WorldWideScience

Sample records for metrology measurement capabilities

  1. Metrology Measurement Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  2. Measurement capabilities of the Bendix Metrology Organization

    International Nuclear Information System (INIS)

    Barnes, L.M.

    1984-01-01

    The purpose of this manual is to communicate the measurement and calibration capabilities of the Metrology Organization of the Bendix Kansas City Division. Included is a listing of the measurement types and ranges available, and the accuracies normally attainable under conditions at the Kansas City Division. Also described are currently used standards and measurement devices. The manual is divided into four major sections, each describing a broad general area of measurement: mechanical; environmental, gas, liquid; electrical; and optical and radiation

  3. Capability Handbook- offline metrology

    DEFF Research Database (Denmark)

    Islam, Aminul; Marhöfer, David Maximilian; Tosello, Guido

    This offline metrological capability handbook has been made in relation to HiMicro Task 3.3. The purpose of this document is to assess the metrological capability of the HiMicro partners and to gather the information of all available metrological instruments in the one single document. It provides...

  4. An alternative method to achieve metrological confirmation in measurement process

    Science.gov (United States)

    Villeta, M.; Rubio, E. M.; Sanz, A.; Sevilla, L.

    2012-04-01

    Metrological confirmation process must be designed and implemented to ensure that metrological characteristics of the measurement system meet metrological requirements of the measurement process. The aim of this paper is to present an alternative method to the traditional metrological requirements about the relationship between tolerance and measurement uncertainty, to develop such confirmation processes. The proposed way to metrological confirmation considers a given inspection task of the measurement process into the manufacturing system, and it is based on the Index of Contamination of the Capability, ICC. Metrological confirmation process is then developed taking into account the producer risks and economic considerations on this index. As a consequence, depending on the capability of the manufacturing process, the measurement system will be or will not be in adequate state of metrological confirmation for the measurement process.

  5. The quality of measurements a metrological reference

    CERN Document Server

    Fridman, A E

    2012-01-01

    This book provides a detailed discussion and commentary on the fundamentals of metrology. The fundamentals of metrology, the principles underlying the design of the SI International System of units, the theory of measurement error, a new methodology for estimation of measurement accuracy based on uncertainty, and methods for reduction of measured results and estimation of measurement uncertainty are all discussed from a modern point of view. The concept of uncertainty is shown to be consistent with the classical theory of accuracy. The theory of random measurement errors is supplemented by a very general description based on the generalized normal distribution; systematic instrumental error is described in terms of a methodology for normalizing the metrological characteristics of measuring instruments. A new international system for assuring uniformity of measurements based on agreements between national metrological institutes is discussed, in addition to the role and procedure for performance of key compari...

  6. Improving Metrological Reliability of Information-Measuring Systems Using Mathematical Modeling of Their Metrological Characteristics

    Science.gov (United States)

    Kurnosov, R. Yu; Chernyshova, T. I.; Chernyshov, V. N.

    2018-05-01

    The algorithms for improving the metrological reliability of analogue blocks of measuring channels and information-measuring systems are developed. The proposed algorithms ensure the optimum values of their metrological reliability indices for a given analogue circuit block solution.

  7. Application of advanced diffraction based optical metrology overlay capabilities for high-volume manufacturing

    Science.gov (United States)

    Chen, Kai-Hsiung; Huang, Guo-Tsai; Hsieh, Hung-Chih; Ni, Wei-Feng; Chuang, S. M.; Chuang, T. K.; Ke, Chih-Ming; Huang, Jacky; Rao, Shiuan-An; Cumurcu Gysen, Aysegul; d'Alfonso, Maxime; Yueh, Jenny; Izikson, Pavel; Soco, Aileen; Wu, Jon; Nooitgedagt, Tjitte; Ottens, Jeroen; Kim, Yong Ho; Ebert, Martin

    2017-03-01

    On-product overlay requirements are becoming more challenging with every next technology node due to the continued decrease of the device dimensions and process tolerances. Therefore, current and future technology nodes require demanding metrology capabilities such as target designs that are robust towards process variations and high overlay measurement density (e.g. for higher order process corrections) to enable advanced process control solutions. The impact of advanced control solutions based on YieldStar overlay data is being presented in this paper. Multi patterning techniques are applied for critical layers and leading to additional overlay measurement demands. The use of 1D process steps results in the need of overlay measurements relative to more than one layer. Dealing with the increased number of overlay measurements while keeping the high measurement density and metrology accuracy at the same time presents a challenge for high volume manufacturing (HVM). These challenges are addressed by the capability to measure multi-layer targets with the recently introduced YieldStar metrology tool, YS350. On-product overlay results of such multi-layers and standard targets are presented including measurement stability performance.

  8. Quantum metrology foundation of units and measurements

    CERN Document Server

    Goebel, Ernst O

    2015-01-01

    The International System of Units (SI) is the world's most widely used system of measurement, used every day in commerce and science, and is the modern form of the metric system. It currently comprises the meter (m), the kilogram (kg), the second (s), the ampere (A), the kelvin (K), the candela (cd) and the mole (mol)). The system is changing though, units and unit definitions are modified through international agreements as the technology of measurement progresses, and as the precision of measurements improves. The SI is now being redefined based on constants of nature and their realization by quantum standards. Therefore, the underlying physics and technologies will receive increasing interest, and not only in the metrology community but in all fields of science. This book introduces and explains the applications of modern physics concepts to metrology, the science and the applications of measurements. A special focus is made on the use of quantum standards for the realization of the forthcoming new SI (the...

  9. Coordinate metrology accuracy of systems and measurements

    CERN Document Server

    Sładek, Jerzy A

    2016-01-01

    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  10. Comparison of asphere measurements by tactile and optical metrological instruments

    NARCIS (Netherlands)

    Bergmans, R.H.; Nieuwenkamp, H.J.; Kok, G.J.P.; Blobel, G.; Nouira, H.; Küng, A.; Baas, M.; Voert, M.J.A. te; Baer, G.; Stuerwald, S.

    2015-01-01

    A comparison of topography measurements of aspherical surfaces was carried out by European metrology institutes, other research institutes and a company as part of an European metrology research project. In this paper the results of this comparison are presented. Two artefacts were circulated, a

  11. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  12. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  13. Real cell overlay measurement through design based metrology

    Science.gov (United States)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Jo, Gyoyeon; Yang, Hyunjo; Yim, Donggyu; Yamamoto, Masahiro; Maruyama, Kotaro; Park, Byungjun

    2014-04-01

    Until recent device nodes, lithography has been struggling to improve its resolution limit. Even though next generation lithography technology is now facing various difficulties, several innovative resolution enhancement technologies, based on 193nm wavelength, were introduced and implemented to keep the trend of device scaling. Scanner makers keep developing state-of-the-art exposure system which guarantees higher productivity and meets a more aggressive overlay specification. "The scaling reduction of the overlay error has been a simple matter of the capability of exposure tools. However, it is clear that the scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieve the desired performance.(2)" In a manufacturing fab, the overlay error, determined by a conventional overlay measurement: by using an overlay mark based on IBO and DBO, often does not represent the physical placement error in the cell area of a memory device. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion, caused by etching or CMP, also can be a source of the mismatch. Therefore, the requirement of a direct overlay measurement in the cell pattern gradually increases in the manufacturing field, and also in the development level. In order to overcome the mismatch between conventional overlay measurement and the real placement error of layer to layer in the cell area of a memory device, we suggest an alternative overlay measurement method utilizing by design, based metrology tool. A basic concept of this method is shown in figure1. A CD-SEM measurement of the overlay error between layer 1 and 2 could be the ideal method but it takes too long time to extract a lot of data from wafer level. An E-beam based DBM tool provides high speed to cover the whole wafer with high repeatability. It is enabled by using the design as a

  14. Dynamic Length Metrology (DLM) for measurements with sub-micrometre uncertainty in a production environment

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Hattel, Jesper Henri

    2016-01-01

    Conventional length metrology for traceable accurate measurements requires costly temperature controlled facilities, long waiting time for part acclimatisation, and separate part material characterisation. This work describes a method called Dynamic Length Metrology (DLM) developed to achieve sub...

  15. Effect of measurement error budgets and hybrid metrology on qualification metrology sampling

    Science.gov (United States)

    Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Osorio, Carmen; Archie, Chas

    2014-10-01

    Until now, metrologists had no statistics-based method to determine the sampling needed for an experiment before the start that accuracy experiment. We show a solution to this problem called inverse total measurement uncertainty (TMU) analysis, by presenting statistically based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk versus reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions and then to reveal why low sampling can lead to unstable and misleading results. One model is developed that can help experimenters minimize sampling costs. A second cost model reveals the inadequacy of some current sampling practices-and the enormous costs associated with sampling that provides reasonable levels of certainty in the result. We introduce the strategies on how to manage and mitigate these costs and begin the discussion on how fabs are able to manufacture devices using minimal reference sampling when qualifying metrology steps. Finally, the relationship between inverse TMU analysis and hybrid metrology is explored.

  16. Metrological traceability of carbon dioxide measurements in atmosphere and seawater

    International Nuclear Information System (INIS)

    Rolle, F; Pessana, E; Sega, M

    2017-01-01

    The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO 2 ), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO 2 in the atmosphere. The well established activity to assure the metrological traceability of CO 2 in the atmosphere will be applied to the determination of CO 2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use. (paper)

  17. 7/5nm logic manufacturing capabilities and requirements of metrology

    Science.gov (United States)

    Bunday, Benjamin; Bello, A. F.; Solecky, Eric; Vaid, Alok

    2018-03-01

    This paper will provide an update to previous works [2][4][9] to our view of the future for in-line high volume manufacturing (HVM) metrology for the semiconductor industry, concentrating on logic technology for foundries. First, we will review of the needs of patterned defect, critical dimensional (CD/3D), overlay and films metrology, and present the extensive list of applications for which metrology solutions are needed. We will then update the industry's progress towards addressing gating technical limits of the most important of these metrology solutions, highlighting key metrology technology gaps requiring industry attention and investment.

  18. Metrology of human-based and other qualitative measurements

    Science.gov (United States)

    Pendrill, Leslie; Petersson, Niclas

    2016-09-01

    The metrology of human-based and other qualitative measurements is in its infancy—concepts such as traceability and uncertainty are as yet poorly developed. This paper reviews how a measurement system analysis approach, particularly invoking as performance metric the ability of a probe (such as a human being) acting as a measurement instrument to make a successful decision, can enable a more general metrological treatment of qualitative observations. Measures based on human observations are typically qualitative, not only in sectors, such as health care, services and safety, where the human factor is obvious, but also in customer perception of traditional products of all kinds. A principal challenge is that the usual tools of statistics normally employed for expressing measurement accuracy and uncertainty will probably not work reliably if relations between distances on different portions of scales are not fully known, as is typical of ordinal or other qualitative measurements. A key enabling insight is to connect the treatment of decision risks associated with measurement uncertainty to generalized linear modelling (GLM). Handling qualitative observations in this way unites information theory, the perceptive identification and choice paradigms of psychophysics. The Rasch invariant measure psychometric GLM approach in particular enables a proper treatment of ordinal data; a clear separation of probe and item attribute estimates; simple expressions for instrument sensitivity; etc. Examples include two aspects of the care of breast cancer patients, from diagnosis to rehabilitation. The Rasch approach leads in turn to opportunities of establishing metrological references for quality assurance of qualitative measurements. In psychometrics, one could imagine a certified reference for knowledge challenge, for example, a particular concept in understanding physics or for product quality of a certain health care service. Multivariate methods, such as Principal Component

  19. Metrology of human-based and other qualitative measurements

    International Nuclear Information System (INIS)

    Pendrill, Leslie; Petersson, Niclas

    2016-01-01

    The metrology of human-based and other qualitative measurements is in its infancy—concepts such as traceability and uncertainty are as yet poorly developed. This paper reviews how a measurement system analysis approach, particularly invoking as performance metric the ability of a probe (such as a human being) acting as a measurement instrument to make a successful decision, can enable a more general metrological treatment of qualitative observations. Measures based on human observations are typically qualitative, not only in sectors, such as health care, services and safety, where the human factor is obvious, but also in customer perception of traditional products of all kinds. A principal challenge is that the usual tools of statistics normally employed for expressing measurement accuracy and uncertainty will probably not work reliably if relations between distances on different portions of scales are not fully known, as is typical of ordinal or other qualitative measurements. A key enabling insight is to connect the treatment of decision risks associated with measurement uncertainty to generalized linear modelling (GLM). Handling qualitative observations in this way unites information theory, the perceptive identification and choice paradigms of psychophysics. The Rasch invariant measure psychometric GLM approach in particular enables a proper treatment of ordinal data; a clear separation of probe and item attribute estimates; simple expressions for instrument sensitivity; etc. Examples include two aspects of the care of breast cancer patients, from diagnosis to rehabilitation. The Rasch approach leads in turn to opportunities of establishing metrological references for quality assurance of qualitative measurements. In psychometrics, one could imagine a certified reference for knowledge challenge, for example, a particular concept in understanding physics or for product quality of a certain health care service. Multivariate methods, such as Principal Component

  20. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-05-15

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  1. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sawhney, Kawal

    2016-01-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  2. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal

    2016-05-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  3. Spectroscopic metrology for isotope composition measurements and transfer standards

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2017-04-01

    The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H

  4. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  5. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  6. Metrology and process control: dealing with measurement uncertainty

    Science.gov (United States)

    Potzick, James

    2010-03-01

    Metrology is often used in designing and controlling manufacturing processes. A product sample is processed, some relevant property is measured, and the process adjusted to bring the next processed sample closer to its specification. This feedback loop can be remarkably effective for the complex processes used in semiconductor manufacturing, but there is some risk involved because measurements have uncertainty and product specifications have tolerances. There is finite risk that good product will fail testing or that faulty product will pass. Standard methods for quantifying measurement uncertainty have been presented, but the question arises: how much measurement uncertainty is tolerable in a specific case? Or, How does measurement uncertainty relate to manufacturing risk? This paper looks at some of the components inside this process control feedback loop and describes methods to answer these questions.

  7. Utilization of the research and measurement reactor Braunschweig for neutron metrology

    International Nuclear Information System (INIS)

    Alberts, W.G.

    1982-01-01

    The objectives of the Physikalisch-Technische Bundesanstalt (PTB) with regard to neutron metrology are briefly described. The use of the PTB's Research and Measuring Reactor as neutron source for metrological purposes is discussed. Reference neutron beams are described which serve as irradiation facilities for the calibration of detectors for radiation protection purposes in the frame of the legal metrology work in the PTB. (orig.) [de

  8. Management of metrology in measuring of the displacement of building construction

    Directory of Open Access Journals (Sweden)

    Jiří Kratochvíl

    2007-06-01

    Full Text Available The metrology management of the measurement of the displacement of building construction is not regulated in the standard ČSN ISO 73 0405 - Measurement of the displacement of building construction. But the metrology management has to be included in the project of measurement of the displacement (Stage of project. Then we have to pay an attention to the metrological management during this measurement (Stage of realization and during the evaluation of this measurement (Stage of evaluation. We have to insist on the subsequent improving of metrology management within the frame of the next project (so-called feedback. The metrology management in the measurement of the displacement during the stages should be based on an application of statutory instruments and technical standards. We should insist especially on the system of standards for the quality control ISO 9000. Considering specialities of geodetic measurements it is necessary to adapt the metrology management. That is why it will differ from the metrology management in other fields of knowledge. This paper includes some steps of metrological provision which must not be ignored.

  9. Measurement configuration optimization for dynamic metrology using Stokes polarimetry

    Science.gov (United States)

    Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan

    2018-05-01

    As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.

  10. Bayesian statistics in radionuclide metrology: measurement of a decaying source

    International Nuclear Information System (INIS)

    Bochud, F. O.; Bailat, C.J.; Laedermann, J.P.

    2007-01-01

    The most intuitive way of defining a probability is perhaps through the frequency at which it appears when a large number of trials are realized in identical conditions. The probability derived from the obtained histogram characterizes the so-called frequentist or conventional statistical approach. In this sense, probability is defined as a physical property of the observed system. By contrast, in Bayesian statistics, a probability is not a physical property or a directly observable quantity, but a degree of belief or an element of inference. The goal of this paper is to show how Bayesian statistics can be used in radionuclide metrology and what its advantages and disadvantages are compared with conventional statistics. This is performed through the example of an yttrium-90 source typically encountered in environmental surveillance measurement. Because of the very low activity of this kind of source and the small half-life of the radionuclide, this measurement takes several days, during which the source decays significantly. Several methods are proposed to compute simultaneously the number of unstable nuclei at a given reference time, the decay constant and the background. Asymptotically, all approaches give the same result. However, Bayesian statistics produces coherent estimates and confidence intervals in a much smaller number of measurements. Apart from the conceptual understanding of statistics, the main difficulty that could deter radionuclide metrologists from using Bayesian statistics is the complexity of the computation. (authors)

  11. Reducing measurement uncertainty drives the use of multiple technologies for supporting metrology

    Science.gov (United States)

    Banke, Bill, Jr.; Archie, Charles N.; Sendelbach, Matthew; Robert, Jim; Slinkman, James A.; Kaszuba, Phil; Kontra, Rick; DeVries, Mick; Solecky, Eric P.

    2004-05-01

    Perhaps never before in semiconductor microlithography has there been such an interest in the accuracy of measurement. This interest places new demands on our in-line metrology systems as well as the supporting metrology for verification. This also puts a burden on the users and suppliers of new measurement tools, which both challenge and complement existing manufacturing metrology. The metrology community needs to respond to these challenges by using new methods to assess the fab metrologies. An important part of this assessment process is the ability to obtain accepted reference measurements as a way of determining the accuracy and Total Measurement Uncertainty (TMU) of an in-line critical dimension (CD). In this paper, CD can mean any critical dimension including, for example, such measures as feature height or sidewall angle. This paper describes the trade-offs of in-line metrology systems as well as the limitations of Reference Measurement Systems (RMS). Many factors influence each application such as feature shape, material properties, proximity, sampling, and critical dimension. These factors, along with the metrology probe size, interaction volume, and probe type such as e-beam, optical beam, and mechanical probe, are considered. As the size of features shrinks below 100nm some of the stalwarts of reference metrology come into question, such as the electrically determined transistor gate length. The concept of the RMS is expanded to show how multiple metrologies are needed to achieve the right balance of accuracy and sampling. This is also demonstrated for manufacturing metrology. Various comparisons of CDSEM, scatterometry, AFM, cross section SEM, electrically determined CDs, and TEM are shown. An example is given which demonstrates the importance in obtaining TMU by balancing accuracy and precision for selecting manufacturing measurement strategy and optimizing manufacturing metrology. It is also demonstrated how the necessary supporting metrology will

  12. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    Science.gov (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  13. Quantifying Human Response: Linking metrological and psychometric characterisations of Man as a Measurement Instrument

    International Nuclear Information System (INIS)

    Pendrill, L R; Fisher, William P Jr

    2013-01-01

    A better understanding of how to characterise human response is essential to improved person-centred care and other situations where human factors are crucial. Challenges to introducing classical metrological concepts such as measurement uncertainty and traceability when characterising Man as a Measurement Instrument include the failure of many statistical tools when applied to ordinal measurement scales and a lack of metrological references in, for instance, healthcare. The present work attempts to link metrological and psychometric (Rasch) characterisation of Man as a Measurement Instrument in a study of elementary tasks, such as counting dots, where one knows independently the expected value because the measurement object (collection of dots) is prepared in advance. The analysis is compared and contrasted with recent approaches to this problem by others, for instance using signal error fidelity

  14. Establishment of a computer-controlled retroreflection measurement system at the National Metrology Institute of Turkey (UME)

    International Nuclear Information System (INIS)

    Samedov, Farhad; Celikel, Oguz; Bazkir, Ozcan

    2005-01-01

    In order to characterize photometric properties of retroreflectors, a fully automated retroreflector measurement system is designed in National Metrology Institute of Turkey (UME). The system is composed of a lighting projector, a goniometer, filter radiometers, 100 dB transimpedance amplifiers, and 24-bit resolution analog-digital converter card with a special software. The established system provides a new calibration capability to determine the luminous intensity and retroreflection coefficients of the retroreflective materials with the expanded uncertainties of 1.07% and 1.13% (k=2), respectively. The traceability in retroreflection measurements was linked to the detector-based photometric scale of UME

  15. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  16. 3D-SEM Metrology for Coordinate Measurements at the Nanometer Scale

    DEFF Research Database (Denmark)

    Carli, Lorenzo

    to be addressed concerning uncertainty evaluation have been discussed. Most recent developments in the field of micro and nano-metrology, in terms of measuring machines and techniques, are described pointing out advantages and limitations. The importance of multi-sensor and multi-orientation strategy...

  17. Radioactivity metrology

    International Nuclear Information System (INIS)

    Legrand, J.

    1979-01-01

    Some aspects of the radioactivity metrology are reviewed. Radioactivity primary references; absolute methods of radioactivity measurements used in the Laboratoire de Metrologie des Rayonnements Ionisants; relative measurement methods; traceability through international comparisons and interlaboratory tests; production and distribution of secondary standards [fr

  18. Metrological Array of Cyber-Physical Systems. Part 11. Remote Error Correction of Measuring Channel

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-09-01

    Full Text Available The multi-channel measuring instruments with both the classical structure and the isolated one is identified their errors major factors basing on general it metrological properties analysis. Limiting possibilities of the remote automatic method for additive and multiplicative errors correction of measuring instruments with help of code-control measures are studied. For on-site calibration of multi- channel measuring instruments, the portable voltage calibrators structures are suggested and their metrological properties while automatic errors adjusting are analysed. It was experimentally envisaged that unadjusted error value does not exceed ± 1 mV that satisfies most industrial applications. This has confirmed the main approval concerning the possibilities of remote errors self-adjustment as well multi- channel measuring instruments as calibration tools for proper verification.

  19. UPWIND Metrology, Deliverable D 1A2.1, List of measurement Parameters

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    performance measurements - Improvement of aerodynamic codes - Assessment of wind resources In general terms the uncertainty of the testing techniques and methods are typically much higher than the need. Since this problem covers many areas of wind energy, the work package is de-fined as a crosscutting...... activity. The problem is especially relevant for the following areas: Production related - Power performance testing especially in wind farms - Testing of turbine improvements in the order of several percent - Testing of aerodynamic codes - Testing of turbine response to effects such as turbulence...... profiles, turbulence, surface shear recovery distances etc) - Measurements of the interaction wind farms and microclimate The objectives of the metrology work package are to develop metrology tools in wind energy to significantly enhance the quality of measurement and testing techniques. The development...

  20. Metrological AFMs and its application for versatile nano-dimensional metrology tasks

    Science.gov (United States)

    Dai, Gaoliang; Dziomba, T.; Pohlenz, F.; Danzebrink, H.-U.; Koenders, L.

    2010-08-01

    Traceable calibrations of various micro and nano measurement devices are crucial tasks for ensuring reliable measurements for micro and nanotechnology. Today metrological AFM are widely used for traceable calibrations of nano dimensional standards. In this paper, we introduced the developments of metrological force microscopes at PTB. Of the three metrological AFMs described here, one is capable of measuring in a volume of 25 mm x 25 mm x 5 mm. All instruments feature interferometers and the three-dimensional position measurements are thus directly traceable to the metre definition. Some calibration examples on, for instance, flatness standards, step height standards, one and two dimensional gratings are demonstrated.

  1. Overcoming the Invisibility of Metrology: A Reading Measurement Network for Education and the Social Sciences

    Science.gov (United States)

    Fisher, William P., Jr.; Stenner, A. Jackson

    2013-09-01

    The public and researchers in psychology and the social sciences are largely unaware of the huge resources invested in metrology and standards in science and commerce, for understandable reasons, but with unfortunate consequences. Measurement quality varies widely in fields lacking uniform standards, making it impossible to coordinate local behaviours and decisions in tune with individually observed instrument readings. However, recent developments in reading measurement have effectively instituted metrological traceability methods within elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia. Given established patterns in the history of science, it may be reasonable to expect that widespread routine reproduction of controlled effects expressed in uniform units in the social sciences may lead to significant developments in theory and practice.

  2. Overcoming the Invisibility of Metrology: A Reading Measurement Network for Education and the Social Sciences

    International Nuclear Information System (INIS)

    Fisher, William P Jr; Stenner, A Jackson

    2013-01-01

    The public and researchers in psychology and the social sciences are largely unaware of the huge resources invested in metrology and standards in science and commerce, for understandable reasons, but with unfortunate consequences. Measurement quality varies widely in fields lacking uniform standards, making it impossible to coordinate local behaviours and decisions in tune with individually observed instrument readings. However, recent developments in reading measurement have effectively instituted metrological traceability methods within elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia. Given established patterns in the history of science, it may be reasonable to expect that widespread routine reproduction of controlled effects expressed in uniform units in the social sciences may lead to significant developments in theory and practice

  3. Metrological and operational performance of measuring systems used in vehicle compressed natural gas filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Velosa, Jhonn F.; Abril, Henry; Garcia, Luis E. [CDT de GAS (Venezuela). Gas Technological Development Center Corporation

    2008-07-01

    Corporation CDT GAS financially supported by the Colombian government through COLCIENCIAS, carried out a study aimed at designing, developing and implementing in Colombia a calibration and metrological verification 'specialized service' for gas meters installed at dispensers of filling stations using compressed natural gas. The results permitted the identification of improving opportunities (in measuring systems, equipment and devices used to deliver natural gas) which are focused on achieving the highest security and reliability of trading processes of CNG for vehicles. In the development of the first stage of the project, metrological type variables were initially considered, but given the importance of the measuring system and its interaction with the various elements involving gas supply to the filling station, the scope of the work done included aspects related to the operational performance, that is, those influencing the security of the users and the metrological performance of the measuring system. The development of the second stage counted on the collaboration of national companies from the sector of CNG for vehicles, which permitted the carrying out of multiple calibrations to the measuring systems installed in the CNG dispensers, thus achieving, in a concrete way, valid and reliable technological information of the implemented procedures. (author)

  4. Importance of education and competence maintenance in metrology field (measurement science)

    International Nuclear Information System (INIS)

    Dobiliene, J; Meskuotiene, A

    2015-01-01

    For certain tasks in metrology field trained employers might be necessary to fulfill specific requirements. It is important to pay attention that metrologists are responsible for fluent work of devices that belong to huge variety of vide spectrum of measurements. People who perform measurements (that are related to our safety, security or everyday life) with reliable measuring instruments must be sure for trueness of their results or conclusions. So with the purpose to reach the harmony between the ordinary man and his used means it is very important to ensure competence of specialists that are responsible for mentioned harmony implementation. Usually these specialists have a university degree and perform highly specified tasks in science, industry or laboratories. Their task is quite narrow. For example, type approval of measuring instrument or calibration and verification. Due to the fact that the number of such employers and their tasks is relatively small in the field of legal metrology, this paper focuses on the significance of training and qualification of legal metrology officers

  5. Consultative committee on ionizing radiation: Impact on radionuclide metrology

    International Nuclear Information System (INIS)

    Karam, L.R.; Ratel, G.

    2016-01-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. - Highlights: • Influence of CIPM MRA on radionuclide metrology at laboratories around the world. • CCRI strategy: to be the “undisputed hub for ionizing radiation global metrology.” • CCRI Strategic Plan stresses importance of measurement confidence for stakeholder. • NMIs increasing role in radionuclide metrology by designating institutions (DIs). • NMIs and DIs establish quality systems; validate capabilities through comparisons.

  6. Automation of metrological operations on measuring apparatuses of radiation monitoring system

    International Nuclear Information System (INIS)

    Kulich, V.; Studeny, J.

    1995-01-01

    (J.K.)In this paper the measuring apparatuses of ionizing radiation for the radiation monitoring of NPP Dukovany operation is described. The increase of metrological operations number has been made possible only by a timely reconstruction of the laboratory and by computerization of the measuring procedure and of administrative work which consists mainly of recording of a great number information pieces about the observed measuring apparatuses. There are three working places in the laboratory: 1) irradiation gamma stand with cesium-137 sources; 2) irradiation stand with plutonium-beryllium neutron sources; 3) spectrometric working place. With the regard to the uniqueness of the laboratory operation, all the works in the sphere of hardware as well as software has been implemented by own forces. The equipment of the laboratory makes possible to test metrologically all the radiation monitoring apparatuses used in NPP Dukovany. The quantity of operation of he laboratory of ionizing metrology qualifies the proper functioning of the radiation monitoring system, which directly influences the ensurance of nuclear safety of NPP Dukovany

  7. Automation of metrological operations on measuring apparatuses of radiation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kulich, V; Studeny, J [NPP Dukovany (Czech Republic)

    1996-12-31

    (J.K.)In this paper the measuring apparatuses of ionizing radiation for the radiation monitoring of NPP Dukovany operation is described. The increase of metrological operations number has been made possible only by a timely reconstruction of the laboratory and by computerization of the measuring procedure and of administrative work which consists mainly of recording of a great number information pieces about the observed measuring apparatuses. There are three working places in the laboratory: 1) irradiation gamma stand with cesium-137 sources; 2) irradiation stand with plutonium-beryllium neutron sources; 3) spectrometric working place. With the regard to the uniqueness of the laboratory operation, all the works in the sphere of hardware as well as software has been implemented by own forces. The equipment of the laboratory makes possible to test metrologically all the radiation monitoring apparatuses used in NPP Dukovany. The quantity of operation of he laboratory of ionizing metrology qualifies the proper functioning of the radiation monitoring system, which directly influences the ensurance of nuclear safety of NPP Dukovany.

  8. Measurement, Nyquist and Shannon: a view of PMU metrology

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold; Albu, Mihaela

    2017-03-23

    It is generally understood that in a (digital) measuring system, attention must be paid to the criterion usually identified with the name Nyquist. The paper shows that there is no such a priori requirement. The observations of Nyquist are examined: some may seem unfamiliar. Sampling and measurement are described as different activities. A link to Information Theory is discussed.

  9. Justification for measurement equation: a fundamental issue in theoretical metrology

    Directory of Open Access Journals (Sweden)

    Aleksander V. Prokopov

    2013-11-01

    Full Text Available A review and a critical analysis of the specialized literature on justification for the measurement equation and an estimation of a methodical error (uncertainty of the measurement result are presented in the paper, and some prospects for solving of the issue are discussed herein.

  10. Justification for measurement equation: a fundamental issue in theoretical metrology

    OpenAIRE

    Aleksander V. Prokopov

    2013-01-01

    A review and a critical analysis of the specialized literature on justification for the measurement equation and an estimation of a methodical error (uncertainty) of the measurement result are presented in the paper, and some prospects for solving of the issue are discussed herein.

  11. A Secure System Architecture for Measuring Instruments in Legal Metrology

    Directory of Open Access Journals (Sweden)

    Daniel Peters

    2015-03-01

    Full Text Available Embedded systems show the tendency of becoming more and more connected. This fact combined with the trend towards the Internet of Things, from which measuring instruments are not immune (e.g., smart meters, lets one assume that security in measuring instruments will inevitably play an important role soon. Additionally, measuring instruments have adopted general-purpose operating systems to offer the user a broader functionality that is not necessarily restricted towards measurement alone. In this paper, a flexible software system architecture is presented that addresses these challenges within the framework of essential requirements laid down in the Measuring Instruments Directive of the European Union. This system architecture tries to eliminate the risks general-purpose operating systems have by wrapping them, together with dedicated applications, in secure sandboxes, while supervising the communication between the essential parts and the outside world.

  12. Metrology of image placement

    International Nuclear Information System (INIS)

    Starikov, Alexander

    1998-01-01

    Metrology of registration, overlay and alignment offset in microlithography are discussed. Requirements and limitations are traced to the device ground rules and the definitions of edge, linewidth and centerline. Precision, accuracy, system performance and metrology in applications are discussed. The impact of image acquisition and data handling on performance is elucidated. Much attention is given to the manufacturing environment and effects of processing. General new methods of metrology error diagnostics and technology characterization are introduced and illustrated. Applications of these diagnostics to tests of tool performance, error diagnostics and culling, as well as to process integration in manufacturing are described. Realistic overlay reference materials and results of accuracy evaluations are discussed. Requirements in primary standards and alternative metrology are explained. The role and capability of SEM based overlay metrology is described, along with applications to device overlay metrology

  13. Data Modeling for Measurements in the Metrology and Testing Fields

    CERN Document Server

    Pavese, Franco

    2009-01-01

    Offers a comprehensive set of modeling methods for data and uncertainty analysis. This work develops methods and computational tools to address general models that arise in practice, allowing for a more valid treatment of calibration and test data and providing an understanding of complex situations in measurement science

  14. Statistical metrology - measurement and modeling of variation for advanced process development and design rule generation

    International Nuclear Information System (INIS)

    Boning, Duane S.; Chung, James E.

    1998-01-01

    Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of 'dummy fill' or 'metal fill' to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal

  15. What metrology can do to improve the quality of your atmospheric ammonia measurements

    Science.gov (United States)

    Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.; Niederhauser, Bernhard

    2017-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation to ensure reliable ammonia measurements, namely in applicable analytical technology, maximum allowed uncertainty, quality assurance and quality control (QC/QA) procedures, as well as in the infrastructure to attain metrological traceability, i.e. that the results of measurements are traceable to SI-units through an unbroken chain of calibrations. In the framework of the European Metrology Research Programme (EMRP) project on the topic "Metrology for Ammonia in Ambient Air" (MetNH3), European national metrology institutes (NMI's) have joined to tackle the issue of generating SI-traceable reference material, i.e. generate reference gas mixtures containing known amount fractions of NH3.This requires special infrastructure and analytical techniques: Measurements of ambient ammonia are commonly carried out with diffusive samplers or by active sampling with denuders, but such techniques have not yet been extensively validated. Improvements in the metrological traceability may be achieved through the determination of NH3 diffusive sampling rates using ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at the National Physical Laboratory NPL and a controlled atmosphere test facility in combination with on-line monitoring with a cavity ring-down spectrometer. The Federal Institute of Metrology METAS has developed an infrastructure to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol (atmospheric concentrations) and with uncertainties UNH3 mobile device for full flexibility for calibrations in the laboratory and in the field. Both devices apply the method of temperature and pressure

  16. Measurement range of phase retrieval in optical surface and wavefront metrology

    International Nuclear Information System (INIS)

    Brady, Gregory R.; Fienup, James R.

    2009-01-01

    Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates

  17. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  18. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  19. Optical metrology alignment and impact on the measurement performance of the LISA Technology Package

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, M; Fichter, W; Brandt, N; Gerardi, D [iFR, Universitaet Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart (Germany); Schleicher, A [Astrium GmbH, 88039 Friedrichshafen (Germany); Wanner, G, E-mail: marc.hirth@ifr.uni-stuttgart.d [Albert Einstein Institut, Callinstrasse 38, 30167 Hannover (Germany)

    2009-03-01

    Aside from LISA Pathfinder's top-level acceleration requirement, there is a stringent independent requirement for the accuracy of the optical metrology system. In case of a perfectly aligned metrology system (optical bench and test masses) it should rather be independent of residual displacement jitter due to control. However, this ideal case will not be achieved as mechanical tolerances and uncertainties lead to a direct impact of test mass and spacecraft displacement jitter on the optical measurement accuracy. In this paper, we present a strategy how to cover these effects for a systematic requirement breakdown. We use a simplified nonlinear geometrical model for the differential distance measurement of the test masses which is linearized and linked to the equations of motion for both the spacecraft and the two test masses. This leads from test mass relative displacement to a formulation in terms of applied force/torque and thus allows to distinguish the absolute motion of each of the three bodies. It further shows how motions in each degree of freedom couple linearly into the optical measurement via DC misalignments of the laser beam and the test masses. This finally allows for deriving requirements on the alignment accuracy of components and on permittable closed-loop acceleration noise. In the last part a budget for the expected measurement performance is compiled from simulations as no measurement data is available yet.

  20. Optical metrology alignment and impact on the measurement performance of the LISA Technology Package

    International Nuclear Information System (INIS)

    Hirth, M; Fichter, W; Brandt, N; Gerardi, D; Schleicher, A; Wanner, G

    2009-01-01

    Aside from LISA Pathfinder's top-level acceleration requirement, there is a stringent independent requirement for the accuracy of the optical metrology system. In case of a perfectly aligned metrology system (optical bench and test masses) it should rather be independent of residual displacement jitter due to control. However, this ideal case will not be achieved as mechanical tolerances and uncertainties lead to a direct impact of test mass and spacecraft displacement jitter on the optical measurement accuracy. In this paper, we present a strategy how to cover these effects for a systematic requirement breakdown. We use a simplified nonlinear geometrical model for the differential distance measurement of the test masses which is linearized and linked to the equations of motion for both the spacecraft and the two test masses. This leads from test mass relative displacement to a formulation in terms of applied force/torque and thus allows to distinguish the absolute motion of each of the three bodies. It further shows how motions in each degree of freedom couple linearly into the optical measurement via DC misalignments of the laser beam and the test masses. This finally allows for deriving requirements on the alignment accuracy of components and on permittable closed-loop acceleration noise. In the last part a budget for the expected measurement performance is compiled from simulations as no measurement data is available yet.

  1. Measurement capability overview in PolyNano

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    A measurement capability overview has been conducted to evaluate, among the most used instruments in the field of nanometrology, where the PolyNano project should focus its research. The deliverable presents the most relevant instruments to achieve the best possible measurements accuracy matching...... requirements such as low uncertainty, high repeatability and resolution, adequate measuring range and availability among the different project partners. Based on the present measurement capability overview and in relation to the objective of PolyNano to “remove the technology barrier between lab‐scale proof...

  2. Detecting metrologically useful asymmetry and entanglement by a few local measurements

    Science.gov (United States)

    Zhang, Chao; Yadin, Benjamin; Hou, Zhi-Bo; Cao, Huan; Liu, Bi-Heng; Huang, Yun-Feng; Maity, Reevu; Vedral, Vlatko; Li, Chuan-Feng; Guo, Guang-Can; Girolami, Davide

    2017-10-01

    Important properties of a quantum system are not directly measurable, but they can be disclosed by how fast the system changes under controlled perturbations. In particular, asymmetry and entanglement can be verified by reconstructing the state of a quantum system. Yet, this usually requires experimental and computational resources which increase exponentially with the system size. Here we show how to detect metrologically useful asymmetry and entanglement by a limited number of measurements. This is achieved by studying how they affect the speed of evolution of a system under a unitary transformation. We show that the speed of multiqubit systems can be evaluated by measuring a set of local observables, providing exponential advantage with respect to state tomography. Indeed, the presented method requires neither the knowledge of the state and the parameter-encoding Hamiltonian nor global measurements performed on all the constituent subsystems. We implement the detection scheme in an all-optical experiment.

  3. Inter-laboratory comparison of HITU power measurement methods and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Jenderka, K V [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Durando, G [Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino (Italy); Karaboece, B [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagopal, S; Shaw, A, E-mail: kvjend@ieee.org [National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW (United Kingdom)

    2011-02-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  4. Inter-laboratory comparison of HITU power measurement methods and capabilities

    International Nuclear Information System (INIS)

    Jenderka, K V; Durando, G; Karaboece, B; Rajagopal, S; Shaw, A

    2011-01-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  5. Temperature metrology

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.

    2005-05-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  6. Temperature metrology

    International Nuclear Information System (INIS)

    Fischer, J; Fellmuth, B

    2005-01-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  7. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  8. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  9. Improving the surface metrology accuracy of optical profilers by using multiple measurements

    Science.gov (United States)

    Xu, Xudong; Huang, Qiushi; Shen, Zhengxiang; Wang, Zhanshan

    2016-10-01

    The performance of high-resolution optical systems is affected by small angle scattering at the mid-spatial-frequency irregularities of the optical surface. Characterizing these irregularities is, therefore, important. However, surface measurements obtained with optical profilers are influenced by additive white noise, as indicated by the heavy-tail effect observable on their power spectral density (PSD). A multiple-measurement method is used to reduce the effects of white noise by averaging individual measurements. The intensity of white noise is determined using a model based on the theoretical PSD of fractal surface measurements with additive white noise. The intensity of white noise decreases as the number of times of multiple measurements increases. Using multiple measurements also increases the highest observed spatial frequency; this increase is derived and calculated. Additionally, the accuracy obtained using multiple measurements is carefully studied, with the analysis of both the residual reference error after calibration, and the random errors appearing in the range of measured spatial frequencies. The resulting insights on the effects of white noise in optical profiler measurements and the methods to mitigate them may prove invaluable to improve the quality of surface metrology with optical profilers.

