01

    Some aspects of the radioactivity metrology are reviewed. Radioactivity primary references; absolute methods of radioactivity measurements used in the Laboratoire de Metrologie des Rayonnements Ionisants; relative measurement methods; traceability through international comparisons and interlaboratory tests; production and distribution of secondary standards [fr

  6. BeatMark Software to Reduce the Cost of X-Ray Mirror Fabrication by Optimization of Polishing and Metrology cycle, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For X-Ray optics, polishing the mirrors is one of the most costly steps in the fabrication of the system. BeatMark software will significantly decrease the cost of...

  7. Temperature metrology

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.

    2005-05-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  8. Temperature metrology

    International Nuclear Information System (INIS)

    Fischer, J; Fellmuth, B

    2005-01-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  9. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  10. Nanoelectronics: Metrology and Computation

    International Nuclear Information System (INIS)

    Lundstrom, Mark; Clark, Jason V.; Klimeck, Gerhard; Raman, Arvind

    2007-01-01

    Research in nanoelectronics poses new challenges for metrology, but advances in theory, simulation and computing and networking technology provide new opportunities to couple simulation and metrology. This paper begins with a brief overview of current work in computational nanoelectronics. Three examples of how computation can assist metrology will then be discussed. The paper concludes with a discussion of how cyberinfrastructure can help connect computing and metrology using the nanoHUB (www.nanoHUB.org) as a specific example

  11. Graphing trillions of triangles.

    Science.gov (United States)

    Burkhardt, Paul

    2017-07-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.

  12. Capability Handbook- offline metrology

    DEFF Research Database (Denmark)

    Islam, Aminul; Marhöfer, David Maximilian; Tosello, Guido

    This offline metrological capability handbook has been made in relation to HiMicro Task 3.3. The purpose of this document is to assess the metrological capability of the HiMicro partners and to gather the information of all available metrological instruments in the one single document. It provides...

  13. The Incompatibility Triangle

    Directory of Open Access Journals (Sweden)

    Adrian Amarița

    2016-01-01

    Full Text Available Launch of the euro in the late 90s, can be interpreted as a first step towards the monetarysystem outlined by Mundell. Economists have noted the incompatibility of fixed exchange regime,perfect mobility of capital and the independence of monetary policy, the so-called triangle ofincompatibility, which was highlighted by Robert Mundell since 1968. Tommaso Padoa - Schioppacontinued his research on the harmonization and convergence required to economic policies in“Financial Europe". The author shows that the triangle is the freedom of movement of capital, theexchange rate stability and the autonomy of national monetary policies. The triangle ofincompatibility stems from the fact that they can be combined in their entirety, but only two. Theautonomy of monetary policy is the freedom of states to choose the appropriate monetary policyand take appropriate measures in case of recessions.

  14. Metrology of image placement

    International Nuclear Information System (INIS)

    Starikov, Alexander

    1998-01-01

    Metrology of registration, overlay and alignment offset in microlithography are discussed. Requirements and limitations are traced to the device ground rules and the definitions of edge, linewidth and centerline. Precision, accuracy, system performance and metrology in applications are discussed. The impact of image acquisition and data handling on performance is elucidated. Much attention is given to the manufacturing environment and effects of processing. General new methods of metrology error diagnostics and technology characterization are introduced and illustrated. Applications of these diagnostics to tests of tool performance, error diagnostics and culling, as well as to process integration in manufacturing are described. Realistic overlay reference materials and results of accuracy evaluations are discussed. Requirements in primary standards and alternative metrology are explained. The role and capability of SEM based overlay metrology is described, along with applications to device overlay metrology

  15. Metrology and testing

    International Nuclear Information System (INIS)

    2010-01-01

    The chapter presents the Metrology Service of Ionizing Radiation (SEMRI), the Metrology Service of Radioisotopes (SEMRA), the External Individual Monitoring Service (SEMEX), the Internal Individual Monitoring Service (SEMIN) and the associated laboratories, the analysis of environmental samples, system for management of quality from IRD and the National Program for intercomparison results of environmental samples analysis to radioisotopes determination

  16. Triangle in a triangle : on a problem of Steinhaus

    NARCIS (Netherlands)

    Post, K.A.

    1993-01-01

    A necessary and sufficient condition on the sidesp, q, r of a trianglePQR and the sidesa, b, c of a triangleABC in order thatABC contains a congruent copy ofPQR is the following: At least one of the 18 inequalities obtained by cyclic permutation of {a, b, c} and arbitrary permutation of {itp, q, r}

  17. Leptonic unitary triangles and boomerangs

    International Nuclear Information System (INIS)

    Dueck, Alexander; Rodejohann, Werner; Petcov, Serguey T.

    2010-01-01

    We review the idea of leptonic unitary triangles and extend the concept of the recently proposed unitary boomerangs to the lepton sector. Using a convenient parametrization of the lepton mixing, we provide approximate expressions for the side lengths and the angles of the six different triangles and give examples of leptonic unitary boomerangs. Possible applications of the leptonic unitary boomerangs are also briefly discussed.

  18. Metrology Measurement Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  19. Metrology of electrical quantum

    International Nuclear Information System (INIS)

    Camon, A.

    1996-01-01

    Since 1989 the electrical metrology laboratory of TPYCEA and the low temperature physics department of ICMA have been collaborating in the development of electrical quantum metrology. ICMA has been mainly dedicated to implement the state of the art quantum standards for which its experience on cryogenics, superconductivity and low noise instrumentation was essential. On the other hand TPYCEA concentrated its efforts on the metrological aspects, in which it has great experience. The complimentary knowledge of both laboratories, as well as the advice obtained from several prestigious metrology institutes was the key to successful completion of the two projects so far developed: i) The Josephson voltage standard (1989-1991) ii) The quantum Hall resistance standard (1991-1996) This report contains a description of both projects. Even though we can consider that the two projects are finished from the instrumental and metrological point of view, there is still a strong cooperation between ICMA and TPYCEA on the improvement of these standards, as well as on their international validation

  20. Is it a triangle?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In the theory of the Standard Model, the masses, interactions and physical states of quarks – the basic constituents of matter – are described mathematically by a matrix known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Three angles enter into the definition of the elements of the matrix. If their sum is not 180°, new physics might be the reason.   A typical LHCb event during the recent proton-lead ion run. The LHCb experiment at CERN has measured precisely for the first time at a hadron collider one of the three angles - the “gamma” angle – so far known with the largest uncertainty.  It’s a matter of angles: if their sum is not exactly 180°, the geometric shape is not a triangle. And if the angles are those related to the CKM matrix, we enter the realm of physics beyond the Standard Model. Experiments at B-factories have measured the three angles – α, β and γ &...

  1. Triangles: Shapes in Math, Science and Nature.

    Science.gov (United States)

    Ross, Catherine Sheldrick

    This book examines everything having to do with the triangle. It begins with a basic definition of the triangle and continues with discussions on tetrahedrons, triangular prisms, and pyramid shapes. Some ideas addressed include how triangles are used to measure heights and distances, the importance of triangles to builders, Alexander Graham Bell's…

  2. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  3. Realizing "value-added" metrology

    Science.gov (United States)

    Bunday, Benjamin; Lipscomb, Pete; Allgair, John; Patel, Dilip; Caldwell, Mark; Solecky, Eric; Archie, Chas; Morningstar, Jennifer; Rice, Bryan J.; Singh, Bhanwar; Cain, Jason; Emami, Iraj; Banke, Bill, Jr.; Herrera, Alfredo; Ukraintsev, Vladamir; Schlessinger, Jerry; Ritchison, Jeff

    2007-03-01

    The conventional premise that metrology is a "non-value-added necessary evil" is a misleading and dangerous assertion, which must be viewed as obsolete thinking. Many metrology applications are key enablers to traditionally labeled "value-added" processing steps in lithography and etch, such that they can be considered integral parts of the processes. Various key trends in modern, state-of-the-art processing such as optical proximity correction (OPC), design for manufacturability (DFM), and advanced process control (APC) are based, at their hearts, on the assumption of fine-tuned metrology, in terms of uncertainty and accuracy. These trends are vehicles where metrology thus has large opportunities to create value through the engineering of tight and targetable process distributions. Such distributions make possible predictability in speed-sorts and in other parameters, which results in high-end product. Additionally, significant reliance has also been placed on defect metrology to predict, improve, and reduce yield variability. The necessary quality metrology is strongly influenced by not only the choice of equipment, but also the quality application of these tools in a production environment. The ultimate value added by metrology is a result of quality tools run by a quality metrology team using quality practices. This paper will explore the relationships among present and future trends and challenges in metrology, including equipment, key applications, and metrology deployment in the manufacturing flow. Of key importance are metrology personnel, with their expertise, practices, and metrics in achieving and maintaining the required level of metrology performance, including where precision, matching, and accuracy fit into these considerations. The value of metrology will be demonstrated to have shifted to "key enabler of large revenues," debunking the out-of-date premise that metrology is "non-value-added." Examples used will be from critical dimension (CD

  4. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  5. Metrology Department - DEMET

    International Nuclear Information System (INIS)

    1989-01-01

    In this report are presented the activities and purposes of the Metrology Dept. of the Institute of Radioprotection and Dosimetry of Brazilian CNEN. It is also presented a list of services rendered by that Dept., the projects in course, personnel and publications.(J.A.M.M.)

  6. Metrology for Grayscale Lithography

    International Nuclear Information System (INIS)

    Murali, Raghunath

    2007-01-01

    Three dimensional microstructures find applications in diffractive optical elements, photonic elements, etc. and can be efficiently fabricated by grayscale lithography. Good process control is important for achieving the desired structures. Metrology methods for grayscale lithography are discussed. Process optimization for grayscale e-beam lithography is explored and various process parameters that affect the grayscale process are discussed

  7. Magnetic nanoparticles. Metrological aspects

    International Nuclear Information System (INIS)

    Nikiforov, V N; Nikiforov, A V; Oxengendler, B L; Turaeva, N N; Sredin, V G

    2011-01-01

    The experiments on influence of the iron oxide cluster size on the specific magnetic moment are performed. Both free and covered clusters are investigated. The experiments are interpreted on the base of core-shell model by analogy to Weizsaecker formula in the nuclear physics. Metrological parameters for the cluster size investigation are obtained.

  8. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  9. In-cell overlay metrology by using optical metrology tool

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Park, Hyowon; Liang, Waley; Choi, DongSub; Kim, Nakyoon; Lee, Jeongpyo; Pandev, Stilian; Jeon, Sanghuck; Robinson, John C.

    2018-03-01

    Overlay is one of the most critical process control steps of semiconductor manufacturing technology. A typical advanced scheme includes an overlay feedback loop based on after litho optical imaging overlay metrology on scribeline targets. The after litho control loop typically involves high frequency sampling: every lot or nearly every lot. An after etch overlay metrology step is often included, at a lower sampling frequency, in order to characterize and compensate for bias. The after etch metrology step often involves CD-SEM metrology, in this case in-cell and ondevice. This work explores an alternative approach using spectroscopic ellipsometry (SE) metrology and a machine learning analysis technique. Advanced 1x nm DRAM wafers were prepared, including both nominal (POR) wafers with mean overlay offsets, as well as DOE wafers with intentional across wafer overlay modulation. After litho metrology was measured using optical imaging metrology, as well as after etch metrology using both SE and CD-SEM for comparison. We investigate 2 types of machine learning techniques with SE data: model-less and model-based, showing excellent performance for after etch in-cell on-device overlay metrology.

  10. Visualizing Elections Using Saari Triangles

    Science.gov (United States)

    Alfaro, Ricardo; Han, Lixing; Schilling, Kenneth; Birgen, Mariah

    2010-01-01

    Students sometimes have difficulty calculating the result of a voting system applied to a particular set of voter preference lists. Saari triangles offer a way to visualize the result of an election and make this calculation easier in the case of several important voting systems.

  11. Multigrid for refined triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Yair

    1997-02-01

    A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.

  12. Computed tomography for dimensional metrology

    DEFF Research Database (Denmark)

    Kruth, J.P.; Bartscher, M.; Carmignato, S.

    2011-01-01

    metrology, putting emphasis on issues as accuracy, traceability to the unit of length (the meter) and measurement uncertainty. It provides a state of the art (anno 2011) and application examples, showing the aptitude of CT metrology to: (i) check internal dimensions that cannot be measured using traditional...

  13. Metrology's role in quality assurance

    International Nuclear Information System (INIS)

    Zeederberg, L.B.

    1982-01-01

    Metrology, the science of measurement, is playing an increasing role in modern industry as part of an on-going quality assurance programme. At Escom, quality assurance was critical during the construction of the Koeberg nuclear facility, and also a function in controlling services provided by Escom. This article deals with the role metrology plays in quality assurance

  14. Metrology for ITER Assembly

    International Nuclear Information System (INIS)

    Bogusch, E.

    2006-01-01

    The overall dimensions of the ITER Tokamak and the particular assembly sequence preclude the use of conventional optical metrology, mechanical jigs and traditional dimensional control equipment, as used for the assembly of smaller, previous generation, fusion devices. This paper describes the state of the art of the capabilities of available metrology systems, with reference to the previous experience in Fusion engineering and in other industries. Two complementary procedures of transferring datum from the primary datum network on the bioshield to the secondary datum s inside the VV with the desired accuracy of about 0.1 mm is described, one method using the access directly through the ports and the other using transfer techniques, developed during the co-operation with ITER/EFDA. Another important task described is the development of a method for the rapid and easy measurement of the gaps between sectors, required for the production of the customised splice plates between them. The scope of the paper includes the evaluation of the composition and cost of the systems and team of technical staff required to meet the requirements of the assembly procedure. The results from a practical, full-scale demonstration of the methodologies used, using the proposed equipment, is described. This work has demonstrated the feasibility of achieving the necessary accuracies for the successful building of ITER. (author)

  15. On Generalizations of the Stirling Number Triangles

    Science.gov (United States)

    Lang, Wolfdieter

    2000-09-01

    Sequences of generalized Stirling numbers of both kinds are introduced. These sequences of triangles (i.e. infinite-dimensional lower triangular matrices) of numbers will be denoted by S2(k;n,m) and S1(k;n,m) with k in Z. The original Stirling number triangles of the second and first kind arise when k = 1. S2(2;n,m) is identical with the unsigned S1(2;n,m) triangle, called S1p(2;n,m), which also represents the triangle of signless Lah numbers. Certain associated number triangles, denoted by s2(k;n,m) and s1(k;n,m), are also defined. Both s2(2;n,m) and s1(2;n + 1, m + 1) form Pascal's triangle, and s2(-1,n,m) turns out to be Catalan's triangle. Generating functions are given for the columns of these triangles. Each S2(k) and S1(k) matrix is an example of a Jabotinsky matrix. Therefore the generating functions for the rows of these triangular arrays constitute exponential convolution polynomials. The sequences of the row sums of these triangles are also considered. These triangles are related to the problem of obtaining finite transformations from infinitesimal ones generated by x^k d/dx, for k in Z.

  16. Nasal Soft-Tissue Triangle Deformities.

    Science.gov (United States)

    Foda, Hossam M T

    2016-08-01

    The soft-tissue triangle is one of the least areas attended to in rhinoplasty. Any postoperative retraction, notching, or asymmetries of soft triangles can seriously affect the rhinoplasty outcome. A good understanding of the risk factors predisposing to soft triangle deformities is necessary to prevent such problems. The commonest risk factors in our study were the wide vertical domal angle between the lateral and intermediate crura, and the increased length of intermediate crus. Two types of soft triangle grafts were described to prevent and treat soft triangle deformities. The used soft triangle grafts resulted in an excellent long-term aesthetic and functional improvement. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Color and appearance metrology facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST Physical Measurement Laboratory has established the color and appearance metrology facility to support calibration services for 0°/45° colored samples, 20°,...

  18. A Roadmap for Thermal Metrology

    Science.gov (United States)

    Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.

    2009-02-01

    A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.

  19. The Weimar Triangle and The Ukrainian Crisis

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Romer

    2014-12-01

    Full Text Available The article analyzes the activity of Weimar Triangle (Germany, France, Poland during Ukrainian crisis (2013-2014 as an efficient, but still largely underestimated negotiation force of the European Union. The evolution of role of Weimar Triangle in post-bipolar era is indicated, as well as the role of this specific structure during Ukrainian crisis.

  20. Altitude, Orthocenter of a Triangle and Triangulation

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-03-01

    Full Text Available We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides. Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

  1. Circumcenter, Circumcircle and Centroid of a Triangle

    OpenAIRE

    Coghetto Roland

    2016-01-01

    We introduce, using the Mizar system [1], some basic concepts of Euclidean geometry: the half length and the midpoint of a segment, the perpendicular bisector of a segment, the medians (the cevians that join the vertices of a triangle to the midpoints of the opposite sides) of a triangle.

  2. Partitioning Pythagorean Triangles Using Pythagorean Angles

    Science.gov (United States)

    Swenson, Carl E.; Yandl, Andre L.

    2012-01-01

    Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.

  3. Circumcenter, Circumcircle and Centroid of a Triangle

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-03-01

    Full Text Available We introduce, using the Mizar system [1], some basic concepts of Euclidean geometry: the half length and the midpoint of a segment, the perpendicular bisector of a segment, the medians (the cevians that join the vertices of a triangle to the midpoints of the opposite sides of a triangle.

  4. The Fermat point for a taxicab triangle

    Science.gov (United States)

    Hanson, J. R.

    2015-04-01

    The Fermat point P for a triangle ABC is the point P the sum of whose distances from the vertices A, B and C is a minimum. This note will show how to find the Fermat point for any triangle using the taxicab metric.

  5. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  6. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  7. Economic benefits of metrology in manufacturing

    DEFF Research Database (Denmark)

    Savio, Enrico; De Chiffre, Leonardo; Carmignato, S.

    2016-01-01

    examples from industrial production, in which the added value of metrology in manufacturing is discussed and quantified. Case studies include: general manufacturing, forging, machining, and related metrology. The focus of the paper is on the improved effectiveness of metrology when used at product...... and process design stages, as well as on the improved accuracy and efficiency of manufacturing through better measuring equipment and process chains with integrated metrology for process control.......In streamlined manufacturing systems, the added value of inspection activities is often questioned, and metrology in particular is sometimes considered only as an avoidable expense. Documented quantification of economic benefits of metrology is generally not available. This work presents concrete...

  8. Advanced overlay analysis through design based metrology

    Science.gov (United States)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  9. Frequency Standards and Metrology

    Science.gov (United States)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  10. Critical issues in overlay metrology

    International Nuclear Information System (INIS)

    Sullivan, Neal T.

    2001-01-01

    In this paper, following an overview of overlay metrology, the difficult relationship of overlay with device performance and yield is discussed and supported with several examples. This is followed by a discussion of the impending collision of metrology equipment performance and 'real' process tolerances for sub 0.18 um technologies. This convergence of tolerance and performance is demonstrated to lead to the current emergence of real-time overlay modeling in a feed-forward/feedback process environment and the associated metrology/sampling implications. This modeling takes advantage of the wealth of understanding concerning the systematic behavior of overlay registration errors. Finally, the impact of new process technologies (RET, OAI, CPSM, CMP, and etc.) on the measurement target is discussed and shown to de-stabilize overlay performance on standard overlay measurement target designs

  11. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  12. Metrological Reliability of Medical Devices

    Science.gov (United States)

    Costa Monteiro, E.; Leon, L. F.

    2015-02-01

    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  13. Celtiberian metrology and its romanization

    Directory of Open Access Journals (Sweden)

    Leonard A. CURCHIN

    2013-05-01

    Full Text Available Celtiberian metrology has scarcely been investigated until now, with the exception of coin weights. On the basis of measurements of pre-Roman mud bricks, a Celtiberian foot of 24 cm is proposed. With regard to weights, we can accept a module of 9 g for silver jewelry and some bronze coins; however, loom weights do not conform to any metrological system. Over time, Roman measures of length (as indicated by the dimensions of bricks, tiles and architectural monuments and weight were adopted.

  14. Metrological issues in molecular radiotherapy

    International Nuclear Information System (INIS)

    D'Arienzo, Marco; Capogni, Marco; Smyth, Vere; Cox, Maurice; Johansson, Lena; Bobin, Christophe

    2014-01-01

    The therapeutic effect from molecular radiation therapy (MRT), on both tumour and normal tissue, is determined by the radiation absorbed dose. Recent research indicates that as a consequence of biological variation across patients the absorbed dose can vary, for the same administered activity, by as much as two orders of magnitude. The international collaborative EURAMET-EMRP project Metrology for molecular radiotherapy (MetroMRT) is addressing this problem. The overall aim of the project is to develop methods of calibrating and verifying clinical dosimetry in MRT. In the present paper an overview of the metrological issues in molecular radiotherapy is provided. (authors)

  15. Density conditions for triangles in multipartite graphs

    DEFF Research Database (Denmark)

    Bondy, Adrian; Shen, Jin; Thomassé, Stephan

    2006-01-01

    subgraphs in G. We investigate in particular the case where G is a complete multipartite graph. We prove that a finite tripartite graph with all edge densities greater than the golden ratio has a triangle and that this bound is best possible. Also we show that an infinite-partite graph with finite parts has...... a triangle, provided that the edge density between any two parts is greater than 1/2....

  16. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Kraakman, R.; Voorbraak, W.P.

    1993-04-01

    Additional to the in-core EXOTIC experiments, six irradiations of ceramic material, R212-001 to R212-006, have been performed in the PSF of the HFR. This note presents the neutron metrology results for these irradiations. (orig.)

  17. Metrology and ionospheric observation standards

    Science.gov (United States)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  18. Saturnian north polar region: a triangle inside the hexagon?

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    The famous and "mysterious" stable hexagon structure around the North Pole of Saturn was earlier interpreted as projections of faces of a structural tetrahedron [1]. This "hidden" simplest Plato's polyhedron is a result of an interference of four fundamental (wave 1) warping waves having in any rotating celestial body four directions: orthogonal and diagonal. Origin of the warping waves in any celestial body is due to their movements in elliptical keplerian orbits with periodically changing accelerations. The structural tetrahedron is an intrinsic geometric feature marking the celestial bodies ubiquitous tectonic dichotomy as in a tetrahedron always there is an opposition of a face (expansion) and a vertex (contraction). In the saturnian case the tetrahedron shows a face at the north and a vertex at the south. Morphologically this is manifested by the hexagon and opposing it in the south a vertex. Blue and pink hues of the northern and southern hemispheres also underline the tectonic dichotomy. These geometric expressions are enforced by a subtle dark equilateral triangle appearing in the image PIA11682 also around the north pole and inside the hexagon (the triangle side is about 15000 km long). One angle of the triangle is clearly visible, another one just shows itself and the third one is barely distinguished. The sides of the triangle are not strait lines but slightly broken amidst lines what makes the triangle appear a bit hexagonal (spherical) and the angle is a bit bigger than 60 degrees of a classical equilateral triangle (~70 degrees). The central part of the triangle is not imaged (a black hole in the PIA11682). This image also confirms that the wide northern polar region is also densely "peppered" with bright cloudy more or less isometric spots on average 400 to 800 km across as in other latitudinal belts of Saturn [2, 3, 4]. Earlier they were observed in IR wavelengths, now they show themselves in visible wavelengths. Their origin and size were

  19. SAQP pitch walk metrology using single target metrology

    Science.gov (United States)

    Fang, Fang; Herrera, Pedro; Kagalwala, Taher; Camp, Janay; Vaid, Alok; Pandev, Stilian; Zach, Franz

    2017-03-01

    Self-aligned quadruple patterning (SAQP) processes have found widespread acceptance in advanced technology nodes to drive device scaling beyond the resolution limitations of immersion scanners. Of the four spaces generated in this process from one lithography pattern two tend to be equivalent as they are derived from the first spacer deposition. The three independent spaces are commonly labelled as α, β and γ. α, β and γ are controlled by multiple process steps including the initial lithographic patterning process, the two mandrel and spacer etches as well as the two spacer depositions. Scatterometry has been the preferred metrology approach, however is restricted to repetitive arrays. In these arrays independent measurements, in particular of alpha and gamma, are not possible due to degeneracy of the standard array targets. . In this work we present a single target approach which lifts the degeneracies commonly encountered while using product relevant layout geometries. We will first describe the metrology approach which includes the previously described SRM (signal response metrology) combined with reference data derived from CD SEM data. The performance of the methodology is shown in figures 1-3. In these figures the optically determined values for alpha, beta and gamma are compared to the CD SEM reference data. The variations are achieved using controlled process experiments varying Mandrel CD and Spacer deposition thicknesses.

  20. Clean focus, dose and CD metrology for CD uniformity improvement

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck

    2018-03-01

    Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.

  1. TSOM method for semiconductor metrology

    Science.gov (United States)

    Attota, Ravikiran; Dixson, Ronald G.; Kramar, John A.; Potzick, James E.; Vladár, András E.; Bunday, Benjamin; Novak, Erik; Rudack, Andrew

    2011-03-01

    Through-focus scanning optical microscopy (TSOM) is a new metrology method that achieves 3D nanoscale measurement sensitivity using conventional optical microscopes; measurement sensitivities are comparable to what is typical when using scatterometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). TSOM can be used in both reflection and transmission modes and is applicable to a variety of target materials and shapes. Nanometrology applications that have been demonstrated by experiments or simulations include defect analysis, inspection and process control; critical dimension, photomask, overlay, nanoparticle, thin film, and 3D interconnect metrologies; line-edge roughness measurements; and nanoscale movements of parts in MEMS/NEMS. Industries that could benefit include semiconductor, data storage, photonics, biotechnology, and nanomanufacturing. TSOM is relatively simple and inexpensive, has a high throughput, and provides nanoscale sensitivity for 3D measurements with potentially significant savings and yield improvements in manufacturing.

  2. Metrology and quality control handbook

    International Nuclear Information System (INIS)

    Hofmann, D.

    1983-01-01

    This book tries to present the fundamentals of metrology and quality control in brief surveys. Compromises had to be made in order to reduce the material available to a sensible volume for the sake of clarity. This becomes evident by the following two restrictions which had to made: First, in dealing with the theoretical principles of metrology and quality control, mere reference had to be made in many cases to the great variety of special literature without discussing it to explain further details. Second, in dealing with the application of metrology and quality control techniques in practice, only the basic qantities of the International System of Units (SI) could be taken into account as a rule. Some readers will note that many special measuring methods and equipment known to them are not included in this book. I do hope, however, that this short-coming will show to have a positive effect, too. This book will show the reader how to find the basic quantities and units from the derived quantities and units, and the steps that are necessary to solve any kind of measuring task. (orig./RW) [de

  3. Metrology at Philip Morris Europe

    Directory of Open Access Journals (Sweden)

    Gualandris R

    2014-12-01

    Full Text Available The importance of the metrology function at Philip Morris Europe (PME, a multinational organisation producing at over 40 sites in the European, Middle Eastern and African Regions is presented. Standardisation of test methods and equipment as well as the traceability of calibration gauges to the same reference gauge are essential in order to obtain comparable results among the various production centers. The metrology function as well as the qualification of instruments and the drafting of test and calibration operating procedures for this region are conducted or co-ordinated by the Research and Development Department in Neuchatel, Switzerland. In this paper the metrology function within PME is presented based on the measurement of the resistance to draw for which the PME R&D laboratory is accredited (ISO/CEI 17025, as both a calibration and a testing laboratory. The following topics are addressed in this paper: traceability of calibration standards to national standards; comparison of results among manufacturing centres; the choice, the budget as well as the computation of uncertainties. Furthermore, some practical aspects related to the calibration and use of the glass multicapillary gauges are discussed.

  4. Flexible resources for quantum metrology

    Science.gov (United States)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J.; Dür, Wolfgang

    2017-06-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.

  5. Flexible resources for quantum metrology

    International Nuclear Information System (INIS)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J; Dür, Wolfgang

    2017-01-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement. (paper)

  6. The Asia-Pacific Strategic Triangle

    DEFF Research Database (Denmark)

    Schmidt, Johannes Dragsbæk

    2014-01-01

    The objective of this paper is to give insight into the debate over the strategic triangle and how it impacts conflict and security in South Asia. First the new geopolitical motives of the United States in the Asia-Pacific are outlined. Then the concept of strategic triangle is elaborated and its...... applicability discussed; third, details about China and India’s relations and responses to the new US policy are being analyzed; the perspective turns to the implications for conflict and security in South Asia with a focus on Afghanistan and Iran where oil and energy security are the main denominators...... of foreign policy calculations and moves in the strategic triangle; and finally, some concluding remarks are offered to explain the recent shifts in interactions between these core players in the emerging world order and whether a new geopolitical architecture is emerging...

  7. LR: Compact connectivity representation for triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J

    2011-01-28

    We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.

  8. Improving Metrological Reliability of Information-Measuring Systems Using Mathematical Modeling of Their Metrological Characteristics

    Science.gov (United States)

    Kurnosov, R. Yu; Chernyshova, T. I.; Chernyshov, V. N.

    2018-05-01

    The algorithms for improving the metrological reliability of analogue blocks of measuring channels and information-measuring systems are developed. The proposed algorithms ensure the optimum values of their metrological reliability indices for a given analogue circuit block solution.

  9. On dispersive derivation of triangle anomaly

    International Nuclear Information System (INIS)

    Horejsi, J.

    1985-01-01

    A straightforward generalization of the results of some previous treatments, in which the Adler-Bell-Jachiw triangle anomaly has been recovered with the help of dispersion relation is presented. The absorptive part of the VVA triangle diagram with the external momenta k, p at vector vertices such as K 2 =p 2 =0 is considered. An integral of the imaginary part of the relevant invariant amplitude is calculated explicitly. It is shown that the anomalous contribution to the axial Ward identity is reproduced. This also enables one to demonstrate the delta-like behaviour of sich an imaginary part in k 2 → 0, m → 0 limit

  10. Building Intuitive Arguments for the Triangle Congruence Conditions

    Science.gov (United States)

    Piatek-Jimenez, Katrina

    2008-01-01

    The triangle congruence conditions are a central focus to nearly any course in Euclidean geometry. The author presents a hands-on activity that uses straws and pipe cleaners to explore and justify the triangle congruence conditions. (Contains 4 figures.)

  11. Stretch Marks

    Science.gov (United States)

    ... completely without the help of a dermatologist or plastic surgeon. These doctors may use one of many types of treatments — from actual surgery to techniques like microdermabrasion and laser treatment — to reduce the appearance of stretch marks. These techniques are ...

  12. Scaling Ratios and Triangles in Siegel Disks

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    1999-01-01

    Let f(z)=e^{2i\\pi \\theta} + z^2, where \\theta is a quadratic irrational. McMullen proved that the Siegel disk for f is self-similar about the critical point, and we show that if \\theta = (\\sqrt{5}-1)/2 is the golden mean, then there exists a triangle contained in the Siegel disk, and with one...

  13. Transfinite C2 interpolant over triangles

    International Nuclear Information System (INIS)

    Alfeld, P.; Barnhill, R.E.

    1984-01-01

    A transfinite C 2 interpolant on a general triangle is created. The required data are essentially C 2 , no compatibility conditions arise, and the precision set includes all polynomials of degree less than or equal to eight. The symbol manipulation language REDUCE is used to derive the scheme. The scheme is discretized to two different finite dimensional C 2 interpolants in an appendix

  14. Tools intented to nuclear metrology

    International Nuclear Information System (INIS)

    Munayco Tasayco, A.F.

    1980-08-01

    The study undertaken in the metrological laboratory of the C.E.N. Saclay Electronics Services is intended to improve the measurement methods in two fields concerning nuclear instrumentation: the current's measurement in the range 1pA to 0,01 pA and the study of a measurement's system for the linear circuits used in spectrometer gamma ray with semiconductor. Two systems are now working. Its permit an improvement of precision measurement, an automation of the measurement process and many possibilities in the choice of parameters and the laying-out of results [fr

  15. Primary calibration in acoustics metrology

    International Nuclear Information System (INIS)

    Milhomem, T A Bacelar; Soares, Z M Defilippo

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field

  16. Opportunities and Risks in Semiconductor Metrology

    Science.gov (United States)

    Borden, Peter

    2005-09-01

    New metrology opportunities are constantly emerging as the semiconductor industry attempts to meet scaling requirements. The paper summarizes some of the key FEOL and BEOL needs. These must be weighed against a number of considerations to ensure that they are good opportunities for the metrology equipment supplier. The paper discusses some of these considerations.

  17. Laboratorio de Metrología - LABM

    OpenAIRE

    Jaramillo Ch., Zaira J.

    2011-01-01

    esos y transacciones de forma transparente y justa para todas las partes involucradas. Una herramienta necesaria para este propósito es la Metrología, ciencia que es utilizada en el Laboratorio de Metrología (LABM) del Centro Experimenta

  18. Emerging technology for astronomical optics metrology

    Science.gov (United States)

    Trumper, Isaac; Jannuzi, Buell T.; Kim, Dae Wook

    2018-05-01

    Next generation astronomical optics will enable science discoveries across all fields and impact the way we perceive the Universe in which we live. To build these systems, optical metrology tools have been developed that push the boundary of what is possible. We present a summary of a few key metrology technologies that we believe are critical for the coming generation of optical surfaces.

  19. Fractal Metrology for biogeosystems analysis

    Directory of Open Access Journals (Sweden)

    V. Torres-Argüelles

    2010-11-01

    Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  20. 100 Years of radionuclide metrology

    International Nuclear Information System (INIS)

    Judge, S.M.; Arnold, D.; Chauvenet, B.; Collé, R.; De Felice, P.; García-Toraño, E.; Wätjen, U.

    2014-01-01

    The discipline of radionuclide metrology at national standards institutes started in 1913 with the certification by Curie, Rutherford and Meyer of the first primary standards of radium. In early years, radium was a valuable commodity and the aim of the standards was largely to facilitate trade. The focus later changed to providing standards for the new wide range of radionuclides, so that radioactivity could be used for healthcare and industrial applications while minimising the risk to patients, workers and the environment. National measurement institutes responded to the changing demands by developing new techniques for realising primary standards of radioactivity. Looking ahead, there are likely to be demands for standards for new radionuclides used in nuclear medicine, an expansion of the scope of the field into quantitative imaging to facilitate accurate patient dosimetry for nuclear medicine, and an increasing need for accurate standards for radioactive waste management and nuclear forensics. - Highlights: • The driving forces for the development of radionuclide metrology. • Radium standards to facilitate trade of this valuable commodity in the early years. • After 1950, focus changes to healthcare and industrial applications. • National Measurement Institutes develop new techniques, standards, and disseminate the best practice in measurement. • Challenges in nuclear medicine, radioactive waste management and nuclear forensics

  1. A survey of numerical cubature over triangles

    Energy Technology Data Exchange (ETDEWEB)

    Lyness, J.N.; Cools, R.

    1993-12-31

    This survey collects together theoretical results in the area of numerical cubature over triangles and is a vehicle for a current bibliography. We treat first the theory relating to regular integrands and then the corresponding theory for singular integrands with emphasis on the ``full comer singularity.`` Within these two sections we treat successively approaches based on transforming the triangle into a square, formulas based on polynomial moment fitting, and extrapolation techniques. Within each category we quote key theoretical results without proof, and relate other results and references to these. Nearly all the references we have found may be readily placed in one of these categories. This survey is theoretical in character and does not include recent work in adaptive and automatic integration.

  2. Classical square-plus-triangle well fluid

    International Nuclear Information System (INIS)

    Boghdadi, M.

