WorldWideScience

Sample records for metrology beamline endstation

  1. Nanotomography endstation at the P05 beamline: Status and perspectives

    Science.gov (United States)

    Greving, I.; Ogurreck, M.; Marschall, F.; Last, A.; Wilde, F.; Dose, T.; Burmester, H.; Lottermoser, L.; Müller, M.; David, C.; Beckmann, F.

    2017-06-01

    The Imaging Beamline IBL/P05 at the DESY storage ring PETRA III, operated by the Helmholtz-Zentrum Geesthacht, has two dedicated endstations optimized for micro- and nanotomography experiments [1-3]. Here we present the status of the nanotomography endstation, highlight the latest instrumentation upgrades and present first experimental results. In particular in materials science, where structures with ceramics or metallic materials are of interest, X-ray energies of 15 keV and above are required even for sample sizes of several 10 μm in diameter. The P05 imaging beamline is dedicated to materials science and is designed to allow for imaging applications with X-ray energies of 10 to 50 keV. In addition to the full field X-ray microscopy setup, the layout of the nanotomography endstation allows switching to cone-beam configuration. Kinematics for X-ray optics like compound refractive lenses (CRLs), Fresnel zone plates (FZP) or beam-shaping optics are implemented and the installation of a Kirkpatrick Baez-mirror (KB mirror) system is foreseen at a later stage of the beamline development. Altogether this leads to a high flexibility of the nanotomography setup such that the instrument can be tailored to the specific experimental requirements of a range of sample systems.

  2. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    International Nuclear Information System (INIS)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user's risk and may lead to rejection of the whole assembly

  3. Layout and first results of the nanotomography endstation at the P05 beamline at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Ogurreck, M.; Greving, I.; Beckmann, F.; Wilde, F.; Müller, M. [Institute of Materials Research, Helmholtz–Zentrum Geesthacht (Germany); Marschall, F.; Vogt, H.; Last, A. [Institute of Microstructure Technology, Karlsruhe Institute of Technology (Germany); Rosario, J. J. do [Institute of Advanced Ceramics, Technical University Hamburg–Harburg (Germany); Leib, E. W. [Institute of Physical Chemistry, University of Hamburg (Germany)

    2016-01-28

    The Helmholtz-Zentrum Geesthacht operates the P05 Imaging Beamline at the DESY storage ring PETRA III. This beamline is dedicated to micro- and nanotomography with two endstations. This paper will present the nanotomography endstation layout and first results obtained from commissioning and test experiments. First tests have been performed with CRLs as X-ray objectives and newly developed rolled X-ray prism lenses as condenser optics. This setup allows a resolution of 100 nm half period with an effective detector pixel size of 15nm. A first tomograph of a photonic glass sample was measured in early 2014.

  4. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.; Karlsson, Patrik G.; Aksoy, Funda; Lundqvist, Måns; Wannberg, Björn; Mun, Bongjin S.; Hussain, Zahid; Liu, Zhi

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  5. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, P.M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Bogovac, M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Sghaier, H. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Institut Superieur d’Informatique et de Mathematiques de Monastir (ISIMM), Departement de technologie, 5000 Monastir (Tunisia); Leani, J.J. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); IFEG – CONICET, Facultad de Matematica Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); Migliori, A.; Padilla-Alvarez, R. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Czyzycki, M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Osan, J. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Environmental Physics Department, Hungarian Academy of Sciences Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest (Hungary); Kaiser, R.B. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); and others

    2016-10-11

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (µXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools. - Highlights: • A new methodology for control of a synchrotron beamline end-station is shown. • The new control system comprises a novel binding of Tango control system with LabVIEW interface. • The reliability of the control system is demonstrated by examples of analytical applications.

  6. User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines

    Science.gov (United States)

    Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob

    2017-11-01

    A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.

  7. At-wavelength Optical Metrology Development at the ALS

    International Nuclear Information System (INIS)

    Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Smith, Brian V.; Domning, Edward E.; McKinney, Wayne R.; Warwick, Tony

    2010-01-01

    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application.

  8. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  9. Characterization of the Metrology beamline at the SOLEIL synchrotron and application to the determination of mass attenuation coefficients of Ag and Sn in the range 3.5 ≤ E ≤ 28 keV

    International Nuclear Information System (INIS)

    Menesguen, Y.; Lepy, M.C.

    2011-01-01

    This work presents the new Metrology beamline at the SOLEIL synchrotron facility and a first attempt to quantitative measurements of mass attenuation coefficients for Ag and Sn performed on the hard X-ray branch. We first describe the beamline itself and the characterization performed of the unfocused monochromatic beam running mode. We performed a first experimental measurement of mass attenuation coefficients in the range 3.5 ≤ E ≤ 28 keV and we also derived the K-absorption and L-absorption jump ratios. The results are compared with theoretical values as well as with other experimental data and agree well with previous published values. (authors)

  10. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  11. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U H; Pešić, Z D; Fanis, A De; Rau, C

    2013-01-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  12. Effects Based Operations (EDO) Endstate

    National Research Council Canada - National Science Library

    James, Ron; Daniels, Troy

    2005-01-01

    .... An analysis of the combination of physical (e.g. petroleum, electric power) and behavioral (e.g. leadership) COGs at the operational level models was performed and the results were incorporated in the EndState Tool...

  13. ALS beamline design requirements: A guide for beamline designers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This manual is written as a guide for researchers in designing beamlines and endstations acceptable for use at the ALS. It contains guidelines and policies related to personnel safety and equipment and vacuum protection. All equipment and procedures must ultimately satisfy the safety requirements set aside in the Lawrence Berkeley National Laboratory (LBNL) Health and Safety Manual (PUB-3000) which is available from the ALS User Office or on the World WideWeb from the LBNL Homepage (http:// www.lbl.gov).

  14. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron

    International Nuclear Information System (INIS)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J.; Gee, Christine; Harrop, Stephen J.; Mudie, Nathan; Panjikar, Santosh; Price, Jason R.; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom

    2015-01-01

    The macromolecular crystallography beamline MX1 at the Australian Synchrotron is described. MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented

  15. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U.H.; Parson, A.; Rau, C.

    2017-01-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector. (paper)

  16. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  17. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    International Nuclear Information System (INIS)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre; Jordan, Inga; Wörner, Hans Jakob; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto; Bokhoven, Jeroen A. van

    2013-01-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented

  18. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    Science.gov (United States)

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  19. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Jordan, Inga; Wörner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2013-07-15

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  20. Diamond beamline I07: a beamline for surface and interface diffraction.

    Science.gov (United States)

    Nicklin, Chris; Arnold, Tom; Rawle, Jonathan; Warne, Adam

    2016-09-01

    Beamline I07 at Diamond Light Source is dedicated to the study of the structure of surfaces and interfaces for a wide range of sample types, from soft matter to ultrahigh vacuum. The beamline operates in the energy range 8-30 keV and has two endstations. The first houses a 2+3 diffractometer, which acts as a versatile platform for grazing-incidence techniques including surface X-ray diffraction, grazing-incidence small- (and wide-) angle X-ray scattering, X-ray reflectivity and grazing-incidence X-ray diffraction. A method for deflecting the X-rays (a double-crystal deflector) has been designed and incorporated into this endstation, extending the surfaces that can be studied to include structures formed on liquid surfaces or at liquid-liquid interfaces. The second experimental hutch contains a similar diffractometer with a large environmental chamber mounted on it, dedicated to in situ ultrahigh-vacuum studies. It houses a range of complementary surface science equipment including a scanning tunnelling microscope, low-energy electron diffraction and X-ray photoelectron spectroscopy ensuring that correlations between the different techniques can be performed on the same sample, in the same chamber. This endstation allows accurate determination of well ordered structures, measurement of growth behaviour during molecular beam epitaxy and has also been used to measure coherent X-ray diffraction from nanoparticles during alloying.

  1. 10 years of protein crystallography at AR-NW12A beamline

    Science.gov (United States)

    Chavas, L. M. G.; Yamada, Y.; Hiraki, M.; Igarashi, N.; Matsugaki, N.; Wakatsuki, S.

    2013-03-01

    The exponential growth of protein crystallography can be observed in the continuously increasing demand for synchrotron beam time, both from academic and industrial users. Nowadays, the screening of a profusion of sample crystals for more and more projects is being implemented by taking advantage of fully automated procedures at every level of the experiments. The insertion device AR-NW12A beamline is one of the five macromolecular crystallography (MX) beamlines at the Photon Factory (PF). Currently the oldest MX beamline operational at the High Energy Accelerator Research Organization (KEK), the end-station was launched in 2001 as part of an upgrade of the PF Advanced Ring. Since its commissioning, AR-NW12A has been operating as a high-throughput beamline, slowly evolving to a multipurpose end-station for MX experiments. The development of the beamline took place about a decade ago, in parallel with a drastic development of protein crystallography and more general synchrotron technology. To keep the beamline up-to-date and competitive with other MX stations in Japan and worldwide, new features have been constantly added, with the goal of user friendliness of the various beamline optics and other instruments. Here we describe the evolution of AR-NW12A for its tenth anniversary. We also discuss the plans for upgrades for AR-NW12A, the future objectives in terms of the beamline developments, and especially the strong desire to open the beamline to a larger user community.

  2. FAMS DECOMMISSIONING END-STATE ALTERNATIVE EVALUATION

    International Nuclear Information System (INIS)

    Grimm, B; Stephen Chostner, S; Brenda Green, B

    2006-01-01

    Nuclear Material Management (NMM) completed a comprehensive study at the request of the Department of Energy Savannah River Operations Office (DOE-SR) in 2004 (Reference 11.1). The study evaluated the feasibility of removal and/or mitigation of the Pu-238 source term in the F-Area Material Storage (FAMS) facility during on-going material storage operations. The study recommended different options to remove and/or mitigate the Pu-238 source term depending on its location within the facility. During April 2005, the Department of Energy (DOE) sent a letter of direction (LOD) to Washington Savannah River Company (WSRC) directing WSRC to implement a new program direction that would enable an accelerated shutdown and decommissioning of FAMS (Reference 11.2). Further direction in the LOD stated that effective December 1, 2006 the facility will be transitioned to begin deactivation and decommissioning (D and D) activities. To implement the LOD, Site D and D (SDD) and DOE agreed the planning end-state would be demolition of the FAMS structure to the building slab. SDD developed the D and D strategy, preliminary cost and schedule, and issued the deactivation project plan in December 2005 (Reference 11.3). Due to concerns and questions regarding the FAMS planning end-state and in support of the project's Critical Decision 1, an alternative study was performed to evaluate the various decommissioning end-states and the methods by which those end-states are achieved. This report documents the results of the alternative evaluation which was performed in a structured decision-making process as outlined in the E7 Manual, Procedure 2.15, ''Alternative Studies'' (Reference 11.4)

  3. I20; the Versatile X-ray Absorption spectroscopy beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Diaz-Moreno, S; Hayama, S; Amboage, M; Freeman, A; Sutter, J; Duller, G

    2009-01-01

    The Versatile Spectroscopy beamline at Diamond Light Source, I20, is currently under construction and aims to begin operation in late 2009 and early 2010. The beamline aims to cover applications from physics, chemistry and biology through materials, environmental and geological science. Three very distinctive modes of operation will be offered at the beamline: scanning X-ray Absorption spectroscopy (XAS), XAS in dispersive mode, and X-ray emission spectroscopy (XES). To achieve this, the beamline has been designed around two independent experimental end-stations operating from a pair of canted wigglers located in a 5m diamond straight section. One branch of the beamline will deliver monochromatic x-ray radiation of high spectral purity to one of the experimental hutches, whilst the other branch will constitute an energy dispersive spectrometer. The novel design of the beamline allows both branches to operate simultaneously.

  4. CHARACTERIZATION OF THE NEW NSLS INFARED MICROSPECTROSCOPY BEAMLINE U10B.

    Energy Technology Data Exchange (ETDEWEB)

    CARR,G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  5. Characterization of the new NSLS infrared microspectroscopy beamline U10B

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  6. The EMIL project at BESSY II: Beamline design and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hendel, Stefan, E-mail: stefan.hendel@helmholtz-berlin.de; Schäfers, Franz; Reichardt, Gerd; Scheer, Michael; Bahrdt, Johannes; Lips, Klaus [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Hävecker, Michael [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); MPI for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)

    2016-07-27

    The Energy Materials In-Situ Laboratory Berlin (EMIL) at BESSY-II is currently under construction. Two canted undulators for soft- and hard X-rays will be installed into the BESSY II storage ring in one straight section, complex beamlines with more than twenty optical elements will be set up and a new laboratory building attached to BESSY II will host three endstations and a large UHV-transfer system connecting various HV- and UHV-deposition systems. The undulators, UE48 and U17, provide a broad energy spectrum of 80 - 10000 eV, of which the harder radiation (>700 eV) is provided by a cryogenic in-vacuum device. Three monochromators (two plane grating monochromators (PGM) and one LN{sub 2}-cooled double crystal monochromator (DCM)) disperse the radiation into separate pathways of 65 m length, while downstream of the monochromators split-mirror chambers distribute the photon beam to one (or simultaneously to two) of five upcoming endstations. Three of these endstations are designed for the full energy range with spatial overlap of the soft and hard foci, whereas one endstation (PEEM) uses only the soft and another one (PINK) only the hard branch, respectively.

  7. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  8. Radioactivity metrology

    International Nuclear Information System (INIS)

    Legrand, J.

    1979-01-01

    Some aspects of the radioactivity metrology are reviewed. Radioactivity primary references; absolute methods of radioactivity measurements used in the Laboratoire de Metrologie des Rayonnements Ionisants; relative measurement methods; traceability through international comparisons and interlaboratory tests; production and distribution of secondary standards [fr

  9. Future metrology needs for FEL reflective optics

    International Nuclear Information System (INIS)

    Assoufid, L.

    2000-01-01

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed

  10. Future metrology needs for FEL reflective optics.

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  11. Vacuum ultraviolet beamline at the Swiss Light Source for chemical dynamics studies

    International Nuclear Information System (INIS)

    Johnson, Melanie; Bodi, Andras; Schulz, Lothar; Gerber, Thomas

    2009-01-01

    A bend-magnet vacuum ultraviolet (VUV) beamline, intended for chemical dynamics studies, was constructed and brought into operation at the Swiss Light Source (SLS) of the Paul Scherrer Institut. The beamline delivers synchrotron radiation in the 5-30 eV photon energy range with a photon flux of 10 11 photons/s at 10 eV and 10 12 photons/s at 20 eV with a resolving power of 2500. The resolving power increases to 10 4 at the cost of photon flux. An in-house designed rare gas filter is used to suppress higher harmonic radiation by a factor of >10 4 , yielding purely monochromatic light in the energy range of 5-21.6 eV. The filter is compact, easy to align, requires a total pumping power of less than 645 l/s and consumes only 3 normal l/h of filter gas. It is located at the end of the beamline, right in front of the experimental endstation. It is usually operated at a higher pressure than the endstation, which offers the additional benefit of protecting the beamline vacuum from sample contamination.

  12. Temperature metrology

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.

    2005-05-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  13. Temperature metrology

    International Nuclear Information System (INIS)

    Fischer, J; Fellmuth, B

    2005-01-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  14. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-01-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation

  15. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min, E-mail: chenmin@sinap.ac.cn; Xiao, Tiqiao; Xu, Hongjie

    2015-07-11

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  16. The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility

    Science.gov (United States)

    Ji, Te; Tong, Yajun; Zhu, Huachun; Zhang, Zengyan; Peng, Weiwei; Chen, Min; Xiao, Tiqiao; Xu, Hongjie

    2015-07-01

    Construction of the first infrared beamline BL01B1 at Shanghai Synchrotron Radiation Facility (SSRF) was completed at the end of 2013. The IR beamline collects both edge radiation (ER) and bending magnet radiation (BMR) from a port, providing a solid angle of 40 mrad and 20 mrad in the horizontal and vertical directions, respectively. The optical layout of the infrared beamline and the design of the extraction mirror are described in this paper. A calculation of the beam propagation has been used to optimize the parameters of the optical components. The photon flux and spatial resolution have been measured at the end-station, and the experimental results are in good agreement with the theoretical calculation.

  17. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  18. The At-Wavelength Metrology Facility at BESSY-II

    Directory of Open Access Journals (Sweden)

    Franz Schäfers

    2016-02-01

    Full Text Available The At-Wavelength Metrology Facility at BESSY-II is dedicated to short-term characterization of novel UV, EUV and XUV optical elements, such as diffraction gratings, mirrors, multilayers and nano-optical devices like reflection zone plates. It consists of an Optics Beamline PM-1 and a Reflectometer in a clean-room hutch as a fixed end station. The bending magnet Beamline is a Plane Grating Monochromator beamline (c-PGM equipped with an SX700 monochromator. The beamline is specially tailored for efficient high-order suppression and stray light reduction. The versatile 11-axes UHV-Reflectometer can house life-sized optical elements, which are fully adjustable and of which the reflection properties can be measured in the full incidence angular range as well as in the full azimuthal angular range to determine polarization properties.

  19. Nanoelectronics: Metrology and Computation

    International Nuclear Information System (INIS)

    Lundstrom, Mark; Clark, Jason V.; Klimeck, Gerhard; Raman, Arvind

    2007-01-01

    Research in nanoelectronics poses new challenges for metrology, but advances in theory, simulation and computing and networking technology provide new opportunities to couple simulation and metrology. This paper begins with a brief overview of current work in computational nanoelectronics. Three examples of how computation can assist metrology will then be discussed. The paper concludes with a discussion of how cyberinfrastructure can help connect computing and metrology using the nanoHUB (www.nanoHUB.org) as a specific example

  20. Capability Handbook- offline metrology

    DEFF Research Database (Denmark)

    Islam, Aminul; Marhöfer, David Maximilian; Tosello, Guido

    This offline metrological capability handbook has been made in relation to HiMicro Task 3.3. The purpose of this document is to assess the metrological capability of the HiMicro partners and to gather the information of all available metrological instruments in the one single document. It provides...

  1. The end-state comfort effect in bimanual grip selection.

    Science.gov (United States)

    Fischman, Mark G; Stodden, David F; Lehman, Davana M

    2003-03-01

    During a unimanual grip selection task in which people pick up a lightweight dowel and place one end against targets at variable heights, the choice of hand grip (overhand vs. underhand) typically depends on the perception of how comfortable the arm will be at the end of the movement: an end-state comfort effect. The two experiments reported here extend this work to bimanual tasks. In each experiment, 26 right-handed participants used their left and right hands to simultaneously pick up two wooden dowels and place either the right or left end against a series of 14 targets ranging from 14 to 210 cm above the floor. These tasks were performed in systematic ascending and descending orders in Experiment 1 and in random order in Expiment 2. Results were generally consistent with predictions of end-state comfort in that, for the extreme highest and lowest targets, participants tended to select opposite grips with each hand. Taken together, our findings are consistent with the concept of constraint hierarchies within a posture-based motion-planning model.

  2. A variable radius mirror for imaging the exit slit of an SGM undulator beamline at the ALS

    International Nuclear Information System (INIS)

    Warwick, T.; Howells, M.

    1994-01-01

    Bendable metal mirrors have been implemented in two SGM undulator beamlines at the ALS. A piezo-electric actuator is employed to deform the mirror to image the SGM exit slit which moves longitudinally in the beamline as the grating rotates. The design and performance of these mirrors is discussed. Computed deformations and slope errors are compared to those found during optical metrology. The soft x-ray spot size produced at the experiment is shown

  3. A variable radius mirror for imaging the exit slit of an SGM undulator beamline at the ALS

    International Nuclear Information System (INIS)

    Warwick, T.; Howells, M.

    1994-07-01

    Bendable metal mirrors have been implemented in two SGM undulator beamlines at the ALS. A piezo-electric actuator is employed to deform the mirror to image the SGM exit slit which moves longitudinally in the beamline as the grating rotates. The design and performance of these mirrors is discussed. Computed deformations and slope errors are compared to those found during optical metrology. The soft x-ray spot size produced at the experiment is shown

  4. Secure network for beamline control

    International Nuclear Information System (INIS)

    Ohata, T.; Fukui, T.; Ishii, M.; Furukawa, Y.; Nakatani, T.; Matsushita, T.; Takeuchi, M.; Tanaka, R.; Ishikawa, T.

    2001-01-01

    In SPring-8, beamline control system is constructed with a highly available distributed network system. The socket based communication protocol is used for the beamline control mainly. Beamline users can control the equipment by sending simple control commands to a server process, which is running on a beamline-managing computer (Ohata et al., SPring-8 beamline control system, ICALEPCS'99, Trieste, Italy, 1999). At the beginning the network was based on the shared topology at all beamlines. Consequently, it has a risk for misapplication of the user's program to access different machines on the network system cross over beamlines. It is serious problem for the SPring-8 beamline control system, because all beamlines controlled with unified software interfaces. We introduced the switching technology and the firewalls to support network access control. Also the virtual networking (VLAN: IEEE 802.1Q) and the gigabit Ethernet technology (IEEE 802.3ab) are introduced. Thus the network security and the reliability are guaranteed at the higher level in SPring-8 beamline

  5. Metrology of image placement

    International Nuclear Information System (INIS)

    Starikov, Alexander

    1998-01-01

    Metrology of registration, overlay and alignment offset in microlithography are discussed. Requirements and limitations are traced to the device ground rules and the definitions of edge, linewidth and centerline. Precision, accuracy, system performance and metrology in applications are discussed. The impact of image acquisition and data handling on performance is elucidated. Much attention is given to the manufacturing environment and effects of processing. General new methods of metrology error diagnostics and technology characterization are introduced and illustrated. Applications of these diagnostics to tests of tool performance, error diagnostics and culling, as well as to process integration in manufacturing are described. Realistic overlay reference materials and results of accuracy evaluations are discussed. Requirements in primary standards and alternative metrology are explained. The role and capability of SEM based overlay metrology is described, along with applications to device overlay metrology

  6. APS beamline standard components handbook

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1992-01-01

    It is clear that most Advanced Photon Source (APS) Collaborative Access Team (CAT) members would like to concentrate on designing specialized equipment related to their scientific programs rather than on routine or standard beamline components. Thus, an effort is in progress at the APS to identify standard and modular components of APS beamlines. Identifying standard components is a nontrivial task because these components should support diverse beamline objectives. To assist with this effort, the APS has obtained advice and help from a Beamline Standardization and Modularization Committee consisting of experts in beamline design, construction, and operation. The staff of the Experimental Facilities Division identified various components thought to be standard items for beamlines, regardless of the specific scientific objective of a particular beamline. A generic beamline layout formed the basis for this identification. This layout is based on a double-crystal monochromator as the first optical element, with the possibility of other elements to follow. Pre-engineering designs were then made of the identified standard components. The Beamline Standardization and Modularization Committee has reviewed these designs and provided very useful input regarding the specifications of these components. We realize that there will be other configurations that may require special or modified components. This Handbook in its current version (1.1) contains descriptions, specifications, and pre-engineering design drawings of these standard components. In the future, the APS plans to add engineering drawings of identified standard beamline components. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction

  7. The current status of small-angle x-ray scattering beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Inoue, Katsuaki; Doutch, James; Terrill, Nick

    2013-01-01

    The small-angle X-ray scattering (SAXS) covers the major disciplines of biology, chemistry and physics delivering structural and dynamic information in nanoscience, mesoscopic architectures, supramolecular structures, and nucleation/growth of crystals. SAXS is also proving to be important in archaeological, environmental, and conservation sciences, and has further indicated its ability to span wide-ranging scientific disciplines. Thus, strong needs for SAXS studies are increasing significantly in a broad range of scientific fields year by year. Based on such a background, the demand for high throughput SAXS experiments is increasing. At the synchrotron facility, Diamond Light Source, one SAXS beamline, Non-crystalline diffraction I22 is now operational and highly automated throughput small-angle X-ray scattering (HATSAXS) beamline B21 is now under construction. I22 is the Undulator beamline and wide varieties of experiments, including time-resolved experiments are attempted. Based on the concept of HATSAXS, the key feature of B21 will focuses on the automation of end-station equipment. A automated sample changer has been purchased for solution SAXS measurements on biomolecules. A robotic-arm-type automated sample changer that is capable of handling several kinds of samples in material science is also being constructed. B21 is expected to successfully provide all users highly automated throughput measurements with the highest possible reliability and accuracy. Construction of this beamline will end in the second half of 2012, and will be open for users in the early summer of 2013 after commissioning. (author)

  8. Current status of the hard x-ray nanoprobe beamline at the SSRF

    Science.gov (United States)

    Li, Aiguo; Jiang, Hui; Wang, Hua; Zhang, Zhaohong; He, Yan; Zhao, Gaofeng; Shu, Deming

    2017-09-01

    The hard X-ray nanoprobe beamline (HXN) designed at the Shanghai Synchrotron Radiation facility (SSRF) will be of capability to realize a focal spot size of 10 nm for hard X-rays to satisfy requirements in biology, environmental, material sciences and etc.. The beamline includes two modes of operation, high energy resolution mode and high flux mode respectively. High flux mode utilizes the multilayer KB system to obtain high-flux diffraction-limited focusing of 10nm. An ultra-high-precision figure fabrication for diffraction-limited focusing is required to meet the Rayleigh Criterion. An idea to overcome this problem is to introduce a phase compensator upstream of the KB system to compensate the wavefront errors in the beamline. At wavelength speckle-based method will be used to measure the wavefront error in the beamline and feedback to the phase compensator. Vibration measurements have been carried out at the secondary source and endstation hutch. The flexure hinge mechanisms and high-precision actuators ensure the KB system and sample manipulator working with high stability. The building of HXN has been designed and is under construction at present.

  9. MARS, a new beamline for radioactive matter studies at SOLEIL

    International Nuclear Information System (INIS)

    Solari, Pier Lorenzo; Schlutig, Sandrine; Hermange, Herve; Sitaud, Bruno

    2009-01-01

    MARS (Multi Analyses on Radioactive Samples) beamline is the hard X-ray bending magnet beamline dedicated to the study of radioactive matter of the new French synchrotron SOLEIL. The beamline, which has been built thanks to a close partnership and support by the CEA, has been designed to provide X-rays in the energy range of 3.5 keV to 35 keV. This allows to encompass M and L absorption edges of actinides, as well as K edges of transition metals (that are present in alloys and fuel claddings) up to heavy halogens, rare gases and alkalis (fission products in nuclear fuels). The MARS project aims to extend the possibilities of synchrotron based X-ray characterizations towards a wider variety of radioactive elements and a wider variety of techniques than what is currently available at other facilities. Thus, its specific and innovative infrastructure has been optimized in order to carry out analyses on materials with activities up to 18.5 GBq per sample for α and β emitters and 2 GBq for γ and n emitters. So, today, more than 70 different elements and more than 350 different isotopes have been proposed for studies on the beamline by the involved user community. The arrangement of the different elements in the optics hutch is based on an original scheme which permits to have two alternative optical configurations (monochromatic or dispersive) depending on the nature of experiments to be performed. At least three main techniques are progressively being proposed on the three complementary end-stations located in the experimental hutch: transmission and high resolution powder diffraction (TXRD and HRXRD), standard and dispersive X-ray absorption spectroscopy (XAS and EDXAS) and X-ray fluorescence (XRF). In addition, by using the KB optics, a micro-focused beam will be available on the second station of the monochromatic branch. The beamline is currently under commissioning. The first two experimental stations, using the monochromatic branch, are scheduled to be

  10. Metrology and testing

    International Nuclear Information System (INIS)

    2010-01-01

    The chapter presents the Metrology Service of Ionizing Radiation (SEMRI), the Metrology Service of Radioisotopes (SEMRA), the External Individual Monitoring Service (SEMEX), the Internal Individual Monitoring Service (SEMIN) and the associated laboratories, the analysis of environmental samples, system for management of quality from IRD and the National Program for intercomparison results of environmental samples analysis to radioisotopes determination

  11. Entitlement theory of justice and end-state fairness in the allocation of goods

    OpenAIRE

    Ju, Biung-Ghi; Moreno-Ternero, Juan D.

    2016-01-01

    Robert Nozick allegedly introduced his liberal theory of private ownership as an objection to theories of end-state justice. Nevertheless, we show that, in a stylized framework for the allocation of goods in joint ventures, both approaches can be seen as complementary. More precisely, in such a context, self-ownership (the basis for Nozick's entitlement theory of justice) followed by voluntary transfer (Nozick's principle of just transfer) can lead to end-state fairness (as well as Pareto eff...

  12. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  13. Metrology Measurement Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  14. The BEAR Beamline at Elettra

    International Nuclear Information System (INIS)

    Nannarone, S.; Pasquali, L.; Selvaggi, G.; Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Pedio, M.; Mahne, N.; Naletto, G.; Pelizzo, M.G.; Tondello, G.

    2004-01-01

    The BEAR (Bending Magnet for Emission Absorption and Reflectivity) beamline is installed at the right exit of the 8.1 bending magnet at ELETTRA. The beamline - in operation since January 2003 - delivers linear and circularly polarized radiation in the 5 - 1600 eV energy range. The experimental station is composed of a UHV chamber for reflectivity, absorption, fluorescence and angle resolved photoemission measurements and a UHV chamber for in-situ sample preparation

  15. Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort.

    Science.gov (United States)

    Hughes, Charmayne M L; Haddad, Jeffrey M; Franz, Elizabeth A; Zelaznik, Howard N; Ryu, Joong Hyun

    2011-06-01

    People often grasp objects with an awkward grip to ensure a comfortable hand posture at the end of the movement. This end-state comfort effect is a predominant constraint during unimanual movements. However, during bimanual movements the tendency for both hands to satisfy end-state comfort is affected by factors such as end-orientation congruency and task context. Although bimanual end-state comfort has been examined when the hands manipulate two independent objects, no research has examined end-state comfort when the hands are required to manipulate two physically-coupled objects. In the present experiment, kinematics and grasp behavior during a unimanual and bimanual reaching and placing tasks were examined, when the hands manipulate two physically-connected objects. Forty-five participants were assigned to one of three groups; unimanual, bimanual no-spring (the objects were not physically connected), and bimanual spring (the objects were connected by a spring), and instructed to grasp and place objects in various end-orientations, depending on condition. Physically connecting the objects did not affect end-state comfort prevalence. However, it resulted in decreased interlimb coupling. This finding supports the notion of a flexible constraint hierarchy, in which action goals guide the selection of lower level action features (i.e., hand grip used for grasping), and the particular movements used to accomplish that goal (i.e., interlimb coupling) are controlled throughout the movement.

  16. Characterising the large coherence length at diamond’s beamline I13L

    International Nuclear Information System (INIS)

    Wagner, U. H.; Parsons, A.; Rahomaki, J.; Vogt, U.; Rau, C.