  10. Measuring up to the challenges of the 21st century. An international evaluation of the Centre for Metrology and Accreditation

    Energy Technology Data Exchange (ETDEWEB)

    Clapman, P.; Kaarls, R.; Temmes, M.

    1997-04-01

    The international evaluation of the Centre for Metrology and Accreditation (MIKES) is part of the process in which all relevant industrial and technology policy measures and organizations under the auspices of the Ministry of Trade and Industry (MTI) are being evaluated with the aim of improving their effectiveness. The overall conclusion of the evaluation is that MIKES is serving the country well. An effective national measurement system (FINMET) is being maintained which provides a wide range of calibration services covering most of the nation`s needs. The accreditation service (FINAS) is now well established, is operating effectively, and has good prospects for growth. The evaluators present, however, a number of proposals (including 33 specific recommendations) where they feel that the metrology and accreditation arrangements could be better-suited to meet future national and international challenges. According to the recommendations the Finnish quality policy framework should be developed in a consistent way. There is a need of a comprehensive governmental quality policy statement upon which the inter-ministry coordination and harmonization of various conformity assessment activities can be based. MIKES should retain its current status as an agency within MTI. The national measurement system should be more centralised and a new purpose-built national standards laboratory should be procured. The responsibility for legal metrology should be transferred to MIKES. The terms of reference and membership of Advisory Committee for Metrology, as well as the Advisory Committee for Accreditation should be revised to ensure wider representation of all relevant, and especially industrial interests

  11. Investigation of metrological parameters of measuring system for small temperature changes

    Directory of Open Access Journals (Sweden)

    Samynina M. G.

    2014-02-01

    Full Text Available Metrological parameters of the non-standard contact device were investigated to characterize its performance in temperature change measurements in the specified temperature range. Several series thermistors with a negative temperature coefficient of resistance connected into a linearization circuit were used as the sensing element of the semiconductor device. Increasing the number of thermistors leads to improved circuitry resolving power and reduced dispersion of this parameter. However, there is the question of optimal ratio of the number of thermistors and implemented temperature resolution, due to the nonlinear resolution dependence of the number of series-connected thermoelements. An example of scheme of four similar thermistors as the primary sensor and of a standard measuring instrument, which is working in ohmmeter mode, shows the ability to measure temperature changes at the level of hundredth of a Celsius degree. In this case, a quantization error, which is determined by a resolution of the measuring system, and the ohmmeter accuracy make the main contribution to the overall accuracy of measuring small temperature changes.

  12. Analysis of key technologies for virtual instruments metrology

    Science.gov (United States)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  13. Metrology for ITER Assembly

    International Nuclear Information System (INIS)

    Bogusch, E.

    2006-01-01

    The overall dimensions of the ITER Tokamak and the particular assembly sequence preclude the use of conventional optical metrology, mechanical jigs and traditional dimensional control equipment, as used for the assembly of smaller, previous generation, fusion devices. This paper describes the state of the art of the capabilities of available metrology systems, with reference to the previous experience in Fusion engineering and in other industries. Two complementary procedures of transferring datum from the primary datum network on the bioshield to the secondary datum s inside the VV with the desired accuracy of about 0.1 mm is described, one method using the access directly through the ports and the other using transfer techniques, developed during the co-operation with ITER/EFDA. Another important task described is the development of a method for the rapid and easy measurement of the gaps between sectors, required for the production of the customised splice plates between them. The scope of the paper includes the evaluation of the composition and cost of the systems and team of technical staff required to meet the requirements of the assembly procedure. The results from a practical, full-scale demonstration of the methodologies used, using the proposed equipment, is described. This work has demonstrated the feasibility of achieving the necessary accuracies for the successful building of ITER. (author)

  14. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  15. Metrological issues related to BRDF measurements around the specular direction in the particular case of glossy surfaces

    Science.gov (United States)

    Obein, Gaël.; Audenaert, Jan; Ged, Guillaume; Leloup, Frédéric B.

    2015-03-01

    Among the complete bidirectional reflectance distribution function (BRDF), visual gloss is principally related to physical reflection characteristics located around the specular reflection direction. This particular part of the BRDF is usually referred to as the specular peak. A good starting point for the physical description of gloss could be to measure the reflection properties around this specular peak. Unfortunately, such a characterization is not trivial, since for glossy surfaces the width of the specular peak can become very narrow (typically a full width at half maximum inferior to 0.5° is encountered). In result, new BRDF measurement devices with a very small solid angle of detection are being introduced. Yet, differences in the optical design of BRDF measurement instruments engender different measurement results for the same specimen, complicating direct comparison of the measurement results. This issue is addressed in this paper. By way of example, BRDF measurement results of two samples, one being matte and the other one glossy, obtained by use of two high level goniospectrophotometers with a different optical design, are described. Important discrepancies in the results of the glossy sample are discussed. Finally, luminance maps obtained from renderings with the acquired BRDF data are presented, exemplifying the large visual differences that might be obtained. This stresses the metrological aspects that must be known for using BRDF data. Indeed, the comprehension of parameters affecting the measurement results is an inevitable step towards progress in the metrology of surface gloss, and thus towards a better metrology of appearance in general.

  16. EMRP JRP MetNH3: Towards a Consistent Metrological Infrastructure for Ammonia Measurements in Ambient Air

    Science.gov (United States)

    Leuenberger, Daiana; Balslev-Harder, David; Braban, Christine F.; Ebert, Volker; Ferracci, Valerio; Gieseking, Bjoern; Hieta, Tuomas; Martin, Nicholas A.; Pascale, Céline; Pogány, Andrea; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. In addition to its acidifying effect on natural waters and soils and to the additional nitrogen input to ecosystems, ammonia is an important precursor for secondary aerosol formation in the atmosphere. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation regarding certified reference material (CRM), applicable analytical methods, measurement uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. As shown in a key comparison in 2007, there are even discrepancies between reference materials provided by European National Metrology Institutes (NMIs) at amount fraction levels up to three orders of magnitude higher than ambient air levels. MetNH3 (Metrology for ammonia in ambient air), a three-year project that started in June 2014 in the framework of the European Metrology Research Programme (EMRP), aims to reduce the gap between requirements set by the European emission regulations and state-of-the-art of analytical methods and reference materials. The overarching objective of the JRP is to achieve metrological traceability for ammonia measurements in ambient air from primary certified reference material CRM and instrumental standards to the field level. This requires the successful completion of the three main goals, which have been assigned to three technical work packages: To develop improved reference gas mixtures by static and dynamic gravimetric generation methods Realisation and characterisation of traceable preparative calibration standards (in pressurised cylinders as well as mobile generators) of ammonia amount fractions similar to those in ambient air based on existing methods for other reactive analytes. The

  17. Selecting Capabilities for Quality of Life Measurement

    Science.gov (United States)

    Robeyns, Ingrid

    2005-01-01

    The capability approach advocates that interpersonal comparisons be made in the space of functionings and capabilities. However, Amartya Sen has not specified which capabilities should be selected as the relevant ones. This has provoked two types of criticism. The stronger critique is Martha Nussbaum's claim that Sen should endorse one specific…

  18. Improving OCD time to solution using Signal Response Metrology

    Science.gov (United States)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  19. CAPABILITY ASSESSMENT OF MEASURING EQUIPMENT USING STATISTIC METHOD

    Directory of Open Access Journals (Sweden)

    Pavel POLÁK

    2014-10-01

    Full Text Available Capability assessment of the measurement device is one of the methods of process quality control. Only in case the measurement device is capable, the capability of the measurement and consequently production process can be assessed. This paper deals with assessment of the capability of the measuring device using indices Cg and Cgk.

  20. Impact of shrinking measurement error budgets on qualification metrology sampling and cost

    Science.gov (United States)

    Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Vaid, Alok; Osorio, Carmen; Archie, Chas

    2014-04-01

    When designing an experiment to assess the accuracy of a tool as compared to a reference tool, semiconductor metrologists are often confronted with the situation that they must decide on the sampling strategy before the measurements begin. This decision is usually based largely on the previous experience of the metrologist and the available resources, and not on the statistics that are needed to achieve acceptable confidence limits on the final result. This paper shows a solution to this problem, called inverse TMU analysis, by presenting statistically-based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk vs. reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope (CD-SEM) tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions before the start of the experiment, and then to reveal why low sampling can lead to unstable and misleading results. A model is developed that can help an experimenter minimize the costs associated both with increased sampling and with making wrong decisions caused by insufficient sampling. A second cost model is described that reveals the inadequacy of current TEM (Transmission Electron Microscopy) sampling practices and the enormous costs associated with TEM sampling that is needed to provide reasonable levels of certainty in the result. These high costs reach into the tens of millions of dollars for TEM reference metrology as the measurement error budgets reach angstrom levels. The paper concludes with strategies on how to manage and mitigate these costs.

  1. Metrological Traceability in the Social Sciences: A Model from Reading Measurement

    International Nuclear Information System (INIS)

    Stenner, A Jackson; Fisher, William P Jr

    2013-01-01

    The central importance of reading ability in learning makes it the natural place to start in formative and summative assessments in education. The Lexile Framework for Reading constitutes a commercial metrological traceability network linking books, test results, instructional materials, and students in elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia

  2. General problems of metrology and indirect measuring in cardiology: error estimation criteria for indirect measurements of heart cycle phase durations

    Directory of Open Access Journals (Sweden)

    Konstantine K. Mamberger

    2012-11-01

    Full Text Available Aims This paper treats general problems of metrology and indirect measurement methods in cardiology. It is aimed at an identification of error estimation criteria for indirect measurements of heart cycle phase durations. Materials and methods A comparative analysis of an ECG of the ascending aorta recorded with the use of the Hemodynamic Analyzer Cardiocode (HDA lead versus conventional V3, V4, V5, V6 lead system ECGs is presented herein. Criteria for heart cycle phase boundaries are identified with graphic mathematical differentiation. Stroke volumes of blood SV calculated on the basis of the HDA phase duration measurements vs. echocardiography data are compared herein. Results The comparative data obtained in the study show an averaged difference at the level of 1%. An innovative noninvasive measuring technology originally developed by a Russian R & D team offers measuring stroke volume of blood SV with a high accuracy. Conclusion In practice, it is necessary to take into account some possible errors in measurements caused by hardware. Special attention should be paid to systematic errors.

  3. Establishing an infrared measurement and modelling capability

    CSIR Research Space (South Africa)

    Willers, CJ

    2011-04-01

    Full Text Available The protection of own aircraft assets against infrared missile threats requires a deep understanding of the vulnerability of these assets with regard to specific threats and specific environments of operation. A key capability in the protection...

  4. Computed tomography for dimensional metrology

    DEFF Research Database (Denmark)

    Kruth, J.P.; Bartscher, M.; Carmignato, S.

    2011-01-01

    metrology, putting emphasis on issues as accuracy, traceability to the unit of length (the meter) and measurement uncertainty. It provides a state of the art (anno 2011) and application examples, showing the aptitude of CT metrology to: (i) check internal dimensions that cannot be measured using traditional...

  5. Economic benefits of metrology in manufacturing

    DEFF Research Database (Denmark)

    Savio, Enrico; De Chiffre, Leonardo; Carmignato, S.

    2016-01-01

    examples from industrial production, in which the added value of metrology in manufacturing is discussed and quantified. Case studies include: general manufacturing, forging, machining, and related metrology. The focus of the paper is on the improved effectiveness of metrology when used at product...... and process design stages, as well as on the improved accuracy and efficiency of manufacturing through better measuring equipment and process chains with integrated metrology for process control.......In streamlined manufacturing systems, the added value of inspection activities is often questioned, and metrology in particular is sometimes considered only as an avoidable expense. Documented quantification of economic benefits of metrology is generally not available. This work presents concrete...

  6. Social profit in the context of the activities at Fluids Measurement Sector in Legal Metrology Department - Inmetro

    Science.gov (United States)

    Cinelli, L. R.; Silva, L. G.; Junior, E. A.; Almeida, R. O.

    2018-03-01

    This article was prepared in the context of the work of the Fluids Measurement Sector (Seflu) of the Legal Metrology Department of Inmetro (Dimel) in order to try to answer the following question: What is the magnitude of Social Profit generated for brazilian society from the existence of legal control of measuring instruments within the scope of this sector? In this sense, some examples of a case study containing the main measurement instruments related to the evaluation process of models performed at the Seflu are presented.

  7. In-cell overlay metrology by using optical metrology tool

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Park, Hyowon; Liang, Waley; Choi, DongSub; Kim, Nakyoon; Lee, Jeongpyo; Pandev, Stilian; Jeon, Sanghuck; Robinson, John C.

    2018-03-01

    Overlay is one of the most critical process control steps of semiconductor manufacturing technology. A typical advanced scheme includes an overlay feedback loop based on after litho optical imaging overlay metrology on scribeline targets. The after litho control loop typically involves high frequency sampling: every lot or nearly every lot. An after etch overlay metrology step is often included, at a lower sampling frequency, in order to characterize and compensate for bias. The after etch metrology step often involves CD-SEM metrology, in this case in-cell and ondevice. This work explores an alternative approach using spectroscopic ellipsometry (SE) metrology and a machine learning analysis technique. Advanced 1x nm DRAM wafers were prepared, including both nominal (POR) wafers with mean overlay offsets, as well as DOE wafers with intentional across wafer overlay modulation. After litho metrology was measured using optical imaging metrology, as well as after etch metrology using both SE and CD-SEM for comparison. We investigate 2 types of machine learning techniques with SE data: model-less and model-based, showing excellent performance for after etch in-cell on-device overlay metrology.

  8. Looking at the future of manufacturing metrology: roadmap document of the German VDI/VDE Society for Measurement and Automatic Control

    OpenAIRE

    Berthold, J.; Imkamp, D.

    2013-01-01

    "Faster, safer, more accurately and more flexibly'' is the title of the "manufacturing metrology roadmap'' issued by the VDI/VDE Society for Measurement and Automatic Control (http://www.vdi.de/gma). The document presents a view of the development of metrology for industrial production over the next ten years and was drawn up by a German group of experts from research and industry. The following paper summarizes the content of the roadmap and explains the individual concepts of "Faster, safer...

  9. Theory-based metrological traceability in education: A reading measurement network.

    Science.gov (United States)

    Fisher, William P; Stenner, A Jackson

    2016-10-01

    Huge resources are invested in metrology and standards in the natural sciences, engineering, and across a wide range of commercial technologies. Significant positive returns of human, social, environmental, and economic value on these investments have been sustained for decades. Proven methods for calibrating test and survey instruments in linear units are readily available, as are data- and theory-based methods for equating those instruments to a shared unit. Using these methods, metrological traceability is obtained in a variety of commercially available elementary and secondary English and Spanish language reading education programs in the U.S., Canada, Mexico, and Australia. Given established historical patterns, widespread routine reproduction of predicted text-based and instructional effects expressed in a common language and shared frame of reference may lead to significant developments in theory and practice. Opportunities for systematic implementations of teacher-driven lean thinking and continuous quality improvement methods may be of particular interest and value.

  10. System for automatic gauge block length measurement optimized for secondary length metrology

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Šarbort, Martin; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Pikálek, Tomáš; Dvořáčková, Š.; Dvořáček, F.; Kůr, J.; Konečný, P.; Weigl, M.; Lazar, Josef; Číp, Ondřej

    2017-01-01

    Roč. 49, JULY (2017), s. 322-331 ISSN 0141-6359 R&D Projects: GA TA ČR(CZ) TA03010663; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : low-coherence interferometry * laser interferometry * Gauge block * metrology Subject RIV: BH - Optics, Masers, Laser s OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.237, year: 2016

  11. Metrology's role in quality assurance

    International Nuclear Information System (INIS)

    Zeederberg, L.B.

    1982-01-01

    Metrology, the science of measurement, is playing an increasing role in modern industry as part of an on-going quality assurance programme. At Escom, quality assurance was critical during the construction of the Koeberg nuclear facility, and also a function in controlling services provided by Escom. This article deals with the role metrology plays in quality assurance

  12. Clearance Laboratory - Capability and measurement sensitivity

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Lauridsen, B.; Silva, J.; Soegaard-Hansen, J.; Warming, L.

    2005-09-01

    A new low-level Clearance Laboratory has been built at the Risoe-site. Building materials with a low content of naturally occurring radionuclides have been used. To minimize transport of radon gas from soil into the laboratory the foundation has been supplied with a membrane. The laboratory has been equipped with two high-efficiency germanium detectors. These detectors will be used for clearance measurements on the predicted amount of 15,000 - 18,000 tonnes of non-active or nearly non-active materials, which will originate from the decommissioning of all the nuclear facilities at the Risoe-site. They will be used also for clearance measurements on buildings and land. Objects and materials to be measured for clearance are placed on a rotation table that can carry up to one tonne and can rotate once a minute to simulate some averaging of inhomogeneously distributed activity. Sensitivity and background measurements reveal that measuring times of 20 - 50 minutes would normally be sufficient to detect radionuclide concentrations of only a small fraction of the nuclide-specific clearance levels with a sufficiently low uncertainty. Probability calculations of the measurement capacity of the Clearance Laboratory indicate that the mean value of the total measuring time for all materials that potentially can be cleared would be 13 years with a 95% probability of being less than 25 years. The mean value of the annual amount of materials that can be measured in the laboratory is 600 tonnes with a 95% probability of being less than 1,200 tonnes. If needed, there is room for additional measuring systems to increase the capacity of the laboratory. (au)

  13. Clearance Laboratory - Capability and measurement sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hedemann Jensen, P.; Lauridsen, B.; Silva, J.; Soegaard-Hansen, J.; Warming, L.

    2005-08-01

    A new low-level Clearance Laboratory has been built at the Risoe-site. Building materials with a low content of naturally occurring radionuclides have been used. To minimize transport of radon gas from soil into the laboratory the foundation has been supplied with a membrane. The laboratory has been equipped with two high-efficiency germanium detectors. These detectors will be used for clearance measurements on the predicted amount of 15,000 - 18,000 tonnes of non-active or nearly non-active materials, which will originate from the decommissioning of all the nuclear facilities at the Risoe-site. They will be used also for clearance measurements on buildings and land. Objects and materials to be measured for clearance are placed on a rotation table that can carry up to one tonne and can rotate once a minute to simulate some averaging of inhomogeneously distributed activity. Sensitivity and background measurements reveal that measuring times of 20 - 50 minutes would normally be sufficient to detect radionuclide concentrations of only a small fraction of the nuclide-specific clearance levels with a sufficiently low uncertainty. Probability calculations of the measurement capacity of the Clearance Laboratory indicate that the mean value of the total measuring time for all materials that potentially can be cleared would be 13 years with a 95% probability of being less than 25 years. The mean value of the annual amount of materials that can be measured in the laboratory is 600 tonnes with a 95% probability of being less than 1,200 tonnes. If needed, there is room for additional measuring systems to increase the capacity of the laboratory. (au)

  14. Criterion Validation Testing of Clinical Metrology Instruments for Measuring Degenerative Joint Disease Associated Mobility Impairment in Cats.

    Science.gov (United States)

    Gruen, Margaret E; Griffith, Emily H; Thomson, Andrea E; Simpson, Wendy; Lascelles, B Duncan X

    2015-01-01

    Degenerative joint disease and associated pain are common in cats, particularly in older cats. There is a need for treatment options, however evaluation of putative therapies is limited by a lack of suitable, validated outcome measures that can be used in the target population of client owned cats. The objectives of this study were to evaluate low-dose daily meloxicam for the treatment of pain associated with degenerative joint disease in cats, and further validate two clinical metrology instruments, the Feline Musculoskeletal Pain Index (FMPI) and the Client Specific Outcome Measures (CSOM). Sixty-six client owned cats with degenerative joint disease and owner-reported impairments in mobility were screened and enrolled into a double-masked, placebo-controlled, randomized clinical trial. Following a run-in baseline period, cats were given either placebo or meloxicam for 21 days, then in a masked washout, cats were all given placebo for 21 days. Subsequently, cats were given the opposite treatment, placebo or meloxicam, for 21 days. Cats wore activity monitors throughout the study, owners completed clinical metrology instruments following each period. Activity counts were increased in cats during treatment with daily meloxicam (pdegenerative joint disease.

  15. Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

    Science.gov (United States)

    Feistel, R.; Wielgosz, R.; Bell, S. A.; Camões, M. F.; Cooper, J. R.; Dexter, P.; Dickson, A. G.; Fisicaro, P.; Harvey, A. H.; Heinonen, M.; Hellmuth, O.; Kretzschmar, H.-J.; Lovell-Smith, J. W.; McDougall, T. J.; Pawlowicz, R.; Ridout, P.; Seitz, S.; Spitzer, P.; Stoica, D.; Wolf, H.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  16. Metrological assessment of the methods for measuring the contents of acids and ion metals responsible for the exchangeable acidity of soils

    Science.gov (United States)

    Vanchikova, E. V.; Shamrikova, E. V.; Bespyatykh, N. V.; Kyz"yurova, E. V.; Kondratenok, B. M.

    2015-02-01

    Metrological characteristics—precision, trueness, and accuracy—of the results of measurements of the exchangeable acidity and its components by the potentiometric titration method were studied on the basis of multiple analyses of the soil samples with the examination of statistical data for the outliers and their correspondence to the normal distribution. Measurement errors were estimated. The applied method was certified by the Metrological Center of the Uralian Branch of the Russian Academy of Sciences (certificate no. 88-17641-094-2013) and included in the Federal Information Fund on Assurance of Measurements (FR 1.31.2013.16382).

  17. Antera 3D capabilities for pore measurements.

    Science.gov (United States)

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Recent Investments by NASA's National Force Measurement Technology Capability

    Science.gov (United States)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  19. Enhanced resolution and accuracy of freeform metrology through Subaperture Stitching Interferometry

    Science.gov (United States)

    Supranowitz, Chris; Maloney, Chris; Murphy, Paul; Dumas, Paul

    2017-10-01

    Recent advances in polishing and metrology have addressed many of the challenges in the fabrication and metrology of freeform surfaces, and the manufacture of these surfaces is possible today. However, achieving the form and mid-spatial frequency (MSF) specifications that are typical of visible imaging systems remains a challenge. Interferometric metrology for freeform surfaces is thus highly desirable for such applications, but the capability is currently quite limited for freeforms. In this paper, we provide preliminary results that demonstrate accurate, high-resolution measurements of freeform surfaces using prototype software on QED's ASI™ (Aspheric Stitching Interferometer).

  20. Color and appearance metrology facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST Physical Measurement Laboratory has established the color and appearance metrology facility to support calibration services for 0°/45° colored samples, 20°,...

  1. Looking at the future of manufacturing metrology: roadmap document of the German VDI/VDE Society for Measurement and Automatic Control

    Directory of Open Access Journals (Sweden)

    J. Berthold

    2013-02-01

    Full Text Available "Faster, safer, more accurately and more flexibly'' is the title of the "manufacturing metrology roadmap'' issued by the VDI/VDE Society for Measurement and Automatic Control (http://www.vdi.de/gma. The document presents a view of the development of metrology for industrial production over the next ten years and was drawn up by a German group of experts from research and industry. The following paper summarizes the content of the roadmap and explains the individual concepts of "Faster, safer, more accurately and more flexibly'' with the aid of examples.

  2. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  3. Measuring Organisational Capabilities in the Higher Education Sector

    Science.gov (United States)

    Bobe, Belete J.; Kober, Ralph

    2015-01-01

    Purpose: Drawing on the resource-based view (RBV), the purpose of this paper is to develop a framework and instrument to measure the organisational capabilities of university schools/departments. In doing so, this study provides evidence of the way competitive resources are bundled to generate organisational capabilities that give university…

  4. A Roadmap for Thermal Metrology

    Science.gov (United States)

    Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.

    2009-02-01

    A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.

  5. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Science.gov (United States)

    Wittchen, Andreas; the LPF Collaboration

    2017-05-01

    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.

  6. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  7. An embedded acceleration measurement capability for EXPRESS Rack Payloads

    International Nuclear Information System (INIS)

    Foster, William M. II; Sutliff, Thomas J.

    2000-01-01

    The International Space Station provides a microgravity environment allowing long duration studies to be made on phenomena masked by the presence of earth's gravitational effects. Studies are also enabled in areas requiring a substantial decrease in steady-state and vibratory acceleration environments. In anticipation microgravity science experiments being targeted for EXPRESS (EXpedite the PRocessing of Experiments to Space Station) Racks, a capability has been provided to simplify and conduct a consistent measurement of the microgravity environment for payloads. The Space Acceleration Measurement System-II (SAMS-II) project has collaborated with the EXPRESS Rack Project to embed an electronics unit within the four EXPRESS Racks equipped with Active Rack Isolation Systems (ARIS). Each SAMS-II unit provides a standardized means for payload acceleration measurements to be acquired. Access to this capability is via front panel connections similar to those of power, data and water cooling provided for EXPRESS payloads. Furthermore, an International Subrack Interface Standard (ISIS) drawer configuration has been developed to provide measurement capability to the non-ARIS equipped EXPRESS Racks, as well as to other ISIS-configured racks, for non-isolated experimental measurement needs. This paper describes the SAMS-II acceleration measurement capabilities provided to ISS users and, in particular, to the EXPRESS Rack community

  8. A survey on coordinate metrology using dimensional X-ray CT

    International Nuclear Information System (INIS)

    Matsuzaki, Kazuya

    2016-01-01

    X-ray computed tomography (X-ray CT) has been occupying indispensable position in geometrical and dimensional measurements in industry, which is capable of measuring both external and internal dimensions of industrial products. Since dimensional X-ray CT has problems about ensuring traceability and estimating uncertainty, requirement of developing measurement standard for dimensional X-ray CT is increasing. Some of national metrology institutes (NMIs) including NMIJ have been working on developing measurement standard. In this report, the background of coordinate metrology using dimensional X-ray CT is reviewed. Then, measurement error sources are discussed. Finally, the plan to develop high accuracy dimensional X-ray CT is presented. (author)

  9. Comparison of ATLAS Tilecal MODULE No 8 high-precision metrology measurement results obtained by laser (JINR) and photogrammetric (CERN) methods

    CERN Document Server

    Batusov, V; Gayde, J C; Khubua, J I; Lasseur, C; Lyablin, M V; Miralles-Verge, L; Nessi, Marzio; Rusakovitch, N A; Sissakian, A N; Topilin, N D

    2002-01-01

    The high-precision assembly of large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research programme in the TeV-beams. The creation of an adequate survey and control metrology method is an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE No. 8 (6 m, 22 tons) which were obtained by laser and by photogrammetry methods. The comparative data analysis demonstrates the measurements agreement within +or-70 mu m. It means, these two clearly independent methods can be combined and lead to the rise of a new-generation engineering culture: high-precision metrology when precision assembling of large scale massive objects. (3 refs).

  10. Comparison of ATLAS tilecal module No. 8 high-precision metrology measurement results obtained by laser (JINR) and photogrammetric (CERN) methods

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, Yu.; Gayde, J.C.

    2002-01-01

    The high-precision assembly of large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research programme in the TeV-beams. The creation of an adequate survey and control metrology method is an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE No. 8 (6 m, 22 tons) which were obtained by laser and by photogrammetry methods. The comparative data analysis demonstrates the measurements agreement within ± 70 μm. It means, these two clearly independent methods can be combined and lead to the rise of a new-generation engineering culture: high-precision metrology when precision assembling of large scale massive objects

  11. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  12. Measuring the In-Process Figure, Final Prescription, and System Alignment of Large Optics and Segmented Mirrors Using Lidar Metrology

    Science.gov (United States)

    Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak

    2011-01-01

    The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.

  13. Comparison of measurement capability with 100 μmol/mol of carbon monoxide in nitrogen

    Science.gov (United States)

    Lee, Jeongsoon; Lee, JinBok; Lim, Jeongsik; Tarhan, Tanıl; Liu, Hsin-Wang; Aggarwal, Shankar G.

    2018-01-01

    Carbon monoxide (CO) in nitrogen was one of the first types of gas mixtures used in an international key comparison. The comparison dates back to 1998 (CCQMK1a) [1]. Since then, many National Metrology Institutes (NMIs) have developed calibration and measurement capabilities (CMCs) for these mixtures. Recently, NMIs in the APMP region have actively participated in international comparisons to provide domestic services. At the 2013 APMP meeting, several NMIs requested a CO comparison to establish CO/N2 certification for industrial applications, which was to be coordinated by KRISS. Consequently, this comparison provides an opportunity for APMP regional NMIs to develop CO/N2 CMC claims. The goal of this supplementary comparison is to support CMC claim for carbon monoxide in the N2 range of 50–2000 μmol/mol. An extended range may be supported as described in the GAWG strategy for comparisons and CMC claims. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Metrological Array of Cyber-Physical Systems. Part 7. Additive Error Correction for Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-06-01

    Full Text Available Since during design it is impossible to use the uncertainty approach because the measurement results are still absent and as noted the error approach that can be successfully applied taking as true the nominal value of instruments transformation function. Limiting possibilities of additive error correction of measuring instruments for Cyber-Physical Systems are studied basing on general and special methods of measurement. Principles of measuring circuit maximal symmetry and its minimal reconfiguration are proposed for measurement or/and calibration. It is theoretically justified for the variety of correction methods that minimum additive error of measuring instruments exists under considering the real equivalent parameters of input electronic switches. Terms of self-calibrating and verification the measuring instruments in place are studied.

  15. Nanoelectronics: Metrology and Computation

    International Nuclear Information System (INIS)

    Lundstrom, Mark; Clark, Jason V.; Klimeck, Gerhard; Raman, Arvind

    2007-01-01

    Research in nanoelectronics poses new challenges for metrology, but advances in theory, simulation and computing and networking technology provide new opportunities to couple simulation and metrology. This paper begins with a brief overview of current work in computational nanoelectronics. Three examples of how computation can assist metrology will then be discussed. The paper concludes with a discussion of how cyberinfrastructure can help connect computing and metrology using the nanoHUB (www.nanoHUB.org) as a specific example

  16. Metrological Reliability of Medical Devices

    Science.gov (United States)

    Costa Monteiro, E.; Leon, L. F.

    2015-02-01

    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  17. Celtiberian metrology and its romanization

    Directory of Open Access Journals (Sweden)

    Leonard A. CURCHIN

    2013-05-01

    Full Text Available Celtiberian metrology has scarcely been investigated until now, with the exception of coin weights. On the basis of measurements of pre-Roman mud bricks, a Celtiberian foot of 24 cm is proposed. With regard to weights, we can accept a module of 9 g for silver jewelry and some bronze coins; however, loom weights do not conform to any metrological system. Over time, Roman measures of length (as indicated by the dimensions of bricks, tiles and architectural monuments and weight were adopted.

  18. Crowd-sourcing as an analytical method: Metrology of smartphone measurements in heritage science.

    Science.gov (United States)

    Brigham, Rosie; Grau-Bove, Josep; Rudnicka, Anna; Cassar, May; Strlic, Matija

    2018-04-12

    This research assesses the precision, repeatability and accuracy of crowd-sourced scientific measurements, and whether their quality is sufficient to provide usable results. Measurements of colour and area were chosen because of the possibility of producing them with smartphone cameras. The quality of measurements was estimated experimentally by comparing data contributed by anonymous participants in heritage sites with reference measurements of known accuracy and precision. Participants performed the measurements by taking photographs with their smartphones, from which colour and dimensional data could be extracted. The results indicate that smartphone measurements provided by citizen-scientists can be used to measure changes of colour, but that the performance is strongly dependent on the measured colour coordinate and ranges from a minimum detectable colour change or difference between colours of ΔE 3.1 to ΔE 17.2. The same method is able to measure areas when the difference in colour with the neighbouring areas is higher than ΔE 10. These results render the method useful in some heritage science contexts, but higher precision would be desirable: the human eye can detect differences as small as ΔE 2, and a light-fast pigment fades approximately ΔE 8 in its lifetime. There is scope for further research in the automatization of the post-processing of user contributions and the effect of contextual factors (such as detail in the instructions) in the quality of the raw data. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Critical issues in overlay metrology

    International Nuclear Information System (INIS)

    Sullivan, Neal T.

    2001-01-01

    In this paper, following an overview of overlay metrology, the difficult relationship of overlay with device performance and yield is discussed and supported with several examples. This is followed by a discussion of the impending collision of metrology equipment performance and 'real' process tolerances for sub 0.18 um technologies. This convergence of tolerance and performance is demonstrated to lead to the current emergence of real-time overlay modeling in a feed-forward/feedback process environment and the associated metrology/sampling implications. This modeling takes advantage of the wealth of understanding concerning the systematic behavior of overlay registration errors. Finally, the impact of new process technologies (RET, OAI, CPSM, CMP, and etc.) on the measurement target is discussed and shown to de-stabilize overlay performance on standard overlay measurement target designs

  20. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  1. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  2. Mirror surface metrology and polishing for AXAF/TMA

    International Nuclear Information System (INIS)

    Slomba, A.; Babish, R.; Glenn, P.

    1985-01-01

    The achievement of the derived goals for mirror surface quality on the Advanced X-ray Astrophysics Facility (AXAF), Technology Mirror Assembly (TMA) required a combination of state-of-the-art metrology and polishing techniques. In this paper, the authors summarize the derived goals and cover the main facets of the various metrology instruments employed, as well as the philosophy and technique used in the polishing work. In addition, they show how progress was measured against the goals, using the detailed error budget for surface errors and a mathematical model for performance prediction. The metrology instruments represented a considerable advance on the state-of-the-art and fully satisfied the error budget goals for the various surface errors. They were capable of measuring the surface errors over a large range of spatial periods, from low-frequency figure errors to microroughness. The polishing was accomplished with a computer-controlled process, guided by the combined data from various metrology instruments. This process was also tailored to reduce the surface errors over the full range of spatial periods

  3. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    International Nuclear Information System (INIS)

    Song, J; Chu, W; Vorburger, T V; Thompson, R; Renegar, T B; Zheng, A; Yen, J; Silver, R; Ols, M

    2012-01-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results. (paper)

  4. Fire metrology: Current and future directions in physics-based measurements

    Science.gov (United States)

    Robert L. Kremens; Alistair M.S. Smith; Matthew B. Dickinson

    2010-01-01

    The robust evaluation of fire impacts on the biota, soil, and atmosphere requires measurement and analysis methods that can characterize combustion processes across a range of temporal and spatial scales. Numerous challenges are apparent in the literature. These challenges have led to novel research to quantify the 1) structure and heterogeneity of the pre-fire...

  5. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

    Science.gov (United States)

    Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg

    2017-06-01

    We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.

  6. Progress on FP13 Total Cross Section Measurements Capability

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since the detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γγ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.

  7. Remote Metrology, Mapping, and Motion Sensing of Plasma Facing Components Using FM Coherent Laser Radar

    International Nuclear Information System (INIS)

    Menon, M.M.; Barry, R.E.; Slotwinsky, A.; Kugel, H.W.; Skinner, C.H.

    2000-01-01

    Metrology inside a D/T burning fusion reactor must necessarily be conducted remotely since the in-vessel environment would be highly radioactive due to neutron activation of the torus walls. A technique based on frequency modulated coherent laser radar (FM CLR) for such remote metrology is described. Since the FM CLR relies on frequency shift to measure distances, the results are largely insensitive to surface reflectance characteristics. Results of measurements in TFTR and NSTX fusion devices using a prototype FM CLR unit, capable of remotely measuring distances (range) up to 22 m with better than 0.1-mm precision, are provided. These results illustrate that the FM CLR can be used for precision remote metrology as well as viewing. It is also shown that by conducting Doppler corrected range measurements using the CLR, the motion of objects can be tracked. Thus, the FM CLR has the potential to remotely measure the motion of plasma facing components (PFCs) during plasma disruptions

  8. Innovation in metrology: fast automated radiochemical separation and measurement for strontium 89 and 90

    Energy Technology Data Exchange (ETDEWEB)

    Augeray, C.; Galliez, K.; Mouton, M.; Tarlette, L.; Loyen, J.; Fayolle, C.; Gleizes, M. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France)

    2014-07-01

    Measuring radioactivity in the food and for radiological monitoring of the environment around Nuclear Facilities or mining sites requires the quantification of the radioactive isotopes present in the different compartments (liquids or solids), especially of the beta emitters. Strontium 89 and 90, both pure beta emitters are radioactive isotopes of interest. Because of their toxicity and the similarity of their chemical and physical behavior with calcium, these elements may be found through the food chain. After the Fukushima accident, the necessity of quantifying quickly radioactive isotopes such as strontium 89 and 90 appeared. The technique we are going to present concerns the determination of the activity concentration of strontium 89 and 90 in water, according to the {sup 89}Sr/{sup 90}Sr ratio. It consists of two stages: the chemical separation by ionic chromatography and the measurement of the activity concentration of strontium 89 and 90 by Cerenkov Effect. The automated separation has been developed and allows isolating the isotopes of strontium in particular the radioactive ones: strontium 89 and 90. The separation can be done within one hour. It was realized from the adaptation of existing analytical chemistry equipments with on-line couplings. The protocol of separation is based on the use of ions exchange columns of Ionic chromatography not as a separation and measurement technique of the cation but only as a separation technique. At the release time of the ion to be quantified, a fraction collector allows its recovery. The test portion is then analyzed with a liquid scintillation counter (LSC). The activity concentration is measured by Cerenkov Effect on a quenched sample. The quenching is realized by applying a thin colored film on the sample vial. This color quench is used to make strontium 90 counts disappear on the LS spectrum. This way, only yttrium 90 ingrowth and strontium 89 decay are measured (E{sup 90}Sr < E{sup 89}Sr < E{sup 90}Y

  9. Metrological traceability in education: A practical online system for measuring and managing middle school mathematics instruction

    Science.gov (United States)

    Torres Irribarra, D.; Freund, R.; Fisher, W.; Wilson, M.

    2015-02-01

    Computer-based, online assessments modelled, designed, and evaluated for adaptively administered invariant measurement are uniquely suited to defining and maintaining traceability to standardized units in education. An assessment of this kind is embedded in the Assessing Data Modeling and Statistical Reasoning (ADM) middle school mathematics curriculum. Diagnostic information about middle school students' learning of statistics and modeling is provided via computer-based formative assessments for seven constructs that comprise a learning progression for statistics and modeling from late elementary through the middle school grades. The seven constructs are: Data Display, Meta-Representational Competence, Conceptions of Statistics, Chance, Modeling Variability, Theory of Measurement, and Informal Inference. The end product is a web-delivered system built with Ruby on Rails for use by curriculum development teams working with classroom teachers in designing, developing, and delivering formative assessments. The online accessible system allows teachers to accurately diagnose students' unique comprehension and learning needs in a common language of real-time assessment, logging, analysis, feedback, and reporting.

  10. Metrological traceability in education: A practical online system for measuring and managing middle school mathematics instruction

    International Nuclear Information System (INIS)

    Irribarra, D Torres; Freund, R; Fisher, W; Wilson, M

    2015-01-01

    Computer-based, online assessments modelled, designed, and evaluated for adaptively administered invariant measurement are uniquely suited to defining and maintaining traceability to standardized units in education. An assessment of this kind is embedded in the Assessing Data Modeling and Statistical Reasoning (ADM) middle school mathematics curriculum. Diagnostic information about middle school students' learning of statistics and modeling is provided via computer-based formative assessments for seven constructs that comprise a learning progression for statistics and modeling from late elementary through the middle school grades. The seven constructs are: Data Display, Meta-Representational Competence, Conceptions of Statistics, Chance, Modeling Variability, Theory of Measurement, and Informal Inference. The end product is a web-delivered system built with Ruby on Rails for use by curriculum development teams working with classroom teachers in designing, developing, and delivering formative assessments. The online accessible system allows teachers to accurately diagnose students' unique comprehension and learning needs in a common language of real-time assessment, logging, analysis, feedback, and reporting

  11. Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.