    1984-01-01

    A simplified model for the intermolecular-potential function which consists of a hard core and a square-plus-triangle well is proposed. The square width is taken to be lambda 1 -1 and the triangle width is lambda 2 -lambda 1 , where the diameter of the molecules is assumed to be epsilon. Under the restriction that the area under the potential well should be equal to 0.5epsilon, which has its own reason, it is shown that the appropriate choice of lambda 1 and lambda 2 that best mimics the Lennard-Jones (LJ) cut-off results is 1.15 and 1.85 respectively. With this choice for lambda 1 and lambda 2 , the proposed model is effective and satisfactory

  3. "The Dreaded Black Triangle" - Orthodontics : The Choice

    Directory of Open Access Journals (Sweden)

    P Janardhanam

    2010-01-01

    The black triangle that resulted due to orthodontic treatment in a 15 year old female patient had been alleviated by using both orthodontic and periodontic means. This report explains the various treatment modalities that can be adopted to avoid embarrassing post-treatment results. Several methods of managing patients with gingival diastemas exist, but the interdisciplinary aspects of treatment must be emphasized to achieve best results. The orthodontist can play a significant role in helping to manage these cases.

  4. State of the Coral Triangle: Malaysia

    OpenAIRE

    Asian Development Bank (ADB)

    2014-01-01

    Malaysia has made a firm commitment to sustainable management and conservation of its coastal and marine resources, helping formulate and implement the Sulu–Sulawesi Marine Ecoregion Initiative and the Coral Triangle Initiative. Rapid economic growth, uncontrolled tourism development, unregulated fishing, and unsustainable use of marine resources have depleted the country’s fish stocks, lost nearly 36% of its mangrove forests, and increased the number of endangered species. Despite impressive...

  5. Workshop on the CKM Unitarity Triangle

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The CKM Unitarity Triangle Workshop is meant to provide an opportunity for an intense and fruitful exchange of ideas between experimentalists and theorists to assess the present knowledge on fundamental parameters from the data of LEP and other colliders, to define an agenda of future measurements to further probe the model assumptions employed in the interpretation of the data and to indicate paths for the B physics programme at LHC.

  6. Future metrology needs for FEL reflective optics

    International Nuclear Information System (INIS)

    Assoufid, L.

    2000-01-01

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed

  7. Future metrology needs for FEL reflective optics.

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  8. Bayesian estimation methods in metrology

    International Nuclear Information System (INIS)

    Cox, M.G.; Forbes, A.B.; Harris, P.M.

    2004-01-01

    In metrology -- the science of measurement -- a measurement result must be accompanied by a statement of its associated uncertainty. The degree of validity of a measurement result is determined by the validity of the uncertainty statement. In recognition of the importance of uncertainty evaluation, the International Standardization Organization in 1995 published the Guide to the Expression of Uncertainty in Measurement and the Guide has been widely adopted. The validity of uncertainty statements is tested in interlaboratory comparisons in which an artefact is measured by a number of laboratories and their measurement results compared. Since the introduction of the Mutual Recognition Arrangement, key comparisons are being undertaken to determine the degree of equivalence of laboratories for particular measurement tasks. In this paper, we discuss the possible development of the Guide to reflect Bayesian approaches and the evaluation of key comparison data using Bayesian estimation methods

  9. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  10. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Polle, A.N.; Voorbraak, W.P.

    1991-11-01

    The experiment R-139-416 for testing the stainless steel type 316L(N) has been irradiated in the HFR Petten. This report presents the final metrology results obtained from activation monitors near the CT-specimen (Compact Tension). Data about the helium production as well as the number of displacements per atom are also included. The irradiation conditions for this experiment, carried out in a REFA-170 type capsule in the HFR position H8, are as close as possible to the conditions of the EFR (European Fast Reactor) above-core structures. The main results of the thermal and fast neutron fluence measurements are presented in table 1 and in figure 1. (author). 10 refs.; 2 figs.; 11 tabs

  11. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  12. Context-based virtual metrology

    Science.gov (United States)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael

    2018-03-01

    Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.

  13. National Needs for Appearance Metrology

    Science.gov (United States)

    Nadal, Maria E.

    2003-04-01

    Appearance greatly influences a customer's judgement of the quality and acceptability of manufactured products, as yearly there is approximately $700 billion worth of shipped goods for which overall appearance is critical to their sale. For example, appearance is reported to be a major factor in about half of automobile purchases. The appearance of an object is the result of a complex interaction of the light field incident upon the object, the scattering and absorption properties of the object, and human perception. The measurable attributes of appearance are divided into color (hue, saturation, and lightness) and geometry (gloss, haze). The nature of the global economy has increased international competition and the need to improve the quality of many manufactured products. Since the manufacturing and marketing of these products is international in scope, the lack of national appearance standard artifacts and measurement protocols results in a direct loss to the supplier. One of the primary missions of the National Institute of Standards and Technology (NIST) is to strengthen the U.S. economy by working with industry to develop and apply technology, measurements and standards. The NIST Physics Laboratory has established an appearance metrology laboratory. This new laboratory provides calibration services for 0^o/45^o color standards and 20^o°, 60^o°, and 85^o° specular gloss, and research in the colorimetric characterization of gonioapparent including a new Standard Reference Material for metallic coatings (SRM 2017) and measurement protocols for pearlescent coatings. These services are NIST's first appearance metrology efforts in many years; a response to needs articulated by industry. These services are designed to meet demands for improved measurements and standards to enhance the acceptability of final products since appearance often plays a major role in their acceptability.

  14. Metrology in Pharmaceutical Industry - A Case Study

    International Nuclear Information System (INIS)

    Yuvamoto, Priscila D.; Fermam, Ricardo K. S.; Nascimento, Elizabeth S.

    2016-01-01

    Metrology is recognized by improving production process, increasing the productivity, giving more reliability to the measurements and consequently, it impacts in the economy of a country. Pharmaceutical area developed GMP (Good Manufacture Practice) requeriments, with no introduction of metrological concepts. However, due to Nanomedicines, it is expected this approach and the consequent positive results. The aim of this work is to verify the level of metrology implementation in a Brazilian pharmaceutical industry, using a case study. The purpose is a better mutual comprehension by both areas, acting together and governmental support to robustness of Brazilian pharmaceutical area. (paper)

  15. Prayer marks.

    Science.gov (United States)

    Abanmi, Abdullah A; Al Zouman, Abdulrahman Y; Al Hussaini, Husa; Al-Asmari, Abdulrahman

    2002-07-01

    Prayer marks (PMs) are asymptomatic, chronic skin changes that consist mainly of thickening, lichenification, and hyperpigmentation, and develop over a long period of time as a consequence of repeated, extended pressure on bony prominences during prayer. Three hundred and forty-nine Muslims and 24 non-Muslims were examined for the appearance of PMs at different body sites. The prospective study of 349 Muslims (both males and females) with regular praying habits showed the occurrence of PMs on specific locations, such as the forehead, knees, ankles, and dorsa of the feet, leading to dermatologic changes consisting of lichenification and hyperpigmentation. The incidence of PMs was significantly higher in males than in females. Older subjects (over 50 years of age) demonstrated a significantly higher frequency of lichenification and hyperpigmentation, suggesting that repeated pressure and friction for prolonged periods are the causative factors for the development of PMs. Histologic examination of skin biopsies from the affected sites showed compact orthokeratosis, hypergranulosis, dermal papillary fibrosis, and dermal vascularization. PMs were not associated with any risk of secondary complications, such as erythema, bullous formation, and infections. PMs are commonly occurring dermatologic changes in Muslims who pray for prolonged periods.

  16. The quality of measurements a metrological reference

    CERN Document Server

    Fridman, A E

    2012-01-01

    This book provides a detailed discussion and commentary on the fundamentals of metrology. The fundamentals of metrology, the principles underlying the design of the SI International System of units, the theory of measurement error, a new methodology for estimation of measurement accuracy based on uncertainty, and methods for reduction of measured results and estimation of measurement uncertainty are all discussed from a modern point of view. The concept of uncertainty is shown to be consistent with the classical theory of accuracy. The theory of random measurement errors is supplemented by a very general description based on the generalized normal distribution; systematic instrumental error is described in terms of a methodology for normalizing the metrological characteristics of measuring instruments. A new international system for assuring uniformity of measurements based on agreements between national metrological institutes is discussed, in addition to the role and procedure for performance of key compari...

  17. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  18. UPWIND 1A2 Metrology. Final Report

    DEFF Research Database (Denmark)

    Eecen, P.J.; Wagenaar, J.W.; Stefanatos, N.

    . Since this problem covers many areas of wind energy, the work package is defined as a crosscutting activity. The objectives of the metrology work package are to develop metrology tools in wind energy to significantly enhance the quality of measurement and testing techniques. The first deliverable...... is a valuable tool for the further assessment and interest has been shown from other work packages, such as Training. This report describes the activities that have been carried out in the Work Package 1A2 Metrology of the UpWind project. Activities from Risø are described in a separate report: T.F. Pedersen...... was to perform a state of the art assessment to identify all relevant measurands. The required accuracies and required sampling frequencies have been identified from the perspective of the users of the data (the other work packages in UpWind). This work led to the definition of the Metrology Database, which...

  19. Impact of the ITRS Metrology Roadmap

    International Nuclear Information System (INIS)

    Diebold, Alain C.

    2001-01-01

    The International Technology Roadmap for Semiconductors (ITRS) provides the semiconductor industry with the timing of critical technology needs for future generations of integrated circuits. The Metrology roadmap in the ITRS describes the measurement needs based on the process requirements found in the Lithography, Front End Processes, Interconnect, and Packaging Roadmaps. This paper illustrates the impact of the Metrology Roadmap on the development of key measurement technology

  20. Slovak Institute of Metrology. Annual Report 2001

    International Nuclear Information System (INIS)

    Bily, M.

    2002-03-01

    A brief account of activities carried out by the Slovak Institute of Metrology (SMU) in 2001 is presented. These activities are reported under the headings: (1) Organisation identification; (2) Mission and medium-term perspectives; (3) Contract with Slovak Office of Standards, Metrology and Testing of the Slovak Republic; (4) SMU activities ; (5) Economic results; (6) Personnel management; (7) Aims and results of their fulfilment; (8) Evaluation and analysis of SMU development in 2001; (9) Main group of outputs users; (10) Conclusion

  1. Objectives and functions of ionizing radiation metrology

    International Nuclear Information System (INIS)

    Rothe, H.

    1981-01-01

    Proceeding from the fundamental objectives of ionizing radiation metrology, the main tasks of metrological research and assurances of accurate measurements in dosimetry and activity determination are summarized. With a view to the technical performance of these tasks the state-of-the-art and the trends in reproduction and dissemination of dosimetric and activity units are outlined. Problems are derived that should be solved within the framework of the CMEA Standing Commissions on Standardization and on the Peaceful Uses of Atomic Energy. (author)

  2. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  3. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  4. Polarized targets at triangle universities nuclear laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States); Huffman, P.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States); Roberson, N.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Wilburn, W.S. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    1995-03-01

    A summary of the polarized and aligned nuclear targets which have been constructed and used at the Triangle Universities Nuclear Laboratory is given. Statically polarized targets, typically operating at a temperature of 12 mK and a magnetic field of 7 T, have provided significant nuclear polarization in {sup 1}H, {sup 3}He, {sup 27}Al, {sup 93}Nb and {sup 165}Ho. A rotating, aligned {sup 165}Ho target is also in use. A {sup 3}He melting curve thermometer has been developed for use in statically polarized targets. A dynamically polarized proton target is under construction. ((orig.))

  5. Optical vortex metrology: Are phase singularities foes or friends in optical metrology?

    DEFF Research Database (Denmark)

    Takeda, M.; Wang, W.; Hanson, Steen Grüner

    2008-01-01

    We raise an issue whether phase singularities are foes or friends in optical metrology, and give an answer by introducing the principle and applications of a new technique which we recently proposed for displacement and flow measurements. The technique is called optical vortex metrology because i...

  6. Star-Triangle Relation of the Chiral Potts Model Revisited

    OpenAIRE

    Horibe, M.; Shigemoto, K.

    2001-01-01

    We give the simple proof of the star-triangle relation of the chiral Potts model. We also give the constructive way to understand the star-triangle relation of the chiral Potts model, which may give the hint to give the new integrable models.

  7. Triangle-free graphs whose independence number equals the degree

    DEFF Research Database (Denmark)

    Brandt, Stephan

    2010-01-01

    In a triangle-free graph, the neighbourhood of every vertex is an independent set. We investigate the class S of triangle-free graphs where the neighbourhoods of vertices are maximum independent sets. Such a graph G must be regular of degree d = α (G) and the fractional chromatic number must sati...

  8. Uses of systemic approach and chemist's triangle in teaching and ...

    African Journals Online (AJOL)

    This paper describes uses of the systemic chemistry triangle [SCT] in which we get the benefits of both systemic approach and chemist's triangle in teaching and learning chemistry. SCT creates active learning environment enable students to gain high mental and professional skills, correct cognition, positive attitudes ...

  9. The DNA Triangle and Its Application to Learning Meiosis

    Science.gov (United States)

    Wright, L. Kate; Catavero, Christina M.; Newman, Dina L.

    2017-01-01

    Although instruction on meiosis is repeated many times during the undergraduate curriculum, many students show poor comprehension even as upper-level biology majors. We propose that the difficulty lies in the complexity of understanding DNA, which we explain through a new model, the DNA triangle. The "DNA triangle" integrates three…

  10. Some Unusual Expressions for the Inradius of a Triangle

    Science.gov (United States)

    Osler, Thomas J.; Chandrupatla, Tirupathi R.

    2005-01-01

    Several formulae for the inradius of various types of triangles are derived. Properties of the inradius and trigonometric functions of the angles of Pythagorean and Heronian triangles are also presented. The entire presentation is elementary and suitable for classes in geometry, precalculus mathematics and number theory.

  11. Angle bisectors of a triangle in $I_2$

    OpenAIRE

    Kolar-Begović, Zdenka; Kolar_Šuper, Ružica; Volenec, Vladimir

    2008-01-01

    The concept of an angle bisector of the triangle will be introduced in an isotropic plane. Some statements about relationships between the introduced concepts and some other previously studied geometric concepts about triangles will be investigated in an isotropic plane. A number of these statements seems to be new, and some of them are known in Euclidean geometry.

  12. Relations between Some Characteristic Lengths in a Triangle

    Science.gov (United States)

    Koepf, Wolfram; Brede, Markus

    2005-01-01

    The paper's aim is to note a remarkable (and apparently unknown) relation for right triangles, its generalisation to arbitrary triangles and the possibility to derive these and some related relations by elimination using Groebner basis computations with a modern computer algebra system. (Contains 9 figures.)

  13. Pascal-Like Triangle and Pascal-Like Functional Matrix

    Directory of Open Access Journals (Sweden)

    M. Bayat

    2013-06-01

    Full Text Available . In this paper we shall first introduce the Pascal-like triangle, using a generalization of the recurrence relation for arrays of Pascal triangle. Then we define the Pascal-like functional and Fermat-like matrices and investigate their algebraic properties. Finally, we obtain some binomial identities, using these matrices

  14. The CKM matrix and the unitarity triangle

    International Nuclear Information System (INIS)

    Battaglia, M.; Buras, A.J.; Gambino, P.; Stocchi, A.; Abbaneo, D.; Ali, A.; Amaral, P.; Andreev, V.; Artuso, M.; Barberio, E.; Bauer, C.; Becirevic, D.; Beneke, M.; Bigi, I.; Bozzi, C.; Brandt, T.; Buchalla, G.; Calvi, M.; Cassel, D.; Cirigliano, V.; Ciuchini, M.

    2003-01-01

    This report contains the results of the Workshop on the CKM Unitarity Triangle that was held at CERN on 13-16 February 2002. There had been several Workshops on B physics that concentrated on studies at e + e - machines, at the Tevatron, or at LHC separately. Here we brought together experts of different fields, both theorists and experimentalists, to study the determination of the CKM matrix from all the available data of K, D, and B physics. The analysis of LEP data for B physics is reaching its end, and one of the goals of the Workshop was to underline the results that have been achieved at LEP, SLC, and CESR. Another goal was to prepare for the transfer of responsibility for averaging B physics properties, that has developed within the LEP community, to the present main actors of these studies, from the B factory and the Tevatron experiments. The optimal way to combine the various experimental and theoretical inputs and to fit for the apex of the Unitarity Triangle has been a contentious issue. A further goal of the Workshop was to bring together the proponents of different fitting strategies, and to compare their approaches when applied to the same inputs. Since lattice QCD plays a very important role in the determination of the non-perturbative parameters needed to constrain the CKM unitarity triangle, the first Workshop was seen as an excellent opportunity to bring together lattice theorists with the aim of establishing a working group to compile averages for phenomenologically relevant quantities. Representatives from lattice collaborations around the world were invited to attend a meeting during the Workshop. A consensus was reached to set up three test working groups, collectively known as the 'CKM Lattice Working Group', to review a number of well-studied quantities: quark masses, the kaon B-parameter, and the matrix elements relevant for neutral B-meson mixing. These proceedings are organized as a coherent document with chapters covering the domains of

  15. The CKM Matrix and the unitarity triangle

    International Nuclear Information System (INIS)

    Battaglia, M.

    2003-01-01

    This report contains the results of the Workshop on the CKM Unitarity Triangle that was held at CERN on 13-16 February 2002. There had been several Workshops on B physics that concentrated on studies at e + e - machines, at the Tevatron, or at LHC separately. Here we brought together experts of different fields, both theorists and experimentalists, to study the determination of the CKM matrix from all the available data of K, D, and B physics. The analysis of LEP data for B physics is reaching its end, and one of the goals of the Workshop was to underline the results that have been achieved at LEP, SLC, and CESR. Another goal was to prepare for the transfer of responsibility for averaging B physics properties, that has developed within the LEP community, to the present main actors of these studies, from the B factory and the Tevatron experiments. The optimal way to combine the various experimental and theoretical inputs and to fit for the apex of the Unitarity Triangle has been a contentious issue. A further goal of the Workshop was to bring together the proponents of different fitting strategies, and to compare their approaches when applied to the same inputs. Since lattice QCD plays a very important role in the determination of the non-perturbative parameters needed to constrain the CKM unitarity triangle, the first Workshop was seen as an excellent opportunity to bring together lattice theorists with the aim of establishing a working group to compile averages for phenomenologically relevant quantities. Representatives from lattice collaborations around the world were invited to attend a meeting during the Workshop. A consensus was reached to set up three test working groups, collectively known as the ''CKM Lattice Working Group'', to review a number of well-studied quantities: quark masses, the kaon B-parameter, and the matrix elements relevant for neutral B-meson mixing. These proceedings are organized as a coherent document with chapters covering the domains

  16. Update of the Unitarity Triangle Analysis

    CERN Document Server

    Bevan, A.J.; Ciuchini, M.; Derkach, D.; Stocchi, A.; Franco, E.; Silvestrini, L.; Lubicz, V.; Tarantino, Cecilia; Martinelli, G.; Parodi, F.; Schiavi, C.; Pierini, M.; Sordini, V.; Vagnoni, V.

    2010-01-01

    We present the status of the Unitarity Triangle Analysis (UTA), within the Standard Model (SM) and beyond, with experimental and theoretical inputs updated for the ICHEP 2010 conference. Within the SM, we find that the general consistency among all the constraints leaves space only to some tension (between the UTA prediction and the experimental measurement) in BR(B -> tau nu), sin(2 beta) and epsilon_K. In the UTA beyond the SM, we allow for New Physics (NP) effects in (Delta F)=2 processes. The hint of NP at the 2.9 sigma level in the B_s-\\bar B_s mixing turns out to be confirmed by the present update, which includes the new D0 result on the dimuon charge asymmetry but not the new CDF measurement of phi_s, being the likelihood not yet released.

  17. Joint Research on Scatterometry and AFM Wafer Metrology

    NARCIS (Netherlands)

    Bodermann, B.; Buhr, E.; Danzebrink, H.U.; Bär, M.; Scholze, F.; Krumrey, M.; Wurm, M.; Klapetek, P.; Hansen, P.E.; Korpelainen, V.; Van Veghel, M.; Yacoot, A.; Siitonen, S.; El Gawhary, O.; Burger, S.; Saastamoinen, T.

    2011-01-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both

  18. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  19. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  20. Economic Analysis of Asian Growth Triangles : The Johor-Singapore-Riau Growth Triangle

    OpenAIRE

    Koch, Glenn G.

    2000-01-01

    In looking at the Asian economy, particularly the Growth Triangle which includes Singapore, Malaysia and Indonesia, one can infer a great deal. With the Asian monetary crisis affecting the world, and certainly the Asian region in particular, some economists believe it is a mistake to evaluate such matters based on tradition. Rather, a school of thought dubbed the New Institutional Economics has come into being and while not everyone considers it to be a truly new approach, the bottom line is ...

  1. Metrological AFMs and its application for versatile nano-dimensional metrology tasks

    Science.gov (United States)

    Dai, Gaoliang; Dziomba, T.; Pohlenz, F.; Danzebrink, H.-U.; Koenders, L.

    2010-08-01

    Traceable calibrations of various micro and nano measurement devices are crucial tasks for ensuring reliable measurements for micro and nanotechnology. Today metrological AFM are widely used for traceable calibrations of nano dimensional standards. In this paper, we introduced the developments of metrological force microscopes at PTB. Of the three metrological AFMs described here, one is capable of measuring in a volume of 25 mm x 25 mm x 5 mm. All instruments feature interferometers and the three-dimensional position measurements are thus directly traceable to the metre definition. Some calibration examples on, for instance, flatness standards, step height standards, one and two dimensional gratings are demonstrated.

  2. Interoperability: linking design and tolerancing with metrology.

    Science.gov (United States)

    Morse, Edward; Heysiattalab, Saeed; Barnard-Feeney, Allison; Hedberg, Thomas

    2016-01-01

    On October 30, 2014 the American National Standards Institute (ANSI) approved QIF v 2.0 (Quality Information Framework, version 2.0) as an American National Standard. Subsequently in early 2016 QIF version 2.1 was approved. This paper describes how the QIF standard models the information necessary for quality workflow across the full metrology enterprise. After a brief description of the XML 'language' used in the standard, the paper reports on how the standard enables information exchange among four major activities in the metrology enterprise (product definition; measurement planning; measurement execution; and the analysis and reporting of the quality data).

  3. Advances in speckle metrology and related techniques

    CERN Document Server

    Kaufmann, Guillermo H

    2010-01-01

    Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the l

  4. Holistic metrology qualification extension and its application to characterize overlay targets with asymmetric effects

    Science.gov (United States)

    Dos Santos Ferreira, Olavio; Sadat Gousheh, Reza; Visser, Bart; Lie, Kenrick; Teuwen, Rachel; Izikson, Pavel; Grzela, Grzegorz; Mokaberi, Babak; Zhou, Steve; Smith, Justin; Husain, Danish; Mandoy, Ram S.; Olvera, Raul

    2018-03-01

    Ever increasing need for tighter on-product overlay (OPO), as well as enhanced accuracy in overlay metrology and methodology, is driving semiconductor industry's technologists to innovate new approaches to OPO measurements. In case of High Volume Manufacturing (HVM) fabs, it is often critical to strive for both accuracy and robustness. Robustness, in particular, can be challenging in metrology since overlay targets can be impacted by proximity of other structures next to the overlay target (asymmetric effects), as well as symmetric stack changes such as photoresist height variations. Both symmetric and asymmetric contributors have impact on robustness. Furthermore, tweaking or optimizing wafer processing parameters for maximum yield may have an adverse effect on physical target integrity. As a result, measuring and monitoring physical changes or process abnormalities/artefacts in terms of new Key Performance Indicators (KPIs) is crucial for the end goal of minimizing true in-die overlay of the integrated circuits (ICs). IC manufacturing fabs often relied on CD-SEM in the past to capture true in-die overlay. Due to destructive and intrusive nature of CD-SEMs on certain materials, it's desirable to characterize asymmetry effects for overlay targets via inline KPIs utilizing YieldStar (YS) metrology tools. These KPIs can also be integrated as part of (μDBO) target evaluation and selection for final recipe flow. In this publication, the Holistic Metrology Qualification (HMQ) flow was extended to account for process induced (asymmetric) effects such as Grating Imbalance (GI) and Bottom Grating Asymmetry (BGA). Local GI typically contributes to the intrafield OPO whereas BGA typically impacts the interfield OPO, predominantly at the wafer edge. Stack height variations highly impact overlay metrology accuracy, in particular in case of multi-layer LithoEtch Litho-Etch (LELE) overlay control scheme. Introducing a GI impact on overlay (in nm) KPI check quantifies the

  5. A Bony Landmark 'RAI Triangle' to Prevent 'Misplaced and Misdirected' Medial Cut in SSRO.

    Science.gov (United States)

    Rai, Kirthi Kumar; Arakeri, Gururaj; Khaji, Shahanavaj I

    2011-03-01

    'Rai triangle', a new anatomic landmark on the medial surface of the ramus of the mandible which when identified and taken into consideration, may have a definite advantage. This is especially in terms of performing the medial horizontal cut which is an important and integral part of the sagittal split ramus osteotomy so as to avoid a bad split. The objective of this article is to propose an easily identifiable bony land mark, which is closely related to lingula of mandible that may ease the procedure of osteotomy and avoid bad splits.

  6. Grouper: a compact, streamable triangle mesh data structure.

    Science.gov (United States)

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2014-01-01

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  7. Grouper: A Compact, Streamable Triangle Mesh Data Structure

    Energy Technology Data Exchange (ETDEWEB)

    Luffel, Mark [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Gurung, Topraj [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Lindstrom, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rossignac, Jarek [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU)

    2014-01-01

    Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  8. Metrological traceability of holmium oxide solution

    Science.gov (United States)

    Gonçalves, D. E. F.; Gomes, J. F. S.; Alvarenga, A. P. D.; Borges, P. P.; Araujo, T. O.

    2018-03-01

    Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.

  9. Metrology Sampling Strategies for Process Monitoring Applications

    KAUST Repository

    Vincent, Tyrone L.; Stirton, James Broc; Poolla, Kameshwar

    2011-01-01

    , economic pressures prompt a reduction in metrology, for both capital and cycle-time reasons. This paper explores the use of modeling and minimum-variance prediction as a method to select the sites for measurement on each wafer. The models are developed

  10. Laser metrology applied to the nuclear maintenance

    International Nuclear Information System (INIS)

    Garrido Garcia, J.; Sarti Fernandez, F.

    2012-01-01

    The development of this paper focuses on providing an overview of the state of the art about laser metrology. This type of equipment combines the measurement philosophy of laser scanning with the great precision of the robotic equipment of auscultation. Getting micron.

  11. Activities of IPEN Nuclear Metrology Laboratory

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The activities of IPEN Nuclear Metrology Laboratory, which the principal objective is radionuclides activities determination for supplying sources and standard radioactive solutions in activity are presented. The systems installed, the activity bands and some of standards radionuclides are shown. (C.G.C.) [pt

  12. Sense and Sensibility:The Erotic Triangle in Shakespearean Sonnets

    Institute of Scientific and Technical Information of China (English)

    舒畅

    2017-01-01

    The male-female-male relationship is a recurrent theme in William Shakespeare's sonnets. In Eve Sedgwick's influen-tial queer study book Between Men:English Literature and Male Homosocial Desire, she first interpreted the relationship within the model of erotic triangle. On the basis of Sedgwick's theory, the triangle relationship in the Sonnets is analyzed—Shakespeare con-structs an erotic triangle where males by identifying, cooperating, and competing with each other, maintain their homosocial bond upon heterosexual but misogynous desires towards a female. The contradictory relationship reflects Shakespeare 's struggle vis-à-vis a Renaissance literary theme:rationality versus passion, with the former mounting over the latter.

  13. Sense and Sensibility:The Erotic Triangle in Shakespearean Sonnets

    Institute of Scientific and Technical Information of China (English)

    舒畅

    2017-01-01

    The male-female-male relationship is a recurrent theme in William Shakespeare's sonnets. In Eve Sedgwick's influen-tial queer study book Between Men: English Literature and Male Homosocial Desire, she first interpreted the relationship within the model of erotic triangle. On the basis of Sedgwick's theory, the triangle relationship in the Sonnets is analyzed—Shakespeare con-structs an erotic triangle where males by identifying, cooperating, and competing with each other, maintain their homosocial bond upon heterosexual but misogynous desires towards a female. The contradictory relationship reflects Shakespeare's struggle vis-à-vis a Renaissance literary theme: rationality versus passion, with the former mounting over the latter.

  14. Applied psychometrics in clinical psychiatry: the pharmacopsychometric triangle

    DEFF Research Database (Denmark)

    Bech, P; Bech, P

    2009-01-01

    OBJECTIVE: To consider applied psychometrics in psychiatry as a discipline focusing on pharmacopsychology rather than psychopharmacology as illustrated by the pharmacopsychometric triangle. METHOD: The pharmacopsychological dimensions of clinically valid effects of drugs (antianxiety, antidepress......OBJECTIVE: To consider applied psychometrics in psychiatry as a discipline focusing on pharmacopsychology rather than psychopharmacology as illustrated by the pharmacopsychometric triangle. METHOD: The pharmacopsychological dimensions of clinically valid effects of drugs (antianxiety...... psychometrics in psychiatry have been found to cover a pharmacopsychometric triangle illustrating the measurements of wanted and unwanted effects of pharmacotherapeutic drugs as well as health-related quality of life....

  15. Overlay metrology for double patterning processes

    Science.gov (United States)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double

  16. Advanced metrology by offline SEM data processing

    Science.gov (United States)

    Lakcher, Amine; Schneider, Loïc.; Le-Gratiet, Bertrand; Ducoté, Julien; Farys, Vincent; Besacier, Maxime

    2017-06-01

    Today's technology nodes contain more and more complex designs bringing increasing challenges to chip manufacturing process steps. It is necessary to have an efficient metrology to assess process variability of these complex patterns and thus extract relevant data to generate process aware design rules and to improve OPC models. Today process variability is mostly addressed through the analysis of in-line monitoring features which are often designed to support robust measurements and as a consequence are not always very representative of critical design rules. CD-SEM is the main CD metrology technique used in chip manufacturing process but it is challenged when it comes to measure metrics like tip to tip, tip to line, areas or necking in high quantity and with robustness. CD-SEM images contain a lot of information that is not always used in metrology. Suppliers have provided tools that allow engineers to extract the SEM contours of their features and to convert them into a GDS. Contours can be seen as the signature of the shape as it contains all the dimensional data. Thus the methodology is to use the CD-SEM to take high quality images then generate SEM contours and create a data base out of them. Contours are used to feed an offline metrology tool that will process them to extract different metrics. It was shown in two previous papers that it is possible to perform complex measurements on hotspots at different process steps (lithography, etch, copper CMP) by using SEM contours with an in-house offline metrology tool. In the current paper, the methodology presented previously will be expanded to improve its robustness and combined with the use of phylogeny to classify the SEM images according to their geometrical proximities.

  17. An alternative method to achieve metrological confirmation in measurement process

    Science.gov (United States)

    Villeta, M.; Rubio, E. M.; Sanz, A.; Sevilla, L.

    2012-04-01

    Metrological confirmation process must be designed and implemented to ensure that metrological characteristics of the measurement system meet metrological requirements of the measurement process. The aim of this paper is to present an alternative method to the traditional metrological requirements about the relationship between tolerance and measurement uncertainty, to develop such confirmation processes. The proposed way to metrological confirmation considers a given inspection task of the measurement process into the manufacturing system, and it is based on the Index of Contamination of the Capability, ICC. Metrological confirmation process is then developed taking into account the producer risks and economic considerations on this index. As a consequence, depending on the capability of the manufacturing process, the measurement system will be or will not be in adequate state of metrological confirmation for the measurement process.

  18. GLINT. Gravitational-wave laser INterferometry triangle

    Science.gov (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  19. Update of the Unitarity Triangle Analysis

    International Nuclear Information System (INIS)

    Tarantino, C.; Bona, M.; Sordini, V.

    2009-01-01

    We present the update of the Unitarity Triangle (UT) analysis within the Standard Model (SM) and beyond. Within the SM, combining the direct measurements on sides and angles, the UT turns out to be overconstraint in a consistent way, showing that the CKM matrix is the dominant source of flavour mixing and CP-violation and that New Physics (NP) effects can appear at most as small corrections to the CKM picture. Generalizing the UT analysis to investigate NP effects, constraints on b → s transitions are also included and both CKM and NP parameters are fitted simultaneously. While no evidence of NP effects is found in K - (bar) K and B d - (bar) B d mixing, in the B s - (bar) B s mixing an hint of NP is found. The UT analysis beyond the SM also allows us to derive bounds on the coefficients of the most general ΔF = 2 effective Hamiltonian, that can be translated into bounds on the NP scale. (authors)

  20. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut

    2016-01-01

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals

  1. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  2. Exploring fraud triangle in understanding ethics pre-cautionary: a ...

    African Journals Online (AJOL)

    Exploring fraud triangle in understanding ethics pre-cautionary: a Malaysian ... Journal of Fundamental and Applied Sciences ... Various reports on the involvement of government officials in fraud cases indicate the lacking of ethical systems.

  3. Metrical relationships in a standard triangle in an isotropic plane

    OpenAIRE

    Kolar-Šuper, R.; Kolar-Begović, Z.; Volenec, V.; Beban-Brkić, J.

    2005-01-01

    Each allowable triangle of an isotropic plane can be set in a standard position, in which it is possible to prove geometric properties analytically in a simplified and easier way by means of the algebraic theory developed in this paper.

  4. A Heuristic Algorithm for Solving Triangle Packing Problem

    Directory of Open Access Journals (Sweden)

    Ruimin Wang

    2013-01-01

    Full Text Available The research on the triangle packing problem has important theoretic significance, which has broad application prospects in material processing, network resource optimization, and so forth. Generally speaking, the orientation of the triangle should be limited in advance, since the triangle packing problem is NP-hard and has continuous properties. For example, the polygon is not allowed to rotate; then, the approximate solution can be obtained by optimization method. This paper studies the triangle packing problem by a new kind of method. Such concepts as angle region, corner-occupying action, corner-occupying strategy, and edge-conjoining strategy are presented in this paper. In addition, an edge-conjoining and corner-occupying algorithm is designed, which is to obtain an approximate solution. It is demonstrated that the proposed algorithm is highly efficient, and by the time complexity analysis and the analogue experiment result is found.

  5. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  6. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...... findings can find application in off-shore, seismic and other engi- neering practice, or inspire new branches of research and modelling wherever dynamic, cyclic or transient loaded sand is encountered....

  7. On degree sums of a triangle-free graph

    DEFF Research Database (Denmark)

    Brandt, Stephan; Harant, J.; Naumann, S.

    2014-01-01

    For a simple triangle-free k-chromatic graph G with k >= 2 the upper bound m(n-f (k-2)) on the sum Sigma(2)(G) = Sigma(x is an element of V(G))d(2)(x) of the squares of the degrees of G is proved, where n, m, and f(1) are the order of G, the size of G, and the minimum order of a triangle-free l-c...

  8. Trigonometric solutions of triangle equations. Simple Lie superalgebras

    International Nuclear Information System (INIS)

    Bazhanov, V.V.; Shadrikov, A.G.

    1988-01-01

    Trigonometric solutions of the graded triangle equation are constructed for the fundamental representations of all simple (nonexceptional) Lie superalgebras with nondegenerate metric. In Sec. 1, we introduce the concept of Z 2 graded spaces and give the basic definitions. In Sec. 2, we determine fundamental representations of the Lie superalgebras sl(mn) and osp(2rs) and give explicit realizations of the Coxeter automorphisms. In secs. 3 and 4, we give the trigonometric solutions of the graded triangle equation (quantum R matrices)

  9. Coloring triangle-free graphs with fixed size

    DEFF Research Database (Denmark)

    Thomassen, Carsten; Gimbel, John

    2000-01-01

    Combining recent results on colorings and Ramsey theory, we show that if G is a triangle-free graph with e edges then the chromatic number of G is at most cel(1/3)(log e)(-2/3) for some constant c. In a previous paper, we found an upper bound on the chromatic number of a triangle-free graph of ge...