    2016-01-01

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  17. Characterising the large coherence length at diamond’s beamline I13L

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Rahomaki, J.; Vogt, U. [KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44 (Sweden); Rau, C. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Northwestern University, Chicago, IL 60611-3008 (United States)

    2016-07-27

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  18. Optimization of High-Energy Implanter Beamline Pumping

    International Nuclear Information System (INIS)

    LaFontaine, Marvin; Pharand, Michel; Huang Yongzhang; Pokidov, Ilya; Ferrara, Joseph

    2006-01-01

    A high-energy implanter process chamber and its pumping configuration were designed to minimize the residual gas density in the endstation. A modified Nastran trade mark sign finite-element analysis (FEA) code was used to calculate the pressure distribution and gas flow within the process chamber. The modified FE method was readily applied to the internal geometry of the scan chamber, the corrector magnet waveguide, and the process chamber, which included the scan arm assembly, 300mm wafer, and plasma electron flood gun (PEF). Using the modified Nastran code, the gas flow and pressure distribution within the beamline geometry were calculated. The gas load consisted of H2, which is generated by photoresist (PR) outgassing from the 300mm wafer, and Xe from the plasma electron flood gun. Several pumping configurations were assessed, with each consisting of various locations and pumping capacities of vacuum pumps. The pressure distribution results for each configuration are presented, along with pumping efficiency results which are helpful in selecting the optimum pump configuration. The analysis results were compared to measured data, indicating a good correlation between the two

  19. The continuous end-state comfort effect: weighted integration of multiple biases.

    Science.gov (United States)

    Herbort, Oliver; Butz, Martin V

    2012-05-01

    The grasp orientation when grasping an object is frequently aligned in anticipation of the intended rotation of the object (end-state comfort effect). We analyzed grasp orientation selection in a continuous task to determine the mechanisms underlying the end-state comfort effect. Participants had to grasp a box by a circular handle-which allowed for arbitrary grasp orientations-and then had to rotate the box by various angles. Experiments 1 and 2 revealed both that the rotation's direction considerably determined grasp orientations and that end-postures varied considerably. Experiments 3 and 4 further showed that visual stimuli and initial arm postures biased grasp orientations if the intended rotation could be easily achieved. The data show that end-state comfort but also other factors determine grasp orientation selection. A simple mechanism that integrates multiple weighted biases can account for the data.

  20. Metrology of electrical quantum

    International Nuclear Information System (INIS)

    Camon, A.

    1996-01-01

    Since 1989 the electrical metrology laboratory of TPYCEA and the low temperature physics department of ICMA have been collaborating in the development of electrical quantum metrology. ICMA has been mainly dedicated to implement the state of the art quantum standards for which its experience on cryogenics, superconductivity and low noise instrumentation was essential. On the other hand TPYCEA concentrated its efforts on the metrological aspects, in which it has great experience. The complimentary knowledge of both laboratories, as well as the advice obtained from several prestigious metrology institutes was the key to successful completion of the two projects so far developed: i) The Josephson voltage standard (1989-1991) ii) The quantum Hall resistance standard (1991-1996) This report contains a description of both projects. Even though we can consider that the two projects are finished from the instrumental and metrological point of view, there is still a strong cooperation between ICMA and TPYCEA on the improvement of these standards, as well as on their international validation

  1. DABAM: an open-source database of X-ray mirrors metrology

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, Manuel, E-mail: srio@esrf.eu [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Bianchi, Davide [AC2T Research GmbH, Viktro-Kaplan-Strasse 2-C, 2700 Wiener Neustadt (Austria); Cocco, Daniele [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Glass, Mark [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Idir, Mourad [NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Metz, Jim [InSync Inc., 2511C Broadbent Parkway, Albuquerque, NM 87107 (United States); Raimondi, Lorenzo; Rebuffi, Luca [Elettra-Sincrotrone Trieste SCpA, Basovizza (TS) (Italy); Reininger, Ruben; Shi, Xianbo [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Siewert, Frank [BESSY II, Helmholtz Zentrum Berlin, Institute for Nanometre Optics and Technology, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Spielmann-Jaeggi, Sibylle [Swiss Light Source at Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Takacs, Peter [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tomasset, Muriel [Synchrotron Soleil (France); Tonnessen, Tom [InSync Inc., 2511C Broadbent Parkway, Albuquerque, NM 87107 (United States); Vivo, Amparo [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Yashchuk, Valeriy [Advanced Light Source, Lawrence Berkeley National Laboratory, MS 15-R0317, 1 Cyclotron Road, Berkeley, CA 94720-8199 (United States)

    2016-04-20

    DABAM, an open-source database of X-ray mirrors metrology to be used with ray-tracing and wave-propagation codes for simulating the effect of the surface errors on the performance of a synchrotron radiation beamline. An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  2. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  3. Realizing "value-added" metrology

    Science.gov (United States)

    Bunday, Benjamin; Lipscomb, Pete; Allgair, John; Patel, Dilip; Caldwell, Mark; Solecky, Eric; Archie, Chas; Morningstar, Jennifer; Rice, Bryan J.; Singh, Bhanwar; Cain, Jason; Emami, Iraj; Banke, Bill, Jr.; Herrera, Alfredo; Ukraintsev, Vladamir; Schlessinger, Jerry; Ritchison, Jeff

    2007-03-01

    The conventional premise that metrology is a "non-value-added necessary evil" is a misleading and dangerous assertion, which must be viewed as obsolete thinking. Many metrology applications are key enablers to traditionally labeled "value-added" processing steps in lithography and etch, such that they can be considered integral parts of the processes. Various key trends in modern, state-of-the-art processing such as optical proximity correction (OPC), design for manufacturability (DFM), and advanced process control (APC) are based, at their hearts, on the assumption of fine-tuned metrology, in terms of uncertainty and accuracy. These trends are vehicles where metrology thus has large opportunities to create value through the engineering of tight and targetable process distributions. Such distributions make possible predictability in speed-sorts and in other parameters, which results in high-end product. Additionally, significant reliance has also been placed on defect metrology to predict, improve, and reduce yield variability. The necessary quality metrology is strongly influenced by not only the choice of equipment, but also the quality application of these tools in a production environment. The ultimate value added by metrology is a result of quality tools run by a quality metrology team using quality practices. This paper will explore the relationships among present and future trends and challenges in metrology, including equipment, key applications, and metrology deployment in the manufacturing flow. Of key importance are metrology personnel, with their expertise, practices, and metrics in achieving and maintaining the required level of metrology performance, including where precision, matching, and accuracy fit into these considerations. The value of metrology will be demonstrated to have shifted to "key enabler of large revenues," debunking the out-of-date premise that metrology is "non-value-added." Examples used will be from critical dimension (CD

  4. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  5. The EIS beamline at the seeded free-electron laser FERMI

    Science.gov (United States)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Raimondi, L.; Manfredda, M.; Mahne, N.; Gobessi, R.; Gerusina, S.; Fava, C.; Zangrando, M.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Masciovecchio, C.

    2017-05-01

    Among the fourth-generation light sources, the Italian free-electron laser (FEL) FERMI is the only one operating in the high-gain harmonic generation (HGHG) seeding mode. FERMI delivers pulses characterized by a quasi transform limited temporal structure, photon energies lying in the extreme ultra-violet (EUV) region, supreme transversal and longitudinal coherences, high peak brilliance, and full control of the polarization. Such state of the art performances recently opened the doors to a new class of time-resolved spectroscopies, difficult or even impossible to be performed using self-amplified spontaneous sources (SASE) light sources. FERMI is currently equipped with three operating beamlines opened to external users (DiProI, LDM and EIS), while two more are under commissioning (MagneDYN and TeraFERMI). Here, we present the recent highlights of the EIS (Elastic and Inelastic Scattering) beamline, which has been purposely designed to take full advantage from the coherence, the intensity, the harmonics content, and the temporal duration of the pulses. EIS is a flexible experimental facility for time-resolved EUV scattering experiments on condensed matter systems, consisting of two independent end-stations. The first one (EIS-TIMEX) aims to study materials in metastable and warm dense matter (WDM) conditions, while the second end-station (EIS-TIMER) is fully oriented to the extension of four-wave mixing (FWM) spectroscopies towards the EUV spectral regions, trying to reveal the behavior of matter in portions of the mesoscopic regime of exchanged momentum impossible to be probed using conventional light sources.

  6. Speckle-based at-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Zhou, Tunhe; Kashyap, Yogesh; Sawhney, Kawal

    2017-08-01

    To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ metrology at the optics' operating wavelength (`at-wavelength' metrology) to optimize the performance of X-ray optics and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative examples of the applications of the speckle-based technique will also be given - including optimization of X-ray mirrors and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron beamlines.

  7. Metrology Department - DEMET

    International Nuclear Information System (INIS)

    1989-01-01

    In this report are presented the activities and purposes of the Metrology Dept. of the Institute of Radioprotection and Dosimetry of Brazilian CNEN. It is also presented a list of services rendered by that Dept., the projects in course, personnel and publications.(J.A.M.M.)

  8. Metrology for Grayscale Lithography

    International Nuclear Information System (INIS)

    Murali, Raghunath

    2007-01-01

    Three dimensional microstructures find applications in diffractive optical elements, photonic elements, etc. and can be efficiently fabricated by grayscale lithography. Good process control is important for achieving the desired structures. Metrology methods for grayscale lithography are discussed. Process optimization for grayscale e-beam lithography is explored and various process parameters that affect the grayscale process are discussed

  9. Magnetic nanoparticles. Metrological aspects

    International Nuclear Information System (INIS)

    Nikiforov, V N; Nikiforov, A V; Oxengendler, B L; Turaeva, N N; Sredin, V G

    2011-01-01

    The experiments on influence of the iron oxide cluster size on the specific magnetic moment are performed. Both free and covered clusters are investigated. The experiments are interpreted on the base of core-shell model by analogy to Weizsaecker formula in the nuclear physics. Metrological parameters for the cluster size investigation are obtained.

  10. Rossendorf Beamline at ESRF (ROBL-CRG). Bi-annual report 2009/2010

    International Nuclear Information System (INIS)

    Scheinost, Andreas C.; Baehtz, Carsten

    2011-01-01

    The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 7th report covers the period from January 2009 to December 2010. In these two years, 67 peer- reviewed papers have been published based on experiments done at the beamline, more than in any biannual period before. Six highlight reports have been selected for this report to demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). The beamtime was more heavily overbooked than ever before, with an acceptance rate of only 25% experiments. We would like to thank our external proposal review members, Prof. Andre Maes (KU Leuven, Belgium), Prof. Laurent Charlet (UJF Grenoble, France), Dr. Andreas Leinweber (MPI Metallforschung, Stuttgart, Germany), Prof. David Rafaja (TU Bergakademie Freiberg, Germany), Prof. Dirk Meyer (TU Dresden, Germany), who evaluated the inhouse proposals in a thorough manner, thereby ensuring that beamtime was distributed according to scientific merit. The period was not only characterized by very successful science, but also by intense work on the optics upgrade. In spring 2009, a workshop was held at ROBL, assembling beamline experts from German, Spanish and Swiss synchrotrons, to evaluate the best setup for the new optics. These suggestions was used to prepare the call for tender published in July 2009. From the tender acceptance in November 2009 on, a series of design review meetings and factory acceptance tests followed. Already in July 2010, the first piece of equipment was delivered, the new double-crystal, double-multilayer monochromator. The disassembly of the old optics components started end of July, 2011, followed by the installation of the new components. As of December 2011, the new optics have seen the first test beam and thorough hot commissioning will

  11. Rossendorf Beamline at ESRF (ROBL-CRG). Bi-annual report 2009/2010

    Energy Technology Data Exchange (ETDEWEB)

    Scheinost, Andreas C; Baehtz, Carsten [eds.

    2011-07-01

    The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 7th report covers the period from January 2009 to December 2010. In these two years, 67 peer- reviewed papers have been published based on experiments done at the beamline, more than in any biannual period before. Six highlight reports have been selected for this report to demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). The beamtime was more heavily overbooked than ever before, with an acceptance rate of only 25% experiments. We would like to thank our external proposal review members, Prof. Andre Maes (KU Leuven, Belgium), Prof. Laurent Charlet (UJF Grenoble, France), Dr. Andreas Leinweber (MPI Metallforschung, Stuttgart, Germany), Prof. David Rafaja (TU Bergakademie Freiberg, Germany), Prof. Dirk Meyer (TU Dresden, Germany), who evaluated the inhouse proposals in a thorough manner, thereby ensuring that beamtime was distributed according to scientific merit. The period was not only characterized by very successful science, but also by intense work on the optics upgrade. In spring 2009, a workshop was held at ROBL, assembling beamline experts from German, Spanish and Swiss synchrotrons, to evaluate the best setup for the new optics. These suggestions was used to prepare the call for tender published in July 2009. From the tender acceptance in November 2009 on, a series of design review meetings and factory acceptance tests followed. Already in July 2010, the first piece of equipment was delivered, the new double-crystal, double-multilayer monochromator. The disassembly of the old optics components started end of July, 2011, followed by the installation of the new components. As of December 2011, the new optics have seen the first test beam and thorough hot commissioning will

  12. Beamlines of the biomedical imaging and therapy facility at the Canadian light source - part 3

    Science.gov (United States)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1-4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6-9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20-100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to -7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT, described

  13. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    International Nuclear Information System (INIS)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-01-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  14. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  15. Radiation protection of a proton beamline at ELI-Beamlines

    Czech Academy of Sciences Publication Activity Database

    Bechet, Sabrina; Versaci, Roberto; Rollet, S.; Olšovcová, Veronika; Fajstavr, Antonín; Žáková, Martina; Margarone, Daniele

    2016-01-01

    Roč. 11, č. 12 (2016), 1-5, č. článku C12019. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : models * simulations * wake-field acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.220, year: 2016

  16. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  17. In-cell overlay metrology by using optical metrology tool

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Park, Hyowon; Liang, Waley; Choi, DongSub; Kim, Nakyoon; Lee, Jeongpyo; Pandev, Stilian; Jeon, Sanghuck; Robinson, John C.

    2018-03-01

    Overlay is one of the most critical process control steps of semiconductor manufacturing technology. A typical advanced scheme includes an overlay feedback loop based on after litho optical imaging overlay metrology on scribeline targets. The after litho control loop typically involves high frequency sampling: every lot or nearly every lot. An after etch overlay metrology step is often included, at a lower sampling frequency, in order to characterize and compensate for bias. The after etch metrology step often involves CD-SEM metrology, in this case in-cell and ondevice. This work explores an alternative approach using spectroscopic ellipsometry (SE) metrology and a machine learning analysis technique. Advanced 1x nm DRAM wafers were prepared, including both nominal (POR) wafers with mean overlay offsets, as well as DOE wafers with intentional across wafer overlay modulation. After litho metrology was measured using optical imaging metrology, as well as after etch metrology using both SE and CD-SEM for comparison. We investigate 2 types of machine learning techniques with SE data: model-less and model-based, showing excellent performance for after etch in-cell on-device overlay metrology.

  18. TARA beamline and injection system

    International Nuclear Information System (INIS)

    Post, R.S.; Brindza, P.; Coleman, J.W.; Torti, R.P.; Blackfield, D.T.; Goodrich, P.

    1983-01-01

    The TARA beamline for neutral beam injection will permit one to three sources to fire into each plug (60 degree or optional 90 degree injection with respect to the TARA axis) or into each anchor (90 degree injection only). The sources, pre-aimed on their mounting plate at the NB test stand, may be fired into neutralizer ducts or optionally through a magnesium curtain, and the unneutralized fraction is dumped by the TARA fringing field onto a receiver plate. The beamline is housed in a cylindrical tank with the beam axis along the tank diameter at the midplane. The tank will be sorption pumped using LN + T/sub I/ or N/sub B/ and/or e-beam gettering. The beam burial tank contains sed arrays and a thin foil dump which reaches sufficiently high temperatures during the shot to boil out gas between shots

  19. SPring-8 beamline control system.

    Science.gov (United States)

    Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T

    1998-05-01

    The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation.

  20. The Columbia University microbeam II endstation for cell imaging and irradiation

    International Nuclear Information System (INIS)

    Bigelow, A.W.; Ross, G.J.; Randers-Pehrson, G.; Brenner, D.J.

    2005-01-01

    The Columbia University Microbeam II has been built to provide a focused ion beam for irradiating designated mammalian cells with single particles. With the interest in irradiating non-stained cells and cells in three-dimensional tissue samples, the endstation was designed to accommodate a variety of imaging techniques, in addition to fluorescent microscopy. Non-stained cells are imaged either by quantitative phase microscopy (QPm) [IATIA, Box Hill North, Victoria, 3129, Australia [1

  1. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-05-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or "tophat" beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  2. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  3. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    International Nuclear Information System (INIS)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  4. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source.

    Science.gov (United States)

    Kunz, Martin; MacDowell, Alastair A; Caldwell, Wendel A; Cambie, Daniella; Celestre, Richard S; Domning, Edward E; Duarte, Robert M; Gleason, Arianna E; Glossinger, James M; Kelez, Nicholas; Plate, David W; Yu, Tony; Zaug, Joeseph M; Padmore, Howard A; Jeanloz, Raymond; Alivisatos, A Paul; Clark, Simon M

    2005-09-01

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

  5. Computed tomography for dimensional metrology

    DEFF Research Database (Denmark)

    Kruth, J.P.; Bartscher, M.; Carmignato, S.

    2011-01-01

    metrology, putting emphasis on issues as accuracy, traceability to the unit of length (the meter) and measurement uncertainty. It provides a state of the art (anno 2011) and application examples, showing the aptitude of CT metrology to: (i) check internal dimensions that cannot be measured using traditional...

  6. Metrology's role in quality assurance

    International Nuclear Information System (INIS)

    Zeederberg, L.B.

    1982-01-01

    Metrology, the science of measurement, is playing an increasing role in modern industry as part of an on-going quality assurance programme. At Escom, quality assurance was critical during the construction of the Koeberg nuclear facility, and also a function in controlling services provided by Escom. This article deals with the role metrology plays in quality assurance

  7. Beamlines on the SPring-8 project

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hideo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-03-01

    SPring-8 project is going to construct a ultrahigh-brilliance X-ray synchrotron radiation facility and commissioning of the storage ring is expected in Spring 1977. The facility will be available to scientists and engineers of universities, national laboratories and industries not only from Japan but also from abroad. 20 proposals for public beamlines are submitted to the Beamline Committee and the ten public beamlines are scheduled for completion by the end of 1997. (author)

  8. BSRF-3B3 Medium Energy X-ray Beamline and Its Application for XAFS Research

    International Nuclear Information System (INIS)

    Ma Chenyan; Cui Mingqi; Zhou Kejin; Zhao Yidong; Tian Yulian; Wu Ziyu; Zheng Lei; Zhu Jie; Zhao Jia; Chen Kai; Sun Lijuan

    2007-01-01

    A new medium X-ray beamline 3B3 covering energy from 1.2 keV up to 6.0 keV was built at Beijing Synchrotron Radiation Facility (BSRF) in 2005. With perfect capability of high monochromaticity, good focus and low harmonics, it could be applied to study metrology, optic component characteristics and medium X-ray absorption spectroscopy (XAS). A simple XAFS apparatus has been set up and some measurements such as S, P, Cl, Ca, Al, Mg K-edge X-ray absorption fine structure (XAFS) in their compounds have also been carried out. The results show that it is feasible to do XAFS research at 3B3 beamline under present condition. The fabrication of a more delicate medium XAFS spectrometer is underway including transmission, fluorescence and electronic yield modes

  9. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  10. SPring-8 Structural Biology Beamlines / Current Status of Public Beamlines for Protein Crystallography at SPring-8

    International Nuclear Information System (INIS)

    Kawamoto, Masahide; Hasegawa, Kazuya; Shimizu, Nobutaka; Sakai, Hisanobu; Shimizu, Tetsuya; Nisawa, Atsushi; Yamamoto, Masaki

    2007-01-01

    SPring-8 has 2 protein crystallography beamlines for public use, BL38B1 (Structural Biology III) and BL41XU (Structural Biology I). The BL38B1 is a bending magnet beamline for routine data collection, and the BL41XU is an undulator beamline specially customized for micro beam and ultra-high resolutional experiment. The designs and the performances of each beamline are presented

  11. An object model for beamline descriptions

    International Nuclear Information System (INIS)

    Hill, B.W.; Martono, H.; Gillespie, J.S.

    1997-01-01

    Translation of beamline model descriptions between different accelerator codes presents a unique challenge due to the different representations used for various elements and subsystems. These differences range from simple units conversions to more complex translations involving multiple beamline components. A representation of basic accelerator components is being developed in order to define a meta-structure from which beamline models, in different codes, can be described and to facilitate the translation of models between these codes. Sublines of basic components will be used to represent more complex beamline descriptions and bridge the gap between codes which may represent a beamline element as a single entity, and those which use multiple elements to describe the same physical device. A C++ object model for supporting this beamline description and a grammar for describing beamlines in terms of these components is being developed. The object model will support a common graphic user interface and translation filters for representing native beamline descriptions for a variety of accelerator codes. An overview of our work on the object model for beamline descriptions is presented here. copyright 1997 American Institute of Physics

  12. Metrology for ITER Assembly

    International Nuclear Information System (INIS)

    Bogusch, E.

    2006-01-01

    The overall dimensions of the ITER Tokamak and the particular assembly sequence preclude the use of conventional optical metrology, mechanical jigs and traditional dimensional control equipment, as used for the assembly of smaller, previous generation, fusion devices. This paper describes the state of the art of the capabilities of available metrology systems, with reference to the previous experience in Fusion engineering and in other industries. Two complementary procedures of transferring datum from the primary datum network on the bioshield to the secondary datum s inside the VV with the desired accuracy of about 0.1 mm is described, one method using the access directly through the ports and the other using transfer techniques, developed during the co-operation with ITER/EFDA. Another important task described is the development of a method for the rapid and easy measurement of the gaps between sectors, required for the production of the customised splice plates between them. The scope of the paper includes the evaluation of the composition and cost of the systems and team of technical staff required to meet the requirements of the assembly procedure. The results from a practical, full-scale demonstration of the methodologies used, using the proposed equipment, is described. This work has demonstrated the feasibility of achieving the necessary accuracies for the successful building of ITER. (author)

  13. BNL ATF II beamlines design

    Energy Technology Data Exchange (ETDEWEB)

    Fedurin, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Swinson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  14. Diamond Beamline I16 (Materials and Magnetism)

    International Nuclear Information System (INIS)

    Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G.

    2010-01-01

    We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

  15. Beamline for Schools Safety Awareness Day

    CERN Multimedia

    Photo Service, CERN

    2014-01-01

    The first two teams to participate in CERN's Beamline for Schools project spent their first day at CERN at the Safety Training Center in Prévessin. They covered amongst others radiation protection, cryogenics and fire-fighting. The teams will spend the rest of the week at the T9 beamline.

  16. Radiation-resistant beamline components at LAMPF

    International Nuclear Information System (INIS)

    Macek, R.J.; Grisham, D.L.; Lambert, J.e.; Werbeck, R.

    1983-01-01

    A variety of highly radiation-resistant beamline components have been successfully developed at LAMPF primarily for use in the target cells and beam stop area of the intense proton beamline. Design features and operating experience are reviewed for magnets, instrumentation, targets, vacuum seals, vacuum windows, collimators, and beam stops

  17. Limiting effects in double EEX beamline

    Science.gov (United States)

    Ha, G.; Power, J. G.; Conde, M.; Doran, D. S.; Gai, W.

    2017-07-01

    The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport.

  18. Limiting effects in double EEX beamline

    International Nuclear Information System (INIS)

    Ha, G; Power, J G; Conde, M; Doran, D S; Gai, W

    2017-01-01

    The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport. (paper)

  19. Color and appearance metrology facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST Physical Measurement Laboratory has established the color and appearance metrology facility to support calibration services for 0°/45° colored samples, 20°,...

  20. A Roadmap for Thermal Metrology

    Science.gov (United States)

    Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.

    2009-02-01

    A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.

  1. Simulation of beamline alignment operations

    International Nuclear Information System (INIS)

    Annese, C; Miller, M G.

    1999-01-01

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control systems. The simulator project used a three-prong approach that studied object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. The National Ignition Facility's (NIF) optical alignment system was modeled to study control system operations. The alignment of NIF's 192 beamlines is a large complex operation involving more than 100 computer systems and 8000 mechanized devices. The alignment process is defined by a detailed set of procedures; however, many of the steps are deterministic. The alignment steps for a poorly aligned component are similar to that of a nearly aligned component; however, additional operations/iterations are required to complete the process. Thus, the same alignment operations will require variable amounts of time to perform depending on the current alignment condition as well as other factors. Simulation of the alignment process is necessary to understand beamline alignment time requirements and how shared resources such as the Output Sensor and Target Alignment Sensor effect alignment efficiency. The simulation has provided alignment time estimates and other results based on documented alignment procedures and alignment experience gained in the laboratory. Computer communication time, mechanical hardware actuation times, image processing algorithm execution times, etc. have been experimentally determined and incorporated into the model. Previous analysis of alignment operations utilized average implementation times for all alignment operations. Resource sharing becomes rather simple to model when only average values are used. The time required to actually implement the many individual alignment operations will be quite dynamic. The simulation model estimates the time to complete an operation using

  2. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  3. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    Science.gov (United States)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  4. Economic benefits of metrology in manufacturing

    DEFF Research Database (Denmark)

    Savio, Enrico; De Chiffre, Leonardo; Carmignato, S.

    2016-01-01

    examples from industrial production, in which the added value of metrology in manufacturing is discussed and quantified. Case studies include: general manufacturing, forging, machining, and related metrology. The focus of the paper is on the improved effectiveness of metrology when used at product...... and process design stages, as well as on the improved accuracy and efficiency of manufacturing through better measuring equipment and process chains with integrated metrology for process control.......In streamlined manufacturing systems, the added value of inspection activities is often questioned, and metrology in particular is sometimes considered only as an avoidable expense. Documented quantification of economic benefits of metrology is generally not available. This work presents concrete...

  5. Microspectroscopy At Beamline 73 MAX-lab

    International Nuclear Information System (INIS)

    Engdahl, Anders

    2010-01-01

    Presentation of some projects at the infrared microspectroscopy experimental station at beamline 73 MAX-lab. Among the subjects are found identification of organic residues in fossil material and examination of the chemistry in an old oak wood wreck.

  6. A Test Beamline on Diamond Light Source

    International Nuclear Information System (INIS)

    Sawhney, K. J. S.; Dolbnya, I. P.; Tiwari, M. K.; Alianelli, L.; Scott, S. M.; Preece, G. M.; Pedersen, U. K.; Walton, R. D.

    2010-01-01

    A Test beamline B16 has been built on the 3 GeV Diamond synchrotron radiation source. The beamline covers a wide photon energy range from 2 to 25 keV. The beamline is highly flexible and versatile in terms of the available beam size (a micron to 100 mm) and the range of energy resolution and photon flux; by virtue of its several operational modes, and the different inter-changeable instruments available in the experiments hutch. Diverse experimental configurations can be flexibly configured using a five-circle diffractometer, a versatile optics test bench, and a suite of detectors. Several experimental techniques including reflectivity, diffraction and imaging are routinely available. Details of the beamline and its measured performance are presented.

  7. Doublet III beamline: as-built

    International Nuclear Information System (INIS)

    Harder, C.R.; Holland, M.M.; Parker, J.W.; Gunn, J.; Resnick, L.

    1980-03-01

    In order to fully exploit Doublet III capabilities and to study new plasma physics regimes, a Neutral Beam Injector System has been constructed. Initially, a two beamline system will supply 7 MW of heat to the plasma. The system is currently being expanded to inject approx. 20 MW of power (6 beamlines). Each beamline is equipped with two Lawrence Berkeley Laboratory type rectangular ion sources with 10 cm x 40 cm extraction grids. These sources will accelerate hydrogen ions to 80 keV, with extracted beam currents in excess of 80 A per source expected. The first completed source is currently being tested and conditioned on the High Voltage Test Stand at Lawrence Livermore Laboratory. This paper pictorially reviews the as-built Doublet III neutral beamline with emphasis on component relation and configuration relative to spatial and source imposed design constraints

  8. Frequency Standards and Metrology

    Science.gov (United States)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  9. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  10. Universal imaging: Dissociative ionization of polyatomic molecules, chemical dynamics beamline 9.0.2

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.; Chen, D.; Suits, A.G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A third endstation was recently added to the Chemical Dynamics beamline, designed to exploit the high flux broadband undulator light for a range of studies of reactive scattering, photochemistry and photoionization processes using time-of-flight mass spectroscopy coupled with position-sensitive detection. Two molecular beam sources are fixed at right angles, with the undulator light, or laser beams, intersecting the molecular beams at 45{degrees}. To date, beamline experiments have included a study of dissociative photoionization of a variety of molecules including N{sub 2}O and SF{sub 6}. In this mode, a single molecular beam source is used, with the tunable undulator light inducing, in SF{sub 6} for example, the process SF{sub 6} {r_arrow} SF{sub 6}{sup +} + e{sup {minus}} {r_arrow} SF{sub 5}{sup +} + F + e{sup {minus}}. The SF{sub 5}{sup +} ions are accelerated up the flight tube, mass selected and detected as a function of position on a phosphor screen viewed by a CCD camera. The position directly reveals the recoil speed (or translational energy release) and angular distribution for the dissociative ionization process. Furthermore, this measurement is obtained for all recoil speeds and angles simultaneously. Such detailed angular information has not previously been obtained for dissociative ionization processes; typically ion time-of-flight profiles are deconvoluted to yield rough insight into the angular distributions. The recorded image is actually a 2-dimensional projection of the nascent 3-dimensional velocity distribution, but established tomographic techniques enable the authors to reconstruct the 3-D distribution.

  11. Predicted optical performance of the GM/CA@APS micro-focus beamline

    Science.gov (United States)

    Fischetti, Robert F.; Yoder, Derek; Xu, Shenglan; Makarov, Oleg; Ogata, Craig; Smith, Janet L.