    2010-01-01

    Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

  12. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  13. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  14. Metrology and ionospheric observation standards

    Science.gov (United States)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  15. Optical vortex metrology: Are phase singularities foes or friends in optical metrology?

    DEFF Research Database (Denmark)

    Takeda, M.; Wang, W.; Hanson, Steen Grüner

    2008-01-01

    We raise an issue whether phase singularities are foes or friends in optical metrology, and give an answer by introducing the principle and applications of a new technique which we recently proposed for displacement and flow measurements. The technique is called optical vortex metrology because i...

  16. Mass metrology

    CERN Document Server

    Gupta, S V

    2012-01-01

    This book presents the practical aspects of mass measurements. Concepts of gravitational, inertial and conventional mass and details of the variation of acceleration of gravity are described. The Metric Convention and International Prototype Kilogram and BIPM standards are described. The effect of change of gravity on the indication of electronic balances is derived with respect of latitude, altitude and earth topography. The classification of weights by OIML is discussed. Maximum permissible errors in different categories of weights prescribed by national and international organizations are p

  17. Clean focus, dose and CD metrology for CD uniformity improvement

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck

    2018-03-01

    Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.

  18. Plant equipment services with laser metrology

    International Nuclear Information System (INIS)

    Hayes, J.H.; Kreitman, P.J.

    1995-01-01

    A new industrial metrology process is now being applied to support PWR Nuclear Plant Steam Generator Replacement Projects. The method uses laser tracking interferometry to perform as built surveys of existing and replacement plant equipment. This method provides precision data with a minimum of setup when compared to alternative methods available. In addition there is no post processing required to ascertain validity. The data is obtained quickly, processed in real time and displayed during the survey in the desired coordinate system. These capabilities make this method of industrial measure ideal for various data acquisition needs throughout the power industry, from internal/external equipment templating to area mapping. Laser tracking interferometry is an improvement on the present use of optical instruments and surveying technique. In order to describe the laser tracking interferometry measurement process, previous methods of templating and surveying are first reviewed

  19. Impact of the ITRS Metrology Roadmap

    International Nuclear Information System (INIS)

    Diebold, Alain C.

    2001-01-01

    The International Technology Roadmap for Semiconductors (ITRS) provides the semiconductor industry with the timing of critical technology needs for future generations of integrated circuits. The Metrology roadmap in the ITRS describes the measurement needs based on the process requirements found in the Lithography, Front End Processes, Interconnect, and Packaging Roadmaps. This paper illustrates the impact of the Metrology Roadmap on the development of key measurement technology

  20. Metrology in Pharmaceutical Industry - A Case Study

    International Nuclear Information System (INIS)

    Yuvamoto, Priscila D.; Fermam, Ricardo K. S.; Nascimento, Elizabeth S.

    2016-01-01

    Metrology is recognized by improving production process, increasing the productivity, giving more reliability to the measurements and consequently, it impacts in the economy of a country. Pharmaceutical area developed GMP (Good Manufacture Practice) requeriments, with no introduction of metrological concepts. However, due to Nanomedicines, it is expected this approach and the consequent positive results. The aim of this work is to verify the level of metrology implementation in a Brazilian pharmaceutical industry, using a case study. The purpose is a better mutual comprehension by both areas, acting together and governmental support to robustness of Brazilian pharmaceutical area. (paper)

  1. Uncovering Dynamic Capabilities for Service Innovation: Conceptualization and Measurement

    NARCIS (Netherlands)

    Janssen, M.; Alexiev, A.S.; Castaldi, C.; Den Hertog, P.

    2013-01-01

    The dynamic capabilities view (DCV) is in need of a solid empirical grounding. Existing attempts to identify the organizational behaviour (or microfoundations) on which dynamic capabilities rely are largely biased towards manufacturing. Thereby, these conceptualizations overlook some of the aspects

  2. Metrology and testing

    International Nuclear Information System (INIS)

    2010-01-01

    The chapter presents the Metrology Service of Ionizing Radiation (SEMRI), the Metrology Service of Radioisotopes (SEMRA), the External Individual Monitoring Service (SEMEX), the Internal Individual Monitoring Service (SEMIN) and the associated laboratories, the analysis of environmental samples, system for management of quality from IRD and the National Program for intercomparison results of environmental samples analysis to radioisotopes determination

  3. Measurement Capabilities of the DOE ARM Aerial Facility

    Science.gov (United States)

    Schmid, B.; Tomlinson, J. M.; Hubbe, J.; Comstock, J. M.; Kluzek, C. D.; Chand, D.; Pekour, M. S.

    2012-12-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites in three important climatic regimes that provide long-term measurements of climate relevant properties. ARM also operates mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months) to investigate understudied climate regimes around the globe. Finally, airborne observations by ARM's Aerial Facility (AAF) enhance the surface-based ARM measurements by providing high-resolution in situ measurements for process understanding, retrieval algorithm development, and model evaluation that is not possible using ground-based techniques. AAF started out in 2007 as a "virtual hangar" with no dedicated aircraft and only a small number of instruments owned by ARM. In this mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, the Battelle owned G-1 aircraft was included in the ARM facility. The G-1 is a large twin turboprop aircraft, capable of measurements up to altitudes of 7.5 km and a range of 2,800 kilometers. Furthermore the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of seventeen new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also heavily engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments. In the presentation we will showcase science applications based on measurements from recent field campaigns such as CARES, CALWATER and TCAP.

  4. TSOM method for semiconductor metrology

    Science.gov (United States)

    Attota, Ravikiran; Dixson, Ronald G.; Kramar, John A.; Potzick, James E.; Vladár, András E.; Bunday, Benjamin; Novak, Erik; Rudack, Andrew

    2011-03-01

    Through-focus scanning optical microscopy (TSOM) is a new metrology method that achieves 3D nanoscale measurement sensitivity using conventional optical microscopes; measurement sensitivities are comparable to what is typical when using scatterometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). TSOM can be used in both reflection and transmission modes and is applicable to a variety of target materials and shapes. Nanometrology applications that have been demonstrated by experiments or simulations include defect analysis, inspection and process control; critical dimension, photomask, overlay, nanoparticle, thin film, and 3D interconnect metrologies; line-edge roughness measurements; and nanoscale movements of parts in MEMS/NEMS. Industries that could benefit include semiconductor, data storage, photonics, biotechnology, and nanomanufacturing. TSOM is relatively simple and inexpensive, has a high throughput, and provides nanoscale sensitivity for 3D measurements with potentially significant savings and yield improvements in manufacturing.

  5. Post-irradiation examination of a fuel pin using a microscopic X-ray system: Measurement of carbon deposition and pin metrology

    International Nuclear Information System (INIS)

    Gras, Ch.; Stanley, S.J.

    2008-01-01

    The paper presents some interesting aspects associated with X-ray imaging and its potential application in the nuclear industry. The feasibility of using X-ray technology for the post-irradiation examination of a fuel pin has been explored, more specifically pin metrology and carbon deposition measurement. The non-active sample was specially designed to mimic the structure of an AGR fuel pin whilst a carbon based material was applied to the mock up fuel rod in order to mimic carbon deposition. Short duration low energy (50 kV) 2D digital radiography was employed and provided encouraging results (with respect to carbon deposition thickness and structure measurements) for the mock up fuel pin with a spatial resolution of around 10 μm. Obtaining quantitative data from the resultant images is the principal added value associated with X-ray imaging. A higher intensity X-ray beam (≥90 kV) was also used in conjunction with the low energy set-up to produce a clear picture of the cladding as well as the interface between the lead (Pb mimics the uranium oxide) and stainless steel cladding. Spent fuel metrology and routine radiography are two additional tasks that X-ray imaging could perform for the post-irradiation examination programme. Therefore, when compared to other techniques developed to deliver information on one particular parameter, X-ray imaging offers the possibility to extract useful information on a range of parameters

  6. Critical evaluation of the Laboratory of Radionuclide Metrology results of the Institute of Radiation Protection and Dosimetry - IRD in the international key comparisons of activity measurement of radioactive solutions

    International Nuclear Information System (INIS)

    Iwahara, A.; Tauhata, L.; Silva, C.J. da

    2014-01-01

    The Radionuclide Metrology Laboratory (LMR) of LNMRI/IRD has been participating since 1984, in international key-comparisons of activity measurement of radioactive sources organized by BIPM and the Regional Metrology Organizations as EURAMET and APMP. The measured quantity is the activity of a radioactive solution, in becquerel (Bq), containing the radionuclide involved and the of measurement methods used are 4αβ-γ coincidence/anticoincidence, coincidence sum-peak and liquid scintillation. In this paper a summary of the methods used and a performance analysis of the results obtained are presented. (author)

  7. Sensorized toys for measuring manipulation capabilities of infants at home.

    Science.gov (United States)

    Passetti, Giovanni; Cecchi, Francesca; Baldoli, Ilaria; Sgandurra, Giuseppina; Beani, Elena; Cioni, Giovanni; Laschi, Cecilia; Dario, Paolo

    2015-01-01

    Preterm infants, i.e. babies born after a gestation period shorter than 37 weeks, spend less time exploring objects. The quantitative measurement of grasping actions and forces in infants can give insights on their typical or atypical motor development. The aim of this work was to test a new tool, a kit of sensorized toys, to longitudinally measure, monitor and promote preterm infants manipulation capabilities with a purposive training in an ecological environment. This study presents preliminary analysis of grasping activity. Three preterm infants performed 4 weeks of daily training at home. Sensorized toys with embedded pressure sensors were used as part of the training to allow quantitative analysis of grasping (pressure and acceleration applied to toys while playing). Each toy was placed on the midline, while the infant was in supine position. Preliminary data show differences in the grasping parameters in relation to infants age and the performed daily training. Ongoing clinical trial will allow a full validation of this new tool for promoting object exploration in preterm infants.

  8. Metrological control of instruments, equipment and measurement system for ultrasonic meters of flow; Controle metrologico de instrumentos, equipamentos e sistema de medicao para medidores ultra-sonicos de vazao

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Oscar de

    2004-07-01

    Following the actual tendency to obtaining greater precision in Natural Gas measurement, in the past few years the use of Ultrasonic Flow Meters as Custody Transfer applications has grown significantly. There are several units currently operating in Brazil. The legislation for model approval, measure system certification and periodical metrological control of the above mentioned equipment, is currently under elaboration final stage. It was placed under public inquire through the 'Portaria 037' of 2004 of INMETRO, which proposes the authorization to perform the Metrological control by the Operator, once it has a quality system implemented according NBR ISO 9001-2000 and/or ISO 17025. This paper describes the verification procedure adopted by most of ultrasonic meters manufacturers. It also describes the application of the procedure for create the 'Metrological Control System of the Measurement System' of a 12'' Ultrasonic Meter installed and operating, with 3 years operation's data. (author)

  9. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  10. Objectives and functions of ionizing radiation metrology

    International Nuclear Information System (INIS)

    Rothe, H.

    1981-01-01

    Proceeding from the fundamental objectives of ionizing radiation metrology, the main tasks of metrological research and assurances of accurate measurements in dosimetry and activity determination are summarized. With a view to the technical performance of these tasks the state-of-the-art and the trends in reproduction and dissemination of dosimetric and activity units are outlined. Problems are derived that should be solved within the framework of the CMEA Standing Commissions on Standardization and on the Peaceful Uses of Atomic Energy. (author)

  11. Flexible resources for quantum metrology

    Science.gov (United States)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J.; Dür, Wolfgang

    2017-06-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.

  12. Flexible resources for quantum metrology

    International Nuclear Information System (INIS)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J; Dür, Wolfgang

    2017-01-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement. (paper)

  13. UPWIND 1A2 Metrology. Final Report

    DEFF Research Database (Denmark)

    Eecen, P.J.; Wagenaar, J.W.; Stefanatos, N.

    . Since this problem covers many areas of wind energy, the work package is defined as a crosscutting activity. The objectives of the metrology work package are to develop metrology tools in wind energy to significantly enhance the quality of measurement and testing techniques. The first deliverable...... is a valuable tool for the further assessment and interest has been shown from other work packages, such as Training. This report describes the activities that have been carried out in the Work Package 1A2 Metrology of the UpWind project. Activities from Risø are described in a separate report: T.F. Pedersen...... was to perform a state of the art assessment to identify all relevant measurands. The required accuracies and required sampling frequencies have been identified from the perspective of the users of the data (the other work packages in UpWind). This work led to the definition of the Metrology Database, which...

  14. The future of 2D metrology for display manufacturing

    Science.gov (United States)

    Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin

    2016-10-01

    The race to 800 PPI and higher in mobile devices and the transition to OLED displays are driving a dramatic development of mask quality: resolution, CDU, registration, and complexity. 2D metrology for large area masks is necessary and must follow the roadmap. Driving forces in the market place point to continued development of even more dense displays. State-of-the-art metrology has proven itself capable of overlay below 40 nm and registration below 65 nm for G6 masks. Future developments include incoming and recurrent measurements of pellicalized masks at the panel maker's factory site. Standardization of coordinate systems across supplier networks is feasible. This will enable better yield and production economy for both mask and panel maker. Better distortion correction methods will give better registration on the panels and relax the flatness requirements of the mask blanks. If panels are measured together with masks and the results are used to characterize the aligners, further quality and yield improvements are possible. Possible future developments include in-cell metrology and integration with other instruments in the same platform.

  15. Towards Comparison of Ultrasound Dose Measurements - Current Capabilities and Open Challenges

    Science.gov (United States)

    Durando, G.; Guglielmone, C.; Haller, J.; Georg, O.; Shaw, A.; Martin, E.; Karaböce, B.

    The aim of this work is to evaluate measurement methods for dosimetry and exposimetry quantities that were developed in the EMRP project "Dosimetry for Ultrasound Therapy -DUTy" by comparing the measurement results for three common quantities from three national laboratories. It further aims to investigate the general feasibility of possible future (key) comparisons for dosimetry and exposimetry quantities and to identify possible open challenges towards this goal. The general format is similar to a metrological comparison, with which the National Metrological Institutes, NMIs, are already familiar. The first step involved the agreement of the protocol that was to specify the set of transducers to be circulated and the measurement conditions. Two transducers were circulated and different drive voltage levels and pulsing regimes were defined and tissue mimicking materials (TMMs) characteristics were specified. Each lab was asked to prepare the TMMs for their own measurements with the inclusion of formulations and preparation instructions specified in the protocol. Uncertainties of the input data were to be declared by the participating laboratories.

  16. Tools intented to nuclear metrology

    International Nuclear Information System (INIS)

    Munayco Tasayco, A.F.

    1980-08-01

    The study undertaken in the metrological laboratory of the C.E.N. Saclay Electronics Services is intended to improve the measurement methods in two fields concerning nuclear instrumentation: the current's measurement in the range 1pA to 0,01 pA and the study of a measurement's system for the linear circuits used in spectrometer gamma ray with semiconductor. Two systems are now working. Its permit an improvement of precision measurement, an automation of the measurement process and many possibilities in the choice of parameters and the laying-out of results [fr

  17. Metrology and quality control handbook

    International Nuclear Information System (INIS)

    Hofmann, D.

    1983-01-01

    This book tries to present the fundamentals of metrology and quality control in brief surveys. Compromises had to be made in order to reduce the material available to a sensible volume for the sake of clarity. This becomes evident by the following two restrictions which had to made: First, in dealing with the theoretical principles of metrology and quality control, mere reference had to be made in many cases to the great variety of special literature without discussing it to explain further details. Second, in dealing with the application of metrology and quality control techniques in practice, only the basic qantities of the International System of Units (SI) could be taken into account as a rule. Some readers will note that many special measuring methods and equipment known to them are not included in this book. I do hope, however, that this short-coming will show to have a positive effect, too. This book will show the reader how to find the basic quantities and units from the derived quantities and units, and the steps that are necessary to solve any kind of measuring task. (orig./RW) [de

  18. SAQP pitch walk metrology using single target metrology

    Science.gov (United States)

    Fang, Fang; Herrera, Pedro; Kagalwala, Taher; Camp, Janay; Vaid, Alok; Pandev, Stilian; Zach, Franz

    2017-03-01

    Self-aligned quadruple patterning (SAQP) processes have found widespread acceptance in advanced technology nodes to drive device scaling beyond the resolution limitations of immersion scanners. Of the four spaces generated in this process from one lithography pattern two tend to be equivalent as they are derived from the first spacer deposition. The three independent spaces are commonly labelled as α, β and γ. α, β and γ are controlled by multiple process steps including the initial lithographic patterning process, the two mandrel and spacer etches as well as the two spacer depositions. Scatterometry has been the preferred metrology approach, however is restricted to repetitive arrays. In these arrays independent measurements, in particular of alpha and gamma, are not possible due to degeneracy of the standard array targets. . In this work we present a single target approach which lifts the degeneracies commonly encountered while using product relevant layout geometries. We will first describe the metrology approach which includes the previously described SRM (signal response metrology) combined with reference data derived from CD SEM data. The performance of the methodology is shown in figures 1-3. In these figures the optically determined values for alpha, beta and gamma are compared to the CD SEM reference data. The variations are achieved using controlled process experiments varying Mandrel CD and Spacer deposition thicknesses.

  19. Inkjet metrology: high-accuracy mass measurements of microdroplets produced by a drop-on-demand dispenser.

    Science.gov (United States)

    Verkouteren, R Michael; Verkouteren, Jennifer R

    2009-10-15

    We describe gravimetric methods for measuring the mass of droplets generated by a drop-on-demand (DOD) microdispenser. Droplets are deposited, either continuously at a known frequency or as a burst of known number, into a cylinder positioned on a submicrogram balance. Mass measurements are acquired precisely by computer, and results are corrected for evaporation. Capabilities are demonstrated using isobutyl alcohol droplets. For ejection rates greater than 100 Hz, the repeatability of droplet mass measurements was 0.2%, while the combined relative standard uncertainty (u(c)) was 0.9%. When bursts of droplets were dispensed, the limit of quantitation was 72 microg (1490 droplets) with u(c) = 1.0%. Individual droplet size in a burst was evaluated by high-speed videography. Diameters were consistent from the tenth droplet onward, and the mass of an individual droplet was best estimated by the average droplet mass with a combined uncertainty of about 1%. Diameters of the first several droplets were anomalous, but their contribution was accounted for when dispensing bursts. Above the limits of quantitation, the gravimetric methods provided statistically equivalent results and permit detailed study of operational factors that influence droplet mass during dispensing, including the development of reliable microassays and standard materials using DOD technologies.

  20. Measurement uncertainty and gauge capability of surface roughness measurements in the automotive industry: a case study

    International Nuclear Information System (INIS)

    Drégelyi-Kiss, Ágota; Czifra, Árpád

    2014-01-01

    The calculation methods of the capability of measurement processes in the automotive industry differ from each other. There are three main calculation methods: MSA, VDA 5 and the international standard, ISO 22514–7. During this research our aim was to compare the capability calculation methods in a case study. Two types of automotive parts (ten pieces of each) are chosen to examine the behaviour of the manufacturing process and to measure the required characteristics of the measurement process being evaluated. The measurement uncertainty of the measuring process is calculated according to the VDA 5 and ISO 22514–7, and MSA guidelines. In this study the conformance of a measurement process in an automotive manufacturing process is determined, and the similarities and the differences between the methods used are shown. (paper)

  1. Metrology at Philip Morris Europe

    Directory of Open Access Journals (Sweden)

    Gualandris R

    2014-12-01

    Full Text Available The importance of the metrology function at Philip Morris Europe (PME, a multinational organisation producing at over 40 sites in the European, Middle Eastern and African Regions is presented. Standardisation of test methods and equipment as well as the traceability of calibration gauges to the same reference gauge are essential in order to obtain comparable results among the various production centers. The metrology function as well as the qualification of instruments and the drafting of test and calibration operating procedures for this region are conducted or co-ordinated by the Research and Development Department in Neuchatel, Switzerland. In this paper the metrology function within PME is presented based on the measurement of the resistance to draw for which the PME R&D laboratory is accredited (ISO/CEI 17025, as both a calibration and a testing laboratory. The following topics are addressed in this paper: traceability of calibration standards to national standards; comparison of results among manufacturing centres; the choice, the budget as well as the computation of uncertainties. Furthermore, some practical aspects related to the calibration and use of the glass multicapillary gauges are discussed.

  2. Slovak Office of Standards, Metrology and Testing. Annual Report 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A brief account of activities carried out by the Slovak Office of Standards, Metrology and Testing of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Introduction by the President of the Slovak Office of Standards, Metrology and Testing; (2) The Vice-president's Unit Standardization and Quality; (3) The President's Office; (4) Chief Inspector Department; (5) Legislative-juridical Department; (6) Department of Economy; (7) Department of International Co-operation; (8) Department of European Integration; (9) Department of Metrology; (10) Department of Testing; (11) Department of the Cyclotron Centre SR; (12) Slovak Institute of Metrology; (13) Slovak Standards Institution; (14) Slovak Metrology Inspectorate; (15) Slovak Legal Metrology; (16) Measuring Techniques - Technocentre - MTT; Abbreviations; (17) Technical Testing Institute Piestany; (18) Testing Institute of Transport and Earthmoving Machinery - SUDST

  3. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Settens, Charles M. [State Univ. of New York (SUNY), Albany, NY (United States)

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  4. Metrology of electrical quantum

    International Nuclear Information System (INIS)

    Camon, A.

    1996-01-01

    Since 1989 the electrical metrology laboratory of TPYCEA and the low temperature physics department of ICMA have been collaborating in the development of electrical quantum metrology. ICMA has been mainly dedicated to implement the state of the art quantum standards for which its experience on cryogenics, superconductivity and low noise instrumentation was essential. On the other hand TPYCEA concentrated its efforts on the metrological aspects, in which it has great experience. The complimentary knowledge of both laboratories, as well as the advice obtained from several prestigious metrology institutes was the key to successful completion of the two projects so far developed: i) The Josephson voltage standard (1989-1991) ii) The quantum Hall resistance standard (1991-1996) This report contains a description of both projects. Even though we can consider that the two projects are finished from the instrumental and metrological point of view, there is still a strong cooperation between ICMA and TPYCEA on the improvement of these standards, as well as on their international validation

  5. Technical and metrological service improvement of measurement channels with flow-type transducers of ionic impurities for water chemical control in nuclear reactors

    International Nuclear Information System (INIS)

    Vilkov, Nicolay Ya.; Voronina, N.V.; Matveyev, V.N.; Sorokin, N.M.; Sidorchuk, A.N.

    2012-09-01

    Improvement of sampling process, including sample taking, transport, and preparation, and optimization of on-line metrological maintenance on measuring chains containing flow-type sensors is very important for obtaining high quality information about NPP coolant water composition. Sample preparation and measurement errors almost cannot be eliminated by data processing in top level computers. For on-line measurements of the coolant water ion composition, nuclear plants commonly use sampling lines with gage pressure regulators provided at inlets of flow type sensors. The major part of sample fluid is drained via bypass outside the flow path through the sensors. A better alternative is to form flows at the inlets of flow type sensors using outlet pressure feedback devices. This sampling scheme ensures fully representative samples that are transported to the sensor inlets with a given time delay. In such a scheme, the sample fluid returns into the coolant system without change in composition. The paper presents test results for the prototype model of the pressure and flow control device. Alexandrov NITI has patented a method and apparatus for comprehensively calibrating measuring chains with flow type ion analyzers which are used in nuclear power plants to measure on line the ion composition of high-purity and other water streams. The patented dynamical method generates calibration solutions as binary electrolytes with a given analyte concentration. The method is easy to implement and requires no dosing equipment. Calibration solutions are generated directly in the water flow through the sampling line connected to the coolant line or high-purity water feed line. Unlike the concentration of buffer solutions used in pH measurements, the total ion concentration in generated electrolyte solutions is close to that in actual water streams at nuclear plants. With the proposed method and equipment, a reference pH value can be obtained with accuracy which is close to the

  6. Chemical measurement capabilities at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Raber, E.; Harrar, J.E.

    1992-04-01

    This document is an attempt to summarize the available analytical chemistry and materials characterization techniques available LLNL. Emphasis of the techniques described is aimed at the variety of samples for which intelligence information is sought and/or applications where sample size would be very limited and duplicate samples are usually not obtainable. Current instrumentation available, types of samples presently being analyzed and a description of the various methods have been provided. LLNL has made an effort during the last three years to develop a forensic science approach to sample analysis. Many of these capabilities are presently utilized, to some degree, for ongoing analysis of unusual samples provided by various sponsor agencies. The analytical techniques utilized, although coordinated through the Special Projects Program, take advantage of the full range of capabilities available at LLNL. This document represents input from several organizations at LLNL, all working together to provide the maximum level of available expertise: Condensed Matter and Analytical Sciences Division of the Materials Science Directorate, Nuclear Chemistry Division of the Defense Sciences Directorate, Center for Accelerator Mass Spectrometry of the Physics Directorate, Biomedical Sciences Division of the Environmental Sciences and Biomedical Directorate, and Applied Technology Division of the Special Projects Program Directorate

  7. Realizing "value-added" metrology

    Science.gov (United States)

    Bunday, Benjamin; Lipscomb, Pete; Allgair, John; Patel, Dilip; Caldwell, Mark; Solecky, Eric; Archie, Chas; Morningstar, Jennifer; Rice, Bryan J.; Singh, Bhanwar; Cain, Jason; Emami, Iraj; Banke, Bill, Jr.; Herrera, Alfredo; Ukraintsev, Vladamir; Schlessinger, Jerry; Ritchison, Jeff

    2007-03-01

    The conventional premise that metrology is a "non-value-added necessary evil" is a misleading and dangerous assertion, which must be viewed as obsolete thinking. Many metrology applications are key enablers to traditionally labeled "value-added" processing steps in lithography and etch, such that they can be considered integral parts of the processes. Various key trends in modern, state-of-the-art processing such as optical proximity correction (OPC), design for manufacturability (DFM), and advanced process control (APC) are based, at their hearts, on the assumption of fine-tuned metrology, in terms of uncertainty and accuracy. These trends are vehicles where metrology thus has large opportunities to create value through the engineering of tight and targetable process distributions. Such distributions make possible predictability in speed-sorts and in other parameters, which results in high-end product. Additionally, significant reliance has also been placed on defect metrology to predict, improve, and reduce yield variability. The necessary quality metrology is strongly influenced by not only the choice of equipment, but also the quality application of these tools in a production environment. The ultimate value added by metrology is a result of quality tools run by a quality metrology team using quality practices. This paper will explore the relationships among present and future trends and challenges in metrology, including equipment, key applications, and metrology deployment in the manufacturing flow. Of key importance are metrology personnel, with their expertise, practices, and metrics in achieving and maintaining the required level of metrology performance, including where precision, matching, and accuracy fit into these considerations. The value of metrology will be demonstrated to have shifted to "key enabler of large revenues," debunking the out-of-date premise that metrology is "non-value-added." Examples used will be from critical dimension (CD

  8. A test battery measuring auditory capabilities of listening panels

    DEFF Research Database (Denmark)

    Ghani, Jody; Ellermeier, Wolfgang; Zimmer, Karin

    2005-01-01

    a battery of tests covering a larger range of auditory capabilities in order to assess individual listeners. The format of all tests is kept as 'objective' as possible by using a three-alternative forced-choice paradigm in which the subject must choose which of the sound samples is different, thus keeping...... the instruction to the subjects simple and common for all tests. Both basic (e.g. frequency discrimination) and complex (e.g. profile analysis) psychoacoustic tests are covered in the battery and a threshold of discrimination or detection is obtained for each test. Data were collected on 24 listeners who had been...... recruited for participation in an expert listening panel for evaluating the sound quality of hi-fi audio systems. The test battery data were related to the actual performance of the listeners when judging the degradation in quality produced by audio codecs....

  9. Interferometric system with tracking refractometry capability in the measuring axis

    International Nuclear Information System (INIS)

    Lazar, J; Holá, M; Číp, O; Hrabina, J; Oulehla, J

    2013-01-01

    We present a combined interferometric arrangement designed for measurement of one-axis displacement over a specified measuring range with mechanical referencing. This concept allows simultaneous measurement of the carriage position from both sides together with monitoring of the overall range. This can be used in configuration with in-line monitoring of the fluctuations of the refractive index-–tracking refractometry. Similarly, the wavelength of the laser source can be stabilized over the measuring range, effectively compensating for the refractive index changes. Otherwise, monitoring of length of the measuring range can give information about the thermal dilatation effects of frame of the whole measuring setup. This technique can find its way into high-precision positioning systems in nanometrology. (technical design note)

  10. Interoperability: linking design and tolerancing with metrology.

    Science.gov (United States)

    Morse, Edward; Heysiattalab, Saeed; Barnard-Feeney, Allison; Hedberg, Thomas

    2016-01-01

    On October 30, 2014 the American National Standards Institute (ANSI) approved QIF v 2.0 (Quality Information Framework, version 2.0) as an American National Standard. Subsequently in early 2016 QIF version 2.1 was approved. This paper describes how the QIF standard models the information necessary for quality workflow across the full metrology enterprise. After a brief description of the XML 'language' used in the standard, the paper reports on how the standard enables information exchange among four major activities in the metrology enterprise (product definition; measurement planning; measurement execution; and the analysis and reporting of the quality data).

  11. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  12. Frequency Standards and Metrology

    Science.gov (United States)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  13. Metrological system for y-ray spectrometry measurement of the specific activity and mass fraction of natural radioactive elements in soil and rock samples

    International Nuclear Information System (INIS)

    Khaikovich, I.M.; Fominykh, V.I.; Kirisyuk, E.M.; Belyachkov, Y.A.

    1994-01-01

    In the last few years a great deal of attention has been devoted to the study of the radiation conditions, which in some regions change markedly as a result of intense human activity. One reason for radioactive contamination of an area is dissemination during extraction and processing of radioactive ores or other minerals of natural radioactive elements with a high content of potassium, uranium (radium), and thorium. Estimation of the level of radioactive contamination is one of the main problems of ecological monitoring, and the quality of the measurements sometimes plays a deciding role in the fate of the object being investigated. This also pertains to, in particular, estimation of radioactive contamination of minerals employed for building homes and factories and other industrial structures. In order to draw unequivocal and well-founded conclusions from measurements of the content of natural radioactive elements in soil and rock samples, collected at the object being investigated, a great deal of attention must be devoted during the organization of the measurements to the metrological system

  14. Metrology Department - DEMET

    International Nuclear Information System (INIS)

    1989-01-01

    In this report are presented the activities and purposes of the Metrology Dept. of the Institute of Radioprotection and Dosimetry of Brazilian CNEN. It is also presented a list of services rendered by that Dept., the projects in course, personnel and publications.(J.A.M.M.)

  15. Metrology for Grayscale Lithography

    International Nuclear Information System (INIS)

    Murali, Raghunath

    2007-01-01

    Three dimensional microstructures find applications in diffractive optical elements, photonic elements, etc. and can be efficiently fabricated by grayscale lithography. Good process control is important for achieving the desired structures. Metrology methods for grayscale lithography are discussed. Process optimization for grayscale e-beam lithography is explored and various process parameters that affect the grayscale process are discussed

  16. Magnetic nanoparticles. Metrological aspects

    International Nuclear Information System (INIS)

    Nikiforov, V N; Nikiforov, A V; Oxengendler, B L; Turaeva, N N; Sredin, V G

    2011-01-01

    The experiments on influence of the iron oxide cluster size on the specific magnetic moment are performed. Both free and covered clusters are investigated. The experiments are interpreted on the base of core-shell model by analogy to Weizsaecker formula in the nuclear physics. Metrological parameters for the cluster size investigation are obtained.

  17. Bayesian estimation methods in metrology

    International Nuclear Information System (INIS)

    Cox, M.G.; Forbes, A.B.; Harris, P.M.

    2004-01-01

    In metrology -- the science of measurement -- a measurement result must be accompanied by a statement of its associated uncertainty. The degree of validity of a measurement result is determined by the validity of the uncertainty statement. In recognition of the importance of uncertainty evaluation, the International Standardization Organization in 1995 published the Guide to the Expression of Uncertainty in Measurement and the Guide has been widely adopted. The validity of uncertainty statements is tested in interlaboratory comparisons in which an artefact is measured by a number of laboratories and their measurement results compared. Since the introduction of the Mutual Recognition Arrangement, key comparisons are being undertaken to determine the degree of equivalence of laboratories for particular measurement tasks. In this paper, we discuss the possible development of the Guide to reflect Bayesian approaches and the evaluation of key comparison data using Bayesian estimation methods

  18. The Act of 17 March 2000 on metrology and on changes and amendments of some acts

    International Nuclear Information System (INIS)

    2000-01-01

    This act metrology for organization of unity and correctness of mensuration adapts (a) the law measurement units, (b) the requests on committed gauges and their metrological control, (c) the conditions of official mensuration, (d) the requests on consumptive packages articles; (e) the conditions of authorization and registration, (f) operation of organs of the state administration for metrology, (g) the metrological authority (h) putting of fines. This act shall into effect on 1 July 2000

  19. Quality assurance of the measurements of the activity conducted by the Brazilian Lab of Ionizing Radiation Metrology of the Instituto de Radioprotecao e Dosimetria, Rio de Janeiro, RJ, Brazil

    International Nuclear Information System (INIS)

    Silva, Carlos J. da; Delgado, Jose U.; Iwahara, Akira; Bernardes, Estela Maria O.; Prinzio, Maria Antonieta R. de; Oliveira, Antonio Eduardo de; Poledna, Roberto; Lopes, Ricardo Tadeu

    2005-01-01

    Measuring systems with reentrant type ionization chamber, has been used as reference systems for storing results of international intercomparisons, these systems offer great stability over several years and absolute methods comparable to those uncertainties. This work are presented the calibration factors of a well-type ionization chamber and their uncertainties, the standardization of various radionuclides which present metrological traceability ensured by key comparisons organized by the International Bureau of Weights and Measures

  20. Design and manufacturing of nuclear non destructive measurement systems and coupled metrology in order to quantify the radionuclides contaminating the wastes and the processes of the nuclear industry

    International Nuclear Information System (INIS)

    Saurel, N.

    2013-01-01

    The non-destructive nuclear measurement has to provide responses for the main challenges of the nuclear industry such as nuclear facility safety, health, environmental impact, performance, reliability and cost control. The goal of the non-destructive nuclear measurement is to characterize, without any deterioration, an object contaminated by one or more radionuclides. The passive or active nuclear measurement are utilized for quantifying the radionuclides in the effluents, the liquid and solid wastes and the nuclear material hold-up. It is also deployed for the process control. In this case, it is a standard production control but, the most of the time, it controls the validity of the safety domain of the production unit. The results of these measurements are used to establish the radiological inventory or the nuclear material balance. The radiological inventory is needed for the nuclear wastes outlets while the nuclear material balance is needed to follow through with the criticality units. The most important objective is to give the quantitative and/or qualitative value and its uncertainty are confident of the radionuclides contaminating the object. This contaminated object might be of different geometrical shapes, sizes or physico-chemical compositions. In order to be efficient, the non-destructive nuclear measurement has to include the apparatus, the measurement actions, the settings and the use of the coupled methodologies. I relate, in this memoir, my main research and development works that I drove or in which I took part for achieving these goals. These works are about the metrology of nuclear radiations and are used in three main types of measurement which are the gamma spectrometry, the alpha spectrometry and the passive or active neutron counting. (author) [fr

  1. 100 Years of radionuclide metrology

    International Nuclear Information System (INIS)

    Judge, S.M.; Arnold, D.; Chauvenet, B.; Collé, R.; De Felice, P.; García-Toraño, E.; Wätjen, U.

    2014-01-01

    The discipline of radionuclide metrology at national standards institutes started in 1913 with the certification by Curie, Rutherford and Meyer of the first primary standards of radium. In early years, radium was a valuable commodity and the aim of the standards was largely to facilitate trade. The focus later changed to providing standards for the new wide range of radionuclides, so that radioactivity could be used for healthcare and industrial applications while minimising the risk to patients, workers and the environment. National measurement institutes responded to the changing demands by developing new techniques for realising primary standards of radioactivity. Looking ahead, there are likely to be demands for standards for new radionuclides used in nuclear medicine, an expansion of the scope of the field into quantitative imaging to facilitate accurate patient dosimetry for nuclear medicine, and an increasing need for accurate standards for radioactive waste management and nuclear forensics. - Highlights: • The driving forces for the development of radionuclide metrology. • Radium standards to facilitate trade of this valuable commodity in the early years. • After 1950, focus changes to healthcare and industrial applications. • National Measurement Institutes develop new techniques, standards, and disseminate the best practice in measurement. • Challenges in nuclear medicine, radioactive waste management and nuclear forensics

  2. Metrology Sampling Strategies for Process Monitoring Applications

    KAUST Repository

    Vincent, Tyrone L.

    2011-11-01

    Shrinking process windows in very large scale integration semiconductor manufacturing have already necessitated the development of control systems capable of addressing sub-lot-level variation. Within-wafer control is the next milestone in the evolution of advanced process control from lot-based and wafer-based control. In order to adequately comprehend and control within-wafer spatial variation, inline measurements must be performed at multiple locations across the wafer. At the same time, economic pressures prompt a reduction in metrology, for both capital and cycle-time reasons. This paper explores the use of modeling and minimum-variance prediction as a method to select the sites for measurement on each wafer. The models are developed using the standard statistical tools of principle component analysis and canonical correlation analysis. The proposed selection method is validated using real manufacturing data, and results indicate that it is possible to significantly reduce the number of measurements with little loss in the information obtained for the process control systems. © 2011 IEEE.

  3. Metrological characterization of 3D imaging devices

    Science.gov (United States)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  4. Activity measurements of radioactive solutions by liquid scintillation counting and pressurized ionization chambers and Monte Carlo simulations of source-detector systems for metrology

    International Nuclear Information System (INIS)

    Amiot, Marie-Noelle

    2013-01-01

    The research works 'Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems' was presented for the graduation: 'Habilitation a diriger des recherches'. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination

  5. Fractal Metrology for biogeosystems analysis

    Directory of Open Access Journals (Sweden)

    V. Torres-Argüelles

    2010-11-01

    Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  6. Metrology Sampling Strategies for Process Monitoring Applications

    KAUST Repository

    Vincent, Tyrone L.; Stirton, James Broc; Poolla, Kameshwar

    2011-01-01

    , economic pressures prompt a reduction in metrology, for both capital and cycle-time reasons. This paper explores the use of modeling and minimum-variance prediction as a method to select the sites for measurement on each wafer. The models are developed

  7. Laser metrology applied to the nuclear maintenance

    International Nuclear Information System (INIS)

    Garrido Garcia, J.; Sarti Fernandez, F.

    2012-01-01

    The development of this paper focuses on providing an overview of the state of the art about laser metrology. This type of equipment combines the measurement philosophy of laser scanning with the great precision of the robotic equipment of auscultation. Getting micron.

  8. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  9. Context-based virtual metrology

    Science.gov (United States)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael

    2018-03-01

    Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.

  10. Design of capability measurement instruments pedagogic content knowledge (PCK) for prospective mathematics teachers

    Science.gov (United States)

    Aminah, N.; Wahyuni, I.

    2018-05-01

    The purpose of this study is to find out how the process of designing a tool of measurement Pedagogical Content Knowledge (PCK) capabilities, especially for prospective mathematics teachers are valid and practical. The design study of this measurement appliance uses modified Plomp development step, which consists of (1) initial assessment stage, (2) design stage at this stage, the researcher designs the measuring grille of PCK capability, (3) realization stage that is making measurement tool ability of PCK, (4) test phase, evaluation, and revision that is testing validation of measurement tools conducted by experts. Based on the results obtained that the design of PCK capability measurement tool is valid as indicated by the assessment of expert validator, and the design of PCK capability measurement tool, shown based on the assessment of teachers and lecturers as users of states strongly agree the design of PCK measurement tools can be used.