  10. Moving triangle singularities: the possibilities for observation in deuteron reactions

    International Nuclear Information System (INIS)

    Kolybasov, V.M.

    1996-01-01

    If the amplitude of direct reaction is dominated by the triangle graph then it can be identified observing the picture corresponding to so-called moving triangle singularity: the form of the distribution with respect to the invariant mass of several final particles must change with momentum transferred from initial fast particle to final one. The possibilities for observation are discussed using two reactions, namely deuteron break up and η-meson production pd → pdη [ru

  11. Metrology in the Bolivia-Brazil Pipeline; Medicao no gasoduro Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Palhares, Julio C.C.M.; Nunes, Ildemar Pinto [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    measurement guideline of TBG seeks to be always assisting to the customer's needs and aligned with the changes of the market of natural gas. In five years of existence, TBG attended the forming regulatory legislation and the establishment of the contract fiscal, important marks of the evolution of the market. This work presents the definitions that orientated the metrological issues of TBG, making use of efficient tools in the answers to each demand and seeking to satisfy its own needs, its customers' needs and all the new regulatory demands. This paper approaches, the calibration procedures, the qualification of suppliers, maintenance of the metrological reliability, the daily confirmation of the delivered volumes, the fail treatment, and the unaccounted gas monitoring in rigorous limits practiced in world class companies in foreigner countries. (author)

  12. Real cell overlay measurement through design based metrology

    Science.gov (United States)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Jo, Gyoyeon; Yang, Hyunjo; Yim, Donggyu; Yamamoto, Masahiro; Maruyama, Kotaro; Park, Byungjun

    2014-04-01

    Until recent device nodes, lithography has been struggling to improve its resolution limit. Even though next generation lithography technology is now facing various difficulties, several innovative resolution enhancement technologies, based on 193nm wavelength, were introduced and implemented to keep the trend of device scaling. Scanner makers keep developing state-of-the-art exposure system which guarantees higher productivity and meets a more aggressive overlay specification. "The scaling reduction of the overlay error has been a simple matter of the capability of exposure tools. However, it is clear that the scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieve the desired performance.(2)" In a manufacturing fab, the overlay error, determined by a conventional overlay measurement: by using an overlay mark based on IBO and DBO, often does not represent the physical placement error in the cell area of a memory device. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion, caused by etching or CMP, also can be a source of the mismatch. Therefore, the requirement of a direct overlay measurement in the cell pattern gradually increases in the manufacturing field, and also in the development level. In order to overcome the mismatch between conventional overlay measurement and the real placement error of layer to layer in the cell area of a memory device, we suggest an alternative overlay measurement method utilizing by design, based metrology tool. A basic concept of this method is shown in figure1. A CD-SEM measurement of the overlay error between layer 1 and 2 could be the ideal method but it takes too long time to extract a lot of data from wafer level. An E-beam based DBM tool provides high speed to cover the whole wafer with high repeatability. It is enabled by using the design as a

  13. Machine tool metrology an industrial handbook

    CERN Document Server

    Smith, Graham T

    2016-01-01

    Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of the existing published literature and valid information obtained from a wide-spectrum of manufacturers of plant, equipment and instrumentation before putting forward novel ideas and methodologies. Providing easy to understand bullet points and lucid descriptions of metrological and calibration subjects, this book aids reader understanding of the topics discussed whilst adding a voluminous-amount of footnotes utilised throughout all of the chapters, which adds some additional detail to the subject. Featuring an extensive amount of photographic-support, this book will serve as a key reference text for all those involved in the field. .

  14. Quantum metrology foundation of units and measurements

    CERN Document Server

    Goebel, Ernst O

    2015-01-01

    The International System of Units (SI) is the world's most widely used system of measurement, used every day in commerce and science, and is the modern form of the metric system. It currently comprises the meter (m), the kilogram (kg), the second (s), the ampere (A), the kelvin (K), the candela (cd) and the mole (mol)). The system is changing though, units and unit definitions are modified through international agreements as the technology of measurement progresses, and as the precision of measurements improves. The SI is now being redefined based on constants of nature and their realization by quantum standards. Therefore, the underlying physics and technologies will receive increasing interest, and not only in the metrology community but in all fields of science. This book introduces and explains the applications of modern physics concepts to metrology, the science and the applications of measurements. A special focus is made on the use of quantum standards for the realization of the forthcoming new SI (the...

  15. Metrology for fire experiments in outdoor conditions

    CERN Document Server

    Silvani, Xavier

    2013-01-01

    Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisitio...

  16. Coordinate Metrology by Traceable Computed Tomography

    DEFF Research Database (Denmark)

    Müller, Pavel

    is an important factor for decision making about manufactured parts. However, due to many influences in CT, estimation of the uncertainty is a challenge, also because standardized procedures and guidelines are not available yet. In this thesis, several methods for uncertainty estimation were applied in connection......, characterization and correction of measurement errors in the CT volume. Their application appeared to be suitable for this task. Because the two objects consist of ruby spheres and carbon fibre, CT scans did not produce image artifacts, and evaluation of sphere-to-sphere distances was robust. Several methods...... metrology and coordinate metrology and is currently becoming more and more important measuring technique for dimensional measurements. This is mainly due to the fact that with CT, a complete three-dimensional model of the scanned part is in a relatively short time visualized using a computer...

  17. Gloss evaluation from soft and hard metrologies.

    Science.gov (United States)

    Wang, Zihao; Xu, Lihao; Hu, Yu; Mirjalili, Fereshteh; Luo, Ming Ronnier

    2017-09-01

    Recent advances in bidirectional reflectance distribution function (BRDF) acquisitions have provided a novel approach for appearance measurement and analysis. In particular, since gloss appearance is dependent on the directional reflective properties of surfaces, it is reasonable to leverage the BRDF for gloss evaluation. In this paper, we investigate gloss appearance from both soft metrology and hard metrology. A psychophysical experiment was conducted for the gloss assessment of 47 neutral-color samples. In the evaluation of gloss perception from gloss meter measurements, we report several ambiguous correspondences in the medium gloss range. In order to analyze and explain this phenomenon, the BRDF was acquired and examined using a commercial BRDF measuring device. With an improved correlation-to-visual perception, we propose a two-dimensional gloss model by combining a parameter, the standard deviation of the specular lobe, from Ward's BRDF model with measured gloss values.

  18. Efficiency improvements of offline metrology job creation

    Science.gov (United States)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  19. Measurement capabilities of the Bendix Metrology Organization

    International Nuclear Information System (INIS)

    Barnes, L.M.

    1984-01-01

    The purpose of this manual is to communicate the measurement and calibration capabilities of the Metrology Organization of the Bendix Kansas City Division. Included is a listing of the measurement types and ranges available, and the accuracies normally attainable under conditions at the Kansas City Division. Also described are currently used standards and measurement devices. The manual is divided into four major sections, each describing a broad general area of measurement: mechanical; environmental, gas, liquid; electrical; and optical and radiation

  20. Digital holography for MEMS and microsystem metrology

    CERN Document Server

    Asundi, Anand

    2011-01-01

    Approaching the topic of digital holography from the practical perspective of industrial inspection, Digital Holography for MEMS and Microsystem Metrology describes the process of digital holography and its growing applications for MEMS characterization, residual stress measurement, design and evaluation, and device testing and inspection. Asundi also provides a thorough theoretical grounding that enables the reader to understand basic concepts and thus identify areas where this technique can be adopted. This combination of both practical and theoretical approach will ensure the

  1. Implementation of the Brazilian radiation metrology network

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Araujo, Margareth M. de

    1998-01-01

    The ever increasing need for calibration of survey, personal, and contamination meters in Brazil are not completely satisfied by the two operating laboratories. To overcome this deficiency a radiation metrology network is being implemented with the support of IAEA. In a near future this network will count other three calibration laboratories which are being installed in different regions of the country, and accredited through INMETRO. (author)

  2. Traceability and uncertainty estimation in coordinate metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Savio, Enrico; De Chiffre, Leonardo

    2001-01-01

    National and international standards have defined performance verification procedures for coordinate measuring machines (CMMs) that typically involve their ability to measure calibrated lengths and to a certain extent form. It is recognised that, without further analysis or testing, these results...... are required. Depending on the requirements for uncertainty level, different approaches may be adopted to achieve traceability. Especially in the case of complex measurement situations and workpieces the procedures are not trivial. This paper discusses the establishment of traceability in coordinate metrology...

  3. Metrology Techniques for the Assembly of NCSX

    International Nuclear Information System (INIS)

    Priniski, C.; Dodson, T.; Duco, M.; Raftopoulos, S.; Ellis, R.; Brooks, A.

    2009-01-01

    In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex three dimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracy on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometer aided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.

  4. Slovak Office of Standards, Metrology and Testing. Annual Report 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A brief account of activities carried out by the Slovak Office of Standards, Metrology and Testing of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Introduction by the President of the Slovak Office of Standards, Metrology and Testing; (2) The Vice-president's Unit Standardization and Quality; (3) The President's Office; (4) Chief Inspector Department; (5) Legislative-juridical Department; (6) Department of Economy; (7) Department of International Co-operation; (8) Department of European Integration; (9) Department of Metrology; (10) Department of Testing; (11) Department of the Cyclotron Centre SR; (12) Slovak Institute of Metrology; (13) Slovak Standards Institution; (14) Slovak Metrology Inspectorate; (15) Slovak Legal Metrology; (16) Measuring Techniques - Technocentre - MTT; Abbreviations; (17) Technical Testing Institute Piestany; (18) Testing Institute of Transport and Earthmoving Machinery - SUDST

  5. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  6. Metrology for radioactive waste management. (WP2, WP3)

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. In this presentation the Project is described. (author)

  7. PREFACE: Fundamental Constants in Physics and Metrology

    Science.gov (United States)

    Klose, Volkmar; Kramer, Bernhard

    1986-01-01

    This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and

  8. Rapid Separation of Disconnected Triangle Meshes Based on Graph Traversal

    International Nuclear Information System (INIS)

    Ji, S J; Wang, Y

    2006-01-01

    In recent year, The STL file become a de facto standard on the file presentation in CAD/CAM, computer graph and reverse engineering. When point cloud which is obtained by scanning object body using optical instrument is used to reconstruct an original model, the points cloud is presented by the STL file. Usually, datum of several separated and relative objects are stored in a single STL file, when such a file is operated by a computer, the datum in the file is firstly separated and then each element of every triangle pitch on the triangle mesh is traversed and visited and is calculated. The problem is analyzed and studied by many experts, but there is still a lack of a simple and quick algorithm. An algorithm which uses graph traversal to traverse each element of the triangle meshes and separate several disconnected triangle meshes is presented by the paper, the searching and calculating speed of the data on the triangle meshes is enhanced, memory size of the computer is reduced, complexity of the data structure is simplified and powerful guarantee is made for the next process by using this algorithm

  9. Problems of metrological supply of carbon materials production

    International Nuclear Information System (INIS)

    Belov, G.V.; Bazilevskij, L.P.; Cherkashina, N.V.

    1989-01-01

    Carbon materials and products contain internal residual stresses and have an anisotropy of properties therefore special methods of tests are required to control their quality. The main metrological problems during development, production and application of carbon products are: metrological supply of production forms and records during the development of production conditions; metrological supply of quality control of the product; metrological supply of methods for the tests of products and the methods to forecast the characteristics of product quality for the period of quaranteed service life

  10. Enhacement of intrafield overlay using a design based metrology system

    Science.gov (United States)

    Jo, Gyoyeon; Ji, Sunkeun; Kim, Shinyoung; Kang, Hyunwoo; Park, Minwoo; Kim, Sangwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Maruyama, Kotaro; Park, Byungjun

    2016-03-01

    As the scales of the semiconductor devices continue to shrink, accurate measurement and control of the overlay have been emphasized for securing more overlay margin. Conventional overlay analysis methods are based on the optical measurement of the overlay mark. However, the overlay data obtained from these optical methods cannot represent the exact misregistration between two layers at the circuit level. The overlay mismatch may arise from the size or pitch difference between the overlay mark and the real pattern. Pattern distortion, caused by CMP or etching, could be a source of the overlay mismatch as well. Another issue is the overlay variation in the real circuit pattern which varies depending on its location. The optical overlay measurement methods, such as IBO and DBO that use overlay mark on the scribeline, are not capable of defining the exact overlay values of the real circuit. Therefore, the overlay values of the real circuit need to be extracted to integrate the semiconductor device properly. The circuit level overlay measurement using CDSEM is time-consuming in extracting enough data to indicate overall trend of the chip. However DBM tool is able to derive sufficient data to display overlay tendency of the real circuit region with high repeatability. An E-beam based DBM(Design Based Metrology) tool can be an alternative overlay measurement method. In this paper, we are going to certify that the overlay values extracted from optical measurement cannot represent the circuit level overlay values. We will also demonstrate the possibility to correct misregistration between two layers using the overlay data obtained from the DBM system.

  11. Triangle inequalities in coherence measures and entanglement concurrence

    Science.gov (United States)

    Dai, Yue; You, Wenlong; Dong, Yuli; Zhang, Chengjie

    2017-12-01

    We provide detailed proofs of triangle inequalities in coherence measures and entanglement concurrence. If a rank-2 state ϱ can be expressed as a convex combination of two pure states, i.e., ϱ =p1| ψ1〉〈 ψ1|+ p2| ψ2〉〈 ψ2| , a triangle inequality can be established as |E (|Ψ1〉 )-E (|Ψ2〉 )|≤E (ϱ ) ≤E (|Ψ1〉 )+E (|Ψ2〉 ) , where | Ψ1〉= √{p1}|ψ1〉 and | Ψ2〉= √{p2}|ψ2〉 ; E can be considered either coherence measures or entanglement concurrence. This inequality displays mathematical beauty for its similarity to the triangle inequality in plane geometry. An illustrative example is given after the proof.

  12. Value Triangles in the Management of Building Projects

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2013-01-01

    The purpose of this paper is to investigate value triangles and their implementation in the management of building projects. The paper is based on results from a research project on space strategies and building values, which included a major case study of the development of facilities for Danish...... Broadcasting Corporation (DR) over time. The conventional iron triangle of quality, cost and schedule for project management is the theoretical starting point, but this is seen as mainly being related to process integrity in the construction stage. It is supplemented by a similar value triangle of cultural...... value, use value and quality of realization for product integrity, mainly for the design stage. Based on this framework an evaluation is made of the value management in six of DR’s building projects from the first around 1930 to the most recent – the new headquarters DR Byen finalised in 2009...

  13. Some constructions on total labelling of m triangles

    Energy Technology Data Exchange (ETDEWEB)

    Voon, Chen Huey, E-mail: chenhv@utar.edu.my; Hui, Liew How, E-mail: liewhh@utar.edu.my; How, Yim Kheng, E-mail: tidusyimhome@hotmail.com [Department of Mathematical and Actuarial Sciences, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor (Malaysia)

    2016-06-02

    Let mK{sub 3} = (V{sub m}, E{sub m}) be a finite disconnected graph consisting of m disjoint triangles K{sub 3}, where V{sub m} is the set of vertices, E{sub m} is the set of edges and both V{sub m} and E{sub m} are of the same size 3m. A total labelling of mK{sub 3} is a function f which maps the elements in V{sub m} and E{sub m} to positive integer values, i.e. f : V{sub m} ∪ E{sub m} → {1, 2, 3,···}. Let c be a positive integer. A triangle is said have a c-Erdősian triangle labelling if it is a total labelling f : V{sub m} ∪ E{sub m} → {c, c + 1, ···, c + 6m − 1} such that f (x) + f (y) = f (xy) for any x, y ∈ V{sub m} and an edge xy ∈ E{sub m} joining them. In order to find all the c-Erdősian triangle labelling, a straightforward is to use the exhaustive search. However, the exhaustive search is only able to find c-Erdősian triangle labelling for m ≤ 5 due to combinatorial explosion. By studying the constant sum of vertex labels, we propose a strong permutation approach, which allows us to generate a certain classes of c-Erdősian triangle labelling up until m = 8.

  14. Some constructions on total labelling of m triangles

    International Nuclear Information System (INIS)

    Voon, Chen Huey; Hui, Liew How; How, Yim Kheng

    2016-01-01

    Let mK_3 = (V_m, E_m) be a finite disconnected graph consisting of m disjoint triangles K_3, where V_m is the set of vertices, E_m is the set of edges and both V_m and E_m are of the same size 3m. A total labelling of mK_3 is a function f which maps the elements in V_m and E_m to positive integer values, i.e. f : V_m ∪ E_m → {1, 2, 3,···}. Let c be a positive integer. A triangle is said have a c-Erdősian triangle labelling if it is a total labelling f : V_m ∪ E_m → {c, c + 1, ···, c + 6m − 1} such that f (x) + f (y) = f (xy) for any x, y ∈ V_m and an edge xy ∈ E_m joining them. In order to find all the c-Erdősian triangle labelling, a straightforward is to use the exhaustive search. However, the exhaustive search is only able to find c-Erdősian triangle labelling for m ≤ 5 due to combinatorial explosion. By studying the constant sum of vertex labels, we propose a strong permutation approach, which allows us to generate a certain classes of c-Erdősian triangle labelling up until m = 8.

  15. [Regional ecological planning and ecological network construction: a case study of "Ji Triangle" Region].

    Science.gov (United States)

    Li, Bo; Han, Zeng-Lin; Tong, Lian-Jun

    2009-05-01

    By the methods of in situ investigation and regional ecological planning, the present ecological environment, ecosystem vulnerability, and ecological environment sensitivity in "Ji Triangle" Region were analyzed, and the ecological network of the study area was constructed. According to the ecological resources abundance degree, ecological recovery, farmland windbreak system, environmental carrying capacity, forestry foundation, and ecosystem integrity, the study area was classified into three regional ecological function ecosystems, i. e., east low hill ecosystem, middle plain ecosystem, and west plain wetland ecosystem. On the basis of marking regional ecological nodes, the regional ecological corridor (Haerbin-Dalian regional axis, Changchun-Jilin, Changchun-Songyuan, Jilin-Songyuan, Jilin-Siping, and Songyuan-Siping transportation corridor) and regional ecological network (one ring, three links, and three belts) were constructed. Taking the requests of regional ecological security into consideration, the ecological environment security system of "Ji Triangle" Region, including regional ecological conservation district, regional ecological restored district, and regional ecological management district, was built.

  16. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  17. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  18. 222Rn gas metrology in Latvia

    International Nuclear Information System (INIS)

    Bogucarska, T.; Lapenas, A.

    2004-01-01

    The measurements of radon gas provides in Latvia according with the State radiation monitoring program. The national standard/reference level for the protection of employees and population from exposure to radon Latvia has been accepted. The facilities for calibration of the radon gas measurement instruments and detectors have been established on basic of the Radiation Metrology and Testing Center which is the local SSDL for Baltic Region. The radon measurement instruments and detectors calibration can be performed at the 170-4000 Bq/m 3 range. (author)

  19. Quantum metrology for gravitational wave astronomy.

    Science.gov (United States)

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  20. Aerosol metrology: aerodynamic and electrostatic techniques

    International Nuclear Information System (INIS)

    Prodi, V.

    1988-01-01

    Aerosols play an ever increasing role in science, engineering and especially in industrial and environmental hygiene. They are being studied since a long time, but only recently the progress in aerosol instrumentation has made it possible to pose of aerosol metrology, especially the problem of absolute measurements, as based directly on measurements of fundamental quantities. On the basis of absolute measurements, the hierarchy of standards can be prepared and adequately disseminated. In the aerosol field, the quantities to be measured are mainly size, charge, density, and shape. In this paper a possible standardisation framework for aerosols is proposed, for the main physical quantities

  1. Virtual overlay metrology for fault detection supported with integrated metrology and machine learning

    Science.gov (United States)

    Lee, Hong-Goo; Schmitt-Weaver, Emil; Kim, Min-Suk; Han, Sang-Jun; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Ryan, Kevin; Theeuwes, Thomas; Sun, Kyu-Tae; Lim, Young-Wan; Slotboom, Daan; Kubis, Michael; Staecker, Jens

    2015-03-01

    While semiconductor manufacturing moves toward the 7nm node for logic and 15nm node for memory, an increased emphasis has been placed on reducing the influence known contributors have toward the on product overlay budget. With a machine learning technique known as function approximation, we use a neural network to gain insight to how known contributors, such as those collected with scanner metrology, influence the on product overlay budget. The result is a sufficiently trained function that can approximate overlay for all wafers exposed with the lithography system. As a real world application, inline metrology can be used to measure overlay for a few wafers while using the trained function to approximate overlay vector maps for the entire lot of wafers. With the approximated overlay vector maps for all wafers coming off the track, a process engineer can redirect wafers or lots with overlay signatures outside the standard population to offline metrology for excursion validation. With this added flexibility, engineers will be given more opportunities to catch wafers that need to be reworked, resulting in improved yield. The quality of the derived corrections from measured overlay metrology feedback can be improved using the approximated overlay to trigger, which wafers should or shouldn't be, measured inline. As a development or integration engineer the approximated overlay can be used to gain insight into lots and wafers used for design of experiments (DOE) troubleshooting. In this paper we will present the results of a case study that follows the machine learning function approximation approach to data analysis, with production overlay measured on an inline metrology system at SK hynix.

  2. La metrología en nuestras vidas

    OpenAIRE

    Jaramillo, Zaira

    2010-01-01

    A primera vista, la palabra "Metrología" nos trae a la mente la idea de condiciones meteorológicas. Nada más alejado de la realidad, porque la Meteorología es la disciplina que se encarga de estudiar las condiciones del tiempo y la Metrología se encarga de estudiar las mediciones.

  3. Comparison of asphere measurements by tactile and optical metrological instruments

    NARCIS (Netherlands)

    Bergmans, R.H.; Nieuwenkamp, H.J.; Kok, G.J.P.; Blobel, G.; Nouira, H.; Küng, A.; Baas, M.; Voert, M.J.A. te; Baer, G.; Stuerwald, S.

    2015-01-01

    A comparison of topography measurements of aspherical surfaces was carried out by European metrology institutes, other research institutes and a company as part of an European metrology research project. In this paper the results of this comparison are presented. Two artefacts were circulated, a

  4. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs

  5. Differential Evolution for Many-Particle Adaptive Quantum Metrology

    NARCIS (Netherlands)

    Lovett, N.B.; Crosnier, C.; Perarnau- Llobet, M.; Sanders, B.

    2013-01-01

    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods

  6. A New and Very Long Proof of the Pythagoras Theorem By Way of a Proposition on Isosceles Triangles

    OpenAIRE

    Basu, Kaushik

    2015-01-01

    This paper provides a new proof of the Pythagoras Theorem on right-angled triangles via two new lemmas pertaining to, respectively, isosceles triangles and right-angled triangles, which are of pedagogical value in themselves.

  7. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    OpenAIRE

    Pe?a-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process,...

  8. Alignment of the measurement scale mark during immersion hydrometer calibration using an image processing system.

    Science.gov (United States)

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-10-24

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  9. Consultative committee on ionizing radiation: Impact on radionuclide metrology

    International Nuclear Information System (INIS)

    Karam, L.R.; Ratel, G.

    2016-01-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. - Highlights: • Influence of CIPM MRA on radionuclide metrology at laboratories around the world. • CCRI strategy: to be the “undisputed hub for ionizing radiation global metrology.” • CCRI Strategic Plan stresses importance of measurement confidence for stakeholder. • NMIs increasing role in radionuclide metrology by designating institutions (DIs). • NMIs and DIs establish quality systems; validate capabilities through comparisons.

  10. Reconfiguring trade mark law

    DEFF Research Database (Denmark)

    Elsmore, Matthew James

    2013-01-01

    -border setting, with a particular focus on small business and consumers. The article's overall message is to call for a rethink of received wisdom suggesting that trade marks are effective trade-enabling devices. The case is made for reassessing how we think about European trade mark law.......First, this article argues that trade mark law should be approached in a supplementary way, called reconfiguration. Second, the article investigates such a reconfiguration of trade mark law by exploring the interplay of trade marks and service transactions in the Single Market, in the cross...

  11. The coral triangle initiative: What are we missing? A case study from Aceh

    KAUST Repository

    Rudi, Edi; Campbell, Stuart J.; Hoey, Andrew; Fadli, Nur; Linkie, Matthew; Baird, Andrew Hamilton

    2012-01-01

    Abstract The Coral Triangle Initiative is an ambitious attempt to conserve the marine biodiversity hotspot known as the Coral Triangle. However, the reef fauna in many nearby regions remains poorly explored and, consequently, the focus on the Coral

  12. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  13. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  14. Optics for Processes, Products and Metrology

    Science.gov (United States)

    Mather, George

    1999-04-01

    Optical physics has a variety of applications in industry, including process inspection, coatings development, vision instrumentation, spectroscopy, and many others. Optics has been used extensively in the design of solar energy collection systems and coatings, for example. Also, with the availability of good CCD cameras and fast computers, it has become possible to develop real-time inspection and metrology devices that can accommodate the high throughputs encountered in modern production processes. More recently, developments in moiré interferometry show great promise for applications in the basic metals and electronics industries. The talk will illustrate applications of optics by discussing process inspection techniques for defect detection, part dimensioning, birefringence measurement, and the analysis of optical coatings in the automotive, glass, and optical disc industries. In particular, examples of optical techniques for the quality control of CD-R, MO, and CD-RW discs will be presented. In addition, the application of optical concepts to solar energy collector design and to metrology by moiré techniques will be discussed. Finally, some of the modern techniques and instruments used for qualitative and quantitative material analysis will be presented.

  15. A metrology solution for the orthopaedic industry

    International Nuclear Information System (INIS)

    Bills, P; Brown, L; Jiang, X; Blunt, L

    2005-01-01

    Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5 million operations performed annually. Currently joint replacements are expected to function for 10-15 years, however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer term improved quality of life for patients. The amount of wear that a joint incurs is seen as a good indicator of performance, with higher wear rates typically leading to reduced function and premature failure. New technologies and materials are pushing traditional wear assessment methods to their limits, and novel metrology solutions are required to assess wear of joints following in vivo and in vitro use. This paper presents one such measurement technique; a scanning co-ordinate metrology machine for geometrical assessment. A case study is presented to show the application of this technology to a real orthopaedic measurement problem: the wear of components in total knee replacement. This technique shows good results and provides a basis for further developing techniques for geometrical wear assessment of total joint replacements

  16. Metrological challenges introduced by new tolerancing standards

    International Nuclear Information System (INIS)

    Morse, Edward; Peng, Yue; Srinivasan, Vijay; Shakarji, Craig

    2014-01-01

    The recent release of ISO 14405-1 has provided designers with a richer set of specification tools for the size of part features, so that various functional requirements can be captured with greater fidelity. However, these tools also bring new challenges and pitfalls to an inspector using a coordinate metrology system. A sampling strategy that might have worked well in the past could lead to erroneous results that go undetected when used to evaluate these new specifications. In this paper we investigate how measurement strategies for sampled coordinate metrology systems influence different algorithms for the evaluation of these new specifications. Of particular interest are those specifications where the order statistics of feature cross-sections are required. Here the inspector must decide not only how many points are required for an individual cross-section, but the number and spacing of cross-sections measured on the feature. The results of these decisions are compared with an analytic estimate of the ‘true value’ of the measurand specified using this new standard. (paper)

  17. Regional metrology organisations and the JCRB

    International Nuclear Information System (INIS)

    Hetherington, Paul

    2004-01-01

    In 1999, National Metrology Institutes (NMIs) from some 39 countries signed the International Committee of Weights and Measures (CIPM) Mutual Recognition Arrangement (MRA) in Paris. The MRA, drawn up by the CIPM, under the authority given to it in the Metre Convention, was in response to requirements of Governments and Regulators to provide a sound technical foundation for trade agreements. Core objectives of the MRA are to allow for the establishment of the degree of equivalence of national measurement standards and to provide for mutual recognition of calibration certificates issued by NMIs. This presentation will detail the evolution of the MRA. Globally, NMIs are affiliated to Regional Metrology Organisations (RMOs). The key role of the RMOs in the MRA process will be discussed along with the structure and objectives of the various RMOs worldwide. The Joint Committee of the RMOs and the BIPM (JCRB) plays a central part in the effective operation of the MRA. Its tasks, membership and output will also be described

  18. Knowledge triangles in the Netherlands : an entrepreneurial ecosystem approach

    NARCIS (Netherlands)

    Stam, E.; Romme, A.G.L.; Roso, M.; van den Toren, J.P.; van der Starre, B.T.

    2016-01-01

    This is a study of the knowledge triangles of research-education-innovation in several Dutch regional ecosystems. It draws on case studies of the Amsterdam, Twente and Eindhoven regions as well as the analysis of secondary data regarding a larger set of regional ecosystems in the Netherlands.

  19. Triangle of Safety Technique: A New Approach to Laparoscopic Cholecystectomy

    Directory of Open Access Journals (Sweden)

    Abdulrahman F. M. S. Almutairi

    2009-01-01

    dissection of the Calot's triangle can lead to such injuries. The aim of the authors in this study is to present a new safe triangle of dissection. Patients and Method. 501 patients under went LC in the following approach; The cystic artery is identified and mobilized from the gall bladder (GB medial wall down towards the cystic duct which would simultaneously divide the medial GB peritoneal attachment. This is then followed by dividing the lateral peritoneal attachment. The GB will be unfolded and the borders of the triangle of safety (TST are achieved: cystic artery medially, cystic duct laterally and the gallbladder wall superiorly. The floor of the triangle is then divided to delineate both cystic duct and artery in an area relatively far from CBD. Results. There were little significant immediate or delayed complications. The mean operating time was 68 minutes, nearly equivalent to the conventional method. Conclusions. Dissection at TST appears to be a safe procedure which clearly demonstrates the cystic duct and may help to reduce the CBD injuries.

  20. The chemist's triangle and a general systemic approach to teaching ...

    African Journals Online (AJOL)

    The three levels of science thought (macro, micro, symbolic), identified by Johnstone and represented by a triangle, may be viewed as a core closed-cluster concept map of the type advocated in the systemic approach to teaching and learning of chemistry. Some of the implications of this view for teaching, learning and ...

  1. Rates of convergence of Brezier net over triangles

    International Nuclear Information System (INIS)

    Feng Yuyu.

    1986-12-01

    It is well known (Farin, 1979) that the sequence of Bezier nets f-circumflex n (x) associated with Bernstein-Bezier surface over a triangle converges to the surface uniformly as n goes to infinity. In this paper the precise rates of convergence are given. The pointwise convergence result and saturation theorem are presented. (author). 7 refs

  2. Enriching Triangle Mesh Animations with Physically Based Simulation.

    Science.gov (United States)

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  3. From the Triangle Inequality to the Isoperimetric Inequality

    Indian Academy of Sciences (India)

    IAS Admin

    Calculus of variations, shape optimization, isoperimetric prob- lems. Figure 1. Starting from the triangle inequality, we will dis- cuss a series of shape optimization problems us- ing elementary geometry and ultimately derive the classical isoperimetric inequality in the plane. One of the important results we learn in plane geom ...

  4. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  5. From the Triangle Inequality to the Isoperimetric Inequality

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. From the Triangle Inequality to the Isoperimetric Inequality. S Kesavan. General Article Volume 19 Issue 2 February 2014 pp 135-148. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Identifying translational science within the triangle of biomedicine.

    Science.gov (United States)

    Weber, Griffin M

    2013-05-24

    The National Institutes of Health (NIH) Roadmap places special emphasis on "bench-to-bedside" research, or the "translation" of basic science research into practical clinical applications. The Clinical and Translational Science Awards (CTSA) Consortium is one example of the large investments being made to develop a national infrastructure to support translational science, which involves reducing regulatory burdens, launching new educational initiatives, and forming partnerships between academia and industry. However, while numerous definitions have been suggested for translational science, including the qualitative T1-T4 classification, a consensus has not yet been reached. This makes it challenging to tract the impact of these major policy changes. In this study, we use a bibliometric approach to map PubMed articles onto a graph, called the Triangle of Biomedicine. The corners of the triangle represent research related to animals, cells and molecules, and humans; and, the position of a publication on the graph is based on its topics, as determined by its Medical Subject Headings (MeSH). We define translation as movement of a collection of articles, or the articles that cite those articles, towards the human corner. The Triangle of Biomedicine provides a quantitative way of determining if an individual scientist, research organization, funding agency, or scientific field is producing results that are relevant to clinical medicine. We validate our technique using examples that have been previously described in the literature and by comparing it to prior methods of measuring translational science. The Triangle of Biomedicine is a novel way to identify translational science and track changes over time. This is important to policy makers in evaluating the impact of the large investments being made to accelerate translation. The Triangle of Biomedicine also provides a simple visual way of depicting this impact, which can be far more powerful than numbers alone.

  7. A Classroom Note on Generating Examples for the Laws of Sines and Cosines from Pythagorean Triangles

    Science.gov (United States)

    Sher, Lawrence; Sher, David

    2007-01-01

    By selecting certain special triangles, students can learn about the laws of sines and cosines without wrestling with long decimal representations or irrational numbers. Since the law of cosines requires only one of the three angles of a triangle, there are many examples of triangles with integral sides and a cosine that can be represented exactly…

  8. Discovery of Intrinsic Primitives on Triangle Meshes

    KAUST Repository

    Solomon, Justin

    2011-04-01

    The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost-isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently-developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state-of-the-art methods using the Princeton Segmentation Benchmark. © 2011 The Author(s).

  9. Advanced applications of scatterometry based optical metrology

    Science.gov (United States)

    Dixit, Dhairya; Keller, Nick; Kagalwala, Taher; Recchia, Fiona; Lifshitz, Yevgeny; Elia, Alexander; Todi, Vinit; Fronheiser, Jody; Vaid, Alok

    2017-03-01

    The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, and lower cost per transistor. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require continuous development of metrology tools used for characterization of these complex 3D device architectures. Optical scatterometry or optical critical dimension (OCD) is one of the most prevalent inline metrology techniques in semiconductor manufacturing because it is a quick, precise and non-destructive metrology technique. However, at present OCD is predominantly used to measure the feature dimensions such as line-width, height, side-wall angle, etc. of the patterned nano structures. Use of optical scatterometry for characterizing defects such as pitch-walking, overlay, line edge roughness, etc. is fairly limited. Inspection of process induced abnormalities is a fundamental part of process yield improvement. It provides process engineers with important information about process errors, and consequently helps optimize materials and process parameters. Scatterometry is an averaging technique and extending it to measure the position of local process induced defectivity and feature-to-feature variation is extremely challenging. This report is an overview of applications and benefits of using optical scatterometry for characterizing defects such as pitch-walking, overlay and fin bending for advanced technology nodes beyond 7nm. Currently, the optical scatterometry is based on conventional spectroscopic ellipsometry and spectroscopic reflectometry measurements, but generalized ellipsometry or Mueller matrix spectroscopic ellipsometry data provides important, additional information about complex structures that exhibit anisotropy and depolarization effects. In addition the symmetry-antisymmetry properties associated with Mueller matrix (MM) elements

  10. Mark Tompkins Canaccord

    OpenAIRE

    Mark Tompkins Canaccord

    2018-01-01

    Mark Tompkins Canaccord is a senior technologist for ecosystem and water resources management in SEC SAID Oakland, California office. In his career which lasts over fifteen years Mark has worked on project involving lake restorations, clean water engineering, ecological engineering and management, hydrology, hydraulics, sediment transport and other projects for environmental planning all over the country. Mark Tompkins Canaccord tries to blend his skills of planning and engineering with s...

  11. Analysis of key technologies for virtual instruments metrology

    Science.gov (United States)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  12. Improving OCD time to solution using Signal Response Metrology

    Science.gov (United States)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  13. Metrology for WEST components design and integration optimization

    International Nuclear Information System (INIS)

    Brun, C.; Archambeau, G.; Blanc, L.; Bucalossi, J.; Chantant, M.; Gargiulo, L.; Hermenier, A.; Le, R.; Pilia, A.