    2014-01-01

    GM/CA at the APS has developed microcrystallography capabilities for structural biology applications. The robust, quad, mini-beam collimators, which enable users to rapidly select between a 5, 10 or 20 micron diameter beam or a scatter guard for the full focused beam, are coupled with several powerful automated software tools that are built into the beamline control system JBluIce-EPICS. Recent successes at beamlines around the world in solving structures from microcrystals (2 – 10 microns) have led to increased demand for high-intensity micro-focus beams. We have designed a new micro-focus endstation to increase the intensity in mini- and micro-beams at GM/CA by one to two orders of magnitude to meet this growing demand. The new optical design is based on the well-established approach of using two-stage demagnification. The existing bimorph mirrors, arranged in a Kirkpatrick-Baez geometry, focus the beam onto slits located upstream of the sample whereby the slit aperture defines a secondary source, that is reimaged with a second pair of mirrors. This design incorporates two focal modes: a mini-beam mode where the beam is focused to 20-micron diameter and a micro-beam mode where it is focused to 5-microns. The size of the secondary source aperture can be varied rapidly (seconds) to adjust the beam size at the sample position in two ranges 20 – 3 micron and 5 – 1 micron. The second set of mirrors will each have two super polished ellipses allowing quick (minutes) interchange between modes. PMID:25383086

  12. Critical issues in overlay metrology

    International Nuclear Information System (INIS)

    Sullivan, Neal T.

    2001-01-01

    In this paper, following an overview of overlay metrology, the difficult relationship of overlay with device performance and yield is discussed and supported with several examples. This is followed by a discussion of the impending collision of metrology equipment performance and 'real' process tolerances for sub 0.18 um technologies. This convergence of tolerance and performance is demonstrated to lead to the current emergence of real-time overlay modeling in a feed-forward/feedback process environment and the associated metrology/sampling implications. This modeling takes advantage of the wealth of understanding concerning the systematic behavior of overlay registration errors. Finally, the impact of new process technologies (RET, OAI, CPSM, CMP, and etc.) on the measurement target is discussed and shown to de-stabilize overlay performance on standard overlay measurement target designs

  13. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  14. Metrological Reliability of Medical Devices

    Science.gov (United States)

    Costa Monteiro, E.; Leon, L. F.

    2015-02-01

    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  15. Celtiberian metrology and its romanization

    Directory of Open Access Journals (Sweden)

    Leonard A. CURCHIN

    2013-05-01

    Full Text Available Celtiberian metrology has scarcely been investigated until now, with the exception of coin weights. On the basis of measurements of pre-Roman mud bricks, a Celtiberian foot of 24 cm is proposed. With regard to weights, we can accept a module of 9 g for silver jewelry and some bronze coins; however, loom weights do not conform to any metrological system. Over time, Roman measures of length (as indicated by the dimensions of bricks, tiles and architectural monuments and weight were adopted.

  16. Metrological issues in molecular radiotherapy

    International Nuclear Information System (INIS)

    D'Arienzo, Marco; Capogni, Marco; Smyth, Vere; Cox, Maurice; Johansson, Lena; Bobin, Christophe

    2014-01-01

    The therapeutic effect from molecular radiation therapy (MRT), on both tumour and normal tissue, is determined by the radiation absorbed dose. Recent research indicates that as a consequence of biological variation across patients the absorbed dose can vary, for the same administered activity, by as much as two orders of magnitude. The international collaborative EURAMET-EMRP project Metrology for molecular radiotherapy (MetroMRT) is addressing this problem. The overall aim of the project is to develop methods of calibrating and verifying clinical dosimetry in MRT. In the present paper an overview of the metrological issues in molecular radiotherapy is provided. (authors)

  17. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-05-15

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  18. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sawhney, Kawal

    2016-01-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  19. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal

    2016-05-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  20. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca [Thales-SESO, 305 rue Louis Armand, Pôle d’Activités d’Aix les Milles, Aix-en-Provence (France)

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  1. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts

  2. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Kraakman, R.; Voorbraak, W.P.

    1993-04-01

    Additional to the in-core EXOTIC experiments, six irradiations of ceramic material, R212-001 to R212-006, have been performed in the PSF of the HFR. This note presents the neutron metrology results for these irradiations. (orig.)

  3. Baking controller for synchrotron beamline vacuum systems

    International Nuclear Information System (INIS)

    Garg, C.K.; Kane, S.R.; Dhamgaye, V.P.

    2003-01-01

    The 2.5 GeV electron storage ring Indus-2 is a hard X-ray Synchrotron Radiation (SR) Source. Nearly 27 beamlines will be installed on Indus-2 and they will cater to different experiments and applications. Most of the beamlines will be in Ultra High Vacuum (UHV) the only exception being hard X-rays beamlines. However the front ends of all the beamlines will be in UHV. Practicing UHV requires efforts and patience. Evacuating any chamber, volume gases can be removed easily. However, outgassing phenomena like desorption, diffusion and permeation restricts the system to attain UHV. All processes except the volume gas removal are temperature dependent. At ambient temperature, gas pressure decreases so slowly that outgassing limit (i.e. 10 -10 1/s/cm 2 ) can hardly be achieved on a practical time scale. Also there are three orders of magnitude difference in outgassing between baked and unbaked systems. Depending on the vacuum chamber and the components inside it, the thermal outgassing (baking) of system is required and can be done at various temperatures between 150 degC to 450 deg C. For whole baking cycle, constant monitoring and controlling of the systems is required which takes tens of hours. This paper describes the automation for such baking system, which will be used for SR beamlines

  4. Modeling of X-ray beamlines and devices

    International Nuclear Information System (INIS)

    Ice, G.E.

    1996-01-01

    X-ray beamlines on synchrotron sources are similar in size and complexity to beamlines at state-of-the-art neutron sources. The design principles, tools, and optimization strategies for synchrotron beamlines are also similar to those of neutron beamlines. The authors describe existing design tools for modeling synchrotron radiation beamlines and describe how these tools have evolved over the last two decades. The development of increasingly powerful modeling tools has been driven by the escalating cost and sophistication of state-of-the-art beamlines and by a world-wide race to exploit advanced synchrotron radiation sources

  5. Metrology and ionospheric observation standards

    Science.gov (United States)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  6. G4Beamline Program for Radiation Simulations

    International Nuclear Information System (INIS)

    Beard, Kevin; Roberts, Thomas J.; Degtiarenko, Pavel

    2008-01-01

    G4beamline, a program that is an interface to the Geant4 toolkit that we have developed to simulate accelerator beamlines, is being extended with a graphical user interface to quickly and efficiently model experimental equipment and its shielding in experimental halls. The program is flexible, user friendly, and requires no programming by users, so that even complex systems can be simulated quickly. This improved user interface is of much wider application than just the shielding simulations that are the focus of this project. As an initial application, G4beamline is being extended to provide the simulations that are needed to determine the radiation sources for the proposed experiments at Jefferson Laboratory so that shielding issues can be evaluated. Since the program already has the capabilities needed to simulate the transport of all known particles, including scattering, attenuation, interactions, and decays, the extension involves implementing a user-friendly graphical user inter

  7. SAQP pitch walk metrology using single target metrology

    Science.gov (United States)

    Fang, Fang; Herrera, Pedro; Kagalwala, Taher; Camp, Janay; Vaid, Alok; Pandev, Stilian; Zach, Franz

    2017-03-01

    Self-aligned quadruple patterning (SAQP) processes have found widespread acceptance in advanced technology nodes to drive device scaling beyond the resolution limitations of immersion scanners. Of the four spaces generated in this process from one lithography pattern two tend to be equivalent as they are derived from the first spacer deposition. The three independent spaces are commonly labelled as α, β and γ. α, β and γ are controlled by multiple process steps including the initial lithographic patterning process, the two mandrel and spacer etches as well as the two spacer depositions. Scatterometry has been the preferred metrology approach, however is restricted to repetitive arrays. In these arrays independent measurements, in particular of alpha and gamma, are not possible due to degeneracy of the standard array targets. . In this work we present a single target approach which lifts the degeneracies commonly encountered while using product relevant layout geometries. We will first describe the metrology approach which includes the previously described SRM (signal response metrology) combined with reference data derived from CD SEM data. The performance of the methodology is shown in figures 1-3. In these figures the optically determined values for alpha, beta and gamma are compared to the CD SEM reference data. The variations are achieved using controlled process experiments varying Mandrel CD and Spacer deposition thicknesses.

  8. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions

  9. TSOM method for semiconductor metrology

    Science.gov (United States)

    Attota, Ravikiran; Dixson, Ronald G.; Kramar, John A.; Potzick, James E.; Vladár, András E.; Bunday, Benjamin; Novak, Erik; Rudack, Andrew

    2011-03-01

    Through-focus scanning optical microscopy (TSOM) is a new metrology method that achieves 3D nanoscale measurement sensitivity using conventional optical microscopes; measurement sensitivities are comparable to what is typical when using scatterometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). TSOM can be used in both reflection and transmission modes and is applicable to a variety of target materials and shapes. Nanometrology applications that have been demonstrated by experiments or simulations include defect analysis, inspection and process control; critical dimension, photomask, overlay, nanoparticle, thin film, and 3D interconnect metrologies; line-edge roughness measurements; and nanoscale movements of parts in MEMS/NEMS. Industries that could benefit include semiconductor, data storage, photonics, biotechnology, and nanomanufacturing. TSOM is relatively simple and inexpensive, has a high throughput, and provides nanoscale sensitivity for 3D measurements with potentially significant savings and yield improvements in manufacturing.

  10. Status of the ELIMED multidisciplinary and medical beam-line at ELI-Beamlines

    International Nuclear Information System (INIS)

    Romano, F; Cirrone, G A P; Cuttone, G; Schillaci, F; Scuderi, V; Amico, A; Candiano, G; Larosa, G; Leanza, R; Manna, R; Marchese, V; Milluzzo, G; Petringa, G; Pipek, J; Giordanengo, S; Guarachi, L F; Marchetto, F; Sacchi, R; Korn, G; Margarone, D

    2017-01-01

    Nowadays, one of the biggest challenges consists in using high intensity laser-target interaction to generate high-energy ions for medical purposes, eventually replacing the old paradigm of acceleration characterized by huge and complex machines. In order to investigate the feasibility of using laser-driven ion beams for multidisciplinary application, a dedicated beam transport line will be installed at the ELI-Beamlines facility in Prague (CZ), as a part of the User-oriented ELIMAIA beam-line dedicated to ion acceleration and their potential applications. The beam-line section dedicated to transport and dosimetric endpoints is called ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) and will be developed by the INFN-LNS. (paper)

  11. Metrology and quality control handbook

    International Nuclear Information System (INIS)

    Hofmann, D.

    1983-01-01

    This book tries to present the fundamentals of metrology and quality control in brief surveys. Compromises had to be made in order to reduce the material available to a sensible volume for the sake of clarity. This becomes evident by the following two restrictions which had to made: First, in dealing with the theoretical principles of metrology and quality control, mere reference had to be made in many cases to the great variety of special literature without discussing it to explain further details. Second, in dealing with the application of metrology and quality control techniques in practice, only the basic qantities of the International System of Units (SI) could be taken into account as a rule. Some readers will note that many special measuring methods and equipment known to them are not included in this book. I do hope, however, that this short-coming will show to have a positive effect, too. This book will show the reader how to find the basic quantities and units from the derived quantities and units, and the steps that are necessary to solve any kind of measuring task. (orig./RW) [de

  12. Metrology at Philip Morris Europe

    Directory of Open Access Journals (Sweden)

    Gualandris R

    2014-12-01

    Full Text Available The importance of the metrology function at Philip Morris Europe (PME, a multinational organisation producing at over 40 sites in the European, Middle Eastern and African Regions is presented. Standardisation of test methods and equipment as well as the traceability of calibration gauges to the same reference gauge are essential in order to obtain comparable results among the various production centers. The metrology function as well as the qualification of instruments and the drafting of test and calibration operating procedures for this region are conducted or co-ordinated by the Research and Development Department in Neuchatel, Switzerland. In this paper the metrology function within PME is presented based on the measurement of the resistance to draw for which the PME R&D laboratory is accredited (ISO/CEI 17025, as both a calibration and a testing laboratory. The following topics are addressed in this paper: traceability of calibration standards to national standards; comparison of results among manufacturing centres; the choice, the budget as well as the computation of uncertainties. Furthermore, some practical aspects related to the calibration and use of the glass multicapillary gauges are discussed.

  13. Flexible resources for quantum metrology

    Science.gov (United States)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J.; Dür, Wolfgang

    2017-06-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.

  14. Flexible resources for quantum metrology

    International Nuclear Information System (INIS)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J; Dür, Wolfgang

    2017-01-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement. (paper)

  15. The death of recency: Relationship between end-state comfort and serial position effects in serial recall: Logan and Fischman (2011) revisited.

    Science.gov (United States)

    Logan, Samuel W; Fischman, Mark G

    2015-12-01

    Two experiments examined the dynamic interaction between cognitive resources in short-term memory and bimanual object manipulation by extending recent research by Logan and Fischman (2011). In Experiment 1, 16 participants completed a bimanual end-state comfort task and a memory task requiring serial recall of 12 words or pictures. The end-state comfort task involved moving two glasses between two shelves. Participants viewed the items, performed the end-state comfort task, and then serially recalled the items. Recall was evaluated by the presence or absence of primacy and recency effects. The end-state comfort effect (ESCE) was assessed by the percentage of initial hand positions that allowed the hands to end comfortably. The main findings indicated that the ESCE was disrupted; the primacy effect remained intact; and the recency effect disappeared regardless of the type of memory item recalled. In Experiment 2, 16 participants viewed six items, performed an end-state comfort task, viewed another six items, and then serially recalled all 12 items. Results were essentially the same as in Experiment 1. Findings suggest that executing a bimanual end-state comfort task, regardless of when it is completed during a memory task, diminishes the recency effect irrespective of the type of memory item. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Area Factor Determinations for an Industrial Worker Exposed to a Concrete Slab End-State

    International Nuclear Information System (INIS)

    Jannik, G. Timothy; Lee, Patricia L.; Farfan, Eduardo B.; Roach, Jesse L.

    2008-01-01

    The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik. These risk-based DCGLs were estimated for an exposure area of 100 m 2 . During deactivation and decommissioning (D and D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with 1) the illustrative area factors provided in MARSSIM, 2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance, and 3) the hot spot criterion for field application provided in the RESRAD User's Manual. The purpose of this site-specific assessment is to determine if any of the recommended area factors provided in the guidance documents could be utilized at SRS for field applications of the industrial worker DCGLs. Results show the area factors that were determined for an SRS industrial worker exposed to concrete slab end-states for the common radionuclides provided in the referenced guidance documents. In addition to the SRS site-specific area factors, the following area factors are provided for comparison: - Illustrative examples of outdoor area dose factors (MARSSIM); - Area correction factors as a function of source area (Soil Screening Guidance). Note: the area correction factors were inverted to correspond to a DCGL area factor. - Recommended area correction factors as a function of source area (Soil Screening Guidance); - Ranges for hot spot multiplication factors (RESRAD). As it can be seen

  17. Improving Metrological Reliability of Information-Measuring Systems Using Mathematical Modeling of Their Metrological Characteristics

    Science.gov (United States)

    Kurnosov, R. Yu; Chernyshova, T. I.; Chernyshov, V. N.

    2018-05-01

    The algorithms for improving the metrological reliability of analogue blocks of measuring channels and information-measuring systems are developed. The proposed algorithms ensure the optimum values of their metrological reliability indices for a given analogue circuit block solution.

  18. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  19. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of new light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area

  20. EPICS and its role in data acquisition and beamline control

    International Nuclear Information System (INIS)

    Mooney, T. M.; Arnold, N. D.; Boucher, E.; Cha, B. K.; Goetze, K. A.; Kraimer, M. R.; Rivers, M. L.; Sluiter, R. L.; Sullivan, J. P.; Wallis, D. B.

    1999-01-01

    Beamline-control and data-acquisition software based on EPICS (a tool kit for building distributed control systems) has been running on many Advanced Photon Source beamlines for several years. EPICS itself, the collaborative software-development effort surrounding it, and EPICS-based beamline software have been described previously in general terms. This talk will review and update that material, focusing on the role EPICS core software plays in beamline applications and on the effects of a few defining characteristics of EPICS on the beamline software we have developed with it

  1. Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L

    2008-10-01

    Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.

  2. Human factors design for the BMIT biomedical beamlines

    International Nuclear Information System (INIS)

    Miller, C Denise; Wysokinski, Tomasz W; Belev, George; Chapman, L Dean

    2013-01-01

    Operation of a biomedical beamline poses a unique set of operational and instrumentation challenges for a synchrotron facility. From proper handling and care of live animals and animal tissues, to a user community drawn primarily from the medical and veterinary realms, the work of a biomedical beamline is unique when compared to other beamlines. At the Biomedical Imaging and Therapy (BMIT) beamlines at Canadian Light Source (CLS), operation of the beamlines is geared towards our user community of medical personnel, in addition to basic science researchers. Human factors considerations have been incorporated wherever possible on BMIT, including in the design of software and hardware, as well as ease-of-use features of beamline control stations and experiment hutches. Feedback from users continues to drive usability improvements to beamline operations.

  3. Tools intented to nuclear metrology

    International Nuclear Information System (INIS)

    Munayco Tasayco, A.F.

    1980-08-01

    The study undertaken in the metrological laboratory of the C.E.N. Saclay Electronics Services is intended to improve the measurement methods in two fields concerning nuclear instrumentation: the current's measurement in the range 1pA to 0,01 pA and the study of a measurement's system for the linear circuits used in spectrometer gamma ray with semiconductor. Two systems are now working. Its permit an improvement of precision measurement, an automation of the measurement process and many possibilities in the choice of parameters and the laying-out of results [fr

  4. Primary calibration in acoustics metrology

    International Nuclear Information System (INIS)

    Milhomem, T A Bacelar; Soares, Z M Defilippo

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field

  5. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    Science.gov (United States)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  6. 1993 CAT workshop on beamline optical designs

    International Nuclear Information System (INIS)

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ''catalog'' of various monochromator designs

  7. 1993 CAT workshop on beamline optical designs

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

  8. G4beamline Simulations for H8

    CERN Document Server

    Thoresen, Freja

    2015-01-01

    Detailed simulations of the H8 beam line at the North Area, using the G4beamline software were performed in the framework of this study. The conventions used by the program are analysed. Having modelled precisely the beam line, several studies examining the beam transmission and composition were performed. The results were compared with measurements, where a satisfactory agreement was found. The muon production and transport is studied in details throughout the beam line.

  9. How good can our beamlines be?

    Energy Technology Data Exchange (ETDEWEB)

    Liebschner, Dorothee; Dauter, Miroslawa; Rosenbaum, Gerold, E-mail: rosenbaum@anl.gov; Dauter, Zbigniew, E-mail: rosenbaum@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2012-10-01

    A repetitive measurement of the same diffraction image allows to judge the performance of a data collection facility. The accuracy of X-ray diffraction data depends on the properties of the crystalline sample and on the performance of the data-collection facility (synchrotron beamline elements, goniostat, detector etc.). However, it is difficult to evaluate the level of performance of the experimental setup from the quality of data sets collected in rotation mode, as various crystal properties such as mosaicity, non-uniformity and radiation damage affect the measured intensities. A multiple-image experiment, in which several analogous diffraction frames are recorded consecutively at the same crystal orientation, allows minimization of the influence of the sample properties. A series of 100 diffraction images of a thaumatin crystal were measured on the SBC beamline 19BM at the APS (Argonne National Laboratory). The obtained data were analyzed in the context of the performance of the data-collection facility. An objective way to estimate the uncertainties of individual reflections was achieved by analyzing the behavior of reflection intensities in the series of analogous diffraction images. The multiple-image experiment is found to be a simple and adequate method to decompose the random errors from the systematic errors in the data, which helps in judging the performance of a data-collection facility. In particular, displaying the intensity as a function of the frame number allows evaluation of the stability of the beam, the beamline elements and the detector with minimal influence of the crystal properties. Such an experiment permits evaluation of the highest possible data quality potentially achievable at the particular beamline.

  10. Muon Colliders: the Ultimate Neutrino Beamlines

    International Nuclear Information System (INIS)

    King, Bruce J.

    1999-01-01

    It is shown that muon decays in straight sections of muon collider rings will naturally produce highly collimated neutrino beams that can be several orders of magnitude stronger than the beams at existing accelerators. We discuss possible experimental setups and give a very brief overview of the physics potential from such beamlines. Formulae are given for the neutrino event rates at both short and long baseline neutrino experiments in these beams

  11. Nomenclature of SLC Arc beamline components

    International Nuclear Information System (INIS)

    Silva, J.; Weng, W.T.

    1986-01-01

    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained

  12. Opportunities and Risks in Semiconductor Metrology

    Science.gov (United States)

    Borden, Peter

    2005-09-01

    New metrology opportunities are constantly emerging as the semiconductor industry attempts to meet scaling requirements. The paper summarizes some of the key FEOL and BEOL needs. These must be weighed against a number of considerations to ensure that they are good opportunities for the metrology equipment supplier. The paper discusses some of these considerations.

  13. Laboratorio de Metrología - LABM

    OpenAIRE

    Jaramillo Ch., Zaira J.

    2011-01-01

    esos y transacciones de forma transparente y justa para todas las partes involucradas. Una herramienta necesaria para este propósito es la Metrología, ciencia que es utilizada en el Laboratorio de Metrología (LABM) del Centro Experimenta

  14. Emerging technology for astronomical optics metrology

    Science.gov (United States)

    Trumper, Isaac; Jannuzi, Buell T.; Kim, Dae Wook

    2018-05-01

    Next generation astronomical optics will enable science discoveries across all fields and impact the way we perceive the Universe in which we live. To build these systems, optical metrology tools have been developed that push the boundary of what is possible. We present a summary of a few key metrology technologies that we believe are critical for the coming generation of optical surfaces.

  15. Upgrade of the Proton West secondary beamline

    International Nuclear Information System (INIS)

    Spiegel, L.

    1989-01-01

    As originally designed and operated, protons entering PW6 were steered by a series of EPB dipoles into a single interaction length beryllium target, some 43 feet from the enclosure wall. Ensuing secondary beams, either p + /π + or p - /π - , were collected by a string of quadrupoles following the target, steered westward, away from the Proton Center line, through PW6 and PW7, and ultimately focussed on experiment production targets located within the large PW8 hall. Around the Spring of 1988 it was decided to upgrade the existing Proton West secondary beamline to allow for transport of a primary proton beam, anticipated to be either 800 or 900 GeV/c, through PW8. This upgrade project, which is now nearing completion, was largely motivated by the then recent approval of E-771, a hadronic beauty production experiment located in PW8. E-771 represents the third in a series of experiments for the large-acceptance dimuon spectrometer presently located at the end of the Proton West beamline. This Technical Memo is a summary of the upgrade --- an explanation of the underlying strategy and a documentation of the final locations of the secondary beamline elements. 6 refs., 2 figs., 2 tabs

  16. Nuclear resonant scattering beamline at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Harami, Taikan [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1996-04-01

    Mainly by Japan Atomic Energy Research Institute, the Institute of Physical and Chemical Research and Japan Synchrotron Radiation Research Institute, the construction of the Super Photon ring-8 GeV (SPring-8) which is the large scale synchrotron radiation facility for a high luminance light source placing emphasis on short wavelength region (shorter than about 1 nm) is in progress at the Harima Science Park City, Hyogo Prefecture. The features of the SPring-8 are the high luminance of light, the good parallelism and directionality of light, the quasi-monochromatic light with variable wavelength, and the possibility of design from straight polarization to circular polarization. The injection system that accelerates electrons up to 8 GeV and the storage ring storing the 8 GeV electrons for long hours, and 61 beamlines are explained. The manufacture of the nuclear resonant scattering beamline as the beamline for joint utilization was begun. Its transport channel and the experiment hutch are shown. By the features of undulator synchrotron radiation, the research on the matters with small recoilless fraction such as biological substances, liquid, gas and others and the research on time-dependent phenomena become feasible anew. The research on the dynamic structural analysis of heme protein is planned. (K.I.)

  17. Fractal Metrology for biogeosystems analysis

    Directory of Open Access Journals (Sweden)

    V. Torres-Argüelles

    2010-11-01

    Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  18. 100 Years of radionuclide metrology

    International Nuclear Information System (INIS)

    Judge, S.M.; Arnold, D.; Chauvenet, B.; Collé, R.; De Felice, P.; García-Toraño, E.; Wätjen, U.

    2014-01-01

    The discipline of radionuclide metrology at national standards institutes started in 1913 with the certification by Curie, Rutherford and Meyer of the first primary standards of radium. In early years, radium was a valuable commodity and the aim of the standards was largely to facilitate trade. The focus later changed to providing standards for the new wide range of radionuclides, so that radioactivity could be used for healthcare and industrial applications while minimising the risk to patients, workers and the environment. National measurement institutes responded to the changing demands by developing new techniques for realising primary standards of radioactivity. Looking ahead, there are likely to be demands for standards for new radionuclides used in nuclear medicine, an expansion of the scope of the field into quantitative imaging to facilitate accurate patient dosimetry for nuclear medicine, and an increasing need for accurate standards for radioactive waste management and nuclear forensics. - Highlights: • The driving forces for the development of radionuclide metrology. • Radium standards to facilitate trade of this valuable commodity in the early years. • After 1950, focus changes to healthcare and industrial applications. • National Measurement Institutes develop new techniques, standards, and disseminate the best practice in measurement. • Challenges in nuclear medicine, radioactive waste management and nuclear forensics

  19. Beamline instrumentation and experiment automation for the Rossendorf Beamline at ESRF/Grenoble (F)

    International Nuclear Information System (INIS)

    Oehme, W.; Dienel, S.; Proehl, D.

    2000-03-01

    The Rossendorf research center finished the work (from 1996 - 1998) for building its own beamline for experiments with synchrotron radiation at the ESRF (European Synchrotron Radiation Facility) at Grenoble/France. The beamline has two measuring systems for alternative use for experiments investigating radioactive samples by means of X-ray absorption spectrometry, and materials structures by means of X-ray diffraction analyses. The report in hand focuses on work performed required for the control equipment for optical systems and performance of the measuring systems with respect to electronics, calculation methods, and software. Hardware components of importance to system instrumentation are explained, as well as the basic computing tasks and general software principles, and are illustrated with some examples. The general setting of the beamline is represented in a tabulated overview. The literature list serves as a guideline for detailed documentation. (orig./CB) [de

  20. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  1. Status of Indus-1 and Indus-2 beamlines

    CERN Document Server

    Nandedkar, R V

    2003-01-01

    Indus-1 and Indus-2 are two synchrotron radiation sources that are planned in India. Indus-1 is a 450 MeV electron storage ring for vacuum ultra-violet soft X-ray radiation. This source is operational. Two beamlines, viz. a soft X-ray/vacuum ultra-violet reflectometry beamline and an angle integrated photoelectron spectroscopy beamline are already operational. Angle resolved photoelectron spectroscopy and photophysics beamlines are going to be operational soon. The second Indian synchrotron source is the 2.5 GeV Indus-2 electron storage ring that is under construction and is expected to be ready for commissioning in the year 2003. Of the total 27 beamlines possible on this ring, about 10 beamlines are already planned and are in the design stage.

  2. Status of Indus-1 and Indus-2 beamlines

    International Nuclear Information System (INIS)

    Nandedkar, R.V.; Sawhney, K.J.S.

    2003-01-01

    Indus-1 and Indus-2 are two synchrotron radiation sources that are planned in India. Indus-1 is a 450 MeV electron storage ring for vacuum ultra-violet soft X-ray radiation. This source is operational. Two beamlines, viz. a soft X-ray/vacuum ultra-violet reflectometry beamline and an angle integrated photoelectron spectroscopy beamline are already operational. Angle resolved photoelectron spectroscopy and photophysics beamlines are going to be operational soon. The second Indian synchrotron source is the 2.5 GeV Indus-2 electron storage ring that is under construction and is expected to be ready for commissioning in the year 2003. Of the total 27 beamlines possible on this ring, about 10 beamlines are already planned and are in the design stage

  3. Rotary Valve & Beamline Highlights for Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Fitsos, P [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    This Fiscal Year (FY) work was divided between continued testing and characterization work of the Rotary Valve (RV) and mechanical engineering support for the beamline hardware stands. This configuration is more like the final setup with the accelerator firing deuterons down the evacuated beamline toward the RV for interaction with the deuterium and neutron production. The beamline cells were part of an experiment to reduce the impact that RV gas would have on the beamline vacuum. This work will be reported separately from this report. Previous testing had been with the beamline at atmospheric pressure and now the goal was to get test results of the RV with it connected to a beamline that’s running at some level of vacuum.

  4. Computer control of the ISX-B neutral injection beamlines

    International Nuclear Information System (INIS)

    Hanna, P.C.

    1982-09-01

    A system of controls for the Impurity Study Experiment (ISX-B) neutral injection beamlines at the Oak Ridge National Laboratory is presented. The system uses standard CAMAC equipment interfaced to the actual beamline controls and driven by a PDP-11/34 mini-computer. It is designed to relieve the operator of most of the mundane tasks of beam injection and also to reduce the number of operators needed to monitor multiple beamlines

  5. A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation

    Science.gov (United States)

    Marcelli, A.; Mazuritskiy, M. I.; Dabagov, S. B.; Hampai, D.; Lerer, A. M.; Izotova, E. A.; D'Elia, A.; Turchini, S.; Zema, N.; Zuccaro, F.; de Simone, M.; Javad Rezvani, S.; Coreno, M.

    2018-03-01

    In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

  6. Bayesian estimation methods in metrology

    International Nuclear Information System (INIS)

    Cox, M.G.; Forbes, A.B.; Harris, P.M.

    2004-01-01

    In metrology -- the science of measurement -- a measurement result must be accompanied by a statement of its associated uncertainty. The degree of validity of a measurement result is determined by the validity of the uncertainty statement. In recognition of the importance of uncertainty evaluation, the International Standardization Organization in 1995 published the Guide to the Expression of Uncertainty in Measurement and the Guide has been widely adopted. The validity of uncertainty statements is tested in interlaboratory comparisons in which an artefact is measured by a number of laboratories and their measurement results compared. Since the introduction of the Mutual Recognition Arrangement, key comparisons are being undertaken to determine the degree of equivalence of laboratories for particular measurement tasks. In this paper, we discuss the possible development of the Guide to reflect Bayesian approaches and the evaluation of key comparison data using Bayesian estimation methods

  7. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  8. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Polle, A.N.; Voorbraak, W.P.

    1991-11-01

    The experiment R-139-416 for testing the stainless steel type 316L(N) has been irradiated in the HFR Petten. This report presents the final metrology results obtained from activation monitors near the CT-specimen (Compact Tension). Data about the helium production as well as the number of displacements per atom are also included. The irradiation conditions for this experiment, carried out in a REFA-170 type capsule in the HFR position H8, are as close as possible to the conditions of the EFR (European Fast Reactor) above-core structures. The main results of the thermal and fast neutron fluence measurements are presented in table 1 and in figure 1. (author). 10 refs.; 2 figs.; 11 tabs

  9. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  10. Context-based virtual metrology

    Science.gov (United States)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael

    2018-03-01

    Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.