  11. Implementation of a metrology programme to provide traceability for radionuclides activity measurements in the CNEN Radiopharmaceuticals Producers Centers

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Erica A.L. de; Braghirolli, Ana M.S.; Tauhata, Luiz; Gomes, Regio S.; Silva, Carlos J., E-mail: erica@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Delgado, Jose U.; Oliveira, Antonio E.; Iwahara, Akira, E-mail: ealima@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The commercialization and use of radiopharmaceuticals in Brazil are regulated by Agencia Nacional de Vigilancia Sanitaria (ANVISA) which require Good Manufacturing Practices (GMP) certification for Radiopharmaceuticals Producer Centers. Quality Assurance Program should implement the GMP standards to ensure radiopharmaceuticals have requirements quality to proving its efficiency. Several aspects should be controlled within the Quality Assurance Programs, and one of them is the traceability of the Radionuclides Activity Measurement in radiopharmaceuticals doses. The quality assurance of activity measurements is fundamental to maintain both the efficiency of the nuclear medicine procedures and patient and exposed occupationally individuals safety. The radiation doses received by patients, during the nuclear medicine procedures, is estimated according to administered radiopharmaceuticals quantity. Therefore it is very important either the activity measurements performed in radiopharmaceuticals producer centers (RPC) as the measurements performed in nuclear medicine services are traceable to national standards. This paper aims to present an implementation program to provide traceability to radionuclides activity measurements performed in the dose calibrators(well type ionization chambers) used in Radiopharmaceuticals Producer Center placed in different states in Brazil. The proposed program is based on the principles of GM Pand ISO 17025 standards. According to dose calibrator performance, the RPC will be able to provide consistent, safe and effective radioactivity measurement to the nuclear medicine services. (author)

  12. Associations between structural capabilities of primary care practices and performance on selected quality measures.

    Science.gov (United States)

    Friedberg, Mark W; Coltin, Kathryn L; Safran, Dana Gelb; Dresser, Marguerite; Zaslavsky, Alan M; Schneider, Eric C

    2009-10-06

    Recent proposals to reform primary care have encouraged physician practices to adopt such structural capabilities as performance feedback and electronic health records. Whether practices with these capabilities have higher performance on measures of primary care quality is unknown. To measure associations between structural capabilities of primary care practices and performance on commonly used quality measures. Cross-sectional analysis. Massachusetts. 412 primary care practices. During 2007, 1 physician from each participating primary care practice (median size, 4 physicians) was surveyed about structural capabilities of the practice (responses representing 308 practices were obtained). Data on practice structural capabilities were linked to multipayer performance data on 13 Healthcare Effectiveness Data and Information Set (HEDIS) process measures in 4 clinical areas: screening, diabetes, depression, and overuse. Frequently used multifunctional electronic health records were associated with higher performance on 5 HEDIS measures (3 in screening and 2 in diabetes), with statistically significant differences in performance ranging from 3.1 to 7.6 percentage points. Frequent meetings to discuss quality were associated with higher performance on 3 measures of diabetes care (differences ranging from 2.3 to 3.1 percentage points). Physician awareness of patient experience ratings was associated with higher performance on screening for breast cancer and cervical cancer (1.9 and 2.2 percentage points, respectively). No other structural capabilities were associated with performance on more than 1 measure. No capabilities were associated with performance on depression care or overuse. Structural capabilities of primary care practices were assessed by physician survey. Among the investigated structural capabilities of primary care practices, electronic health records were associated with higher performance across multiple HEDIS measures. Overall, the modest magnitude and

  13. National Needs for Appearance Metrology

    Science.gov (United States)

    Nadal, Maria E.

    2003-04-01

    Appearance greatly influences a customer's judgement of the quality and acceptability of manufactured products, as yearly there is approximately $700 billion worth of shipped goods for which overall appearance is critical to their sale. For example, appearance is reported to be a major factor in about half of automobile purchases. The appearance of an object is the result of a complex interaction of the light field incident upon the object, the scattering and absorption properties of the object, and human perception. The measurable attributes of appearance are divided into color (hue, saturation, and lightness) and geometry (gloss, haze). The nature of the global economy has increased international competition and the need to improve the quality of many manufactured products. Since the manufacturing and marketing of these products is international in scope, the lack of national appearance standard artifacts and measurement protocols results in a direct loss to the supplier. One of the primary missions of the National Institute of Standards and Technology (NIST) is to strengthen the U.S. economy by working with industry to develop and apply technology, measurements and standards. The NIST Physics Laboratory has established an appearance metrology laboratory. This new laboratory provides calibration services for 0^o/45^o color standards and 20^o°, 60^o°, and 85^o° specular gloss, and research in the colorimetric characterization of gonioapparent including a new Standard Reference Material for metallic coatings (SRM 2017) and measurement protocols for pearlescent coatings. These services are NIST's first appearance metrology efforts in many years; a response to needs articulated by industry. These services are designed to meet demands for improved measurements and standards to enhance the acceptability of final products since appearance often plays a major role in their acceptability.

  14. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  15. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  16. Experimental set-up for testing alignments and measurement stability of a metrology system in Silicon Carbide for GAIA

    NARCIS (Netherlands)

    Veggel, van A.A.; Wielders, A.A.; Brug, van H.; Rosielle, P.C.J.N.; Nijmeijer, H.; Hatheway, A.E.

    2005-01-01

    The GAIA satellite will make a 3-D map of our Galaxy with measurement accuracy of 10 microarcseconds using two astrometric telescopes. The angle between the lines-of-sight of the two telescopes will be monitored using the Basic Angle Monitoring system with 1 microarcsecond accuracy. This system will

  17. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, Steven R.; Woody, Shane C.; Ellis, Jonathan D.

    2016-01-01

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  18. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Woody, Shane C. [InSituTec Incorporated, 7140 Weddington Road, Concord, North Carolina 28027 (United States); Ellis, Jonathan D. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2016-06-15

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  19. Non-contact distance measurement and profilometry using thermal near-field radiation towards a high resolution inspection and metrology solution

    NARCIS (Netherlands)

    Bijster, R.J.F.; Sadeghian Marnani, H.; van Keulen, A.; Sanchez, M.I.; Ukraintsev, V.A.

    2016-01-01

    Optical near-field technologies such as solid immersion lenses and hyperlenses are candidate solutions for high resolution and high throughput wafer inspection and metrology for the next technology nodes. Besides sub-diffraction limited optical performance, these concepts share the necessity of

  20. Overlay metrology for double patterning processes

    Science.gov (United States)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double

  1. Advanced metrology by offline SEM data processing

    Science.gov (United States)

    Lakcher, Amine; Schneider, Loïc.; Le-Gratiet, Bertrand; Ducoté, Julien; Farys, Vincent; Besacier, Maxime

    2017-06-01

    Today's technology nodes contain more and more complex designs bringing increasing challenges to chip manufacturing process steps. It is necessary to have an efficient metrology to assess process variability of these complex patterns and thus extract relevant data to generate process aware design rules and to improve OPC models. Today process variability is mostly addressed through the analysis of in-line monitoring features which are often designed to support robust measurements and as a consequence are not always very representative of critical design rules. CD-SEM is the main CD metrology technique used in chip manufacturing process but it is challenged when it comes to measure metrics like tip to tip, tip to line, areas or necking in high quantity and with robustness. CD-SEM images contain a lot of information that is not always used in metrology. Suppliers have provided tools that allow engineers to extract the SEM contours of their features and to convert them into a GDS. Contours can be seen as the signature of the shape as it contains all the dimensional data. Thus the methodology is to use the CD-SEM to take high quality images then generate SEM contours and create a data base out of them. Contours are used to feed an offline metrology tool that will process them to extract different metrics. It was shown in two previous papers that it is possible to perform complex measurements on hotspots at different process steps (lithography, etch, copper CMP) by using SEM contours with an in-house offline metrology tool. In the current paper, the methodology presented previously will be expanded to improve its robustness and combined with the use of phylogeny to classify the SEM images according to their geometrical proximities.

  2. Metrological 2iOF fibre-optic system for position and displacement measurement with 31 pm resolution

    Science.gov (United States)

    Orłowska, Karolina; Świåtkowski, Michał; Kunicki, Piotr; Gotszalk, Teodor

    2018-04-01

    In the present paper, we describe a high sensitivity intensity fibre-optic displacement sensor with tens of picometre resolution combined with a sub-picometre resolution interferometric calibration system. Both integrated components form the so-called "2 in one ferrule" system 2iOF. The design and construction of the presented device depend on integrating two sensors' systems within one fibre-optic measuring head, which allows performing in situ calibration process with no additional time-consuming adjustment procedure. The resolution of the 2iOF system is 31 pm/Hz1/2 obtained with an interferometric Fabry-Perot based calibration system—providing accuracy better than tens of fm/Hz1/2 within 1 MHz bandwidth in the measurement range of up to 100 μm. The direct response from the intensity sensor is then the 2iOF output one. It is faster and more convenient to analyze in comparison, with much better resolution (3 orders of magnitude higher) but on the other hand also more time consuming and dependent on the absolute sample position interferometer. The proposed system is flexible and open to various applications. We will present the results of the piezoelectrical actuator displacement measurements, which were performed using the developed system.

  3. Traceability and uncertainty estimation in coordinate metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Savio, Enrico; De Chiffre, Leonardo

    2001-01-01

    National and international standards have defined performance verification procedures for coordinate measuring machines (CMMs) that typically involve their ability to measure calibrated lengths and to a certain extent form. It is recognised that, without further analysis or testing, these results...... are required. Depending on the requirements for uncertainty level, different approaches may be adopted to achieve traceability. Especially in the case of complex measurement situations and workpieces the procedures are not trivial. This paper discusses the establishment of traceability in coordinate metrology...

  4. Design, fabrication and metrological evaluation of wearable pressure sensors.

    Science.gov (United States)

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  5. Development of Electromechanical Architectures for AC Voltage Metrology

    Directory of Open Access Journals (Sweden)

    Alexandre BOUNOUH

    2010-12-01

    Full Text Available This paper presents results of work undertaken for exploring MEMS capabilities to fabricate AC voltage references for electrical metrology and high precision instrumentation through the mechanical-electrical coupling in MEMS. From first MEMS test structures previously realized, a second set of devices with improved characteristics has been developed and fabricated with Silicon on Insulator (SOI Surface Micromachining process. These MEMS exhibit pull-in voltages of 5 V and 10 V to match with the best performance of the read-out electronics developed for driving the MEMS. Deep Level Transient Spectroscopy measurements carried out on the new design show resonance frequencies of about only some kHz, and the stability of the MEMS output voltage measured at 100 kHz has been found very promising for the best samples where the relative deviation from the mean value over almost 12 hours showed a standard deviation of about 6.3 ppm.

  6. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    Science.gov (United States)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  7. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-07-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.

  8. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    International Nuclear Information System (INIS)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-01-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes. (paper)

  9. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  10. Capability Deprivation and Income Poverty in the United States, 1994 and 2004: Measurement Outcomes and Demographic Profiles

    Science.gov (United States)

    Wagle, Udaya R.

    2009-01-01

    Shifting focus from income to capability signifies an important milestone toward accurately measuring poverty and deprivation. This paper operationalizes capability deprivation in the United States and compares measurement outcomes among various capability approaches and between capability and income spaces. Of the three capability approaches…

  11. IT Security Standards and Legal Metrology - Transfer and Validation

    Science.gov (United States)

    Thiel, F.; Hartmann, V.; Grottker, U.; Richter, D.

    2014-08-01

    Legal Metrology's requirements can be transferred into the IT security domain applying a generic set of standardized rules provided by the Common Criteria (ISO/IEC 15408). We will outline the transfer and cross validation of such an approach. As an example serves the integration of Legal Metrology's requirements into a recently developed Common Criteria based Protection Profile for a Smart Meter Gateway designed under the leadership of the Germany's Federal Office for Information Security. The requirements on utility meters laid down in the Measuring Instruments Directive (MID) are incorporated. A verification approach to check for meeting Legal Metrology's requirements by their interpretation through Common Criteria's generic requirements is also presented.

  12. Fast and accurate: high-speed metrological large-range AFM for surface and nanometrology

    Science.gov (United States)

    Dai, Gaoliang; Koenders, Ludger; Fluegge, Jens; Hemmleb, Matthias

    2018-05-01

    Low measurement speed remains a major shortcoming of the scanning probe microscopic technique. It not only leads to a low measurement throughput, but a significant measurement drift over the long measurement time needed (up to hours or even days). To overcome this challenge, PTB, the national metrology institute of Germany, has developed a high-speed metrological large-range atomic force microscope (HS Met. LR-AFM) capable of measuring speeds up to 1 mm s‑1. This paper has introduced the design concept in detail. After modelling scanning probe microscopic measurements, our results suggest that the signal spectrum of the surface to be measured is the spatial spectrum of the surface scaled by the scanning speed. The higher the scanning speed , the broader the spectrum to be measured. To realise an accurate HS Met. LR-AFM, our solution is to combine different stages/sensors synchronously in measurements, which provide a much larger spectrum area for high-speed measurement capability. Two application examples have been demonstrated. The first is a new concept called reference areal surface metrology. Using the developed HS Met. LR-AFM, surfaces are measured accurately and traceably at a speed of 500 µm s‑1 and the results are applied as a reference 3D data map of the surfaces. By correlating the reference 3D data sets and 3D data sets of tools under calibration, which are measured at the same surface, it has the potential to comprehensively characterise the tools, for instance, the spectrum properties of the tools. The investigation results of two commercial confocal microscopes are demonstrated, indicating very promising results. The second example is the calibration of a kind of 3D nano standard, which has spatially distributed landmarks, i.e. special unique features defined by 3D-coordinates. Experimental investigations confirmed that the calibration accuracy is maintained at a measurement speed of 100 µm s‑1, which improves the calibration efficiency by a

  13. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Polle, A.N.; Voorbraak, W.P.

    1991-11-01

    The experiment R-139-416 for testing the stainless steel type 316L(N) has been irradiated in the HFR Petten. This report presents the final metrology results obtained from activation monitors near the CT-specimen (Compact Tension). Data about the helium production as well as the number of displacements per atom are also included. The irradiation conditions for this experiment, carried out in a REFA-170 type capsule in the HFR position H8, are as close as possible to the conditions of the EFR (European Fast Reactor) above-core structures. The main results of the thermal and fast neutron fluence measurements are presented in table 1 and in figure 1. (author). 10 refs.; 2 figs.; 11 tabs

  14. The development of capability measures in health economics: opportunities, challenges and progress.

    Science.gov (United States)

    Coast, Joanna; Kinghorn, Philip; Mitchell, Paul

    2015-04-01

    Recent years have seen increased engagement amongst health economists with the capability approach developed by Amartya Sen and others. This paper focuses on the capability approach in relation to the evaluative space used for analysis within health economics. It considers the opportunities that the capability approach offers in extending this space, but also the methodological challenges associated with moving from the theoretical concepts to practical empirical applications. The paper then examines three 'families' of measures, Oxford Capability instruments (OxCap), Adult Social Care Outcome Toolkit (ASCOT) and ICEpop CAPability (ICECAP), in terms of the methodological choices made in each case. The paper concludes by discussing some of the broader issues involved in making use of the capability approach in health economics. It also suggests that continued exploration of the impact of different methodological choices will be important in moving forward.

  15. Gloss evaluation from soft and hard metrologies.

    Science.gov (United States)

    Wang, Zihao; Xu, Lihao; Hu, Yu; Mirjalili, Fereshteh; Luo, Ming Ronnier

    2017-09-01

    Recent advances in bidirectional reflectance distribution function (BRDF) acquisitions have provided a novel approach for appearance measurement and analysis. In particular, since gloss appearance is dependent on the directional reflective properties of surfaces, it is reasonable to leverage the BRDF for gloss evaluation. In this paper, we investigate gloss appearance from both soft metrology and hard metrology. A psychophysical experiment was conducted for the gloss assessment of 47 neutral-color samples. In the evaluation of gloss perception from gloss meter measurements, we report several ambiguous correspondences in the medium gloss range. In order to analyze and explain this phenomenon, the BRDF was acquired and examined using a commercial BRDF measuring device. With an improved correlation-to-visual perception, we propose a two-dimensional gloss model by combining a parameter, the standard deviation of the specular lobe, from Ward's BRDF model with measured gloss values.

  16. Efficiency improvements of offline metrology job creation

    Science.gov (United States)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  17. Coordinate Metrology by Traceable Computed Tomography

    DEFF Research Database (Denmark)

    Müller, Pavel

    is an important factor for decision making about manufactured parts. However, due to many influences in CT, estimation of the uncertainty is a challenge, also because standardized procedures and guidelines are not available yet. In this thesis, several methods for uncertainty estimation were applied in connection......, characterization and correction of measurement errors in the CT volume. Their application appeared to be suitable for this task. Because the two objects consist of ruby spheres and carbon fibre, CT scans did not produce image artifacts, and evaluation of sphere-to-sphere distances was robust. Several methods...... metrology and coordinate metrology and is currently becoming more and more important measuring technique for dimensional measurements. This is mainly due to the fact that with CT, a complete three-dimensional model of the scanned part is in a relatively short time visualized using a computer...

  18. Correlation study of actual temperature profile and in-line metrology measurements for within-wafer uniformity improvement and wafer edge yield enhancement (Conference Presentation)

    Science.gov (United States)

    Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou

    2018-03-01

    It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up

  19. An OCD perspective of line edge and line width roughness metrology

    Science.gov (United States)

    Bonam, Ravi; Muthinti, Raja; Breton, Mary; Liu, Chi-Chun; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Patlolla, Raghuveer; Huang, Huai

    2017-03-01

    Metrology of nanoscale patterns poses multiple challenges that range from measurement noise, metrology errors, probe size etc. Optical Metrology has gained a lot of significance in the semiconductor industry due to its fast turn around and reliable accuracy, particularly to monitor in-line process variations. Apart from monitoring critical dimension, thickness of films, there are multiple parameters that can be extracted from Optical Metrology models3. Sidewall angles, material compositions etc., can also be modeled to acceptable accuracy. Line edge and Line Width roughness are much sought of metrology following critical dimension and its uniformity, although there has not been much development in them with optical metrology. Scanning Electron Microscopy is still used as a standard metrology technique for assessment of Line Edge and Line Width roughness. In this work we present an assessment of Optical Metrology and its ability to model roughness from a set of structures with intentional jogs to simulate both Line edge and Line width roughness at multiple amplitudes and frequencies. We also present multiple models to represent roughness and extract relevant parameters from Optical metrology. Another critical aspect of optical metrology setup is correlation of measurement to a complementary technique to calibrate models. In this work, we also present comparison of roughness parameters extracted and measured with variation of image processing conditions on a commercially available CD-SEM tool.

  20. Metrology of radiation protection. Pt. 1. Physical requirements and terminology

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S R

    1979-10-01

    Starting from a general consideration of the needs for radiation protection the physical requirements of a relevant metrology are developed. The expedient physical quantities are introduced and problems in the realization and dissemination of their units discussed. It is shown that owing to these difficulties, derived or operational quantities have to be developed for the construction and calibration of practical measuring instruments. Finally the relations between the metrology of radiation protection and of medical radiology are pointed out and commented. (orig.).

  1. Metrology to enable high temperature erosion testing - A new european initiative

    DEFF Research Database (Denmark)

    Fry, A.T.; Gee, M.G.; Clausen, Sønnik

    2014-01-01

    is required. However, limitations in current measurement capability within this form of test prevent the advancement. A new European initiative, METROSION, on the development of high temperature solid particle erosion testing has a primary aim to develop this metrological framework. Several key parameters...... have been identified for measurement and control; these include temperature (of the sample, gas and particles), flow rate, size and shape of the erodent, angle of incidence of the particle stream and nozzle design. This paper outlines the aims and objectives of this new initiative. With a particular...

  2. Metrology Techniques for the Assembly of NCSX

    International Nuclear Information System (INIS)

    Priniski, C.; Dodson, T.; Duco, M.; Raftopoulos, S.; Ellis, R.; Brooks, A.

    2009-01-01

    In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex three dimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracy on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometer aided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.

  3. Integrating measuring uncertainty of tactile and optical coordinate measuring machines in the process capability assessment of micro injection moulding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2010-01-01

    Process capability of micro injection moulding was investigated in this paper by calculating the Cp and Cpk statistics. Uncertainty of both optical and tactile measuring systems employed in the quality control of micro injection moulded products was assessed and compared with the specified...... tolerances. Limits in terms of manufacturing process capability as well as of suitability of such measuring systems when employed for micro production inspection were quantitatively determined....

  4. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    Science.gov (United States)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  5. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    Science.gov (United States)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  6. Digital holography for MEMS and microsystem metrology

    CERN Document Server

    Asundi, Anand

    2011-01-01

    Approaching the topic of digital holography from the practical perspective of industrial inspection, Digital Holography for MEMS and Microsystem Metrology describes the process of digital holography and its growing applications for MEMS characterization, residual stress measurement, design and evaluation, and device testing and inspection. Asundi also provides a thorough theoretical grounding that enables the reader to understand basic concepts and thus identify areas where this technique can be adopted. This combination of both practical and theoretical approach will ensure the

  7. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    Science.gov (United States)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  8. Virtual overlay metrology for fault detection supported with integrated metrology and machine learning

    Science.gov (United States)

    Lee, Hong-Goo; Schmitt-Weaver, Emil; Kim, Min-Suk; Han, Sang-Jun; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Ryan, Kevin; Theeuwes, Thomas; Sun, Kyu-Tae; Lim, Young-Wan; Slotboom, Daan; Kubis, Michael; Staecker, Jens

    2015-03-01

    While semiconductor manufacturing moves toward the 7nm node for logic and 15nm node for memory, an increased emphasis has been placed on reducing the influence known contributors have toward the on product overlay budget. With a machine learning technique known as function approximation, we use a neural network to gain insight to how known contributors, such as those collected with scanner metrology, influence the on product overlay budget. The result is a sufficiently trained function that can approximate overlay for all wafers exposed with the lithography system. As a real world application, inline metrology can be used to measure overlay for a few wafers while using the trained function to approximate overlay vector maps for the entire lot of wafers. With the approximated overlay vector maps for all wafers coming off the track, a process engineer can redirect wafers or lots with overlay signatures outside the standard population to offline metrology for excursion validation. With this added flexibility, engineers will be given more opportunities to catch wafers that need to be reworked, resulting in improved yield. The quality of the derived corrections from measured overlay metrology feedback can be improved using the approximated overlay to trigger, which wafers should or shouldn't be, measured inline. As a development or integration engineer the approximated overlay can be used to gain insight into lots and wafers used for design of experiments (DOE) troubleshooting. In this paper we will present the results of a case study that follows the machine learning function approximation approach to data analysis, with production overlay measured on an inline metrology system at SK hynix.

  9. Metrology for fire experiments in outdoor conditions

    CERN Document Server

    Silvani, Xavier

    2013-01-01

    Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisitio...

  10. Coherent Laser Radar Metrology System for Large Scale Optical Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  11. Fluid-flow-rate metrology: laboratory uncertainties and traceabilities

    Science.gov (United States)

    Mattingly, G. E.

    1991-03-01

    Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must

  12. Aerosol metrology: aerodynamic and electrostatic techniques

    International Nuclear Information System (INIS)

    Prodi, V.

    1988-01-01

    Aerosols play an ever increasing role in science, engineering and especially in industrial and environmental hygiene. They are being studied since a long time, but only recently the progress in aerosol instrumentation has made it possible to pose of aerosol metrology, especially the problem of absolute measurements, as based directly on measurements of fundamental quantities. On the basis of absolute measurements, the hierarchy of standards can be prepared and adequately disseminated. In the aerosol field, the quantities to be measured are mainly size, charge, density, and shape. In this paper a possible standardisation framework for aerosols is proposed, for the main physical quantities

  13. Metrological Array of Cyber-Physical Systems. Part 3. Smart Energy-Efficient House

    Directory of Open Access Journals (Sweden)

    Ihor HNES

    2015-04-01

    Full Text Available Smart energy-efficient houses as the components of Cyber-Physical Systems are developed intensively. The main stream of progress consists in the research of Smart houses’ energy supply. By this option the mentioned objects are advancing from passive houses through net-zero energy houses to active houses that are capable of sharing their own accumulated energy with other components of Cyber-Physical Systems. We consider the problems of studying the metrology models and measuring the heat dissipation in such houses trying to apply network and software achievements as well as the new types of devices with improved characteristics.

  14. A study on improvement of measurement capability for gravimetric flowmeter calibrator

    International Nuclear Information System (INIS)

    Lee, Dong Keun; Park, Jong Ho

    2009-01-01

    The calibration of flowmeter is a very important procedure to set up traceability from the national or international standards. The uncertainty of flow measurement defines reliability for measurement results. The uncertainty of gravimetric method combines uncertainties of each independent variable, including mass, time, water density, air density and the density of dead weight. In this study, it has been found that the uncertainties of mass and time measurement in the gravimetric method have dominant influence on the total measurement uncertainty. After improvements of a constant head tank and a diverter, the best measurement capability for K-water's calibration facility has been reached less than 0.1%.

  15. Catch up growth and social capability in developing countries: A conceptual and measurement proposal

    Directory of Open Access Journals (Sweden)

    Martin Andersson

    2017-12-01

    Full Text Available While the income per capita in the developing world since the turn of the Millennium has grown faster than that of the developed world, the question whether there is an ongoing process of catching up between countries remains. The notion of income convergence has provided many insights into the sources for long-run growth but has largely neglected the role of social capabilities in economic development. By social capabilities we mean the qualification of the ‘theory of convergence’ which asserts that productivity growth rates  between countries tend to vary inversely with regard to productivity levels. The social capabilities approach holds that a country’s potential for rapid growth is strong when “it is technologically backward but socially advanced” (see Abramovitz, 1986:388. This means that the potential to catch up under globalization is strongest for countries in which social capabilities are developed to allow successful use of technologies and where institutional arrangements are conducive to economic progress. Yet there is no clear agreement in the literature on the main components of social capabilities or how to measure them. Our framework argues that the role of capabilities in catching up needs to understand them in terms of structural transformation, economic and social inclusion, state´s autonomy and accountability. Without progress in these dimensions within-country inequality may increase and might in turn lead to stagnating growth and slim prospects for global income convergence.

  16. Enabling CD SEM metrology for 5nm technology node and beyond

    Science.gov (United States)

    Lorusso, Gian Francesco; Ohashi, Takeyoshi; Yamaguchi, Astuko; Inoue, Osamu; Sutani, Takumichi; Horiguchi, Naoto; Bömmels, Jürgen; Wilson, Christopher J.; Briggs, Basoene; Tan, Chi Lim; Raymaekers, Tom; Delhougne, Romain; Van den Bosch, Geert; Di Piazza, Luca; Kar, Gouri Sankar; Furnémont, Arnaud; Fantini, Andrea; Donadio, Gabriele Luca; Souriau, Laurent; Crotti, Davide; Yasin, Farrukh; Appeltans, Raf; Rao, Siddharth; De Simone, Danilo; Rincon Delgadillo, Paulina; Leray, Philippe; Charley, Anne-Laure; Zhou, Daisy; Veloso, Anabela; Collaert, Nadine; Hasumi, Kazuhisa; Koshihara, Shunsuke; Ikota, Masami; Okagawa, Yutaka; Ishimoto, Toru

    2017-03-01

    The CD SEM (Critical Dimension Scanning Electron Microscope) is one of the main tools used to estimate Critical Dimension (CD) in semiconductor manufacturing nowadays, but, as all metrology tools, it will face considerable challenges to keep up with the requirements of the future technology nodes. The root causes of these challenges are not uniquely related to the shrinking CD values, as one might expect, but to the increase in complexity of the devices in terms of morphology and chemical composition as well. In fact, complicated threedimensional device architectures, high aspect ratio features, and wide variety of materials are some of the unavoidable characteristics of the future metrology nodes. This means that, beside an improvement in resolution, it is critical to develop a CD SEM metrology capable of satisfying the specific needs of the devices of the nodes to come, needs that sometimes will have to be addressed through dramatic changes in approach with respect to traditional CD SEM metrology. In this paper, we report on the development of advanced CD SEM metrology at imec on a variety of device platform and processes, for both logic and memories. We discuss newly developed approaches for standard, IIIV, and germanium FinFETs (Fin Field Effect Transistors), for lateral and vertical nanowires (NW), 3D NAND (three-dimensional NAND), STT-MRAM (Spin Transfer Magnetic Torque Random-Access Memory), and ReRAM (Resistive Random Access Memory). Applications for both front-end of line (FEOL) and back-end of line (BEOL) are developed. In terms of process, S/D Epi (Source Drain Epitaxy), SAQP (Self-Aligned Quadruple Patterning), DSA (Dynamic Self-Assembly), and EUVL (Extreme Ultraviolet Lithography) have been used. The work reported here has been performed on Hitachi CG5000, CG6300, and CV5000. In terms of logic, we discuss here the S/D epi defect classification, the metrology optimization for STI (Shallow Trench Isolation) Ge FinFETs, the defectivity of III-V STI Fin

  17. Implementation of machine learning for high-volume manufacturing metrology challenges (Conference Presentation)

    Science.gov (United States)

    Timoney, Padraig; Kagalwala, Taher; Reis, Edward; Lazkani, Houssam; Hurley, Jonathan; Liu, Haibo; Kang, Charles; Isbester, Paul; Yellai, Naren; Shifrin, Michael; Etzioni, Yoav

    2018-03-01

    In recent years, the combination of device scaling, complex 3D device architecture and tightening process tolerances have strained the capabilities of optical metrology tools to meet process needs. Two main categories of approaches have been taken to address the evolving process needs. In the first category, new hardware configurations are developed to provide more spectral sensitivity. Most of this category of work will enable next generation optical metrology tools to try to maintain pace with next generation process needs. In the second category, new innovative algorithms have been pursued to increase the value of the existing measurement signal. These algorithms aim to boost sensitivity to the measurement parameter of interest, while reducing the impact of other factors that contribute to signal variability but are not influenced by the process of interest. This paper will evaluate the suitability of machine learning to address high volume manufacturing metrology requirements in both front end of line (FEOL) and back end of line (BEOL) sectors from advanced technology nodes. In the FEOL sector, initial feasibility has been demonstrated to predict the fin CD values from an inline measurement using machine learning. In this study, OCD spectra were acquired after an etch process that occurs earlier in the process flow than where the inline CD is measured. The fin hard mask etch process is known to impact the downstream inline CD value. Figure 1 shows the correlation of predicted CD vs downstream inline CD measurement obtained after the training of the machine learning algorithm. For BEOL, machine learning is shown to provide an additional source of information in prediction of electrical resistance from structures that are not compatible for direct copper height measurement. Figure 2 compares the trench height correlation to electrical resistance (Rs) and the correlation of predicted Rs to the e-test Rs value for a far back end of line (FBEOL) metallization level

  18. Capabilities for measuring physical and chemical properties of rocks at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. (comp.)

    1990-01-01

    The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

  19. Measurement of the spatial resolution and rate capability of an induction drift chamber

    International Nuclear Information System (INIS)

    Roderburg, E.; Broeders, R.; Dahmen, M.; Decker, G.; Kilian, K.; Kurtenbach, A.; Lippert, C.; Oelert, W.; Sehl, G.; Steinkamp, O.; Stratmann, R.; Walsh, S.; Ziolkowski, M.

    1992-01-01

    The limits of spatial resolution of an induction drift chamber (IDC) lead to the concept of an asymmetric IDC with Flash ADC readout. The construction of a chamber is described. The results of two measurements concerning the spatial resolution and the rate capability are reported. (orig.)

  20. Tolerance analysis in manufacturing using process capability ratio with measurement uncertainty

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Mansourvar, Zahra; Hansen, Hans Nørgaard

    2017-01-01

    . In this paper, a new statistical analysis was applied to manufactured products to assess achieved tolerances when the process is known while using capability ratio and expanded uncertainty. The analysis has benefits for process planning, determining actual precision limits, process optimization, troubleshoot......Tolerance analysis provides valuable information regarding performance of manufacturing process. It allows determining the maximum possible variation of a quality feature in production. Previous researches have focused on application of tolerance analysis to the design of mechanical assemblies...... malfunctioning existing part. The capability measure is based on a number of measurements performed on part’s quality variable. Since the ratio relies on measurements, elimination of any possible error has notable negative impact on results. Therefore, measurement uncertainty was used in combination with process...

  1. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  2. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  3. 222Rn gas metrology in Latvia

    International Nuclear Information System (INIS)

    Bogucarska, T.; Lapenas, A.

    2004-01-01

    The measurements of radon gas provides in Latvia according with the State radiation monitoring program. The national standard/reference level for the protection of employees and population from exposure to radon Latvia has been accepted. The facilities for calibration of the radon gas measurement instruments and detectors have been established on basic of the Radiation Metrology and Testing Center which is the local SSDL for Baltic Region. The radon measurement instruments and detectors calibration can be performed at the 170-4000 Bq/m 3 range. (author)

  4. Chemical metrology, strategic job for the Chilean Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gras, Nuri; Munoz, Luis; Cortes, Eduardo

    2001-01-01

    The National Standardization Institute's (INN) Metrology unit prepared a study in 1996 to evaluate the impact of metrological activity in Chile. This study was based on a survey of the supply and demand of metrological services and on studies of the behavior of the production system and technological services in Chile during the period 1990-1996. With the information obtained in this study the economic impact resulting from the lack of a national metrology system could be evaluated. This impact was estimated to be a 5% loss in gross national product equal to 125-500 million dollars because of direct product rejection in the mining, fisheries, agricultural and manufacturing sectors. Chemical measurements are responsible for 50% of these losses. In response to this need and coordinated by the INN, a metrological network of reference laboratories began to operate in 1997 for the principal physical magnitudes (mass, temperature, longitude and force) and a CORFO-FDI project began in 2001 that includes the chemical magnitudes. The Chilean Nuclear Energy Commission, aware of the problem's importance and the amount of economic damage that the country may suffer, as a result of these deficiencies, has formed a Chemical Metrology Unit to provide technical support. It aims to raise the standards of local analytical laboratories by providing international recognition to the export sector. Nuclear analytical techniques are used as reference methods. This work describes the laboratories that are included in this Chemical Metrology Unit and the historical contribution to the development of local analytical chemistry. The national and international projects are described together with the publications they have generated. The quality assurance program applied to the laboratories is described as well, which has led to the accreditation of the analytical chemical assays. The procedures used for validation and calculation of uncertain nuclear methodologies are described together with

  5. Investigation into the use of smartphone as a machine vision device for engineering metrology and flaw detection, with focus on drilling

    Science.gov (United States)

    Razdan, Vikram; Bateman, Richard

    2015-05-01

    This study investigates the use of a Smartphone and its camera vision capabilities in Engineering metrology and flaw detection, with a view to develop a low cost alternative to Machine vision systems which are out of range for small scale manufacturers. A Smartphone has to provide a similar level of accuracy as Machine Vision devices like Smart cameras. The objective set out was to develop an App on an Android Smartphone, incorporating advanced Computer vision algorithms written in java code. The App could then be used for recording measurements of Twist Drill bits and hole geometry, and analysing the results for accuracy. A detailed literature review was carried out for in-depth study of Machine vision systems and their capabilities, including a comparison between the HTC One X Android Smartphone and the Teledyne Dalsa BOA Smart camera. A review of the existing metrology Apps in the market was also undertaken. In addition, the drilling operation was evaluated to establish key measurement parameters of a twist Drill bit, especially flank wear and diameter. The methodology covers software development of the Android App, including the use of image processing algorithms like Gaussian Blur, Sobel and Canny available from OpenCV software library, as well as designing and developing the experimental set-up for carrying out the measurements. The results obtained from the experimental set-up were analysed for geometry of Twist Drill bits and holes, including diametrical measurements and flaw detection. The results show that Smartphones like the HTC One X have the processing power and the camera capability to carry out metrological tasks, although dimensional accuracy achievable from the Smartphone App is below the level provided by Machine vision devices like Smart cameras. A Smartphone with mechanical attachments, capable of image processing and having a reasonable level of accuracy in dimensional measurement, has the potential to become a handy low-cost Machine vision

  6. Measuring perceived exercise capability and investigating its relationship with childhood obesity: a feasibility study.

    Science.gov (United States)

    Taylor, M J; Arriscado, D; Vlaev, I; Taylor, D; Gately, P; Darzi, A

    2016-01-01

    According to the COM-B ('Capability', 'Opportunity', 'Motivation' and 'Behaviour') model of behaviour, three factors are essential for behaviour to occur: capability, opportunity and motivation. Obese children are less likely to feel capable of exercising. The implementation of a new methodological approach to investigate the relationship between perceived exercise capability (PEC) and childhood obesity was conducted, which involved creating a new instrument, and demonstrating how it can be used to measure obesity intervention outcomes. A questionnaire aiming to measure perceived exercise capability, opportunity and motivation was systematically constructed using the COM-B model and administered to 71 obese children (aged 9-17 years (12.24±0.2.01), body mass index (BMI) standard deviation scores (SDS) 2.80±0.660) at a weight-management camp in northern England. Scale validity and reliability was assessed. Relationships between PEC, as measured by the questionnaire, and BMI SDS were investigated for the children at the weight-management camp, and for 45 Spanish schoolchildren (aged 9-13 years, (10.52±1.23), BMI SDS 0.80±0.99). A pilot study, demonstrating how the questionnaire can be used to measure the effectiveness of an intervention aiming to bring about improved PEC for weight-management camp attendees, was conducted. No participants withdrew from these studies. The questionnaire domain (exercise capability, opportunity and motivation) composite scales were found to have adequate internal consistency (a=0.712-0.796) and construct validity (χ(2)/degrees of freedom=1.55, root mean square error of approximation=0.072, comparative fit index=0.92). Linear regression revealed that low PEC was associated with higher baseline BMI SDS for both UK (b=-0.289, P=0.010) and Spanish (b=-0.446, P=0.047) participants. Pilot study findings provide preliminary evidence for PEC improvements through intervention being achievable, and measurable using the questionnaire

  7. Automation of testing the metrological reliability of nondestructive control systems

    International Nuclear Information System (INIS)

    Zhukov, Yu.A.; Isakov, V.B.; Karlov, Yu.K.; Kovalevskij, Yu.A.

    1987-01-01

    Opportunities of microcomputers are used to solve the problem of testing control-measuring systems. Besides the main program the program of data processing when characterizing the nondestructive control systems is written in the microcomputer. The program includes two modules. The first module contains tests-programs, by which accuracy of functional elements of the microcomputer and interface elements with issuing a message to the operator on readiness of the elements for operation and failure of a certain element are determined. The second module includes: calculational programs when determining metrological reliability of measuring channel reliability, a calculational subprogram for random statistical measuring error, time instability and ''dead time''. Automation of testing metrological reliability of the nondestructive control systems increases reliability of determining metrological parameters and reduces time of system testing

  8. Joint Research on Scatterometry and AFM Wafer Metrology

    Science.gov (United States)

    Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni

    2011-11-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.