    2015-01-01

    Highlights: • Metrology methods. • Interests of metrology campaign to optimize margins by reducing uncertainties. • Assembly problems are solved and validated on a numerical mock up. • Post treatment of full 3DScan of the vacuum vessel. - Abstract: On WEST new components will be implemented in an existing environment, emphasis has to be put on the metrology to optimize the design and the assembly. Hence, at a particular stage of the project, several components have to coexist in the limited vessel. Therefore, all the difficulty consists in validating the mechanical interfaces between existing components and new one; minimize the risk of the assembling and to maximize the plasma volume. The CEA/IRFM takes the opportunity of the ambitious project to sign a partnership with an industrial specialized in multipurpose metrology domains. To optimize the assembly procedure, the IRFM Assembly group works in strong collaboration with its industrial, to define and plan the campaigns of metrology. The paper will illustrate the organization, methods and results of the dedicated metrology campaigns have been defined and carried out in the WEST dis/assembly phase. To conclude, the future needs of metrology at CEA/IRFM will be exposed to define the next steps.

  14. Metrology network: a case study on the metrology network of defense and security from SIBRATEC

    International Nuclear Information System (INIS)

    Pereira, Marisa Ferraz Figueira

    2016-01-01

    This study is focused on understanding the effects of the infrastructure improvement of these laboratories and the role of network management in offering support and metrological services to the defense and security sector enterprises, within the project purposes. It is also aimed identify gaps on offering calibration and, or testing services to supply demands of the defense and security industries, and analyze adequacy of RDS project to demands of defense and security industries, with the purpose to contribute with information for future actions. The experimental research is qualitative type, with exploratory research characteristics, based on case study. It was structured in two parts, involving primary data collection and secondary data. In order to collect the primary data two questionnaires were prepared, one (Questionnaire A) to the five RDS laboratories representatives and other (Questionnaire B) to the contacts of 63 defense and security enterprises which need calibration and test services, possible customers of RDS laboratories. Answers from four representatives of RDS laboratories and from 26 defense and security enterprises were obtained. The collection of secondary data was obtained from documentary research. The analysis was made based on five dimensions defined in order to organize and improve the understanding of the research setting. They are RDS project coverage, regional, network management, metrological traceability and importance and visibility of RDS. The results indicated that the performance of RDS does not interfere, by that time, in the metrological traceability of the products of the defense and security enterprises that participated in the research. (author)

  15. Radionuclide metrology research for nuclear site decommissioning

    Science.gov (United States)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  16. Plant equipment services with laser metrology

    International Nuclear Information System (INIS)

    Hayes, J.H.; Kreitman, P.J.

    1995-01-01

    A new industrial metrology process is now being applied to support PWR Nuclear Plant Steam Generator Replacement Projects. The method uses laser tracking interferometry to perform as built surveys of existing and replacement plant equipment. This method provides precision data with a minimum of setup when compared to alternative methods available. In addition there is no post processing required to ascertain validity. The data is obtained quickly, processed in real time and displayed during the survey in the desired coordinate system. These capabilities make this method of industrial measure ideal for various data acquisition needs throughout the power industry, from internal/external equipment templating to area mapping. Laser tracking interferometry is an improvement on the present use of optical instruments and surveying technique. In order to describe the laser tracking interferometry measurement process, previous methods of templating and surveying are first reviewed

  17. Coordinate metrology accuracy of systems and measurements

    CERN Document Server

    Sładek, Jerzy A

    2016-01-01

    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  18. Ionising radiation metrology for the metallurgical industry

    Directory of Open Access Journals (Sweden)

    García-Toraño E.

    2014-01-01

    Full Text Available Every year millions tons of steel are produced worldwide from recycled scrap loads. Although the detection systems in the steelworks prevent most orphan radioactive sources from entering the furnace, there is still the possibility of accidentally melting a radioactive source. The MetroMetal project, carried out in the frame of the European Metrology Research Programme (EMRP, addresses this problem by studying the existing measurement systems, developing sets of reference sources in various matrices (cast steel, slag, fume dust and proposing new detection instruments. This paper presents the key lines of the project and describes the preparation of radioactive sources as well as the intercomparison exercises used to test the calibration and correction methods proposed within the project.

  19. X-ray metrology for ULSI structures

    International Nuclear Information System (INIS)

    Bowen, D. K.; Matney, K. M.; Wormington, M.

    1998-01-01

    Non-destructive X-ray metrological methods are discussed for application to both process development and process control of ULSI structures. X-ray methods can (a) detect the unacceptable levels of internal defects generated by RTA processes in large wafers, (b) accurately measure the thickness and roughness of layers between 1 and 1000 nm thick and (c) can monitor parameters such as crystallographic texture and the roughness of buried interfaces. In this paper we review transmission X-ray topography, thin film texture measurement, grazing-incidence X-ray reflectivity and high-resolution X-ray diffraction. We discuss in particular their suitability as on-line sensors for process control

  20. Applications of surface metrology in firearm identification

    International Nuclear Information System (INIS)

    Zheng, X; Soons, J; Vorburger, T V; Song, J; Renegar, T; Thompson, R

    2014-01-01

    Surface metrology is commonly used to characterize functional engineering surfaces. The technologies developed offer opportunities to improve forensic toolmark identification. Toolmarks are created when a hard surface, the tool, comes into contact with a softer surface and causes plastic deformation. Toolmarks are commonly found on fired bullets and cartridge cases. Trained firearms examiners use these toolmarks to link an evidence bullet or cartridge case to a specific firearm, which can lead to a criminal conviction. Currently, identification is typically based on qualitative visual comparison by a trained examiner using a comparison microscope. In 2009, a report by the National Academies called this method into question. Amongst other issues, they questioned the objectivity of visual toolmark identification by firearms examiners. The National Academies recommended the development of objective toolmark identification criteria and confidence limits. The National Institute of Standards and Technology (NIST) have applied its experience in surface metrology to develop objective identification criteria, measurement methods, and reference artefacts for toolmark identification. NIST developed the Standard Reference Material SRM 2460 standard bullet and SRM 2461 standard cartridge case to facilitate quality control and traceability of identifications performed in crime laboratories. Objectivity is improved through measurement of surface topography and application of unambiguous surface similarity metrics, such as the maximum value (ACCF MAX ) of the areal cross correlation function. Case studies were performed on consecutively manufactured tools, such as gun barrels and breech faces, to demonstrate that, even in this worst case scenario, all the tested tools imparted unique surface topographies that were identifiable. These studies provide scientific support for toolmark evidence admissibility in criminal court cases. (paper)

  1. Plutonium glove boxes - metrology and operational states

    International Nuclear Information System (INIS)

    Thyer, A.M.

    2001-01-01

    The main objective was to undertake a literature review in support of NII's ongoing work in improving safety in the nuclear industry to help define suitable standards of cleanliness for plutonium glove boxes. This is to cover the following areas: existing or proposed national/international standards relating to plutonium glove box cleanliness management; practicable metrology options for assessing the plutonium content of glove boxes; any available dose information relating to the operation of modern and 'old design'; current contamination levels of specific significance (i.e. any accepted level in decommissioning/waste terms, typical criticality limits (if available), any box plutonium loadings that are documented with corresponding operator doses etc.); and, techniques for the decontamination of plutonium glove boxes and their relative effectiveness. This should then form the basis of any further development work undertaken by the UK nuclear industry. Main recommendations are as follows: 1) No information could be found in open literature on acceptable levels of contamination in boxes and action levels for cleanup. If these are not available in closed publications the 2) Where possible, the decontamination methods identified should be tested and dose information recorded against each method to allow informed decisions on which is the optimum technique for a particular form of contamination. 3) Consideration should be given to utilisation of metrology options which have the lowest potential for exposure of operators. Preferred options, may be detection from the outside of boxes using hand-held or permanently located radiation detectors, or semi-intrusive methods such as air-ionisation readings which would require one-off installation of detectors in ductwork

  2. IT Security Standards and Legal Metrology - Transfer and Validation

    Science.gov (United States)

    Thiel, F.; Hartmann, V.; Grottker, U.; Richter, D.

    2014-08-01

    Legal Metrology's requirements can be transferred into the IT security domain applying a generic set of standardized rules provided by the Common Criteria (ISO/IEC 15408). We will outline the transfer and cross validation of such an approach. As an example serves the integration of Legal Metrology's requirements into a recently developed Common Criteria based Protection Profile for a Smart Meter Gateway designed under the leadership of the Germany's Federal Office for Information Security. The requirements on utility meters laid down in the Measuring Instruments Directive (MID) are incorporated. A verification approach to check for meeting Legal Metrology's requirements by their interpretation through Common Criteria's generic requirements is also presented.

  3. Lujan Mark-4

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavorka, Lukas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-13

    This is a review of Mark-IV target neutronics design. It involved the major redesign of the upper tier, offering harder neutron spectra for upper-tier FPs; a redesign of the high-resolution (HR) moderator; and a preservation of the rest of Mark-III features.

  4. Mark Stock | NREL

    Science.gov (United States)

    Stock Mark Stock Scientific Visualization Specialist Mark.Stock@nrel.gov | 303-275-4174 Dr. Stock , virtual reality, parallel computing, and manipulation of large spatial data sets. As an artist, he creates . Stock built the SUNLIGHT artwork that is installed on the Webb Building in downtown Denver. In addition

  5. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    Science.gov (United States)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  6. Topological chiral phonons in center-stacked bilayer triangle lattices

    Science.gov (United States)

    Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa

    2018-06-01

    Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.

  7. Visualization on triangle concept using Adobe Flash Professional SC6

    Science.gov (United States)

    Sagita, Laela; Ratih Kusumarini, Adha

    2017-12-01

    The purpose of this paper is to develop teaching aids using Adobe Flash Professional CS6 emphasize on Triangle concept. A new alternative way to deliver a basic concept in geometry with visualization is software Adobe Flash Professional CS 6. Research method is research and development with 5 phase of Ploom’s model, namely (1) preliminary, (2) design, (3) realization/ construction, (4) test, evaluation and revision, and 5) implementation. The results showed that teaching aids was valid, practice, and effective. Validity: expert judgement for material score is 3.95 and media expert judgement produce an average score of 3,2, both in the category are valid. Practically: the average of questionnaire response is 4,04 (good). Effectiveness: n-gain test value is 0,36 (medium). It concluded that developed of teaching aids using Adobe Flash CS6 on triangle can improve student achievement.

  8. Freud, Ferenczi, and Rosmersholm: incestuous triangles and analytic thirds.

    Science.gov (United States)

    Rudnytsky, Peter L

    2013-12-01

    Utilizing a field theory of unconscious communication, and in particular the concept of the analytic third, this paper situates Freud's interpretation of Ibsen's 1886 Rosmersholm, presented in the section of his essay "Some Character-Types Met with in Psycho-Analytic Work" (1916) entitled "Those Wrecked by Success," in the context of his relationship with Ferenczi. Both in his interpretation of Rosmersholm and in his earlier papers on the psychology of love, it is argued, Freud may be seen to commenting both on Ferenczi's incestuous love triangle with Gizella and Elma Pálos and on his equally incestuous triangle with Martha and Minna Bernays. In a postscript, the challenge offered by Groddeck to Freud's oedipal reading of Rosmersholm is assessed.

  9. Anatomic Assessment of Variations in Kambin's Triangle: A Surgical and Cadaver Study.

    Science.gov (United States)

    Ozer, Ali Fahir; Suzer, Tuncer; Can, Halil; Falsafi, Mani; Aydin, Murat; Sasani, Mehdi; Oktenoglu, Tunc

    2017-04-01

    The relationship of exiting root and Kambin's triangle is discussed in this article. Transforaminal endoscopic surgery as the gold standard of less invasive lumbar disc surgeries is performed through Kambin's triangle. Existing root damage is one of the most important complication for this type of surgery. Anatomic variations in Kambin's triangle may be the main reason for nerve root damage during endoscopic lumbar disc surgery. Kambin's triangle was investigated with surgical views and cadaver studies. Thirty-four patients with far lateral disc herniation were treated with an extraforaminal approach under the microscope. On the other hand, 48 Kambin's triangles were dissected on 8 cadavers. Three main types of triangle were identified, and patients were grouped according to these 3 types of the triangle. Only 6 of the 34 patients had type 3 triangles, which is the wide classical triangle described by Kambin; however, 17 patients had type 2, with a narrow space in the triangle, and 11 patients had type 1, with no space inside the triangle. Cadaver results were similar; only 10 of the 48 specimens had the type 3 classical triangle, whereas 23 specimens had type 2, and 15 specimens had type 1 triangles. Our results disclosed narrowed or no space in 82.4% of the patients and 79.2% of the cadavers. We observed that a wide and safe room of the triangle may not be exist in some patients. Therefore, more care must be taken during endoscopic lumbar disc surgery to avoid nerve damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Numerical problems with the Pascal triangle in moment computation

    Czech Academy of Sciences Publication Activity Database

    Kautsky, J.; Flusser, Jan

    2016-01-01

    Roč. 306, č. 1 (2016), s. 53-68 ISSN 0377-0427 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : moment computation * Pascal triangle * appropriate polynomial basis * numerical problems Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0459096.pdf

  11. Sequential Triangle Strip Generator based on Hopfield Networks

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Lněnička, Radim

    2009-01-01

    Roč. 21, č. 2 (2009), s. 583-617 ISSN 0899-7667 R&D Projects: GA MŠk(CZ) 1M0545; GA AV ČR 1ET100300517; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : sequential triangle strip * combinatorial optimization * Hopfield network * minimum energy * simulated annealing Subject RIV: IN - Informatics, Computer Science Impact factor: 2.175, year: 2009

  12. Seismic interpretation of the triangle zone at Jumping Pound, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Slotboom, R. T. [Amerada Hess Canada Ltd., Calgary, AB (Canada); Lawton, D. C.; Spratt, D. A. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1996-06-01

    The triangle zone at Jumping Point, Alberta was characterized using seismic survey data as a NW-SE-trending antiformal stack of thrust sheets involving Cretaceous rocks that have been wedged into the foreland between two detachments. Three major thrust sheets of Lower and Upper Cretaceous strata have been stacked to form the main extremity of the wedge. The structure is tightly folded at Jumping Point, and broadens northwest along the strike. 13 refs., 8 figs.

  13. The phases of large networks with edge and triangle constraints

    Science.gov (United States)

    Kenyon, Richard; Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2017-10-01

    Based on numerical simulation and local stability analysis we describe the structure of the phase space of the edge/triangle model of random graphs. We support simulation evidence with mathematical proof of continuity and discontinuity for many of the phase transitions. All but one of the many phase transitions in this model break some form of symmetry, and we use this model to explore how changes in symmetry are related to discontinuities at these transitions.

  14. Lattice QCD inputs to the CKM unitarity triangle analysis

    International Nuclear Information System (INIS)

    Laiho, Jack; Lunghi, E.; Van de Water, Ruth S.

    2010-01-01

    We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner: whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex K , |V cb |, and |V ub |/|V cb |. We find a (2-3)σ tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V cb |. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.

  15. Vaal Triangle air pollution health study. Addressing South African problems

    Energy Technology Data Exchange (ETDEWEB)

    Terblanche, P; Nel, R [CSIR Environmental Services, Pretoria (South Africa); Surridge, T [Dept. of Mineral and Energy Affairs (South Africa); Annegarn, H [Annegarn Environmental Research, Johannesburg (South Africa); Tosen, G [Eskom, Johannesburg (South Africa); Pols, A [CSIR Informationtek, Pretoria (South Africa)

    1996-12-31

    Situated in the central region of South Africa, the Vaal Triangle is an area which plays a vital role in driving the economic dynamo of South Africa. Also, because of the concentration of heavy industry, it is an area which provides a challenge in effective air pollution control. The Vaal Triangle lies within the Vaal River Basin, at an altitude of 1 500 m above sea level. Meteorological conditions in the area are highly conducive to the formation of surface temperature inversions, resulting in a poor dispersion potential. Because of multiple sources of air pollution in the area, poor dispersion conditions increase the risk pollution build-up and subsequent adverse impacts. The situation is further exacerbated by the continued combustion of coal in households, even after the electrification of residences. This is particularly chronic in the developing communities and during winter. Vaal Triangle Air Pollution Health Study (VAPS) was initiated in 1990 by the Department of Health, the Medical Research Council and major industries in the area to determine effects of air pollution on the health of the community. The final results of that study summarised in this article, and options to ameliorate problems are addressed. (author)

  16. Vaal Triangle air pollution health study. Addressing South African problems

    Energy Technology Data Exchange (ETDEWEB)

    Terblanche, P.; Nel, R. [CSIR Environmental Services, Pretoria (South Africa); Surridge, T. [Dept. of Mineral and Energy Affairs (South Africa); Annegarn, H. [Annegarn Environmental Research, Johannesburg (South Africa); Tosen, G. [Eskom, Johannesburg (South Africa); Pols, A. [CSIR Informationtek, Pretoria (South Africa)

    1995-12-31

    Situated in the central region of South Africa, the Vaal Triangle is an area which plays a vital role in driving the economic dynamo of South Africa. Also, because of the concentration of heavy industry, it is an area which provides a challenge in effective air pollution control. The Vaal Triangle lies within the Vaal River Basin, at an altitude of 1 500 m above sea level. Meteorological conditions in the area are highly conducive to the formation of surface temperature inversions, resulting in a poor dispersion potential. Because of multiple sources of air pollution in the area, poor dispersion conditions increase the risk pollution build-up and subsequent adverse impacts. The situation is further exacerbated by the continued combustion of coal in households, even after the electrification of residences. This is particularly chronic in the developing communities and during winter. Vaal Triangle Air Pollution Health Study (VAPS) was initiated in 1990 by the Department of Health, the Medical Research Council and major industries in the area to determine effects of air pollution on the health of the community. The final results of that study summarised in this article, and options to ameliorate problems are addressed. (author)

  17. Metrology for environment and climate; Metrologie fuer Umwelt und Klima

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Klaus-Dieter [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Abt. ' Chemische Physik und Explosionsschutz' ; Spitzer, Petra [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Elektrochemie'

    2012-12-15

    The author describes the observation and monitoring systems developed by the EU and the Federal Republic of Germany. In this connection the metrological aims are described in connection with the activities of the PTB. (HSI)

  18. Joint Research on Scatterometry and AFM Wafer Metrology

    OpenAIRE

    Bodermann, B.; Buhr, E.; Danzebrink, H.U.; Bär, M.; Scholze, F.; Krumrey, M.; Wurm, M.; Klapetek, P.; Hansen, P.E.; Korpelainen, V.; Van Veghel, M.; Yacoot, A.; Siitonen, S.; El Gawhary, O.; Burger, S.

    2011-01-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) m...

  19. Metrology of radiation protection. Pt. 1. Physical requirements and terminology

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S R

    1979-10-01

    Starting from a general consideration of the needs for radiation protection the physical requirements of a relevant metrology are developed. The expedient physical quantities are introduced and problems in the realization and dissemination of their units discussed. It is shown that owing to these difficulties, derived or operational quantities have to be developed for the construction and calibration of practical measuring instruments. Finally the relations between the metrology of radiation protection and of medical radiology are pointed out and commented. (orig.).

  20. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  1. Metrology in electricity and magnetism: EURAMET activities today and tomorrow

    Science.gov (United States)

    Piquemal, F.; Jeckelmann, B.; Callegaro, L.; Hällström, J.; Janssen, T. J. B. M.; Melcher, J.; Rietveld, G.; Siegner, U.; Wright, P.; Zeier, M.

    2017-10-01

    Metrology dedicated to electricity and magnetism has changed considerably in recent years. It encompasses almost all modern scientific, industrial, and societal challenges, e.g. the revision of the International System of Units, the profound transformation of industry, changes in energy use and generation, health, and environment, as well as nanotechnologies (including graphene and 2D materials) and quantum engineering. Over the same period, driven by the globalization of worldwide trade, the Mutual Recognition Arrangement (referred to as the CIPM MRA) was set up. As a result, the regional metrology organizations (RMOs) of national metrology institutes have grown in significance. EURAMET is the European RMO and has been very prominent in developing a strategic research agenda (SRA) and has established a comprehensive research programme. This paper reviews the highlights of EURAMET in electrical metrology within the European Metrology Research Programme and its main contributions to the CIPM MRA. In 2012 EURAMET undertook an extensive roadmapping exercise for proposed activities for the next decade which will also be discussed in this paper. This work has resulted in a new SRA of the second largest European funding programme: European Metrology Programme for Innovation and Research.

  2. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  3. Mark Raidpere portreefotod Kielis

    Index Scriptorium Estoniae

    1999-01-01

    Kieli Linnagaleriis avatud 2. Ars Baltica fototriennaalil 'Can You Hear Me?' esindab Eestit Mark Raidpere seeriaga 'Portreed 1998'. Näituse Eesti-poolne kuraator Anu Liivak, kataloogiteksti kirjutas Anders Härm. Tuntumaid osalejaid triennaalil Wolfgang Tillmans

  4. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  5. Marks of Metal Copenhell

    DEFF Research Database (Denmark)

    2015-01-01

    Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet.......Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet....

  6. COMPUTER HARDWARE MARKING

    CERN Multimedia

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  7. Chemical metrology, strategic job for the Chilean Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gras, Nuri; Munoz, Luis; Cortes, Eduardo

    2001-01-01

    The National Standardization Institute's (INN) Metrology unit prepared a study in 1996 to evaluate the impact of metrological activity in Chile. This study was based on a survey of the supply and demand of metrological services and on studies of the behavior of the production system and technological services in Chile during the period 1990-1996. With the information obtained in this study the economic impact resulting from the lack of a national metrology system could be evaluated. This impact was estimated to be a 5% loss in gross national product equal to 125-500 million dollars because of direct product rejection in the mining, fisheries, agricultural and manufacturing sectors. Chemical measurements are responsible for 50% of these losses. In response to this need and coordinated by the INN, a metrological network of reference laboratories began to operate in 1997 for the principal physical magnitudes (mass, temperature, longitude and force) and a CORFO-FDI project began in 2001 that includes the chemical magnitudes. The Chilean Nuclear Energy Commission, aware of the problem's importance and the amount of economic damage that the country may suffer, as a result of these deficiencies, has formed a Chemical Metrology Unit to provide technical support. It aims to raise the standards of local analytical laboratories by providing international recognition to the export sector. Nuclear analytical techniques are used as reference methods. This work describes the laboratories that are included in this Chemical Metrology Unit and the historical contribution to the development of local analytical chemistry. The national and international projects are described together with the publications they have generated. The quality assurance program applied to the laboratories is described as well, which has led to the accreditation of the analytical chemical assays. The procedures used for validation and calculation of uncertain nuclear methodologies are described together with

  8. Metrology Sampling Strategies for Process Monitoring Applications

    KAUST Repository

    Vincent, Tyrone L.

    2011-11-01

    Shrinking process windows in very large scale integration semiconductor manufacturing have already necessitated the development of control systems capable of addressing sub-lot-level variation. Within-wafer control is the next milestone in the evolution of advanced process control from lot-based and wafer-based control. In order to adequately comprehend and control within-wafer spatial variation, inline measurements must be performed at multiple locations across the wafer. At the same time, economic pressures prompt a reduction in metrology, for both capital and cycle-time reasons. This paper explores the use of modeling and minimum-variance prediction as a method to select the sites for measurement on each wafer. The models are developed using the standard statistical tools of principle component analysis and canonical correlation analysis. The proposed selection method is validated using real manufacturing data, and results indicate that it is possible to significantly reduce the number of measurements with little loss in the information obtained for the process control systems. © 2011 IEEE.

  9. Building versatile bipartite probes for quantum metrology

    Science.gov (United States)

    Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.

  10. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  11. Metrological characterization of 3D imaging devices

    Science.gov (United States)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  12. Building versatile bipartite probes for quantum metrology

    International Nuclear Information System (INIS)

    Farace, Alessandro; Pasquale, Antonella De; Giovannetti, Vittorio; Adesso, Gerardo

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited. (paper)

  13. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  14. TSOM Method for Nanoelectronics Dimensional Metrology

    International Nuclear Information System (INIS)

    Attota, Ravikiran

    2011-01-01

    Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method--such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.

  15. Radionuclide metrology: traceability and response to a radiological accident

    Energy Technology Data Exchange (ETDEWEB)

    Tauhata, L.; Cruz, P.A.L. da; Silva, C.J. da; Delgado, J.U.; Oliveira, A.E. de; Oliveira, E.M. de; Poledna, R.; Loureiro, J. dos S.; Ferreira Filho, A.L.; Silva, R.L. da; Filho, O. L.T.; Santos, A.R.L. dos; Veras, E.V. de; Rangel, J. de A.; Quadros, A.L.L.; Araújo, M.T.F. de; Souza, P.S. de; Ruzzarim, A.; Conceição, D.A. da; Iwahara, A., E-mail: palcruz@ird.gov.br [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes

    2017-07-01

    In the case of a radiological accident, there are characteristic phases: discovery and initial assistance with first aid; the triage and monitoring of the affected population; the release of the affected people; forward the victims to medical care; as well as the preparation of the report on the accident. In addition, studies and associated researches performed in the later period. Monitors, dosimeters and measuring systems should be calibrated by contaminating radionuclide standards. The radioactive sources used must be metrologically reliable. In Brazil, this function is performed by LNMRI/IRD/CNEN, designated by INMETRO, which Radionuclide Metrology Laboratory is responsible for the standardization and supply of radioactive sources in diverse geometries and matrices. This laboratory has a stock of radionuclide solutions with controlled environmental variables for the preparation of sources, which are calibrated and standardized by mean of primary and secondary systems. It is also responsible for the dissemination of standards and, in order to establish the metrological traceability of national standards, participates in international key-comparisons promoted by BIPM and regional metrology organizations. Internally, it promotes the National Comparison Programs for laboratories for the analysis of environmental samples and the traceability for producing centers of radiopharmaceuticals and Nuclear Medicine Services in the country. The paper presents the demand for {sup 137}Cs related to the radioactive accident in Goiania/Brazil and the significant results for the main radionuclides standardized by the Radionuclide Metrology Laboratory for international key-comparisons and national comparisons to provide metrological traceability. With the obtained results, the LNMRI of Brazil integrates the international metrology BIPM network and fulfills its function of supplying, with about a hundred of radioactive standards, the country's needs in different applications

  16. Radionuclide metrology: traceability and response to a radiological accident

    International Nuclear Information System (INIS)

    Tauhata, L.; Cruz, P.A.L. da; Silva, C.J. da; Delgado, J.U.; Oliveira, A.E. de; Oliveira, E.M. de; Poledna, R.; Loureiro, J. dos S.; Ferreira Filho, A.L.; Silva, R.L. da; Filho, O. L.T.; Santos, A.R.L. dos; Veras, E.V. de; Rangel, J. de A.; Quadros, A.L.L.; Araújo, M.T.F. de; Souza, P.S. de; Ruzzarim, A.; Conceição, D.A. da; Iwahara, A.

    2017-01-01

    In the case of a radiological accident, there are characteristic phases: discovery and initial assistance with first aid; the triage and monitoring of the affected population; the release of the affected people; forward the victims to medical care; as well as the preparation of the report on the accident. In addition, studies and associated researches performed in the later period. Monitors, dosimeters and measuring systems should be calibrated by contaminating radionuclide standards. The radioactive sources used must be metrologically reliable. In Brazil, this function is performed by LNMRI/IRD/CNEN, designated by INMETRO, which Radionuclide Metrology Laboratory is responsible for the standardization and supply of radioactive sources in diverse geometries and matrices. This laboratory has a stock of radionuclide solutions with controlled environmental variables for the preparation of sources, which are calibrated and standardized by mean of primary and secondary systems. It is also responsible for the dissemination of standards and, in order to establish the metrological traceability of national standards, participates in international key-comparisons promoted by BIPM and regional metrology organizations. Internally, it promotes the National Comparison Programs for laboratories for the analysis of environmental samples and the traceability for producing centers of radiopharmaceuticals and Nuclear Medicine Services in the country. The paper presents the demand for 137 Cs related to the radioactive accident in Goiania/Brazil and the significant results for the main radionuclides standardized by the Radionuclide Metrology Laboratory for international key-comparisons and national comparisons to provide metrological traceability. With the obtained results, the LNMRI of Brazil integrates the international metrology BIPM network and fulfills its function of supplying, with about a hundred of radioactive standards, the country's needs in different applications

  17. Effect of measurement error budgets and hybrid metrology on qualification metrology sampling

    Science.gov (United States)

    Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Osorio, Carmen; Archie, Chas

    2014-10-01

    Until now, metrologists had no statistics-based method to determine the sampling needed for an experiment before the start that accuracy experiment. We show a solution to this problem called inverse total measurement uncertainty (TMU) analysis, by presenting statistically based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk versus reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions and then to reveal why low sampling can lead to unstable and misleading results. One model is developed that can help experimenters minimize sampling costs. A second cost model reveals the inadequacy of some current sampling practices-and the enormous costs associated with sampling that provides reasonable levels of certainty in the result. We introduce the strategies on how to manage and mitigate these costs and begin the discussion on how fabs are able to manufacture devices using minimal reference sampling when qualifying metrology steps. Finally, the relationship between inverse TMU analysis and hybrid metrology is explored.

  18. A triangle voting algorithm based on double feature constraints for star sensors

    Science.gov (United States)

    Fan, Qiaoyun; Zhong, Xuyang

    2018-02-01

    A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.

  19. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  20. Colouring the triangles determined by a point set

    Directory of Open Access Journals (Sweden)

    Ruy Fabila-Monroy

    2012-05-01

    Full Text Available Let P be a set of n points in general position in the plane. We study the chromatic number of the intersection graph of the open triangles determined by P. It is known that this chromatic number is at least n3/27+O(n2 and, if P is in convex position, the answer is n3/24+O(n2. We prove that for arbitrary P, the chromatic number is at most n3/19.259+O(n2.

  1. Valuation of Non-Life Liabilities from Claims Triangles

    Directory of Open Access Journals (Sweden)

    Mathias Lindholm

    2017-07-01

    Full Text Available This paper provides a complete program for the valuation of aggregate non-life insurance liability cash flows based on claims triangle data. The valuation is fully consistent with the principle of valuation by considering the costs associated with a transfer of the liability to a so-called reference undertaking subject to capital requirements throughout the runoff of the liability cash flow. The valuation program includes complete details on parameter estimation, bias correction and conservative estimation of the value of the liability under partial information. The latter is based on a new approach to the estimation of mean squared error of claims reserve prediction.

  2. Triangle identity and free differential algebra of massless higher spins

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.

    1989-09-25

    In terms of Berezins's theory of symbols of operators, the integral formulation is suggested for the free differential algebra which gives rise to consistent equations of motion of interacting massless fields of all spins 0{le}s<{infinity} in the frameworks of gravity. In the first nontrivial order of the expansion in powers of curvatures, Frobenius consistency conditions for higher-spin equations of motion are shown to reduce to the simple geometrical fast that there are two ways for splitting any quadrangle in two triangles. To clarify our construction, we illustrate how it works in the simplest case of pure gravity. (orig.).

  3. Integration of mask and silicon metrology in DFM

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2009-03-01

    We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based

  4. Triangle Universities Nuclear Laboratory annual report - TUNL XXIV, 1 July 1984-31 August 1985

    International Nuclear Information System (INIS)

    1985-01-01

    Research programs of the Triangle Nuclear Laboratory are discussed. These studies are based on reactions induced by polarized beam, protons, deuterons and neutrons. Individual programs are cataloged separately

  5. Remote metrology system (RMS) design concept

    International Nuclear Information System (INIS)

    1995-01-01

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR's fiber optic implementation allows a 3D scanner to operate remotely from the RMS system's vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm 2 density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner

  6. Reconstruction of freeform surfaces for metrology

    International Nuclear Information System (INIS)

    El-Hayek, N; Nouira, H; Anwer, N; Damak, M; Gibaru, O

    2014-01-01

    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks ® or Geomagic ® ). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces

  7. Remote metrology system (RMS) design concept

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  8. [The EFS metrology: From the production to the reason].

    Science.gov (United States)

    Reifenberg, J-M; Riout, E; Leroy, A; Begue, S

    2014-06-01

    In order to answer statutory requirements and to anticipate the future needs and standards, the EFS is committed, since a few years, in a process of harmonization of its metrology function. In particular, the institution has opted for the skills development by internalizing the metrological traceability of the main critical quantities (temperature, volumetric) measurements. The development of metrology so resulted in a significant increase in calibration and testing activities. Methods are homogenized and improved through accreditations. The investment strategies are based on more and more demanding specifications. The performance of the equipments is better known and mastered. Technical expertise and maturity of the national metrology function today are assets to review in more informed ways the appropriateness of the applied periodicities. Analysis of numerous information and data in the calibration and testing reports could be pooled and operated on behalf of the unique establishment. The objective of this article is to illustrate these reflections with a few examples from of a feedback of the EFS Pyrénées Méditerranée. The analysis of some methods of qualification, the exploitation of the historical metrology in order to quantify the risk of non-compliance, and to adapt the control strategy, analysis of the criticality of an instrument in a measurement process, risk analyses are tools that deserve to be more widely exploited for that discipline wins in efficiency at the national level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Introduction to quantum metrology quantum standards and instrumentation

    CERN Document Server

    Nawrocki, Waldemar

    2015-01-01

    This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called  Quantum SI, is introduced. This book helps to understand and approve the new system to both technology a...

  10. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  11. Identification markings for gemstones

    International Nuclear Information System (INIS)

    Dreschhoff, G.A.M.; Zeller, E.J.

    1980-01-01

    A method is described of providing permanent identification markings to gemstones such as diamond crystals by irradiating the cooled gemstone with protons in the desired pattern. The proton bombardment results in a reaction limited to a defined plane and converting the bombarded area of the plane into a different crystal lattice from that of the preirradiated stone. (author)

  12. The remarkable metrological history of 14C dating: from ancient Egyptian artifacts to particles of soot and grains of pollen

    International Nuclear Information System (INIS)

    Currie, L.A.

    2003-01-01

    Radiocarbon dating would not have been possible if 14 C had not had the 'wrong' half-life - a fact that delayed its discovery. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14 C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere (ca. 230 Bq/kg) lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14 C measurement from a crude, bulk (8 g carbon) dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for 'molecular dating' at the 10 μg to 100 mg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the 'bomb effect', that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history. (author)

  13. The remarkable metrological history of 14C dating: From ancient Egyptian artifacts to particles of soot and grains of pollen

    Science.gov (United States)

    Currie, L. A.

    2003-01-01

    Radiocarbon dating would not have been possible if 14C had not had the “wrong” half-life—a fact that delayed its discovery [1]. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere [ca. 230 Bq/kg] lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 μg to 100 μg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history.