  11. National Needs for Appearance Metrology

    Science.gov (United States)

    Nadal, Maria E.

    2003-04-01

    Appearance greatly influences a customer's judgement of the quality and acceptability of manufactured products, as yearly there is approximately $700 billion worth of shipped goods for which overall appearance is critical to their sale. For example, appearance is reported to be a major factor in about half of automobile purchases. The appearance of an object is the result of a complex interaction of the light field incident upon the object, the scattering and absorption properties of the object, and human perception. The measurable attributes of appearance are divided into color (hue, saturation, and lightness) and geometry (gloss, haze). The nature of the global economy has increased international competition and the need to improve the quality of many manufactured products. Since the manufacturing and marketing of these products is international in scope, the lack of national appearance standard artifacts and measurement protocols results in a direct loss to the supplier. One of the primary missions of the National Institute of Standards and Technology (NIST) is to strengthen the U.S. economy by working with industry to develop and apply technology, measurements and standards. The NIST Physics Laboratory has established an appearance metrology laboratory. This new laboratory provides calibration services for 0^o/45^o color standards and 20^o°, 60^o°, and 85^o° specular gloss, and research in the colorimetric characterization of gonioapparent including a new Standard Reference Material for metallic coatings (SRM 2017) and measurement protocols for pearlescent coatings. These services are NIST's first appearance metrology efforts in many years; a response to needs articulated by industry. These services are designed to meet demands for improved measurements and standards to enhance the acceptability of final products since appearance often plays a major role in their acceptability.

  12. Metrology in Pharmaceutical Industry - A Case Study

    International Nuclear Information System (INIS)

    Yuvamoto, Priscila D.; Fermam, Ricardo K. S.; Nascimento, Elizabeth S.

    2016-01-01

    Metrology is recognized by improving production process, increasing the productivity, giving more reliability to the measurements and consequently, it impacts in the economy of a country. Pharmaceutical area developed GMP (Good Manufacture Practice) requeriments, with no introduction of metrological concepts. However, due to Nanomedicines, it is expected this approach and the consequent positive results. The aim of this work is to verify the level of metrology implementation in a Brazilian pharmaceutical industry, using a case study. The purpose is a better mutual comprehension by both areas, acting together and governmental support to robustness of Brazilian pharmaceutical area. (paper)

  13. Functional description of APS beamline front ends

    International Nuclear Information System (INIS)

    Kuzay, T.

    1993-02-01

    Traditional synchrotron sources were designed to produce bending magnet radiation and have proven to be an essential scientific tool. Currently, a new generation of synchrotron sources is being built that will be able to accommodate a large number of insertion device (ID) and high quality bending magnet (BM) sources. One example is the 7-GeV Advanced Photon Source (APS) now under construction at Argonne National Laboratory. The research and development effort at the APS is designed to fully develop the potential of this new generation of synchrotron sources. Of the 40 straight sections in the APS storage ring, 34 will be available for IDs. The remaining six sections are reserved for the storage ring hardware and diagnostics. Although the ring incorporates 80 BMs, only 40 of them can be used to extract radiation. The accelerator hardware shadows five of these 40 bending magnets, so the maximum number of BM sources on the lattice is 35. Generally, a photon beamline consists of four functional sections. The first section is the ID or the BM, which provides the radiation source. The second section, which is immediately outside the storage ring but inside a concrete shielding tunnel, is the front end, which is designed to control, define, and/or confine the x-ray beam. In the case of the APS, the front ends are designed to confine the photon beam. The third section, just outside the concrete shielding tunnel and on the experimental floor, is the first optics enclosure, which contains optics to filter and monochromatize the photon beam. The fourth section of a beamline consists of beam transports, additional optics, and experiment stations to do the scientific investigations. This document describes only the front ends of the APS beamlines

  14. On the operation of the Structural Materials Science end-station of the Kurchatov synchrotron radiation source in 2006

    International Nuclear Information System (INIS)

    Veligzhanin, A.A.; Guseva, E.V.; Zubavichus, Ya.V.; Trigub, A.L.; Chernyshev, A.A.

    2007-01-01

    The findings of investigation conducted at the end-station STM (Structural Materials Science) installed at the Kurchatov Centre for Synchrotron Radiation and Nanotechnology in 2006 are reported. During the reporting period, a variety of experiments aimed at the solution of diverse fundamental and applied problems have been performed in a cooperation with users from several laboratories located in Moscow, Saint-Petersburg and Rostov-on-Don, specialized in physics, chemistry and materials science. The emphasis in the research activity was placed on combined investigations into the atomic and electronic structures of functional materials with nanosized structural elements, including membrane catalysts, chemical gas sensors, materials with special magnetic, ferroelectric, and thermal properties, etc. In all the cases involved, the approach based on the utilization of the whole assortment of X-ray synchrotron experimental techniques implemented at the end-station STM (viz., small-angle X-ray scattering, X-ray diffraction, and X-ray absorption spectroscopy) provided detailed information on different aspects of the structural organization in the materials under study, which made it possible to suggest the most probable models for their structures [ru

  15. The quality of measurements a metrological reference

    CERN Document Server

    Fridman, A E

    2012-01-01

    This book provides a detailed discussion and commentary on the fundamentals of metrology. The fundamentals of metrology, the principles underlying the design of the SI International System of units, the theory of measurement error, a new methodology for estimation of measurement accuracy based on uncertainty, and methods for reduction of measured results and estimation of measurement uncertainty are all discussed from a modern point of view. The concept of uncertainty is shown to be consistent with the classical theory of accuracy. The theory of random measurement errors is supplemented by a very general description based on the generalized normal distribution; systematic instrumental error is described in terms of a methodology for normalizing the metrological characteristics of measuring instruments. A new international system for assuring uniformity of measurements based on agreements between national metrological institutes is discussed, in addition to the role and procedure for performance of key compari...

  16. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  17. UPWIND 1A2 Metrology. Final Report

    DEFF Research Database (Denmark)

    Eecen, P.J.; Wagenaar, J.W.; Stefanatos, N.

    . Since this problem covers many areas of wind energy, the work package is defined as a crosscutting activity. The objectives of the metrology work package are to develop metrology tools in wind energy to significantly enhance the quality of measurement and testing techniques. The first deliverable...... is a valuable tool for the further assessment and interest has been shown from other work packages, such as Training. This report describes the activities that have been carried out in the Work Package 1A2 Metrology of the UpWind project. Activities from Risø are described in a separate report: T.F. Pedersen...... was to perform a state of the art assessment to identify all relevant measurands. The required accuracies and required sampling frequencies have been identified from the perspective of the users of the data (the other work packages in UpWind). This work led to the definition of the Metrology Database, which...

  18. A Remote and Virtual Synchrotron Beamline

    Science.gov (United States)

    Jackson, J. M.; Alp, E.; Sturhahn, W.

    2012-12-01

    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for Earth science studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup. Students may also access the virtual aspects these experiments by simulating certain conditions with our newly developed software. We evaluate such a tool by giving "before" and "after" assignments to students at different levels. These levels include high-school students from the Pasadena and greater Los Angeles area school districts, undergraduate students from Caltech's SURF/MURF program, and graduate students at Caltech. We specifically target underrepresented groups. Our results thus far show that the capabilities offered by our remote and virtual beamline show improved knowledge and understanding of applying experimental-based studies at the synchrotron to solve problems in the Earth sciences.

  19. Diagnostics Beamline for the SRF Gun Project

    CERN Document Server

    Kamps, T; Goldammer, K; Krämer, Dietrich; Kuske, P; Kuszynski, J; Lipka, D; Marhauser, F; Quast, T; Richter, R

    2005-01-01

    A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies be...

  20. Impact of the ITRS Metrology Roadmap

    International Nuclear Information System (INIS)

    Diebold, Alain C.

    2001-01-01

    The International Technology Roadmap for Semiconductors (ITRS) provides the semiconductor industry with the timing of critical technology needs for future generations of integrated circuits. The Metrology roadmap in the ITRS describes the measurement needs based on the process requirements found in the Lithography, Front End Processes, Interconnect, and Packaging Roadmaps. This paper illustrates the impact of the Metrology Roadmap on the development of key measurement technology

  1. Slovak Institute of Metrology. Annual Report 2001

    International Nuclear Information System (INIS)

    Bily, M.

    2002-03-01

    A brief account of activities carried out by the Slovak Institute of Metrology (SMU) in 2001 is presented. These activities are reported under the headings: (1) Organisation identification; (2) Mission and medium-term perspectives; (3) Contract with Slovak Office of Standards, Metrology and Testing of the Slovak Republic; (4) SMU activities ; (5) Economic results; (6) Personnel management; (7) Aims and results of their fulfilment; (8) Evaluation and analysis of SMU development in 2001; (9) Main group of outputs users; (10) Conclusion

  2. Objectives and functions of ionizing radiation metrology

    International Nuclear Information System (INIS)

    Rothe, H.

    1981-01-01

    Proceeding from the fundamental objectives of ionizing radiation metrology, the main tasks of metrological research and assurances of accurate measurements in dosimetry and activity determination are summarized. With a view to the technical performance of these tasks the state-of-the-art and the trends in reproduction and dissemination of dosimetric and activity units are outlined. Problems are derived that should be solved within the framework of the CMEA Standing Commissions on Standardization and on the Peaceful Uses of Atomic Energy. (author)

  3. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter L [US Department of Energy Office of Science Office Basic Energy Sciences; Rhyne, James J [US Department of Energy Office of Science Office of Basic Energy Sciences

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  4. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  5. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, Lisa A., E-mail: poyneer1@llnl.gov; Brejnholt, Nicolai F.; Hill, Randall; Jackson, Jessie; Hagler, Lisle [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Celestre, Richard; Feng, Jun [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experiment at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.

  6. Macromolecular crystallography beamline X25 at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E., E-mail: berman@bnl.gov [Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000 (United States)

    2014-04-08

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  7. Automation in structural biology beamlines of the Photon Factory

    International Nuclear Information System (INIS)

    Igarashi, Noriyuki; Hiraki, Masahiko; Matsugaki, Naohiro; Yamada, Yusuke; Wakatsuki, Soichi

    2007-01-01

    The Photon Factory currently operates four synchrotron beamlines for protein crystallography and two more beamlines are scheduled to be constructed in the next years. Over the last years these beamlines have been upgraded and equipped with a fully automated beamline control system based on a robotic sample changer. The current system allows for remote operation, controlled from the user's area, of sample mounting, centering and data collection of pre-frozen crystals mounted in Hampton-type cryo-loops on goniometer head. New intuitive graphical user interfaces have been developed so as to control the complete beamline operation. Furthermore, algorithms for automatic sample centering based on pattern matching and X-ray beam scanning are being developed and combined with newly developed diffraction evaluation programs in order to complete entire automation of the data collection. (author)

  8. Macromolecular crystallography beamline X25 at the NSLS

    International Nuclear Information System (INIS)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community

  9. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  10. Optical vortex metrology: Are phase singularities foes or friends in optical metrology?

    DEFF Research Database (Denmark)

    Takeda, M.; Wang, W.; Hanson, Steen Grüner

    2008-01-01

    We raise an issue whether phase singularities are foes or friends in optical metrology, and give an answer by introducing the principle and applications of a new technique which we recently proposed for displacement and flow measurements. The technique is called optical vortex metrology because i...

  11. An ultrahigh vacuum monochromator for photophysics beamline

    International Nuclear Information System (INIS)

    Meenakshi Raja Rao, P.; Padmanabhan, Saraswathy; Raja Sekhar, B.N.; Shastri, Aparna; Khan, H.A.; Sinha, A.K.

    2000-08-01

    The photophysics beamline designed for carrying out photoabsorption and fluorescence studies using the 450 MeV Synchrotron Radiation Source (SRS), INDUS-1, uses a 1 metre monochromator as premonochromator for monochromatising the continuum. An ultra high vacuum compatible monochromator in Seya-Namioka mount has been designed and fabricated indigenously. The monochromator was assembled and tested for its performance. Wavelength scanning mechanism was tested for its reproducibility and the monochromator was tested for its resolution using UV and VUV sources. An average spectral resolution of 2.5 A was achieved using a 1200 gr/mm grating. A wavelength repeatability of ± 1A was obtained. An ultra high vacuum of 2 X 10 -8 mbar was also achieved in the monochromator. Details of fabrication, assembly and testing are presented in this report. (author)

  12. Mirrors for synchrotron-radiation beamlines

    International Nuclear Information System (INIS)

    Howells, M.R.

    1993-09-01

    The authors consider the role of mirrors in synchrotron-radiation beamlines and discuss the optical considerations involved in their design. They discuss toroidal, spherical, elliptical, and paraboloidal mirrors in detail with particular attention to their aberration properties. They give a treatment of the sine condition and describe its role in correcting the coma of axisymmetric systems. They show in detail how coma is inevitable in single-reflection, grazing-incidence systems but correctable in two-reflection systems such as those of the Wolter type. In an appendix, they give the theory of point aberrations of reflectors of a general shape and discuss the question of correct naming of aberrations. In particular, a strict definition of coma is required if attempts at correction are to be based on the sine condition

  13. MX: A beamline control system toolkit

    Science.gov (United States)

    Lavender, William M.

    2000-06-01

    The development of experimental and beamline control systems for two Collaborative Access Teams at the Advanced Photon Source has resulted in the creation of a portable data acquisition and control toolkit called MX. MX consists of a set of servers, application programs and libraries that enable the creation of command line and graphical user interface applications that may be easily retargeted to new and different kinds of motor and device controllers. The source code for MX is written in ANSI C and Tcl/Tk with interprocess communication via TCP/IP. MX is available for several versions of Unix, Windows 95/98/NT and DOS. It may be downloaded from the web site http://www.imca.aps.anl.gov/mx/.

  14. EPICS data archiver at SSRF beamlines

    International Nuclear Information System (INIS)

    Hu Zheng; Mi Qingru; Zheng Lifang; Li Zhong

    2014-01-01

    The control system of SSRF (Shanghai Synchrotron Radiation Facility) is based on EPICS (Experimental Physics and Industrial Control System). Operation data storage for synchrotron radiation facility is important for its status monitoring and analysis. At SSRF, operation data used to be index files recorded by traditional EPICS Channel Archiver. Nevertheless, index files are not suitable for long-term maintenance and difficult for data analysis. Now, RDB Channel Archiver and MySQL are used for SSRF beamline operation data archiving, so as to promote the data storage reliability and usability. By applying a new uploading mechanism to RDB Channel Archiver, its writing performance is improved. A web-based GUI (Graphics User Interface) is also developed to make it easier to access database. (authors)

  15. Anticipating different grips reduces bimanual end-state comfort: A tradeoff between goal-related and means-related planning processes.

    Directory of Open Access Journals (Sweden)

    Christian Seegelke

    Full Text Available The present study explored the sensitivity towards bimanual end-state comfort in a task that required anticipating different final grips. Participants simultaneously reached and grasped two objects with either a whole-hand grip (WHG or a precision grip (PG, and placed them at two target locations by transporting them either over or under an obstacle. The transport path was varied such that it could be either congruent (i.e., both objects over or under or incongruent (i.e., one object over and the other object under. In the congruent conditions, participants satisfied bimanual end-state comfort (and identical initial grips on the majority of trials. That is, participants adopted a PG for either hand when the objects were transported over the obstacle and a WHG for either hand when the objects were transported under the obstacle. In contrast, in the incongruent conditions, bimanual end-state comfort was significantly reduced, indicating the presence of intermanual inference. The results indicate that goal-related planning constraints (i.e., bimanual end-state comfort do not strictly take precedence over means-related constraints (i.e., identical initial grips if this requires anticipating different final grips. Thus, bimanual end-state comfort per se does not provide a predominant constraint in action selection, by which sensorimotor interference can be reduced. In line with the proposal that bimanual grip planning relies on a flexible constraint hierarchy, a simple formal model that considers bimanual grip posture planning as a tradeoff between goal-related and means-related planning processes can explain our results reasonably well.

  16. Beamline for X-ray Free Electron Laser of SACLA

    International Nuclear Information System (INIS)

    Tono, K; Togashi, T; Ohashi, H; Kimura, H; Takahashi, S; Takeshita, K; Tomizawa, H; Goto, S; Inubushi, Y; Sato, T; Yabashi, M

    2013-01-01

    A beamline for X-ray free electron laser (XFEL) has been developed at SACLA, SPring-8 Angstrom Compact free electron LAser. The beamline delivers and diagnoses an XFEL beam without degrading the beam quality. The transport optics are applicable in the range of 4–30 keV with a double-crystal monochromator or 4–15 keV with either of two double-mirror systems. A photon diagnostic system of the beamline monitors intensity, photon energy, center-of-mass position, and spatial profile in shot-by-shot and non-destructive manners.

  17. Joint Research on Scatterometry and AFM Wafer Metrology

    NARCIS (Netherlands)

    Bodermann, B.; Buhr, E.; Danzebrink, H.U.; Bär, M.; Scholze, F.; Krumrey, M.; Wurm, M.; Klapetek, P.; Hansen, P.E.; Korpelainen, V.; Van Veghel, M.; Yacoot, A.; Siitonen, S.; El Gawhary, O.; Burger, S.; Saastamoinen, T.

    2011-01-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both

  18. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  19. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  20. Metrological AFMs and its application for versatile nano-dimensional metrology tasks

    Science.gov (United States)

    Dai, Gaoliang; Dziomba, T.; Pohlenz, F.; Danzebrink, H.-U.; Koenders, L.

    2010-08-01

    Traceable calibrations of various micro and nano measurement devices are crucial tasks for ensuring reliable measurements for micro and nanotechnology. Today metrological AFM are widely used for traceable calibrations of nano dimensional standards. In this paper, we introduced the developments of metrological force microscopes at PTB. Of the three metrological AFMs described here, one is capable of measuring in a volume of 25 mm x 25 mm x 5 mm. All instruments feature interferometers and the three-dimensional position measurements are thus directly traceable to the metre definition. Some calibration examples on, for instance, flatness standards, step height standards, one and two dimensional gratings are demonstrated.

  1. Interoperability: linking design and tolerancing with metrology.

    Science.gov (United States)

    Morse, Edward; Heysiattalab, Saeed; Barnard-Feeney, Allison; Hedberg, Thomas

    2016-01-01

    On October 30, 2014 the American National Standards Institute (ANSI) approved QIF v 2.0 (Quality Information Framework, version 2.0) as an American National Standard. Subsequently in early 2016 QIF version 2.1 was approved. This paper describes how the QIF standard models the information necessary for quality workflow across the full metrology enterprise. After a brief description of the XML 'language' used in the standard, the paper reports on how the standard enables information exchange among four major activities in the metrology enterprise (product definition; measurement planning; measurement execution; and the analysis and reporting of the quality data).

  2. Advances in speckle metrology and related techniques

    CERN Document Server

    Kaufmann, Guillermo H

    2010-01-01

    Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the l

  3. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  4. The BESSY X-ray microfocus beamline project

    International Nuclear Information System (INIS)

    Erko, A.; Schaefers, F.; Firsov, A.; Peatman, W.B.; Eberhardt, W.; Signorato, R.

    2004-01-01

    The design and construction of a beamline dedicated to X-ray absorption spectroscopy, X-ray fluorescence analysis, X-ray diffraction and X-ray small-angle scattering measurements with micron and submicron spatial resolution in the photon energy range of 1.9-30 keV are reported here. The main feature of the beamline is a combination of all these methods in one experimental station. The source will be a BESSY 7-T wavelength shifter, which is already in operation. Such a wavelength shifter with its continuous spectrum is an optimum source for these experiments. Glass capillaries and the combination of a linear Bragg-Fresnel lens and bimorph mirror were chosen as the special optical components in the beamline. This beamline will open for BESSY users the possibility to perform experiments on the same sample applying a microfocused X-ray beam in combination with advanced experimental methods

  5. The monitoring system for macromolecular crystallography beamlines at BSRF

    International Nuclear Information System (INIS)

    Guo Xian; Chang Guangcai; Gan Quan; Shi Hong; Liu Peng; Sun Gongxing

    2012-01-01

    The monitoring system for macromolecular crystallography beamlines at BSRF (Beijing Synchrotron Radiation Facility) based on LabVIEW is introduced. In order to guarantee a safe, stable, and reliable running for the beamline devices, the system monitors the state of vacuum, cooling-water, optical components, beam, Liquid nitrogen in the beamlines in real time, detects faults and gives the alarm timely. System underlying uses the driver developed for the field devices for data acquisition, Data of collection is uploaded to the data-sharing platform makes it accessible via a network share. The upper system divides modules according to the actual function, and establishes the main interface of the monitoring system of beamline. To Facilitate data storage, management and inquiry, the system use LabSQL toolkit to achieve the interconnection with MySQL database which data of collection is sent to. (authors)

  6. TREFF: Reflectometer and instrument component test beamline at MLZ

    Directory of Open Access Journals (Sweden)

    Peter Link

    2017-11-01

    Full Text Available TREFF is a high resolution polarized neutron reflectometer and instrument component test beamline resulting in a highly modular instrument providing a flexible beam line for various applications.

  7. Experimental stations at I13 beamline at Diamond Light Source

    Science.gov (United States)

    Pešić, Z. D.; De Fanis, A.; Wagner, U.; Rau, C.

    2013-03-01

    The I13 beamline of Diamond Light Source has been operational since December 2011. The beamline encompass two fully independent branches devoted to coherent imaging experiments (coherent x-ray diffraction, coherent diffraction imaging and ptychography) and x-ray imaging (in-line phase contrast imaging, tomography and full-field microscopy). This paper gives an overview of the current status of experimental stations on both branches and outlines planned developments.

  8. Experimental stations at I13 beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Pešić, Z D; Fanis, A De; Wagner, U; Rau, C

    2013-01-01

    The I13 beamline of Diamond Light Source has been operational since December 2011. The beamline encompass two fully independent branches devoted to coherent imaging experiments (coherent x-ray diffraction, coherent diffraction imaging and ptychography) and x-ray imaging (in-line phase contrast imaging, tomography and full-field microscopy). This paper gives an overview of the current status of experimental stations on both branches and outlines planned developments.

  9. Circular dichroism beamline B23 at the Diamond Light Source.

    Science.gov (United States)

    Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano

    2012-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well established technique in structural biology. The first UV-VIS beamline, dedicated to circular dichroism, at Diamond Light Source Ltd, a third-generation synchrotron facility in south Oxfordshire, UK, has recently become operational and it is now available for the user community. Herein the main characteristics of the B23 SRCD beamline, the ancillary facilities available for users, and some of the recent advances achieved are summarized.

  10. Current schemes for National Synchrotron Light Source UV beamlines

    International Nuclear Information System (INIS)

    Williams, G.P.; Howells, M.R.; McKinney, W.R.

    1979-01-01

    We describe in some detail four beamlines proposed for the National Synchrotron Light Source uv ring at Brookhaven National Laboratory. Three grazing-incidence instruments, one of the plane grating Mijake type and two with toroidal gratings at grazing angles of 2-1/2 0 and 15 0 are described. Two normal incidence instruments, one using the source as entrance slit and accepting 75 milliradians horizontally are also discussed. In each case we have estimated the output fluxes expected from such beamlines

  11. An overview of what is required and when for developing a beamline at the ALS

    International Nuclear Information System (INIS)

    Hussain, Z.

    1995-08-01

    This report discusses these topics: reviews required for developing a beamline at the ALS; work items and documentation required for the beamline design review; information to be communicated to the ALS staff before the beamline readiness review; work items and documentation required for the beamline readiness review; contacts for information, technical questions, and sources of additional information; and checklist of what is required and when for developing a beamline

  12. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II

    Science.gov (United States)

    Schäfers, F.; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th.

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047

  13. Beamline for Schools 2016: How to be a CERN scientist

    CERN Document Server

    2016-01-01

    Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline.   Students from the 2016 Beamline for Schools competition working on their experiment. (Image: Noemí Carabán Gonzalez/CERN) Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline, after winning the Beamline for Schools competition. The teams, ”Pyramid Hunters” from Poland and “Relatively Special” from the United Kingdom, spent 10 days at CERN conducting the experiments they had dreamt up in their winning proposals. The Beamline for Schools competition gives high-school students the chance to run an experiment on a fully equipped CERN beamline, in the same way researchers do at the Large Hadron Collider and other CERN facilities every day. To know more about their stay at CERN and the experiments they&r...

  14. Data Management System at the Photon Factory Macromolecular Crystallography Beamline

    International Nuclear Information System (INIS)

    Yamada, Y; Matsugaki, N; Chavas, L M G; Hiraki, M; Igarashi, N; Wakatsuki, S

    2013-01-01

    Macromolecular crystallography is a very powerful tool to investigate three-dimensional structures of macromolecules at the atomic level, and is widely spread among structural biology researchers. Due to recent upgrades of the macromolecular crystallography beamlines at the Photon Factory, beamline throughput has improved, allowing more experiments to be conducted during a user's beam time. Although the number of beamlines has increased, so has the number of beam time applications. Consequently, both the experimental data from users' experiments and data derived from beamline operations have dramatically increased, causing difficulties in organizing these diverse and large amounts of data for the beamline operation staff and users. To overcome this problem, we have developed a data management system by introducing commercial middleware, which consists of a controller, database, and web servers. We have prepared several database projects using this system. Each project is dedicated to a certain aspect such as experimental results, beam time applications, beam time schedule, or beamline operation reports. Then we designed a scheme to link all the database projects.

  15. The INE-Beamline for Actinide Research at ANKA

    Science.gov (United States)

    Brendebach, Boris; Denecke, Melissa A.; Rothe, Jörg; Dardenne, Kathy; Römer, Jürgen

    2007-02-01

    The INE-Beamline for actinide research at the synchrotron source ANKA is now fully operational. This beamline was designed, built, and commissioned by the Institut für Nukleare Entsorgung (INE) at the Forschungszentrum Karlsruhe (FZK), Germany. It is dedicated to actinide speciation investigations related to nuclear waste disposal as well as applied and basic actinide research. Experiments on radioactive samples with activities up to 106 times the limit of exemption inside a safe and flexible double containment concept are possible. The close proximity of the beamline to INE's active laboratories is unique in Europe. Currently, experiments can be performed in an X-ray energy range from around 2.15 keV (P K edge) to 24.35 keV (Pd K edge). The INE-Beamline design is optimized for spectroscopy with emphasis on surface sensitive techniques. A microfocus option is presently being installed at the INE-Beamline. Access to the INE-Beamline is possible through cooperation with INE, through the ANKA proposal system and via the European Network of Excellence for Actinide Sciences (ACTINET).

  16. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  17. Capillary concentrators for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Heald, S.M.; Brewe, D.L.; Kim, K.H.; Brown, F.C.; Barg, B.; Stern, E.A.

    1996-01-01

    Capillary concentrators condense x-rays by multiple reflections down a gradually tapering capillary. They can provide sub-micron beam spots, and are promising candidates for use in the next generation x-ray microprobe beamlines. The weak energy dependence of their properties make them especially useful for energy scanning applications such as micro-XAFS. This paper examines the potential performance of capillary optics for an x-ray microprobe, as well as some practical issues such as fabrication and alignment. Best performance at third generation sources requires long capillaries, and the authors have been using fiber optics techniques to fabricate capillaries up to one meter in length. The performance of shorter (less than about 0.5 m) capillaries has often been found to agree well with theoretical calculations, indicating the inner surface is a high quality x-ray reflector. These capillaries have been tested at the NSLS for imaging and micro-XAFS down to 2.6 microm resolution with excellent results. On an unfocused bend magnet line flux density approaching 10 6 ph/sec/microm 2 has been achieved. While nearly optimum profiles have been achieved for longer capillaries, the results have been disappointing, and alignment problems are suspected. The dramatic improvement in performance possible at third generation synchrotrons such as the APS is discussed along with improvements possible by using the capillaries in conjunction with coupling optics

  18. Design of the LBNF Beamline Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, S. [Fermilab; Ammigan, K. [Fermilab; Anderson, K.; ; Buccellato, S. A. [Fermilab; Crowley, C. F. [Fermilab; Hartsell, B. D. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Krafczyk, G. E. [Fermilab; Lee, A. [Fermilab; Lundberg, B. [Fermilab; Reitzner, S. D. [Fermilab; Sidorov, V. [Fermilab; Stefanik, A. M. [Fermilab; Tropin, I. S. [Fermilab; Vaziri, K. [Fermilab; Williams, K. [Fermilab; Zwaska, R. M. [Fermilab; Densham, C. [RAL, Didcot

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.

  19. Metrological traceability of holmium oxide solution

    Science.gov (United States)

    Gonçalves, D. E. F.; Gomes, J. F. S.; Alvarenga, A. P. D.; Borges, P. P.; Araujo, T. O.

    2018-03-01

    Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.

  20. Metrology Sampling Strategies for Process Monitoring Applications

    KAUST Repository

    Vincent, Tyrone L.; Stirton, James Broc; Poolla, Kameshwar

    2011-01-01

    , economic pressures prompt a reduction in metrology, for both capital and cycle-time reasons. This paper explores the use of modeling and minimum-variance prediction as a method to select the sites for measurement on each wafer. The models are developed

  1. Laser metrology applied to the nuclear maintenance

    International Nuclear Information System (INIS)

    Garrido Garcia, J.; Sarti Fernandez, F.

    2012-01-01

    The development of this paper focuses on providing an overview of the state of the art about laser metrology. This type of equipment combines the measurement philosophy of laser scanning with the great precision of the robotic equipment of auscultation. Getting micron.

  2. Activities of IPEN Nuclear Metrology Laboratory

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The activities of IPEN Nuclear Metrology Laboratory, which the principal objective is radionuclides activities determination for supplying sources and standard radioactive solutions in activity are presented. The systems installed, the activity bands and some of standards radionuclides are shown. (C.G.C.) [pt

  3. Overlay metrology for double patterning processes

    Science.gov (United States)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double

  4. Advanced metrology by offline SEM data processing

    Science.gov (United States)

    Lakcher, Amine; Schneider, Loïc.; Le-Gratiet, Bertrand; Ducoté, Julien; Farys, Vincent; Besacier, Maxime

    2017-06-01

    Today's technology nodes contain more and more complex designs bringing increasing challenges to chip manufacturing process steps. It is necessary to have an efficient metrology to assess process variability of these complex patterns and thus extract relevant data to generate process aware design rules and to improve OPC models. Today process variability is mostly addressed through the analysis of in-line monitoring features which are often designed to support robust measurements and as a consequence are not always very representative of critical design rules. CD-SEM is the main CD metrology technique used in chip manufacturing process but it is challenged when it comes to measure metrics like tip to tip, tip to line, areas or necking in high quantity and with robustness. CD-SEM images contain a lot of information that is not always used in metrology. Suppliers have provided tools that allow engineers to extract the SEM contours of their features and to convert them into a GDS. Contours can be seen as the signature of the shape as it contains all the dimensional data. Thus the methodology is to use the CD-SEM to take high quality images then generate SEM contours and create a data base out of them. Contours are used to feed an offline metrology tool that will process them to extract different metrics. It was shown in two previous papers that it is possible to perform complex measurements on hotspots at different process steps (lithography, etch, copper CMP) by using SEM contours with an in-house offline metrology tool. In the current paper, the methodology presented previously will be expanded to improve its robustness and combined with the use of phylogeny to classify the SEM images according to their geometrical proximities.