  9. Metrological issues in molecular radiotherapy

    International Nuclear Information System (INIS)

    D'Arienzo, Marco; Capogni, Marco; Smyth, Vere; Cox, Maurice; Johansson, Lena; Bobin, Christophe

    2014-01-01

    The therapeutic effect from molecular radiation therapy (MRT), on both tumour and normal tissue, is determined by the radiation absorbed dose. Recent research indicates that as a consequence of biological variation across patients the absorbed dose can vary, for the same administered activity, by as much as two orders of magnitude. The international collaborative EURAMET-EMRP project Metrology for molecular radiotherapy (MetroMRT) is addressing this problem. The overall aim of the project is to develop methods of calibrating and verifying clinical dosimetry in MRT. In the present paper an overview of the metrological issues in molecular radiotherapy is provided. (authors)

  10. Radionuclide metrology: traceability and response to a radiological accident

    Energy Technology Data Exchange (ETDEWEB)

    Tauhata, L.; Cruz, P.A.L. da; Silva, C.J. da; Delgado, J.U.; Oliveira, A.E. de; Oliveira, E.M. de; Poledna, R.; Loureiro, J. dos S.; Ferreira Filho, A.L.; Silva, R.L. da; Filho, O. L.T.; Santos, A.R.L. dos; Veras, E.V. de; Rangel, J. de A.; Quadros, A.L.L.; Araújo, M.T.F. de; Souza, P.S. de; Ruzzarim, A.; Conceição, D.A. da; Iwahara, A., E-mail: palcruz@ird.gov.br [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes

    2017-07-01

    In the case of a radiological accident, there are characteristic phases: discovery and initial assistance with first aid; the triage and monitoring of the affected population; the release of the affected people; forward the victims to medical care; as well as the preparation of the report on the accident. In addition, studies and associated researches performed in the later period. Monitors, dosimeters and measuring systems should be calibrated by contaminating radionuclide standards. The radioactive sources used must be metrologically reliable. In Brazil, this function is performed by LNMRI/IRD/CNEN, designated by INMETRO, which Radionuclide Metrology Laboratory is responsible for the standardization and supply of radioactive sources in diverse geometries and matrices. This laboratory has a stock of radionuclide solutions with controlled environmental variables for the preparation of sources, which are calibrated and standardized by mean of primary and secondary systems. It is also responsible for the dissemination of standards and, in order to establish the metrological traceability of national standards, participates in international key-comparisons promoted by BIPM and regional metrology organizations. Internally, it promotes the National Comparison Programs for laboratories for the analysis of environmental samples and the traceability for producing centers of radiopharmaceuticals and Nuclear Medicine Services in the country. The paper presents the demand for {sup 137}Cs related to the radioactive accident in Goiania/Brazil and the significant results for the main radionuclides standardized by the Radionuclide Metrology Laboratory for international key-comparisons and national comparisons to provide metrological traceability. With the obtained results, the LNMRI of Brazil integrates the international metrology BIPM network and fulfills its function of supplying, with about a hundred of radioactive standards, the country's needs in different applications

  11. Radionuclide metrology: traceability and response to a radiological accident

    International Nuclear Information System (INIS)

    Tauhata, L.; Cruz, P.A.L. da; Silva, C.J. da; Delgado, J.U.; Oliveira, A.E. de; Oliveira, E.M. de; Poledna, R.; Loureiro, J. dos S.; Ferreira Filho, A.L.; Silva, R.L. da; Filho, O. L.T.; Santos, A.R.L. dos; Veras, E.V. de; Rangel, J. de A.; Quadros, A.L.L.; Araújo, M.T.F. de; Souza, P.S. de; Ruzzarim, A.; Conceição, D.A. da; Iwahara, A.

    2017-01-01

    In the case of a radiological accident, there are characteristic phases: discovery and initial assistance with first aid; the triage and monitoring of the affected population; the release of the affected people; forward the victims to medical care; as well as the preparation of the report on the accident. In addition, studies and associated researches performed in the later period. Monitors, dosimeters and measuring systems should be calibrated by contaminating radionuclide standards. The radioactive sources used must be metrologically reliable. In Brazil, this function is performed by LNMRI/IRD/CNEN, designated by INMETRO, which Radionuclide Metrology Laboratory is responsible for the standardization and supply of radioactive sources in diverse geometries and matrices. This laboratory has a stock of radionuclide solutions with controlled environmental variables for the preparation of sources, which are calibrated and standardized by mean of primary and secondary systems. It is also responsible for the dissemination of standards and, in order to establish the metrological traceability of national standards, participates in international key-comparisons promoted by BIPM and regional metrology organizations. Internally, it promotes the National Comparison Programs for laboratories for the analysis of environmental samples and the traceability for producing centers of radiopharmaceuticals and Nuclear Medicine Services in the country. The paper presents the demand for 137 Cs related to the radioactive accident in Goiania/Brazil and the significant results for the main radionuclides standardized by the Radionuclide Metrology Laboratory for international key-comparisons and national comparisons to provide metrological traceability. With the obtained results, the LNMRI of Brazil integrates the international metrology BIPM network and fulfills its function of supplying, with about a hundred of radioactive standards, the country's needs in different applications

  12. [The EFS metrology: From the production to the reason].

    Science.gov (United States)

    Reifenberg, J-M; Riout, E; Leroy, A; Begue, S

    2014-06-01

    In order to answer statutory requirements and to anticipate the future needs and standards, the EFS is committed, since a few years, in a process of harmonization of its metrology function. In particular, the institution has opted for the skills development by internalizing the metrological traceability of the main critical quantities (temperature, volumetric) measurements. The development of metrology so resulted in a significant increase in calibration and testing activities. Methods are homogenized and improved through accreditations. The investment strategies are based on more and more demanding specifications. The performance of the equipments is better known and mastered. Technical expertise and maturity of the national metrology function today are assets to review in more informed ways the appropriateness of the applied periodicities. Analysis of numerous information and data in the calibration and testing reports could be pooled and operated on behalf of the unique establishment. The objective of this article is to illustrate these reflections with a few examples from of a feedback of the EFS Pyrénées Méditerranée. The analysis of some methods of qualification, the exploitation of the historical metrology in order to quantify the risk of non-compliance, and to adapt the control strategy, analysis of the criticality of an instrument in a measurement process, risk analyses are tools that deserve to be more widely exploited for that discipline wins in efficiency at the national level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. New measurement capabilities of mass spectrometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Perrin, R.E.

    1979-01-01

    Three recent developments, when combined, have the potential for greatly improving accountability measurements in the nuclear fuel cycle. The techniques are particularly valuable when measuring the contents of vessels which are difficult to calibrate by weight or volume. Input dissolver accountability measurements, inparticular, benefit from the application of these techniques. Los Alamos Scientific Laboratory has developed the capability for isotopic analysis of U and Pu samples at the nanogram level with an accuracy of 0.1 relative %. The Central Bureau for Nuclear Materials Measurement in Geel, Belgium has developed the capability of preparing mixed, solid metal U and Pu spikes with an accuracy of better than 0.1 relative %. Idaho Nuclear Energy Laboratory and C.K. Mathews at Bhabha Atomic Research have demonstrated a technique for determining the ratio of sample size to total solution measured which is independent of both the weight and the volume of the solution being measured. The advantages and limitations of these techniques are discussed. An analytical scheme which takes advantage of the special features of these techniques is proposed. 4 refs

  14. Metrology and analytical chemistry: Bridging the cultural gap

    International Nuclear Information System (INIS)

    King, Bernard

    2002-01-01

    Metrology in general and issues such as traceability and measurement uncertainty in particular are new to most analytical chemists and many remain to be convinced of their value. There is a danger of the cultural gap between metrologists and analytical chemists widening with unhelpful consequences and it is important that greater collaboration and cross-fertilisation is encouraged. This paper discusses some of the similarities and differences in the approaches adopted by metrologists and analytical chemists and indicates how these approaches can be combined to establish a unique metrology of chemical measurement which could be accepted by both cultures. (author)

  15. Improved capacity in ionizing radiation metrology at SANAEM

    International Nuclear Information System (INIS)

    Yucel, U.

    2014-01-01

    Full text : Turkey is planning to build nuclear power plants in the south and north coasts to supply the ever-increasing energy demand. The nuclear power plants based on old soviet technology in Armenia and Bulgaria close to Turkey's borders also makes constant monitoring of environmental radioactivity extremely important due to public health and environment contamination concerns. Radiation Metrology Division at SANAEM has been established in 2012 to provide uniformity and reliability of the measurements in the field of ionizing radiation metrology by R and D studies and by constituting, developing, keeping and extending internationally accepted reference measurement standards and techniques

  16. Quantum metrology for gravitational wave astronomy.

    Science.gov (United States)

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  17. Measurement of the two track separation capability of hybrid pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, F.J., E-mail: Francisca.MunozSanchez@manchester.ac.uk [University of Manchester (United Kingdom); Battaglia, M. [University of California, Santa Cruz, United States of America (United States); CERN, The European Organization for Nuclear Research (Switzerland); Da Vià, C. [University of Manchester (United Kingdom); La Rosa, A. [University of California, Santa Cruz, United States of America (United States); Dann, N. [University of Manchester (United Kingdom)

    2017-02-11

    Large Hadron Collider experiments face new challenges in Run-2 conditions due to the increased beam energy, the interest for searches of new physics signals with higher jet pT and the consequent longer decay length of heavy hadrons. In this new scenario, the capability of the innermost pixel sensors to distinguish tracks in very dense environment becomes crucial for efficient tracking and flavour tagging performance. In this work, we discuss the measurement in a test beam of the two track separation capability of hybrid pixel sensors using the interaction particles out of the collision of high energy pions on a thin copper target. With this method we are able to evaluate the effect of merged hits in the sensors under test due to tracks closer than the sensor spatial granularity in terms of collected charge, multiplicity and reconstruction efficiency. - Highlights: • Measurement of the two-track separation capability of hybrid pixel sensors. • Emulating track dense environment with a cooper target in a test beam. • Cooper target in between telescope arms to create vertices. • Validation of simulation and reconstruction algorithm for future vertex detectors. • New qualification method for pixel modules in track dense environments.

  18. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Kraakman, R.; Voorbraak, W.P.

    1993-04-01

    Additional to the in-core EXOTIC experiments, six irradiations of ceramic material, R212-001 to R212-006, have been performed in the PSF of the HFR. This note presents the neutron metrology results for these irradiations. (orig.)

  19. Direct gamma and gamma+jet measurement capability of ATLAS @ LHC Quark Matter 2009 talk

    CERN Document Server

    Baker, MD

    2009-01-01

    Direct photon and photon-jet correlations are ideal tools for tomographic studies of the dense medium created in heavy ion collisions at LHC energies. Due to their weak interactions with the medium, direct photons serve as standard candles for hard-scattering processes, providing a clean calibration of the momentum of the associated jets. The ATLAS detector has excellent capabilities to make these measurements. In particular, the electromagnetic calorimeter, covering the full azimuth for |eta| < 4.9, has longitudinal segmentation and fine transverse segmentation along eta in the range |eta| < 2.4. This combination of fine granularity, longitudinal segmentation and large acceptance is unique among the LHC detectors. We show how this will provide an optimal capability to distinguish direct photon clusters from neutral meson clusters based on their shower profile over a wide acceptance in eta, phi out to 200 GeV in pT . This opens up the possibility for studying various final state photons, includi...

  20. Statistical methods for quality assurance basics, measurement, control, capability, and improvement

    CERN Document Server

    Vardeman, Stephen B

    2016-01-01

    This undergraduate statistical quality assurance textbook clearly shows with real projects, cases and data sets how statistical quality control tools are used in practice. Among the topics covered is a practical evaluation of measurement effectiveness for both continuous and discrete data. Gauge Reproducibility and Repeatability methodology (including confidence intervals for Repeatability, Reproducibility and the Gauge Capability Ratio) is thoroughly developed. Process capability indices and corresponding confidence intervals are also explained. In addition to process monitoring techniques, experimental design and analysis for process improvement are carefully presented. Factorial and Fractional Factorial arrangements of treatments and Response Surface methods are covered. Integrated throughout the book are rich sets of examples and problems that help readers gain a better understanding of where and how to apply statistical quality control tools. These large and realistic problem sets in combination with the...

  1. Introduction to quantum metrology quantum standards and instrumentation

    CERN Document Server

    Nawrocki, Waldemar

    2015-01-01

    This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called  Quantum SI, is introduced. This book helps to understand and approve the new system to both technology a...

  2. Dual frequency comb metrology with one fiber laser

    Science.gov (United States)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  3. Hybrid overlay metrology with CDSEM in a BEOL patterning scheme

    Science.gov (United States)

    Leray, Philippe; Jehoul, Christiane; Inoue, Osamu; Okagawa, Yutaka

    2015-03-01

    Overlay metrology accuracy is a major concern for our industry. Advanced logic process require more tighter overlay control for multipatterning schemes. TIS (Tool Induced Shift) and WIS (Wafer Induced Shift) are the main issues for IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). Methods of compensation have been introduced, some are even very efficient to reduce these measured offsets. Another related question is about the overlay target designs. These targets are never fully representative of the design rules, strong efforts have been achieved, but the device cannot be completely duplicated. Ideally, we would like to measure in the device itself to verify the real overlay value. Top down CDSEM can measure critical dimensions of any structure, it is not dependent of specific target design. It can also measure the overlay errors but only in specific cases like LELE (Litho Etch Litho Etch) after final patterning. In this paper, we will revisit the capability of the CDSEM at final patterning by measuring overlay in dedicated targets as well as inside a logic and an SRAM design. In the dedicated overlay targets, we study the measurement differences between design rules gratings and relaxed pitch gratings. These relaxed pitch which are usually used in IBO or DBO targets. Beyond this "simple" LELE case, we will explore the capability of the CDSEM to measure overlay even if not at final patterning, at litho level. We will assess the hybridization of DBO and CDSEM for reference to optical tools after final patterning. We will show that these reference data can be used to validate the DBO overlay results (correctables and residual fingerprints).

  4. In-die photomask registration and overlay metrology with PROVE using 2D correlation methods

    Science.gov (United States)

    Seidel, D.; Arnz, M.; Beyer, D.

    2011-11-01

    According to the ITRS roadmap, semiconductor industry drives the 193nm lithography to its limits, using techniques like double exposure, double patterning, mask-source optimization and inverse lithography. For photomask metrology this translates to full in-die measurement capability for registration and critical dimension together with challenging specifications for repeatability and accuracy. Especially, overlay becomes more and more critical and must be ensured on every die. For this, Carl Zeiss SMS has developed the next generation photomask registration and overlay metrology tool PROVE® which serves the 32nm node and below and which is already well established in the market. PROVE® features highly stable hardware components for the stage and environmental control. To ensure in-die measurement capability, sophisticated image analysis methods based on 2D correlations have been developed. In this paper we demonstrate the in-die capability of PROVE® and present corresponding measurement results for shortterm and long-term measurements as well as the attainable accuracy for feature sizes down to 85nm using different illumination modes and mask types. Standard measurement methods based on threshold criteria are compared with the new 2D correlation methods to demonstrate the performance gain of the latter. In addition, mask-to-mask overlay results of typical box-in-frame structures down to 200nm feature size are presented. It is shown, that from overlay measurements a reproducibility budget can be derived that takes into account stage, image analysis and global effects like mask loading and environmental control. The parts of the budget are quantified from measurement results to identify critical error contributions and to focus on the corresponding improvement strategies.

  5. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    Science.gov (United States)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  6. Radionuclide metrology research for nuclear site decommissioning

    Science.gov (United States)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  7. Loneliness and objectively measured physical capability in middle-aged adults

    DEFF Research Database (Denmark)

    Lund, Rikke; Laban, J; Petersen, GL

    2018-01-01

    and women compared with the ‘not lonely’ were 1.2 kg (95% CI − 0.5;2.9)/1.0 kg (−0.7;2.6). Low occupational social class was associated with poorer physical capability, and living alone was associated with poorer handgrip strength in men [−2.4 kg (95% CI − 3.2;−1.5)] and poorer chair rise test in women [−0......Background: Loneliness is associated with poor functional ability in older people. Little is known about this association in the middle-aged. The aim is to investigate if perceived loneliness is associated with lower physical capability among middle-aged men and women and if the associations...... of loneliness with physical capability interact with socioeconomic position and cohabitation status. Methods: 5224 participants from Copenhagen Aging and Midlife Biobank (CAMB) aged 49–62 years (mean age 54) were included. Handgrip strength (measured by a dynamometer) and maximal number of chair rises in 30 s...

  8. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  9. A Measurement Framework for Team Level Assessment of Innovation Capability in Early Requirements Engineering

    Science.gov (United States)

    Regnell, Björn; Höst, Martin; Nilsson, Fredrik; Bengtsson, Henrik

    When developing software-intensive products for a market-place it is important for a development organisation to create innovative features for coming releases in order to achieve advantage over competitors. This paper focuses on assessment of innovation capability at team level in relation to the requirements engineering that is taking place before the actual product development projects are decided, when new business models, technology opportunities and intellectual property rights are created and investigated through e.g. prototyping and concept development. The result is a measurement framework focusing on four areas: innovation elicitation, selection, impact and ways-of-working. For each area, candidate measurements were derived from interviews to be used as inspiration in the development of a tailored measurement program. The framework is based on interviews with participants of a software team with specific innovation responsibilities and validated through cross-case analysis and feedback from practitioners.

  10. Review of current capabilities for the measurement of stress, displacement, and in situ deformation modulus

    International Nuclear Information System (INIS)

    Schrauf, T.W.; Pratt, H.R.

    1979-12-01

    Current capabilities for the measurement of stress, displacement, and in situ deformation modulus in rock masses are reviewed as to their accuracy, sensitivity, advantages, and limitations. Consideration is given to both the instruments themselves and the measurement technique. Recommendations concerning adaptation of existing measurement techniques to repository monitoring are also discussed. These recommendations include: (1) development of a modified borehole deformation gage with improved long-term stability and reliability and reduced thermal sensitivity; (2) development of a downhole transducer type of extensometer; (3) development of a rigid inclusion type gage; (4) development of an improved vibrating wire stressmeter with greater accuracy and simplified calibration and installation requirements; and (5) modification of standard rod extensometers to improve their sensitivity

  11. Metrology in CNEN NN 3.05/13 standard

    International Nuclear Information System (INIS)

    Mello, Marina Santiago de

    2014-01-01

    The nuclear medicine exams are widely used tools in health services for a reliable clinical and functional diagnosis of a disease. In Brazil, the National Nuclear Energy Commission, through the norm CNEN-NN 3:05/13, provides for the requirements of safety and radiological protection in nuclear medicine services. The objective of this review article was to emphasize the importance of metrology in compliance with this norm. We observed that metrology plays a vital role as it ensures the quality, accuracy, reproducibility and consistency of the measurements in the field of nuclear medicine. (author)

  12. Metrology aspects of SIMS depth profiling for advanced ULSI processes

    International Nuclear Information System (INIS)

    Budrevich, Andre; Hunter, Jerry

    1998-01-01

    As the semiconductor industry roadmap passes through the 0.1 μm technology node, the junction depth of the transistor source/drain extension will be required to be less than 20 nm and the well doping will be near 1.0 μm in depth. The development of advanced ULSI processing techniques requires the evolution of new metrology tools to ensure process capability. High sensitivity (ppb) coupled with excellent depth resolution (1 nm) makes SIMS the technique of choice for measuring the in-depth chemical distribution of these dopants with high precision and accuracy. This paper will discuss the issues, which impact the accuracy and precision of SIMS measurements of ion implants (both shallow and deep). First this paper will discuss common uses of the SIMS technique in the technology development and manufacturing of advanced ULSI processes. In the second part of this paper the ability of SIMS to make high precision measurements of ion implant depth profiles will be studied

  13. A metrology solution for the orthopaedic industry

    International Nuclear Information System (INIS)

    Bills, P; Brown, L; Jiang, X; Blunt, L

    2005-01-01

    Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5 million operations performed annually. Currently joint replacements are expected to function for 10-15 years, however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer term improved quality of life for patients. The amount of wear that a joint incurs is seen as a good indicator of performance, with higher wear rates typically leading to reduced function and premature failure. New technologies and materials are pushing traditional wear assessment methods to their limits, and novel metrology solutions are required to assess wear of joints following in vivo and in vitro use. This paper presents one such measurement technique; a scanning co-ordinate metrology machine for geometrical assessment. A case study is presented to show the application of this technology to a real orthopaedic measurement problem: the wear of components in total knee replacement. This technique shows good results and provides a basis for further developing techniques for geometrical wear assessment of total joint replacements

  14. Metrological challenges introduced by new tolerancing standards

    International Nuclear Information System (INIS)

    Morse, Edward; Peng, Yue; Srinivasan, Vijay; Shakarji, Craig

    2014-01-01

    The recent release of ISO 14405-1 has provided designers with a richer set of specification tools for the size of part features, so that various functional requirements can be captured with greater fidelity. However, these tools also bring new challenges and pitfalls to an inspector using a coordinate metrology system. A sampling strategy that might have worked well in the past could lead to erroneous results that go undetected when used to evaluate these new specifications. In this paper we investigate how measurement strategies for sampled coordinate metrology systems influence different algorithms for the evaluation of these new specifications. Of particular interest are those specifications where the order statistics of feature cross-sections are required. Here the inspector must decide not only how many points are required for an individual cross-section, but the number and spacing of cross-sections measured on the feature. The results of these decisions are compared with an analytic estimate of the ‘true value’ of the measurand specified using this new standard. (paper)

  15. Regional metrology organisations and the JCRB

    International Nuclear Information System (INIS)

    Hetherington, Paul

    2004-01-01

    In 1999, National Metrology Institutes (NMIs) from some 39 countries signed the International Committee of Weights and Measures (CIPM) Mutual Recognition Arrangement (MRA) in Paris. The MRA, drawn up by the CIPM, under the authority given to it in the Metre Convention, was in response to requirements of Governments and Regulators to provide a sound technical foundation for trade agreements. Core objectives of the MRA are to allow for the establishment of the degree of equivalence of national measurement standards and to provide for mutual recognition of calibration certificates issued by NMIs. This presentation will detail the evolution of the MRA. Globally, NMIs are affiliated to Regional Metrology Organisations (RMOs). The key role of the RMOs in the MRA process will be discussed along with the structure and objectives of the various RMOs worldwide. The Joint Committee of the RMOs and the BIPM (JCRB) plays a central part in the effective operation of the MRA. Its tasks, membership and output will also be described

  16. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  17. Advanced Measurements of the Aggregation Capability of the MPT Network Layer Multipath Communication Library

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2015-05-01

    Full Text Available The MPT network layer multipath communicationlibrary is a novel solution for several problems including IPv6transition, reliable data transmission using TCP, real-time transmissionusing UDP and also wireless network layer routingproblems. MPT can provide an IPv4 or an IPv6 tunnel overone or more IPv4 or IPv6 communication channels. MPT canalso aggregate the capacity of multiple physical channels. In thispaper, the channel aggregation capability of the MPT libraryis measured up to twelve 100Mbps speed channels. Differentscenarios are used: both IPv4 and IPv6 are used as the underlyingand also as the encapsulated protocols and also both UDP andTCP are used as transport protocols. In addition, measurementsare taken with both 32-bit and 64-bit version of the MPT library.In all cases, the number of the physical channels is increased from1 to 12 and the aggregated throughput is measured.

  18. State metrological centre

    International Nuclear Information System (INIS)

    Vicanova, M.

    2001-01-01

    The Slovak radon program started in 1990 and was organised by the Institute of Preventive and Clinical Medicine. The uniform calibration and comparison of different measurements were necessary to indemnify for measurements of radon and its daughter products. The calibration methods were taken over and developed, and radon calibration chamber were built too. This system is the basis of secondary radon standard, which was authorised in 1992 and consist of two measuring systems: - radon chamber for measurement of radon and its daughter products; - system IIC for measurement of radon 222 Rn) and thoron ( 220 Rn). Both calibration systems, together with the estimate of the relative combined standard uncertainties for estimation of radon and its daughter products concentrations and international comparison of our measuring systems are presented in this paper. (author)

  19. Metrology test object for dimensional verification in additive manufacturing of metals for biomedical applications.

    Science.gov (United States)

    Teeter, Matthew G; Kopacz, Alexander J; Nikolov, Hristo N; Holdsworth, David W

    2015-01-01

    Additive manufacturing continues to increase in popularity and is being used in applications such as biomaterial ingrowth that requires sub-millimeter dimensional accuracy. The purpose of this study was to design a metrology test object for determining the capabilities of additive manufacturing systems to produce common objects, with a focus on those relevant to medical applications. The test object was designed with a variety of features of varying dimensions, including holes, cylinders, rectangles, gaps, and lattices. The object was built using selective laser melting, and the produced dimensions were compared to the target dimensions. Location of the test objects on the build plate did not affect dimensions. Features with dimensions less than 0.300 mm did not build or were overbuilt to a minimum of 0.300 mm. The mean difference between target and measured dimensions was less than 0.100 mm in all cases. The test object is applicable to multiple systems and materials, tests the effect of location on the build, uses a minimum of material, and can be measured with a variety of efficient metrology tools (including measuring microscopes and micro-CT). Investigators can use this test object to determine the limits of systems and adjust build parameters to achieve maximum accuracy. © IMechE 2014.

  20. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  1. Using Vision Metrology System for Quality Control in Automotive Industries

    Science.gov (United States)

    Mostofi, N.; Samadzadegan, F.; Roohy, Sh.; Nozari, M.

    2012-07-01

    The need of more accurate measurements in different stages of industrial applications, such as designing, producing, installation, and etc., is the main reason of encouraging the industry deputy in using of industrial Photogrammetry (Vision Metrology System). With respect to the main advantages of Photogrammetric methods, such as greater economy, high level of automation, capability of noncontact measurement, more flexibility and high accuracy, a good competition occurred between this method and other industrial traditional methods. With respect to the industries that make objects using a main reference model without having any mathematical model of it, main problem of producers is the evaluation of the production line. This problem will be so complicated when both reference and product object just as a physical object is available and comparison of them will be possible with direct measurement. In such case, producers make fixtures fitting reference with limited accuracy. In practical reports sometimes available precision is not better than millimetres. We used a non-metric high resolution digital camera for this investigation and the case study that studied in this paper is a chassis of automobile. In this research, a stable photogrammetric network designed for measuring the industrial object (Both Reference and Product) and then by using the Bundle Adjustment and Self-Calibration methods, differences between the Reference and Product object achieved. These differences will be useful for the producer to improve the production work flow and bringing more accurate products. Results of this research, demonstrate the high potential of proposed method in industrial fields. Presented results prove high efficiency and reliability of this method using RMSE criteria. Achieved RMSE for this case study is smaller than 200 microns that shows the fact of high capability of implemented approach.

  2. USING VISION METROLOGY SYSTEM FOR QUALITY CONTROL IN AUTOMOTIVE INDUSTRIES

    Directory of Open Access Journals (Sweden)

    N. Mostofi

    2012-07-01

    Full Text Available The need of more accurate measurements in different stages of industrial applications, such as designing, producing, installation, and etc., is the main reason of encouraging the industry deputy in using of industrial Photogrammetry (Vision Metrology System. With respect to the main advantages of Photogrammetric methods, such as greater economy, high level of automation, capability of noncontact measurement, more flexibility and high accuracy, a good competition occurred between this method and other industrial traditional methods. With respect to the industries that make objects using a main reference model without having any mathematical model of it, main problem of producers is the evaluation of the production line. This problem will be so complicated when both reference and product object just as a physical object is available and comparison of them will be possible with direct measurement. In such case, producers make fixtures fitting reference with limited accuracy. In practical reports sometimes available precision is not better than millimetres. We used a non-metric high resolution digital camera for this investigation and the case study that studied in this paper is a chassis of automobile. In this research, a stable photogrammetric network designed for measuring the industrial object (Both Reference and Product and then by using the Bundle Adjustment and Self-Calibration methods, differences between the Reference and Product object achieved. These differences will be useful for the producer to improve the production work flow and bringing more accurate products. Results of this research, demonstrate the high potential of proposed method in industrial fields. Presented results prove high efficiency and reliability of this method using RMSE criteria. Achieved RMSE for this case study is smaller than 200 microns that shows the fact of high capability of implemented approach.

  3. 8th Brazilian Congress on Metrology (Metrologia 2015)

    International Nuclear Information System (INIS)

    2016-01-01

    THE EIGHTH BRAZILIAN CONGRESS ON METROLOGY (METROLOGIA 2015) The United Nations celebrated 2015 as the International Year of Light. By a curious coincidence, many notable events in science and technology completed a multiple of 50 or 100 years in 2015. From the pioneering work of the wise Ibn Al-Haytham in 1015, through Fresnel, Maxwell, Einstein, the discovery of the cosmic microwave background, to the use of optical fibres in communications in 1965. Electromagnetic radiation is present in our daily lives in countless applications. It is remarkable that there is no way to think about these applications without thinking of measurements. From entangled photons to more prosaic public illumination of our daily life, we are intrinsically connected all the time with the luminous phenomena. Among other things, the light allows global communication on a large scale. It strengthens the internationalization of production processes, which brings considerable changes in relations, processes and economic structures, as well as it orients the social, political and cultural behaviour of any country. These conditions of this internationalization require interchangeability of parts of complex systems, translated into strict adherence to the standards and specifications that use increasingly accurate measurement techniques, as well as the growing demand from consumer markets for products and higher quality services. They also require innovation and improvements in domestic production to boost the competitiveness of industries in domestic and foreign markets. Thus, if the Science of Measurements is taken as a serious concern, countries are better prepared to evolve towards economic and social development. In this 8"t"h edition of the Brazilian Congress on Metrology (METROLOGIA 2015), in addition to the thematic sessions in various areas of Metrology and Conformity Assessment, we hold several satellite events. They are already traditional events or highlight important current issues

  4. Optics for Processes, Products and Metrology

    Science.gov (United States)

    Mather, George

    1999-04-01

    Optical physics has a variety of applications in industry, including process inspection, coatings development, vision instrumentation, spectroscopy, and many others. Optics has been used extensively in the design of solar energy collection systems and coatings, for example. Also, with the availability of good CCD cameras and fast computers, it has become possible to develop real-time inspection and metrology devices that can accommodate the high throughputs encountered in modern production processes. More recently, developments in moiré interferometry show great promise for applications in the basic metals and electronics industries. The talk will illustrate applications of optics by discussing process inspection techniques for defect detection, part dimensioning, birefringence measurement, and the analysis of optical coatings in the automotive, glass, and optical disc industries. In particular, examples of optical techniques for the quality control of CD-R, MO, and CD-RW discs will be presented. In addition, the application of optical concepts to solar energy collector design and to metrology by moiré techniques will be discussed. Finally, some of the modern techniques and instruments used for qualitative and quantitative material analysis will be presented.

  5. AWRE (nonconventional) metrology scene

    International Nuclear Information System (INIS)

    West, F.L.

    1978-01-01

    Progress at AWRE in the adaptation of optical interferometry to contour and thickness measurement arising with two-dimensional shell and metal mirror parts is described. The primary aim is to outline various inspection problems encountered with use of rotary contour gauges in order to illustrate reasons for the direction of development and to invite comment on proposed solutions. Surface finish of machined parts is seen as a linked problem bearing directly on determination accuracy and repeatability of measurement. A clearer understanding of surface topography and its measurement is being sought as a necessary adjunct to precision inspection of conventional parts and to guide tooling development in mirror manufacture

  6. A new approach to stitching optical metrology data

    Science.gov (United States)

    King, Christopher W.

    The next generation of optical instruments, including telescopes and imaging apparatus, will generate an increased requirement for larger and more complex optical forms. A major limiting factor for the production of such optical components is the metrology: how do we measure such parts and with respect to what reference datum This metrology can be thought of as part of a complete cycle in the production of optical components and it is currently the most challenging aspect of production. This thesis investigates a new and complete approach to stitching optical metrology data to extend the effective aperture or, in future, the dynamic range of optical metrology instruments. A practical approach is used to build up a complete process for stitching on piano and spherical parts. The work forms a basis upon which a stitching system for aspheres might be developed in the future, which is inherently more complicated. Beginning with a historical perspective and a review of optical polishing and metrology, the work presented relates the commercially available metrology instruments to the stitching process developed. The stitching is then performed by a numerical optimization routine that seeks to join together overlapping sub-aperture measurements by consideration of the aberrations introduced by the measurement scenario, and by the overlap areas between measurements. The stitching is part of a larger project, the PPARC Optical Manipulation and Metrology project, and was to benefit from new wavefront sensing technology developed by a project partner, and to be used for the sub-aperture measurement. Difficult mathematical problems meant that such a wavefront sensor was not avail able for this work and a work-around was therefore developed using commercial instruments. The techniques developed can be adapted to work on commercial ma chine platforms, and in partuicular, the OMAM NPL/UCL swing-arm profilometer described in chapter 5, or the computer controlled polishing machines

  7. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Naomi; Ogura, Isamu, E-mail: i-ogura@aist.go.jp; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa [Technology Research Association for Single Wall Carbon Nanotubes (TASC) (Japan)

    2013-11-15

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces.

  8. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    International Nuclear Information System (INIS)

    Hashimoto, Naomi; Ogura, Isamu; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa

    2013-01-01

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces

  9. New capability for ozone dial profiling measurements in the troposphere and lower stratosphere from aircraft

    Science.gov (United States)

    Hair, Johnathan; Hostetler, Chris; Cook, Anthony; Harper, David; Notari, Anthony; Fenn, Marta; Newchurch, Mike; Wang, Lihua; Kuang, Shi; Knepp, Travis; Burton, Sharon; Ferrare, Richard; Butler, Carolyn; Collins, Jim; Nehrir, Amin

    2018-04-01

    Recently, we successfully demonstrated a new compact and robust ozone DIAL lidar for smaller aircraft such as the NASA B200 and the ER-2 high-altitude aircraft. This is the first NASA airborne lidar to incorporate advanced solid-state lasers to produce the required power at the required ultraviolet wavelengths, and is compact and robust enough to operate nearly autonomously on the high-altitude ER-2 aircraft. This technology development resulted in the first new NASA airborne ozone DIAL instrument in more than 15 years. The combined ozone, aerosol, and clouds measurements provide valuable information on the chemistry, radiation, and dynamics of the atmosphere. In particular, from the ER-2 it offers a unique capability to study the upper troposphere and lower stratosphere.

  10. Computer code structure for evaluation of fire protection measures and fighting capability at nuclear plants

    International Nuclear Information System (INIS)

    Anton, V.

    1997-01-01

    In this work a computer code structure for Fire Protection Measures (FPM) and Fire Fighting Capability (FFC) at Nuclear Power Plants (NPP) is presented. It allows to evaluate the category (satisfactory (s), needs for further evaluation (n), unsatisfactory (u)) to which belongs the given NPP for a self-control in view of an IAEA inspection. This possibility of a self assessment resulted from IAEA documents. Our approach is based on international experience gained in this field and stated in IAEA recommendations. As an illustration we used the FORTRAN programming language statement to make clear the structure of the computer code for the problem taken into account. This computer programme can be conceived so that some literal message in English and Romanian languages be displayed beside the percentage assessments. (author)

  11. New capability for ozone dial profiling measurements in the troposphere and lower stratosphere from aircraft

    Directory of Open Access Journals (Sweden)

    Hair Johnathan

    2018-01-01

    Full Text Available Recently, we successfully demonstrated a new compact and robust ozone DIAL lidar for smaller aircraft such as the NASA B200 and the ER-2 high-altitude aircraft. This is the first NASA airborne lidar to incorporate advanced solid-state lasers to produce the required power at the required ultraviolet wavelengths, and is compact and robust enough to operate nearly autonomously on the high-altitude ER-2 aircraft. This technology development resulted in the first new NASA airborne ozone DIAL instrument in more than 15 years. The combined ozone, aerosol, and clouds measurements provide valuable information on the chemistry, radiation, and dynamics of the atmosphere. In particular, from the ER-2 it offers a unique capability to study the upper troposphere and lower stratosphere.

  12. Empirical study on the feasibility of measures for public self-protection capability enhancement

    International Nuclear Information System (INIS)

    Goersch, Henning G.; Werner, Ute

    2011-01-01

    The empirical study on the feasibility of measures for public self-protection capability enhancement covers the following issues with several sections: (1) Introduction: scope of the study; structure of the study. (2) Issue coherence: self-protection; reduction and prevention of damage by personal emergency preparedness, personal emergency preparedness in Germany. (3) Solution coherence: scientific approaches, development of practical problem solution approaches, proposal of a promotion system. (4) Empirical studies: Promotion system evaluation by experts; questioning of the public; Delphi-study on minimum standards in emergency preparedness; local networks in emergency preparedness. (5) Evaluation of models for personal emergency preparedness (M3P). (6) Integration of all research results into the approach of emergency preparedness: scope; recommendations, conclusions.

  13. Metrology for Chemical Engineers

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Hansen, Elo Harald

    2001-01-01

    The first full-semester course on Quality Assurance in Chemical Measurement was held at the Technical University of Denmark from September to December 1999. The course required sufficient knowledge of basic statistics to understand and apply the methods recommended in ISO 5725-1/6 Accuracy of Mea...

  14. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  15. At-wavelength Optical Metrology Development at the ALS

    International Nuclear Information System (INIS)

    Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Smith, Brian V.; Domning, Edward E.; McKinney, Wayne R.; Warwick, Tony

    2010-01-01

    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application.

  16. World wide matching of registration metrology tools of various generations

    Science.gov (United States)

    Laske, F.; Pudnos, A.; Mackey, L.; Tran, P.; Higuchi, M.; Enkrich, C.; Roeth, K.-D.; Schmidt, K.-H.; Adam, D.; Bender, J.

    2008-10-01

    Turn around time/cycle time is a key success criterion in the semiconductor photomask business. Therefore, global mask suppliers typically allocate work loads based on fab capability and utilization capacity. From a logistical point of view, the manufacturing location of a photomask should be transparent to the customer (mask user). Matching capability of production equipment and especially metrology tools is considered a key enabler to guarantee cross site manufacturing flexibility. Toppan, with manufacturing sites in eight countries worldwide, has an on-going program to match the registration metrology systems of all its production sites. This allows for manufacturing flexibility and risk mitigation.In cooperation with Vistec Semiconductor Systems, Toppan has recently completed a program to match the Vistec LMS IPRO systems at all production sites worldwide. Vistec has developed a new software feature which allows for significantly improved matching of LMS IPRO(x) registration metrology tools of various generations. We will report on the results of the global matching campaign of several of the leading Toppan sites.

  17. Metrological inspection of ionization chamber radioactivity meters used in nuclear medicine

    International Nuclear Information System (INIS)

    Szoerenyi, A.; Vagvoelgyi, J.

    1983-01-01

    According to the Hungarian legislation on legal metrology, any measurement involving legal effects (e.g. measurements in nuclear medicine) can only be performed by calibrated measuring instruments. The paper outlines the method and results of calibration for 125 I and 131 I radionuclide standard references used in Hungarian nuclear medical practice. The experiences proved that the radionuclide standards, similarly to radiation dosemeters, should be submitted for metrological inspection. (author)

  18. Advanced applications of scatterometry based optical metrology

    Science.gov (United States)

    Dixit, Dhairya; Keller, Nick; Kagalwala, Taher; Recchia, Fiona; Lifshitz, Yevgeny; Elia, Alexander; Todi, Vinit; Fronheiser, Jody; Vaid, Alok

    2017-03-01

    The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, and lower cost per transistor. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require continuous development of metrology tools used for characterization of these complex 3D device architectures. Optical scatterometry or optical critical dimension (OCD) is one of the most prevalent inline metrology techniques in semiconductor manufacturing because it is a quick, precise and non-destructive metrology technique. However, at present OCD is predominantly used to measure the feature dimensions such as line-width, height, side-wall angle, etc. of the patterned nano structures. Use of optical scatterometry for characterizing defects such as pitch-walking, overlay, line edge roughness, etc. is fairly limited. Inspection of process induced abnormalities is a fundamental part of process yield improvement. It provides process engineers with important information about process errors, and consequently helps optimize materials and process parameters. Scatterometry is an averaging technique and extending it to measure the position of local process induced defectivity and feature-to-feature variation is extremely challenging. This report is an overview of applications and benefits of using optical scatterometry for characterizing defects such as pitch-walking, overlay and fin bending for advanced technology nodes beyond 7nm. Currently, the optical scatterometry is based on conventional spectroscopic ellipsometry and spectroscopic reflectometry measurements, but generalized ellipsometry or Mueller matrix spectroscopic ellipsometry data provides important, additional information about complex structures that exhibit anisotropy and depolarization effects. In addition the symmetry-antisymmetry properties associated with Mueller matrix (MM) elements

  19. The metrology of time.

    Science.gov (United States)

    Arias, Elisa Felicitas

    2005-09-15

    Measuring time is a continuous activity, an international and restless enterprise hidden in time laboratories spread all over the planet. The Bureau International des Poids et Mesures is charged with coordinating activities for international timekeeping and it makes use of the world's capacity to produce a remarkably stable and accurate reference time-scale. Commercial atomic clocks beating the second in national laboratories can reach a stability of one part in 10(14) over a 5 day averaging time, compelling us to research the most highly performing methods of remote clock comparison. The unit of the international time-scale is the second of the International System of Units, realized with an uncertainty of the order 10(-15) by caesium fountains. Physicists in a few time laboratories are making efforts to gain one order of magnitude in the uncertainty of the realization of the second, and more refined techniques of time and frequency transfer are in development to accompany this progress. Femtosecond comb technology will most probably contribute in the near future to enhance the definition of the second with the incorporation of optical clocks. We will explain the evolution of the measuring of time, current state-of-the-art measures and future challenges.