  14. The Surgical Anatomy of the Lumbosacroiliac Triangle: A Cadaveric Study.

    Science.gov (United States)

    Zoccali, Carmine; Skoch, Jesse; Patel, Apar S; Walter, Christina M; Avila, Mauricio J; Martirosyan, Nikolay L; Demitri, Silvio; Baaj, Ali A

    2016-04-01

    The anatomic area delineated medially by the lateral part of the L4-L5 vertebral bodies, distally by the anterior-superior surface of the sacral wing, and laterally by an imaginary line joining the base of the L4 transverse process to the proximal part of the sacroiliac joint, is of particular interest to spine surgeons. We are referring to this area as the lumbo-sacro-iliac triangle (LSIT). Knowledge of LSIT anatomy is necessary during approaches for L5 vertebral and sacral fractures, sacral and iliac tumors, and extraforaminal decompression of the L5 nerve roots. We performed an anatomic dissection of the LSIT in 3 embalmed cadavers (6 triangles), using an anterior and posterior approach. We identified 3 key tissue planes: the neurological plexus plane, constituted by L4 and L5 nerve roots; an intermediate level constituted by the ileosacral tunnel; and posteriorly, by the lumbosacral ligament, and the posterior muscular plane. Improving anatomic knowledge of the LSIT may help surgeons decrease the risk of possible complications. When LSIT pathology is present, a lateral approach corresponding to the tip of the L4 transverse process, medially, is suggested to decrease the risk of vessel and nerve root damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. STRATEGIC PLACE TRIANGLE PENGEMBANGAN POTENSI KAWASAN PARIWISATA BOJONEGERO

    Directory of Open Access Journals (Sweden)

    Muchammad Nurif

    2015-06-01

    Full Text Available Kabupaten Bojonegoro ditetapkan sebagai salah satu Daerah Tujuan Wisata (DTW di Jawa Timur karena memiliki potensi obyek wisata alam dan budaya yang telah mendapatkan perhatian wisatawan nusantara pada umumnya. Dalam kebijakan pengembangan yang tertuang dalam Rencana Induk Pengembangan Pariwisata (RIPP Jawa Timur 1999-2015 Kabupaten Bojonegoro meskipun bukan sebagai gerbang utama namun memiliki peran strategis untuk mendorong pertumbuhan kawasan di sekitarnya. Dalam penelitian, peneliti melakukan pemetakan perubahan lingkungan eksternal, pemetakan pesaing dan pelanggan, analisis internal, dan analisis TOWS. Selanjutnya akan dirumuskan Strategic Place Triangle. Yang dimaksud dengan Strategic Place Triangle adalah suatu pendekatan strategi pemasaran wilayah yang mencakup tiga hal kunci, yaitu (1 Strategi yang mencakup Segmentasi-Targeting-Positioning, (2 Taktik yang mencakup Diferensiasi-Marketing Mix-Selling, (3 Value yang mencakup Brand-Servis-Proses. Analisis pemetaan terhadap lingkungan eksternal dan internal dengan menggunakan pendekatan Strategi Pemasaran Wilayah (Marketing Places tersebut akan menghasilkan Positioning, Diferensiasi, dan Brand, bagi potensi kawasan pariwisata Bojonegoro. Positioning- nya adalah ibarat Bali bagi Jawa Timur dengan kekhasan tetap memegang nilai-nilai religi dan kultur lokal setempat. Diferensiasi-nya adalah one-stop-shopping services, pesona wisata yang tak berakhir, cantik alami, penduduknya yang santun, ramah dan mempesona. Brand-nya adalah Pesona Wisata Bojonegoro.

  16. Electronic confining effects in Sierpiński triangle fractals

    Science.gov (United States)

    Wang, Hao; Zhang, Xue; Jiang, Zhuoling; Wang, Yongfeng; Hou, Shimin

    2018-03-01

    Electron confinement in fractal Sierpiński triangles (STs) on Ag(111) is investigated using scanning tunneling spectroscopy and theoretically simulated by employing an improved two-dimensional (2D) multiple scattering theory in which the energy-dependent phase shifts are explicitly calculated from the electrostatic potentials of the molecular building block of STs. Well-defined bound surface states are observed in three kinds of triangular cavities with their sides changing at a scale factor of 2. The decrease in length of the cavities results in an upshift of the resonances that deviates from an expected inverse quadratic dependence on the cavity length due to the less efficient confinement of smaller triangular cavities. Differential conductance maps at some specific biases present a series of alternative bright and dark rounded triangles preserving the symmetry of the boundary. Our improved 2D multiple scattering model reproduces the characteristics of the standing wave patterns and all features in the differential conductance spectra measured in experiments, illustrating that the elastic loss boundary scattering dominates the resonance broadening in these ST quantum corrals. Moreover, the self-similar structure of STs, that a larger central cavity is surrounded by three smaller ones with a half side length, gives rise to interactions of surface states confined in neighboring cavities, which are helpful for the suppression of the linewidth in differential conductance spectra.

  17. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  18. [Cysts in the posterior triangle of the neck in adults].

    Science.gov (United States)

    Brea-Álvarez, Beatriz; Roldán-Hidalgo, Amaya

    2015-01-01

    Cystic lesions of the posterior triangle are a pathologic entity whose diagnosis is made in the first two years of life. Its presentation in adulthood is an incidental finding and the differential diagnosis includes cystic lymphangioma, lymphatic metastasis of thyroid cancer and branchial cyst. Often with the finding of a cervical lump, FNA is made before diagnostic imaging is performed, however, this procedure is not always advisable. We reviewed the cases of patients who came last year to our department with a cystic mass in this location and correlating the imaging findings with pathologic specimen. We show characteristic findings of these lesions in order to make an early diagnosis and thus to get the approach and treatment appropriate of adult patients with a cystic lesion in the posterior cervical triangle. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  19. Triangle bipolar pulse shaping and pileup correction based on DSP

    International Nuclear Information System (INIS)

    Esmaeili-sani, Vahid; Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad

    2011-01-01

    Programmable Digital Signal Processing (DSP) microprocessors are capable of doing complex discrete signal processing algorithms with clock rates above 50 MHz. This combined with their low expense, ease of use and selected dedicated hardware make them an ideal option for spectrometer data acquisition systems. For this generation of spectrometers, functions that are typically performed in dedicated circuits, or offline, are being migrated to the field programmable gate array (FPGA). This will not only reduce the electronics, but the features of modern FPGAs can be utilized to add considerable signal processing power to produce higher resolution spectra. In this paper we report on an all-digital triangle bipolar pulse shaping and pileup correction algorithm that is being developed for the DSP. The pileup mitigation algorithm will allow the spectrometers to run at higher count rates or with multiple sources without imposing large data losses due to the overlapping of scintillation signals. This correction technique utilizes a very narrow bipolar triangle digital pulse shaping algorithm to extract energy information for most pileup events.

  20. Triangle bipolar pulse shaping and pileup correction based on DSP

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2011-02-11

    Programmable Digital Signal Processing (DSP) microprocessors are capable of doing complex discrete signal processing algorithms with clock rates above 50 MHz. This combined with their low expense, ease of use and selected dedicated hardware make them an ideal option for spectrometer data acquisition systems. For this generation of spectrometers, functions that are typically performed in dedicated circuits, or offline, are being migrated to the field programmable gate array (FPGA). This will not only reduce the electronics, but the features of modern FPGAs can be utilized to add considerable signal processing power to produce higher resolution spectra. In this paper we report on an all-digital triangle bipolar pulse shaping and pileup correction algorithm that is being developed for the DSP. The pileup mitigation algorithm will allow the spectrometers to run at higher count rates or with multiple sources without imposing large data losses due to the overlapping of scintillation signals. This correction technique utilizes a very narrow bipolar triangle digital pulse shaping algorithm to extract energy information for most pileup events.

  1. Dynamic Length Metrology (DLM) for measurements with sub-micrometre uncertainty in a production environment

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Hattel, Jesper Henri

    2016-01-01

    Conventional length metrology for traceable accurate measurements requires costly temperature controlled facilities, long waiting time for part acclimatisation, and separate part material characterisation. This work describes a method called Dynamic Length Metrology (DLM) developed to achieve sub...

  2. Laser metrology and optic active control system for GAIA

    Science.gov (United States)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  3. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  4. Automation of testing the metrological reliability of nondestructive control systems

    International Nuclear Information System (INIS)

    Zhukov, Yu.A.; Isakov, V.B.; Karlov, Yu.K.; Kovalevskij, Yu.A.

    1987-01-01

    Opportunities of microcomputers are used to solve the problem of testing control-measuring systems. Besides the main program the program of data processing when characterizing the nondestructive control systems is written in the microcomputer. The program includes two modules. The first module contains tests-programs, by which accuracy of functional elements of the microcomputer and interface elements with issuing a message to the operator on readiness of the elements for operation and failure of a certain element are determined. The second module includes: calculational programs when determining metrological reliability of measuring channel reliability, a calculational subprogram for random statistical measuring error, time instability and ''dead time''. Automation of testing metrological reliability of the nondestructive control systems increases reliability of determining metrological parameters and reduces time of system testing

  5. Joint Research on Scatterometry and AFM Wafer Metrology

    Science.gov (United States)

    Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni

    2011-11-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.

  6. Interview with Mark Watson

    Directory of Open Access Journals (Sweden)

    Katy Shaw

    2016-04-01

    Full Text Available Mark Watson is a British comedian and novelist. His five novels to date – 'Bullet Points' (2004, 'A Light-Hearted Look At Murder' (2007, 'Eleven' (2010, 'The Knot' (2012 and 'Hotel Alpha' (2014 – explore human relationships and communities in contemporary society. His latest novel Hotel Alpha tells the story of an extraordinary hotel in London and two mysterious disappearances that raise questions no one seems willing to answer. External to the novel, readers can also discover more about the hotel and its inhabitants in one hundred extra stories that expand the world of the novel and can be found at http://www.hotelalphastories.com. In conversation here with Dr Katy Shaw, Mark offers some reflections on his writing process, the field of contemporary literature, and the vitality of the novel form in the twenty-first century.

  7. The Act of 17 March 2000 on metrology and on changes and amendments of some acts

    International Nuclear Information System (INIS)

    2000-01-01

    This act metrology for organization of unity and correctness of mensuration adapts (a) the law measurement units, (b) the requests on committed gauges and their metrological control, (c) the conditions of official mensuration, (d) the requests on consumptive packages articles; (e) the conditions of authorization and registration, (f) operation of organs of the state administration for metrology, (g) the metrological authority (h) putting of fines. This act shall into effect on 1 July 2000

  8. Development and integration of high straightness flexure guiding mechanisms dedicated to the METAS watt balance Mark II

    Science.gov (United States)

    Cosandier, F.; Eichenberger, A.; Baumann, H.; Jeckelmann, B.; Bonny, M.; Chatagny, V.; Clavel, R.

    2014-04-01

    There is a firm will in the metrology community to redefine the kilogram in the International System of units by linking it to a fundamental physical constant. The watt balance is a promising way to link the mass unit to the Planck constant h. At the Federal Institute of Metrology METAS a second watt balance experiment is under development. A decisive part of the METAS Mark II watt balance is the mechanical linear guiding system. The present paper discusses the development and the metrological characteristics of two guiding systems that were conceived by the Laboratoire de Systèmes Robotiques of EPFL and built using flexure mechanical elements. Integration in the new setup is also described.

  9. Metrology and analytical chemistry: Bridging the cultural gap

    International Nuclear Information System (INIS)

    King, Bernard

    2002-01-01

    Metrology in general and issues such as traceability and measurement uncertainty in particular are new to most analytical chemists and many remain to be convinced of their value. There is a danger of the cultural gap between metrologists and analytical chemists widening with unhelpful consequences and it is important that greater collaboration and cross-fertilisation is encouraged. This paper discusses some of the similarities and differences in the approaches adopted by metrologists and analytical chemists and indicates how these approaches can be combined to establish a unique metrology of chemical measurement which could be accepted by both cultures. (author)

  10. Mycotoxin metrology: Gravimetric production of zearalenone calibration solution

    Science.gov (United States)

    Rego, E. C. P.; Simon, M. E.; Li, Xiuqin; Li, Xiaomin; Daireaux, A.; Choteau, T.; Westwood, S.; Josephs, R. D.; Wielgosz, R. I.; Cunha, V. S.

    2018-03-01

    Food safety is a major concern for countries developing metrology and quality assurance systems, including the contamination of food and feed by mycotoxins. To improve the mycotoxin analysis and ensure the metrological traceability, CRM of calibration solution should be used. The production of certified mycotoxin solutions is a major challenge due to the limited amount of standard for conducting a proper purity study and due to the cost of standards. The CBKT project was started at BIPM and Inmetro produced gravimetrically one batch of zearelenone in acetronitrile (14.708 ± 0.016 μg/g, k=2) and conducted homogeneity, stability and value assignment studies.

  11. Forum metrology 2009: control of optics, targets and optical analyzers

    International Nuclear Information System (INIS)

    Desenne, D.; Andre, R.

    2010-01-01

    The 1. 'Forum Metrologie' of the CEA/DAM has been held in the 'Institut Laser et Plasma' on the December 9, 2009, close to the 'Centre d'etudes Scientifiques et Techniques d'Aquitaine'. It has been set up by the 'Departement Lasers de Puissance'. The chosen thematic was the metrology around laser experiments, with a special focus on the metrology of the dedicated optics, targets and optical analysers. The talks have shown the progress and difficulties in each of these fields. (authors)

  12. Metrology in CNEN NN 3.05/13 standard

    International Nuclear Information System (INIS)

    Mello, Marina Santiago de

    2014-01-01

    The nuclear medicine exams are widely used tools in health services for a reliable clinical and functional diagnosis of a disease. In Brazil, the National Nuclear Energy Commission, through the norm CNEN-NN 3:05/13, provides for the requirements of safety and radiological protection in nuclear medicine services. The objective of this review article was to emphasize the importance of metrology in compliance with this norm. We observed that metrology plays a vital role as it ensures the quality, accuracy, reproducibility and consistency of the measurements in the field of nuclear medicine. (author)

  13. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  14. Improved capacity in ionizing radiation metrology at SANAEM

    International Nuclear Information System (INIS)

    Yucel, U.

    2014-01-01

    Full text : Turkey is planning to build nuclear power plants in the south and north coasts to supply the ever-increasing energy demand. The nuclear power plants based on old soviet technology in Armenia and Bulgaria close to Turkey's borders also makes constant monitoring of environmental radioactivity extremely important due to public health and environment contamination concerns. Radiation Metrology Division at SANAEM has been established in 2012 to provide uniformity and reliability of the measurements in the field of ionizing radiation metrology by R and D studies and by constituting, developing, keeping and extending internationally accepted reference measurement standards and techniques

  15. Dark matter: a problem in relativistic metrology?

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2017-01-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least

  16. Revisiting the Pink Triangle Exercise: An Exploration of Experiential Learning in Graduate Social Work Education

    Science.gov (United States)

    Pugh, Greg L.

    2014-01-01

    The pink triangle exercise is an example of an experiential learning exercise that creates cognitive dissonance and deep learning of unrealized internalized biases among social work students. Students wear a button with a pink triangle on it for 1 day and write a reflection paper. The exercise increases self-awareness, cultural competence, and the…

  17. The number of colorings of planar graphs with no separating triangles

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2017-01-01

    A classical result of Birkhoff and Lewis implies that every planar graph with . n vertices has at least . 152n-1 distinct 5-vertex-colorings. Equality holds for planar triangulations with . n-4 separating triangles. We show that, if a planar graph has no separating triangle, then it has at least ...

  18. 75 FR 61788 - Triangle Capital Corporation, et al.; Notice of Application

    Science.gov (United States)

    2010-10-06

    ... to the issuers of such securities. 2. TMF, a North Carolina limited liability limited partnership, is... same investment objectives and strategies as Triangle. Triangle owns a 99.9% limited partnership... persons who are interested persons of TMF. 3. SBIC II, a Delaware limited partnership, is an SBIC licensed...

  19. 8th Brazilian Congress on Metrology (Metrologia 2015)

    International Nuclear Information System (INIS)

    2016-01-01

    THE EIGHTH BRAZILIAN CONGRESS ON METROLOGY (METROLOGIA 2015) The United Nations celebrated 2015 as the International Year of Light. By a curious coincidence, many notable events in science and technology completed a multiple of 50 or 100 years in 2015. From the pioneering work of the wise Ibn Al-Haytham in 1015, through Fresnel, Maxwell, Einstein, the discovery of the cosmic microwave background, to the use of optical fibres in communications in 1965. Electromagnetic radiation is present in our daily lives in countless applications. It is remarkable that there is no way to think about these applications without thinking of measurements. From entangled photons to more prosaic public illumination of our daily life, we are intrinsically connected all the time with the luminous phenomena. Among other things, the light allows global communication on a large scale. It strengthens the internationalization of production processes, which brings considerable changes in relations, processes and economic structures, as well as it orients the social, political and cultural behaviour of any country. These conditions of this internationalization require interchangeability of parts of complex systems, translated into strict adherence to the standards and specifications that use increasingly accurate measurement techniques, as well as the growing demand from consumer markets for products and higher quality services. They also require innovation and improvements in domestic production to boost the competitiveness of industries in domestic and foreign markets. Thus, if the Science of Measurements is taken as a serious concern, countries are better prepared to evolve towards economic and social development. In this 8"t"h edition of the Brazilian Congress on Metrology (METROLOGIA 2015), in addition to the thematic sessions in various areas of Metrology and Conformity Assessment, we hold several satellite events. They are already traditional events or highlight important current issues

  20. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  1. Ceremony marking Einstein Year

    CERN Multimedia

    2005-01-01

    Sunday 13th November at 10:00amat Geneva's St. Peter's Cathedral To mark Einstein Year and the importance of the intercultural dialogue of which it forms a part, a religious service will take place on Sunday 13 November at 10 a.m. in St. Peter's Cathedral, to which CERN members and colleagues are warmly welcomed. Pastor Henry Babel, senior minister at the Cathedral, will speak on the theme: 'God in Einstein's Universe'. Diether Blechschmidt will convey a message on behalf of the scientific community.

  2. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Directory of Open Access Journals (Sweden)

    Jose Emilio Vargas-Soto

    2013-10-01

    Full Text Available The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  3. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Science.gov (United States)

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  4. Minimal Marking: A Success Story

    Science.gov (United States)

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  5. Construction of optimal 3-node plate bending triangles by templates

    Science.gov (United States)

    Felippa, C. A.; Militello, C.

    A finite element template is a parametrized algebraic form that reduces to specific finite elements by setting numerical values to the free parameters. The present study concerns Kirchhoff Plate-Bending Triangles (KPT) with 3 nodes and 9 degrees of freedom. A 37-parameter template is constructed using the Assumed Natural Deviatoric Strain (ANDES). Specialization of this template includes well known elements such as DKT and HCT. The question addressed here is: can these parameters be selected to produce high performance elements? The study is carried out by staged application of constraints on the free parameters. The first stage produces element families satisfying invariance and aspect ratio insensitivity conditions. Application of energy balance constraints produces specific elements. The performance of such elements in benchmark tests is presently under study.

  6. Climate, bleaching and connectivity in the Coral Triangle.

    Science.gov (United States)

    Curchitser, E. N.; Kleypas, J. A.; Castruccio, F. S.; Drenkard, E.; Thompson, D. M.; Pinsky, M. L.

    2016-12-01

    The Coral Triangle (CT) is the apex of marine biodiversity and supports the livelihoods of millions of people. It is also one of the most threatened of all reef regions in the world. We present results from a series of high-resolution, numerical ocean models designed to address physical and ecological questions relevant to the region's coral communities. The hierarchy of models was designed to optimize the model performance in addressing questions ranging from the role of internal tides in larval connectivity to distinguishing the role of interannual variability from decadal trends in thermal stress leading to mass bleaching events. In this presentation we will show how combining ocean circulation with models of larval dispersal leads to new insights into the interplay of physics and ecology in this complex oceanographic region, which can ultimately be used to inform conservation efforts.

  7. [Patient - doctor relationship from perspective of the Karpman drama triangle].

    Science.gov (United States)

    Samborska-Sablik, Anna; Sablik, Zbigniew

    2016-11-25

    Patients' confidence in doctors has been decreased for last years despite successes of Polish medicine. It seems to be related to particular conditions of patient - doctor relationship and patient's negative emotions may frequently burden it from the beginning. They may allow an interpersonal game, the Drama Triangle, to appear in the relationship. 3 persons are typically involved in the game: a victim, a persecutor and a rescuer. All of them neither feel guilty about the situation nor their activities are aimed at solving the crucial problem. It maintains continuation of the game. Both patient and doctor are capable to attend the game as any of the person mentioned above. Authors of the article think frameworks of organization of the health care system should permit doctors not only to tackle main disease but also to devote time individually tailored to patient's emotional problems. © 2016 MEDPRESS.

  8. 9th International Workshop on the CKM Unitarity Triangle

    CERN Document Server

    CKM2016

    2016-01-01

    The 9th International Workshop on the CKM Unitarity Triangle (CKM 2016) will be held during November 28 to December 3, 2016 at the Tata Institute of Fundamental Research in Mumbai, India. The CKM series is a well-established international meeting in the field of quark-flavour physics that brings both experimenters and theorists on a common platform. On the experimental front, we bridge borders between neutron, kaon, charm and beauty hadron, and top quark physics. The theory program tries to cover a wide range of approaches. We shall discuss how this marriage of the two can indirectly probe physics beyond the standard model, taking into account the interplay with high-pT collider searches.

  9. Optical metrology tools for the Virgo projet

    Science.gov (United States)

    Loriette, V.

    For more than thirty years the search for gravitationnal waves, predicted by Einstein's relativistic theory of gravitation, has been an intense research field in experimental as well as theoretical physics. Today, with the constant advance of technology in optics, lasers, data analysis and processing, ... a promising way of directly detecting gravitationnal waves with earth-based instruments is optical interferometry. Before the end of this century many experiments will be carried on in Australia, Europe, Japan and the United States to detect the passage of a gravitationnal wave through giant Michelson-type interferometers. The effects predicted are so small, (a gravitationnal wave changes the length of three kilometer long arms by one thousandth of a fermi) that the need for “perfect” optical components is a key to the success of these experiments. Still a few years ago it would have been impossible to make optical components that would satisfy the required specifications for such interferometric detectors. For nearly ten years constant R&D efforts in optical coating manufacturing, optical material fabrication and optical metrology, allow us today to make such components. This text is intended to describe the field of optical metrology as it is needed for the testing of optical parts having performances far beyond than everything previously made. The first chapter is an introduction to gravitationnal waves, their sources and their effects on detectors. Starting by newtonian mechanics we jump rapidly to the general theory of relativity and describe particular solutions of Einstein's equations in the case of weak gravitationnal fields, which are periodic perturbations of the space-time metric in the form of plane waves, the so-called gravitationnal waves. We present various candidate sources, terrestrial and extra-terrestrial and give a short description of the two families of detectors: resonnant bars and optical interferometers. The second part of this chapter

  10. Comparing MapReduce and Pipeline Implementations for Counting Triangles

    Directory of Open Access Journals (Sweden)

    Edelmira Pasarella

    2017-01-01

    Full Text Available A common method to define a parallel solution for a computational problem consists in finding a way to use the Divide and Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide and Conquer paradigm, named dynamic pipeline. The main features of dynamic pipelines are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different topologies, sizes, and densities. Observed results suggest that dynamic pipelines allows for an efficient implementation of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.

  11. Food supply depends on seagrass meadows in the coral triangle

    International Nuclear Information System (INIS)

    Unsworth, Richard K F; Hinder, Stephanie L; Bodger, Owen G; Cullen-Unsworth, Leanne C

    2014-01-01

    The tropical seascape provides food and livelihoods to hundreds of millions of people, but the support of key habitats to this supply remains ill appreciated. For fisheries and conservation management actions to help promote resilient ecosystems, sustainable livelihoods, and food supply, knowledge is required about the habitats that help support fisheries productivity and the consequences of this for food security. This paper provides an interdisciplinary case study from the coral triangle of how seagrass meadows provide support for fisheries and local food security. We apply a triangulated approach that utilizes ecological, fisheries and market data combined with over 250 household interviews. Our research demonstrates that seagrass associated fauna in a coral triangle marine protected area support local food supply contributing at least 50% of the fish based food. This formed between 54% and 99% of daily protein intake in the area. Fishery catch was found to significantly vary with respect to village (p < 0.01) with habitat configuration a probable driver. Juvenile fish comprised 26% of the fishery catch and gear type significantly influenced this proportion (<0.05). Limited sustainability of fishery practices (high juvenile catch and a 51% decline in CPUE for the biggest fishery) and poor habitat management mean the security of this food supply has the potential to be undermined in the long-term. Findings of this study have implications for the management and assessment of fisheries throughout the tropical seascape. Our study provides an exemplar for why natural resource management should move beyond biodiversity and consider how conservation and local food security are interlinked processes that are not mutually exclusive. Seagrass meadows are under sustained threat worldwide, this study provides evidence of the need to conserve these not just to protect biodiversity but to protect food security. (letter)

  12. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  13. Mirror surface metrology and polishing for AXAF/TMA

    International Nuclear Information System (INIS)

    Slomba, A.; Babish, R.; Glenn, P.

    1985-01-01

    The achievement of the derived goals for mirror surface quality on the Advanced X-ray Astrophysics Facility (AXAF), Technology Mirror Assembly (TMA) required a combination of state-of-the-art metrology and polishing techniques. In this paper, the authors summarize the derived goals and cover the main facets of the various metrology instruments employed, as well as the philosophy and technique used in the polishing work. In addition, they show how progress was measured against the goals, using the detailed error budget for surface errors and a mathematical model for performance prediction. The metrology instruments represented a considerable advance on the state-of-the-art and fully satisfied the error budget goals for the various surface errors. They were capable of measuring the surface errors over a large range of spatial periods, from low-frequency figure errors to microroughness. The polishing was accomplished with a computer-controlled process, guided by the combined data from various metrology instruments. This process was also tailored to reduce the surface errors over the full range of spatial periods

  14. Information system planning work on maintenance metrological equipment

    Directory of Open Access Journals (Sweden)

    Dmitry V. Shtoller

    2011-05-01

    Full Text Available Computerization has entered into all human activities. Important role in the work now is a workstation, which increases productivity. Did not remain without attention and work of the metrological services of enterprises. Electronic records can help solve many problems for the organization of data.

  15. Optical antennas for far and near field metrology

    NARCIS (Netherlands)

    Silvestri, F.; Bernal Arango, F.; Vendel, K.J.A.; Gerini, G.; Bäumer, S.M.B.; Koenderink, A.F.

    2016-01-01

    This paper presents the use of optical antennas in metrology scenarios. Two design concepts are presented: dielectric nanoresonator arrays and plasmonic nanoantennas arrays. The first ones are able to focus an incident light beam at an arbitrary focal plane. The nanoantennas arrays can be employed

  16. Accuracy and Metrological Reliability Enhancing of Thermoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Bogdan Stadnyk

    2010-12-01

    Full Text Available This article is devoted to development and use of thermoelectric thermotransducers with an enhanced accuracy and metrological reliability. The actuality of a problem is stipulated. Investigating changes at typical external environments, the mechanisms of transformation function instability are considered; possibilities of thermodynamic presentation use are analyzed concerning a thermometric substance. The algorithm of thermotransducer instrumental errors’ minimization is developed.

  17. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  18. At-wavelength Optical Metrology Development at the ALS

    International Nuclear Information System (INIS)

    Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Smith, Brian V.; Domning, Edward E.; McKinney, Wayne R.; Warwick, Tony

    2010-01-01

    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application.

  19. 7/5nm logic manufacturing capabilities and requirements of metrology

    Science.gov (United States)

    Bunday, Benjamin; Bello, A. F.; Solecky, Eric; Vaid, Alok

    2018-03-01

    This paper will provide an update to previous works [2][4][9] to our view of the future for in-line high volume manufacturing (HVM) metrology for the semiconductor industry, concentrating on logic technology for foundries. First, we will review of the needs of patterned defect, critical dimensional (CD/3D), overlay and films metrology, and present the extensive list of applications for which metrology solutions are needed. We will then update the industry's progress towards addressing gating technical limits of the most important of these metrology solutions, highlighting key metrology technology gaps requiring industry attention and investment.

  20. A new approach to stitching optical metrology data

    Science.gov (United States)

    King, Christopher W.

    The next generation of optical instruments, including telescopes and imaging apparatus, will generate an increased requirement for larger and more complex optical forms. A major limiting factor for the production of such optical components is the metrology: how do we measure such parts and with respect to what reference datum This metrology can be thought of as part of a complete cycle in the production of optical components and it is currently the most challenging aspect of production. This thesis investigates a new and complete approach to stitching optical metrology data to extend the effective aperture or, in future, the dynamic range of optical metrology instruments. A practical approach is used to build up a complete process for stitching on piano and spherical parts. The work forms a basis upon which a stitching system for aspheres might be developed in the future, which is inherently more complicated. Beginning with a historical perspective and a review of optical polishing and metrology, the work presented relates the commercially available metrology instruments to the stitching process developed. The stitching is then performed by a numerical optimization routine that seeks to join together overlapping sub-aperture measurements by consideration of the aberrations introduced by the measurement scenario, and by the overlap areas between measurements. The stitching is part of a larger project, the PPARC Optical Manipulation and Metrology project, and was to benefit from new wavefront sensing technology developed by a project partner, and to be used for the sub-aperture measurement. Difficult mathematical problems meant that such a wavefront sensor was not avail able for this work and a work-around was therefore developed using commercial instruments. The techniques developed can be adapted to work on commercial ma chine platforms, and in partuicular, the OMAM NPL/UCL swing-arm profilometer described in chapter 5, or the computer controlled polishing machines

  1. La Metrología Óptica y sus Aplicaciones La Metrología Óptica y sus Aplicaciones

    OpenAIRE

    Daniel Malacara Hernández

    2012-01-01

    En este trabajo se presenta una introducción al campo de la metrología óptica y de su herramienta principal que es la interferometría. También se presenta un panorama de los diferentes métodos empleados en metrología describiendo con especial detalle los avances más recientes en este campo. In this work an introduction to optical metrology is presented with a brief description of its main tool which is interferometry. Also, a survey of the main different methods used in optical metrology is ...

  2. Toward reliable and repeatable automated STEM-EDS metrology with high throughput

    Science.gov (United States)

    Zhong, Zhenxin; Donald, Jason; Dutrow, Gavin; Roller, Justin; Ugurlu, Ozan; Verheijen, Martin; Bidiuk, Oleksii

    2018-03-01

    New materials and designs in complex 3D architectures in logic and memory devices have raised complexity in S/TEM metrology. In this paper, we report about a newly developed, automated, scanning transmission electron microscopy (STEM) based, energy dispersive X-ray spectroscopy (STEM-EDS) metrology method that addresses these challenges. Different methodologies toward repeatable and efficient, automated STEM-EDS metrology with high throughput are presented: we introduce the best known auto-EDS acquisition and quantification methods for robust and reliable metrology and present how electron exposure dose impacts the EDS metrology reproducibility, either due to poor signalto-noise ratio (SNR) at low dose or due to sample modifications at high dose conditions. Finally, we discuss the limitations of the STEM-EDS metrology technique and propose strategies to optimize the process both in terms of throughput and metrology reliability.

  3. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    Science.gov (United States)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  4. Triangle islands and cavities on the surface of evaporated Cu(In, Ga)Se2 absorber layer

    International Nuclear Information System (INIS)

    Han Anjun; Zhang Yi; Liu Wei; Li Boyan; Sun Yun

    2012-01-01

    Highlights: ► Lots of uncommon triangle islands and cavities are found on (1 1 2) planes terminated by Se atoms of evaporated Cu(In, Ga)Se 2 thin films. ► Se ad-dimer as a nucleus, Cu atom diffusion from Cu(In, Ga)Se 2 grains brings the epitaxial triangle island. ► The triangle islands grow with a two-dimensional layered mode. ► The triangle cavities are formed due to the insufficient coalescence of triangle islands. ► The performance of solar cell without triangle islands is improved. - Abstract: Cu(In, Ga)Se 2 (CIGS) thin films are co-evaporated at a constant substrate temperature of 500 °C on the Mo/soda lime glass substrates. The structural properties and chemical composition of the CIGS films are studied by an X-ray diffractometer (XRD) and an X-ray fluorescent spectrometer (XRF), respectively. A scanning electron microscope (SEM) is used to study the surface morphology. Lots of uncommon triangle islands and cavities are found on some planes of the CIGS thin films. We investigate the formation mechanism of these triangle islands. It is found that the planes with the triangle islands are (1 1 2) planes terminated by Se atoms. Se ad-dimer as a nucleus, Cu diffusion from CIGS grains brings the epitaxial triangle islands which grow with a two-dimensional layered mode. The film with Cu/(Ga + In) = 0.94–0.98 is one key of the formation of these islands. The triangle cavities are formed due to the insufficient coalescence of triangle islands. The growth of triangle islands brings a compact surface with large layered grains and many jagged edges, but no triangle cavity. Finally, we compare the performance of solar cell with triangle islands and layered gains. It is found that the performance of solar cell with large layered gains is improved.

  5. Influence of Blocker Distance Variations in form of Triangle in Front of Cylinder toward Drag Coefficien

    Directory of Open Access Journals (Sweden)

    Si Putu Gede Gunawan Tista

    2012-11-01

    Full Text Available One of the ways to reduce energy consumption on the air plane and the other bluff bodies are by decreasing the drag. Drag isclosely related to the flow separation. The earlier separation, then the drag will increase more. Based of the fact the effort todecrease drag is conducted by manipulating the field of fluid flow. Stream manipulation was be done by installing Triangleobstacle in front of cylinder. The purpose of this research is to analyze the effect of various distance triangle obstacle in front ofcylinder on drag. The present experiment was done by placing triangle rod in front of the cylinder. In the present research, theexperiment was conducted in the wind tunnel, which consisted of blower, pitot pipe, manometer, cylinder pipe, and triangle rod.The triangle was positioned at L/D = 1.19, L/D = 1.43, L/D = 1.67, L/D = 1.9, L/D = 2.14, L/D = 2.38, L/D = 2.62, and L/D =2.86 by upstream from the cylinder. The triangle was 8 mm uniform side. The Reynolds number based on the cylinder diameter (D= 42 mm was Re = 1.81 x 104. The research results showed that the triangle rod could decrease the drag of cylinder. Coefficientdrag for cylinder without triangle rod was 0.1276 while the biggest decrease of coefficient of drag with triangle rod washappened at L/D = 1.43 which was 0.0188. It means that the drag of cylinder with triangle rod was 85.25% lower than thecylinder alone.

  6. Laser marking as a result of applying reverse engineering

    Science.gov (United States)

    Mihalache, Andrei; Nagîţ, Gheorghe; Rîpanu, Marius Ionuţ; Slǎtineanu, Laurenţiu; Dodun, Oana; Coteaţǎ, Margareta

    2018-05-01

    The elaboration of a modern manufacturing technology needs a certain quantum of information concerning the part to be obtained. When it is necessary to elaborate the technology for an existing object, such an information could be ensured by using the principles specific to the reverse engineering. Essentially, in the case of this method, the analysis of the surfaces and of other characteristics of the part must offer enough information for the elaboration of the part manufacturing technology. On the other hand, it is known that the laser marking is a processing method able to ensure the transfer of various inscriptions or drawings on a part. Sometimes, the laser marking could be based on the analysis of an existing object, whose image could be used to generate the same object or an improved object. There are many groups of factors able to affect the results of applying the laser marking process. A theoretical analysis was proposed to show that the heights of triangles obtained by means of a CNC marking equipment depend on the width of the line generated by the laser spot on the workpiece surface. An experimental research was thought and materialized to highlight the influence exerted by the line with and the angle of lines intersections on the accuracy of the marking process. By mathematical processing of the experimental results, empirical mathematical models were determined. The power type model and the graphical representation elaborated on the base of this model offered an image concerning the influences exerted by the considered input factors on the marking process accuracy.

  7. SLARette Mark 2 system

    International Nuclear Information System (INIS)

    Burnett, D.J.