  5. An alternative method to achieve metrological confirmation in measurement process

    Science.gov (United States)

    Villeta, M.; Rubio, E. M.; Sanz, A.; Sevilla, L.

    2012-04-01

    Metrological confirmation process must be designed and implemented to ensure that metrological characteristics of the measurement system meet metrological requirements of the measurement process. The aim of this paper is to present an alternative method to the traditional metrological requirements about the relationship between tolerance and measurement uncertainty, to develop such confirmation processes. The proposed way to metrological confirmation considers a given inspection task of the measurement process into the manufacturing system, and it is based on the Index of Contamination of the Capability, ICC. Metrological confirmation process is then developed taking into account the producer risks and economic considerations on this index. As a consequence, depending on the capability of the manufacturing process, the measurement system will be or will not be in adequate state of metrological confirmation for the measurement process.

  6. Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines

    International Nuclear Information System (INIS)

    Yoon, Phil S.; Siddons, D. Peter

    2010-01-01

    We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

  7. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  8. A beamline for macromolecular crystallography at the Advanced Light Source

    International Nuclear Information System (INIS)

    Padmore, H.A.; Earnest, T.; Kim, S.H.; Thompson, A.C.; Robinson, A.L.

    1994-08-01

    A beamline for macromolecular crystallography has been designed for the ALS. The source will be a 37-pole wiggler with a, 2-T on-axis peak field. The wiggler will illuminate three beamlines, each accepting 3 mrad of horizontal aperture. The central beamline will primarily be used for multiple-wavelength anomalous dispersion measurements in the wavelength range from 4 to 0.9 angstrom. The beamline optics will comprise a double-crystal monochromator with a collimating pre-mirror and a double-focusing mirror after the monochromator. The two side stations will be used for fixed-wavelength experiments within the wavelength range from 1.5 to 0.95 angstrom. The optics will consist of a conventional vertically focusing cylindrical mirror followed by an asymmetrically cut curved-crystal monochromator. This paper presents details of the optimization of the wiggler source for crystallography, gives a description of the beamline configuration, and discusses the reasons for the choices made

  9. A hard X-ray nanoprobe beamline for nanoscale microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winarski, Robert P., E-mail: winarski@anl.gov; Holt, Martin V. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Rose, Volker [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Maser, Jörg [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States)

    2012-11-01

    The Hard X-ray Nanoprobe Beamline is a precision platform for scanning probe and full-field microscopy with 3–30 keV X-rays. A combination of high-stability X-ray optics and precision motion sensing and control enables detailed studies of the internal features of samples with resolutions approaching 30 nm. The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  10. The Scanning Nanoprobe Beamline Nanoscopium at Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Kewish, C. M.; Polack, F.; Moreno, T.

    2011-09-01

    The Nanoscopium beamline at Synchrotron Soleil will offer advanced scanning-based hard x-ray imaging techniques in the 5- to 20-keV energy range, for user communities working in the earth, environmental, and life sciences. Two dedicated end stations will exploit x-ray coherence to produce images in which contrast is based on a range of physical processes. In the first experiment hutch, coherent scatter imaging techniques will produce images in which contrast arises from spatial variations in the complex refractive index, and orientation in the nanostructure of samples. In the second experiment hutch, elemental mapping will be carried out at the trace (ppm) level by scanning x-ray fluorescence, speciation mapping by XANES, and phase gradient mapping by scanning differential phase contrast imaging. The beamline aims to reach sub-micrometric, down to 30 nm, spatial resolution. This ˜155-meter-long beamline will share the straight section with a future tomography beamline by using canted undulators having 6.5-mrad separation angle. The optical design of Nanoscopium aims to reduce the effect of instabilities on the probing nanobeam by utilizing an all-horizontal geometry for the reflections of the primary beamline mirrors, which focus onto a slit, creating an over-filled secondary source. Kirkpatrick-Baez mirrors and Fresnel zone plates will be used as focusing devices in the experiment hutches. Nanoscopium is expected to commence user operation in 2013.

  11. Upgrade of Spring-8 Beamline Network with Vlan Technology Over Gigabit Ethernet

    OpenAIRE

    Ishii, M.; Fukui, T.; Furukawa, Y.; Nakatani, T.; Ohata, T.; Tanaka, R.

    2001-01-01

    The beamline network system at SPring-8 consists of three LANs; a BL-LAN for beamline component control, a BL-USER-LAN for beamline experimental users and an OA-LAN for the information services. These LANs are interconnected by a firewall system. Since the network traffic and the number of beamlines have increased, we upgraded the backbone of BL-USER-LAN from Fast Ethernet to Gigabit Ethernet. And then, to establish the independency of a beamline and to raise flexibility of every beamline, we...

  12. Machine tool metrology an industrial handbook

    CERN Document Server

    Smith, Graham T

    2016-01-01

    Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of the existing published literature and valid information obtained from a wide-spectrum of manufacturers of plant, equipment and instrumentation before putting forward novel ideas and methodologies. Providing easy to understand bullet points and lucid descriptions of metrological and calibration subjects, this book aids reader understanding of the topics discussed whilst adding a voluminous-amount of footnotes utilised throughout all of the chapters, which adds some additional detail to the subject. Featuring an extensive amount of photographic-support, this book will serve as a key reference text for all those involved in the field. .

  13. Quantum metrology foundation of units and measurements

    CERN Document Server

    Goebel, Ernst O

    2015-01-01

    The International System of Units (SI) is the world's most widely used system of measurement, used every day in commerce and science, and is the modern form of the metric system. It currently comprises the meter (m), the kilogram (kg), the second (s), the ampere (A), the kelvin (K), the candela (cd) and the mole (mol)). The system is changing though, units and unit definitions are modified through international agreements as the technology of measurement progresses, and as the precision of measurements improves. The SI is now being redefined based on constants of nature and their realization by quantum standards. Therefore, the underlying physics and technologies will receive increasing interest, and not only in the metrology community but in all fields of science. This book introduces and explains the applications of modern physics concepts to metrology, the science and the applications of measurements. A special focus is made on the use of quantum standards for the realization of the forthcoming new SI (the...

  14. Metrology for fire experiments in outdoor conditions

    CERN Document Server

    Silvani, Xavier

    2013-01-01

    Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisitio...

  15. Coordinate Metrology by Traceable Computed Tomography

    DEFF Research Database (Denmark)

    Müller, Pavel

    is an important factor for decision making about manufactured parts. However, due to many influences in CT, estimation of the uncertainty is a challenge, also because standardized procedures and guidelines are not available yet. In this thesis, several methods for uncertainty estimation were applied in connection......, characterization and correction of measurement errors in the CT volume. Their application appeared to be suitable for this task. Because the two objects consist of ruby spheres and carbon fibre, CT scans did not produce image artifacts, and evaluation of sphere-to-sphere distances was robust. Several methods...... metrology and coordinate metrology and is currently becoming more and more important measuring technique for dimensional measurements. This is mainly due to the fact that with CT, a complete three-dimensional model of the scanned part is in a relatively short time visualized using a computer...

  16. Gloss evaluation from soft and hard metrologies.

    Science.gov (United States)

    Wang, Zihao; Xu, Lihao; Hu, Yu; Mirjalili, Fereshteh; Luo, Ming Ronnier

    2017-09-01

    Recent advances in bidirectional reflectance distribution function (BRDF) acquisitions have provided a novel approach for appearance measurement and analysis. In particular, since gloss appearance is dependent on the directional reflective properties of surfaces, it is reasonable to leverage the BRDF for gloss evaluation. In this paper, we investigate gloss appearance from both soft metrology and hard metrology. A psychophysical experiment was conducted for the gloss assessment of 47 neutral-color samples. In the evaluation of gloss perception from gloss meter measurements, we report several ambiguous correspondences in the medium gloss range. In order to analyze and explain this phenomenon, the BRDF was acquired and examined using a commercial BRDF measuring device. With an improved correlation-to-visual perception, we propose a two-dimensional gloss model by combining a parameter, the standard deviation of the specular lobe, from Ward's BRDF model with measured gloss values.

  17. Efficiency improvements of offline metrology job creation

    Science.gov (United States)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  18. Measurement capabilities of the Bendix Metrology Organization

    International Nuclear Information System (INIS)

    Barnes, L.M.

    1984-01-01

    The purpose of this manual is to communicate the measurement and calibration capabilities of the Metrology Organization of the Bendix Kansas City Division. Included is a listing of the measurement types and ranges available, and the accuracies normally attainable under conditions at the Kansas City Division. Also described are currently used standards and measurement devices. The manual is divided into four major sections, each describing a broad general area of measurement: mechanical; environmental, gas, liquid; electrical; and optical and radiation

  19. Digital holography for MEMS and microsystem metrology

    CERN Document Server

    Asundi, Anand

    2011-01-01

    Approaching the topic of digital holography from the practical perspective of industrial inspection, Digital Holography for MEMS and Microsystem Metrology describes the process of digital holography and its growing applications for MEMS characterization, residual stress measurement, design and evaluation, and device testing and inspection. Asundi also provides a thorough theoretical grounding that enables the reader to understand basic concepts and thus identify areas where this technique can be adopted. This combination of both practical and theoretical approach will ensure the

  20. Implementation of the Brazilian radiation metrology network

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Araujo, Margareth M. de

    1998-01-01

    The ever increasing need for calibration of survey, personal, and contamination meters in Brazil are not completely satisfied by the two operating laboratories. To overcome this deficiency a radiation metrology network is being implemented with the support of IAEA. In a near future this network will count other three calibration laboratories which are being installed in different regions of the country, and accredited through INMETRO. (author)

  1. Traceability and uncertainty estimation in coordinate metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Savio, Enrico; De Chiffre, Leonardo

    2001-01-01

    National and international standards have defined performance verification procedures for coordinate measuring machines (CMMs) that typically involve their ability to measure calibrated lengths and to a certain extent form. It is recognised that, without further analysis or testing, these results...... are required. Depending on the requirements for uncertainty level, different approaches may be adopted to achieve traceability. Especially in the case of complex measurement situations and workpieces the procedures are not trivial. This paper discusses the establishment of traceability in coordinate metrology...

  2. The microspectroscopy beamline for the Australian synchrotron project

    International Nuclear Information System (INIS)

    Boldeman, J.W.; Ryan, C.; Cohen, D.D.

    2005-01-01

    A new multi-million dollar synchrotron facility is currently being built in Clayton, Victoria. This is a 3GeV electron machine, it will be a world class machine and contain state of the art beamline facilities for both Australian and overseas scientists. It is due for completion in mid-2007. This specialised beamline will provide sub-micron spatial resolution with the highest flux possible. It will combine 2D mapping with micro X-ray fluorescence (μ-XRF), micro X-ray absorption near edge spectroscopy (μ-XANES) and micro X-ray absorption fine structure spectroscopy (μ-XAFS) for elemental and chemical analysis to solve scientific problems that can only be understood using X-ray beams with sub-micron resolutions. In this paper we describe some key beamline components and give details about their performance specifications. 7 refs., 4 figs.; 1 tab

  3. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  4. The Materials Science beamline upgrade at the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Willmott, P. R., E-mail: philip.willmott@psi.ch; Meister, D.; Leake, S. J.; Lange, M.; Bergamaschi, A. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); and others

    2013-07-16

    The wiggler X-ray source of the Materials Science beamline at the Swiss Light Source has been replaced with a 14 mm-period cryogenically cooled in-vacuum undulator. In order to best exploit the increased brilliance of this new source, the entire front-end and optics have been redesigned. The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs.

  5. Long-pulse beamlines for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Stone, R.R.; Goldner, A.I.; Poulsen, P.

    1984-01-01

    We have recently obtained test results indicating that a beam of pure full-energy deuterium particles can be delivered to the plasma targets in MFTF-B. We used a close-coupled separator magnet with the ion source to separate the impurities from the full-energy deuterium particles. Our completed studies show that the usual iron-core sweep magnet and shielding used in neutral beamlines can be eliminated and the gas flow out of the beamline decreased. This design also reduces beam losses. We will use smooth-bore OFHC tube arrays brazed to manifolds for the active heat transfer surfaces. Tests indicate that both burnout and life requirements are met by this design. In this paper, we present test results and discuss the MFTF-B long-pulse beamline configuration

  6. Physical optics simulations with PHASE for SwissFEL beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, U.; Follath, R.; Reiche, S. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Bahrdt, J. [Helmholtz Zentrum Berlin (Germany)

    2016-07-27

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-ray pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.

  7. Metrology Techniques for the Assembly of NCSX

    International Nuclear Information System (INIS)

    Priniski, C.; Dodson, T.; Duco, M.; Raftopoulos, S.; Ellis, R.; Brooks, A.

    2009-01-01

    In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex three dimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracy on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometer aided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.

  8. Kinematic mounting systems for NSLS beamlines and experiments

    International Nuclear Information System (INIS)

    Oversluizen, T.; Stoeber, W.; Johnson, E.D.

    1991-01-01

    Methods for kinematically mounting equipment are well established, but applications at synchrotron radiation facilities are subject to constraints not always encountered in more traditional laboratory settings. Independent position adjustment of beamline components can have significant benefits in terms of minimizing time spent aligning, and maximizing time spent acquiring data. In this paper, we use examples taken from beamlines at the NSLS to demonstrate approaches for optimization of the reproducibility, stability, excursion, and set-up time for various situations. From our experience, we extract general principles which we hope will be useful for workers at other synchrotron radiation facilities. 7 refs., 4 figs

  9. Infrared Spectroscopy Beamline Based on a Tabletop Storage Ring

    OpenAIRE

    Haque, Md. Monirul; Moon, Ahsa; Yamada, Hironari

    2012-01-01

    An optical beamline dedicated to the infrared (IR) spectroscopy has been constructed at MIRRORCLE, a tabletop storage ring. The beamline has been designed for the use of infrared synchrotron radiation (IRSR) emitted from a bending magnet of 156 mm bending radius with the acceptance angle of 355(H) × 138(V) mrad to obtain high flux. The IR emission is forced by an exactly circular optics, named photon storage ring (PhSR), placed around the electron orbit and is collected by a “magic mirror” as...

  10. High Power Primary Slits For The ESRF Beamlines

    International Nuclear Information System (INIS)

    Marion, Philippe; Zhang Lin

    2004-01-01

    At the ESRF, in order to face the increased heatload on the beamlines, new Primary slits have been developed. The main features of the new slits are: beam size = 0 to 4mm; accuracy = 10μm; acceptable power density: 600 W/mm2; acceptable total power: 7kW; total length: 740mm. The adopted design offers a wide water cooled area; the shapes of the heated parts have been optimized to reduce the local thermal stresses. The maximum calculated temperature and stress are 353C and 606MPa. Six of these new slits are now in operation on ESRF Beamlines

  11. A compact cost-effective beamline for a PET Cyclotron

    International Nuclear Information System (INIS)

    Dehnel, M.P.; Jackle, P.; Roeder, M.; Stewart, T.; Theroux, J.; Brasile, J.P.; Sirot, P.; Buckley, K.R.; Bedue, M.

    2007-01-01

    Most commercial PET Cyclotrons have targets mounted on or near the main cyclotron vacuum chamber. There is often little or no system capability for centering or focusing the extracted beam on target to achieve maximum production. This paper describes the ion-optics, design and development of a compact cost-effective beamline comprised of low activation and radiation resistant materials. The beamline, complete with suitable diagnostic devices, permits the extracted proton beam to be centered (X-Y steering magnet), and focused (quadrupole doublet) on target eliminating unnecessary beamspill and ensuring high production

  12. APS beamline standard components handbook, Version 1.3

    International Nuclear Information System (INIS)

    Hahn, U.; Shu, D.; Kuzay, T.M.

    1993-02-01

    This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction

  13. Status of the Nanoscopium scanning nanoprobe beamline of Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Medjoubi, K.; Kewish, C. M.; Leroux, V.; Ribbens, M.; Baranton, G.; Polack, F.; Samama, J. P.

    2013-09-01

    The Nanoscopium 155 m-long scanning nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal imaging. Dedicated experimental stations, working in consecutive operation mode, will provide coherent scatter imaging and spectro-microscopy techniques in the 5-20 keV energy range for various user communities. Next to fast scanning, cryogenic cooling will reduce the radiation damage of sensitive samples during the measurements. Nanoscopium is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this contribution.

  14. Slovak Office of Standards, Metrology and Testing. Annual Report 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A brief account of activities carried out by the Slovak Office of Standards, Metrology and Testing of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Introduction by the President of the Slovak Office of Standards, Metrology and Testing; (2) The Vice-president's Unit Standardization and Quality; (3) The President's Office; (4) Chief Inspector Department; (5) Legislative-juridical Department; (6) Department of Economy; (7) Department of International Co-operation; (8) Department of European Integration; (9) Department of Metrology; (10) Department of Testing; (11) Department of the Cyclotron Centre SR; (12) Slovak Institute of Metrology; (13) Slovak Standards Institution; (14) Slovak Metrology Inspectorate; (15) Slovak Legal Metrology; (16) Measuring Techniques - Technocentre - MTT; Abbreviations; (17) Technical Testing Institute Piestany; (18) Testing Institute of Transport and Earthmoving Machinery - SUDST

  15. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  16. Metrology for radioactive waste management. (WP2, WP3)

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. In this presentation the Project is described. (author)

  17. PREFACE: Fundamental Constants in Physics and Metrology

    Science.gov (United States)

    Klose, Volkmar; Kramer, Bernhard

    1986-01-01

    This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and

  18. Distributed control of protein crystallography beamline 5.0 using CORBA

    International Nuclear Information System (INIS)

    Timossi, Chris

    1999-01-01

    The Protein Crystallography Beamline at Berkeley Lab's Advanced Light Source is a facility that is being used to solve the structure of proteins. The software that is being used to control this beamline uses Java for user interface applications which communicate via CORBA with workstations that control the beamline hardware. We describe the software architecture for the beamline and our experiences after two years of operation

  19. The Pharmaceutical Industry Beamline of Pharmaceutical Consortium for Protein Structure Analysis

    International Nuclear Information System (INIS)

    Nishijima, Kazumi; Katsuya, Yoshio

    2002-01-01

    The Pharmaceutical Industry Beamline was constructed by the Pharmaceutical Consortium for Protein Structure Analysis which was established in April 2001. The consortium is composed of 22 pharmaceutical companies affiliating with the Japan Pharmaceutical Manufacturers Association. The beamline is the first exclusive on that is owned by pharmaceutical enterprises at SPring-8. The specification and equipments of the Pharmaceutical Industry Beamline is almost same as that of RIKEN Structural Genomics Beamline I and II. (author)

  20. Problems of metrological supply of carbon materials production

    International Nuclear Information System (INIS)

    Belov, G.V.; Bazilevskij, L.P.; Cherkashina, N.V.

    1989-01-01

    Carbon materials and products contain internal residual stresses and have an anisotropy of properties therefore special methods of tests are required to control their quality. The main metrological problems during development, production and application of carbon products are: metrological supply of production forms and records during the development of production conditions; metrological supply of quality control of the product; metrological supply of methods for the tests of products and the methods to forecast the characteristics of product quality for the period of quaranteed service life

  1. Alternative stable states and alternative endstates of community assembly through intra- and interspecific positive and negative interactions.

    Science.gov (United States)

    Gerla, Daan J; Mooij, Wolf M

    2014-09-01

    Positive and negative interactions within and between species may occur simultaneously, with the net effect depending on population densities. For instance, at low densities plants may ameliorate stress, while competition for resources dominates at higher densities. Here, we propose a simple two-species model in which con- and heterospecifics have a positive effect on per capita growth rate at low densities, while negative interactions dominate at high densities. The model thus includes both Allee effects (intraspecific positive effects) and mutualism (interspecific positive effects), as well as intra- and interspecific competition. Using graphical methods we derive conditions for alternative stable states and species coexistence. We show that mutual non-invasibility (i.e. the inability of each species to invade a population of the other) is more likely when species have a strong positive effect on the own species or a strong negative effect on the other species. Mutual non-invasibility implies alternative stable states, however, there may also be alternative stable states at which species coexist. In the case of species symmetry (i.e. when species are indistinguishable), such alternative coexistence states require that if the positive effect exerted at low densities at the own species is stronger than on the other species, the negative effect at higher densities is also stronger on the own species than on the other species, or, vice versa, if the interspecific positive effects at low densities are stronger than the intraspecific effects, the negative effects at higher densities are also stronger between species than within species. However, the reachability of alternative stable states is restricted by the frequency and density at which species are introduced during community assembly, so that alternative stable states do not always represent alternative endstates of community assembly. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Description and calibration beamline SEM/Ion Chamber Current Digitizer

    International Nuclear Information System (INIS)

    Schoo, D.

    1994-05-01

    This report discusses the following on beamline SEM/ion chamber current digitizers: Module description; testing and calibration; common setup procedures; summary of fault indications and associated causes; summary of input and output connections; SEM conversion constant table; ion chamber conversion constant table; hexadecimal to decimal conversion table; and schematic diagram

  3. The Nanoscience Beamline (I06) at Diamond Light Source

    International Nuclear Information System (INIS)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-01-01

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A ∼5 μm (σ) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  4. Optical design study of the PEARL beamline at SLS

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Flechsig, U.; Muntwiler, M.; Quitmann, C.

    2011-01-01

    Roč. 635, č. 1 (2011), s. 116-120 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100522 Keywords : PGM * beamline design * photo-emision Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  5. Aberration analysis calculations for synchrotron radiation beamline design

    International Nuclear Information System (INIS)

    McKinney, W.R.; Howells, M.; Padmore, H.A.

    1997-09-01

    The application of ray deviation calculations based on aberration coefficients for a single optical surface for the design of beamline optical systems is reviewed. A systematic development is presented which allows insight into which aberration may be causing the rays to deviate from perfect focus. A new development allowing analytical calculation of line shape is presented

  6. Remote access and automation of SPring-8 MX beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 JAPAN (Japan); Hasegawa, Kazuya; Murakami, Hironori; Furukawa, Yukito; Mizuno, Nobuhiro; Kumasaka, Takashi [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 JAPAN (Japan)

    2016-07-27

    At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.

  7. Beamline standard component designs for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

    1994-01-01

    The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings

  8. Trichromatic concept at the SPring-8 RIKEN beamline I

    International Nuclear Information System (INIS)

    Yamamoto, Masaki; Kumasaka, Takashi; Ueki, Tatzuo

    1998-01-01

    At the SPring-8, RIKEN beamline I has been designed and developed for structural biology research by the Institute of Physical and Chemical Research (RIKEN). RIKEN beamline I consists of two experimental stations, protein crystallography (PX) and small-angle X-ray scattering (SAXS). Both experiments can be carried out simultaneously, with dichromatic synchrotron radiation emitted from two coaxial undulators with vertical polarization. The branched beams are generated by a transparent diamond crystal. With synchrotron radiation, the multi-wavelength anomalous diffraction (MAD) method, which gives phases from a single anomalous scatterer, has been developed. Anomalous scattering contributes a small portion of diffraction intensity so that the accuracy of intensity data is definitely important. The PX branch of RIKEN beamline I has been designed based on a 'trichromatic concept' to optimize for the MAD data collection. This concept is that three kinds of intensity data sets with three different wavelengths are taken quasi-simultaneously for the single protein crystal without changing any setting by 'trichromator'. The main feature of this concept is to minimize systematic errors in the measurements of anomalous diffraction for the MAD method. The construction of RIKEN beamline I had been progressed satisfactorily until June 1997. The initial commissioning successfully provided the three different monochromatized undulator beams were successfully observed on the phosphor screen, which located at the near end of the trichromator. (author)

  9. The High Energy Materials Science Beamline (HEMS) at PETRA III

    International Nuclear Information System (INIS)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, Rene; Kiehn, Ruediger; Mueller, Martin; Schreyer, Andreas

    2010-01-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  10. High pressure XAFS experiments at the XAFS beamline, INDUS-2

    International Nuclear Information System (INIS)

    Ramanan, Nitya; Lahiri, Debdutta; Garg, Nandini; Sharma, Surinder M.; Bhattacharyya, D.; Jha, S.N.; Sahoo, N.K.

    2011-01-01

    The dispersive EXAFS beamline at the INDUS-2 synchrotron source, RRCAT, Indore uses a bent Si (111) crystal as a dispersive-cum-focusing element and a position sensitive CCD detector to enable instantaneous measurement of the whole EXAFS spectrum around the absorption edge of a particular atom. One of the proposed activities with this beamline is the characterization of amorphous materials under high pressure. Polychromator-based beamline is ideal for high pressure studies using Diamond Anvil Cell (DAC) with ∼ 50 μm sample size. Larger spot size would give rise to unwanted diffraction peaks from diamond, superimposed on the XAFS data. Micro-focusing by polychromator crystal and absence of its mechanical movement (unlike monochromator-based scanning-mode beamlines), during data collection, lead to required focal spot stability for DAC experiments. Currently, the theoretically determined spot size (Horizontal x vertical) varies between 17 x 137 μm and 37 x 142 μm for the X-ray energy range 5 keV-20 keV. To reduce the vertical spot size to <50 μm, we have designed an additional focusing mirror between the polychromator and sample position. The mirror, fabricated at SESO, France will be installed shortly. Meanwhile, we have carried out preliminary XAFS experiments on Sr-compounds at ∼16 keV, under ambient conditions and inside diamond anvil cell, in order to assess the signal intensity and quality. We have obtained reasonably good signal. (author)

  11. LNLS soft x-ray spectroscopy (SXS) beamline

    International Nuclear Information System (INIS)

    Tolentino, Helio; Rocha, Milton C.; Tamura, Edilson; Cezar, Julio C.; Vicentin, Flavio C.; Giles, Carlos; Compagnon-Cailhol, Valerie; Abbate, Miguel; Cruz, Daniela Z.N.; Mocellin, Alexandra

    1996-01-01

    The Soft X-ray Spectroscopy beamline will be dedicated to the study of structural, electronic and magnetic properties of materials by using photoabsorption and photoemission techniques, X-ray dischroism will be used to study magnetism of transition metals and rare earths compounds. This beamline is one of the first seven beamlines which were decided to start operation along with the storage ring. Part of the beamline - mostly importations - has been granted by fundings from the state of Sao Paulo (Fapesp). The electron energy analyser came through EEC from a cooperation with a French group at LURE. All components of the beamline are either constructed or bougth and being mounted at the storage ring. The monochromator has already been commissioned under UHV, attaining the specification of 5x10 -9 Torr. To cover the whole energy range, from 800 eV up to 4000 eV, many crystals have been bought, cut and tested. The mirror has been specified in order to focus the source in both directions. Simulations using the Shadow code (source simulation and ray tracing technique) were performed in order to optimize the performance of the optics. We expert to focus 10 mrad down to a spot of 3.0x1.5 mm 2 . The mirror chamber has already been constructed and commissioned under UHV conditions (pressure -9 Torr). The mechanics (mechanical feedthroughs, stability, etc..) has been tested using an X-ray source and has been approved. The experimental chamber has already been used for photoemission experiments using a conventional AL/Mg X-ray source. Many results have been obtained and two master thesis have been performed using this set-up. (author)

  12. The INE-Beamline for actinide science at ANKA

    Science.gov (United States)

    Rothe, J.; Butorin, S.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Löble, M.; Metz, V.; Seibert, A.; Steppert, M.; Vitova, T.; Walther, C.; Geckeis, H.

    2012-04-01

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R&D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 × 10+6 times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between ˜2.1 keV (P K-edge) and ˜25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  13. The INE-Beamline for actinide science at ANKA

    International Nuclear Information System (INIS)

    Rothe, J.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Loeble, M.; Metz, V.; Steppert, M.; Vitova, T.; Geckeis, H.; Butorin, S.; Seibert, A.; Walther, C.

    2012-01-01

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R and D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 x 10 +6 times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between ∼2.1 keV (P K-edge) and ∼25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  14. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  15. 222Rn gas metrology in Latvia

    International Nuclear Information System (INIS)

    Bogucarska, T.; Lapenas, A.

    2004-01-01

    The measurements of radon gas provides in Latvia according with the State radiation monitoring program. The national standard/reference level for the protection of employees and population from exposure to radon Latvia has been accepted. The facilities for calibration of the radon gas measurement instruments and detectors have been established on basic of the Radiation Metrology and Testing Center which is the local SSDL for Baltic Region. The radon measurement instruments and detectors calibration can be performed at the 170-4000 Bq/m 3 range. (author)

  16. Quantum metrology for gravitational wave astronomy.

    Science.gov (United States)

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  17. Aerosol metrology: aerodynamic and electrostatic techniques

    International Nuclear Information System (INIS)

    Prodi, V.

    1988-01-01

    Aerosols play an ever increasing role in science, engineering and especially in industrial and environmental hygiene. They are being studied since a long time, but only recently the progress in aerosol instrumentation has made it possible to pose of aerosol metrology, especially the problem of absolute measurements, as based directly on measurements of fundamental quantities. On the basis of absolute measurements, the hierarchy of standards can be prepared and adequately disseminated. In the aerosol field, the quantities to be measured are mainly size, charge, density, and shape. In this paper a possible standardisation framework for aerosols is proposed, for the main physical quantities

  18. Design concept of the high-resolution end-station PEAXIS at BESSY II: Wide-Q-range RIXS and XPS measurements on solids, solutions, and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lieutenant, Klaus, E-mail: klaus.lieutenant@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Hofmann, Tommy, E-mail: tommy.hofmann@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Schulz, Christian, E-mail: schulz-c@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Yablonskikh, Mikhail V., E-mail: mikhail.yablonskikh@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Habicht, Klaus, E-mail: habicht@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Aziz, Emad F., E-mail: emad.aziz@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Institute for Molecular Science, Myodaiji 444-8585, Okazaki (Japan)

    2016-07-15

    Highlights: • Continuous rotation of the RIXS arm allowing truly Q-dependent measurements. • A systematic way to assess all RIXS spectrometer parameters using a figure of merit. • An analytical calculation of the energy dependent settings of a RIXS spectrometer. • Robustness analysis of spectrometer parameters for tolerances in engineering design. - Abstract: The design of a soft X-ray end-station for the Berlin Electron Synchrotron BESSY II is presented. It will be used for Resonant Inelastic X-ray Scattering (RIXS) and Angle-dependent X-ray Photoelectron Spectroscopy (AdXPS) studies for energy material science. In RIXS-mode the instrument operates with two spherical Variable Line Space (VLS) gratings for energy resolving measurements in two overlapping energy ranges from 200 to 1200 eV. The end-station will allow measurements of solid samples, solutions and interfaces in a wide range of experimental conditions with high energy resolution covering a large Q-range realized by a continuous rotation of the RIXS detector arm by 120°. Besides the description of this end-station, a systematic way is shown for the design of a RIXS instrument assessing the grating parameters based on existing theories and for the calculation of optimal instrument settings as a function of photon energy. Different grating inclinations, line densities, groove shapes and RIXS instrument lengths were investigated. Possible parameter combinations were calculated analytically and the resulting instrument performance was determined by ray-tracing simulations using the simulation package RAY. The performance of the RIXS instrument was evaluated by choosing the product of the intensity at the detector and the square of the resolving power as figure of merit to optimize the spectrometer. The robustness of the optimized parameters has been checked in order to define tolerance parameters for the engineering design of the spectrometer.