  20. X-ray metrology for ULSI structures

    International Nuclear Information System (INIS)

    Bowen, D. K.; Matney, K. M.; Wormington, M.

    1998-01-01

    Non-destructive X-ray metrological methods are discussed for application to both process development and process control of ULSI structures. X-ray methods can (a) detect the unacceptable levels of internal defects generated by RTA processes in large wafers, (b) accurately measure the thickness and roughness of layers between 1 and 1000 nm thick and (c) can monitor parameters such as crystallographic texture and the roughness of buried interfaces. In this paper we review transmission X-ray topography, thin film texture measurement, grazing-incidence X-ray reflectivity and high-resolution X-ray diffraction. We discuss in particular their suitability as on-line sensors for process control

  1. Enabling Quantitative Optical Imaging for In-die-capable Critical Dimension Targets

    Science.gov (United States)

    Barnes, B.M.; Henn, M.-A.; Sohn, M. Y.; Zhou, H.; Silver, R. M.

    2017-01-01

    Dimensional scaling trends will eventually bring semiconductor critical dimensions (CDs) down to only a few atoms in width. New optical techniques are required to address the measurement and variability for these CDs using sufficiently small in-die metrology targets. Recently, Qin et al. [Light Sci Appl, 5, e16038 (2016)] demonstrated quantitative model-based measurements of finite sets of lines with features as small as 16 nm using 450 nm wavelength light. This paper uses simulation studies, augmented with experiments at 193 nm wavelength, to adapt and optimize the finite sets of features that work as in-die-capable metrology targets with minimal increases in parametric uncertainty. A finite element based solver for time-harmonic Maxwell's equations yields two- and three-dimensional simulations of the electromagnetic scattering for optimizing the design of such targets as functions of reduced line lengths, fewer number of lines, fewer focal positions, smaller critical dimensions, and shorter illumination wavelength. Metrology targets that exceeded performance requirements are as short as 3 μm for 193 nm light, feature as few as eight lines, and are extensible to sub-10 nm CDs. Target areas measured at 193 nm can be fifteen times smaller in area than current state-of-the-art scatterometry targets described in the literature. This new methodology is demonstrated to be a promising alternative for optical model-based in-die CD metrology. PMID:28757674

  2. Enhacement of intrafield overlay using a design based metrology system

    Science.gov (United States)

    Jo, Gyoyeon; Ji, Sunkeun; Kim, Shinyoung; Kang, Hyunwoo; Park, Minwoo; Kim, Sangwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Maruyama, Kotaro; Park, Byungjun

    2016-03-01

    As the scales of the semiconductor devices continue to shrink, accurate measurement and control of the overlay have been emphasized for securing more overlay margin. Conventional overlay analysis methods are based on the optical measurement of the overlay mark. However, the overlay data obtained from these optical methods cannot represent the exact misregistration between two layers at the circuit level. The overlay mismatch may arise from the size or pitch difference between the overlay mark and the real pattern. Pattern distortion, caused by CMP or etching, could be a source of the overlay mismatch as well. Another issue is the overlay variation in the real circuit pattern which varies depending on its location. The optical overlay measurement methods, such as IBO and DBO that use overlay mark on the scribeline, are not capable of defining the exact overlay values of the real circuit. Therefore, the overlay values of the real circuit need to be extracted to integrate the semiconductor device properly. The circuit level overlay measurement using CDSEM is time-consuming in extracting enough data to indicate overall trend of the chip. However DBM tool is able to derive sufficient data to display overlay tendency of the real circuit region with high repeatability. An E-beam based DBM(Design Based Metrology) tool can be an alternative overlay measurement method. In this paper, we are going to certify that the overlay values extracted from optical measurement cannot represent the circuit level overlay values. We will also demonstrate the possibility to correct misregistration between two layers using the overlay data obtained from the DBM system.

  3. A method for standardizing the metrological unit of α-track

    International Nuclear Information System (INIS)

    Liang Xingzhong; Li Qingyang; Li Dianshu

    1989-01-01

    The conversion from the specialized unit of α-track into the legal metrological unit is described. A circulative method for measuring the transform coefficient is discussed. An experiment about the transform coefficient on a uranium deposit has made

  4. Metrology with synchrotron radiation. A short introduction; Metrologie mit Synchrotronstrahlung. Eine kurze Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Mathias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Fachbereich ' Radiometrie mit Synchrotronstrahlung' ; Ulm, Gerhard

    2014-09-15

    The beam tubes and measuring places at the Metrology Light Source and BESSY II are listed together with their monochromator types, spectral ranges, spectral resolution powers, photon fluxes, beam sizes, and divergences. (HSI)

  5. Measurements and Factors That Influence the Carbon Capability of Urban Residents in China

    Directory of Open Access Journals (Sweden)

    Qianwen Li

    2018-04-01

    Full Text Available Due to the rapid growth in residential energy consumption, there is an urgent need to reduce carbon emissions from the consumer side, which requires improvements in the carbon capability of urban residents. In this study, previous investigations of carbon capability were analyzed and classified into four dimensions: carbon knowledge capability, carbon motivation capability, carbon behavior capability, and carbon management capability. According to grounded theory, a quantitative research model was constructed of the carbon capability of urban residents in Jiangsu, which was used to conduct a questionnaire survey. SPSS 19.0 and LatentGOLD were employed to process the questionnaire data and the carbon capability of the residents was evaluated. The results showed that the residents of Jiangsu Province could be divided into six groups based on their different carbon capabilities, where these six major groups accounted for 28.19%, 21.21%, 18.33%, 15.84%, 9.88%, and 6.55% of the total sample. Gender, age, occupation, and educational level had significant effects on the carbon capabilities of residents, whereas the annual household income and household population had no significant effects. According to the characteristics of each cluster based on the four carbon capability dimensions, the six clusters were designated as “balanced steady cluster”, “self-restraint cluster”, “fully backward cluster”, “comprehensive leading cluster”, “slightly cognitive cluster”, and “restrain others cluster”. Quantitative analysis showed that 61.93% of the residents of Jiangsu reached the qualified rate for the carbon capability but the excellent rate was only 15.84%. Relevant policy implications are suggested based on these conclusions.

  6. Primary calibration in acoustics metrology

    International Nuclear Information System (INIS)

    Milhomem, T A Bacelar; Soares, Z M Defilippo

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field

  7. Three-lambda metrology

    Science.gov (United States)

    Pfoertner, Andreas; Schwider, Johannes

    2002-06-01

    The state-of-the-art technique for measuring discontinuous surface profiles, e.g. diffractive optical elements (DOE) is white-light interferometry. Compared to single wavelength phase-shifting interferometry conventional white-light-interferometry is rather slow, because the number of frames to be evaluated is about ten times greater than in phase-shifting-interferometry. Therefore white-light-interferometry needs more memory capacity and computer time. Single wavelength phase-shifting interferometry cannot be used for the mentioned task since the order of the interference fringes cannot be determined. But if three wavelengths, e.g. a red, a green, and a blue one are used which preferably have no common factor it is possible to determine the interference order of the fringes or the absolute optical path difference (OPD) of the interferometer. The interference patterns are simultaneously recorded by a color CCD-camera having 3 separate chips. The OPD is calculated for each pixel from the three phase values mod 2π . The algorithms used and experimental results will be presented.

  8. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Science.gov (United States)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  9. Opportunities and Risks in Semiconductor Metrology

    Science.gov (United States)

    Borden, Peter

    2005-09-01

    New metrology opportunities are constantly emerging as the semiconductor industry attempts to meet scaling requirements. The paper summarizes some of the key FEOL and BEOL needs. These must be weighed against a number of considerations to ensure that they are good opportunities for the metrology equipment supplier. The paper discusses some of these considerations.

  10. Laboratorio de Metrología - LABM

    OpenAIRE

    Jaramillo Ch., Zaira J.

    2011-01-01

    esos y transacciones de forma transparente y justa para todas las partes involucradas. Una herramienta necesaria para este propósito es la Metrología, ciencia que es utilizada en el Laboratorio de Metrología (LABM) del Centro Experimenta

  11. Emerging technology for astronomical optics metrology

    Science.gov (United States)

    Trumper, Isaac; Jannuzi, Buell T.; Kim, Dae Wook

    2018-05-01

    Next generation astronomical optics will enable science discoveries across all fields and impact the way we perceive the Universe in which we live. To build these systems, optical metrology tools have been developed that push the boundary of what is possible. We present a summary of a few key metrology technologies that we believe are critical for the coming generation of optical surfaces.

  12. Opportunities for scientists to influence policy: When does radiation metrology matter in development of national policy?

    International Nuclear Information System (INIS)

    Coursey, Bert M.

    2014-01-01

    Accurate measurements of radiation and radioactivity rarely rise to the level of national policy. The things that matter most to ordinary citizens do not normally include questions of science and technology. Citizens are more often concerned with issues close to home relating to commerce, health, safety, security and the environment. When questions of confidence in measurements arise, they are first directed to the ministry that has responsibilities in that area. When the required uncertainty in field measurements challenges the capability of the regulatory authorities, the National Metrology Institute may be asked to develop transfer standards to enhance the capabilities of the ministry with the mission lead. In this paper, we will consider eight instances over the past nine decades in which questions in radiation and radionuclide metrology in the US did rise to the level that they influenced decisions on national policy. These eight examples share some common threads. Radioactivity and ionizing radiation are useful tools in many disciplines, but can often represent potential or perceived threats to health and public safety. When unforeseen applications of radiation arise, or when environmental radioactivity from natural and man-made sources presents a possible health hazard, the radiation metrologists may be called upon to provide the technical underpinning for policy development. - Highlights: • We review instances in which accurate measurements of radiation influence policy. • Heads of state rely on senior science advisors to frame policy decisions. • Metrologists support federal agencies that have mission leads in different fields. • Metrologists are called on when other agencies lack requisite expertise. • Radionuclide metrologists must recognize and accept challenges

  13. Ionising radiation metrology for the metallurgical industry

    Directory of Open Access Journals (Sweden)

    García-Toraño E.

    2014-01-01

    Full Text Available Every year millions tons of steel are produced worldwide from recycled scrap loads. Although the detection systems in the steelworks prevent most orphan radioactive sources from entering the furnace, there is still the possibility of accidentally melting a radioactive source. The MetroMetal project, carried out in the frame of the European Metrology Research Programme (EMRP, addresses this problem by studying the existing measurement systems, developing sets of reference sources in various matrices (cast steel, slag, fume dust and proposing new detection instruments. This paper presents the key lines of the project and describes the preparation of radioactive sources as well as the intercomparison exercises used to test the calibration and correction methods proposed within the project.

  14. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    nuclear magnetic field control, as well as new techniques for calibrated measurement of the density matrix in a singlet-triplet qubit to entangle two adjacent single-triplet qubits. We fully characterize the generated entangled states and prove that they are, indeed, entangled. This work opens new opportunities to use qubits as sensors for improved metrological capabilities, as well as for improved quantum information processing. The singlet-triplet qubit is unique in that it can be used to probe two fundamentally different noise baths, which are important for a large variety of solid state qubits. More specifically, this work establishes the singlet-triplet qubit as a viable candidate for the building block of a scalable quantum information processor.

  15. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    Directory of Open Access Journals (Sweden)

    Eliades J.

    2012-04-01

    Full Text Available Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS, and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2, which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing the range of analysable elements, in many cases by selection of a molecular form with a particular number of fluorine atoms, some isobar discrimination can be obtained. The second technique, for the significant reduction of atomic isobar interferences, is used following mass selection of the rare isotope. It consists of the deceleration, cooling and reaction of the rare mass beam with a gas, selected so that unwanted isobars are greatly attenuated in comparison with the isotope of interest. Proof of principle measurements for the analysis of 36C1 and 41Ca have provided encouraging results and work is proceeding on the integration of these techniques in a new AMS system planned for installation in late 2012 at the University of Ottawa.

  16. A three-fingered, touch-sensitive, metrological micro-robotic assembly tool

    International Nuclear Information System (INIS)

    Torralba, Marta; Hastings, D J; Thousand, Jeffery D; Nowakowski, Bartosz K; Smith, Stuart T

    2015-01-01

    This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere

  17. Experimental Demonstration of Higher Precision Weak-Value-Based Metrology Using Power Recycling

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Hu, Gang; Wang, Jian; Yu, Shang; Zhou, Zong-Quan; Cheng, Ze-Di; Xu, Jin-Shi; Fang, Sen-Zhi; Wu, Qing-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2016-12-01

    The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.

  18. Applications of surface metrology in firearm identification

    International Nuclear Information System (INIS)

    Zheng, X; Soons, J; Vorburger, T V; Song, J; Renegar, T; Thompson, R

    2014-01-01

    Surface metrology is commonly used to characterize functional engineering surfaces. The technologies developed offer opportunities to improve forensic toolmark identification. Toolmarks are created when a hard surface, the tool, comes into contact with a softer surface and causes plastic deformation. Toolmarks are commonly found on fired bullets and cartridge cases. Trained firearms examiners use these toolmarks to link an evidence bullet or cartridge case to a specific firearm, which can lead to a criminal conviction. Currently, identification is typically based on qualitative visual comparison by a trained examiner using a comparison microscope. In 2009, a report by the National Academies called this method into question. Amongst other issues, they questioned the objectivity of visual toolmark identification by firearms examiners. The National Academies recommended the development of objective toolmark identification criteria and confidence limits. The National Institute of Standards and Technology (NIST) have applied its experience in surface metrology to develop objective identification criteria, measurement methods, and reference artefacts for toolmark identification. NIST developed the Standard Reference Material SRM 2460 standard bullet and SRM 2461 standard cartridge case to facilitate quality control and traceability of identifications performed in crime laboratories. Objectivity is improved through measurement of surface topography and application of unambiguous surface similarity metrics, such as the maximum value (ACCF MAX ) of the areal cross correlation function. Case studies were performed on consecutively manufactured tools, such as gun barrels and breech faces, to demonstrate that, even in this worst case scenario, all the tested tools imparted unique surface topographies that were identifiable. These studies provide scientific support for toolmark evidence admissibility in criminal court cases. (paper)

  19. BATING A REFERENCE INSTALLATION BASED ON CONTROLLED-POTENTIAL COULOMETRY METOD IN THE FRAME OF IMPROVING THE STATE PRIMARY STANDARD GET 176 AND ITS MEASUREMENT CAPABILITIES

    Directory of Open Access Journals (Sweden)

    V. M. Zyskin

    2016-01-01

    Full Text Available The results of developing of reference installation, based on a controlled-potential coulometry, in the frame of improving the State primary standard of the units of mass (molar fraction and mass (molar concentration of a component in the liquid and solid substances and materials GET 176 are presented. The physical principles of controlled-potential coulometry, content and metrological characteristics of the developed installation are considered. Measurement results of copper, iron and lead contents in the certified reference materials of metals' solutions and CRM of brass produced by BAM, Germany, obtained using reference installation are given.

  20. Overlay improvement methods with diffraction based overlay and integrated metrology

    Science.gov (United States)

    Nam, Young-Sun; Kim, Sunny; Shin, Ju Hee; Choi, Young Sin; Yun, Sang Ho; Kim, Young Hoon; Shin, Si Woo; Kong, Jeong Heung; Kang, Young Seog; Ha, Hun Hwan

    2015-03-01

    To accord with new requirement of securing more overlay margin, not only the optical overlay measurement is faced with the technical limitations to represent cell pattern's behavior, but also the larger measurement samples are inevitable for minimizing statistical errors and better estimation of circumstance in a lot. From these reasons, diffraction based overlay (DBO) and integrated metrology (IM) were mainly proposed as new approaches for overlay enhancement in this paper.

  1. Comparison of two metrological approaches for the prediction of human haptic perception

    Science.gov (United States)

    Neumann, Annika; Frank, Daniel; Vondenhoff, Thomas; Schmitt, Robert

    2016-06-01

    Haptic perception is regarded as a key component of customer appreciation and acceptance for various products. The prediction of customers’ haptic perception is of interest both during product development and production phases. This paper presents the results of a multivariate analysis between perceived roughness and texture related surface measurements, to examine whether perceived roughness can be accurately predicted using technical measurements. Studies have shown that standardized measurement parameters, such as the roughness coefficients (e.g. Rz or Ra), do not show a one-dimensional linear correlation with the human perception (of roughness). Thus, an alternative measurement method was compared to standard measurements of roughness, in regard to its capability of predicting perceived roughness through technical measurements. To estimate perceived roughness, an experimental study was conducted in which 102 subjects evaluated four sets of 12 different geometrical surface structures regarding their relative perceived roughness. The two different metrological procedures were examined in relation to their capability to predict the perceived roughness of the subjects stated within the study. The standardized measurements of the surface roughness were made using a structured light 3D-scanner. As an alternative method, surface induced vibrations were measured by a finger-like sensor during robot-controlled traverse over a surface. The presented findings provide a better understanding of the predictability of human haptic perception using technical measurements.

  2. Investigating the effects of intellectual capital on organizational performance measurement through organizational learning capabilities

    Directory of Open Access Journals (Sweden)

    Nabi ollah Nejatizadeh

    2013-01-01

    Full Text Available During the past few years, there have been growing interests on intellectual capital due to industrial changes on the market. Thus, identifying different ways to create, manage, and evaluate the impact of intellectual capital has remained an open area of research. One of the most important organizational capabilities, which could help organizations create and share knowledge is to effectively use knowledge to create competitive advantage. The primary objective of this study is to investigate the effects of intellectual capital on other components and their impacts on organizational learning capability. The statistical population includes 500 employees of an Iranian organization. The study uses a sample size including 273 people using Morgan statistical table and Cronbach's alpha is calculated as 0.838. The results of this survey indicate that human capital, relational capital and learning capabilities have positive impact on organizational performance. In addition, relational capital positively impacts learning capability and human capital influences positively on relational capital.

  3. Future metrology needs for FEL reflective optics

    International Nuclear Information System (INIS)

    Assoufid, L.

    2000-01-01

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed

  4. Future metrology needs for FEL reflective optics.

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  5. Measuring the Amount of Effects of Capability Approach on Developing E-government

    Directory of Open Access Journals (Sweden)

    behroz Zarei

    2013-07-01

    Full Text Available In capability approach (C.A., the concepts of developed and undeveloped and their realization instruments are different from other common approaches. Just those who are provided with personal capabilities and environmental conditions can be the messengers of development. In this approach background of our country in planning is ignored and resolved the challenges of development in e- government.  So at first, main challenges in developing e-government are identified, then models of C.A. and factors affecting it are extracted and classified. Next, the amount of effects of human capabilities on different challenges of e-government is surveyed based on QFD and ranked regarding Shannon Entropy. The results showed in e-government developing, considering the capabilities of people along with different ideas of the government can be influential. The important capabilities are as follows: the ability to create a democratic, free environment in the information community, accessing to this information, the ability to learn the electronic knowledge and the ability to offer services with electronic quality and the ability to preserve one’s rights in an electronic environment.

  6. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  7. A universal quantum module for quantum communication, computation, and metrology

    Science.gov (United States)

    Hanks, Michael; Lo Piparo, Nicolò; Trupke, Michael; Schmiedmayer, Jorg; Munro, William J.; Nemoto, Kae

    2017-08-01

    In this work, we describe a simple module that could be ubiquitous for quantum information based applications. The basic modules comprises a single NV- center in diamond embedded in an optical cavity, where the cavity mediates interactions between photons and the electron spin (enabling entanglement distribution and efficient readout), while the nuclear spins constitutes a long-lived quantum memories capable of storing and processing quantum information. We discuss how a network of connected modules can be used for distributed metrology, communication and computation applications. Finally, we investigate the possible use of alternative diamond centers (SiV/GeV) within the module and illustrate potential advantages.

  8. In-line CD metrology with combined use of scatterometry and CD-SEM

    Science.gov (United States)

    Asano, Masafumi; Ikeda, Takahiro; Koike, Toru; Abe, Hideaki

    2006-03-01

    Measurement characteristics in scatterometry and CD-SEM for lot acceptance sampling of inline critical dimension (CD) metrology were investigated by using a statistical approach with Monte Carlo simulation. By operation characteristics curve analysis, producer's risk and consumer's risk arising from sampling were clarified. Single use of scatterometry involves a higher risk, such risk being particularly acute in the case of large intra-chip CD variation because it is unable to sufficiently monitor intra-chip CD variation including local CD error. Substituting scatterometry for conventional SEM metrology is accompanied with risks, resulting in the increase of unnecessary cost. The combined use of scatterometry and SEM metrology in which the sampling plan for SEM is controlled by scatterometry is a promising metrology from the viewpoint of the suppression of risks and cost. This is due to the effect that CD errors existing in the distribution tails are efficiently caught.

  9. Metrological management evaluation based on ISO10012: an empirical study in ISO-14001-certified Spanish companies

    International Nuclear Information System (INIS)

    Beltran, Jaime; Rivas, Miguel; Munuzuri, Jesus; Gonzalez, Cristina

    2010-01-01

    Environmental management systems based on the ISO 14001 standard rely strongly on metrological measurement and confirmation processes to certify the extent to which organizations monitor and improve their environmental behavior. Nevertheless, the literature lacks in studies that assess the influence of these metrological processes on the performance of environmental management in organizations, even now that the international standard ISO 10012 is already available to establish requisites and guidelines for the development of a metrological management system that is compatible with any other standardized management system. This work seeks to assess that influence through the development of an evaluation model for metrological management, which is then validated through an experimental analysis of the results obtained from the application of an audit process in 11 Spanish companies, all ISO-14001-certified and operating in different industrial sectors. (author)

  10. Material synthesis and evaluation of metrological characteristics of potassium fluozirconate certified reference material

    Directory of Open Access Journals (Sweden)

    D. G. Lisienko

    2016-01-01

    Full Text Available The relevance of the study. For metrological support of control methods for composition ofpotassium fluozirconate, used in the production of metallic zirconium, applied in various technical fields, including nuclear power, electronics, chemical engineering. The purpose: development of synthesis technology, and determination of metrological characteristics of certified reference material for composition ofpotassium fluozirconate (set, intended for metrological support of measuring element mass fraction: hafnium (Hf, silicon (Si, iron (Fe, aluminium (Al, chromium (Cr, tin (Sn, titanium (Ti in potassium fluozirconate. Research methods: X-ray diffraction, differential scanning colorimetry, thermogravimetric analysis, atomic-emission spectral analysis with arc excitation, mass spectral analysis, X-ray fluorescence analysis. Results. As a result of research a set of certified reference materials for composition of potassium fluozirconate is developed and produced. The CRM type is approved by Federal Agency on Technical Regulating and Metrology and registered in State Register of Approved Reference Material Types under number GSO 10593-2015.

  11. Adaptation Measurement of CAD/CAM Dental Crowns with X-Ray Micro-CT: Metrological Chain Standardization and 3D Gap Size Distribution

    Directory of Open Access Journals (Sweden)

    L. Tapie

    2016-01-01

    Full Text Available Computer-Aided Design and Manufacturing systems are increasingly used to produce dental prostheses, but the parts produced suffer from a lack of evaluation, especially concerning the internal gap of the final assembly, that is, the space between the prepared tooth and the prosthesis. X-ray micro-Computed Tomography (micro-CT is a noninvasive imaging technique enabling the internal inspection of the assembly. It has proved to be an efficient tool for measuring the gap. In this study, a critical review of the protocols using micro-CT to quantify the gap is proposed as an introduction to a new protocol aimed at minimizing errors and enabling comparison between CAD/CAM systems. To compare different systems, a standardized protocol is proposed including two reference geometries. Micro-CT is used to acquire the reference geometries. A new 3D method is then proposed and a new indicator is defined (Gap Size Distribution (GSD. In addition, the usual 2D measurements are described and discussed. The 3D gap measurement method proposed can be used in clinical case geometries and has the considerable advantage of minimizing the data processing steps before performing the measurements.

  12. Designing and Validating a Model for Measuring Sustainability of Overall Innovation Capability of Small and Medium-Sized Enterprises

    Directory of Open Access Journals (Sweden)

    Mohd Nizam Ab Rahman

    2015-01-01

    Full Text Available The business environment is currently characterized by intensified competition at both the national and firm levels. Many studies have shown that innovation positively affect firms in enhancing their competitiveness. Innovation is a dynamic process that requires a continuous, evolving, and mastered management. Evaluating the sustainability of overall innovation capability of a business is a major means of determining how well this firm effectively and efficiently manages its innovation process. A psychometrically valid scale of evaluating the sustainability of overall innovation capability of a firm is still insufficient in the current innovation literature. Thus, this study developed a reliable and valid scale of measuring the sustainability of overall innovation capability construct. The unidimensionality, reliability, and several validity components of the developed scale were tested using the data collected from 175 small and medium-sized enterprises in Iran. A series of systematic statistical analyses were performed. Results of the reliability measures, exploratory and confirmatory factor analyses, and several components of validity tests strongly supported an eight-dimensional (8D scale of measuring the sustainability of overall innovation capability construct. The dimensions of the scale were strategic management, supportive culture and structure, resource allocation, communication and networking, knowledge and technology management, idea management, project development, and commercialization capabilities.

  13. Development of the metrology and imaging of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Postek, Michael T; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J; Sabo, Ronald; Wegner, Theodore H; Beecher, James

    2011-01-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs

  14. Development of the metrology and imaging of cellulose nanocrystals

    Science.gov (United States)

    Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2011-02-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.

  15. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  16. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  17. Metrology for industrial quantum communications: the MIQC project

    Science.gov (United States)

    Rastello, M. L.; Degiovanni, I. P.; Sinclair, A. G.; Kück, S.; Chunnilall, C. J.; Porrovecchio, G.; Smid, M.; Manoocheri, F.; Ikonen, E.; Kubarsepp, T.; Stucki, D.; Hong, K. S.; Kim, S. K.; Tosi, A.; Brida, G.; Meda, A.; Piacentini, F.; Traina, P.; Natsheh, A. Al; Cheung, J. Y.; Müller, I.; Klein, R.; Vaigu, A.

    2014-12-01

    The ‘Metrology for Industrial Quantum Communication Technologies’ project (MIQC) is a metrology framework that fosters development and market take-up of quantum communication technologies and is aimed at achieving maximum impact for the European industry in this area. MIQC is focused on quantum key distribution (QKD) technologies, the most advanced quantum-based technology towards practical application. QKD is a way of sending cryptographic keys with absolute security. It does this by exploiting the ability to encode in a photon's degree of freedom specific quantum states that are noticeably disturbed if an eavesdropper trying to decode it is present in the communication channel. The MIQC project has started the development of independent measurement standards and definitions for the optical components of QKD system, since one of the perceived barriers to QKD market success is the lack of standardization and quality assurance.

  18. Slovak Institute of Metrology. Annual Report 2001

    International Nuclear Information System (INIS)

    Bily, M.

    2002-03-01

    A brief account of activities carried out by the Slovak Institute of Metrology (SMU) in 2001 is presented. These activities are reported under the headings: (1) Organisation identification; (2) Mission and medium-term perspectives; (3) Contract with Slovak Office of Standards, Metrology and Testing of the Slovak Republic; (4) SMU activities ; (5) Economic results; (6) Personnel management; (7) Aims and results of their fulfilment; (8) Evaluation and analysis of SMU development in 2001; (9) Main group of outputs users; (10) Conclusion

  19. Improving automated 3D reconstruction methods via vision metrology

    Science.gov (United States)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  20. Advanced overlay analysis through design based metrology

    Science.gov (United States)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  1. Scientific language and metrology; El lenguaje cientificio y la metrologia

    Energy Technology Data Exchange (ETDEWEB)

    Campo Maldonado, D. del; Martin Blasco, B.; Prieto Esteban, E.

    2011-07-01

    The International System of Units (SI) reflects all the decisions and recommendations regarding units of measurement issued by the General Conference on Weights and Measures, including rules for writing the names and symbols of measurement units and for expressing the values of quantities. Even though the SI is internationally accepted and is the declared legal system whose use is obligatory in Spain, the Spanish Metrology Centre has been detecting an incorrect use of the units of measurement both in textbooks at all levels and in scientific articles. (Author) 5 refs.

  2. Precision metrology of NSTX surfaces using coherent laser radar ranging

    International Nuclear Information System (INIS)

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  3. The Quality Control of Reference Standards in Metrology Dosimetry

    International Nuclear Information System (INIS)

    Lazarevic, Dj.; Ciraj Bjelac, O.; Kovacevic, M.; Vukcevic, M.

    2008-01-01

    This works presents the quality control tests applied to two types of ionization chambers with suitable electrometers. Measuring assemblies were tested in order to assess their performance and adequacy for use as reference standards in ionising radiation metrology laboratory for calibrations in the field of radiotherapy and radiation protection. Two types of ionizing chambers (Farmer type, 0.6 cm 3 and spherical ionizing chamber, 1 l) with suitable electrometers were tested. Following test were performed: repeatability, long term stability, polarity and leakage current measurement. All tested measuring assemblies demonstrated proper performance, correctness and high reliance of measurements, since all implemented quality control test results were within acceptable limits. (author)

  4. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  5. A laser metrology/viewing system for ITER in-vessel inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Herndon, J.N.; Menon, M.M.; Slotwinski, A.; Dagher, M.A.; Yuen, J.L.

    1998-01-01

    This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision surface mapping system. A metrology system capable of achieving sub-millimeter accuracy must operate in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser optics module linked through fiber optics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic-mast. Gamma irradiation to 10 7 Gy was conducted on critical sensor components at Oak Ridge National Laboratory, with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway. (orig.)

  6. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts’s-Law-Inspired Approach

    OpenAIRE

    C. S. George Lee; Hsien-I Lin

    2013-01-01

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp ) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an...

  7. Procedure and reference standard to determine the structural resolution in coordinate metrology

    Science.gov (United States)

    Illemann, Jens; Bartscher, Markus; Jusko, Otto; Härtig, Frank; Neuschaefer-Rube, Ulrich; Wendt, Klaus

    2014-06-01

    A new procedure and reference standards for specifying the structural resolution in coordinate metrology traceable to the SI unit the metre are proposed. With the definition of the structural resolution, a significant gap will be closed to complete ‘acceptance and verification tests’ of the coordinate measuring systems (CMSs) which are specified in the ISO 10360 series dealing with tactile sensors, optical sensors, and x-ray computed tomography measurement systems (CTs). The proposed new procedure uses reference standards with circular rounded edges. The idea is to measure the radius of curvature on a calibrated round edge structure. From the deviation between the measured and the calibrated radius, an analogue Gaussian broadening of the measurement system is determined. This value is a well-defined and easy-to-apply measure to define the structural resolution for dimensional measurements. It is applicable to CMSs which are based on different sensing principles, e.g. tactile, optical and CT systems. On the other hand, it has a physical meaning similar to the classical optical point-spread function. It makes it possible to predict which smallest details the CMS is capable of measuring reliably for an arbitrary object shape. The theoretical background of the new procedure is given, an appropriate reference standard is described and comparative, quantitative measurement data of CMSs featuring different sensors are shown.

  8. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  9. TSOM Method for Nanoelectronics Dimensional Metrology

    International Nuclear Information System (INIS)

    Attota, Ravikiran

    2011-01-01

    Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method--such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.

  10. The Remarkable Metrological History of Radiocarbon Dating [II].

    Science.gov (United States)

    Currie, Lloyd A

    2004-01-01

    This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought (14)C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for "molecular dating" at the 10 µg to 100 µg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the "bomb effect," that gave rise to new multidisciplinary areas of application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthropogenic pollutants to the reconstruction of environmental history. Beyond the specific topic of natural (14)C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanticipated metrological advances in their own chosen fields, and unanticipated anthropogenic or natural chemical events in the environment, can spawn new areas of research having exciting theoretical and practical implications.

  11. Experimental realization of the quantum metrological triangle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chenaud, B; Devoille, L; Steck, B; Feltin, N; Gonzalez-Cano, A; Poirier, W; Schopfer, F; Spengler, G; Djordjevic, S; Seron, O; Piquemal, F [Laboratoire national de metrologie et d' essais (LNE), Trappes (France); Lotkhov, S [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)], E-mail: laurent.devoille@lne.fr

    2009-02-01

    The quantum metrological triangle experiment (QMTE) consists in realizing Ohm's law with Josephson (JE), quantum Hall (QHE) and single electron tunneling (SET) effects. The aim is to check the consistency of the link among the phenomenological constants K {sub J}, R{sub K} and Q {sub X} involved in these effects and theoretically expressed with the fundamental constants e and h. Such an experiment could be a contribution for a new definition of the systeme international d'unites (SI) base units. In the QMTE, a current generated by a SET device flows through a resistor calibrated against QHE standard and the voltage induced at its terminals is compared to the metrological voltage generated by a Josephson junctions array. At LNE, the studied SET devices are 3 junctions single electron pumps with on chip resistors. The quantized current generated by this pump is theoretically equal to ef (f is the frequency of the driving signals applied on the gates) and is measured through a cryogenic current comparator (CCC), which allows to amplify the low pumping current with a metrological accuracy. We will present and discuss the experimental set-up developed at LNE and the first results. In addition to the main aim of QMTE described above, these preliminary results are also a first step towards a determination of e.

  12. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandias extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  13. Dimensional quality control of Ti-Ni dental file by optical coordinate metrology and computed tomography

    DEFF Research Database (Denmark)

    Yagüe-Fabra, J.A.; Tosello, Guido; Ontiveros, S.

    2014-01-01

    Endodontic dental files usually present complex 3D geometries, which make the complete measurement of the component very challenging with conventional micro metrology tools. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactile...... techniques. However, the establishment of CT systems traceability when measuring 3D complex geometries is still an open issue. In this work, to verify the quality of the CT dimensional measurements, the dental file has been measured both with a μCT system and an optical CMM (OCMM). The uncertainty...

  14. Response distortion in personality measurement: born to deceive, yet capable of providing valid self-assessments?

    Directory of Open Access Journals (Sweden)

    STEPHAN DILCHERT

    2006-09-01

    Full Text Available This introductory article to the special issue of Psychology Science devoted to the subject of “Considering Response Distortion in Personality Measurement for Industrial, Work and Organizational Psychology Research and Practice” presents an overview of the issues of response distortion in personality measurement. It also provides a summary of the other articles published as part of this special issue addressing social desirability, impression management, self-presentation, response distortion, and faking in personality measurement in industrial, work, and organizational settings.

  15. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    CERN Document Server

    Adriani, O; Barbarino, G C; Barbier, L M; Bartalucci, S; Bazilevskaja, G; Bellotti, R; Bertazzoni, S; Bidoli, V; Boezio, M; Bogomolov, E A; Bonechi, L; Bonvicini, V; Boscherini, M; Bravar, U; Cafagna, F; Campana, D; Carlson, Per J; Casolino, M; Castellano, M; Castellini, G; Christian, E R; Ciacio, F; Circella, M; D'Alessandro, R; De Marzo, C N; De Pascale, M P; Finetti, N; Furano, G; Gabbanini, A; Galper, A M; Giglietto, N; Grandi, M; Grigorieva, A; Guarino, F; Hof, M; Koldashov, S V; Korotkov, M G; Krizmanic, J F; Krutkov, S; Lund, J; Marangelli, B; Marino, L; Menn, W; Mikhailov, V V; Mirizzi, N; Mitchell, J W; Mocchiutti, E; Moiseev, A A; Morselli, A; Mukhametshin, R; Ormes, J F; Osteria, G; Ozerov, J V; Papini, P; Pearce, M; Perego, A; Piccardi, S; Picozza, P; Ricci, M; Salsano, A; Schiavon, Paolo; Scian, G; Simon, M; Sparvoli, R; Spataro, B; Spillantini, P; Spinelli, P; Stephens, S A; Stochaj, S J; Stozhkov, Yu I; Straulino, S; Streitmatter, R E; Taccetti, F; Tesi, M; Vacchi, A; Vannuccini, E; Vasiljev, G; Vignoli, V; Voronov, S A; Yurkin, Y; Zampa, G; Zampa, N

    2002-01-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e sup +) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10 sup - sup 7 in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discus...

  16. Assessment of Performance Measures for Security of the Maritime Transportation Network, Port Security Metrics : Proposed Measurement of Deterrence Capability

    Science.gov (United States)

    2007-01-03

    This report is the thirs in a series describing the development of performance measures pertaining to the security of the maritime transportation network (port security metrics). THe development of measures to guide improvements in maritime security ...

  17. European Congress on Optics Applied to Metrology /METROP/, 2nd, Strasbourg, France, November 26-30, 1979, Proceedings

    International Nuclear Information System (INIS)

    Grosmann, M.; Meyrueis, P.

    1980-01-01

    The paper deals with speckle metrology, advances in classical optical metrology and measurement, and holographic metrology. Specific topics include hybrid holographic computer image processing, a speckle method of flow velocity measurement, the measurement of vibratory strains on turbine blades by speckle photography, the use of optical heterodyning and the Doppler effect in laser vibrometers and anemometers, subpicosecond dye lasers for optical metrology, and laser-beam scanning for remote control. Holographic interferometry of brittle materials is discussed, along with a system for the automatic analysis of holographic interferograms, the measurement of surface tension by holographic interferometry, nondestructive testing by means of holographic interferometry, real-time holographic interferometry of heat transfer at the surface of cold solar collectors, and the effective practical use of holography and related technologies in industry

  18. Instruments assessing attitudes toward or capability regarding self-management of osteoarthritis: a systematic review of measurement properties.

    Science.gov (United States)

    Eyles, J P; Hunter, D J; Meneses, S R F; Collins, N J; Dobson, F; Lucas, B R; Mills, K

    2017-08-01

    To make a recommendation on the "best" instrument to assess attitudes toward and/or capabilities regarding self-management of osteoarthritis (OA) based on available measurement property evidence. Electronic searches were performed in MEDLINE, EMBASE, CINAHL and PsychINFO (inception to 27 December 2016). Two reviewers independently rated measurement properties using the Consensus-based Standards for the selection of Health Measurement Instruments (COSMIN) 4-point scale. Best evidence synthesis was determined by considering COSMIN ratings for measurement property results and the level of evidence available for each measurement property of each instrument. Eight studies out of 5653 publications met the inclusion criteria, with eight instruments identified for evaluation: Multidimensional Health Locus of Control (MHLC), Perceived Behavioural Control (PBC), Patient Activation Measure (PAM), Educational Needs Assessment (ENAT), Stages of Change Questionnaire in Osteoarthritis (SCQOA), Effective Consumer Scale (EC-17) and Perceived Efficacy in Patient-Physician Interactions five item (PEPPI-5) and ten item scales. Measurement properties assessed for these instruments included internal consistency (k = 8), structural validity (k = 8), test-retest reliability (k = 2), measurement error (k = 1), hypothesis testing (k = 3) and cross-cultural validity (k = 3). No information was available for content validity, responsiveness or minimal important change (MIC)/minimal important difference (MID). The Dutch PEPPI-5 demonstrated the best measurement property evidence; strong evidence for internal consistency and structural validity but limited evidence for reliability and construct validity. Although PEPPI-5 was identified as having the best measurement properties, overall there is a poor level of evidence currently available concerning measurement properties of instruments to assess attitudes toward and/or capabilities regarding osteoarthritis self-management. Further

  19. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-09-01

    Full Text Available Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100: first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1 the

  20. Remote metrology system (RMS) design concept

    International Nuclear Information System (INIS)

    1995-01-01

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR's fiber optic implementation allows a 3D scanner to operate remotely from the RMS system's vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm 2 density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner

  1. Remote metrology system (RMS) design concept

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  2. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  3. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    Science.gov (United States)

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  4. Advanced Metrology for Characterization of Magnetic Tunnel Junctions

    DEFF Research Database (Denmark)

    Kjær, Daniel

    -plane tunneling (CIPT) for characterization of magnetic tunnel junctions (MTJs), which constitutes the key component not only in MRAM but also the read-heads of modern hard disk drives. MTJs are described by their tunnel magnetoresistance (TMR), which is the relative difference of the resistance area products (RA...... of this project has been to provide cheaper, faster and more precise metrology for MTJs. This goal has been achieved in part by the demonstration of a static field CIPT method, which allows us to reduce the measurement time by a factor of 5, by measuring only RA thus excluding TMR. This enhancement is obtained...