    1992-01-01

    The SLAR (Spacer Location and Repositioning) program has developed the technology and tooling necessary to locate and reposition the fuel channel spacers that separate the pressure tube from the calandria tube in a CANDU reactor. The in-channel SLAR tool contains all the inspection probes, and is capable of moving spacers under remote control. The SLAR inspection computer system translates all eddy currents and ultrasonic signals from the in-channel tool into various graphic displays. The in-channel SLAR tool can be delivered and manipulated in a fuel channel by either a SLAR delivery machine or a SLARette delivery machine. The SLAR delivery machine consists of a modified fuelling machine, and is capable of operating under totally remote control in automatic or semi-automatic mode. The SLARette delivery machine is a smaller less automated version, which was designed to be quickly installed, operated, and removed from a limited number of fuel channels during regular annual maintenance outages. This paper describes the design and operation of the SLARette Mark 2 system. 5 figs

  8. An OCD perspective of line edge and line width roughness metrology

    Science.gov (United States)

    Bonam, Ravi; Muthinti, Raja; Breton, Mary; Liu, Chi-Chun; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Patlolla, Raghuveer; Huang, Huai

    2017-03-01

    Metrology of nanoscale patterns poses multiple challenges that range from measurement noise, metrology errors, probe size etc. Optical Metrology has gained a lot of significance in the semiconductor industry due to its fast turn around and reliable accuracy, particularly to monitor in-line process variations. Apart from monitoring critical dimension, thickness of films, there are multiple parameters that can be extracted from Optical Metrology models3. Sidewall angles, material compositions etc., can also be modeled to acceptable accuracy. Line edge and Line Width roughness are much sought of metrology following critical dimension and its uniformity, although there has not been much development in them with optical metrology. Scanning Electron Microscopy is still used as a standard metrology technique for assessment of Line Edge and Line Width roughness. In this work we present an assessment of Optical Metrology and its ability to model roughness from a set of structures with intentional jogs to simulate both Line edge and Line width roughness at multiple amplitudes and frequencies. We also present multiple models to represent roughness and extract relevant parameters from Optical metrology. Another critical aspect of optical metrology setup is correlation of measurement to a complementary technique to calibrate models. In this work, we also present comparison of roughness parameters extracted and measured with variation of image processing conditions on a commercially available CD-SEM tool.

  9. Energy, economy and development (EED) triangle: Concerns for India

    International Nuclear Information System (INIS)

    Chaturvedi, A.; Samdarshi, S.K.

    2011-01-01

    In this paper we discuss issues involving energy security with economic growth and development that brings out (i) the dimension of physical security alternative, (ii) framework for a pan South East Asian platform to support energy security and (iii) requirement of promoting regional energy cooperation and specific energy peace initiatives. Sustaining projected economic growth rate coupled with energy security in future is a concern for all developing countries like India. The energy security of these nations is threatened by the disruption of energy supplies by ongoing energy terrorism and geopolitical conflicts in the region. India's geo-strategic position and increasing energy dependence raises concerns for its energy security. We discuss energy security, examine factors and approaches to attempt the energy security in the light of economic growth and development. - Highlights: → India's perspective on evolving energy security concepts and risks analysed. → Model in the form of EED triangle proposed. → New potential energy security alternatives proposed in the light of the model.

  10. Energy, economy and development (EED) triangle: Concerns for India

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A. [Department of Energy, Tezpur University, Tezpur 784028, Assam (India); Samdarshi, S.K., E-mail: drsksamdarshi@rediffmail.com [Department of Energy, Tezpur University, Tezpur 784028, Assam (India)

    2011-08-15

    In this paper we discuss issues involving energy security with economic growth and development that brings out (i) the dimension of physical security alternative, (ii) framework for a pan South East Asian platform to support energy security and (iii) requirement of promoting regional energy cooperation and specific energy peace initiatives. Sustaining projected economic growth rate coupled with energy security in future is a concern for all developing countries like India. The energy security of these nations is threatened by the disruption of energy supplies by ongoing energy terrorism and geopolitical conflicts in the region. India's geo-strategic position and increasing energy dependence raises concerns for its energy security. We discuss energy security, examine factors and approaches to attempt the energy security in the light of economic growth and development. - Highlights: > India's perspective on evolving energy security concepts and risks analysed. > Model in the form of EED triangle proposed. > New potential energy security alternatives proposed in the light of the model.

  11. Geology and resources of the Tar Sand Triangle, southeastern Utah

    Energy Technology Data Exchange (ETDEWEB)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  12. Development of the metrology and imaging of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Postek, Michael T; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J; Sabo, Ronald; Wegner, Theodore H; Beecher, James

    2011-01-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs

  13. Development of the metrology and imaging of cellulose nanocrystals

    Science.gov (United States)

    Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2011-02-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.

  14. Development of ITER in-vessel viewing and metrology systems

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation ({approx}30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  15. Development of ITER in-vessel viewing and metrology systems

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation (∼30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  16. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  17. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  18. Nonlinear Quantum Metrology of Many-Body Open Systems

    Science.gov (United States)

    Beau, M.; del Campo, A.

    2017-07-01

    We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.

  19. Metrology for industrial quantum communications: the MIQC project

    Science.gov (United States)

    Rastello, M. L.; Degiovanni, I. P.; Sinclair, A. G.; Kück, S.; Chunnilall, C. J.; Porrovecchio, G.; Smid, M.; Manoocheri, F.; Ikonen, E.; Kubarsepp, T.; Stucki, D.; Hong, K. S.; Kim, S. K.; Tosi, A.; Brida, G.; Meda, A.; Piacentini, F.; Traina, P.; Natsheh, A. Al; Cheung, J. Y.; Müller, I.; Klein, R.; Vaigu, A.

    2014-12-01

    The ‘Metrology for Industrial Quantum Communication Technologies’ project (MIQC) is a metrology framework that fosters development and market take-up of quantum communication technologies and is aimed at achieving maximum impact for the European industry in this area. MIQC is focused on quantum key distribution (QKD) technologies, the most advanced quantum-based technology towards practical application. QKD is a way of sending cryptographic keys with absolute security. It does this by exploiting the ability to encode in a photon's degree of freedom specific quantum states that are noticeably disturbed if an eavesdropper trying to decode it is present in the communication channel. The MIQC project has started the development of independent measurement standards and definitions for the optical components of QKD system, since one of the perceived barriers to QKD market success is the lack of standardization and quality assurance.

  20. Characteristics of the radiation prevention metrology laboratory 'Cajavec' - Banjaluka

    International Nuclear Information System (INIS)

    Tomljenovic, I.; Ninkovic, M.; Kolonic, Dz.

    2004-01-01

    Radiation metrology laboratory built in the factory 'Cajavec' in Banja Luka, planed for gauge the detectors of ionization radiation. Laboratory as part of the large factory building , thus projected and formed according to positive radiation principles. Walls are constructed of basic concrete, main entrance of lead, approaching the radiation bench from the back side. Sound and light signal system connected with dosemeter for showing mini dose of radiation creating conditions for safe work of the dosemeterists. (author) [sr

  1. Innovative Ge Quantum Dot Functional Sensing and Metrology Devices

    Science.gov (United States)

    2017-08-21

    Sensing/Metrology Devices Period: May 26th 2015May 25th 2017 Investigators: Pei-Wen Li Affiliation: Department of Electrical Engineering , National...light sources as well as low-power, high-speed Ge photodetectors indeed requires the growth of direct-gap Ge, heterostructure engineering for...All these tasks cannot be simply conducted in terms of bulk Ge technology, and it is no doubt that nanoscience and nanotechnology would offer

  2. Metrology and Proportion in the Ecclesiastical Architecture of Medieval Ireland

    OpenAIRE

    Behan, Avril; Moss, Rachel

    2008-01-01

    The aim of this paper is to examine the extent to which detailed empirical analysis of the metrology and proportional systems used in the design of Irish ecclesiastical architecture can be analysed to provide historical information not otherwise available. Focussing on a relatively limited sample of window tracery designs as a case study, it will first set out to establish what, if any, systems were in use, and then what light these might shed on the background, training and work practices of...

  3. A blueprint for radioanalytical metrology CRMs, intercomparisons, and PE

    International Nuclear Information System (INIS)

    Inn, Kenneth G.W.; Kurosaki, Hiromu; Frechou, Carole; Gilligan, Chris; Jones, Robert; LaMont, Stephen; Leggitt, Jeff; Li Chunsheng; McCroan, Keith; Swatski, Ronald

    2008-01-01

    A workshop was held from 28 February to 2 March 2006 at the National Institute of Standards and Technology (NIST) to evaluate the needs for new directions for complex matrix reference materials certified for radionuclide content, interlaboratory comparisons and performance evaluation (PE) programs. The workshop identified new radioanalytical metrology thrust areas needed for environmental, radiobioassay, emergency consequence management, and nuclear forensics, attribution, nonproliferation, and safeguards

  4. Overlay improvement methods with diffraction based overlay and integrated metrology

    Science.gov (United States)

    Nam, Young-Sun; Kim, Sunny; Shin, Ju Hee; Choi, Young Sin; Yun, Sang Ho; Kim, Young Hoon; Shin, Si Woo; Kong, Jeong Heung; Kang, Young Seog; Ha, Hun Hwan

    2015-03-01

    To accord with new requirement of securing more overlay margin, not only the optical overlay measurement is faced with the technical limitations to represent cell pattern's behavior, but also the larger measurement samples are inevitable for minimizing statistical errors and better estimation of circumstance in a lot. From these reasons, diffraction based overlay (DBO) and integrated metrology (IM) were mainly proposed as new approaches for overlay enhancement in this paper.

  5. Is this child sick? Usefulness of the Pediatric Assessment Triangle in emergency settings

    Directory of Open Access Journals (Sweden)

    Ana Fernandez

    2017-11-01

    Conclusions: The Pediatric Assessment Triangle is quickly spreading internationally and its clinical applicability is very promising. Nevertheless, it is imperative to promote research for clinical validation, especially for clinical use by emergency pediatricians and physicians.

  6. College geometry an introduction to the modern geometry of the triangle and the circle

    CERN Document Server

    Altshiller-Court, Nathan

    2007-01-01

    The standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.

  7. Fact Sheet on EPA's Science, Technology, Engineering & Math (STEM) Outreach Program in Research Triangle Park

    Science.gov (United States)

    Employees from EPA’s Research Triangle Park (RTP) campus serve as guest speakers at local schools and in the community. Hands-on activities and interactive discussions supplement classroom instruction and promote environmental awareness

  8. Texas Urban Triangle : pilot study to implement a spatial decision support system (SDSS) for sustainable mobility.

    Science.gov (United States)

    2011-03-01

    This project addressed sustainable transportation in the Texas Urban Triangle (TUT) by conducting a pilot : project at the county scale. The project tested and developed the multi-attribute Spatial Decision Support : System (SDSS) developed in 2009 u...

  9. Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)]. E-mail: hongchun@mail.xjtu.edu.cn; Liu Pingping [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Zhou Yongqiang [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Cao Liangzhi [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

    2007-01-15

    In the advanced reactor, the fuel assembly or core with unstructured geometry is frequently used and for calculating its fuel assembly, the transmission probability method (TPM) has been used widely. However, the rectangle or hexagon meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though finite element method and Monte Carlo method is very good at solving unstructured geometry problem, they are very time consuming. So we developed the TPM code based on the triangle meshes. The TPM code based on the triangle meshes was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of comparison were consistent with each other. The TPM with triangle meshes would thus be expected to be able to apply to the two-dimensional arbitrary fuel assembly.

  10. Airspora concentrations in the Vaal-triangle-monitoring and potential health-effects.2, fungal spores

    CSIR Research Space (South Africa)

    Vismer, HF

    1995-08-01

    Full Text Available Atmospheric fungal spores were monitored in Vanderbijlpark for the period 1991-92 as part of the Vaal triangle air pollution health study of the medical research council and the CSIR. Cladosporium, Aspergillus/ Penicillium, Alternaria and Epicoccum...

  11. Report: Results of Technical Network Vulnerability Assessment: EPA’s Research Triangle Park Finance Center

    Science.gov (United States)

    Report #09-P-0227, August 31, 2009. Vulnerability testing conducted in April 2009 of EPA’s Research Triangle Park Finance Center network identified Internet Protocol addresses with several highrisk vulnerabilities.

  12. Future travel demand and its implications for transportation infrastructure investments in the Texas Triangle.

    Science.gov (United States)

    2009-03-01

    This study takes a megaregion approach to project future travel demand and choice of transport : modes in the Texas Triangle, which is encompassed by four major metropolitan areas, Dallas-Fort : Worth, Houston, San Antonio, and Austin. The model was ...

  13. World wide matching of registration metrology tools of various generations

    Science.gov (United States)

    Laske, F.; Pudnos, A.; Mackey, L.; Tran, P.; Higuchi, M.; Enkrich, C.; Roeth, K.-D.; Schmidt, K.-H.; Adam, D.; Bender, J.

    2008-10-01

    Turn around time/cycle time is a key success criterion in the semiconductor photomask business. Therefore, global mask suppliers typically allocate work loads based on fab capability and utilization capacity. From a logistical point of view, the manufacturing location of a photomask should be transparent to the customer (mask user). Matching capability of production equipment and especially metrology tools is considered a key enabler to guarantee cross site manufacturing flexibility. Toppan, with manufacturing sites in eight countries worldwide, has an on-going program to match the registration metrology systems of all its production sites. This allows for manufacturing flexibility and risk mitigation.In cooperation with Vistec Semiconductor Systems, Toppan has recently completed a program to match the Vistec LMS IPRO systems at all production sites worldwide. Vistec has developed a new software feature which allows for significantly improved matching of LMS IPRO(x) registration metrology tools of various generations. We will report on the results of the global matching campaign of several of the leading Toppan sites.

  14. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  15. The Remarkable Metrological History of Radiocarbon Dating [II].

    Science.gov (United States)

    Currie, Lloyd A

    2004-01-01

    This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought (14)C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for "molecular dating" at the 10 µg to 100 µg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the "bomb effect," that gave rise to new multidisciplinary areas of application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthropogenic pollutants to the reconstruction of environmental history. Beyond the specific topic of natural (14)C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanticipated metrological advances in their own chosen fields, and unanticipated anthropogenic or natural chemical events in the environment, can spawn new areas of research having exciting theoretical and practical implications.

  16. Improving automated 3D reconstruction methods via vision metrology

    Science.gov (United States)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  17. The future of 2D metrology for display manufacturing

    Science.gov (United States)

    Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin

    2016-10-01

    The race to 800 PPI and higher in mobile devices and the transition to OLED displays are driving a dramatic development of mask quality: resolution, CDU, registration, and complexity. 2D metrology for large area masks is necessary and must follow the roadmap. Driving forces in the market place point to continued development of even more dense displays. State-of-the-art metrology has proven itself capable of overlay below 40 nm and registration below 65 nm for G6 masks. Future developments include incoming and recurrent measurements of pellicalized masks at the panel maker's factory site. Standardization of coordinate systems across supplier networks is feasible. This will enable better yield and production economy for both mask and panel maker. Better distortion correction methods will give better registration on the panels and relax the flatness requirements of the mask blanks. If panels are measured together with masks and the results are used to characterize the aligners, further quality and yield improvements are possible. Possible future developments include in-cell metrology and integration with other instruments in the same platform.

  18. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    Science.gov (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  19. Metrological traceability of carbon dioxide measurements in atmosphere and seawater

    International Nuclear Information System (INIS)

    Rolle, F; Pessana, E; Sega, M

    2017-01-01

    The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO 2 ), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO 2 in the atmosphere. The well established activity to assure the metrological traceability of CO 2 in the atmosphere will be applied to the determination of CO 2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use. (paper)

  20. Three-coloring graphs with no induced seven-vertex path II : using a triangle

    OpenAIRE

    Chudnovsky, Maria; Maceli, Peter; Zhong, Mingxian

    2015-01-01

    In this paper, we give a polynomial time algorithm which determines if a given graph containing a triangle and no induced seven-vertex path is 3-colorable, and gives an explicit coloring if one exists. In previous work, we gave a polynomial time algorithm for three-coloring triangle-free graphs with no induced seven-vertex path. Combined, our work shows that three-coloring a graph with no induced seven-vertex path can be done in polynomial time.

  1. Dose-response relationship of sertindole and haloperidol using the pharmacopsychometric triangle

    DEFF Research Database (Denmark)

    Bech, P; Tanghøj, P; Andreasson, K

    2011-01-01

    Renewed insight into dose-related effects of sertindole and haloperidol was sought by re-analysing published data for antipsychotic effect, extrapyramidal effect, and patient wellbeing - i.e., the important pharmacopsychometric triangle domains.......Renewed insight into dose-related effects of sertindole and haloperidol was sought by re-analysing published data for antipsychotic effect, extrapyramidal effect, and patient wellbeing - i.e., the important pharmacopsychometric triangle domains....

  2. Functioning of the knowledge triangle in the example of IT education

    Directory of Open Access Journals (Sweden)

    ZHIVITSKAYA H.

    2015-06-01

    Full Text Available The analysis of the interactions between knowledge triangle components in IT-education in the Republic of Belarus is described. This paper describes the results of research in the framework of the program of the European Union Tempus IV «Fostering the Knowledge Triangle in Belarus, Ukraine and Moldova» - «FKTBUM». The analysis of the obstacles to the effective integration of higher education, research and innovation is performed.

  3. The coral triangle initiative: What are we missing? A case study from Aceh

    KAUST Repository

    Rudi, Edi

    2012-10-01

    Abstract The Coral Triangle Initiative is an ambitious attempt to conserve the marine biodiversity hotspot known as the Coral Triangle. However, the reef fauna in many nearby regions remains poorly explored and, consequently, the focus on the Coral Triangle risks overlooking other areas of high conservation significance. One region of potential significance, Aceh, Indonesia, has not been visited by coral taxonomists since the Dutch colonial period. Here we document the species richness of scleractinian corals of Pulau Weh, Aceh. We also compare the species richness of the genus Acropora at 3-5 sites in each of nine regions in Indonesia and Papua New Guinea. Although dominated by widespread Indo-Pacific species, the coral fauna of Pulau Weh is also the eastern and western boundary for many Indian Ocean and Pacific Ocean species, respectively. We identified a total of 133 scleractinian species, of which three have been previously recorded only in the western Indian Ocean and five are presently undescribed. The mean species richness of the Acropora at Pulau Weh is similar to regions within the Coral Triangle. This high species richness plus the high proportion of endemics suggests that the Andaman Sea is of similarly high conservation value to the Coral Triangle. We suggest that an international initiative similar to the Coral Triangle Initiative is required to conserve this region, which includes the territorial waters of six countries. © 2012 Fauna & Flora International.

  4. Lost-in-Space Star Identification Using Planar Triangle Principal Component Analysis Algorithm

    Directory of Open Access Journals (Sweden)

    Fuqiang Zhou

    2015-01-01

    Full Text Available It is a challenging task for a star sensor to implement star identification and determine the attitude of a spacecraft in the lost-in-space mode. Several algorithms based on triangle method are proposed for star identification in this mode. However, these methods hold great time consumption and large guide star catalog memory size. The star identification performance of these methods requires improvements. To address these problems, a star identification algorithm using planar triangle principal component analysis is presented here. A star pattern is generated based on the planar triangle created by stars within the field of view of a star sensor and the projection of the triangle. Since a projection can determine an index for a unique triangle in the catalog, the adoption of the k-vector range search technique makes this algorithm very fast. In addition, a sharing star validation method is constructed to verify the identification results. Simulation results show that the proposed algorithm is more robust than the planar triangle and P-vector algorithms under the same conditions.

  5. Mark Kostabi soovib muuta inimesi õnnelikumaks / Kalev Mark Kostabi

    Index Scriptorium Estoniae

    Kostabi, Kalev Mark, 1960-

    2008-01-01

    Kalev Mark Kostabi oma sisekujunduslikest eelistustest, ameeriklaste ja itaallaste kodude sisekujunduse erinevustest, kunstist kui ruumikujunduse ühest osast, oma New Yorgi ja Rooma korterite kujundusest

  6. Utilization of the research and measurement reactor Braunschweig for neutron metrology

    International Nuclear Information System (INIS)

    Alberts, W.G.

    1982-01-01

    The objectives of the Physikalisch-Technische Bundesanstalt (PTB) with regard to neutron metrology are briefly described. The use of the PTB's Research and Measuring Reactor as neutron source for metrological purposes is discussed. Reference neutron beams are described which serve as irradiation facilities for the calibration of detectors for radiation protection purposes in the frame of the legal metrology work in the PTB. (orig.) [de

  7. European research project 'Metrology for radioactive waste management'

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. This poster presents impact, excellence, relevance to EMPR objectives, and implementation and management of this project.(author)

  8. NotaMark industrial laser marking system: a new security marking technology

    Science.gov (United States)

    Moreau, Vincent G.

    2004-06-01

    Up until now, the only variable alphanumeric data which could be added to banknotes was the number, applied by means of impact typographical numbering boxes. As an additional process or an alternative to this mechanical method, a non-contact laser marking process can be used offering high quality and greater levels of flexibility. For this purpose KBA-GIORI propose an exclusive laser marking solution called NotaMark. The laser marking process NotaMark is the ideal solution for applying variable data and personalizing banknotes (or any other security documents) with a very high resolution, for extremely large production volumes. A completely integrated solution has been developed comprised of laser light sources, marking head units, and covers and extraction systems. NotaMark allows the marking of variable data by removing locally and selectively, specific printed materials leaving the substrate itself untouched. A wide range of materials has already been tested extensively. NotaMark is a new security feature which is easy to identify and difficult to counterfeit, and which complies with the standard mechanical and chemical resistance tests in the security printing industry as well as with other major soiling tests. The laser marking process opens up a whole new range of design possibilities and can be used to create a primary security feature such as numbering, or to enhance the value of existing features.

  9. Triangle network motifs predict complexes by complementing high-error interactomes with structural information.

    Science.gov (United States)

    Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael

    2009-06-27

    A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient

  10. Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Directory of Open Access Journals (Sweden)

    Labudde Dirk

    2009-06-01

    Full Text Available Abstract Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS. PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that

  11. The subatlantic triangle: gateway to early localization of the atlantoaxial vertebral artery.

    Science.gov (United States)

    Tayebi Meybodi, Ali; Gandhi, Sirin; Preul, Mark C; Lawton, Michael T

    2018-04-27

    OBJECTIVE Exposure of the vertebral artery (VA) between C-1 and C-2 vertebrae (atlantoaxial VA) may be necessary in a variety of pathologies of the craniovertebral junction. Current methods to expose this segment of the VA entail sharp dissection of muscles close to the internal jugular vein and the spinal accessory nerve. The present study assesses the technique of exposing the atlantoaxial VA through a newly defined muscular triangle at the craniovertebral junction. METHODS Five cadaveric heads were prepared for surgical simulation in prone position, turned 30°-45° toward the side of exposure. The atlantoaxial VA was exposed through the subatlantic triangle after reflecting the sternocleidomastoid and splenius capitis muscles inferiorly. The subatlantic triangle was formed by 3 groups of muscles: 1) the levator scapulae and splenius cervicis muscles inferiorly and laterally, 2) the longissimus capitis muscle inferiorly and medially, and 3) the inferior oblique capitis superiorly. The lengths of the VA exposed through the triangle before and after unroofing the C-2 transverse foramen were measured. RESULTS The subatlantic triangle consistently provided access to the whole length of atlantoaxial VA. The average length of the VA exposed via the subatlantic triangle was 19.5 mm. This average increased to 31.5 mm after the VA was released at the C-2 transverse foramen. CONCLUSIONS The subatlantic triangle provides a simple and straightforward pathway to expose the atlantoaxial VA. The proposed method may be useful during posterior approaches to the craniovertebral junction should early exposure and control of the atlantoaxial VA become necessary.

  12. Spectroscopic metrology for isotope composition measurements and transfer standards

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2017-04-01

    The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H

  13. Metrology of human-based and other qualitative measurements

    Science.gov (United States)

    Pendrill, Leslie; Petersson, Niclas

    2016-09-01

    The metrology of human-based and other qualitative measurements is in its infancy—concepts such as traceability and uncertainty are as yet poorly developed. This paper reviews how a measurement system analysis approach, particularly invoking as performance metric the ability of a probe (such as a human being) acting as a measurement instrument to make a successful decision, can enable a more general metrological treatment of qualitative observations. Measures based on human observations are typically qualitative, not only in sectors, such as health care, services and safety, where the human factor is obvious, but also in customer perception of traditional products of all kinds. A principal challenge is that the usual tools of statistics normally employed for expressing measurement accuracy and uncertainty will probably not work reliably if relations between distances on different portions of scales are not fully known, as is typical of ordinal or other qualitative measurements. A key enabling insight is to connect the treatment of decision risks associated with measurement uncertainty to generalized linear modelling (GLM). Handling qualitative observations in this way unites information theory, the perceptive identification and choice paradigms of psychophysics. The Rasch invariant measure psychometric GLM approach in particular enables a proper treatment of ordinal data; a clear separation of probe and item attribute estimates; simple expressions for instrument sensitivity; etc. Examples include two aspects of the care of breast cancer patients, from diagnosis to rehabilitation. The Rasch approach leads in turn to opportunities of establishing metrological references for quality assurance of qualitative measurements. In psychometrics, one could imagine a certified reference for knowledge challenge, for example, a particular concept in understanding physics or for product quality of a certain health care service. Multivariate methods, such as Principal Component

  14. Metrology of human-based and other qualitative measurements

    International Nuclear Information System (INIS)

    Pendrill, Leslie; Petersson, Niclas

    2016-01-01

    The metrology of human-based and other qualitative measurements is in its infancy—concepts such as traceability and uncertainty are as yet poorly developed. This paper reviews how a measurement system analysis approach, particularly invoking as performance metric the ability of a probe (such as a human being) acting as a measurement instrument to make a successful decision, can enable a more general metrological treatment of qualitative observations. Measures based on human observations are typically qualitative, not only in sectors, such as health care, services and safety, where the human factor is obvious, but also in customer perception of traditional products of all kinds. A principal challenge is that the usual tools of statistics normally employed for expressing measurement accuracy and uncertainty will probably not work reliably if relations between distances on different portions of scales are not fully known, as is typical of ordinal or other qualitative measurements. A key enabling insight is to connect the treatment of decision risks associated with measurement uncertainty to generalized linear modelling (GLM). Handling qualitative observations in this way unites information theory, the perceptive identification and choice paradigms of psychophysics. The Rasch invariant measure psychometric GLM approach in particular enables a proper treatment of ordinal data; a clear separation of probe and item attribute estimates; simple expressions for instrument sensitivity; etc. Examples include two aspects of the care of breast cancer patients, from diagnosis to rehabilitation. The Rasch approach leads in turn to opportunities of establishing metrological references for quality assurance of qualitative measurements. In psychometrics, one could imagine a certified reference for knowledge challenge, for example, a particular concept in understanding physics or for product quality of a certain health care service. Multivariate methods, such as Principal Component

  15. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  16. Scientific language and metrology; El lenguaje cientificio y la metrologia

    Energy Technology Data Exchange (ETDEWEB)

    Campo Maldonado, D. del; Martin Blasco, B.; Prieto Esteban, E.

    2011-07-01

    The International System of Units (SI) reflects all the decisions and recommendations regarding units of measurement issued by the General Conference on Weights and Measures, including rules for writing the names and symbols of measurement units and for expressing the values of quantities. Even though the SI is internationally accepted and is the declared legal system whose use is obligatory in Spain, the Spanish Metrology Centre has been detecting an incorrect use of the units of measurement both in textbooks at all levels and in scientific articles. (Author) 5 refs.

  17. Precision metrology of NSTX surfaces using coherent laser radar ranging

    International Nuclear Information System (INIS)

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  18. Metrology-based control and profitability in the semiconductor industry

    Science.gov (United States)

    Weber, Charles

    2001-06-01

    This paper summarizes three studies of the semiconductor industry conducted at SEMATECH and MIT's Sloan School of Management. In conjunction they lead to the conclusion that rapid problem solving is an essential component of profitability in the semiconductor industry, and that metrology-based control is instrumental to rapid problem solving. The studies also identify the need for defect attribution. Once a source of a defect has been identified, the appropriate resources--human and technological--need to be brought into the physically optimal location for corrective action. The Internet is likely to enable effective defect attribution by inducing collaboration between different companies.

  19. Ultrabroadband optical chirp linearization for precision metrology applications.

    Science.gov (United States)

    Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall

    2009-12-01

    We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.

  20. Profile variation impact on FIB cross-section metrology

    Science.gov (United States)

    Cordes, Aaron; Bunday, Benjamin; Nadeau, Jim

    2012-03-01

    The focused ion beam (FIB) milling tool is an important component of reference metrology and process characterization, both as a supporting instrument for bulk sample preparation before forwarding to the transmission electron microscope (TEM) and other instruments and as an in situ measurement instrument using angled scanning electron microscopy. As features grow denser, deeper and more demanding, full-profile reference metrology is needed, and this methodology will only grow in importance. Thus, the ability to extract accurate dimensional and profile information out of the crosssectional faces produced by FIB milling is critical. For features that demonstrate perfect symmetry in the plane of the cross section, analyzing images and extracting metrology data are straightforward. However, for industrial materials, symmetry is not a safe assumption: as features shrink, the line edge and sidewall roughness increases as a percentage of the overall feature dimension. Furthermore, with the introduction of more complex architectures such as 3D memory and FinFETs, the areas of greatest interest, such as the intersections of wrap-around gates, cannot be assumed to be symmetrical in any given plane if cut placement is not precisely controlled. Therefore it is important to establish the exact location and repeatability of the cross-section plane, both in terms of coordinate placement and effective angle of the milled surface. To this end, we prepared designed-in line edge roughness samples in the Albany Nanotech facility using SEMATECH's AMAG6 metrology reticle. The samples were thoroughly characterized before being milled by a non-destructive, sidewall-scanning atomic force microscope (AFM). These samples are then milled and measured under varying process and setup parameters using a single-beam FIB with angled SEM. We established methodologies that allow precise alignment of the cut planes of slice-and-view FIB milling to 3D-AFM scan lines to compare repeated sections

  1. A focal plane metrology system and PSF centroiding experiment

    Science.gov (United States)

    Li, Haitao; Li, Baoquan; Cao, Yang; Li, Ligang

    2016-10-01

    In this paper, we present an overview of a detector array equipment metrology testbed and a micro-pixel centroiding experiment currently under development at the National Space Science Center, Chinese Academy of Sciences. We discuss on-going development efforts aimed at calibrating the intra-/inter-pixel quantum efficiency and pixel positions for scientific grade CMOS detector, and review significant progress in achieving higher precision differential centroiding for pseudo star images in large area back-illuminated CMOS detector. Without calibration of pixel positions and intrapixel response, we have demonstrated that the standard deviation of differential centroiding is below 2.0e-3 pixels.

  2. Fringe pattern analysis for optical metrology theory, algorithms, and applications

    CERN Document Server

    Servin, Manuel; Padilla, Moises

    2014-01-01

    The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such

  3. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  4. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  5. Advanced Metrology for Characterization of Magnetic Tunnel Junctions

    DEFF Research Database (Denmark)

    Kjær, Daniel

    -plane tunneling (CIPT) for characterization of magnetic tunnel junctions (MTJs), which constitutes the key component not only in MRAM but also the read-heads of modern hard disk drives. MTJs are described by their tunnel magnetoresistance (TMR), which is the relative difference of the resistance area products (RA...... of this project has been to provide cheaper, faster and more precise metrology for MTJs. This goal has been achieved in part by the demonstration of a static field CIPT method, which allows us to reduce the measurement time by a factor of 5, by measuring only RA thus excluding TMR. This enhancement is obtained...

  6. LISA Pathfinder: Optical Metrology System monitoring during operations

    Science.gov (United States)

    Audley, Heather E.; LISA Pathfinder Collaboration

    2017-05-01

    The LISA Pathfinder (LPF) mission has demonstrated excellent performance. In addition to having surpassed the main mission goals, data has been collected from the various subsystems throughout the duration of the mission. This data is a valuable resource, both for a more complete understanding of the LPF satellite and the differential acceleration measurements, as well as for the design of the future Laser Interferometer Space Antenna (LISA) mission. Initial analysis of the Optical Metrology System (OMS) data was performed as part of daily system monitoring, and more in-depth analyses are ongoing. This contribution presents an overview of these activities along with an introduction to the OMS.

  7. Accreditation experience of radioisotope metrology laboratory of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Iglicki, A. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: iglicki@cae.cnea.gov.ar; Mila, M.I. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: mila@cae.cnea.gov.ar; Furnari, J.C. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Cerutti, G. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Carballido, M. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Guillen, V. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Araya, X. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Bianchini, R. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)

    2006-10-15

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the ({alpha}/{beta})-{gamma} coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.

  8. Accreditation experience of radioisotope metrology laboratory of Argentina

    International Nuclear Information System (INIS)

    Iglicki, A.; Mila, M.I.; Furnari, J.C.; Arenillas, P.; Cerutti, G.; Carballido, M.; Guillen, V.; Araya, X.; Bianchini, R.

    2006-01-01

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (α/β)-γ coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved

  9. Industrial, agricultural, and medical applications of radiation metrology

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1987-01-01

    Photon and particle radiations (gamma rays, X-rays, bremsstrahlung, electrons and other charged particles, neutrons) from radioactive isotopes, X-ray tubes, and accelerators are now widely used in gauging, production control, and other monitoring and metrology devices where avoidance of mechanical contact is desirable. The general principles of radiation gauges, which rely on detection of radiation transmitted by the sample, or on detection of scattered or other secondary radiations produced in the sample, are discussed. Examples of such devices currently used in industrial, agricultural, and medical situations are presented, and some anticipated developments are mentioned. (author)

  10. Development of a free software for laboratory of metrology

    International Nuclear Information System (INIS)

    Silveira, Renata R. da; Benevides, Clayton A.

    2014-01-01

    The Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE) has a Metrology Laboratory to realize radioactive assays and calibrations in X and gamma radiation. This job, realized before in a manual way, had only paper recording and a hard-working data recovery. The objective of this job was to develop an application with free software to manage the laboratory activities, as service recording, rastreability control and environmental conditions monitoring, beyond automate the certificates and reports. As result, we have obtained the optimization of the routine and the management of the laboratory. (author)

  11. The Quality Control of Reference Standards in Metrology Dosimetry

    International Nuclear Information System (INIS)

    Lazarevic, Dj.; Ciraj Bjelac, O.; Kovacevic, M.; Vukcevic, M.

    2008-01-01

    This works presents the quality control tests applied to two types of ionization chambers with suitable electrometers. Measuring assemblies were tested in order to assess their performance and adequacy for use as reference standards in ionising radiation metrology laboratory for calibrations in the field of radiotherapy and radiation protection. Two types of ionizing chambers (Farmer type, 0.6 cm 3 and spherical ionizing chamber, 1 l) with suitable electrometers were tested. Following test were performed: repeatability, long term stability, polarity and leakage current measurement. All tested measuring assemblies demonstrated proper performance, correctness and high reliance of measurements, since all implemented quality control test results were within acceptable limits. (author)

  12. A universal quantum module for quantum communication, computation, and metrology

    Science.gov (United States)

    Hanks, Michael; Lo Piparo, Nicolò; Trupke, Michael; Schmiedmayer, Jorg; Munro, William J.; Nemoto, Kae

    2017-08-01

    In this work, we describe a simple module that could be ubiquitous for quantum information based applications. The basic modules comprises a single NV- center in diamond embedded in an optical cavity, where the cavity mediates interactions between photons and the electron spin (enabling entanglement distribution and efficient readout), while the nuclear spins constitutes a long-lived quantum memories capable of storing and processing quantum information. We discuss how a network of connected modules can be used for distributed metrology, communication and computation applications. Finally, we investigate the possible use of alternative diamond centers (SiV/GeV) within the module and illustrate potential advantages.

  13. Perceptual grouping without awareness: superiority of Kanizsa triangle in breaking interocular suppression.

    Directory of Open Access Journals (Sweden)

    Lan Wang

    Full Text Available Much information could be processed unconsciously. However, there is no direct evidence on whether perceptual grouping could occur without awareness. To answer this question, we investigated whether a Kanizsa triangle (an example of perceptual grouping is processed differently from stimuli with the same local components but are ungrouped or weakly grouped. Specifically, using a suppression time paradigm we tested whether a Kanizsa triangle would emerge from interocular continuous flash suppression sooner than control stimuli. Results show a significant advantage of the Kanizsa triangle: the Kanizsa triangle emerged from suppression noise significantly faster than the control stimulus with the local Pacmen randomly rotated (t(9 = -2.78, p = 0.02; and also faster than the control stimulus with all Pacmen rotated 180° (t(11 = -3.20, p<0.01. Additional results demonstrated that the advantage of the grouped Kanizsa triangle could not be accounted for by the faster detection speed at the conscious level for the Kanizsa figures on a dynamic noise background. Our results indicate that certain properties supporting perceptual grouping could be processed in the absence of awareness.