  19. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  20. Virtual overlay metrology for fault detection supported with integrated metrology and machine learning

    Science.gov (United States)

    Lee, Hong-Goo; Schmitt-Weaver, Emil; Kim, Min-Suk; Han, Sang-Jun; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Ryan, Kevin; Theeuwes, Thomas; Sun, Kyu-Tae; Lim, Young-Wan; Slotboom, Daan; Kubis, Michael; Staecker, Jens

    2015-03-01

    While semiconductor manufacturing moves toward the 7nm node for logic and 15nm node for memory, an increased emphasis has been placed on reducing the influence known contributors have toward the on product overlay budget. With a machine learning technique known as function approximation, we use a neural network to gain insight to how known contributors, such as those collected with scanner metrology, influence the on product overlay budget. The result is a sufficiently trained function that can approximate overlay for all wafers exposed with the lithography system. As a real world application, inline metrology can be used to measure overlay for a few wafers while using the trained function to approximate overlay vector maps for the entire lot of wafers. With the approximated overlay vector maps for all wafers coming off the track, a process engineer can redirect wafers or lots with overlay signatures outside the standard population to offline metrology for excursion validation. With this added flexibility, engineers will be given more opportunities to catch wafers that need to be reworked, resulting in improved yield. The quality of the derived corrections from measured overlay metrology feedback can be improved using the approximated overlay to trigger, which wafers should or shouldn't be, measured inline. As a development or integration engineer the approximated overlay can be used to gain insight into lots and wafers used for design of experiments (DOE) troubleshooting. In this paper we will present the results of a case study that follows the machine learning function approximation approach to data analysis, with production overlay measured on an inline metrology system at SK hynix.

  1. La metrología en nuestras vidas

    OpenAIRE

    Jaramillo, Zaira

    2010-01-01

    A primera vista, la palabra "Metrología" nos trae a la mente la idea de condiciones meteorológicas. Nada más alejado de la realidad, porque la Meteorología es la disciplina que se encarga de estudiar las condiciones del tiempo y la Metrología se encarga de estudiar las mediciones.

  2. Comparison of asphere measurements by tactile and optical metrological instruments

    NARCIS (Netherlands)

    Bergmans, R.H.; Nieuwenkamp, H.J.; Kok, G.J.P.; Blobel, G.; Nouira, H.; Küng, A.; Baas, M.; Voert, M.J.A. te; Baer, G.; Stuerwald, S.

    2015-01-01

    A comparison of topography measurements of aspherical surfaces was carried out by European metrology institutes, other research institutes and a company as part of an European metrology research project. In this paper the results of this comparison are presented. Two artefacts were circulated, a

  3. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs

  4. Differential Evolution for Many-Particle Adaptive Quantum Metrology

    NARCIS (Netherlands)

    Lovett, N.B.; Crosnier, C.; Perarnau- Llobet, M.; Sanders, B.

    2013-01-01

    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods

  5. Best Practice on facility characterisation from a material and waste end-state perspective. Radiological characterisation in a waste and materials end-state perspective - International Characterisation Survey Aiming to Understand Good Practice

    International Nuclear Information System (INIS)

    Larsson, Arne; Weber, Inge; Emptage, Matthew; )

    2016-01-01

    Full text of publication follows: The Task Group on Radiological Characterisation and Decommissioning within the Nuclear Energy Agency (NEA) Working Party on Decommissioning was established to identify and present Best Practice in radiological characterisation at different stages of decommissioning as well as areas that could or should be developed further by international cooperation and coordination. The first phase of the project was focusing on general aspects of strategies for radiological characterisation in decommissioning of nuclear facilities. The second phase of the project focus on strategies for optimising radiological characterisation in a waste and materials end-state perspective, building on previous task group findings. One of the activities within the second phase has been to conduct a survey with the main objective to identify Best Practice. The survey was in the form of a questionnaire in two versions, one for regulators and one for owners/implementers. Sections of the questionnaire to gather views on Best Practice: - Initiation of a characterisation program; - Planning and preparation; - Implementation (i.e. conducting the characterisation measurements and samplings); - Data assessment phase (evaluation of the results); - Quality assurance. A section on the national legislation in the regulator version and a case study section in the owner version complement the questionnaire in order to get an overview of the regulatory frameworks and also practical experiences. The extensive questionnaire was distributed to a wide audience of recognised experts throughout the member states. 53 responses were received from in total 12 countries. Most responses were from Europe but also Asia and North America were represented. The preliminary conclusions are: - There is a solid experience in radiological characterisation among regulators as well as owners/implementers; - Responses demonstrates to large extent a common view of regulators and owners

  6. The Project for the High Energy Materials Science Beamline at Petra III

    International Nuclear Information System (INIS)

    Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A.

    2007-01-01

    The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography

  7. Consultative committee on ionizing radiation: Impact on radionuclide metrology

    International Nuclear Information System (INIS)

    Karam, L.R.; Ratel, G.

    2016-01-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. - Highlights: • Influence of CIPM MRA on radionuclide metrology at laboratories around the world. • CCRI strategy: to be the “undisputed hub for ionizing radiation global metrology.” • CCRI Strategic Plan stresses importance of measurement confidence for stakeholder. • NMIs increasing role in radionuclide metrology by designating institutions (DIs). • NMIs and DIs establish quality systems; validate capabilities through comparisons.

  8. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  9. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  10. Optics for Processes, Products and Metrology

    Science.gov (United States)

    Mather, George

    1999-04-01

    Optical physics has a variety of applications in industry, including process inspection, coatings development, vision instrumentation, spectroscopy, and many others. Optics has been used extensively in the design of solar energy collection systems and coatings, for example. Also, with the availability of good CCD cameras and fast computers, it has become possible to develop real-time inspection and metrology devices that can accommodate the high throughputs encountered in modern production processes. More recently, developments in moiré interferometry show great promise for applications in the basic metals and electronics industries. The talk will illustrate applications of optics by discussing process inspection techniques for defect detection, part dimensioning, birefringence measurement, and the analysis of optical coatings in the automotive, glass, and optical disc industries. In particular, examples of optical techniques for the quality control of CD-R, MO, and CD-RW discs will be presented. In addition, the application of optical concepts to solar energy collector design and to metrology by moiré techniques will be discussed. Finally, some of the modern techniques and instruments used for qualitative and quantitative material analysis will be presented.

  11. A metrology solution for the orthopaedic industry

    International Nuclear Information System (INIS)

    Bills, P; Brown, L; Jiang, X; Blunt, L

    2005-01-01

    Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5 million operations performed annually. Currently joint replacements are expected to function for 10-15 years, however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer term improved quality of life for patients. The amount of wear that a joint incurs is seen as a good indicator of performance, with higher wear rates typically leading to reduced function and premature failure. New technologies and materials are pushing traditional wear assessment methods to their limits, and novel metrology solutions are required to assess wear of joints following in vivo and in vitro use. This paper presents one such measurement technique; a scanning co-ordinate metrology machine for geometrical assessment. A case study is presented to show the application of this technology to a real orthopaedic measurement problem: the wear of components in total knee replacement. This technique shows good results and provides a basis for further developing techniques for geometrical wear assessment of total joint replacements

  12. Metrological challenges introduced by new tolerancing standards

    International Nuclear Information System (INIS)

    Morse, Edward; Peng, Yue; Srinivasan, Vijay; Shakarji, Craig

    2014-01-01

    The recent release of ISO 14405-1 has provided designers with a richer set of specification tools for the size of part features, so that various functional requirements can be captured with greater fidelity. However, these tools also bring new challenges and pitfalls to an inspector using a coordinate metrology system. A sampling strategy that might have worked well in the past could lead to erroneous results that go undetected when used to evaluate these new specifications. In this paper we investigate how measurement strategies for sampled coordinate metrology systems influence different algorithms for the evaluation of these new specifications. Of particular interest are those specifications where the order statistics of feature cross-sections are required. Here the inspector must decide not only how many points are required for an individual cross-section, but the number and spacing of cross-sections measured on the feature. The results of these decisions are compared with an analytic estimate of the ‘true value’ of the measurand specified using this new standard. (paper)

  13. Regional metrology organisations and the JCRB

    International Nuclear Information System (INIS)

    Hetherington, Paul

    2004-01-01

    In 1999, National Metrology Institutes (NMIs) from some 39 countries signed the International Committee of Weights and Measures (CIPM) Mutual Recognition Arrangement (MRA) in Paris. The MRA, drawn up by the CIPM, under the authority given to it in the Metre Convention, was in response to requirements of Governments and Regulators to provide a sound technical foundation for trade agreements. Core objectives of the MRA are to allow for the establishment of the degree of equivalence of national measurement standards and to provide for mutual recognition of calibration certificates issued by NMIs. This presentation will detail the evolution of the MRA. Globally, NMIs are affiliated to Regional Metrology Organisations (RMOs). The key role of the RMOs in the MRA process will be discussed along with the structure and objectives of the various RMOs worldwide. The Joint Committee of the RMOs and the BIPM (JCRB) plays a central part in the effective operation of the MRA. Its tasks, membership and output will also be described

  14. Small-angle X-ray scattering (SAXS) for metrological size determination of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, Gudrun; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie; Mueller, Peter [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Hoell, Armin [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2011-07-01

    To measure the size of nanoparticles, different measurement methods are available but their results are often not compatible. In the framework of an European metrology project we use Small-Angle X-ray Scattering (SAXS) to determine the size and size distribution of nanoparticles in aqueous solution, where the special challange is the traceability of the results. The experiments were performed at the Four-Crystal Monochromator (FCM) beamline in the laboratory of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II using the SAXS setup of the Helmholtz-Zentrum Berlin (HZB). We measured different particles made of PMMA and gold in a diameter range of 200 nm down to about 10 nm. The aspects of traceability can be classified in two parts: the first is the experimental part with the uncertainties of distances, angles, and wavelength, the second is the part of analysis, with the uncertainty of the choice of the model used for fitting the data. In this talk we want to show the degree of uncertainty, which we reached in this work yet.

  15. MONO: A program to calculate synchrotron beamline monochromator throughputs

    International Nuclear Information System (INIS)

    Chapman, D.

    1989-01-01

    A set of Fortran programs have been developed to calculate the expected throughput of x-ray monochromators with a filtered synchrotron source and is applicable to bending magnet and wiggler beamlines. These programs calculate the normalized throughput and filtered synchrotron spectrum passed by multiple element, flat un- focussed monochromator crystals of the Bragg or Laue type as a function of incident beam divergence, energy and polarization. The reflected and transmitted beam of each crystal is calculated using the dynamical theory of diffraction. Multiple crystal arrangements in the dispersive and non-dispersive mode are allowed as well as crystal asymmetry and energy or angle offsets. Filters or windows of arbitrary elemental composition may be used to filter the incident synchrotron beam. This program should be useful to predict the intensities available from many beamline configurations as well as assist in the design of new monochromator and analyzer systems. 6 refs., 3 figs

  16. Indus-I beamlines for condensed matter physics

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2001-01-01

    Full text: A 450 MeV electron storage ring Indus-I is now operational. This storage ring gives synchrotron radiation in soft x-ray vacuum ultra violet (VUV) and to visible region. On this storage ring six beamlines are now being set up for atomic and molecular spectroscopy experiments, solid state spectroscopy experiments and soft and VUV reflectivity experiments. In this talk, present status of beamlines which condense matter physicists will be interested in will be given along with some commissioning experiments. These beam lines are based on a toroidal grating monochromators in the range 40 - 1000 A with moderate energy resolution. Some experiments which can be conducted using these beam lines will be discussed

  17. Intensity interferometry at the X13A undulator beamline

    International Nuclear Information System (INIS)

    Gluskin, E.; McNulty, I.; Yang, L.; Randall, K.J.; Johnson, E.D.

    1993-01-01

    We are constructing a soft x-ray intensity interferometer and an undulator based beamline to demonstrate intensity interferometry in the x-ray region. The 10-period soft x-ray undulator at the NSLS provides the necessary coherent flux; the X13A beamline is designed to preserve the spatial coherence of the bright x-ray beam and provide sufficient temporal coherence using a horizontally deflecting spherical grating monochromator. Using the interferometer, which consists of an array of small slits, a wedge-shaped beamsplitter and two fast microchannel plate detectors, we expect to measure the spatial coherence of the undulator beam and therefore the size of the source in the vertical plane. Details of the bean-dine design and the interferometer experiment are discussed

  18. Magnetic shielding tests for MFTF-B neutral beamlines

    International Nuclear Information System (INIS)

    Kerns, J.; Fabyan, J.; Wood, R.; Koger, P.

    1983-01-01

    A test program to determine the effectiveness of various magnetic shielding designs for MFTF-B beamlines was established at Lawrence Livermore National Laboratory (LLNL). The proposed one-tenth-scale shielding-design models were tested in a uniform field produced by a Helmholtz coil pair. A similar technique was used for the MFTF source-injector assemblies, and the model test results were confirmed during the Technology Demonstration in 1982. The results of these tests on shielding designs for MFTF-B had an impact on the beamline design for MFTF-B. The iron-core magnet and finger assembly originally proposed were replaced by a simple, air-core, race-track-coil, bending magnet. Only the source injector needs to be magnetically shielded from the fields of approximately 400 gauss

  19. First transmission of electrons and ions through the KATRIN beamline

    Czech Academy of Sciences Publication Activity Database

    Arenz, M.; Dragoun, Otokar; Kovalík, Alojz; Lebeda, Ondřej; Ryšavý, Miloš; Sentkerestiová, Jana; Suchopár, Martin; Vénos, Drahoslav

    2018-01-01

    Roč. 13, č. 4 (2018), č. článku P04020. ISSN 1748-0221 R&D Projects: GA MŠk LM2015056; GA MŠk LTT18021 Institutional support: RVO:61389005 Keywords : ion sources * electron beam * detector control systems * beam-line instrumentation * spectrometers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  20. Measurement of intensity distribution of CSR in LEBRA PXR beamline

    International Nuclear Information System (INIS)

    Nakao, Keisuke; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nogami, Kyoko; Inagaki, Manabu; Sei, Norihiro

    2014-01-01

    Last year, the intensity of Coherent Synchrotron Radiation (CSR) in LEBRA PXR beamline was measured. As a result, it turned out that the intensity of CSR was stronger than anticipation. It is suggested that Coherent Edge Radiation (CER) is mixed with CSR. Then, in order to confirm whether CER is contained, the intensity distribution of CSR was measured. The result of the experiment is reported in this paper. (author)

  1. Surface science station of the infrared beamline at SPring-8

    International Nuclear Information System (INIS)

    Sakurai, M.; Moriwaki, T.; Kimura, H.; Nishida, S.; Nanba, T.

    2001-01-01

    An experimental station for surface science has been constructed at the infrared beamline (BL43IR) of SPring-8, Japan. The station utilizes synchrotron radiation in the energy range of 100-20000 cm -1 to perform infrared reflection absorption spectroscopy (IRAS) of surfaces. It consists of an experimental section, a preparation chamber, gas handling equipment and a pair of focusing optics. In situ observation of vibrational spectra is possible using both IRAS and high-resolution electron energy loss spectroscopy

  2. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.

  3. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Above: members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.

  4. Advanced applications of scatterometry based optical metrology

    Science.gov (United States)

    Dixit, Dhairya; Keller, Nick; Kagalwala, Taher; Recchia, Fiona; Lifshitz, Yevgeny; Elia, Alexander; Todi, Vinit; Fronheiser, Jody; Vaid, Alok

    2017-03-01

    The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, and lower cost per transistor. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require continuous development of metrology tools used for characterization of these complex 3D device architectures. Optical scatterometry or optical critical dimension (OCD) is one of the most prevalent inline metrology techniques in semiconductor manufacturing because it is a quick, precise and non-destructive metrology technique. However, at present OCD is predominantly used to measure the feature dimensions such as line-width, height, side-wall angle, etc. of the patterned nano structures. Use of optical scatterometry for characterizing defects such as pitch-walking, overlay, line edge roughness, etc. is fairly limited. Inspection of process induced abnormalities is a fundamental part of process yield improvement. It provides process engineers with important information about process errors, and consequently helps optimize materials and process parameters. Scatterometry is an averaging technique and extending it to measure the position of local process induced defectivity and feature-to-feature variation is extremely challenging. This report is an overview of applications and benefits of using optical scatterometry for characterizing defects such as pitch-walking, overlay and fin bending for advanced technology nodes beyond 7nm. Currently, the optical scatterometry is based on conventional spectroscopic ellipsometry and spectroscopic reflectometry measurements, but generalized ellipsometry or Mueller matrix spectroscopic ellipsometry data provides important, additional information about complex structures that exhibit anisotropy and depolarization effects. In addition the symmetry-antisymmetry properties associated with Mueller matrix (MM) elements

  5. Beamlines on Indus-1 and Indus-2: present status

    International Nuclear Information System (INIS)

    Lodha, G.S.; Deb, S.K.

    2010-01-01

    Indus-1 (450 MeV) is an efficient synchrotron radiation (SR) source in the soft X-ray/vacuum ultra violet region of the electromagnetic spectrum. For Indus-1 the higher order energy contamination in soft X-ray region, heat load and radiation safety problems are also significantly low. At present five beamlines are operational. This SR source is a national science facility being used by various research group across the country. Strong efforts are underway to increase the user base of Indus-1. The talk presents some of the recent studies carried out using Indus-1. Indus-2 (2.5 GeV) synchrotron source is one of the most important accelerator based science facilities being setup in India. A few beamlines have been commissioned and are being used by researchers from different institutes. This talk gives present status of the various beamlines and experimental stations on Indus-2. It is envisaged that the atomic and molecular science community can actively participate in planning experiments on Indus-1 and Indus-2 and setup experimental stations on Indus-2. (author)

  6. Pulsed beam tests at the SANAEM RFQ beamline

    Science.gov (United States)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  7. Performance of a novel VUV bending magnet beamline

    CERN Document Server

    Song, Y F; Hsieh, T F; Huang, L R; Chung, S C; Cheng, N F; Hsiung, G Y; Wang, D J; Chen, C T; Tsang, K L

    2001-01-01

    A novel high resolution, high flux bending magnet beamline with an energy range from 5 to 40 eV has been constructed at SRRC. This Dragon-like beamline, which horizontally collects 50 mrad of synchrotron radiation from a bending magnet source, uses four cylindrical gratings with an included angle of 140 deg. and a movable curved exit slit. The average photon flux with an energy resolving power of 1000 is about 2x10 sup 1 sup 2 photons/s, which is among the highest of all existing VUV bending magnet beamlines. An energy resolving power of 24,000 at 6.8 eV has been obtained from the Schumann-Runge bands (B sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction u lower limit End limit End sup - /leftarrow/gets A: =leftward arrow X sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction g lower limit End limit End sup -) absorption spectra of O sub 2 gas. A pho...

  8. ADLIB: A simple database framework for beamline codes

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1993-01-01

    There are many well developed codes available for beamline design and analysis. A significant fraction of each of these codes is devoted to processing its own unique input language for describing the problem. None of these large, complex, and powerful codes does everything. Adding a new bit of specialized physics can be a difficult task whose successful completion makes the code even larger and more complex. This paper describes an attempt to move in the opposite direction, toward a family of small, simple, single purpose physics and utility modules, linked by an open, portable, public domain database framework. These small specialized physics codes begin with the beamline parameters already loaded in the database, and accessible via the handful of subroutines that constitute ADLIB. Such codes are easier to write, and inherently organized in a manner suitable for incorporation in model based control system algorithms. Examples include programs for analyzing beamline misalignment sensitivities, for simulating and fitting beam steering data, and for translating among MARYLIE, TRANSPORT, and TRACE3D formats

  9. The actinide beamline - A new AMS facility at ANTARES

    International Nuclear Information System (INIS)

    Hotchkis, M.A.C.; Lee, P.J.; Mino, N.

    1998-01-01

    At the ANTARES accelerator a new beamline has been commissioned, incorporating new magnetic and electrostatic analysers, to optimise the efficiency for Actinides detection by Accelerator Mass Spectrometry. The detection of Actinides, particularly the isotopic ratios of uranium and plutonium, provide unique signatures for nuclear safeguards purposes. We are currently engaged in a project to evaluate the application of AMS to the measurement of Actinides in environmental samples for nuclear safeguards. Measurement of 236 U is of particular interest as a means of tracing the anthropogenic component of uranium. 236 U is expected to be present in natural samples at an extremely low level ( 236 U: 238 U ratio ∼10 -10 ). It has recently been demonstrated that AMS has sufficient sensitivity to detect 236 U at this level. The principal components of the new beamline include: an electrostatic quadrupole, a 12 deg electrostatic deflector, a 90 deg electrostatic analyser, a multi-isotope detection system including ion counters and Faraday cups. The beamline was completed in September 1998 and initial tests have been performed with iodine samples

  10. The vacuum interlock system for the PETRA III beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, Markus; Hahn, Ulrich; Hesse, Mathias; Schulte-Schrepping, Horst [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-07-01

    The storage ring PETRA at DESY in Hamburg is being reconstructed into the third generation source for synchrotron radiation, PETRA III. The up to 100 m long beamlines are large UHV-systems that guide the synchrotron radiation from the storage ring to the experiments. Each beamline will be equipped with a vacuum interlock system to ensure the safe operation of the vacuum components. In particular the task of the vacuum interlock is to prevent faulty operations that can cause a ventilation of the vacuum system or a damage of vacuum components by the high power synchrotron radiation beam. The interlock system will be implemented as a PLC that is connected to a distributed input/output layer via a field bus system. As a specialty, the PLC will be realised as a soft-PLC running on a PC with a real time windows operating system. Another specialty is the visualisation and remote control of the vacuum interlock system by means of a website. At the beamline the interlock will be operated via a touch panel that displays the visualisation website. Additionally, the interlock can be remotely operated from any location by opening the visualisation website with a browser. The interlock is protected against unauthorised operation by a login page. All relevant interlock data will be fed into the existing network-based archive system.

  11. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  12. Design and simulation of the nuSTORM pion beamline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A., E-mail: aoliu@fnal.gov; Neuffer, D.; Bross, A.

    2015-11-21

    The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pions that decay within that straight section provide muons within the circulating acceptance of the ring. The design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. This paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.

  13. Analysis of key technologies for virtual instruments metrology

    Science.gov (United States)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  14. Improving OCD time to solution using Signal Response Metrology

    Science.gov (United States)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  15. Metrology for WEST components design and integration optimization

    International Nuclear Information System (INIS)

    Brun, C.; Archambeau, G.; Blanc, L.; Bucalossi, J.; Chantant, M.; Gargiulo, L.; Hermenier, A.; Le, R.; Pilia, A.

    2015-01-01

    Highlights: • Metrology methods. • Interests of metrology campaign to optimize margins by reducing uncertainties. • Assembly problems are solved and validated on a numerical mock up. • Post treatment of full 3DScan of the vacuum vessel. - Abstract: On WEST new components will be implemented in an existing environment, emphasis has to be put on the metrology to optimize the design and the assembly. Hence, at a particular stage of the project, several components have to coexist in the limited vessel. Therefore, all the difficulty consists in validating the mechanical interfaces between existing components and new one; minimize the risk of the assembling and to maximize the plasma volume. The CEA/IRFM takes the opportunity of the ambitious project to sign a partnership with an industrial specialized in multipurpose metrology domains. To optimize the assembly procedure, the IRFM Assembly group works in strong collaboration with its industrial, to define and plan the campaigns of metrology. The paper will illustrate the organization, methods and results of the dedicated metrology campaigns have been defined and carried out in the WEST dis/assembly phase. To conclude, the future needs of metrology at CEA/IRFM will be exposed to define the next steps.

  16. Getting realistic; Endstation Demut

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.P.

    2004-01-28

    The fuel cell hype of the turn of the millenium has reached its end. The industry is getting realistic. If at all, fuel cell systems for private single-family and multiple dwellings will not be available until the next decade. With a Europe-wide field test, Vaillant intends to advance the PEM technology. [German] Der Brennstoffzellen-Hype der Jahrtausendwende ist verfolgen. Die Branche uebt sich in Bescheidenheit. Die Marktreife der Systeme fuer Ein- und Mehrfamilienhaeuser wird - wenn ueberhaupt - wohl erst im naechsten Jahrzehnt erreicht sein. Vaillant will durch einen europaweiten Feldtest die Entwicklung der PEM-Technologie vorantreiben. (orig.)

  17. Metrology network: a case study on the metrology network of defense and security from SIBRATEC

    International Nuclear Information System (INIS)

    Pereira, Marisa Ferraz Figueira

    2016-01-01

    This study is focused on understanding the effects of the infrastructure improvement of these laboratories and the role of network management in offering support and metrological services to the defense and security sector enterprises, within the project purposes. It is also aimed identify gaps on offering calibration and, or testing services to supply demands of the defense and security industries, and analyze adequacy of RDS project to demands of defense and security industries, with the purpose to contribute with information for future actions. The experimental research is qualitative type, with exploratory research characteristics, based on case study. It was structured in two parts, involving primary data collection and secondary data. In order to collect the primary data two questionnaires were prepared, one (Questionnaire A) to the five RDS laboratories representatives and other (Questionnaire B) to the contacts of 63 defense and security enterprises which need calibration and test services, possible customers of RDS laboratories. Answers from four representatives of RDS laboratories and from 26 defense and security enterprises were obtained. The collection of secondary data was obtained from documentary research. The analysis was made based on five dimensions defined in order to organize and improve the understanding of the research setting. They are RDS project coverage, regional, network management, metrological traceability and importance and visibility of RDS. The results indicated that the performance of RDS does not interfere, by that time, in the metrological traceability of the products of the defense and security enterprises that participated in the research. (author)

  18. Radionuclide metrology research for nuclear site decommissioning

    Science.gov (United States)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  19. Plant equipment services with laser metrology

    International Nuclear Information System (INIS)

    Hayes, J.H.; Kreitman, P.J.

    1995-01-01

    A new industrial metrology process is now being applied to support PWR Nuclear Plant Steam Generator Replacement Projects. The method uses laser tracking interferometry to perform as built surveys of existing and replacement plant equipment. This method provides precision data with a minimum of setup when compared to alternative methods available. In addition there is no post processing required to ascertain validity. The data is obtained quickly, processed in real time and displayed during the survey in the desired coordinate system. These capabilities make this method of industrial measure ideal for various data acquisition needs throughout the power industry, from internal/external equipment templating to area mapping. Laser tracking interferometry is an improvement on the present use of optical instruments and surveying technique. In order to describe the laser tracking interferometry measurement process, previous methods of templating and surveying are first reviewed

  20. Coordinate metrology accuracy of systems and measurements

    CERN Document Server

    Sładek, Jerzy A

    2016-01-01

    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  1. Ionising radiation metrology for the metallurgical industry

    Directory of Open Access Journals (Sweden)

    García-Toraño E.

    2014-01-01

    Full Text Available Every year millions tons of steel are produced worldwide from recycled scrap loads. Although the detection systems in the steelworks prevent most orphan radioactive sources from entering the furnace, there is still the possibility of accidentally melting a radioactive source. The MetroMetal project, carried out in the frame of the European Metrology Research Programme (EMRP, addresses this problem by studying the existing measurement systems, developing sets of reference sources in various matrices (cast steel, slag, fume dust and proposing new detection instruments. This paper presents the key lines of the project and describes the preparation of radioactive sources as well as the intercomparison exercises used to test the calibration and correction methods proposed within the project.

  2. X-ray metrology for ULSI structures

    International Nuclear Information System (INIS)

    Bowen, D. K.; Matney, K. M.; Wormington, M.

    1998-01-01

    Non-destructive X-ray metrological methods are discussed for application to both process development and process control of ULSI structures. X-ray methods can (a) detect the unacceptable levels of internal defects generated by RTA processes in large wafers, (b) accurately measure the thickness and roughness of layers between 1 and 1000 nm thick and (c) can monitor parameters such as crystallographic texture and the roughness of buried interfaces. In this paper we review transmission X-ray topography, thin film texture measurement, grazing-incidence X-ray reflectivity and high-resolution X-ray diffraction. We discuss in particular their suitability as on-line sensors for process control

  3. Applications of surface metrology in firearm identification

    International Nuclear Information System (INIS)

    Zheng, X; Soons, J; Vorburger, T V; Song, J; Renegar, T; Thompson, R

    2014-01-01

    Surface metrology is commonly used to characterize functional engineering surfaces. The technologies developed offer opportunities to improve forensic toolmark identification. Toolmarks are created when a hard surface, the tool, comes into contact with a softer surface and causes plastic deformation. Toolmarks are commonly found on fired bullets and cartridge cases. Trained firearms examiners use these toolmarks to link an evidence bullet or cartridge case to a specific firearm, which can lead to a criminal conviction. Currently, identification is typically based on qualitative visual comparison by a trained examiner using a comparison microscope. In 2009, a report by the National Academies called this method into question. Amongst other issues, they questioned the objectivity of visual toolmark identification by firearms examiners. The National Academies recommended the development of objective toolmark identification criteria and confidence limits. The National Institute of Standards and Technology (NIST) have applied its experience in surface metrology to develop objective identification criteria, measurement methods, and reference artefacts for toolmark identification. NIST developed the Standard Reference Material SRM 2460 standard bullet and SRM 2461 standard cartridge case to facilitate quality control and traceability of identifications performed in crime laboratories. Objectivity is improved through measurement of surface topography and application of unambiguous surface similarity metrics, such as the maximum value (ACCF MAX ) of the areal cross correlation function. Case studies were performed on consecutively manufactured tools, such as gun barrels and breech faces, to demonstrate that, even in this worst case scenario, all the tested tools imparted unique surface topographies that were identifiable. These studies provide scientific support for toolmark evidence admissibility in criminal court cases. (paper)

  4. Plutonium glove boxes - metrology and operational states

    International Nuclear Information System (INIS)

    Thyer, A.M.