  5. Joint Research on Scatterometry and AFM Wafer Metrology

    NARCIS (Netherlands)

    Bodermann, B.; Buhr, E.; Danzebrink, H.U.; Bär, M.; Scholze, F.; Krumrey, M.; Wurm, M.; Klapetek, P.; Hansen, P.E.; Korpelainen, V.; Van Veghel, M.; Yacoot, A.; Siitonen, S.; El Gawhary, O.; Burger, S.; Saastamoinen, T.

    2011-01-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both

  6. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  7. Image-based overlay and alignment metrology through optically opaque media with sub-surface probe microscopy

    Science.gov (United States)

    van Es, Maarten H.; Mohtashami, Abbas; Piras, Daniele; Sadeghian, Hamed

    2018-03-01

    Nondestructive subsurface nanoimaging through optically opaque media is considered to be extremely challenging and is essential for several semiconductor metrology applications including overlay and alignment and buried void and defect characterization. The current key challenge in overlay and alignment is the measurement of targets that are covered by optically opaque layers. Moreover, with the device dimensions moving to the smaller nodes and the issue of the so-called loading effect causing offsets between between targets and product features, it is increasingly desirable to perform alignment and overlay on product features or so-called on-cell overlay, which requires higher lateral resolution than optical methods can provide. Our recently developed technique known as SubSurface Ultrasonic Resonance Force Microscopy (SSURFM) has shown the capability for high-resolution imaging of structures below a surface based on (visco-)elasticity of the constituent materials and as such is a promising technique to perform overlay and alignment with high resolution in upcoming production nodes. In this paper, we describe the developed SSURFM technique and the experimental results on imaging buried features through various layers and the ability to detect objects with resolution below 10 nm. In summary, the experimental results show that the SSURFM is a potential solution for on-cell overlay and alignment as well as detecting buried defects or voids and generally metrology through optically opaque layers.

  8. Drift chamber electronics with multi-hit capability for time and current division measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manarin, A; Pregernig, L; Rabany, M; Saban, R; Vismara, G

    1983-11-15

    Drift chambers have been installed for luminosity measurements in intersection 5 of the SPS accelerator working in panti p colliding mode. The required electronics is described. The system is able to process up to 16 hits per wire with a double pulse resolution of 40 ns; drift time and current division, with 1.25 ns and 1.6% resolution respectively, are recorded. Transconductance preamplifiers and discriminators are directly mounted on the chamber; 160 m of twisted-apir cable bring the signals to the digitizer unit. Coarse time is measured using RAM techniques, while fine time is obtained by means of a microstrip delay associated with a 100 K ECL priority encoder. Current division used a single 50 MHz Flash ADC which alows 26 dB dynamic range with 6 bit resolution. First operational results are reported.

  9. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  10. Is basal ultrasensitive measurement of calcitonin capable of substituting for the pentagastrin-stimulation test?

    Science.gov (United States)

    Pina, Géraldine; Dubois, Séverine; Murat, Arnaud; Berger, Nicole; Niccoli, Patricia; Peix, Jean-Louis; Cohen, Régis; Guillausseau, Claudine; Charrie, Anne; Chabre, Olivier; Cornu, Catherine; Borson-Chazot, Françoise; Rohmer, Vincent

    2013-03-01

    To evaluate a second-generation assay for basal serum calcitonin (CT) measurements compared with the pentagastrin-stimulation test for the diagnosis of inherited medullary thyroid carcinoma (MTC) and the follow-up of patients with MTC after surgery. Recent American Thyroid Association recommendations suggest the use of basal CT alone to diagnose and assess follow-up of MTC as the pentagastrin (Pg) test is unavailable in many countries. Multicentric prospective study. A total of 162 patients with basal CT basal and Pg-stimulated CT measurements using a second-generation assay with 5-ng/l functional sensitivity. Ninety-five per cent of patients with basal CT ≥ 5 ng/l and 25% of patients with basal CT stimulation test (Pg CT >10 ng/l). Compared with the reference Pg test, basal CT ≥ 5 ng/l had 99% specificity, a 95%-positive predictive value but only 35% sensitivity (P basal CT instead of the previously used 10-ng/l threshold. The ultrasensitive CT assay reduces the false-negative rate of basal CT measurements when diagnosing familial MTC and in postoperative follow-up compared with previously used assays. However, its sensitivity to detect C-cell disease remains lower than that of the Pg-stimulation test. © 2012 Blackwell Publishing Ltd.

  11. Enabling optical metrology on small 5×5μm2 in-cell targets to support flexible sampling and higher order overlay and CD control for advanced logic devices nodes

    Science.gov (United States)

    Salerno, Antonio; de la Fuente, Isabel; Hsu, Zack; Tai, Alan; Chang, Hammer; McNamara, Elliott; Cramer, Hugo; Li, Daoping

    2018-03-01

    In next generation Logic devices, overlay control requirements shrink to sub 2.5nm level on-product overlay. Historically on-product overlay has been defined by the overlay capability of after-develop in-scribe targets. However, due to design and dimension, the after development metrology targets are not completely representative for the final overlay of the device. In addition, they are confined to the scribe-lane area, which limits the sampling possibilities. To address these two issues, metrology on structures matching the device structure and which can be sampled with high density across the device is required. Conventional after-etch CDSEM techniques on logic devices present difficulties in discerning the layers of interest, potential destructive charging effects and finally, they are limited by the long measurement times[1] [2] [3] . All together, limit the sampling densities and making CDSEM less attractive for control applications. Optical metrology can overcome most of these limitations. Such measurement, however, does require repetitive structures. This requirement is not fulfilled by logic devices, as the features vary in pitch and CD over the exposure field. The solution is to use small targets, with a maximum pad size of 5x5um2 , which can easily be placed in the logic cell area. These targets share the process and architecture of the device features of interest, but with a modified design that replicates as close as possible the device layout, allowing for in-device metrology for both CD and Overlay. This solution enables measuring closer to the actual product feature location and, not being limited to scribe-lanes, it opens the possibility of higher-density sampling schemes across the field. In summary, these targets become the facilitator of in-device metrology (IDM), that is, enabling the measurements both in-device Overlay and the CD parameters of interest and can deliver accurate, high-throughput, dense and after-etch measurements for Logic

  12. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  13. Advances in speckle metrology and related techniques

    CERN Document Server

    Kaufmann, Guillermo H

    2010-01-01

    Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the l

  14. Assessment of Satellite Capabilities to Detect Impacts of Oil and Natural Gas Activity by Analysis of SONGNEX 2015 Aircraft Measurements

    Science.gov (United States)

    Thayer, M. P.; Keutsch, F. N.; Wolfe, G.; St Clair, J. M.; Hanisco, T. F.; Aikin, K. C.; Brown, S. S.; Dubé, W.; Eilerman, S. J.; Gilman, J.; De Gouw, J. A.; Koss, A.; Lerner, B. M.; Neuman, J. A.; Peischl, J.; Ryerson, T. B.; Thompson, C. R.; Veres, P. R.; Warneke, C.; Washenfelder, R. A.; Wild, R. J.; Womack, C.; Yuan, B.; Zarzana, K. J.

    2017-12-01

    In the last decade, the rate of domestic energy production from oil and natural gas has grown dramatically, resulting in increased concurrent emissions of methane and other volatile organic compounds (VOCs). Products of VOC oxidation and radical cycling, such as tropospheric ozone (O3) and secondary organic aerosols (SOA), have detrimental impacts on human health and climate. The ability to monitor these emissions and their impact on atmospheric composition from remote-sensing platforms will benefit public health by improving air quality forecasts and identifying localized drivers of tropospheric pollution. New satellite-based instruments, such as TROPOMI (October 2017 launch) and TEMPO (2019-2021 projected launch), will be capable of measuring chemical species related to energy drilling and production on unprecedented spatial and temporal scales, however there is need for improved assessments of their capabilities with respect to specific applications. We use chemical and physical parameters measured via aircraft in the boundary layer and free troposphere during the Shale Oil and Natural Gas Nexus (SONGNEX 2015) field campaign to view chemical enhancements over tight oil and shale gas basins from a satellite perspective. Our in-situ data are used to calculate the planetary boundary layer contributions to the column densities for formaldehyde, glyoxal, O3, and NO2. We assess the spatial resolution and chemical precisions necessary to resolve various chemical features, and compare these limits to TEMPO and TROPOMI capabilities to show the degree to which their retrievals will be able to discern the signatures of oil and natural gas activity.

  15. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts’s-Law-Inspired Approach

    Directory of Open Access Journals (Sweden)

    C. S. George Lee

    2013-07-01

    Full Text Available Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts’s law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  16. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.

    Science.gov (United States)

    Lin, Hsien-I; Lee, C S George

    2013-07-02

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  17. Assessment of Performance Measures for Security of the Maritime Transportation Network. Port Security Metrics: Proposed Measurement of Deterrence Capability

    National Research Council Canada - National Science Library

    Hoaglund, Robert; Gazda, Walter

    2007-01-01

    The goal of this analysis is to provide ASCO and its customers with a comprehensive approach to the development of quantitative performance measures to assess security improvements to the port system...

  18. Numerical simulations on efficiency and measurement of capabilities of BGO detectors for high energy gamma ray

    CERN Document Server

    Wen Wan Xin

    2002-01-01

    The energy resolution and time resolution of two phi 75 x 100 BGO detectors for high energy gamma ray newly made were measured with sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co resources. The two characteristic gamma rays of high energy emitted from the thermal neutron capture of germanium in BGO crystal were used for the energy calibration of gamma spectra. The intrinsic photopeak efficiency, single escape probability and double escape probabilities of BGO detectors in photon energy range of 4-30 MeV are numerically calculated with GEANT code. The real count response and count ratio of the uniformly distributed incident photons in energy range of 0-30 MeV are also calculated. The distortion of gamma spectra caused by the photon energy loss extension to lower energy in detection medium is discussed

  19. Adobe Flash as a medium for online experimentation: a test of reaction time measurement capabilities.

    Science.gov (United States)

    Reimers, Stian; Stewart, Neil

    2007-08-01

    Adobe Flash can be used to run complex psychological experiments over the Web. We examined the reliability of using Flash to measure reaction times (RTs) using a simple binary-choice task implemented both in Flash and in a Linux-based system known to record RTs with millisecond accuracy. Twenty-four participants were tested in the laboratory using both implementations; they also completed the Flash version on computers of their own choice outside the lab. RTs from the trials run on Flash outside the lab were approximately 20 msec slower than those from trials run on Flash in the lab, which in turn were approximately 10 msec slower than RTs from the trials run on the Linux-based system (baseline condition). RT SDs were similar in all conditions, suggesting that although Flash may overestimate RTs slightly, it does not appear to add significant noise to the data recorded.

  20. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    Science.gov (United States)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  1. On the capability of IASI measurements to inform about CO surface emissions

    Directory of Open Access Journals (Sweden)

    S. Szopa

    2009-11-01

    Full Text Available Between July and November 2008, simultaneous observations were conducted by several orbiting instruments that monitor carbon monoxide in the atmosphere, among them the Infrared Atmospheric Sounding Instrument (IASI and Measurements Of Pollution In The Troposphere (MOPITT. In this paper, the concentration retrievals at about 700 hPa from these two instruments are successively used in a variational Bayesian system to infer the global distribution of CO emissions. Starting from a global emission budget of 479 Tg for the considered period, the posterior estimate of CO emissions using IASI retrievals gives a total of 643 Tg, which is in close agreement with the budget calculated with version 3 of the MOPITT data (649 Tg. The regional totals are also broadly consistent between the two inversions. Even though our theoretical error budget indicates that IASI constrains the emissions slightly less than MOPITT, because of lesser sensitivity in the lower troposphere, these first results indicate that IASI may play a major role in the quantification of the emissions of CO.

  2. Flexural Capability of Patterned Transparent Conductive Substrate by Performing Electrical Measurements and Stress Simulations

    Directory of Open Access Journals (Sweden)

    Chang-Chun Lee

    2016-10-01

    Full Text Available The suitability of stacked thin films for next-generation display technology was analyzed based on their properties and geometrical designs to evaluate the mechanical reliability of transparent conducting thin films utilized in flexural displays. In general, the high bending stress induced by various operation conditions is a major concern regarding the mechanical reliability of indium–tin–oxide (ITO films deposited on polyethylene terephthalate (PET substrates; mechanical reliability is commonly used to estimate the flexibility of displays. However, the pattern effect is rarely investigated to estimate the mechanical reliability of ITO/PET films. Thus, this study examined the flexible content of patterned ITO/PET films with two different line widths by conducting bending tests and sheet resistance measurements. Moreover, a stress–strain simulation enabled by finite element analysis was performed on the patterned ITO/PET to explore the stress impact of stacked film structures under various levels of flexural load. Results show that the design of the ITO/PET film can be applied in developing mechanically reliable flexible electronics.

  3. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  4. Coherent double-color interference microscope for traceable optical surface metrology

    Science.gov (United States)

    Malinovski, I.; França, R. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.

    2016-06-01

    Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed.

  5. Coherent double-color interference microscope for traceable optical surface metrology

    International Nuclear Information System (INIS)

    Malinovski, I; França, R S; Bessa, M S; Silva, C R; Couceiro, I B

    2016-01-01

    Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed. (paper)

  6. Breakthrough In Current In Plane Metrology For Monitoring Large Scale MRAM Production

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Østerberg, Frederik Westergaard; Hansen, Ole

    2017-01-01

    The current-in-plane tunneling technique (CIPT) has been a crucial tool in the development of magnetic tunnel junction stacks suitable for Magnetic Random Access Memories (MRAM) for more than a decade. The MRAM development has now reached the maturity to make the transition from R&D to large...... of the Resistance Area product (RA) and the Tunnel Magnetoresistance (TMR) measurements, compared to state of the art CIPT metrology tools dedicated to R&D. On two test wafers, the repeatability of RA and MR was improved up to 350% and the measurement reproducibility up to 1700%. We believe that CIPT metrology now...

  7. Methodology for implementation of a national metrology net of radionuclides used in nuclear medicine

    International Nuclear Information System (INIS)

    Santos, Joyra Amaral dos

    2004-01-01

    The National Laboratory for Ionizing Radiation Metrology, of the Institute of Radiation Protection and Dosimetry, of the National Commission on Nuclear Energy (IRD/CNEN), comes leading a comparison program for activity measurements of radiopharmaceuticals administered to patients in the Nuclear Medicine Services (NMS) with the purpose to promote the quality control. This work presents a quality assurance program for the performance of such measurements, evaluated in the comparison runs between hospitals and LNMRI, under the statistic point of view and the compliment of regulatory authority norms. The performance of the radionuclides 67 Ga, 123 I, 131 I, 99m Tc and 210 Tl were evaluated and 201 TI have been standardized by absolute methods. Besides, it was established the traceability of the radioactivity standards used in nuclear medicine and a methodology for implementation of a national metrology net of radionuclides. The comparison results prove that the implementation of a radionuclide metrology net is viable, important and feasible. (author)

  8. Industrial Photogrammetry - Accepted Metrology Tool or Exotic Niche

    Science.gov (United States)

    Bösemann, Werner

    2016-06-01

    New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]). This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly) illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM's. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.

  9. INDUSTRIAL PHOTOGRAMMETRY - ACCEPTED METROLOGY TOOL OR EXOTIC NICHE

    Directory of Open Access Journals (Sweden)

    W. Bösemann

    2016-06-01

    Full Text Available New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]. This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM’s. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.

  10. A new laser reflectance system capable of measuring changing cross-sectional area of soft tissues during tensile testing.

    Science.gov (United States)

    Pokhai, Gabriel G; Oliver, Michele L; Gordon, Karen D

    2009-09-01

    Determination of the biomechanical properties of soft tissues such as tendons and ligaments is dependent on the accurate measurement of their cross-sectional area (CSA). Measurement methods, which involve contact with the specimen, are problematic because soft tissues are easily deformed. Noncontact measurement methods are preferable in this regard, but may experience difficulty in dealing with the complex cross-sectional shapes and glistening surfaces seen in soft tissues. Additionally, existing CSA measurement systems are separated from the materials testing machine, resulting in the inability to measure CSA during testing. Furthermore, CSA measurements are usually made in a different orientation, and with a different preload, prior to testing. To overcome these problems, a noncontact laser reflectance system (LRS) was developed. Designed to fit in an Instron 8872 servohydraulic test machine, the system measures CSA by orbiting a laser transducer in a circular path around a soft tissue specimen held by tissue clamps. CSA measurements can be conducted before and during tensile testing. The system was validated using machined metallic specimens of various shapes and sizes, as well as different sizes of bovine tendons. The metallic specimens could be measured to within 4% accuracy, and the tendons to within an average error of 4.3%. Statistical analyses showed no significant differences between the measurements of the LRS and those of the casting method, an established measurement technique. The LRS was successfully used to measure the changing CSA of bovine tendons during uniaxial tensile testing. The LRS developed in this work represents a simple, quick, and accurate way of reconstructing complex cross-sectional profiles and calculating cross-sectional areas. In addition, the LRS represents the first system capable of automatically measuring changing CSA of soft tissues during tensile testing, facilitating the calculation of more accurate biomechanical properties.

  11. LISA Pathfinder: Optical Metrology System monitoring during operations

    Science.gov (United States)

    Audley, Heather E.; LISA Pathfinder Collaboration

    2017-05-01

    The LISA Pathfinder (LPF) mission has demonstrated excellent performance. In addition to having surpassed the main mission goals, data has been collected from the various subsystems throughout the duration of the mission. This data is a valuable resource, both for a more complete understanding of the LPF satellite and the differential acceleration measurements, as well as for the design of the future Laser Interferometer Space Antenna (LISA) mission. Initial analysis of the Optical Metrology System (OMS) data was performed as part of daily system monitoring, and more in-depth analyses are ongoing. This contribution presents an overview of these activities along with an introduction to the OMS.

  12. Metrological traceability of holmium oxide solution

    Science.gov (United States)

    Gonçalves, D. E. F.; Gomes, J. F. S.; Alvarenga, A. P. D.; Borges, P. P.; Araujo, T. O.

    2018-03-01

    Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.

  13. Activities of IPEN Nuclear Metrology Laboratory

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The activities of IPEN Nuclear Metrology Laboratory, which the principal objective is radionuclides activities determination for supplying sources and standard radioactive solutions in activity are presented. The systems installed, the activity bands and some of standards radionuclides are shown. (C.G.C.) [pt

  14. Childhood Socioeconomic Position and Objectively Measured Physical Capability Levels in Adulthood: A Systematic Review and Meta-Analysis

    DEFF Research Database (Denmark)

    Birnie, Kate; Cooper, Rachel; Martin, Richard M

    2011-01-01

    for 5s of 1.26 (1.02, 1.55). Adjustment for the potential mediating factors, adult SEP and body size attenuated associations greatly. However, despite this attenuation, for walking speed and chair rise time, there was still evidence of moderate associations. CONCLUSIONS: Policies targeting socioeconomic...... achieved in early adulthood, thereby affecting levels in later adulthood. We have undertaken a systematic review with meta-analyses to test the hypothesis that adverse childhood SEP is associated with lower levels of objectively measured physical capability in adulthood. METHODS AND FINDINGS: Relevant...... inequalities in childhood may have additional benefits in promoting the maintenance of independence in later life....

  15. Perspectives in absorbed dose metrology with regard to the technical evolutions of external beam radiotherapy

    International Nuclear Information System (INIS)

    Chauvenet, B.; Bordy, J.M.; Barthe, J.

    2009-01-01

    This paper presents several R and D axes in absorbed close metrology to meet the needs resulting from the technical evolutions of external beam radiotherapy. The facilities in operation in France have considerably evolved under the impulse of the plan Cancer launched in 2003: replacements and increase of the number of accelerators, substitution of accelerators for telecobalt almost completed and acquisition of innovative facilities for tomo-therapy and stereotaxy. The increasing versatility of facilities makes possible the rapid evolution of treatment modalities, allowing to better delimit irradiation to tumoral tissues and spare surrounding healthy tissues and organs at risk. This leads to a better treatment efficacy through dose escalation. National metrology laboratories must offer responses adapted to the new need, i.e. not restrict themselves to the establishment of references under conventional conditions defined at international level, contribute to the improvement of uncertainties at all levels of reference transfer to practitioners: primary measurements under conditions as close as possible to those of treatment, characterization of transfer and treatment control dosimeters., metrological validation of treatment planning tools... Those axes have been identified as priorities for the next years in ionizing radiation metrology at the European level and included in the European. Metrology Research Programme. A project dealing with some of those topics has been selected in the frame of the Eranet+ Call EMRP 2007 and is now starting. The LNE-LAM is strongly engaged in it. (authors)

  16. Speckle-based at-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Zhou, Tunhe; Kashyap, Yogesh; Sawhney, Kawal

    2017-08-01

    To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ metrology at the optics' operating wavelength (`at-wavelength' metrology) to optimize the performance of X-ray optics and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative examples of the applications of the speckle-based technique will also be given - including optimization of X-ray mirrors and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron beamlines.

  17. The Development of an Instrument to Measure the Work Capability of People with Limited Work Capacity (LWC).

    Science.gov (United States)

    van Ruitenbeek, Gemma M C; Zijlstra, Fred R H; Hülsheger, Ute R

    2018-06-04

    Purpose Participation in regular paid jobs positively affects mental and physical health of all people, including people with limited work capacities (LWC), people that are limited in their work capacity as a consequence of their disability, such as chronic mental illness, psychological or developmental disorder. For successful participation, a good fit between on one hand persons' capacities and on the other hand well-suited individual support and a suitable work environment is necessary in order to meet the demands of work. However, to date there is a striking paucity of validated measures that indicate the capability to work of people with LWC and that outline directions for support that facilitate the fit. Goal of the present study was therefore to develop such an instrument. Specifically, we adjusted measures of mental ability, conscientiousness, self-efficacy, and coping by simplifying the language level of these measures to make the scales accessible for people with low literacy. In order to validate these adjusted self-report and observer measures we conducted two studies, using multi-source, longitudinal data. Method Study 1 was a longitudinal multi-source study in which the newly developed instrument was administered twice to people with LWC and their significant other. We statistically tested the psychometric properties with respect to dimensionality and reliability. In Study 2, we collected new multi-source data and conducted a confirmatory factor analysis (CFA). Results Studies yielded a congruous factor structure in both samples, internally consistent measures with adequate content validity of scales and subscales, and high test-retest reliability. The CFA confirmed the factorial validity of the scales. Conclusion The adjusted self-report and the observer scales of mental ability, conscientiousness, self-efficacy, and coping are reliable measures that are well-suited to assess the work capability of people with LWC. Further research is needed to

  18. Metrology as part and parcel of training programmes for science and engineering

    NARCIS (Netherlands)

    Regtien, Paulus P.L.

    2007-01-01

    At many universities and training institutes education in metrology or measurement science is in strong competition with upcoming disciplines. Its importance for science and engineering remains, however, evident. Advanced instruments make measuring almost a routine activity, but it is shown that a

  19. Activities of the IPEN laboratory (CNEN/SP - Brazil) of nuclear metrology

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The determination of radionuclide activity for radioactive sources and standardized solutions is reported as the main purpose of the IPEN laboratory of nuclear metrology. The measurement systems installed in the laboratory, the measurable activity intervals and some of the standardized radionuclides (emphasizing the ones used in nuclear medicine) are presented. (M.A.C.) [pt

  20. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.|info:eu-repo/dai/nl/269266224

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting

  1. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    Science.gov (United States)

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  2. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    Science.gov (United States)

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

  3. Quality control and process capability assessment for injection-moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2013-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection-moulded components selected from an industrial application. These parts are measured...... using an optical coordinate measuring machine, which guarantees fast surface scans suitable for inline quality control. The uncertainty assessment of the measurements is calculated and three analyses are carried out and discussed in order to investigate the influence parameters in optical coordinate...... metrology. The estimation of the total variability of the optical measurements and the instrument repeatability are reported; moreover, the measurement system capability is evaluated according to the measurement system capability indices Cg and Cgk....

  4. Picometre displacement measurements using a differential Fabry–Perot optical interferometer and an x-ray interferometer

    International Nuclear Information System (INIS)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-01-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry–Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed. (paper)

  5. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    Science.gov (United States)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  6. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  7. Profile variation impact on FIB cross-section metrology

    Science.gov (United States)

    Cordes, Aaron; Bunday, Benjamin; Nadeau, Jim

    2012-03-01

    The focused ion beam (FIB) milling tool is an important component of reference metrology and process characterization, both as a supporting instrument for bulk sample preparation before forwarding to the transmission electron microscope (TEM) and other instruments and as an in situ measurement instrument using angled scanning electron microscopy. As features grow denser, deeper and more demanding, full-profile reference metrology is needed, and this methodology will only grow in importance. Thus, the ability to extract accurate dimensional and profile information out of the crosssectional faces produced by FIB milling is critical. For features that demonstrate perfect symmetry in the plane of the cross section, analyzing images and extracting metrology data are straightforward. However, for industrial materials, symmetry is not a safe assumption: as features shrink, the line edge and sidewall roughness increases as a percentage of the overall feature dimension. Furthermore, with the introduction of more complex architectures such as 3D memory and FinFETs, the areas of greatest interest, such as the intersections of wrap-around gates, cannot be assumed to be symmetrical in any given plane if cut placement is not precisely controlled. Therefore it is important to establish the exact location and repeatability of the cross-section plane, both in terms of coordinate placement and effective angle of the milled surface. To this end, we prepared designed-in line edge roughness samples in the Albany Nanotech facility using SEMATECH's AMAG6 metrology reticle. The samples were thoroughly characterized before being milled by a non-destructive, sidewall-scanning atomic force microscope (AFM). These samples are then milled and measured under varying process and setup parameters using a single-beam FIB with angled SEM. We established methodologies that allow precise alignment of the cut planes of slice-and-view FIB milling to 3D-AFM scan lines to compare repeated sections

  8. Inspection of fire protection measures and fire fighting capability at nuclear power plants. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1994-01-01

    The present publication has been developed with the help of experts from regulatory, operating and engineering organizations, all with practical experience in the field of fire protection of nuclear power plants. The publication outlines practices for inspecting the fire protection measures at nuclear power plants in accordance with Safety Series No.50-SG-D2(Rev.1), Fire Protection in Nuclear Power Plants, and includes a comprehensive fire safety inspection checklist of the specific elements to be addressed when evaluating the adequacy and effectiveness of the fire protection measures and manual fire fighting capability available at operating nuclear power plants. The publication will be useful not only to regulators and safety assessors but also to operators and designers. The book addresses a specialized topic and it is recommended that it be used in conjunction with Safety Guide No.50-SG-D2(Rev.1)

  9. Nonlinear momentum compaction and coherent synchrotron radiation at the metrology light source. Low-α commissioning and development

    International Nuclear Information System (INIS)

    Ries, Markus

    2014-01-01

    Short pulses of synchrotron radiation are becoming an increasingly demanded tool in various fields of science. The generation of short synchrotron radiation pulses can be accomplished by different accelerator-based approaches such as free electron lasers, energy recovery linacs or electron storage rings. Linear accelerator driven free electron lasers are capable of generating intense pulses in the femtosecond regime at moderate repetition rates. In comparison, electron storage rings generate pulses of lower intensity with the advantage of large repetition rates. However, electron storage rings rely on radiation emitted by the same bunch(es) every turn, which are present in an equilibrium state. Thus making the electron storage ring a yet unchallenged source of short synchrotron radiation pulses in terms of stability and reproducibility. In addition, storage rings are capable to serve a large number of users simultaneously. In general, it is possible to distinguish the user community of short pulses at electron storage rings. The first user group is interested in time-resolution applying incoherent synchrotron radiation up to the X-ray regime. The second user group makes use of coherent synchrotron radiation emitted by short bunches at wavelengths large compared to the bunch dimensions, which commonly applies up to the THz-regime. Both user groups are interested in the high average power and stability available at electron storage rings. However, there is a current limitation for stable short bunch operation of electron storage rings, which is due to an instability driven by the emission of coherent synchrotron radiation. The subject of this thesis is the operation of an electron storage ring at a low momentum compaction to generate short electron bunches as a source for coherent synchrotron radiation. For this purpose the Metrology Light Source is ideally suited, as it is the first light source designed with the ability to adjust the three leading orders of the

  10. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Remmel, Thomas; Werho, Dennis; Liu, Ran; Chu, Peir

    1998-01-01

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  11. Radiation protection metrology in Austria: status and needs in a European perspective

    International Nuclear Information System (INIS)

    Maringer, F. J.; Leitner, A.; Tschurlovits, M.

    2005-01-01

    A global harmonised system of radiation protection and radiation dosimetry metrology is required to assure quality and accuracy in exchange of ideas, science, technologies and products. Accurate and high-grade measurements of ionising radiation are required in a wide range of industrial and medical applications where they are critical for human health and safety. This paper presents current work of international and Austrian metrological institutions in the field of ionising radiation and briefly discusses the future need and perspectives in the European context.(author)

  12. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  13. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  14. Elements for successful sensor-based process control {Integrated Metrology}

    International Nuclear Information System (INIS)

    Butler, Stephanie Watts

    1998-01-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended

  15. Elements for successful sensor-based process control {Integrated Metrology}

    Science.gov (United States)

    Butler, Stephanie Watts

    1998-11-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.

  16. Development of laser materials processing and laser metrology techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  17. Emerging trends in surface metrology

    DEFF Research Database (Denmark)

    Lonardo, P.M.; Lucca, D.A.; De Chiffre, Leonardo

    2002-01-01

    Recent advancements and some emerging trends in the methods and instruments used for surface and near surface characterisation are presented, considering the measurement of both topography and physical properties. In particular, surfaces that present difficulties in measurement or require new...... procedures are considered, with emphasis on measurements approaching the nanometre scale. Examples of new instruments and promising innovations for roughness measurement and surface integrity characterisation are presented. The new needs for tolerancing, traceability and calibration are also addressed....

  18. Capability of simultaneous Rayleigh LiDAR and O2 airglow measurements in exploring the short period wave characteristics

    Science.gov (United States)

    Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan

    We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.

  19. Measurement system of high voltage and high current measurements at INMETRO - Brazilian Institute for Metrology, Standardization and Industrial Quality; Sistema de medicao de alta tensao e alta corrente do INMETRO - Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Vitorio, Patricia Cals de O.; Franca, Ademir Martins de; Soares, Marco Aurelio; Pereira, Luiz Napoleao; Costa, Danielli Guimaraes; Moreira, Giselle Cobica; Nascimento, Paulo Roberto Mesquita [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMCI/INMETRO), Duque de Caxias, RJ (Brazil). Diretoria de Metrologia Cientifica e Industrial], E-mail: latra@inmetro.gov.br

    2009-07-01

    This work presents the basic characteristics and uncertainties of the calibration equipment in high voltage and high current available at the INMETRO: system of measurement in alternating high voltage up to 200 kV, system of measurement in alternating current up to 2 k A, and system of measurement in continuous high voltage up to 150 kV.

  20. Application of virtual distances methodology to laser tracker verification with an indexed metrology platform

    International Nuclear Information System (INIS)

    Acero, R; Pueo, M; Santolaria, J; Aguilar, J J; Brau, A

    2015-01-01

    High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures. (paper)

  1. Application of virtual distances methodology to laser tracker verification with an indexed metrology platform

    Science.gov (United States)

    Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.

    2015-11-01

    High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.

  2. Laser metrology applied to the nuclear maintenance; Metrologia laser aplicada al mantenimiento nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Garrido Garcia, J.; Sarti Fernandez, F.

    2012-07-01

    The development of this paper focuses on providing an overview of the state of the art about laser metrology. This type of equipment combines the measurement philosophy of laser scanning with the great precision of the robotic equipment of auscultation. Getting micron.

  3. Machine tool metrology an industrial handbook

    CERN Document Server

    Smith, Graham T

    2016-01-01

    Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of the existing published literature and valid information obtained from a wide-spectrum of manufacturers of plant, equipment and instrumentation before putting forward novel ideas and methodologies. Providing easy to understand bullet points and lucid descriptions of metrological and calibration subjects, this book aids reader understanding of the topics discussed whilst adding a voluminous-amount of footnotes utilised throughout all of the chapters, which adds some additional detail to the subject. Featuring an extensive amount of photographic-support, this book will serve as a key reference text for all those involved in the field. .

  4. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Lee, J. J.; Romano, E. [National Security Technologies LLC, 161 S Vasco Rd., Livermore, California 94551 (United States)

    2016-11-15

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  5. Ray-tracing of shape metrology data of grazing incidence x-ray astronomy mirrors

    Science.gov (United States)

    Zocchi, Fabio E.; Vernani, Dervis

    2008-07-01

    A number of future X-ray astronomy missions (e.g. Simbol-X, eROSITA) plan to utilize high throughput grazing incidence optics with very lightweight mirrors. The severe mass specifications require a further optimization of the existing technology with the consequent need of proper optical numerical modeling capabilities for both the masters and the mirrors. A ray tracing code has been developed for the simulation of the optical performance of type I Wolter masters and mirrors starting from 2D and 3D metrology data. In particular, in the case of 2D measurements, a 3D data set is reconstructed on the basis of dimensional references and used for the optical analysis by ray tracing. In this approach, the actual 3D shape is used for the optical analysis, thus avoiding the need of combining the separate contributions of different 2D measurements that require the knowledge of their interactions which is not normally available. The paper describes the proposed approach and presents examples of application on a prototype engineering master in the frame of ongoing activities carried out for present and future X-ray missions.

  6. Implementation of the Brazilian radiation metrology network

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Araujo, Margareth M. de

    1998-01-01

    The ever increasing need for calibration of survey, personal, and contamination meters in Brazil are not completely satisfied by the two operating laboratories. To overcome this deficiency a radiation metrology network is being implemented with the support of IAEA. In a near future this network will count other three calibration laboratories which are being installed in different regions of the country, and accredited through INMETRO. (author)

  7. The need for LWR metrology standardization: the imec roughness protocol

    Science.gov (United States)

    Lorusso, Gian Francesco; Sutani, Takumichi; Rutigliani, Vito; van Roey, Frieda; Moussa, Alain; Charley, Anne-Laure; Mack, Chris; Naulleau, Patrick; Constantoudis, Vassilios; Ikota, Masami; Ishimoto, Toru; Koshihara, Shunsuke

    2018-03-01

    As semiconductor technology keeps moving forward, undeterred by the many challenges ahead, one specific deliverable is capturing the attention of many experts in the field: Line Width Roughness (LWR) specifications are expected to be less than 2nm in the near term, and to drop below 1nm in just a few years. This is a daunting challenge and engineers throughout the industry are trying to meet these targets using every means at their disposal. However, although current efforts are surely admirable, we believe they are not enough. The fact is that a specification has a meaning only if there is an agreed methodology to verify if the criterion is met or not. Such a standardization is critical in any field of science and technology and the question that we need to ask ourselves today is whether we have a standardized LWR metrology or not. In other words, if a single reference sample were provided, would everyone measuring it get reasonably comparable results? We came to realize that this is not the case and that the observed spread in the results throughout the industry is quite large. In our opinion, this makes the comparison of LWR data among institutions, or to a specification, very difficult. In this paper, we report the spread of measured LWR data across the semiconductor industry. We investigate the impact of image acquisition, measurement algorithm, and frequency analysis parameters on LWR metrology. We review critically some of the International Technology Roadmap for Semiconductors (ITRS) metrology guidelines (such as measurement box length larger than 2μm and the need to correct for SEM noise). We compare the SEM roughness results to AFM measurements. Finally, we propose a standardized LWR measurement protocol - the imec Roughness Protocol (iRP) - intended to ensure that every time LWR measurements are compared (from various sources or to specifications), the comparison is sensible and sound. We deeply believe that the industry is at a point where it is

  8. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  9. The place of highly accurate methods by RNAA in metrology

    International Nuclear Information System (INIS)

    Dybczynski, R.; Danko, B.; Polkowska-Motrenko, H.; Samczynski, Z.

    2006-01-01

    With the introduction of physical metrological concepts to chemical analysis which require that the result should be accompanied by uncertainty statement written down in terms of Sl units, several researchers started to consider lD-MS as the only method fulfilling this requirement. However, recent publications revealed that in certain cases also some expert laboratories using lD-MS and analyzing the same material, produced results for which their uncertainty statements did not overlap, what theoretically should not have taken place. This shows that no monopoly is good in science and it would be desirable to widen the set of methods acknowledged as primary in inorganic trace analysis. Moreover, lD-MS cannot be used for monoisotopic elements. The need for searching for other methods having similar metrological quality as the lD-MS seems obvious. In this paper, our long-time experience on devising highly accurate ('definitive') methods by RNAA for the determination of selected trace elements in biological materials is reviewed. The general idea of definitive methods based on combination of neutron activation with the highly selective and quantitative isolation of the indicator radionuclide by column chromatography followed by gamma spectrometric measurement is reminded and illustrated by examples of the performance of such methods when determining Cd, Co, Mo, etc. lt is demonstrated that such methods are able to provide very reliable results with very low levels of uncertainty traceable to Sl units

  10. X-ray pulse wavefront metrology using speckle tracking

    International Nuclear Information System (INIS)

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-01-01

    The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology

  11. Ensuring Food Integrity by Metrology and FAIR Data Principles

    Directory of Open Access Journals (Sweden)

    Michael Rychlik

    2018-05-01

    Full Text Available Food integrity is a general term for sound, nutritive, healthy, tasty, safe, authentic, traceable, as well as ethically, safely, environment-friendly, and sustainably produced foods. In order to verify these properties, analytical methods with a higher degree of accuracy, sensitivity, standardization and harmonization and a harmonized system for their application in analytical laboratories are required. In this view, metrology offers the opportunity to achieve these goals. In this perspective article the current global challenges in food analysis and the principles of metrology to fill these gaps are presented. Therefore, the pan-European project METROFOOD-RI within the framework of the European Strategy Forum on Research Infrastructures (ESFRI was developed to establish a strategy to allow reliable and comparable analytical measurements in foods along the whole process line starting from primary producers until consumers and to make all data findable, accessible, interoperable, and re-usable according to the FAIR data principles. The initiative currently consists of 48 partners from 18 European Countries and concluded its “Early Phase” as research infrastructure by organizing its future structure and presenting a proof of concept by preparing, distributing and comprehensively analyzing three candidate Reference Materials (rice grain, rice flour, and oyster tissue and establishing a system how to compile, process, and store the generated data and how to exchange, compare them and make them accessible in data bases.