  14. Sex Determination Using Inion-Opistocranium-Asterion (IOA Triangle in Nigerians’ Skulls

    Directory of Open Access Journals (Sweden)

    C. N. Orish

    2014-01-01

    Full Text Available Background. Determination of sex is an important concern to the forensic anthropologists as it is critical for individual identification. This study has investigated the existence of sexual dimorphism in the dimensions and the area of the IOA triangle. Methods. A total of 100 adult dry skulls, (78 males; 22 females from departments of anatomy in Nigerian universities were used for this study. Automatic digital calliper was used for the measurement. Coefficient of variation, correlation, linear regression, percentiles, and sexual dimorphism ratio were computed from the IOA triangle measurements. The IOA triangle area was compared between sexes. Results. The male parameters were significantly (P<0.05 higher than female parameters. The left opistocranium-asterion length was 71.09±0.56 and 61.68±3.35 mm and the right opistocranium-asterion length was 69.73±0.49 and 60.92±2.10 mm for male and female, respectively. A total area of IOA triangle of 1938.88 mm2 and 1305.68 mm2 for male and female, respectively, was calculated. The left IOA indices were 46.42% and 37.40% in males and females, respectively, while the right IOA indices for males and females were 47.19% and 38.87%, respectively. Conclusion. The anthropometry of inion-opistocranium-asterion IOA triangle can be a guide in gender determination of unknown individuals.

  15. Visual Search for Wines with a Triangle on the Label in a Virtual Store

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2017-12-01

    Full Text Available Two experiments were conducted in a virtual reality (VR environment in order to investigate participants’ in-store visual search for bottles of wines displaying a prominent triangular shape on their label. The experimental task involved virtually moving along a wine aisle in a virtual supermarket while searching for the wine bottle on the shelf that had a different triangle on its label from the other bottles. The results of Experiment 1 revealed that the participants identified the bottle with a downward-pointing triangle on its label more rapidly than when looking for an upward-pointing triangle on the label instead. This finding replicates the downward-pointing triangle superiority (DPTS effect, though the magnitude of this effect was more pronounced in the first as compared to the second half of the experiment, suggesting a modulating role of practice. The results of Experiment 2 revealed that the DPTS effect was also modulated by the location of the target on the shelf. Interestingly, however, the results of a follow-up survey demonstrate that the orientation of the triangle did not influence the participants’ evaluation of the wine bottles. Taken together, these findings reveal how in-store the attention of consumers might be influenced by the design elements in product packaging. These results therefore suggest that shopping in a virtual supermarket might offer a practical means of assessing the shelf standout of product packaging, which has important implications for food marketing.

  16. Visual Search for Wines with a Triangle on the Label in a Virtual Store.

    Science.gov (United States)

    Zhao, Hui; Huang, Fuxing; Spence, Charles; Wan, Xiaoang

    2017-01-01

    Two experiments were conducted in a virtual reality (VR) environment in order to investigate participants' in-store visual search for bottles of wines displaying a prominent triangular shape on their label. The experimental task involved virtually moving along a wine aisle in a virtual supermarket while searching for the wine bottle on the shelf that had a different triangle on its label from the other bottles. The results of Experiment 1 revealed that the participants identified the bottle with a downward-pointing triangle on its label more rapidly than when looking for an upward-pointing triangle on the label instead. This finding replicates the downward-pointing triangle superiority (DPTS) effect, though the magnitude of this effect was more pronounced in the first as compared to the second half of the experiment, suggesting a modulating role of practice. The results of Experiment 2 revealed that the DPTS effect was also modulated by the location of the target on the shelf. Interestingly, however, the results of a follow-up survey demonstrate that the orientation of the triangle did not influence the participants' evaluation of the wine bottles. Taken together, these findings reveal how in-store the attention of consumers might be influenced by the design elements in product packaging. These results therefore suggest that shopping in a virtual supermarket might offer a practical means of assessing the shelf standout of product packaging, which has important implications for food marketing.

  17. PREFACE: 14th International Conference on Metrology and Properties of Engineering Surfaces (Met & Props 2013)

    Science.gov (United States)

    Fu, Wei-En

    2014-03-01

    Proceedings of the 14th International Conference, Taipei, Taiwan, 17th-21st June, 2013 Taiwan Organized by: Center for Measurement Standards/Industrial Technology Research Institute Mechanical and Systems Research Laboratories/Industrial Technology Research Institute National Taiwan University National Cheng Kung University National Taiwan University of Science and Technology National Tsing Hua University Greetings from Chairman of International Programme CommitteeTom Thomas When Professor Ken Stout and I founded this series of conferences in the United Kingdom more than thirty years ago, we did not anticipate its longevity or its success. Since that first meeting at Leicester, the conference has been often held in England, but also in several other European countries: France, Poland and Sweden, as well as in the United States. Ken, sadly no longer with us, would be proud of what it has achieved and has come to represent. Generations of researchers have presented their new ideas and innovations here which are now embodied in many textbooks and international standards. But this conference in 2013 marks a new departure and perhaps a new future. For the first time it is being held in Asia, reflecting the historic rise of the economies of the Pacific Rim, adding modern technology to their long-existing traditions of ordered insight and precise craftsmanship. Many of you have travelled far to attend this meeting, and we hope you will feel your trouble has been rewarded. We have an excellent selection of papers from all over the world from many of the world's experts, embodying the consolidation of tested ideas as well as the latest advances in the subject. These will be set in context by a glittering array of keynote and invited speakers. On behalf of the International Programme Committee, I am glad to acknowledge the hard work of the members of the Local Organising Committee in putting the programme together and making all the arrangements, and to accept their

  18. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN; Laboratorio Nacional de Metrologia das Radiacoes Ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs.

  19. Management of metrology in measuring of the displacement of building construction

    Directory of Open Access Journals (Sweden)

    Jiří Kratochvíl

    2007-06-01

    Full Text Available The metrology management of the measurement of the displacement of building construction is not regulated in the standard ČSN ISO 73 0405 - Measurement of the displacement of building construction. But the metrology management has to be included in the project of measurement of the displacement (Stage of project. Then we have to pay an attention to the metrological management during this measurement (Stage of realization and during the evaluation of this measurement (Stage of evaluation. We have to insist on the subsequent improving of metrology management within the frame of the next project (so-called feedback. The metrology management in the measurement of the displacement during the stages should be based on an application of statutory instruments and technical standards. We should insist especially on the system of standards for the quality control ISO 9000. Considering specialities of geodetic measurements it is necessary to adapt the metrology management. That is why it will differ from the metrology management in other fields of knowledge. This paper includes some steps of metrological provision which must not be ignored.

  20. Quantum interference metrology at deep-UV wavelengths using phase-controlled ultrashort laser pulses

    NARCIS (Netherlands)

    Zinkstok, R. Th; Witte, S.; Ubachs, W.; Hogervorst, W.; Eikema, K. S E

    2005-01-01

    High-resolution metrology at wavelengths shorter than ultraviolet is in general hampered by a limited availability of appropriate laser sources. It is demonstrated that this limitation can be overcome by quantum-interference metrology with frequency up-converted ultrafast laser pulses. The required

  1. Issues of Teaching Metrology in Higher Education Institutions of Civil Engineering in Russia

    Science.gov (United States)

    Pukharenko, Yurii Vladimirovich; Norin, Veniamin Aleksandrovich

    2017-01-01

    The work analyses the training process condition in teaching the discipline "Metrology, Standardization, Certification and Quality Control." It proves that the current educational standard regarding the instruction of the discipline "Metrology, Standardization, Certification and Quality Control" does not meet the needs of the…

  2. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN; Laboratorio Nacional de Metrologia das Radiacoes Ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs.

  3. Industrial Photogrammetry - Accepted Metrology Tool or Exotic Niche

    Science.gov (United States)

    Bösemann, Werner

    2016-06-01

    New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]). This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly) illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM's. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.

  4. The origins of the metrology of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, Anselmo S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Fisica]. E-mail: aspas@itaipu.vdg.fis.puc-rio.br

    2000-07-01

    Metrology of ionizing radiation started soon after the discovery of radioactivity. However, the modern metrology of ionizing radiation can be considered a by product of the Manhattan Project. When this mammoth effort to produce the first nuclear weapons was initiated, little was known about some of the properties of natural elements, though the phenomenon of natural radioactivity was already known for almost half a century. Less was known about the radioactive materials involved in that project. The amount of those materials which had to be handled were higher than any amount of {sup 226} Ra and {sup 228} Ra ever used thus far. The first atomic piles produced concentration levels of radioactivity much higher than any level known before. There was then a threat not only for the health of hundred of technicians and scientists, but also for thousands of workers. The secrecy involving that project would not allow much to be told about the radioactive hazards. There was, however, the need to protect workers and the public in General against unnecessary exposures to ionizing radiation. The origin of the standards used in radiological protection from pre-world war II and their remarkable evolution during and immediately after this war will be discussed in the paper. (author)

  5. The origins of the metrology of ionizing radiation

    International Nuclear Information System (INIS)

    Paschoa, Anselmo S.

    2000-01-01

    Metrology of ionizing radiation started soon after the discovery of radioactivity. However, the modern metrology of ionizing radiation can be considered a by product of the Manhattan Project. When this mammoth effort to produce the first nuclear weapons was initiated, little was known about some of the properties of natural elements, though the phenomenon of natural radioactivity was already known for almost half a century. Less was known about the radioactive materials involved in that project. The amount of those materials which had to be handled were higher than any amount of 226 Ra and 228 Ra ever used thus far. The first atomic piles produced concentration levels of radioactivity much higher than any level known before. There was then a threat not only for the health of hundred of technicians and scientists, but also for thousands of workers. The secrecy involving that project would not allow much to be told about the radioactive hazards. There was, however, the need to protect workers and the public in General against unnecessary exposures to ionizing radiation. The origin of the standards used in radiological protection from pre-world war II and their remarkable evolution during and immediately after this war will be discussed in the paper. (author)

  6. The place of highly accurate methods by RNAA in metrology

    International Nuclear Information System (INIS)

    Dybczynski, R.; Danko, B.; Polkowska-Motrenko, H.; Samczynski, Z.

    2006-01-01

    With the introduction of physical metrological concepts to chemical analysis which require that the result should be accompanied by uncertainty statement written down in terms of Sl units, several researchers started to consider lD-MS as the only method fulfilling this requirement. However, recent publications revealed that in certain cases also some expert laboratories using lD-MS and analyzing the same material, produced results for which their uncertainty statements did not overlap, what theoretically should not have taken place. This shows that no monopoly is good in science and it would be desirable to widen the set of methods acknowledged as primary in inorganic trace analysis. Moreover, lD-MS cannot be used for monoisotopic elements. The need for searching for other methods having similar metrological quality as the lD-MS seems obvious. In this paper, our long-time experience on devising highly accurate ('definitive') methods by RNAA for the determination of selected trace elements in biological materials is reviewed. The general idea of definitive methods based on combination of neutron activation with the highly selective and quantitative isolation of the indicator radionuclide by column chromatography followed by gamma spectrometric measurement is reminded and illustrated by examples of the performance of such methods when determining Cd, Co, Mo, etc. lt is demonstrated that such methods are able to provide very reliable results with very low levels of uncertainty traceable to Sl units

  7. X-ray pulse wavefront metrology using speckle tracking

    International Nuclear Information System (INIS)

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-01-01

    The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology

  8. Elements for successful sensor-based process control {Integrated Metrology}

    International Nuclear Information System (INIS)

    Butler, Stephanie Watts

    1998-01-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended

  9. Elements for successful sensor-based process control {Integrated Metrology}

    Science.gov (United States)

    Butler, Stephanie Watts

    1998-11-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.

  10. Ensuring Food Integrity by Metrology and FAIR Data Principles

    Directory of Open Access Journals (Sweden)

    Michael Rychlik

    2018-05-01

    Full Text Available Food integrity is a general term for sound, nutritive, healthy, tasty, safe, authentic, traceable, as well as ethically, safely, environment-friendly, and sustainably produced foods. In order to verify these properties, analytical methods with a higher degree of accuracy, sensitivity, standardization and harmonization and a harmonized system for their application in analytical laboratories are required. In this view, metrology offers the opportunity to achieve these goals. In this perspective article the current global challenges in food analysis and the principles of metrology to fill these gaps are presented. Therefore, the pan-European project METROFOOD-RI within the framework of the European Strategy Forum on Research Infrastructures (ESFRI was developed to establish a strategy to allow reliable and comparable analytical measurements in foods along the whole process line starting from primary producers until consumers and to make all data findable, accessible, interoperable, and re-usable according to the FAIR data principles. The initiative currently consists of 48 partners from 18 European Countries and concluded its “Early Phase” as research infrastructure by organizing its future structure and presenting a proof of concept by preparing, distributing and comprehensively analyzing three candidate Reference Materials (rice grain, rice flour, and oyster tissue and establishing a system how to compile, process, and store the generated data and how to exchange, compare them and make them accessible in data bases.

  11. INDUSTRIAL PHOTOGRAMMETRY - ACCEPTED METROLOGY TOOL OR EXOTIC NICHE

    Directory of Open Access Journals (Sweden)

    W. Bösemann

    2016-06-01

    Full Text Available New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]. This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM’s. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.

  12. Metrology challenges for high-rate nanomanufacturing of polymer structures

    Science.gov (United States)

    Mead, Joey; Barry, Carol; Busnaina, Ahmed; Isaacs, Jacqueline

    2012-10-01

    The transfer of nanoscience accomplishments into commercial products is hindered by the lack of understanding of barriers to nanoscale manufacturing. We have developed a number of nanomanufacturing processes that leverage available high-rate plastics fabrication technologies. These processes include directed assembly of a variety of nanoelements, such as nanoparticles and nanotubes, which are then transferred onto a polymer substrate for the fabrication of conformal/flexible electronic materials, among other applications. These assembly processes utilize both electric fields and/or chemical functionalization. Conducting polymers and carbon nanotubes have been successfully transferred to a polymer substrate in times less than 5 minutes, which is commercially relevant and can be utilized in a continuous (reel to reel/roll to roll) process. Other processes include continuous high volume mixing of nanoelements (CNTs, etc) into polymers, multi-layer extrusion and 3D injection molding of polymer structures. These nanomanufacturing processes can be used for wide range of applications, including EMI shielding, flexible electronics, structural materials, and novel sensors (specifically for chem/bio detection). Current techniques to characterize the quality and efficacy of the processes are quite slow. Moreover, the instrumentation and metrology needs for these manufacturing processes are varied and challenging. Novel, rapid, in-line metrology to enable the commercialization of these processes is critically needed. This talk will explore the necessary measurement needs for polymer based nanomanufacturing processes for both step and continuous (reel to reel/roll to roll) processes.

  13. Development of laser materials processing and laser metrology techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  14. Diffraction-based overlay metrology for double patterning technologies

    Science.gov (United States)

    Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy

    2009-03-01

    The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.

  15. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  16. A Dissimilarity Measure for Clustering High- and Infinite Dimensional Data that Satisfies the Triangle Inequality

    Science.gov (United States)

    Socolovsky, Eduardo A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The cosine or correlation measures of similarity used to cluster high dimensional data are interpreted as projections, and the orthogonal components are used to define a complementary dissimilarity measure to form a similarity-dissimilarity measure pair. Using a geometrical approach, a number of properties of this pair is established. This approach is also extended to general inner-product spaces of any dimension. These properties include the triangle inequality for the defined dissimilarity measure, error estimates for the triangle inequality and bounds on both measures that can be obtained with a few floating-point operations from previously computed values of the measures. The bounds and error estimates for the similarity and dissimilarity measures can be used to reduce the computational complexity of clustering algorithms and enhance their scalability, and the triangle inequality allows the design of clustering algorithms for high dimensional distributed data.

  17. A mechanism for the downturn in inverse susceptibility in triangle-based frustrated spin systems

    International Nuclear Information System (INIS)

    Isoda, M

    2008-01-01

    A mechanism for the downturn of inverse magnetic susceptibility below an intermediate temperature, recently observed in many experiments, is proposed as an intrinsic feature of lattices with triangle-based frustrated geometries. The temperature at the bending of the inverse susceptibility curve may be related to the features of other thermodynamic properties; the hump of the specific heat and the emergence of a 1/3 plateau in magnetization under a magnetic field. This fact is derived through a Monte Carlo simulation study of the Ising model on triangular and kagome lattices, and the exact calculation for the single and small-sized triangle clusters, on both the Ising and Heisenberg models. These results may indicate the dominance of S(S z ) = 1/2 quantum (classical) trimer formation in the intermediate-energy regime in two-dimensional triangle-based lattices

  18. Performance Comparison Of Triangle Antenna of 60 GHz for 5G Wireless Communication Network

    Directory of Open Access Journals (Sweden)

    Aishah A.S.

    2017-01-01

    Full Text Available In this paper microstrip triangle with slot antenna for 5G wireless communication network are proposed. The microstip triangle antenna is design and operating 60 GHz milimeter-wave frequency band and it's suitable for 5G wireless communication. The substrates are chosen in the design, which are RogerRT5880 with copper thickness 0.035 mm to analyze their effect toward milimeter-wave performance on the designed. The designed and analysis is performed by using CST Microwave Studio. The lowest return loss of the antenna is -24.75dB which is triangle with slot and the maximum gain obtained is 6.82 db at the 59.68GHz for this antenna. The antenna is considering the gain, return loss and size, the microstrip antenna can be a suitable candidate for the 5G wireless application for short range high speed communication.

  19. Civilsamfundets ABC: M for Marked

    DEFF Research Database (Denmark)

    Lund, Anker Brink; Meyer, Gitte

    2016-01-01

    Bogstaveligt talt: Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til M for Marked.......Bogstaveligt talt: Hvad er civilsamfundet? Anker Brink Lund og Gitte Meyer fra CBS Center for Civil Society Studies gennemgår civilsamfundet bogstav for bogstav. Vi er nået til M for Marked....

  20. Marks on the petroleum fiscality

    International Nuclear Information System (INIS)

    2007-02-01

    This document offers some marks on the petroleum fiscality in France: the taxes as the 'accises' and the 'TVA', the part of the taxes in the sale price at the service station, the comparison with other countries of Europe, the tax revenues and the Government budget. It provides also marks on the fuels prices formation (margins), the world petroleum markets (supply and demand) and the part of the petroleum companies on the petroleum market. (A.L.B.)

  1. Is this child sick? Usefulness of the Pediatric Assessment Triangle in emergency settings

    Directory of Open Access Journals (Sweden)

    Ana Fernandez

    Full Text Available Abstract Objective: The Pediatric Assessment Triangle is a rapid assessment tool that uses only visual and auditory clues, requires no equipment, and takes 30-60 s to perform. It's being used internationally in different emergency settings, but few studies have assessed its performance. The aim of this narrative biomedical review is to summarize the literature available regarding the usefulness of the Pediatric Assessment Triangle in clinical practice. Sources: The authors carried out a non-systematic review in the PubMed®, MEDLINE®, and EMBASE® databases, searching for articles published between 1999-2016 using the keywords “pediatric assessment triangle,” “pediatric triage,” “pediatric assessment tools,” and “pediatric emergency department.” Summary of the findings: The Pediatric Assessment Triangle has demonstrated itself to be useful to assess sick children in the prehospital setting and make transport decisions. It has been incorporated, as an essential instrument for assessing sick children, into different life support courses, although little has been written about the effectiveness of teaching it. Little has been published about the performance of this tool in the initial evaluation in the emergency department. In the emergency department, the Pediatric Assessment Triangle is useful to identify the children at triage who require more urgent care. Recent studies have assessed and proved its efficacy to also identify those patients having more serious health conditions who are eventually admitted to the hospital. Conclusions: The Pediatric Assessment Triangle is quickly spreading internationally and its clinical applicability is very promising. Nevertheless, it is imperative to promote research for clinical validation, especially for clinical use by emergency pediatricians and physicians.

  2. A clear map of the lower cranial nerves at the superior carotid triangle.

    Science.gov (United States)

    Cavalcanti, Daniel D; Garcia-Gonzalez, Ulises; Agrawal, Abhishek; Tavares, Paulo L M S; Spetzler, Robert F; Preul, Mark C

    2010-07-01

    The lower cranial nerves must be identified to avoid iatrogenic injury during skull base and high cervical approaches. Prompt recognition of these structures using basic landmarks could reduce surgical time and morbidity. The anterior triangle of the neck was dissected in 30 cadaveric head sides. The most superficial segments of the glossopharyngeal, vagus and its superior laryngeal nerves, accessory, and hypoglossal nerves were exposed and designated into smaller anatomic triangles. The midpoint of each nerve segment inside the triangles was correlated to the angle of the mandible (AM), mastoid tip (MT), and bifurcation of the common carotid artery. A triangle bounded by the styloglossus muscle, external carotid artery, and facial artery housed the glossopharyngeal nerve. This nerve segment was 0.06 ± 0.71 cm posterior to the AM and 2.50 ± 0.59 cm inferior to the MT. The vagus nerve ran inside the carotid sheath posterior to internal carotid artery and common carotid artery bifurcation in 48.3% of specimens. A triangle formed by the posterior belly of digastric muscle, sternocleidomastoid muscle, and internal jugular vein housed the accessory nerve, 1.90 ± 0.60 cm posterior to the AM and 2.30 ± 0.57 cm inferior to the MT. A triangle outlined by the posterior belly of digastric muscle, internal jugular vein, and common facial vein housed the hypoglossal nerve, which was 0.82 ± 0.84 cm posterior to the AM and 3.64 ± 0.70 cm inferior to the MT. Comprehensible landmarks can be defined to help expose the lower cranial nerves to avoid injury to this complex region. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  4. New solutions of the star-triangle relation with discrete and continuous spin variables

    OpenAIRE

    Kels, Andrew P.

    2015-01-01

    A new solution to the star-triangle relation is given, for an Ising type model that involves interacting spins, that contain integer and real valued components. Boltzmann weights of the model are given in terms of the lens elliptic-gamma function, and are based on Yamazaki's recently obtained solution of the star-star relation. The star-triangle given here, implies Seiberg duality for the $4\\!-\\!d$ $\\mathcal{N}=1$ $S_1\\times S_3/\\mathbb{Z}_r$ index of the $SU(2)$ quiver gauge theory, and the ...

  5. On the chromatic number of triangle-free graphs of large minimum degree

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2002-01-01

    We prove that, for each. fixed real number c > 1/3, the triangle-free graphs of minimum degree at least cn (where n is the number of vertices) have bounded chromatic number. This problem was raised by Erdos and Simonovits in 1973 who pointed out that there is no such result for c <1/3.......We prove that, for each. fixed real number c > 1/3, the triangle-free graphs of minimum degree at least cn (where n is the number of vertices) have bounded chromatic number. This problem was raised by Erdos and Simonovits in 1973 who pointed out that there is no such result for c

  6. BWR Mark I pressure suppression study: bench mark experiments

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1977-01-01

    Computer simulations representative of the wetwell of Mark I BWR's have predicted pressures and related phenomena. However, calculational predictions for purposes of engineering decision will be possible only if the code can be verified, i.e., shown to compute in accord with measured values. Described in the report is a set of single downcomer spherical flask bench mark experiments designed to produce quantitative data to validate various air-water dynamic computations; the experiments were performed since relevant bench mark data were not available from outside sources. Secondary purposes of the study were to provide a test bed for the instrumentation and post-experiment data processing techniques to be used in the Laboratory's reactor safety research program and to provide additional masurements for the air-water scaling study

  7. Reducing measurement uncertainty drives the use of multiple technologies for supporting metrology

    Science.gov (United States)

    Banke, Bill, Jr.; Archie, Charles N.; Sendelbach, Matthew; Robert, Jim; Slinkman, James A.; Kaszuba, Phil; Kontra, Rick; DeVries, Mick; Solecky, Eric P.

    2004-05-01

    Perhaps never before in semiconductor microlithography has there been such an interest in the accuracy of measurement. This interest places new demands on our in-line metrology systems as well as the supporting metrology for verification. This also puts a burden on the users and suppliers of new measurement tools, which both challenge and complement existing manufacturing metrology. The metrology community needs to respond to these challenges by using new methods to assess the fab metrologies. An important part of this assessment process is the ability to obtain accepted reference measurements as a way of determining the accuracy and Total Measurement Uncertainty (TMU) of an in-line critical dimension (CD). In this paper, CD can mean any critical dimension including, for example, such measures as feature height or sidewall angle. This paper describes the trade-offs of in-line metrology systems as well as the limitations of Reference Measurement Systems (RMS). Many factors influence each application such as feature shape, material properties, proximity, sampling, and critical dimension. These factors, along with the metrology probe size, interaction volume, and probe type such as e-beam, optical beam, and mechanical probe, are considered. As the size of features shrinks below 100nm some of the stalwarts of reference metrology come into question, such as the electrically determined transistor gate length. The concept of the RMS is expanded to show how multiple metrologies are needed to achieve the right balance of accuracy and sampling. This is also demonstrated for manufacturing metrology. Various comparisons of CDSEM, scatterometry, AFM, cross section SEM, electrically determined CDs, and TEM are shown. An example is given which demonstrates the importance in obtaining TMU by balancing accuracy and precision for selecting manufacturing measurement strategy and optimizing manufacturing metrology. It is also demonstrated how the necessary supporting metrology will

  8. The Effect of Internet-Based Education on Student Success in Teaching of 8th Grade Triangles Subject

    Science.gov (United States)

    Kaya, Deniz; Kesan, Cenk; Izgiol, Dilek

    2013-01-01

    In the study, it was researched the effect of internet-based application on student success. Internet-based application was used at the teaching of triangles subject which is included in 8th grade units of triangles and algebra. The study was carried out over the internet with a computer software program: Vitamin Program. The study was carried out…

  9. Outcomes on the pharmacopsychometric triangle in bupropion-SR vs. buspirone augmentation of citalopram in the STAR*D trial

    DEFF Research Database (Denmark)

    Bech, P; Fava, Maurizio; Trivedi, M H

    2012-01-01

    vs. buspirone in the acute therapy of major depression in the STAR*D study. The triangle provides a composite view in three domains of antidepressive activity, side effects, and quality of life. Method: Within the pharmacopsychometric triangle, the short six-item subscales of the Hamilton Depression...

  10. The need for LWR metrology standardization: the imec roughness protocol

    Science.gov (United States)

    Lorusso, Gian Francesco; Sutani, Takumichi; Rutigliani, Vito; van Roey, Frieda; Moussa, Alain; Charley, Anne-Laure; Mack, Chris; Naulleau, Patrick; Constantoudis, Vassilios; Ikota, Masami; Ishimoto, Toru; Koshihara, Shunsuke

    2018-03-01

    As semiconductor technology keeps moving forward, undeterred by the many challenges ahead, one specific deliverable is capturing the attention of many experts in the field: Line Width Roughness (LWR) specifications are expected to be less than 2nm in the near term, and to drop below 1nm in just a few years. This is a daunting challenge and engineers throughout the industry are trying to meet these targets using every means at their disposal. However, although current efforts are surely admirable, we believe they are not enough. The fact is that a specification has a meaning only if there is an agreed methodology to verify if the criterion is met or not. Such a standardization is critical in any field of science and technology and the question that we need to ask ourselves today is whether we have a standardized LWR metrology or not. In other words, if a single reference sample were provided, would everyone measuring it get reasonably comparable results? We came to realize that this is not the case and that the observed spread in the results throughout the industry is quite large. In our opinion, this makes the comparison of LWR data among institutions, or to a specification, very difficult. In this paper, we report the spread of measured LWR data across the semiconductor industry. We investigate the impact of image acquisition, measurement algorithm, and frequency analysis parameters on LWR metrology. We review critically some of the International Technology Roadmap for Semiconductors (ITRS) metrology guidelines (such as measurement box length larger than 2μm and the need to correct for SEM noise). We compare the SEM roughness results to AFM measurements. Finally, we propose a standardized LWR measurement protocol - the imec Roughness Protocol (iRP) - intended to ensure that every time LWR measurements are compared (from various sources or to specifications), the comparison is sensible and sound. We deeply believe that the industry is at a point where it is

  11. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    Science.gov (United States)

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly

  12. Experimental Demonstration of Higher Precision Weak-Value-Based Metrology Using Power Recycling

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Hu, Gang; Wang, Jian; Yu, Shang; Zhou, Zong-Quan; Cheng, Ze-Di; Xu, Jin-Shi; Fang, Sen-Zhi; Wu, Qing-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2016-12-01

    The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.

  13. Mark Napier / Mark Napier ; interv. Tilman Baumgärtel

    Index Scriptorium Estoniae

    Napier, Mark

    2006-01-01

    Ameerika kunstnikust Mark Napierist (sünd. 1961) ja tema loomingust, 2001. a. tehtud meiliintervjuu kunstnikuga. Võrguteosest "The Digital Landfill" (1998), koos Andy Deckiga loodud tööst "GrafficJam" (1999), töödest "Shredder" (1998), "Feed", "Riot", "P-Soup" (2000), võrgukunstist ja muust

  14. Minimal Marking: A Success Story

    Directory of Open Access Journals (Sweden)

    Anne McNeilly

    2014-11-01

    Full Text Available The minimal-marking project conducted in Ryerson’s School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The “minimal-marking” concept (Haswell, 1983, which requires dramatically more student engagement, resulted in more successful learning outcomes for surface-level knowledge acquisition than the more traditional approach of “teacher-corrects-all.” Results suggest it would be effective, not just for grammar, punctuation, and word usage, the objective here, but for any material that requires rote-memory learning, such as the Associated Press or Canadian Press style rules used by news publications across North America.

  15. Percentage Retail Mark-Ups

    OpenAIRE

    Thomas von Ungern-Sternberg

    1999-01-01

    A common assumption in the literature on the double marginalization problem is that the retailer can set his mark-up only in the second stage of the game after the producer has moved. To the extent that the sequence of moves is designed to reflect the relative bargaining power of the two parties it is just as plausible to let the retailer move first. Furthermore, retailers frequently calculate their selling prices by adding a percentage mark-up to their wholesale prices. This allows a retaile...

  16. Metrology and process control: dealing with measurement uncertainty

    Science.gov (United States)

    Potzick, James

    2010-03-01

    Metrology is often used in designing and controlling manufacturing processes. A product sample is processed, some relevant property is measured, and the process adjusted to bring the next processed sample closer to its specification. This feedback loop can be remarkably effective for the complex processes used in semiconductor manufacturing, but there is some risk involved because measurements have uncertainty and product specifications have tolerances. There is finite risk that good product will fail testing or that faulty product will pass. Standard methods for quantifying measurement uncertainty have been presented, but the question arises: how much measurement uncertainty is tolerable in a specific case? Or, How does measurement uncertainty relate to manufacturing risk? This paper looks at some of the components inside this process control feedback loop and describes methods to answer these questions.

  17. Design, fabrication and metrological evaluation of wearable pressure sensors.

    Science.gov (United States)

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  18. Silver nanoparticles: technological advances, societal impacts, and metrological challenges

    Science.gov (United States)

    Calderón-Jiménez, Bryan; Johnson, Monique E.; Montoro Bustos, Antonio R.; Murphy, Karen E.; Winchester, Michael R.; Vega Baudrit, José R.

    2017-02-01

    Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.

  19. On in-vivo skin topography metrology and replication techniques

    International Nuclear Information System (INIS)

    Rosen, B-G; Blunt, L; Thomas, T R

    2005-01-01

    Human skin metrology is an area of growing interest for many disciplines both in research and for commercial purposes. Changes in the skin topography are an early stage diagnosis tool not only for diseases but also give indication of the response to medical and cosmetic treatment. This paper focuses on the evaluation of in vivo and in vitro methodologies for accurate measurements of skin and outlines the quantitative characterisation of the skin topography. The study shows the applicability of in-vivo skin topography characterisation and also the advantages and limitations compared to conventional replication techniques. Finally, aspects of stripe projection methodology and 3D characterisation are discussed as a background to the proposed methodology in this paper

  20. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  1. A decade of innovation with laser speckle metrology

    Science.gov (United States)

    Ettemeyer, Andreas

    2003-05-01

    Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.

  2. Characterization and Metrology for ULSI Technology: 1998 International Conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, D.G. [NIST, Gaithersburg, MD 20899 (United States); Diebold, A.C. [SEMATECH, Austin, TX 78741 (United States); Bullis, W.M. [SEMI, Mountain View, CA 94043 (United States); Schaffner, T.J. [Texas Instruments, Dallas, TX 75221 (United States); McDonald, R. [Intel Corp., Santa Clara, CA 95050 (United States); Walters, E.J. [NIST, Gaithersburg, MD 20899 (United States)

    1998-11-01

    These proceedings represent papers presented at the 1998 International Conference on Characterization and Metrology for ULSI Technology (INIST) in March 1998. The Conference reviewed important semiconductor techniques that are crucial to continued advancements in the semiconductor industry. It brought together leaders, scientists, and engineers concerned with all aspects of the technology and characterization techniques for silicon research. The topics covered included front end processes consisting of modeling, materials, gate dielectrics, doping and wafer issues. Interconnects were discussed in detail including deposition technology. Lithography and patterning was also discussed. Finally, packaging/assembly of the integrated circuits and materials characterization including dopant profiling was discussed. The papers provide an effective portrayal of industry characterization needs and point out some of the problems that must be addressed by industry, academia, and government to continue the dramatic progress in semiconductor technology. There were 141 papers included in these proceedings, out of which 9 have been abstracted for the Energy,Science and Technology database.(AIP)

  3. Present status of metrology of electro-optical surveillance systems

    Science.gov (United States)

    Chrzanowski, K.

    2017-10-01

    There has been a significant progress in equipment for testing electro-optical surveillance systems over the last decade. Modern test systems are increasingly computerized, employ advanced image processing and offer software support in measurement process. However, one great challenge, in form of relative low accuracy, still remains not solved. It is quite common that different test stations, when testing the same device, produce different results. It can even happen that two testing teams, while working on the same test station, with the same tested device, produce different results. Rapid growth of electro-optical technology, poor standardization, limited metrology infrastructure, subjective nature of some measurements, fundamental limitations from laws of physics, tendering rules and advances in artificial intelligence are major factors responsible for such situation. Regardless, next decade should bring significant improvements, since improvement in measurement accuracy is needed to sustain fast growth of electro-optical surveillance technology.

  4. Development of Electromechanical Architectures for AC Voltage Metrology

    Directory of Open Access Journals (Sweden)

    Alexandre BOUNOUH

    2010-12-01

    Full Text Available This paper presents results of work undertaken for exploring MEMS capabilities to fabricate AC voltage references for electrical metrology and high precision instrumentation through the mechanical-electrical coupling in MEMS. From first MEMS test structures previously realized, a second set of devices with improved characteristics has been developed and fabricated with Silicon on Insulator (SOI Surface Micromachining process. These MEMS exhibit pull-in voltages of 5 V and 10 V to match with the best performance of the read-out electronics developed for driving the MEMS. Deep Level Transient Spectroscopy measurements carried out on the new design show resonance frequencies of about only some kHz, and the stability of the MEMS output voltage measured at 100 kHz has been found very promising for the best samples where the relative deviation from the mean value over almost 12 hours showed a standard deviation of about 6.3 ppm.