    2001-01-01

    The main objective was to undertake a literature review in support of NII's ongoing work in improving safety in the nuclear industry to help define suitable standards of cleanliness for plutonium glove boxes. This is to cover the following areas: existing or proposed national/international standards relating to plutonium glove box cleanliness management; practicable metrology options for assessing the plutonium content of glove boxes; any available dose information relating to the operation of modern and 'old design'; current contamination levels of specific significance (i.e. any accepted level in decommissioning/waste terms, typical criticality limits (if available), any box plutonium loadings that are documented with corresponding operator doses etc.); and, techniques for the decontamination of plutonium glove boxes and their relative effectiveness. This should then form the basis of any further development work undertaken by the UK nuclear industry. Main recommendations are as follows: 1) No information could be found in open literature on acceptable levels of contamination in boxes and action levels for cleanup. If these are not available in closed publications the 2) Where possible, the decontamination methods identified should be tested and dose information recorded against each method to allow informed decisions on which is the optimum technique for a particular form of contamination. 3) Consideration should be given to utilisation of metrology options which have the lowest potential for exposure of operators. Preferred options, may be detection from the outside of boxes using hand-held or permanently located radiation detectors, or semi-intrusive methods such as air-ionisation readings which would require one-off installation of detectors in ductwork

  5. IT Security Standards and Legal Metrology - Transfer and Validation

    Science.gov (United States)

    Thiel, F.; Hartmann, V.; Grottker, U.; Richter, D.

    2014-08-01

    Legal Metrology's requirements can be transferred into the IT security domain applying a generic set of standardized rules provided by the Common Criteria (ISO/IEC 15408). We will outline the transfer and cross validation of such an approach. As an example serves the integration of Legal Metrology's requirements into a recently developed Common Criteria based Protection Profile for a Smart Meter Gateway designed under the leadership of the Germany's Federal Office for Information Security. The requirements on utility meters laid down in the Measuring Instruments Directive (MID) are incorporated. A verification approach to check for meeting Legal Metrology's requirements by their interpretation through Common Criteria's generic requirements is also presented.

  6. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  7. Conceptual design of NBI beamline for VEST plasma heating

    International Nuclear Information System (INIS)

    Kim, T.S.; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-01-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  8. Low cost ESR based X-ray beamline for lithography experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, S.; Doumas, A.; Truncale, M. (Grumman Corp., Bethpage, NY (United States). Space and Electronics Div.)

    1992-08-01

    Any application of the electron storage ring (ESR) based X-ray lithography technology requires an X-ray radiation transport system to transfer the synchrotron radiation into a spectrum defined by the lithography process requirements. Structure of this transport system (i.e. the beamline) depends on the nature of the application. In this paper a beamline conceptual design will be discussed. The beamline is intended for the developmment of X-ray lithography technology. (orig.).

  9. Metrology for environment and climate; Metrologie fuer Umwelt und Klima

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Klaus-Dieter [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Abt. ' Chemische Physik und Explosionsschutz' ; Spitzer, Petra [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Elektrochemie'

    2012-12-15

    The author describes the observation and monitoring systems developed by the EU and the Federal Republic of Germany. In this connection the metrological aims are described in connection with the activities of the PTB. (HSI)

  10. Joint Research on Scatterometry and AFM Wafer Metrology

    OpenAIRE

    Bodermann, B.; Buhr, E.; Danzebrink, H.U.; Bär, M.; Scholze, F.; Krumrey, M.; Wurm, M.; Klapetek, P.; Hansen, P.E.; Korpelainen, V.; Van Veghel, M.; Yacoot, A.; Siitonen, S.; El Gawhary, O.; Burger, S.

    2011-01-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) m...

  11. Metrology of radiation protection. Pt. 1. Physical requirements and terminology

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S R

    1979-10-01

    Starting from a general consideration of the needs for radiation protection the physical requirements of a relevant metrology are developed. The expedient physical quantities are introduced and problems in the realization and dissemination of their units discussed. It is shown that owing to these difficulties, derived or operational quantities have to be developed for the construction and calibration of practical measuring instruments. Finally the relations between the metrology of radiation protection and of medical radiology are pointed out and commented. (orig.).

  12. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  13. Wavefront propagation through the beamline designed for seeding the DESY XUV FEL

    CERN Document Server

    Reininger, R; Gürtler, P; Bahrdt, J

    2001-01-01

    A beamline designed to reduce the spectral bandwidth of the DESY XUV FEL is described. The beamline is intended to cover the wavelength range from 6.4 to 50 nm with three variable line spacing gratings. A plane mirror in front of the grating is used to maintain constant magnification in the dispersion direction. The electric field generated by the first undulator at three wavelengths, 6.4, 13, and 25 nm, is propagated through the beamline. The results show that the beamline has the resolution and imaging properties required for seeding the second undulator at these wavelengths.

  14. Construction of Bending Magnet Beamline at the APS for Environmental Studies

    International Nuclear Information System (INIS)

    Stern, E.A.

    1999-01-01

    The objective of this research was to design and construct a bending magnet beamline at the Advanced Photon Source. The beamline is to be optimized for x-ray absorption spectroscopy (XAS) studies with a major focus on environmental issues. The beamline will share the experimental facilities under development at the neighboring undulator-based insertion device beamline. It will utilize these facilities for XAS of both bulk and surface samples, with spatial and elemental imaging, on toxic and radioactive samples. It will help meet the rapidly growing need for the application of these techniques to environmental problems

  15. Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Kewish, C. M.; Ribbens, M.; Moreno, T.; Polack, F.; Baranton, G.; Desjardins, K.; Samama, J. P.

    2013-10-01

    The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5-20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper.

  16. Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil

    International Nuclear Information System (INIS)

    Somogyi, A; Kewish, C M; Ribbens, M; Moreno, T; Polack, F; Baranton, G; Desjardins, K; Samama, J P

    2013-01-01

    The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5–20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper

  17. Metrology in electricity and magnetism: EURAMET activities today and tomorrow

    Science.gov (United States)

    Piquemal, F.; Jeckelmann, B.; Callegaro, L.; Hällström, J.; Janssen, T. J. B. M.; Melcher, J.; Rietveld, G.; Siegner, U.; Wright, P.; Zeier, M.

    2017-10-01

    Metrology dedicated to electricity and magnetism has changed considerably in recent years. It encompasses almost all modern scientific, industrial, and societal challenges, e.g. the revision of the International System of Units, the profound transformation of industry, changes in energy use and generation, health, and environment, as well as nanotechnologies (including graphene and 2D materials) and quantum engineering. Over the same period, driven by the globalization of worldwide trade, the Mutual Recognition Arrangement (referred to as the CIPM MRA) was set up. As a result, the regional metrology organizations (RMOs) of national metrology institutes have grown in significance. EURAMET is the European RMO and has been very prominent in developing a strategic research agenda (SRA) and has established a comprehensive research programme. This paper reviews the highlights of EURAMET in electrical metrology within the European Metrology Research Programme and its main contributions to the CIPM MRA. In 2012 EURAMET undertook an extensive roadmapping exercise for proposed activities for the next decade which will also be discussed in this paper. This work has resulted in a new SRA of the second largest European funding programme: European Metrology Programme for Innovation and Research.

  18. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  19. The design of an automatically-tuned beamline

    International Nuclear Information System (INIS)

    Ball, M.S.; Ellison, T.J.P.; Hamilton, B.J.; Jones, W.P.

    1994-01-01

    A new 30 m beamline (BL1C) is being assembled to connect the new High Intensity Polarized Ion Source (HIPIOS) to the IUCF cyclotrons. This line is being instrumented for complete automatic optimization of all transverse and longitudinal ion optical elements by providing a unique feedback signal for each controllable device. Transversely, steerers and 4-quadrant electrostatic pickups are located approximately 90 degree apart in betatron phase advance along the beamline. Each pickup is instrumented with a single-board, 4-layer op-amp circuit (BPM system) which measures the beam intensity, horizontal (H) and vertical (V) position, and H and V 10 Hz position modulation. The transverse beam ellipse parameters are first automatically determined at the entrance to the beamline by measuring the beam size using a wire scanner as a function of the strength of a quadrupole. The computer then programs the amplitude and phase of four 10 Hz modulators which vary the current in 4 steerers to move the beam centroid around this (reduced area) ellipse in 4-dimensional phase space. The BPM system then outputs voltages proportional to the beam intensity, centroid location, and envelope. Computer algorithms will then set the steerers and quadrupoles to correct the beam position, dispersion, and envelope. Longitudinally, hardware feedback loops, with a bandwidth adjustable from 10 Hz to 30 kHz, will phase-lock the beam to the two bunching systems; another hardware system will automatically vary the buncher amplitudes to compensate for the significant and varying space charge defocusing as the beam current fluctuates. The bunchers' quiescent phases and amplitudes will be optimized using software ''synchronous detectors.''

  20. Subatomic and frontier physics with ELI Beamlines. Reality and dreams

    International Nuclear Information System (INIS)

    Drska, L.

    2010-01-01

    Complete text of publication follows. This contribution attempts to review some results of thinking about prospects for meaningful and procreative research by exploitation the potential of the unique laser technology to be available within the future ELI Beamlines Facility - an ultrashort-pulse, multi-petawatt, multi-beam, high-repetition-rate system. The presentation may be (hopefully) regarded as a specific contribution with the emphasis on two concrete areas to general ELI reports. Two sets of potential studies will be discussed: (1) Realistic experiments. (2) 'Dream' research. The first set (maybe realizable in the first phase of the laboratory work) includes the following topics: (1) Laser-driven electronuclear processes. (2) Unconventional / NLTE fusion reactions. (3) Laser positron / antimatter physics. Most detailed analysis will be presented for the subject. Some concrete themes planned for this part of the talk are: Challenges for laser positronium physics. Nuclear excitation in positron annihilation. Positrons and the laboratory astrophysics. Schemes of some experiments exploiting the ELI Beamlines possibilities will be displayed. The second ('dream') set to be outlined (under consideration as potential one for the second phase) should initiate a brainstorming discussion in these areas: (1) High-Z ion physics studies. (2) Exploring of high-gamma systems. (3) Search for hypothetic particles. Again, the highest attention will be paid to the topic. Key themes in this part: The search for hidden-sector lightweights. Challenges and opportunities in photon regeneration experiments. Potential of ELI Beamlines for the research in this area? The final section of the contribution will include some comments on technical issues related to the proposed research themes: (1) Novel targets and particle traps. (2) Diagnostics challenges and solutions. (3) Simulation / Evaluation problems. Some new approaches will be considered. Acknowledgements. This research has been

  1. Considerations for a soft x-ray spectromicroscopy beamline

    International Nuclear Information System (INIS)

    Winn, B.; Hao, X.; Jacobsen, C.

    1996-01-01

    The X-1A soft x-ray undulator at the NSLS is the source for the experimental programs in spectromicroscopy. The authors require both spatial and temporal coherence. Due to the relatively large horizontal divergence of the electron beam in the low β straight section of the x-ray storage ring, it has been possible to split the beam using a scraping mirror into two branches: X-1A used by the authors' program and X-1B used for high resolution spectroscopy. They are now rebuilding the X-1A beamline to provide improved resolving power and essentially linear trade-off between photon rate at the zone plate and resolving power for the soft x-ray spectromicroscopy experiments. This new beamline will exploit both additional floorspace due to the NSLS building expansion and increases in the brightness of the x-ray ring. The beam will be further split into two separate beamlines, both of which will use toroidal mirrors to focus the source on the monochromator entrance slits horizontally and to focus on the monochromator exit slits vertically. This separation comes at no loss of coherent flux and permits low thermal loading on the optics, since the authors need little more than the coherent fraction of the beam at the Fresnel zone plate for microfocusing. Because of the small angular acceptance for spatially coherent illumination of the zone plates and the use of an approximately satisfied Rowland condition, the monochromators have sufficient resolving power with fixed exit arms. Experiments can then be placed near the exit slits, with spatial coherence established by the exit slit size. Resolving power will be controlled by adjusting the entrance slit alone with no change of spatial coherence. The zone plates will be overfilled to be less sensitive to beam vibration and drift

  2. Toyota beamline (BL33XU) at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T., E-mail: nonaka@mosk.tytlabs.co.jp; Dohmae, K.; Hayashi, Y.; Yamaguchi, S.; Nagai, Y.; Hirose, Y. [Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan); Araki, T. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE UK (United Kingdom); Tanaka, T.; Kitamura, H. [RIKEN Harima Institute 1-1-1 Koto Sayo, Hyogo 679-5148 (Japan); Uruga, T.; Yamazaki, H.; Yumoto, H.; Ohashi, H.; Goto, S. [JASRI/SPring-8 1-1-1 Koto Sayo, Hyogo 679-5148 (Japan)

    2016-07-27

    The Toyota beamline (BL33XU) at SPring-8 is an undulator beamline developed to assist in the study of various automotive-related materials. The light source is a tapered in-vacuum undulator that provides a variable energy band width as well as a high brilliance X-ray beam. Two different optical arrangements are available: Optics 1 and Optics 2. Optics 1 is dedicated to time-resolved X-ray absorption spectroscopy (XAFS), and consists of two channel-cut crystal monochromators and four water-cooled flat Si mirrors. The Si(111) and Si(220) monochromator crystals cover an energy range of 4.0–46.0 keV and are driven by high-speed AC servo motors. These monochromators, in conjunction with the tapered undulator, enable high-quality XAFS data acquisition with a temporal resolution of 10 ms. Optics 2 is optimized for X-ray diffraction, scattering and imaging and includes a recently installed double crystal monochromator, two water-cooled flat Si mirrors and Kirkpatrick-Baez (KB) focusing mirrors. The monochromator incorporates parallel mounted Si(111) and Si(311) crystals and covers an energy range of 4.5–70 keV. The beamline provides two experimental stations: Exp. Hutch 2 and Exp. Hutch 3. The gas supply system and mass spectrometers installed in Exp. Hutch 2 allow in-operando measurements under various atmospheres. The scanning three-dimensional X-ray diffraction (scanning 3DXRD) microscopy instrumentation developed and installed in Exp. Hutch 3 enables non-destructive orientation and stress mapping of 1 mm-thick steel specimens using a high energy microbeam.

  3. Toyota beamline (BL33XU) at SPring-8

    International Nuclear Information System (INIS)

    Nonaka, T.; Dohmae, K.; Hayashi, Y.; Yamaguchi, S.; Nagai, Y.; Hirose, Y.; Araki, T.; Tanaka, T.; Kitamura, H.; Uruga, T.; Yamazaki, H.; Yumoto, H.; Ohashi, H.; Goto, S.

    2016-01-01

    The Toyota beamline (BL33XU) at SPring-8 is an undulator beamline developed to assist in the study of various automotive-related materials. The light source is a tapered in-vacuum undulator that provides a variable energy band width as well as a high brilliance X-ray beam. Two different optical arrangements are available: Optics 1 and Optics 2. Optics 1 is dedicated to time-resolved X-ray absorption spectroscopy (XAFS), and consists of two channel-cut crystal monochromators and four water-cooled flat Si mirrors. The Si(111) and Si(220) monochromator crystals cover an energy range of 4.0–46.0 keV and are driven by high-speed AC servo motors. These monochromators, in conjunction with the tapered undulator, enable high-quality XAFS data acquisition with a temporal resolution of 10 ms. Optics 2 is optimized for X-ray diffraction, scattering and imaging and includes a recently installed double crystal monochromator, two water-cooled flat Si mirrors and Kirkpatrick-Baez (KB) focusing mirrors. The monochromator incorporates parallel mounted Si(111) and Si(311) crystals and covers an energy range of 4.5–70 keV. The beamline provides two experimental stations: Exp. Hutch 2 and Exp. Hutch 3. The gas supply system and mass spectrometers installed in Exp. Hutch 2 allow in-operando measurements under various atmospheres. The scanning three-dimensional X-ray diffraction (scanning 3DXRD) microscopy instrumentation developed and installed in Exp. Hutch 3 enables non-destructive orientation and stress mapping of 1 mm-thick steel specimens using a high energy microbeam.

  4. ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines

    International Nuclear Information System (INIS)

    Schillaci, F; Anzalone, A; Cirrone, G A P; Cuttone, G; Musumarra, A; Pisciotta, P; Romano, F; Romano, F P; Carpinelli, M; Cutroneo, M; De Martinis, C; Giove, D; Korn, G; Maggiore, M; Margarone, D; Manti, L; Perozziello, F M; Petrovic, I; Ristic-Fira, A; Renis, M

    2014-01-01

    ELI-Beamlines is one of the pillars of the pan-European project ELI (Extreme Light Infrastructure). It will be an ultra high-intensity, high repetition-rate, femtosecond laser facility whose main goal is generation and applications of high-brightness X-ray sources and accelerated charged particles in different fields. Particular care will be devoted to the potential applicability of laser-driven ion beams for medical treatments of tumors. Indeed, such kind of beams show very interesting peculiarities and, moreover, laser-driven based accelerators can really represent a competitive alternative to conventional machines since they are expected to be more compact in size and less expensive. The ELIMED project was launched thanks to a collaboration established between FZU-ASCR (ELI-Beamlines) and INFN-LNS researchers. Several European institutes have already shown a great interest in the project aiming to explore the possibility to use laser-driven ion (mostly proton) beams for several applications with a particular regard for medical ones. To reach the project goal several tasks need to be fulfilled, starting from the optimization of laser-target interaction to dosimetric studies at the irradiation point at the end of a proper designed transport beam-line. Researchers from LNS have already developed and successfully tested a high-dispersive power Thomson Parabola Spectrometer, which is the first prototype of a more performing device to be used within the ELIMED project. Also a Magnetic Selection System able to produce a small pencil beam out of a wide energy distribution of ions produced in laser-target interaction has been realized and some preliminary work for its testing and characterization is in progress. In this contribution the status of the project will be reported together with a short description of the of the features of device recently developed.

  5. Muon Beamline Commissioning and Feasibility Study for μSR at a New DC Muon Beamline, MuSIC-RCNP, Osaka University

    Science.gov (United States)

    Tomono, Dai; Fukuda, Mitsuhiro; Hatanaka, Kichiji; Higemoto, Wataru; Kawashima, Yoshitaka; Kojima, Kenji M.; Kuno, Yoshitaka; Matsuda, Yugo; Matsuzaki, Teiichiro; Miyake, Yasuhiro; Miyamoto, Koichiro; Morita, Yasuyuki; Motoishi, Takahiro; Nakazawa, Yu; Ninomiya, Kazuhiko; Nishikawa, Ryo; Ohta, Saki; Sato, Akira; Shimomura, Koichiro; Takahisa, Keiji; Weichao, Yao; Wong, Ming L.

    At the new DC muon beamline MuSIC at Research Center for Nuclear Physics (RCNP), Osaka University, the beamline construction from the solenoid system of the muon production to the experimental port was completed. A beamline commissioning and a feasibility study for μSR are now in progress. With newly refurbished spectrometer installed at the experimental port, we succeeded in observing μSR spectra and μ-e decay asymmetry in a simple setup down to 4 K. We are still under development of other μSR appratuses.

  6. Status of the ELIMED Beamline at the ELIMAIA facility

    Czech Academy of Sciences Publication Activity Database

    Schillaci, F.; Cirrone, G.A.P.; Cuttone, G.; Romano, F.; Scuderi, Valentina; Allegra, L.; Amato, A.; Andó, L.; Costa, M.; Gallo, G.; Leanza, R.; Maggiore, M.; Milluzzo, G.; Petringa, G.; Pipek, J.; Russo, A.D.; Korn, Georg; Margarone, Daniele; Leray, M.J.; Tasset-Maye, O.; Antoine, S.; Jehanno, P.

    2016-01-01

    Roč. 11, Dec (2016), 1-5, č. článku C12052. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : accelerator subsystems and technologies * accelerator applications * beam dynamics * beam optics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  7. Monte Carlo simulation of the ELIMED beamline using Geant4

    Czech Academy of Sciences Publication Activity Database

    Pipek, J.; Romano, F.; Milluzzo, G.; Cirrone, G.A.P.; Cuttone, G.; Amico, A.G.; Margarone, Daniele; Larosa, G.; Leanza, R.; Petringa, G.; Schillaci, Francesco; Scuderi, Valentina

    2017-01-01

    Roč. 12, Mar (2017), s. 1-5, č. článku C03027. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : models and simulation s * accelerator applications * beam dynamics * software architectures * event data models * frameworks and databases Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  8. Chemical metrology, strategic job for the Chilean Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gras, Nuri; Munoz, Luis; Cortes, Eduardo

    2001-01-01

    The National Standardization Institute's (INN) Metrology unit prepared a study in 1996 to evaluate the impact of metrological activity in Chile. This study was based on a survey of the supply and demand of metrological services and on studies of the behavior of the production system and technological services in Chile during the period 1990-1996. With the information obtained in this study the economic impact resulting from the lack of a national metrology system could be evaluated. This impact was estimated to be a 5% loss in gross national product equal to 125-500 million dollars because of direct product rejection in the mining, fisheries, agricultural and manufacturing sectors. Chemical measurements are responsible for 50% of these losses. In response to this need and coordinated by the INN, a metrological network of reference laboratories began to operate in 1997 for the principal physical magnitudes (mass, temperature, longitude and force) and a CORFO-FDI project began in 2001 that includes the chemical magnitudes. The Chilean Nuclear Energy Commission, aware of the problem's importance and the amount of economic damage that the country may suffer, as a result of these deficiencies, has formed a Chemical Metrology Unit to provide technical support. It aims to raise the standards of local analytical laboratories by providing international recognition to the export sector. Nuclear analytical techniques are used as reference methods. This work describes the laboratories that are included in this Chemical Metrology Unit and the historical contribution to the development of local analytical chemistry. The national and international projects are described together with the publications they have generated. The quality assurance program applied to the laboratories is described as well, which has led to the accreditation of the analytical chemical assays. The procedures used for validation and calculation of uncertain nuclear methodologies are described together with

  9. Metrology Sampling Strategies for Process Monitoring Applications

    KAUST Repository

    Vincent, Tyrone L.

    2011-11-01

    Shrinking process windows in very large scale integration semiconductor manufacturing have already necessitated the development of control systems capable of addressing sub-lot-level variation. Within-wafer control is the next milestone in the evolution of advanced process control from lot-based and wafer-based control. In order to adequately comprehend and control within-wafer spatial variation, inline measurements must be performed at multiple locations across the wafer. At the same time, economic pressures prompt a reduction in metrology, for both capital and cycle-time reasons. This paper explores the use of modeling and minimum-variance prediction as a method to select the sites for measurement on each wafer. The models are developed using the standard statistical tools of principle component analysis and canonical correlation analysis. The proposed selection method is validated using real manufacturing data, and results indicate that it is possible to significantly reduce the number of measurements with little loss in the information obtained for the process control systems. © 2011 IEEE.

  10. Building versatile bipartite probes for quantum metrology

    Science.gov (United States)

    Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.

  11. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  12. Metrological characterization of 3D imaging devices

    Science.gov (United States)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  13. Building versatile bipartite probes for quantum metrology

    International Nuclear Information System (INIS)

    Farace, Alessandro; Pasquale, Antonella De; Giovannetti, Vittorio; Adesso, Gerardo

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited. (paper)

  14. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  15. Advanced overlay analysis through design based metrology

    Science.gov (United States)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  16. TSOM Method for Nanoelectronics Dimensional Metrology

    International Nuclear Information System (INIS)

    Attota, Ravikiran

    2011-01-01

    Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method--such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.

  17. Radionuclide metrology: traceability and response to a radiological accident

    Energy Technology Data Exchange (ETDEWEB)

    Tauhata, L.; Cruz, P.A.L. da; Silva, C.J. da; Delgado, J.U.; Oliveira, A.E. de; Oliveira, E.M. de; Poledna, R.; Loureiro, J. dos S.; Ferreira Filho, A.L.; Silva, R.L. da; Filho, O. L.T.; Santos, A.R.L. dos; Veras, E.V. de; Rangel, J. de A.; Quadros, A.L.L.; Araújo, M.T.F. de; Souza, P.S. de; Ruzzarim, A.; Conceição, D.A. da; Iwahara, A., E-mail: palcruz@ird.gov.br [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes

    2017-07-01

    In the case of a radiological accident, there are characteristic phases: discovery and initial assistance with first aid; the triage and monitoring of the affected population; the release of the affected people; forward the victims to medical care; as well as the preparation of the report on the accident. In addition, studies and associated researches performed in the later period. Monitors, dosimeters and measuring systems should be calibrated by contaminating radionuclide standards. The radioactive sources used must be metrologically reliable. In Brazil, this function is performed by LNMRI/IRD/CNEN, designated by INMETRO, which Radionuclide Metrology Laboratory is responsible for the standardization and supply of radioactive sources in diverse geometries and matrices. This laboratory has a stock of radionuclide solutions with controlled environmental variables for the preparation of sources, which are calibrated and standardized by mean of primary and secondary systems. It is also responsible for the dissemination of standards and, in order to establish the metrological traceability of national standards, participates in international key-comparisons promoted by BIPM and regional metrology organizations. Internally, it promotes the National Comparison Programs for laboratories for the analysis of environmental samples and the traceability for producing centers of radiopharmaceuticals and Nuclear Medicine Services in the country. The paper presents the demand for {sup 137}Cs related to the radioactive accident in Goiania/Brazil and the significant results for the main radionuclides standardized by the Radionuclide Metrology Laboratory for international key-comparisons and national comparisons to provide metrological traceability. With the obtained results, the LNMRI of Brazil integrates the international metrology BIPM network and fulfills its function of supplying, with about a hundred of radioactive standards, the country's needs in different applications

  18. Radionuclide metrology: traceability and response to a radiological accident

    International Nuclear Information System (INIS)

    Tauhata, L.; Cruz, P.A.L. da; Silva, C.J. da; Delgado, J.U.; Oliveira, A.E. de; Oliveira, E.M. de; Poledna, R.; Loureiro, J. dos S.; Ferreira Filho, A.L.; Silva, R.L. da; Filho, O. L.T.; Santos, A.R.L. dos; Veras, E.V. de; Rangel, J. de A.; Quadros, A.L.L.; Araújo, M.T.F. de; Souza, P.S. de; Ruzzarim, A.; Conceição, D.A. da; Iwahara, A.

    2017-01-01

    In the case of a radiological accident, there are characteristic phases: discovery and initial assistance with first aid; the triage and monitoring of the affected population; the release of the affected people; forward the victims to medical care; as well as the preparation of the report on the accident. In addition, studies and associated researches performed in the later period. Monitors, dosimeters and measuring systems should be calibrated by contaminating radionuclide standards. The radioactive sources used must be metrologically reliable. In Brazil, this function is performed by LNMRI/IRD/CNEN, designated by INMETRO, which Radionuclide Metrology Laboratory is responsible for the standardization and supply of radioactive sources in diverse geometries and matrices. This laboratory has a stock of radionuclide solutions with controlled environmental variables for the preparation of sources, which are calibrated and standardized by mean of primary and secondary systems. It is also responsible for the dissemination of standards and, in order to establish the metrological traceability of national standards, participates in international key-comparisons promoted by BIPM and regional metrology organizations. Internally, it promotes the National Comparison Programs for laboratories for the analysis of environmental samples and the traceability for producing centers of radiopharmaceuticals and Nuclear Medicine Services in the country. The paper presents the demand for 137 Cs related to the radioactive accident in Goiania/Brazil and the significant results for the main radionuclides standardized by the Radionuclide Metrology Laboratory for international key-comparisons and national comparisons to provide metrological traceability. With the obtained results, the LNMRI of Brazil integrates the international metrology BIPM network and fulfills its function of supplying, with about a hundred of radioactive standards, the country's needs in different applications

  19. The Diamond Beamline I13L for Imaging and Coherence

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C.; Robinson, I. K.

    2010-01-01

    I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

  20. In situ beamline analysis and correction of active optics.

    Science.gov (United States)

    Sutter, John; Alcock, Simon; Sawhney, Kawal

    2012-11-01

    At the Diamond Light Source, pencil-beam measurements have enabled long-wavelength slope errors on X-ray mirror surfaces to be examined under ultra-high vacuum and beamline mounting without the need to remove the mirror from the beamline. For an active mirror an automated procedure has been implemented to calculate the actuator settings that optimize its figure. More recently, this in situ pencil-beam method has been applied to additional uses for which ex situ measurements would be inconvenient or simply impossible. First, it has been used to check the stability of the slope errors of several bimorph mirrors at intervals of several weeks or months. Then, it also proved useful for the adjustment of bender and sag compensation actuators on mechanically bent mirrors. Fits to the bending of ideal beams have been performed on the slope errors of a mechanically bent mirror in order to distinguish curvatures introduced by the bending actuators from gravitational distortion. Application of the optimization procedure to another mechanically bent mirror led to an improvement of its sag compensation mechanism.

  1. Material failures observed in Doublet III neutral beamlines

    International Nuclear Information System (INIS)

    Bailey, E.W.; Colleraine, A.; Doll, D.; Grunloh, H.; Kim, J.; Langhorn, A.; Thurgood, B.

    1983-12-01

    The Doublet III neutral beam injectors consist of three separable spools two meters in diameter by four meters long overall when assembled. Contained within these spools are the neutralizers, ion dumps, deflecting magnet, calorimeter dumps, cryogenic panels and beam scraping collimators 3,7. To date three beamlines are in operation on Doublet III, and the beams have accumulated operating time of approximately 32 months, with the oldest having been in operation for 18 months. During this time operation of DIII with the neutral beam sources has demonstrated the following: 7.8 MW injected neutrals from three beamlines (6 sources), high β (4.5%), and non-circular plasma shape. The sources have also exhibited a very reliable injected shot history 4, 5, 6, 8. Material failures encountered during the operation of DIII N.B. injectors and the solutions to these failures are described. Failures include cracking of the neutralizer exit collimator due to heating cycles, failure of cyropanel support rods due to cooling cycles, failure of the sliding drive of the moveable calorimeter due to friction

  2. Material failures observed in the Doublet III neutral beamlines

    International Nuclear Information System (INIS)

    Bailey, E.W.; Colleraine, A.; Doll, D.; Grunloh, H.; Kim, J.; Langhorn, A.; Thurgood, B.