  12. Metrology challenges for high-rate nanomanufacturing of polymer structures

    Science.gov (United States)

    Mead, Joey; Barry, Carol; Busnaina, Ahmed; Isaacs, Jacqueline

    2012-10-01

    The transfer of nanoscience accomplishments into commercial products is hindered by the lack of understanding of barriers to nanoscale manufacturing. We have developed a number of nanomanufacturing processes that leverage available high-rate plastics fabrication technologies. These processes include directed assembly of a variety of nanoelements, such as nanoparticles and nanotubes, which are then transferred onto a polymer substrate for the fabrication of conformal/flexible electronic materials, among other applications. These assembly processes utilize both electric fields and/or chemical functionalization. Conducting polymers and carbon nanotubes have been successfully transferred to a polymer substrate in times less than 5 minutes, which is commercially relevant and can be utilized in a continuous (reel to reel/roll to roll) process. Other processes include continuous high volume mixing of nanoelements (CNTs, etc) into polymers, multi-layer extrusion and 3D injection molding of polymer structures. These nanomanufacturing processes can be used for wide range of applications, including EMI shielding, flexible electronics, structural materials, and novel sensors (specifically for chem/bio detection). Current techniques to characterize the quality and efficacy of the processes are quite slow. Moreover, the instrumentation and metrology needs for these manufacturing processes are varied and challenging. Novel, rapid, in-line metrology to enable the commercialization of these processes is critically needed. This talk will explore the necessary measurement needs for polymer based nanomanufacturing processes for both step and continuous (reel to reel/roll to roll) processes.

  13. Diffraction-based overlay metrology for double patterning technologies

    Science.gov (United States)

    Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy

    2009-03-01

    The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.

  14. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  15. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  16. Present status of metrology of electro-optical surveillance systems

    Science.gov (United States)

    Chrzanowski, K.

    2017-10-01

    There has been a significant progress in equipment for testing electro-optical surveillance systems over the last decade. Modern test systems are increasingly computerized, employ advanced image processing and offer software support in measurement process. However, one great challenge, in form of relative low accuracy, still remains not solved. It is quite common that different test stations, when testing the same device, produce different results. It can even happen that two testing teams, while working on the same test station, with the same tested device, produce different results. Rapid growth of electro-optical technology, poor standardization, limited metrology infrastructure, subjective nature of some measurements, fundamental limitations from laws of physics, tendering rules and advances in artificial intelligence are major factors responsible for such situation. Regardless, next decade should bring significant improvements, since improvement in measurement accuracy is needed to sustain fast growth of electro-optical surveillance technology.

  17. Metrology for radioactive waste management. (WP2, WP3)

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. In this presentation the Project is described. (author)

  18. Deep sub-wavelength metrology for advanced defect classification

    Science.gov (United States)

    van der Walle, P.; Kramer, E.; van der Donck, J. C. J.; Mulckhuyse, W.; Nijsten, L.; Bernal Arango, F. A.; de Jong, A.; van Zeijl, E.; Spruit, H. E. T.; van den Berg, J. H.; Nanda, G.; van Langen-Suurling, A. K.; Alkemade, P. F. A.; Pereira, S. F.; Maas, D. J.

    2017-06-01

    Particle defects are important contributors to yield loss in semi-conductor manufacturing. Particles need to be detected and characterized in order to determine and eliminate their root cause. We have conceived a process flow for advanced defect classification (ADC) that distinguishes three consecutive steps; detection, review and classification. For defect detection, TNO has developed the Rapid Nano (RN3) particle scanner, which illuminates the sample from nine azimuth angles. The RN3 is capable of detecting 42 nm Latex Sphere Equivalent (LSE) particles on XXX-flat Silicon wafers. For each sample, the lower detection limit (LDL) can be verified by an analysis of the speckle signal, which originates from the surface roughness of the substrate. In detection-mode (RN3.1), the signal from all illumination angles is added. In review-mode (RN3.9), the signals from all nine arms are recorded individually and analyzed in order to retrieve additional information on the shape and size of deep sub-wavelength defects. This paper presents experimental and modelling results on the extraction of shape information from the RN3.9 multi-azimuth signal such as aspect ratio, skewness, and orientation of test defects. Both modeling and experimental work confirm that the RN3.9 signal contains detailed defect shape information. After review by RN3.9, defects are coarsely classified, yielding a purified Defect-of-Interest (DoI) list for further analysis on slower metrology tools, such as SEM, AFM or HIM, that provide more detailed review data and further classification. Purifying the DoI list via optical metrology with RN3.9 will make inspection time on slower review tools more efficient.

  19. PREFACE: Fundamental Constants in Physics and Metrology

    Science.gov (United States)

    Klose, Volkmar; Kramer, Bernhard

    1986-01-01

    This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and

  20. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  1. The Capability of Fiber Bragg Grating Sensors to Measure Amputees’ Trans-Tibial Stump/Socket Interface Pressures

    Directory of Open Access Journals (Sweden)

    Faisal Rafiq Mahamd Adikan

    2013-08-01

    Full Text Available This study presents the first investigation into the capability of fiber Bragg grating (FBG sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee’s Patellar Tendon (PT bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ~0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction.

  2. The capability of fiber Bragg grating sensors to measure amputees' trans-tibial stump/socket interface pressures.

    Science.gov (United States)

    Al-Fakih, Ebrahim A; Osman, Noor Azuan Abu; Eshraghi, Arezoo; Adikan, Faisal Rafiq Mahamd

    2013-08-12

    This study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee's Patellar Tendon (PT) bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ~0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction.

  3. New twist in the optical schematic of surface slope measuring long trace profiler

    Science.gov (United States)

    Nikitin, Sergey M.; Gevorkyan, Gevork S.; McKinney, Wayne R.; Lacey, Ian; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2017-09-01

    The advents of fully coherent free electron lasers and diffraction limited synchrotron storage ring sources of x-rays are catalyzing the development of new, ultra-high accuracy metrology methods. To fully exploit the potential of these sources, metrology needs to be capable of determining the figure of an optical element with sub-nanometer height accuracy. Currently, the two most prevalent slope measuring instruments used for characterization of x-ray optics are the auto-collimator based nanometer optical measuring device (NOM) and the long trace profiler (LTP) using pencil beam interferometry (PBI). These devices have been consistently improved upon by the x-ray optics metrology community, but appear to be approaching their metrological limits. Here, we revise the traditional optical schematic of the LTP. We experimentally show that, for the level of accuracy desired for metrology with state-of-the-art x-ray optics, the Dove prism in the LTP reference channel appears to be one of the major sources of instrumental error. Therefore, we suggest returning back to the original PBI LTP schematics with no Dove prism in the reference channel. In this case, the optimal scanning strategies [Yashchuk, Rev. Sci. Instrum. 80, 115101 (2009)] used to suppress the instrumental drift error have to be used to suppress a possible drift error associated with laser beam pointing instability. We experimentally and by numerical simulation demonstrate the usefulness of the suggested approach for measurements with x-ray optics with both face up and face down orientations.

  4. Problems of metrological supply of carbon materials production

    International Nuclear Information System (INIS)

    Belov, G.V.; Bazilevskij, L.P.; Cherkashina, N.V.

    1989-01-01

    Carbon materials and products contain internal residual stresses and have an anisotropy of properties therefore special methods of tests are required to control their quality. The main metrological problems during development, production and application of carbon products are: metrological supply of production forms and records during the development of production conditions; metrological supply of quality control of the product; metrological supply of methods for the tests of products and the methods to forecast the characteristics of product quality for the period of quaranteed service life

  5. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Freudenreich, W.E.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-10-01

    Neutron fluence rate and gamma dose data are presented for the first series of experiments at the filtered HFR beam HB11 at full reactor power. Measurements were performed on two beagle dogs and one cylindrical phantom. The main results for thermal and epithermal fluence rates, physical neutron dose and gamma dose are presented in the tables 1 and 2. (author). 10 refs.; 9 figs.; 8 tabs

  6. Ionising radiation metrology : Physical basis for the radiation protection in Spain

    International Nuclear Information System (INIS)

    Arcos, J. M. los; Brosed, A.; Fernandez, F.

    2004-01-01

    Applying radiological protection principles and, in particular optimisation, requires a system of metrological references internationally traceable and to which be traced at the national level, through a well defined calibration chain. In this paper on overview of the activities done in the national standards laboratory and in the calibration laboratories existing in Spain is presented. As a conclusion it is established that, although the necessities at the protection level are reasonably covered for α, β, X and γ radiation, the lack of a neutronic reference laboratory is detected, to give metrological support to the two laboratories with capability for making irradiations or determinations of neutronic doses, currently operating in the country. (Author) 19 refs

  7. A Laser Metrology/Viewing System for ITER In-Vessel Inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.; Slotwinski, A.

    1997-10-01

    This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10 7 Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway

  8. Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Huelga, Susana F

    2014-01-01

    Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)

  9. Development of measurement capabilities for the thermophysical properties of energy-related fluids. Annual report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, R.F.

    1993-08-13

    The measurement capabilities to be developed include new apparatus for transport properties, thermodynamic properties, phase equilibria, and dielectric properties. Specific capabilities are: Thermal conductivity apparatus, vibrating wire viscometer, dual-sinker densimeter, high-temperature vibrating tube densimeter, dynamic phase equilibria apparatus, apparatus for dilute solutions, total-enthalpy flow calorimeter. Benchmark measurements were made (no data given) on pure and mixed alternative refrigerants and their mixtures with lubricants, and other fluids.

  10. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  11. A decade of innovation with laser speckle metrology

    Science.gov (United States)

    Ettemeyer, Andreas

    2003-05-01

    Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.

  12. Metrological provision in radiometry of long-lived radionuclide aerosols

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1984-01-01

    An optimal, as regards expenditures and resulting effect in development, production and operation, scheme is given for metrological provision of working means to measure radioactive aerosols. Model solid sources are recommended to be used for testing calibration and certification of aerosol radiometers when no losses or distortions of information take place. A model radiometer for long-lived radionuclides operating in the 3x10 -2 - 4x10 4 BK/m 3 range of volumetric activity of α-active nuclides and 5-2x10 5 BK/m 3 range of β-active nuclides is successfully utilized at present. Recommendations on reducing the measurement errors by means of different means are given

  13. Metrological provision in radiometry of long-lived radionuclide aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1984-05-01

    An optimal, as regards expenditures and resulting effect in development, production and operation, scheme is given for metrological provision of working means to measure radioactive aerosols. Model solid sources are recommended to be used for testing calibration and certification of aerosol radiometers when no losses or distortions of information take place. A model radiometer for long-lived radionuclides operating in the 3 x 10/sup -2/ - 4 x 10/sup 4/ BK/m/sup 3/ range of volumetric activity of ..cap alpha..-active nuclides and 5-2 x 10/sup 5/ BK/m/sup 3/ range of ..beta..-active nuclides is successfully utilized at present. Recommendations on reducing the measurement errors by means of different means are given.

  14. Metrological assurance and traceability for Industry 4.0 and additive manufacturing in Ukraine

    Science.gov (United States)

    Skliarov, Volodymyr; Neyezhmakov, Pavel; Prokopov, Alexander

    2018-03-01

    The national measurement standards from the point of view of traceability of the results of measurement in additive manufacturing in Ukraine are considered in the paper. The metrological characteristics of the national primary measurement standards in the field of geometric, temperature, optical-physical and time-frequency measurements, which took part in international comparisons within COOMET projects, are presented. The accurate geometric, temperature, optical-physical and time-frequency measurements are the key ones in controlling the quality of additive manufacturing. The use of advanced CAD/CAE/CAM systems allows to simulate the process of additive manufacturing at each stage. In accordance with the areas of the technology of additive manufacturing, the ways of improving the national measurement standards of Ukraine for the growing needs of metrology of additive manufacturing are considered.

  15. Capability ethics

    OpenAIRE

    Robeyns, Ingrid

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological theories, virtue ethics, or pragmatism. As I will argue in this chapter, at present the core of the capability approach is an account of value, which together with some other (more minor) normative comm...

  16. Reference metrology in a research fab: the NIST clean calibrations thrust

    Science.gov (United States)

    Dixson, Ronald; Fu, Joe; Orji, Ndubuisi; Renegar, Thomas; Zheng, Alan; Vorburger, Theodore; Hilton, Al; Cangemi, Marc; Chen, Lei; Hernandez, Mike; Hajdaj, Russell; Bishop, Michael; Cordes, Aaron

    2009-03-01

    In 2004, the National Institute of Standards and Technology (NIST) commissioned the Advanced Measurement Laboratory (AML) - a state-of-the-art, five-wing laboratory complex for leading edge NIST research. The NIST NanoFab - a 1765 m2 (19,000 ft2) clean room with 743 m2 (8000 ft2) of class 100 space - is the anchor of this facility and an integral component of the new Center for Nanoscale Science and Technology (CNST) at NIST. Although the CNST/NanoFab is a nanotechnology research facility with a different strategic focus than a current high volume semiconductor fab, metrology tools still play an important role in the nanofabrication research conducted here. Some of the metrology tools available to users of the NanoFab include stylus profiling, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Since 2001, NIST has collaborated with SEMATECH to implement a reference measurement system (RMS) using critical dimension atomic force microscopy (CD-AFM). NIST brought metrology expertise to the table and SEMATECH provided access to leading edge metrology tools in their clean room facility in Austin. Now, in the newly launched "clean calibrations" thrust at NIST, we are implementing the reference metrology paradigm on several tools in the CNST/NanoFab. Initially, we have focused on calibration, monitoring, and uncertainty analysis for a three-tool set consisting of a stylus profiler, an SEM, and an AFM. Our larger goal is the development of new and supplemental calibrations and standards that will benefit from the Class 100 environment available in the NanoFab and offering our customers calibration options that do not require exposing their samples to less clean environments. Toward this end, we have completed a preliminary evaluation of the performance of these instruments. The results of these evaluations suggest that the achievable uncertainties are generally consistent with our measurement goals.

  17. Optical metrology tools for the Virgo projet

    Science.gov (United States)

    Loriette, V.

    is a description of the various optical components that have to be manufactured and tested for Virgo. The next sections are dedicated to the description of various metrology instruments. In chapter 2 we focus on absorption of light in multilayer coatings. The sensitivity of interferometric detectors is degraded by this loss process, not only because it decreases the laser beam power, but also and chiefly because thermo-elastic deformations and changes of the indexes of refraction modify the beam profile. Optical coatings have now reached an absorption level lower than at m. We present a method based on the mirage effect, i.e. the deflexion of light by an index of refraction gradient induced by non homogeneous heating. This “mirage bench” has a sensitivity better than 10^{-8}. We start by a discussion of the approximations that are useful to simplify the problem, we then derive the equation that give the signal amplitude versus the absorption factor. Afterwards we describe the instrument and give a few results with home made Virgo mirrors as well as commercial samples. In the following chapter we discuss the problem of measuring reflexion factors. We focus on two particular problems, the first one is common, it is to measure high (higher than 0.9999) reflexion factors by the use of Fabry-Perot cavities. We present various possible schemes and we detail a particular one which seems to be the easiest to implement. We use a pulsed laser source and measure the average reflexion factor of the two Fabry-Perot mirrors by studying the pulse shape modification after transmission by the cavity. We estimate the sensitivity of this intrument to 10^{-6}. The second problem is a less common one and is to evaluate the relative homogeneity of reflexion factors on large components. Because inhomogeneities of this parameter will degrade the sensitivity of Virgo by coupling various modes of the laser beam with the fundamental one, homogeneity higher than 1{-}10^{-4} is required. We

  18. New method of 2-dimensional metrology using mask contouring

    Science.gov (United States)

    Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2008-10-01

    We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.

  19. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-05-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or "tophat" beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  20. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  1. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    International Nuclear Information System (INIS)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  2. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    Science.gov (United States)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; hide

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  3. Dynamic Capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case enterprises, as we would expect. It was, however, not possible to establish a positive relationship between innovation performance and profitability. Nor was there any positive...... relationship between dynamic capabilities and profitability....

  4. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  5. Manufacturing and metrology for IR conformal windows and domes

    Science.gov (United States)

    Ferralli, Ian; Blalock, Todd; Brunelle, Matt; Lynch, Timothy; Myer, Brian; Medicus, Kate

    2017-05-01

    Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes. Additionally, standard metrology tools cannot measure these surfaces. Desired substrates are typically hard ceramics, including poly-crystalline alumina or aluminum oxynitride. Notwithstanding the challenges that the hardness provides to manufacturing, these crystalline materials can be highly susceptible to grain decoration creating unacceptable scatter in optical systems. In this presentation, we will show progress towards addressing the unique challenges of manufacturing conformal windows and domes. Particular attention is given to our robotic polishing platform. This platform is based on an industrial robot adapted to accept a wide range of tooling and parts. The robot's flexibility has provided us an opportunity to address the unique challenges of conformal windows. Slurries and polishing active layers can easily be changed to adapt to varying materials and address grain decoration. We have the flexibility to change tool size and shape to address the varying sizes and shapes of conformal optics. In addition, the robotic platform can be a base for a deflectometry-based metrology tool to measure surface form error. This system, whose precision is independent of the robot's positioning accuracy, will allow us to measure optics in-situ saving time and reducing part risk. In conclusion, we will show examples of the conformal windows manufactured using our developed processes.

  6. La metrología en nuestras vidas

    OpenAIRE

    Jaramillo, Zaira

    2010-01-01

    A primera vista, la palabra "Metrología" nos trae a la mente la idea de condiciones meteorológicas. Nada más alejado de la realidad, porque la Meteorología es la disciplina que se encarga de estudiar las condiciones del tiempo y la Metrología se encarga de estudiar las mediciones.

  7. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs

  8. Differential Evolution for Many-Particle Adaptive Quantum Metrology

    NARCIS (Netherlands)

    Lovett, N.B.; Crosnier, C.; Perarnau- Llobet, M.; Sanders, B.

    2013-01-01

    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods

  9. Silver nanoparticles: technological advances, societal impacts, and metrological challenges

    Science.gov (United States)

    Calderón-Jiménez, Bryan; Johnson, Monique E.; Montoro Bustos, Antonio R.; Murphy, Karen E.; Winchester, Michael R.; Vega Baudrit, José R.

    2017-02-01

    Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.

  10. On in-vivo skin topography metrology and replication techniques

    International Nuclear Information System (INIS)

    Rosen, B-G; Blunt, L; Thomas, T R

    2005-01-01

    Human skin metrology is an area of growing interest for many disciplines both in research and for commercial purposes. Changes in the skin topography are an early stage diagnosis tool not only for diseases but also give indication of the response to medical and cosmetic treatment. This paper focuses on the evaluation of in vivo and in vitro methodologies for accurate measurements of skin and outlines the quantitative characterisation of the skin topography. The study shows the applicability of in-vivo skin topography characterisation and also the advantages and limitations compared to conventional replication techniques. Finally, aspects of stripe projection methodology and 3D characterisation are discussed as a background to the proposed methodology in this paper

  11. The At-Wavelength Metrology Facility at BESSY-II

    Directory of Open Access Journals (Sweden)

    Franz Schäfers

    2016-02-01

    Full Text Available The At-Wavelength Metrology Facility at BESSY-II is dedicated to short-term characterization of novel UV, EUV and XUV optical elements, such as diffraction gratings, mirrors, multilayers and nano-optical devices like reflection zone plates. It consists of an Optics Beamline PM-1 and a Reflectometer in a clean-room hutch as a fixed end station. The bending magnet Beamline is a Plane Grating Monochromator beamline (c-PGM equipped with an SX700 monochromator. The beamline is specially tailored for efficient high-order suppression and stray light reduction. The versatile 11-axes UHV-Reflectometer can house life-sized optical elements, which are fully adjustable and of which the reflection properties can be measured in the full incidence angular range as well as in the full azimuthal angular range to determine polarization properties.

  12. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges.

    Science.gov (United States)

    Calderón-Jiménez, Bryan; Johnson, Monique E; Montoro Bustos, Antonio R; Murphy, Karen E; Winchester, Michael R; Vega Baudrit, José R

    2017-01-01

    Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.

  13. 3-D metrology applied to superconducting dipole magnets for LHC

    International Nuclear Information System (INIS)

    Dupont, M.; Missiaen, D.; Peguiron, L.

    1999-01-01

    The construction of the Large Hadron Collider (LHC) requires the manufacture of 1232 superconducting dipole magnets containing two beam channels in a common mechanical structure. These dipole magnets, which produce the required magnetic field to deflect the particles along a circular trajectory, have to be bent in their horizontal plane in order to ensure the largest mechanical aperture. Very tight tolerances on the geometry of these magnets have to be imposed during their fabrication in order to minimise, during operation, the possible losses of particles, which circulate in rather small channels and to ensure the alignment of the adjacent magnets in the ring tunnel. This necessitates a thorough metrological inspection of the magnet geometry and an accurate positioning of some of its components. This paper presents the measuring system and the developed methodology to realize these operations. The results on the first 15 m long dipole magnet are shown. (author)

  14. Dimensional measurement of micro-moulded parts by computed tomography

    DEFF Research Database (Denmark)

    Ontiveros, S.; Yagüe-Fabra, J.A.; Jiménez, R.

    2012-01-01

    Computed tomography (CT) is progressively assuming an important role in metrology applications and great efforts are being made in order to turn it into a reliable and standardized measuring technology. CT is typically used for non-destructive tests, but it is currently becoming very popular for ...... and the analysis of the results provide valuable conclusions about the advantages and drawbacks of using CT metrology in comparison with other measuring systems when these techniques are employed for the quality control of micro-moulded parts.......Computed tomography (CT) is progressively assuming an important role in metrology applications and great efforts are being made in order to turn it into a reliable and standardized measuring technology. CT is typically used for non-destructive tests, but it is currently becoming very popular...... for dimensional metrology applications due to its strategic advantages such as the capability of performing measurements on both the component's surface and volume, allowing inspection possibilities to otherwise non-accessible internal features. This paper focuses on the dimensional verification of two micro...

  15. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    Science.gov (United States)

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly

  16. In-situ virtual metrology for the silicon-dioxide etch rate by using optical emission spectroscopy data

    International Nuclear Information System (INIS)

    Kim, Boomsoo; Hong, Sangjeen

    2014-01-01

    As a useful tool for process control in a high volume semiconductor manufacturing environment, virtual metrology for the etch rate in a plasma etch process is investigated using optical emission spectroscopy (OES) data. Virtual metrology is a surrogate measurement taken from the process instead of from direct measurement, and it can provide in-situ metrology of a wafer's geometry from a predictive model. A statistical regression model that correlates the selected wavelengths of the optical emission spectra to the etch rate is established using the OES data collected over 20 experimental runs. In addition, an argon actinometry study is employed to quantify the OES data, and it provides valuable insight into the analysis of the OES data. The established virtual metrology model is further verified with an additional 20 runs of data. As a result, the virtual metrology model with both process recipe tool data and in-situ data shows higher prediction accuracy by as much as 56% compared with either the process recipe tool data or the in-situ data alone.

  17. Gossiping Capabilities

    DEFF Research Database (Denmark)

    Mogensen, Martin; Frey, Davide; Guerraoui, Rachid

    Gossip-based protocols are now acknowledged as a sound basis to implement collaborative high-bandwidth content dissemination: content location is disseminated through gossip, the actual contents being subsequently pulled. In this paper, we present HEAP, HEterogeneity Aware gossip Protocol, where...... nodes dynamically adjust their contribution to gossip dissemination according to their capabilities. Using a continuous, itself gossip-based, approximation of relative capabilities, HEAP dynamically leverages the most capable nodes by (a) increasing their fanouts (while decreasing by the same proportion...... declare a high capability in order to augment their perceived quality without contributing accordingly. We evaluate HEAP in the context of a video streaming application on a 236 PlanetLab nodes testbed. Our results shows that HEAP improves the quality of the streaming by 25% over a standard gossip...

  18. YieldStar based reticle 3D measurements and its application

    Science.gov (United States)

    Vaenkatesan, Vidya; Finders, Jo; ten Berge, Peter; Plug, Reinder; Sijben, Anko; Schellekens, Twan; Dillen, Harm; Pocobiej, Wojciech; Jorge, Vasco G.; van Dijck, Jurgen

    2016-09-01

    YieldStar (YS) is an established ASML-built scatterometer that is capable of measuring wafer Critical Dimension (CD), Overlay and Focus. In a recent work, the application range of YS was extended to measure 3D CD patterns on a reticle (pattern CD, height, Side Wall Angle-SWA). The primary motivation for this study came from imaging studies that indicated a need for measuring and controlling reticle 3D topography. CD scanning electron microscope (CD-SEM), Atomic force microscope (AFM), 3D multiple detector SEM (3D-SEM) are the preferred tools for reticle metrology. While these tools serve the industry well, the current research to the impact of reticle 3D involves extensive costs, logistic challenges and increased reticle lead time. YS provides an attractive alternative as it can measure pattern CD, SWA and height in a single measurement and at high throughput. This work demonstrates the capability of YS as a reticle metrology tool.

  19. Intranet and Internet metrological workstation with photonic sensors and transmission

    Science.gov (United States)

    Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Dybko, Artur

    1999-05-01

    We describe in this paper a part of a telemetric network which consists of a workstation with photonic measurement and communication interfaces, structural fiber optic cabling (10/100BaseFX and CAN-FL), and photonic sensors with fiber optic interfaces. The station is equipped with direct photonic measurement interface and most common measuring standards converter (RS, GPIB) with fiber optic I/O CAN bus, O/E converters, LAN and modem ports. The station was connected to the Intranet (ipx/spx) and Internet (tcp/ip) with separate IP number and DNS, WINS names. Virtual measuring environment system program was written specially for such an Intranet and Internet station. The measurement system program communicated with the user via a Graphical User's Interface (GUI). The user has direct access to all functions of the measuring station system through appropriate layers of GUI: telemetric, transmission, visualization, processing, information, help and steering of the measuring system. We have carried out series of thorough simulation investigations and tests of the station using WWW subsystem of the Internet. We logged into the system through the LAN and via modem. The Internet metrological station works continuously under the address http://nms.ipe.pw.edu.pl/nms. The station and the system hear the short name NMS (from Network Measuring System).

  20. Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform

    International Nuclear Information System (INIS)

    Brau-Avila, A; Valenzuela-Galvan, M; Herrera-Jimenez, V M; Santolaria, J; Aguilar, J J; Acero, R

    2017-01-01

    The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs. (paper)

  1. Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform

    Science.gov (United States)

    Brau-Avila, A.; Santolaria, J.; Acero, R.; Valenzuela-Galvan, M.; Herrera-Jimenez, V. M.; Aguilar, J. J.

    2017-03-01

    The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs.

  2. Capability beliefs regarding evidence-based practice are associated with application of EBP and research use: validation of a new measure.

    Science.gov (United States)

    Wallin, Lars; Boström, Anne-Marie; Gustavsson, J Petter

    2012-08-01

    Beliefs about capabilities, or self-efficacy, is a construct originating in social cognitive psychology. Capability beliefs have been found to be positively associated with intention and healthcare practice behaviour. A measure of an individual's beliefs about his/her capability to apply the components of evidence-based practice (EBP) has potential to be useful in implementation research. To evaluate the concurrent validity and internal structure of a new scale measuring nurses' capability beliefs regarding EBP. Data were taken from a prospective longitudinal study in Sweden (the Longitudinal Analyses of Nursing Education and Entry in Worklife [LANE]). A cohort of nursing students who graduated in the autumn of 2004 that was followed up 2 years after their graduation was used (n= 1,256). Concurrent validity was tested relating different levels of capability beliefs to extent of research use and application of EBP. An item-response approach was applied in the evaluation of internal structure of the proposed scale (six items). The psychometric analyses indicated that the six items could be summed to reflect a one-dimensional scale. Nurses with the highest level of capability beliefs reported that they used research findings in clinical practice more than twice as often as those with lower levels of capability beliefs. They also participated in the implementation of evidence seven times more often. There is a need for further studies of the construct and predictive validity of the scale. It should also be validated in other groups of health professionals. Learning including mastery experiences, role modelling, social persuasion, and manageable stress could be used in undergraduate education as well as practice development to increase beliefs about capabilities which might open the way to increased application of EBP in healthcare practice. This new measure is well grounded in social cognitive theory, functions as a one-dimensional scale and possesses promising

  3. Metrology for WEST components design and integration optimization

    International Nuclear Information System (INIS)

    Brun, C.; Archambeau, G.; Blanc, L.; Bucalossi, J.; Chantant, M.; Gargiulo, L.; Hermenier, A.; Le, R.; Pilia, A.

    2015-01-01

    Highlights: • Metrology methods. • Interests of metrology campaign to optimize margins by reducing uncertainties. • Assembly problems are solved and validated on a numerical mock up. • Post treatment of full 3DScan of the vacuum vessel. - Abstract: On WEST new components will be implemented in an existing environment, emphasis has to be put on the metrology to optimize the design and the assembly. Hence, at a particular stage of the project, several components have to coexist in the limited vessel. Therefore, all the difficulty consists in validating the mechanical interfaces between existing components and new one; minimize the risk of the assembling and to maximize the plasma volume. The CEA/IRFM takes the opportunity of the ambitious project to sign a partnership with an industrial specialized in multipurpose metrology domains. To optimize the assembly procedure, the IRFM Assembly group works in strong collaboration with its industrial, to define and plan the campaigns of metrology. The paper will illustrate the organization, methods and results of the dedicated metrology campaigns have been defined and carried out in the WEST dis/assembly phase. To conclude, the future needs of metrology at CEA/IRFM will be exposed to define the next steps.

  4. Metrology network: a case study on the metrology network of defense and security from SIBRATEC

    International Nuclear Information System (INIS)

    Pereira, Marisa Ferraz Figueira

    2016-01-01

    This study is focused on understanding the effects of the infrastructure improvement of these laboratories and the role of network management in offering support and metrological services to the defense and security sector enterprises, within the project purposes. It is also aimed identify gaps on offering calibration and, or testing services to supply demands of the defense and security industries, and analyze adequacy of RDS project to demands of defense and security industries, with the purpose to contribute with information for future actions. The experimental research is qualitative type, with exploratory research characteristics, based on case study. It was structured in two parts, involving primary data collection and secondary data. In order to collect the primary data two questionnaires were prepared, one (Questionnaire A) to the five RDS laboratories representatives and other (Questionnaire B) to the contacts of 63 defense and security enterprises which need calibration and test services, possible customers of RDS laboratories. Answers from four representatives of RDS laboratories and from 26 defense and security enterprises were obtained. The collection of secondary data was obtained from documentary research. The analysis was made based on five dimensions defined in order to organize and improve the understanding of the research setting. They are RDS project coverage, regional, network management, metrological traceability and importance and visibility of RDS. The results indicated that the performance of RDS does not interfere, by that time, in the metrological traceability of the products of the defense and security enterprises that participated in the research. (author)

  5. Metrology for γ-radiation spectrometry in a radiation monitoring system

    International Nuclear Information System (INIS)

    Khaikovich, I.M.; Shevrygin, O.N.; Fominykh, V.I.

    1993-01-01

    The rapid measurement of the characteristics of radionuclides is a priority when utilizing nuclear energy because of the needs of environmental conservation. This is particularly the case for long-lived nuclear-fuel fission products, 137,137 Cs, 144 Ce, 60 Co, etc., which as a rule are sources of high-energy γ-radiation. These can be measured by γ-ray spectrometry using scintillation or semiconductor devices. When choosing the metrological models, the starting points are the real characteristics of the distribution of the radionuclides in the soil (rock) and the need to estimate their surface activity and the reserves per unit area, i.e., the parameters from which one can estimate the influence of the radioactivity on nature and can decide the use of land areas. The methodology and the calculations presented show that a single metrological system for radiation monitoring can be constructed using multichannel geophysical radiometers (gamma spectrometers) while relying on a system of initial standard samples of small size. Such a metrological system at present provides all the necessary initial means for measuring the effective γ-radiation surface activity of 137,134 Cs and the mass fraction of the natural radioactive elements. Using these initial means of measurement, surveyed areas in the Leningrad and Tula provinces have been certified as State standard samples in terms of the eight parameters: the surface contamination activity of 137,134 Cs, the reserves of these per unit area, the mass fraction of the natural radioactive elements (potassium, uranium and thorium), the power of the equivalent (exposed) γ-radiation dose at a height of 1 m above the surface. It is intended to use the certified metrological surveyed areas to provide traceability and the required measurement accuracy when studying the contamination in European territories resulting from the accident at the Chernobyl nuclear power station

  6. Tests of operating conditions for metrological application of HTS Josephson arrays

    International Nuclear Information System (INIS)

    Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M

    2006-01-01

    We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array

  7. Dimensional metrology for process and part quality control in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Tosello, Guido; Gasparin, Stefania

    2011-01-01

    dimensions are scaled down and geometrical complexity of objects is increased, the available measurement technologies appear not sufficient. New solutions for measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration are necessary if micro......Micro manufacturing has gained interest over the last decade as the demand for micro mechanical components has increased. The need for dimensional metrology at micro scale is evident both in terms of quality assurance of components and products and in terms of process control. As critical...... manufacturing is to develop into industrial manufacturing solutions. In this paper the application of dimensional precision metrology to both component and process quality control will be demonstrated. The parts investigated are micro injection moulded polymer parts, typical for the field of micro manufacturing....

  8. OBSERVATIONS ON THE PERFORMANCE OF X-RAY COMPUTED TOMOGRAPHY FOR DIMENSIONAL METROLOGY

    Directory of Open Access Journals (Sweden)

    H. C. Corcoran

    2016-06-01

    Full Text Available X-ray computed tomography (XCT is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  9. Observations on the Performance of X-Ray Computed Tomography for Dimensional Metrology

    Science.gov (United States)

    Corcoran, H. C.; Brown, S. B.; Robson, S.; Speller, R. D.; McCarthy, M. B.

    2016-06-01

    X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  10. Capability approach

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal; Kjeldsen, Christian Christrup

    Lærebogen er den første samlede danske præsentation af den af Amartya Sen og Martha Nussbaum udviklede Capability Approach. Bogen indeholder en præsentation og diskussion af Sen og Nussbaums teoretiske platform. I bogen indgår eksempler fra såvel uddannelse/uddannelsespolitik, pædagogik og omsorg....

  11. Plutonium glove boxes - metrology and operational states

    International Nuclear Information System (INIS)

    Thyer, A.M.

    2001-01-01

    The main objective was to undertake a literature review in support of NII's ongoing work in improving safety in the nuclear industry to help define suitable standards of cleanliness for plutonium glove boxes. This is to cover the following areas: existing or proposed national/international standards relating to plutonium glove box cleanliness management; practicable metrology options for assessing the plutonium content of glove boxes; any available dose information relating to the operation of modern and 'old design'; current contamination levels of specific significance (i.e. any accepted level in decommissioning/waste terms, typical criticality limits (if available), any box plutonium loadings that are documented with corresponding operator doses etc.); and, techniques for the decontamination of plutonium glove boxes and their relative effectiveness. This should then form the basis of any further development work undertaken by the UK nuclear industry. Main recommendations are as follows: 1) No information could be found in open literature on acceptable levels of contamination in boxes and action levels for cleanup. If these are not available in closed publications the 2) Where possible, the decontamination methods identified should be tested and dose information recorded against each method to allow informed decisions on which is the optimum technique for a particular form of contamination. 3) Consideration should be given to utilisation of metrology options which have the lowest potential for exposure of operators. Preferred options, may be detection from the outside of boxes using hand-held or permanently located radiation detectors, or semi-intrusive methods such as air-ionisation readings which would require one-off installation of detectors in ductwork

  12. Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method

    International Nuclear Information System (INIS)

    Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin

    2015-01-01

    Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility. (paper)

  13. Designing and Validating a Model for Measuring Sustainability of Overall Innovation Capability of Small and Medium-Sized Enterprises

    OpenAIRE

    Rahman, Mohd; Doroodian, Mahmood; Kamarulzaman, Yusniza; Muhamad, Norhamidi

    2015-01-01

    The business environment is currently characterized by intensified competition at both the national and firm levels. Many studies have shown that innovation positively affect firms in enhancing their competitiveness. Innovation is a dynamic process that requires a continuous, evolving, and mastered management. Evaluating the sustainability of overall innovation capability of a business is a major means of determining how well this firm effectively and efficiently manages its innovation proces...

  14. True-color 3D surface metrology for additive manufacturing using interference microscopy

    OpenAIRE

    DiSciacca, Jack; Gomez, Carlos; Thompson, Adam; Lawes, Simon; Leach, Richard; Colonna de Lega, Xavier; de Groot, Peter

    2017-01-01

    Coherence scanning interferometry (CSI) is widely used for surface topography characterisation. With the ability to measure both rough surfaces with the high slopes and optical finishes, CSI has made contibutions in fields from industrial machining to optical fabrication and polishing [1,2]. While the low coherence sources for CSI are typically broadband and suitable for color imaging, the metrology is usually performed without regards for the color information [3]. We present color surface t...

  15. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Czech Academy of Sciences Publication Activity Database

    Řeřucha, Šimon; Yacoot, A.; Pham, Minh Tuan; Čížek, Martin; Hucl, Václav; Lazar, Josef; Číp, Ondřej

    2017-01-01

    Roč. 28, č. 4 (2017), s. 1-11, č. článku 045204. ISSN 0957-0233 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : optical metrology * DBR laser diode * frequency stabilization * laser interferometry * dimensional metrology * iodine stabilization * displacement measurement Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.585, year: 2016

  16. Alignment measurements uncertainties for large assemblies using probabilistic analysis techniques

    CERN Document Server

    AUTHOR|(CDS)2090816; Almond, Heather

    Big science and ambitious industrial projects continually push forward with technical requirements beyond the grasp of conventional engineering techniques. Example of those are ultra-high precision requirements in the field of celestial telescopes, particle accelerators and aerospace industry. Such extreme requirements are limited largely by the capability of the metrology used, namely, it’s uncertainty in relation to the alignment tolerance required. The current work was initiated as part of Maria Curie European research project held at CERN, Geneva aiming to answer those challenges as related to future accelerators requiring alignment of 2 m large assemblies to tolerances in the 10 µm range. The thesis has found several gaps in current knowledge limiting such capability. Among those was the lack of application of state of the art uncertainty propagation methods in alignment measurements metrology. Another major limiting factor found was the lack of uncertainty statements in the thermal errors compensatio...

  17. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform

    Science.gov (United States)

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-01-01

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722

  18. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform.

    Science.gov (United States)

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-11-18

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  19. ENTREPRENEURIAL CAPABILITIES

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Nielsen, Thorkild

    2003-01-01

    The aim of this article is to analyse entrepreneurship from an action research perspective. What is entrepreneurship about? Which are the fundamental capabilities and processes of entrepreneurship? To answer these questions the article includes a case study of a Danish entrepreneur and his networ....... Finally, the article discuss, how more long term action research methods could be integrated into the entrepreneurial processes and the possible impacts of such an implementation?...

  20. Some answers to new challenges in optical metrology

    Science.gov (United States)

    Osten, W.

    2008-09-01

    The visible trend in the implementation of new technologies and creation of new products is the continuous reduction of feature sizes. However, in the same way as the feature sizes are decreasing, the theoretical and practical constraints of making them and ensuring their quality are increasing. Consequently, modern production and inspection technologies are confronted with a bundle of challenges. An important barrier for optical imaging and sensing is the diffraction limited lateral resolution. The observation of this physical limitation is of increasing importance, not only for microscopic techniques but also for the application of 3D-measurement techniques on wafer scale level. A further challenge is the reliable detection of imperfections and material faults within the production chain. This means in-line metrology/defectoscopy is a must for future production systems. Only the real-time feedback of the inspection results into the production process can contribute to a consistent quality assurance in processes with high cost risk. Moreover the reliable measurement of free form surfaces, both technical and optical, the assurance of the traceability and the certified assessment of the uncertainty of the measurement results are ongoing challenges. The challenges and the physical limitations are addressed here by new approaches for testing semiconductor structures with enhanced resolution, the measurement of aspheric lenses with increased flexibility and the inspection of micro components with improved traceability.