  5. The At-Wavelength Metrology Facility at BESSY-II

    Directory of Open Access Journals (Sweden)

    Franz Schäfers

    2016-02-01

    Full Text Available The At-Wavelength Metrology Facility at BESSY-II is dedicated to short-term characterization of novel UV, EUV and XUV optical elements, such as diffraction gratings, mirrors, multilayers and nano-optical devices like reflection zone plates. It consists of an Optics Beamline PM-1 and a Reflectometer in a clean-room hutch as a fixed end station. The bending magnet Beamline is a Plane Grating Monochromator beamline (c-PGM equipped with an SX700 monochromator. The beamline is specially tailored for efficient high-order suppression and stray light reduction. The versatile 11-axes UHV-Reflectometer can house life-sized optical elements, which are fully adjustable and of which the reflection properties can be measured in the full incidence angular range as well as in the full azimuthal angular range to determine polarization properties.

  6. Metrological provision in radiometry of long-lived radionuclide aerosols

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1984-01-01

    An optimal, as regards expenditures and resulting effect in development, production and operation, scheme is given for metrological provision of working means to measure radioactive aerosols. Model solid sources are recommended to be used for testing calibration and certification of aerosol radiometers when no losses or distortions of information take place. A model radiometer for long-lived radionuclides operating in the 3x10 -2 - 4x10 4 BK/m 3 range of volumetric activity of α-active nuclides and 5-2x10 5 BK/m 3 range of β-active nuclides is successfully utilized at present. Recommendations on reducing the measurement errors by means of different means are given

  7. Metrological provision in radiometry of long-lived radionuclide aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1984-05-01

    An optimal, as regards expenditures and resulting effect in development, production and operation, scheme is given for metrological provision of working means to measure radioactive aerosols. Model solid sources are recommended to be used for testing calibration and certification of aerosol radiometers when no losses or distortions of information take place. A model radiometer for long-lived radionuclides operating in the 3 x 10/sup -2/ - 4 x 10/sup 4/ BK/m/sup 3/ range of volumetric activity of ..cap alpha..-active nuclides and 5-2 x 10/sup 5/ BK/m/sup 3/ range of ..beta..-active nuclides is successfully utilized at present. Recommendations on reducing the measurement errors by means of different means are given.

  8. Digital instrumentation and dead-time processing for radionuclide metrology

    International Nuclear Information System (INIS)

    Censier, B.; Bobin, Ch.; Bouchard, J.

    2010-01-01

    Most of the acquisition chains used in radionuclide metrology are based on NIM modules. These analogue setups have been thoroughly tested for decades now, becoming a reference in the field. Nevertheless, the renewal of ageing modules and the need for extra features both call for the development of new acquisition schemes based on digital processing. In this article, several technologies usable for instrumentation are first presented. A review of past and present projects is made in the second part, highlighting the fundamental role of dead-time management. The last part is dedicated to the description of two digital systems developed at LNE-LNHB. The first one has been designed for the instrumentation of a NaI(Tl) well-type crystal set-up, while the second one is used for the management of three photomultipliers in the framework of the TDCR method and as a part of the development of a digital platform for coincidence counting. (authors)

  9. Applying Metrological Techniques to Satellite Fundamental Climate Data Records

    Science.gov (United States)

    Woolliams, Emma R.; Mittaz, Jonathan PD; Merchant, Christopher J.; Hunt, Samuel E.; Harris, Peter M.

    2018-02-01

    Quantifying long-term environmental variability, including climatic trends, requires decadal-scale time series of observations. The reliability of such trend analysis depends on the long-term stability of the data record, and understanding the sources of uncertainty in historic, current and future sensors. We give a brief overview on how metrological techniques can be applied to historical satellite data sets. In particular we discuss the implications of error correlation at different spatial and temporal scales and the forms of such correlation and consider how uncertainty is propagated with partial correlation. We give a form of the Law of Propagation of Uncertainties that considers the propagation of uncertainties associated with common errors to give the covariance associated with Earth observations in different spectral channels.

  10. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges.

    Science.gov (United States)

    Calderón-Jiménez, Bryan; Johnson, Monique E; Montoro Bustos, Antonio R; Murphy, Karen E; Winchester, Michael R; Vega Baudrit, José R

    2017-01-01

    Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.

  11. 3-D metrology applied to superconducting dipole magnets for LHC

    International Nuclear Information System (INIS)

    Dupont, M.; Missiaen, D.; Peguiron, L.

    1999-01-01

    The construction of the Large Hadron Collider (LHC) requires the manufacture of 1232 superconducting dipole magnets containing two beam channels in a common mechanical structure. These dipole magnets, which produce the required magnetic field to deflect the particles along a circular trajectory, have to be bent in their horizontal plane in order to ensure the largest mechanical aperture. Very tight tolerances on the geometry of these magnets have to be imposed during their fabrication in order to minimise, during operation, the possible losses of particles, which circulate in rather small channels and to ensure the alignment of the adjacent magnets in the ring tunnel. This necessitates a thorough metrological inspection of the magnet geometry and an accurate positioning of some of its components. This paper presents the measuring system and the developed methodology to realize these operations. The results on the first 15 m long dipole magnet are shown. (author)

  12. The India-Pakistan-China strategic triangle and the role of nuclear weapons

    International Nuclear Information System (INIS)

    Chellaney, B.

    2002-01-01

    This paper presents the Asian landscape with its regional balances and imbalances and its changes after September 11 and subsequent events. The nuclear posture and the role of nuclear weapons inside the China-India-Pakistan triangle is analyzed with respect to the US non-proliferation policy and its expanding military presence over the Asian continent. (J.S.)

  13. The India-Pakistan-China strategic triangle and the role of nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Chellaney, B

    2002-07-01

    This paper presents the Asian landscape with its regional balances and imbalances and its changes after September 11 and subsequent events. The nuclear posture and the role of nuclear weapons inside the China-India-Pakistan triangle is analyzed with respect to the US non-proliferation policy and its expanding military presence over the Asian continent. (J.S.)

  14. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    Science.gov (United States)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  15. 76 FR 17327 - 100th Anniversary of the Triangle Shirtwaist Factory Fire

    Science.gov (United States)

    2011-03-29

    ... responsibility to provide a safe environment for all American workers. NOW, THEREFORE, I, BARACK OBAMA, President... since the Triangle factory fire, we are still fighting to provide adequate working conditions for all... collective bargaining as a tool to give workers a seat at the tables of power. Working Americans are the...

  16. The V-Flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons

    Science.gov (United States)

    Iacob, Ionut E.; McLean, T. Bruce; Wang, Hua

    2012-01-01

    Regular hexaflexagons mysteriously change faces as you pinch flex them. This paper describes a different flex, the V-flex, which allows the hexahexaflexagon (with only 9 faces under the pinch flex) to have 3420 faces. The article goes on to explain the classification of triangle orientations in a hexaflexagon and gives an example of the…

  17. Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth.

    Science.gov (United States)

    Stahl, Evi; Praetorius, Florian; de Oliveira Mann, Carina C; Hopfner, Karl-Peter; Dietz, Hendrik

    2016-09-07

    One key goal of DNA nanotechnology is the bottom-up construction of macroscopic crystalline materials. Beyond applications in fields such as photonics or plasmonics, DNA-based crystal matrices could possibly facilitate the diffraction-based structural analysis of guest molecules. Seeman and co-workers reported in 2009 the first designed crystal matrices based on a 38 kDa DNA triangle that was composed of seven chains. The crystal lattice was stabilized, unprecedentedly, by Watson-Crick base pairing. However, 3D crystallization of larger designed DNA objects that include more chains such as DNA origami remains an unsolved problem. Larger objects would offer more degrees of freedom and design options with respect to tailoring lattice geometry and for positioning other objects within a crystal lattice. The greater rigidity of multilayer DNA origami could also positively influence the diffractive properties of crystals composed of such particles. Here, we rationally explore the role of heterogeneity and Watson-Crick interaction strengths in crystal growth using 40 variants of the original DNA triangle as model multichain objects. Crystal growth of the triangle was remarkably robust despite massive chemical, geometrical, and thermodynamical sample heterogeneity that we introduced, but the crystal growth sensitively depended on the sequences of base pairs next to the Watson-Crick sticky ends of the triangle. Our results point to weak lattice interactions and high concentrations as decisive factors for achieving productive crystallization, while sample heterogeneity and impurities played a minor role.

  18. ENVIRONMENTAL PUBLIC HEALTH OUTCOMES WORKSHOP PROCEEDINGS -RESEARCH TRIANGLE PARK, NC, 7/30-31/2002

    Science.gov (United States)

    To better define ORD's Environmental Public Health Outcomes (EPHO) research agenda, a workshop was held 7/30-31/2002 at EPA facilities in Research Triangle Park, NC. The intent of this workshop was to engage federal and other organizations in a dialog that will assist ORD in deve...

  19. Constructing Geometric Properties of Rectangle, Square, and Triangle in the Third Grade of Indonesian Primary Schools

    Directory of Open Access Journals (Sweden)

    Ilham Rizkianto

    2013-07-01

    Full Text Available Previous studies have provided that when learning shapes for the first time, young children tend to use the prototype as the reference point for comparisons, but often fail when doing so since they do not yet think about the defining attributes or the geometric properties of the shapes. Most of the time, elementary students learn geometric properties of shapes only as empty verbal statements to be memorized, without any chance to experience the contepts meaningfully. In the light of it, a sequence of instructional activities along with computer manipulative was designed to support Indonesian third graders in constructing geometric properties of square, rectangle, and triangle. The aim of the present study is to develop a loval instructional theory to support third graders in constructing geometric properties of rectangle, square, and triangle. Thirty seven students of one third grade classes in SD Pupuk Sriwijaya Palembang, along with their class teacher, were involved in the study. Our findings suggest that the combination of computer and non-computer activities suppots third graders in constructing geometric properties of square, rectangle, and triangle in that it provides opportunities to the students to experience and to develop the concepts meaningfully while using their real experiences as the bases to attain a higher geometric thinking level.Key concepts: Geometric properties, rectangle, square, triangle, design research, realistic mathematics education DOI: http://dx.doi.org/10.22342/jme.4.2.414.160-171

  20. On the chromatic number of a space with forbidden equilateral triangle

    International Nuclear Information System (INIS)

    Zvonarev, A E; Raigorodskii, A M; Kharlamova, A A; Samirov, D V

    2014-01-01

    We improve the Frankl-Rödl estimate for the product of the numbers of edges in uniform hypergraphs with forbidden cardinalities of the intersection of edges. By using this estimate, we obtain explicit bounds for the chromatic number of a space with forbidden monochromatic equilateral triangles. Bibliography: 31 titles

  1. Decomposing series-parallel graphs into paths of length 3 and triangles

    DEFF Research Database (Denmark)

    Merker, Martin

    2015-01-01

    An old conjecture by Jünger, Reinelt and Pulleyblank states that every 2-edge-connected planar graph can be decomposed into paths of length 3 and triangles, provided its size is divisible by 3. We prove the conjecture for a class of planar graphs including all 2-edge-connected series-parallel gra...

  2. A BPTTF-based self-assembled electron-donating triangle capable of C60 binding.

    Science.gov (United States)

    Goeb, Sébastien; Bivaud, Sébastien; Dron, Paul Ionut; Balandier, Jean-Yves; Chas, Marcos; Sallé, Marc

    2012-03-25

    A kinetically stable self-assembled redox-active triangle is isolated. The resulting electron-donating cavity, which incorporates three BPTTF units, exhibits a remarkable binding ability for electron-deficient C(60), supported by a favorable combination of structural and electronic features.

  3. From Commodity Production to Sign Production: A Triple Triangle Model for Marx's Semiotics and Peirce's Economics.

    Science.gov (United States)

    Kim, Joohoan

    Using the viewpoint of semiotics, this paper "re-reads" Karl Marx's labor theory of value and suggests a "triple triangle" model for commodity production and shows how this model could be a model for semiosis in general. The paper argues that there are three advantages to considering homogeneity of the sign production and the…

  4. MODEL PENDETEKSIAN KECURANGAN LAPORAN KEUANGAN OLEH AUDITOR SPESIALIS INDUSTRI DENGAN ANALISIS FRAUD TRIANGLE

    Directory of Open Access Journals (Sweden)

    Reskino

    2016-08-01

    Full Text Available Abstrak: Model Pendeteksian Kecurangan Laporan Keuangan dengan Analisis Fraud Triangle. Penelitian ini bertujuan untuk membuat model dalam mendeteksi kecurangan laporan keuangan. Penelitian ini menguji variabel fraud triangle dan auditor spesialis industri dengan kecurangan laporan keuangan. Sampel penelitian adalah 30 perusahaan fraud dan 30 perusahaan non-fraudyang listing di Bursa Efek Indonesia (BEI serta terkena sanksi dan kasus oleh Otoritas Jasa Keuangan (OJK. Hasil penelitian ini menunjukkan financial targetsdapat mendeteksi kecurangan laporan keuangan, sedangkan financial stabililty tidak dapat mendeteksi kecurangan laporan keuangan. Abstract: Financial Statement Fraud Detection Model with Fraud Triangle Analysis. The research purposes is to create a model to detect financial statement fraud. This research examines the variable of fraud triangle and auditor industry specialization with financial statement fraud. Samples were 30 companies of fraud and 30 non-fraud companies that were listed on the Indonesia Stock Exchange (IDX and sanctioned by the Financial Services Authority (FSA. The result shows the financial targets can be detect financial statement fraud, while financial stability can’t be detect financial statement fraud.

  5. Combining the triangle method with thermal inertia to estimate regional evapotranspiration

    DEFF Research Database (Denmark)

    Stisen, Simon; Sandholt, Inge; Nørgaard, Anette

    2008-01-01

    Spatially distributed estimates of evaporative fraction and actual evapotranspiration are pursued using a simple remote sensing technique based on a remotely sensed vegetation index (NDVI) and diurnal changes in land surface temperature. The technique, known as the triangle method, is improved by...

  6. Some Nice Relations between Right-Angled Triangles and the Golden Section

    Science.gov (United States)

    Scimone, Aldo

    2011-01-01

    The international debate about experimental approaches to the teaching and learning mathematics is very current. While number theory lends itself naturally to such approaches, elementary geometry can also provide interesting starting points for creative work in class. This article shows how simple considerations about right triangles and the…

  7. Decompositions, partitions, and coverings with convex polygons and pseudo-triangles

    NARCIS (Netherlands)

    Aichholzer, O.; Huemer, C.; Kappes, S.; Speckmann, B.; Tóth, Cs.D.

    2007-01-01

    We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex

  8. Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays

    International Nuclear Information System (INIS)

    Cao Zhi-Shen; Pan Jian; Chen Zhuo; Zhan Peng; Min Nai-Ben; Wang Zhen-Lin

    2011-01-01

    We experimentally and numerically investigate the optical properties of metamaterial arrays composed of double partially-overlapped metallic nanotriangles fabricated by an angle-resolved nanosphere lithography. We demonstrate that each double-triangle can be viewed as an artificial magnetic element analogous to the conventional metal split-ring-resonator. It is shown that under normal-incidence conditions, individual double-triangle can exhibit a strong local magnetic resonance, but the collective response of the metamaterial arrays is purely electric because magnetic resonances of the two double-triangles in a unit cell having opposite openings are out of phase. For oblique incidences the metamaterial arrays are shown to support a pure magnetic response at the same frequency band. Therefore, switchable electric and magnetic resonances are achieved in double-triangle arrays. Moreover, both the electric and magnetic resonances are shown to allow for a tunability over a large spectral range down to near-infrared. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Member and Affiliate Contact Directory. Triangle Coalition for Science and Technology Education. Second Edition.

    Science.gov (United States)

    Triangle Coalition for Science and Technology Education, College Park, MD.

    This directory is designed to assist local action groups (existing local alliances; science mathematics, and technology teachers; superintendents, principals, and supervisors; guidance counselors and resource specialists; and university and college professors) in making contact with the local structure of the Triangle Coalition for Science and…

  10. Pre-Metric Spaces Along with Different Types of Triangle Inequalities

    Directory of Open Access Journals (Sweden)

    Hsien-Chung Wu

    2018-05-01

    Full Text Available The T 1 -spaces induced by the pre-metric spaces along with many forms of triangle inequalities are investigated in this paper. The limits in pre-metric spaces are also studied to demonstrate the consistency of limit concept in the induced topologies.

  11. Color Degree Sum Conditions for Rainbow Triangles in Edge-Colored Graphs

    NARCIS (Netherlands)

    Li, Ruonan; Ning, Bo; Zhang, Shenggui

    Let G be an edge-colored graph and v a vertex of G. The color degree of v is the number of colors appearing on the edges incident to v. A rainbow triangle in G is one in which all edges have distinct colors. In this paper, we first prove that an edge-colored graph on n vertices contains a rainbow

  12. Fermat Point for a Triangle in Three Dimensions Using the Taxicab Metric

    Science.gov (United States)

    Hanson, J. R.

    2017-01-01

    This article explores the process of finding the Fermat point for a triangle ABC in three dimensions. Three examples are presented in detail using geometrical methods. A delightfully simple general method is then presented that requires only the comparison of coordinates of the vertices A, B and C.

  13. Manufacturing and metrology for IR conformal windows and domes

    Science.gov (United States)

    Ferralli, Ian; Blalock, Todd; Brunelle, Matt; Lynch, Timothy; Myer, Brian; Medicus, Kate

    2017-05-01

    Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes. Additionally, standard metrology tools cannot measure these surfaces. Desired substrates are typically hard ceramics, including poly-crystalline alumina or aluminum oxynitride. Notwithstanding the challenges that the hardness provides to manufacturing, these crystalline materials can be highly susceptible to grain decoration creating unacceptable scatter in optical systems. In this presentation, we will show progress towards addressing the unique challenges of manufacturing conformal windows and domes. Particular attention is given to our robotic polishing platform. This platform is based on an industrial robot adapted to accept a wide range of tooling and parts. The robot's flexibility has provided us an opportunity to address the unique challenges of conformal windows. Slurries and polishing active layers can easily be changed to adapt to varying materials and address grain decoration. We have the flexibility to change tool size and shape to address the varying sizes and shapes of conformal optics. In addition, the robotic platform can be a base for a deflectometry-based metrology tool to measure surface form error. This system, whose precision is independent of the robot's positioning accuracy, will allow us to measure optics in-situ saving time and reducing part risk. In conclusion, we will show examples of the conformal windows manufactured using our developed processes.

  14. New method of 2-dimensional metrology using mask contouring

    Science.gov (United States)

    Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2008-10-01

    We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.

  15. Deep sub-wavelength metrology for advanced defect classification

    Science.gov (United States)

    van der Walle, P.; Kramer, E.; van der Donck, J. C. J.; Mulckhuyse, W.; Nijsten, L.; Bernal Arango, F. A.; de Jong, A.; van Zeijl, E.; Spruit, H. E. T.; van den Berg, J. H.; Nanda, G.; van Langen-Suurling, A. K.; Alkemade, P. F. A.; Pereira, S. F.; Maas, D. J.

    2017-06-01

    Particle defects are important contributors to yield loss in semi-conductor manufacturing. Particles need to be detected and characterized in order to determine and eliminate their root cause. We have conceived a process flow for advanced defect classification (ADC) that distinguishes three consecutive steps; detection, review and classification. For defect detection, TNO has developed the Rapid Nano (RN3) particle scanner, which illuminates the sample from nine azimuth angles. The RN3 is capable of detecting 42 nm Latex Sphere Equivalent (LSE) particles on XXX-flat Silicon wafers. For each sample, the lower detection limit (LDL) can be verified by an analysis of the speckle signal, which originates from the surface roughness of the substrate. In detection-mode (RN3.1), the signal from all illumination angles is added. In review-mode (RN3.9), the signals from all nine arms are recorded individually and analyzed in order to retrieve additional information on the shape and size of deep sub-wavelength defects. This paper presents experimental and modelling results on the extraction of shape information from the RN3.9 multi-azimuth signal such as aspect ratio, skewness, and orientation of test defects. Both modeling and experimental work confirm that the RN3.9 signal contains detailed defect shape information. After review by RN3.9, defects are coarsely classified, yielding a purified Defect-of-Interest (DoI) list for further analysis on slower metrology tools, such as SEM, AFM or HIM, that provide more detailed review data and further classification. Purifying the DoI list via optical metrology with RN3.9 will make inspection time on slower review tools more efficient.

  16. Enhanced resolution and accuracy of freeform metrology through Subaperture Stitching Interferometry

    Science.gov (United States)

    Supranowitz, Chris; Maloney, Chris; Murphy, Paul; Dumas, Paul

    2017-10-01

    Recent advances in polishing and metrology have addressed many of the challenges in the fabrication and metrology of freeform surfaces, and the manufacture of these surfaces is possible today. However, achieving the form and mid-spatial frequency (MSF) specifications that are typical of visible imaging systems remains a challenge. Interferometric metrology for freeform surfaces is thus highly desirable for such applications, but the capability is currently quite limited for freeforms. In this paper, we provide preliminary results that demonstrate accurate, high-resolution measurements of freeform surfaces using prototype software on QED's ASI™ (Aspheric Stitching Interferometer).

  17. 5th Conference on Advanced Mathematical and Computational Tools in Metrology

    CERN Document Server

    Cox, M G; Filipe, E; Pavese, F; Richter, D

    2001-01-01

    Advances in metrology depend on improvements in scientific and technical knowledge and in instrumentation quality, as well as on better use of advanced mathematical tools and development of new ones. In this volume, scientists from both the mathematical and the metrological fields exchange their experiences. Industrial sectors, such as instrumentation and software, will benefit from this exchange, since metrology has a high impact on the overall quality of industrial products, and applied mathematics is becoming more and more important in industrial processes.This book is of interest to people

  18. The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space

    Science.gov (United States)

    Szekely, Pablo; Korem, Yael; Moran, Uri; Mayo, Avi; Alon, Uri

    2015-01-01

    When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes—phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass. PMID:26465336

  19. The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space.

    Science.gov (United States)

    Szekely, Pablo; Korem, Yael; Moran, Uri; Mayo, Avi; Alon, Uri

    2015-10-01

    When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes--phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass.

  20. The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space.

    Directory of Open Access Journals (Sweden)

    Pablo Szekely

    2015-10-01

    Full Text Available When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes--phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass.

  1. Prosodic Focus Marking in Bai.

    NARCIS (Netherlands)

    Liu, Zenghui; Chen, A.; Van de Velde, Hans

    2014-01-01

    This study investigates prosodic marking of focus in Bai, a Sino-Tibetan language spoken in the Southwest of China, by adopting a semi-spontaneous experimental approach. Our data show that Bai speakers increase the duration of the focused constituent and reduce the duration of the post-focus

  2. Better marking means cheaper pruning.

    Science.gov (United States)

    Kenneth R. Eversole

    1953-01-01

    Careful selection of trees to be pruned can make the difference between profit and loss on the pruning investment, especially in stands where no thinning is contemplated. Expert marking is required to make sure that the pruned trees will grow rapidly. The most important variable influencing the cost of clear wood produced by pruning is growth rate. For example, at 3...

  3. Laser marking method and device

    International Nuclear Information System (INIS)

    Okazaki, Yuki; Aoki, Nobutada; Mukai, Narihiko; Sano, Yuji; Yamamoto, Seiji.

    1997-01-01

    An object is disposed in laser beam permeating liquid or gaseous medium. Laser beams such as CW laser or pulse laser oscillated from a laser device are emitted to the object to apply laser markings with less degradation of identification and excellent corrosion resistance on the surface of the object simply and easily. Upon applying the laser markings, a liquid or gas as a laser beam permeating medium is blown onto the surface of the object, or the liquid or gas in the vicinity of the object is sucked, the laser beam-irradiated portion on the surface can be cooled positively. Accordingly, the laser marking can be formed on the surface of the object with less heat affection to the object. In addition, if the content of a nitrogen gas in the laser beam permeating liquid medium is reduced by degassing to lower than a predetermined value, or the laser beam permeating gaseous medium is formed by an inert gas, a laser marking having high corrosion resistance and reliability can be formed on the surface of the objective member. (N.H.)

  4. A Universal Ts-VI Triangle Method for the Continuous Retrieval of Evaporative Fraction From MODIS Products

    Science.gov (United States)

    Zhu, Wenbin; Jia, Shaofeng; Lv, Aifeng

    2017-10-01

    The triangle method based on the spatial relationship between remotely sensed land surface temperature (Ts) and vegetation index (VI) has been widely used for the estimates of evaporative fraction (EF). In the present study, a universal triangle method was proposed by transforming the Ts-VI feature space from a regional scale to a pixel scale. The retrieval of EF is only related to the boundary conditions at pixel scale, regardless of the Ts-VI configuration over the spatial domain. The boundary conditions of each pixel are composed of the theoretical dry edge determined by the surface energy balance principle and the wet edge determined by the average air temperature of open water. The universal triangle method was validated using the EF observations collected by the Energy Balance Bowen Ratio systems in the Southern Great Plains of the United States of America (USA). Two parameterization schemes of EF were used to demonstrate their applicability with Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products over the whole year 2004. The results of this study show that the accuracy produced by both of these two parameterization schemes is comparable to that produced by the traditional triangle method, although the universal triangle method seems specifically suited to the parameterization scheme proposed in our previous research. The independence of the universal triangle method from the Ts-VI feature space makes it possible to conduct a continuous monitoring of evapotranspiration and soil moisture. That is just the ability the traditional triangle method does not possess.

  5. INNOVATIVE NON-CONTACT METROLOGY SOLUTIONS FOR LARGE OPTICAL TELESCOPES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has unique non-contact precision metrology requirements for dimensionally inspecting the global position and orientation of large and highly-polished...

  6. In-line CD metrology with combined use of scatterometry and CD-SEM

    Science.gov (United States)

    Asano, Masafumi; Ikeda, Takahiro; Koike, Toru; Abe, Hideaki

    2006-03-01

    Measurement characteristics in scatterometry and CD-SEM for lot acceptance sampling of inline critical dimension (CD) metrology were investigated by using a statistical approach with Monte Carlo simulation. By operation characteristics curve analysis, producer's risk and consumer's risk arising from sampling were clarified. Single use of scatterometry involves a higher risk, such risk being particularly acute in the case of large intra-chip CD variation because it is unable to sufficiently monitor intra-chip CD variation including local CD error. Substituting scatterometry for conventional SEM metrology is accompanied with risks, resulting in the increase of unnecessary cost. The combined use of scatterometry and SEM metrology in which the sampling plan for SEM is controlled by scatterometry is a promising metrology from the viewpoint of the suppression of risks and cost. This is due to the effect that CD errors existing in the distribution tails are efficiently caught.

  7. Vendor-based laser damage metrology equipment supporting the National Ignition Facility

    International Nuclear Information System (INIS)

    Campbell, J. H; Jennings, R. T.; Kimmons, J. F.; Kozlowski, M. R.; Mouser, R. P.; Schwatz, S.; Stolz, C. J.; Weinzapfel, C. L.

    1998-01-01

    A sizable laser damage metrology effort is required as part of optics production and installation for the 192 beam National Ignition Facility (NIF) laser. The large quantities, high damage thresholds, and large apertures of polished and coated optics necessitates vendor-based metrology equipment to assure component quality during production. This equipment must be optimized to provide the required information as rapidly as possible with limited operator experience. The damage metrology tools include: (1) platinum inclusion damage test systems for laser amplifier slabs, (2) laser conditioning stations for mirrors and polarizers, and (3) mapping and damage testing stations for UV transmissive optics. Each system includes a commercial Nd:YAG laser, a translation stage for the optics, and diagnostics to evaluate damage. The scanning parameters, optical layout, and diagnostics vary with the test fluences required and the damage morphologies expected. This paper describes the technical objectives and milestones involved in fulfilling these metrology requirements

  8. Metrological management evaluation based on ISO10012: an empirical study in ISO-14001-certified Spanish companies

    International Nuclear Information System (INIS)

    Beltran, Jaime; Rivas, Miguel; Munuzuri, Jesus; Gonzalez, Cristina

    2010-01-01

    Environmental management systems based on the ISO 14001 standard rely strongly on metrological measurement and confirmation processes to certify the extent to which organizations monitor and improve their environmental behavior. Nevertheless, the literature lacks in studies that assess the influence of these metrological processes on the performance of environmental management in organizations, even now that the international standard ISO 10012 is already available to establish requisites and guidelines for the development of a metrological management system that is compatible with any other standardized management system. This work seeks to assess that influence through the development of an evaluation model for metrological management, which is then validated through an experimental analysis of the results obtained from the application of an audit process in 11 Spanish companies, all ISO-14001-certified and operating in different industrial sectors. (author)

  9. A method for standardizing the metrological unit of α-track

    International Nuclear Information System (INIS)

    Liang Xingzhong; Li Qingyang; Li Dianshu

    1989-01-01

    The conversion from the specialized unit of α-track into the legal metrological unit is described. A circulative method for measuring the transform coefficient is discussed. An experiment about the transform coefficient on a uranium deposit has made

  10. Coherent Laser Radar Metrology System for Large Scale Optical Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  11. Material synthesis and evaluation of metrological characteristics of potassium fluozirconate certified reference material

    Directory of Open Access Journals (Sweden)

    D. G. Lisienko

    2016-01-01

    Full Text Available The relevance of the study. For metrological support of control methods for composition ofpotassium fluozirconate, used in the production of metallic zirconium, applied in various technical fields, including nuclear power, electronics, chemical engineering. The purpose: development of synthesis technology, and determination of metrological characteristics of certified reference material for composition ofpotassium fluozirconate (set, intended for metrological support of measuring element mass fraction: hafnium (Hf, silicon (Si, iron (Fe, aluminium (Al, chromium (Cr, tin (Sn, titanium (Ti in potassium fluozirconate. Research methods: X-ray diffraction, differential scanning colorimetry, thermogravimetric analysis, atomic-emission spectral analysis with arc excitation, mass spectral analysis, X-ray fluorescence analysis. Results. As a result of research a set of certified reference materials for composition of potassium fluozirconate is developed and produced. The CRM type is approved by Federal Agency on Technical Regulating and Metrology and registered in State Register of Approved Reference Material Types under number GSO 10593-2015.

  12. High Performance Computing-Accelerated Metrology for Large Optical Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has unique non-contact precision metrology requirements for dimensionally inspecting the global position and orientation of large and highly-polished...

  13. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Girone, M., E-mail: mario.girone@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Department of Engineering, University of Sannio, Benevento (Italy); Liccardo, A., E-mail: annalisa.liccardo@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Pezzetti, M., E-mail: marco.pezzetti@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Piccinelli, F., E-mail: fabio.piccinelli@cern.ch [Department of Mechanical Engineering, University of Brescia, Brescia (Italy)

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  14. Metrology with synchrotron radiation. A short introduction; Metrologie mit Synchrotronstrahlung. Eine kurze Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Mathias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Fachbereich ' Radiometrie mit Synchrotronstrahlung' ; Ulm, Gerhard

    2014-09-15

    The beam tubes and measuring places at the Metrology Light Source and BESSY II are listed together with their monochromator types, spectral ranges, spectral resolution powers, photon fluxes, beam sizes, and divergences. (HSI)

  15. Adjustment method for embedded metrology engine in an EM773 series microcontroller.

    Science.gov (United States)

    Blazinšek, Iztok; Kotnik, Bojan; Chowdhury, Amor; Kačič, Zdravko

    2015-09-01

    This paper presents the problems of implementation and adjustment (calibration) of a metrology engine embedded in NXP's EM773 series microcontroller. The metrology engine is used in a smart metering application to collect data about energy utilization and is controlled with the use of metrology engine adjustment (calibration) parameters. The aim of this research is to develop a method which would enable the operators to find and verify the optimum parameters which would ensure the best possible accuracy. Properly adjusted (calibrated) metrology engines can then be used as a base for variety of products used in smart and intelligent environments. This paper focuses on the problems encountered in the development, partial automatisation, implementation and verification of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. National Defense Center of Excellence for Industrial Metrology and 3D Imaging

    Science.gov (United States)

    2012-10-18

    Appendices) W911NF-08-2-0057 - Metrology - FinalReport 100 m to 200 m. For volume determination (e.g., mining , excavations) and topographic mapping...infrastructure, rail systems, mining ), mobile mapping, and security applications. Lockheed Martin has selected the HDL-64E as the main perception...Appendices) W911NF-08-2-0057 - Metrology - FinalReport The Obscurant Penetrating Autosynchronous Lidar ( OPAL ) has been developed as a variant ofNeptec ’s

  17. The Opportunities and Challenges of Bringing New Metrology Equipment to Market

    Science.gov (United States)

    Perloff, David S.

    2005-09-01

    This paper provides an overview of the economic and technological factors which are driving the demand for new metrology and inspection equipment, the challenges and opportunities facing new companies in bringing such equipment to market, and the funding environment in which new companies must raise capital to finance their efforts. Seven metrology companies and one inspection equipment company that have received first-time venture backing since 2000 are used to illustrate how these specialized businesses are launched and funded.

  18. Metrological inspection of ionization chamber radioactivity meters used in nuclear medicine

    International Nuclear Information System (INIS)

    Szoerenyi, A.; Vagvoelgyi, J.

    1983-01-01

    According to the Hungarian legislation on legal metrology, any measurement involving legal effects (e.g. measurements in nuclear medicine) can only be performed by calibrated measuring instruments. The paper outlines the method and results of calibration for 125 I and 131 I radionuclide standard references used in Hungarian nuclear medical practice. The experiences proved that the radionuclide standards, similarly to radiation dosemeters, should be submitted for metrological inspection. (author)

  19. Automated road marking recognition system

    Science.gov (United States)

    Ziyatdinov, R. R.; Shigabiev, R. R.; Talipov, D. N.

    2017-09-01

    Development of the automated road marking recognition systems in existing and future vehicles control systems is an urgent task. One way to implement such systems is the use of neural networks. To test the possibility of using neural network software has been developed with the use of a single-layer perceptron. The resulting system based on neural network has successfully coped with the task both when driving in the daytime and at night.

  20. Mark Twain: inocente ou pecador? = Mark Twain: innocent or sinner?

    Directory of Open Access Journals (Sweden)

    Heloisa Helou Doca

    2009-01-01

    Full Text Available A leitura cuidadosa do texto do “Tratado de Paris”, em 1900, leva Mark Twain a concluir que a intenção política norte-americana era, claramente, a de subjugação. Declara-se, abertamente, antiimperialista, nesse momento, apesar das inúmeras críticasrecebidas por antagonistas políticos que defendiam o establishment dos Estados Unidos. Após viajar para a Europa e Oriente, em 1867, como correspondente do jornal Daily Alta Califórnia, Mark Twain publica, em 1869, seu relato de viagem, The Innocents Abroad or TheNew Pilgrim’s Progress. Nosso estudo demonstra que o autor, apesar das diversas máscaras usadas em seus relatos, narra histórias, culturas e tradições, tanto da Europa quanto do Oriente, já com os olhos bem abertos pelo viés antiimperialista. Faz uso da paródia, sátira, ironia e humor para dessacralizar impérios, monarcas e a Igreja que subjugavam os mais fracos, iluminando, desde então, os estudos sobre culturas. Nosso estudo, outrossim, faz uma reflexão sobre cultura, tradição e o olhar do viajante, justificando o “olhar inocente” do narrador em seu relato.After carefully reading the Treaty of Paris in 1900, Mark Twain concluded that the goal of U.S. policy was clearly one ofsubjugation. He openly declared himself an anti-imperialist at that time, in spite of the numerous criticisms he received from political opponents who supported the United States status quo. After traveling to Europe and the East in 1867 as a correspondent for The DailyAlta California newspaper, Mark Twain published his travel report, The Innocents Abroad or The New Pilgrim’s Progress in 1869. Our study demonstrates that the author, in spite of using different guises in his reports, narrated histories, cultures and traditions – from both Europe and the East – with a viewpoint already imbued by his anti-imperialistic ideals. Twain made use of parody, satire, irony and humor within his texts in order to desecrate empires,monarchs and