    1983-01-01

    The Doublet III neutral beam injectors consist of three separable spools two meters in diameter by four meters long overall when assembled. Contained within these spools are the neutralizers, ion dumps, deflecting magnet, calorimeter dumps, cryogenic panels and beam scraping collimators. To date three beamlines are in operation on Doublet III, and the beams have accumulated operating time of approximately 32 months, with the oldest having been in operation for 18 months. During this time operation of DIII with the neutral beam sources has demonstrated the following: 7.8 MW injected neutrals from three beamlines (6 sources), high β (4.5%), and non-circular plasma shape. The sources have also exibited a very reliable injected shot history. Material failures encountered during the operation of DIII N.B. injectors and the solutions to these failures are described. Failures include cracking of the neutralizer exit collimator due to heating cycles, failure of cyropanel support rods due to cooling cycles, failure of the sliding drive of the moveable calorimeter due to friction

  3. CERN announces the fourth annual Beamline for Schools competition

    CERN Multimedia

    BL4S team

    2016-01-01

    CERN is pleased to announce the fourth annual Beamline for Schools (BL4S) competition. Once again, in 2017, a fully equipped beamline will be made available at CERN for students. As in previous years, two teams will be invited to the Laboratory to execute the experiments they proposed in their applications. The 2017 competition is being made possible thanks to support from the Alcoa Foundation for the second consecutive year.   The competition is open to teams of high-school students aged 16 or older who, if they win, are invited (with two supervisors) to CERN to carry out their experiment. Teams must have at least five students but there is no upper limit to a team’s size (although just nine students per winning team will be invited to CERN). Teams may be composed of pupils from a single school, or from a number of schools working together. As science-loving mega-celebrity Will.I.Am told us: “If you’re interested in science, technology, engineering or ...

  4. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  5. Effect of measurement error budgets and hybrid metrology on qualification metrology sampling

    Science.gov (United States)

    Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Osorio, Carmen; Archie, Chas

    2014-10-01

    Until now, metrologists had no statistics-based method to determine the sampling needed for an experiment before the start that accuracy experiment. We show a solution to this problem called inverse total measurement uncertainty (TMU) analysis, by presenting statistically based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk versus reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions and then to reveal why low sampling can lead to unstable and misleading results. One model is developed that can help experimenters minimize sampling costs. A second cost model reveals the inadequacy of some current sampling practices-and the enormous costs associated with sampling that provides reasonable levels of certainty in the result. We introduce the strategies on how to manage and mitigate these costs and begin the discussion on how fabs are able to manufacture devices using minimal reference sampling when qualifying metrology steps. Finally, the relationship between inverse TMU analysis and hybrid metrology is explored.

  6. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic ...

  7. PLASTIQUE: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    International Nuclear Information System (INIS)

    De Stasio, G.; Zema, N.; Antonangeli, F.; Parasassi, T.; Rosato, N.

    1991-01-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in the frequency domain. These experiments are extremely valuable sources of informations on the structure and dynamics of molecules. The beamline and some examples of initial data are described

  8. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    Science.gov (United States)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  9. Performance of beamline 9.3.1 at the ALS: Flux and resolution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Univ. of Nevada, Las Vegas, NV (United States); Fischer, G.; Kring, J.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.3.1 at the ALS is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is the first monochromatic hard x-ray beamline in the ALS, and designed to achieve the goals of high energy resolution, and preservation of the high brightness from the ALS. It consists of a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator and two toroidal mirrors which are positioned before and after the monochromator. The construction of the beamline was completed in December of 1995, with imperfect mirrors. In this report, the authors describe the experimental results of absolute flux measurements and x-ray absorption measurements of gases and solid samples using the present set of mirrors.

  10. Insertion devices and beamlines for the proposed Australian synchrotron light source

    International Nuclear Information System (INIS)

    Garrett, R.F.; Boldeman, J.W.

    1999-01-01

    Full text: The proposed Australian synchrotron light source, Boomerang, is a third generation 3 GeV storage ring which is designed to provide for the great majority of Australian requirements for synchrotron radiation well into the next century. The storage ring could accommodate up to 60 experimental stations, including beamlines from 9 insertion devices, which far exceeds the projected Australian requirements over the life of the facility. Undulator radiation will be available up to 20 keV. The first phase construction of Boomerang includes funding for 9 beamlines, comprising 5 bending magnet and 4 insertion device beamlines. The beamline complement has been chosen to cater for approximately 95% of the current and projected Australian demand for synchrotron radiation over the first 5 years operation of the facility. Details will be shown of the performance of the proposed insertion devices, and the initial beamline complement will be presented

  11. Phase II and III the next generation of CLS beamline control and data acquisition systems

    International Nuclear Information System (INIS)

    Matias, E.; Beauregard, D.; Berg, R.; Black, G.; Boots, M.J.; Dolton, W.; Hunter, D.; Igarashi, R.; Liu, D.; Maxwell, D.; Miller, C.D.; Wilson, T.; Wright, G.

    2012-01-01

    The Canadian Light Source (CLS) is nearing the completion of its suite of Phase II Beamlines and in detailed design of its Phase III Beamlines. The paper presents an overview of the overall approach adopted by CLS in the development of beamline control and data acquisition systems. Building on the experience of our first phase of beamlines the CLS has continued to make extensive use of EPICS with EDM and QT based user interfaces. Increasing interpretive languages such as Python are finding a place in the beamline control systems. Web based environment such as ScienceStudio have also found a prominent place in the control system architecture as we move to tighter integration between data acquisition, visualization and data analysis. (authors)

  12. Commissioning and first results of scanning type EXAFS beamline (BL-09) at INDUS-2 synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, A., E-mail: poswalashwini@gmail.com; Yadav, A. K., E-mail: poswalashwini@gmail.com; Nayak, C., E-mail: poswalashwini@gmail.com; Basu, S., E-mail: poswalashwini@gmail.com; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai -400085 (India); Kane, S. R.; Garg, C. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore- 452013 (India)

    2014-04-24

    An Energy Scanning X-ray Absorption Fine Structure spectroscopy beamline has recently been installed and commissioned at BL-09 bending magnet port of INDUS-2 synchrotron source, Indore. The beamline uses an UHV compatible fixed exit double crystal monochromator (DCM) with two Si (111) crystals. Two grazing incidence cylindrical mirrors are also used in this beamline; the pre-mirror is used as a collimating mirror while the post mirror is used for vertical focusing and higher harmonic rejection. In this beamline it is possible to carry out EXAFS measurements both in transmission and fluorescence mode on various types of samples, using Ionization chamber detectors and solid state drift detector respectively. In this paper, results from first experiments of the Energy Scanning EXAFS beamline are presented.

  13. Control and data acquisition system for the macromolecular crystallography beamline of SSRF

    International Nuclear Information System (INIS)

    Wang Qisheng; Huang Sheng; Sun Bo; Tang Lin; He Jianhua

    2012-01-01

    The macromolecular crystallography beamline BL17U1 of Shanghai Synchrotron Radiation Facility (SSRF) is an important platform for structure biological science. High performance of the beamline would benefit the users greatly in their experiment and data acquisition. To take full advantage of the state-of-the-art mechanical and physical design of the beamline, we have made a series of efforts to develop a robust control and data acquisition system, with user-friendly GUI. These were done by adopting EPICS and Blu-Ice systems on the BL17U1 beamline, with considerations on easy accommodation of new beeline components. In this paper, we report the integration of EPICS and Blu-Ice systems. By using the EPICS gateway interface and several new DHS, Blu-Ice was successfully established for the BL17U1 beamline. As a result, the experiment control and data acquisition system is reliable and functional for users. (authors)

  14. The protein micro-crystallography beamlines for targeted protein research program

    International Nuclear Information System (INIS)

    Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2010-01-01

    In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented. (author)

  15. WIFIP: a web-based user interface for automated synchrotron beamlines.

    Science.gov (United States)

    Sallaz-Damaz, Yoann; Ferrer, Jean Luc

    2017-09-01

    The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.

  16. Integration of mask and silicon metrology in DFM

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2009-03-01

    We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based

  17. Remote metrology system (RMS) design concept

    International Nuclear Information System (INIS)

    1995-01-01

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR's fiber optic implementation allows a 3D scanner to operate remotely from the RMS system's vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm 2 density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner

  18. Reconstruction of freeform surfaces for metrology

    International Nuclear Information System (INIS)

    El-Hayek, N; Nouira, H; Anwer, N; Damak, M; Gibaru, O

    2014-01-01

    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks ® or Geomagic ® ). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces

  19. Remote metrology system (RMS) design concept

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  20. [The EFS metrology: From the production to the reason].

    Science.gov (United States)

    Reifenberg, J-M; Riout, E; Leroy, A; Begue, S

    2014-06-01

    In order to answer statutory requirements and to anticipate the future needs and standards, the EFS is committed, since a few years, in a process of harmonization of its metrology function. In particular, the institution has opted for the skills development by internalizing the metrological traceability of the main critical quantities (temperature, volumetric) measurements. The development of metrology so resulted in a significant increase in calibration and testing activities. Methods are homogenized and improved through accreditations. The investment strategies are based on more and more demanding specifications. The performance of the equipments is better known and mastered. Technical expertise and maturity of the national metrology function today are assets to review in more informed ways the appropriateness of the applied periodicities. Analysis of numerous information and data in the calibration and testing reports could be pooled and operated on behalf of the unique establishment. The objective of this article is to illustrate these reflections with a few examples from of a feedback of the EFS Pyrénées Méditerranée. The analysis of some methods of qualification, the exploitation of the historical metrology in order to quantify the risk of non-compliance, and to adapt the control strategy, analysis of the criticality of an instrument in a measurement process, risk analyses are tools that deserve to be more widely exploited for that discipline wins in efficiency at the national level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Introduction to quantum metrology quantum standards and instrumentation

    CERN Document Server

    Nawrocki, Waldemar

    2015-01-01

    This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called  Quantum SI, is introduced. This book helps to understand and approve the new system to both technology a...

  2. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  3. Design and Construction of a High-speed Network Connecting All the Protein Crystallography Beamlines at the Photon Factory

    International Nuclear Information System (INIS)

    Matsugaki, Naohiro; Yamada, Yusuke; Igarashi, Noriyuki; Wakatsuki, Soichi

    2007-01-01

    A private network, physically separated from the facility network, was designed and constructed which covered all the four protein crystallography beamlines at the Photon Factory (PF) and Structural Biology Research Center (SBRC). Connecting all the beamlines in the same network allows for simple authentication and a common working environment for a user who uses multiple beamlines. Giga-bit Ethernet wire-speed was achieved for the communication among the beamlines and SBRC buildings

  4. Dynamic Length Metrology (DLM) for measurements with sub-micrometre uncertainty in a production environment

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Hattel, Jesper Henri

    2016-01-01

    Conventional length metrology for traceable accurate measurements requires costly temperature controlled facilities, long waiting time for part acclimatisation, and separate part material characterisation. This work describes a method called Dynamic Length Metrology (DLM) developed to achieve sub...

  5. Laser metrology and optic active control system for GAIA

    Science.gov (United States)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  6. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  7. Automation of testing the metrological reliability of nondestructive control systems

    International Nuclear Information System (INIS)

    Zhukov, Yu.A.; Isakov, V.B.; Karlov, Yu.K.; Kovalevskij, Yu.A.

    1987-01-01

    Opportunities of microcomputers are used to solve the problem of testing control-measuring systems. Besides the main program the program of data processing when characterizing the nondestructive control systems is written in the microcomputer. The program includes two modules. The first module contains tests-programs, by which accuracy of functional elements of the microcomputer and interface elements with issuing a message to the operator on readiness of the elements for operation and failure of a certain element are determined. The second module includes: calculational programs when determining metrological reliability of measuring channel reliability, a calculational subprogram for random statistical measuring error, time instability and ''dead time''. Automation of testing metrological reliability of the nondestructive control systems increases reliability of determining metrological parameters and reduces time of system testing

  8. Joint Research on Scatterometry and AFM Wafer Metrology

    Science.gov (United States)

    Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni

    2011-11-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.

  9. Beam property studies in the PLS diagnostic beamline

    CERN Document Server

    Ko, I S; Seon, D K; Kim, C B; Lee, T Y

    1999-01-01

    A diagnostic beamline has been operated in the Pohang Light Source (PLS) storage ring for the diagnostics of electron and photon beam properties. It consists of two 1:1 imaging systems: a visible-light imaging system and a soft X-ray imaging system. We have measured the transverse and the longitudinal structures of beams by using a streak camera to obtain a visible image. Accurate transverse beam size have been measured to be 186 mu m horizontally and 43.1 mu m vertically by using soft X-ray images with minimum diffraction errors. The corresponding emittances are 11.7 nm-rad horizontally and 0.59 nm-rad vertically. By comparing the measured data with the design values, we confirmed that the PLS storage ring has reached its designed performance within an error of 3.3 % in the transverse direction.

  10. SR TXRF: performances and perspectives of a dedicated synchrotron beamline

    International Nuclear Information System (INIS)

    Comin, F.; Apostolo, G.

    2000-01-01

    In principle the brilliance of synchrotron radiation x-ray beams combined with a high degree of linear polarization allows to reach at the same time low LLDs, mapping of the impurity distribution and chemical identification for elements as light as Na. The TXRF facility at the European synchrotron radiation facility is installed along a beamline dedicated to industry and is designed to reach ultimate detection limits of 6 x 10 7 at/cm 2 in selected areas, or to map the concentration of contaminants with LLD in the scale 10 9 at/cm 2 . In the present configuration the facility works in vacuum with a single element detector. Loading, unloading and pump down of wafers is completely automatic. Typical DDLs are of few 10 9 at/cm 2 for Na and Al and 10 8 at/cm 2 for transition metals. Absorption spectra (XANES and EXAFS) of TM help in the defining the chemistry of the contaminant. (author)

  11. A compact double crystal monochromator for electrochemistry beamline at PLS

    CERN Document Server

    Rah, S; Kim, G H

    2001-01-01

    A compact double crystal monochromator based on 16.5'' CF flange has been designed, fabricated and installed for electrochemistry beamline at Pohang light source. The Bragg angle range of the monochromator is 7-75 deg. The mechanical design is modified from typical Boomerang design [J.A. Golovchenko et al., Rev. Sci. Instrum. 52 (1981) 509; J.P. Kirkland, Nucl. Instr. and Meth. A291 (1990) 185] to have fixed beam offset and single driving axis for spectroscopy experiments. The parallelism error of the crystals is minimized to less than 6 mu rad for the range, by using a precision single axis linear guide, Also, the number of mechanical parts in the vacuum is minimized and 1.8x10 sup - sup 9 Torr of vacuum is achieved without baking.

  12. Shielding and activation studies for the ELI-beamlines project

    International Nuclear Information System (INIS)

    Fasso, Alberto; Korn, Georg; Versaci, Roberto; Ferrari, Anna

    2015-01-01

    ELI-beamlines is one of the four pillars of the Extreme Light Infrastructure, a European ESFRI Project, for the next generation of high-energy and high-intensity lasers. It aims at the development of high-brightness sources of X-rays and the acceleration of proton, electron, and ion beams, to be used both for pure research and practical applications. Aiming at a proper radiation protection assessment, for both shielding and activation, extensive FLUKA simulations have been performed, taking into account the laser high repetition rates. The present work, which is the continuation of the calculations presented at SATIF-10, is the first one based on the design of the facility being constructed and on the updated experimental set-up. (authors)

  13. Laser-driven acceleration at ELI Beamlines - radioprotection aspects

    International Nuclear Information System (INIS)

    Olsovcova, V.; Fasso, A; Versaci, R.

    2014-01-01

    The international research centre ELI Beamlines, which is under construction in the village of Dolni Brezany near Prague, will exploit high power lasers of PW class to generate and accelerate beams of charged particles (up to tens of GeVs in energy). The beams will be used for both fundamental and applied research by experts from various scientific fields, including biology, medicine, plasma physics but also dosimetry and radiation protection. As laboratories operating lasers do not belong among the traditional 'radiation workplaces', there are no suitable specialized recommendations or standards available. Therefore, it is necessary to newly implement the existing general recommendations. Further, the generated mixed fields possess unique properties due to their production methods. As a result, the routinely used detection methods are not reliable or fail completely. (authors)

  14. The initial scientific program at the NSLS infrared beamline

    International Nuclear Information System (INIS)

    Williams, G.P.

    1989-01-01

    Unique extraction optics (90 x 90 mrads) at the NSLS U4IR line offer high brightness beams at up to mm wavelengths with a ∼1ns pulse structure. Radiation from this port has now been carefully characterized and agrees well with calculations, making it 100--1000 times brighter than conventional sources in the middle and far infrared regions. Using rapid scan Michelson interferometers with liquid He cooled bolometer detectors we have been able for the first time to measure molecule substrate vibrations in surface science. We have also made the first measurements of the transmission of a film of the high Tc material YBaCuO in the BCS gap region. These initial experiments have demonstrated the advantages of the superior signal to noise available from this infrared beamline. 19 refs., 6 figs

  15. J-PARC accelerator and neutrino beamline upgrade programme

    Science.gov (United States)

    Friend, M.

    2017-09-01

    The 30 GeV proton beam from the J-PARC Main Ring (MR) accelerator is used to produce a world-class conventional neutrino beam - the neutrino source for the J-PARC long-baseline neutrino programme, including the current T2K experiment and proposed future experiments. Planned upgrades to increase the beam power of the MR from the current ˜400 kW to the design power of 750 kW and beyond, to 1.3+ MW, are underway. These include hardware modifications, such as upgrades of the MR magnet power supplies, RF systems, and feedback systems, as well as a change of the MR beam betatron tune point. Upgrades to the neutrino beamline, such as to the proton beam monitoring, horns, and radioactive material handling, will also be required to accommodate the increased proton beam power. An overview of planned J-PARC MR and neutrino facility upgrades is given.

  16. New features at the LURE-D22 SAXS beamline

    International Nuclear Information System (INIS)

    Lesieur, P.; Lombardo, D.; Beauchet, L; Creof, C.; Decamps, T.; Dubuisson, J.M.; Perilhous, G.

    1999-01-01

    The D22 beamline of the DCI storage ring at LURE is dedicated to the study of structural properties in the field of material science by way of the small-angle X ray scattering (SAXS) technique. The D2 bending magnet of the DCI ring offers a stable source of limited brilliance but long decay time (200 hours) so that the beam can be used up to 110 hours after an injection of the positrons in the ring. Two different settings respectively dedicated to metallurgy and soft matter share the beam time. The latter which is considered here mainly deals with ill condensed matter: non ideal solutions of amphiphiles or polymers, liquid crystals, colloids, gels, xerogels, aerogels. (author)

  17. The Optical Design of the PEP-II Injection Beamlines

    CERN Document Server

    Fieguth, T

    1996-01-01

    The optical design of the PEP-II electron and positron Injection Beamlines is described. Use of the existing high power, low emittance beams available from the SLC damping rings require that pulsed extraction of 9.0 GeV electrons and 3.1 GeV positrons for injection into the PEP-II rings occur in the early sectors of the accelerator. More than 5 kilometers of new beam transport lines have been designed and are being constructed to bring these beams to their respective rings. The optical design maximizes the tolerance to errors especially to those contributing to beam size and position jitter. Secondly, the design minimizes costs by utilizing existing components or component designs and minimizing the number required. Here we discuss important attributes including choice of lattice, specification of error tolerances, including errors in construction, alignment, field errors, power supply stability, and orbit correction.

  18. The Optical Design of the PEP-II Injection Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Fieguth, Ted

    2003-05-23

    The optical design of the PEP-II electron and positron Injection Beamlines is described. Use of the existing high power, low emittance beams available from the SLC damping rings require that pulsed extraction of 9.0 GeV electrons and 3.1 GeV positrons for injection into the PEP-II rings occur in the early sectors of the accelerator. More than 5 kilometers of new beam transport lines have been designed and are being constructed to bring these beams to their respective rings. The optical design maximizes the tolerance to errors especially to those contributing to beam size and position jitter. Secondly, the design minimizes costs by utilizing existing components or component designs and minimizing the number required. Here we discuss important attributes including choice of lattice, specification of error tolerances, including errors in construction, alignment, field errors, power supply stability, and orbit correction.

  19. The Act of 17 March 2000 on metrology and on changes and amendments of some acts

    International Nuclear Information System (INIS)

    2000-01-01

    This act metrology for organization of unity and correctness of mensuration adapts (a) the law measurement units, (b) the requests on committed gauges and their metrological control, (c) the conditions of official mensuration, (d) the requests on consumptive packages articles; (e) the conditions of authorization and registration, (f) operation of organs of the state administration for metrology, (g) the metrological authority (h) putting of fines. This act shall into effect on 1 July 2000

  20. Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin.

    Science.gov (United States)

    Siewert, F; Löchel, B; Buchheim, J; Eggenstein, F; Firsov, A; Gwalt, G; Kutz, O; Lemke, St; Nelles, B; Rudolph, I; Schäfers, F; Seliger, T; Senf, F; Sokolov, A; Waberski, Ch; Wolf, J; Zeschke, T; Zizak, I; Follath, R; Arnold, T; Frost, F; Pietag, F; Erko, A

    2018-01-01

    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm -1 and 1200 lines mm -1 . A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.

  1. Metrology and analytical chemistry: Bridging the cultural gap

    International Nuclear Information System (INIS)

    King, Bernard

    2002-01-01

    Metrology in general and issues such as traceability and measurement uncertainty in particular are new to most analytical chemists and many remain to be convinced of their value. There is a danger of the cultural gap between metrologists and analytical chemists widening with unhelpful consequences and it is important that greater collaboration and cross-fertilisation is encouraged. This paper discusses some of the similarities and differences in the approaches adopted by metrologists and analytical chemists and indicates how these approaches can be combined to establish a unique metrology of chemical measurement which could be accepted by both cultures. (author)

  2. Mycotoxin metrology: Gravimetric production of zearalenone calibration solution

    Science.gov (United States)

    Rego, E. C. P.; Simon, M. E.; Li, Xiuqin; Li, Xiaomin; Daireaux, A.; Choteau, T.; Westwood, S.; Josephs, R. D.; Wielgosz, R. I.; Cunha, V. S.

    2018-03-01

    Food safety is a major concern for countries developing metrology and quality assurance systems, including the contamination of food and feed by mycotoxins. To improve the mycotoxin analysis and ensure the metrological traceability, CRM of calibration solution should be used. The production of certified mycotoxin solutions is a major challenge due to the limited amount of standard for conducting a proper purity study and due to the cost of standards. The CBKT project was started at BIPM and Inmetro produced gravimetrically one batch of zearelenone in acetronitrile (14.708 ± 0.016 μg/g, k=2) and conducted homogeneity, stability and value assignment studies.

  3. Forum metrology 2009: control of optics, targets and optical analyzers

    International Nuclear Information System (INIS)

    Desenne, D.; Andre, R.

    2010-01-01

    The 1. 'Forum Metrologie' of the CEA/DAM has been held in the 'Institut Laser et Plasma' on the December 9, 2009, close to the 'Centre d'etudes Scientifiques et Techniques d'Aquitaine'. It has been set up by the 'Departement Lasers de Puissance'. The chosen thematic was the metrology around laser experiments, with a special focus on the metrology of the dedicated optics, targets and optical analysers. The talks have shown the progress and difficulties in each of these fields. (authors)

  4. Metrology in CNEN NN 3.05/13 standard

    International Nuclear Information System (INIS)

    Mello, Marina Santiago de

    2014-01-01

    The nuclear medicine exams are widely used tools in health services for a reliable clinical and functional diagnosis of a disease. In Brazil, the National Nuclear Energy Commission, through the norm CNEN-NN 3:05/13, provides for the requirements of safety and radiological protection in nuclear medicine services. The objective of this review article was to emphasize the importance of metrology in compliance with this norm. We observed that metrology plays a vital role as it ensures the quality, accuracy, reproducibility and consistency of the measurements in the field of nuclear medicine. (author)

  5. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  6. Improved capacity in ionizing radiation metrology at SANAEM

    International Nuclear Information System (INIS)

    Yucel, U.

    2014-01-01

    Full text : Turkey is planning to build nuclear power plants in the south and north coasts to supply the ever-increasing energy demand. The nuclear power plants based on old soviet technology in Armenia and Bulgaria close to Turkey's borders also makes constant monitoring of environmental radioactivity extremely important due to public health and environment contamination concerns. Radiation Metrology Division at SANAEM has been established in 2012 to provide uniformity and reliability of the measurements in the field of ionizing radiation metrology by R and D studies and by constituting, developing, keeping and extending internationally accepted reference measurement standards and techniques

  7. Dark matter: a problem in relativistic metrology?

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2017-01-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least

  8. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  9. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    International Nuclear Information System (INIS)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren

    2010-01-01

    MxCuBE is a beamline control environment optimized for the needs of macromolecular crystallography. This paper describes the design of the software and the features that MxCuBE currently provides. The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1

  10. 8th Brazilian Congress on Metrology (Metrologia 2015)

    International Nuclear Information System (INIS)

    2016-01-01

    THE EIGHTH BRAZILIAN CONGRESS ON METROLOGY (METROLOGIA 2015) The United Nations celebrated 2015 as the International Year of Light. By a curious coincidence, many notable events in science and technology completed a multiple of 50 or 100 years in 2015. From the pioneering work of the wise Ibn Al-Haytham in 1015, through Fresnel, Maxwell, Einstein, the discovery of the cosmic microwave background, to the use of optical fibres in communications in 1965. Electromagnetic radiation is present in our daily lives in countless applications. It is remarkable that there is no way to think about these applications without thinking of measurements. From entangled photons to more prosaic public illumination of our daily life, we are intrinsically connected all the time with the luminous phenomena. Among other things, the light allows global communication on a large scale. It strengthens the internationalization of production processes, which brings considerable changes in relations, processes and economic structures, as well as it orients the social, political and cultural behaviour of any country. These conditions of this internationalization require interchangeability of parts of complex systems, translated into strict adherence to the standards and specifications that use increasingly accurate measurement techniques, as well as the growing demand from consumer markets for products and higher quality services. They also require innovation and improvements in domestic production to boost the competitiveness of industries in domestic and foreign markets. Thus, if the Science of Measurements is taken as a serious concern, countries are better prepared to evolve towards economic and social development. In this 8"t"h edition of the Brazilian Congress on Metrology (METROLOGIA 2015), in addition to the thematic sessions in various areas of Metrology and Conformity Assessment, we hold several satellite events. They are already traditional events or highlight important current issues

  11. First results from the high-brightness x-ray spectroscopy beamline at ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Ng, W.; Jones, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  12. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    Science.gov (United States)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.

    2017-08-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  13. Imaging in real and reciprocal space at the Diamond beamline I13

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z.; De Fanis, A.

    2016-01-01

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction

  14. VUV-soft x-ray beamline for spectroscopy and calibration

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Trela, W.J.; Michaud, F.D.; Southworth, S.H.; Rothe, R.; Alkire, R.W.

    1986-01-01

    The authors describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed

  15. An unique synchrotron beamline for fine X ray characterizations of nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Sitaud, B.; Lequien, S.

    2004-01-01

    A beamline dedicated to the study of highly radioactive samples up to 18.5 GBq will be constructed on the new third generation synchrotron SOLEIL. Based on the use of X ray beam of very high flux, this beamline named MARS will give true opportunities for new studies of chemistry and physics on fuel cycle materials with the respect of safety conditions. Complementary investigations should be carried out on different experimental stations. The three main techniques will be the micro fluorescence, the micro absorption and the high resolution diffraction. The MARS beamline should be up and working for the international community by the beginning of 2007. (authors)

  16. Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Phillips, W.

    1992-01-01

    Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows

  17. An unique synchrotron beamline for fine X ray characterizations of nuclear fuel cycle materials

    Energy Technology Data Exchange (ETDEWEB)

    Sitaud, B.; Lequien, S

    2004-07-01

    A beamline dedicated to the study of highly radioactive samples up to 18.5 GBq will be constructed on the new third generation synchrotron SOLEIL. Based on the use of X ray beam of very high flux, this beamline named MARS will give true opportunities for new studies of chemistry and physics on fuel cycle materials with the respect of safety conditions. Complementary investigations should be carried out on different experimental stations. The three main techniques will be the micro fluorescence, the micro absorption and the high resolution diffraction. The MARS beamline should be up and working for the international community by the beginning of 2007. (authors)

  18. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    International Nuclear Information System (INIS)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Senesi, R.; Burca, G.; Kockelmann, W.; Minniti, T.

    2017-01-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ  spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  19. Imaging in real and reciprocal space at the Diamond beamline I13

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS (United Kingdom); Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008 (United States); Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); De Fanis, A. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); European XFEL GmbH, Notkestraße 85, 22607 Hamburg (Germany)

    2016-01-28

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction.

  20. Ronchi test for characterization of X-ray nanofocusing optics and beamlines.

    Science.gov (United States)

    Uhlén, Fredrik; Rahomäki, Jussi; Nilsson, Daniel; Seiboth, Frank; Sanz, Claude; Wagner, Ulrich; Rau, Christoph; Schroer, Christian G; Vogt, Ulrich

    2014-09-01

    A Ronchi interferometer for hard X-rays is reported in order to characterize the performance of the nanofocusing optics as well as the beamline stability. Characteristic interference fringes yield qualitative data on present aberrations in the optics. Moreover, the visibility of the fringes on the detector gives information on the degree of spatial coherence in the beamline. This enables the possibility to detect sources of instabilities in the beamline like vibrations of components or temperature drift. Examples are shown for two different nanofocusing hard X-ray optics: a compound refractive lens and a zone plate.

  1. Recent Major Improvements to the ALS Sector 5 Macromolecular Crystallography Beamlines

    International Nuclear Information System (INIS)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis; McKean, John P.; Trame, Christine; Dickert, Jeff; Rozales, Anthony; Dauz, Azer; Taylor, John; Zwart, Petrus; Duarte, Robert; Padmore, Howard; McDermott, Gerry; Adams, Paul

    2007-01-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller

  2. Optical metrology tools for the Virgo projet

    Science.gov (United States)

    Loriette, V.

    For more than thirty years the search for gravitationnal waves, predicted by Einstein's relativistic theory of gravitation, has been an intense research field in experimental as well as theoretical physics. Today, with the constant advance of technology in optics, lasers, data analysis and processing, ... a promising way of directly detecting gravitationnal waves with earth-based instruments is optical interferometry. Before the end of this century many experiments will be carried on in Australia, Europe, Japan and the United States to detect the passage of a gravitationnal wave through giant Michelson-type interferometers. The effects predicted are so small, (a gravitationnal wave changes the length of three kilometer long arms by one thousandth of a fermi) that the need for “perfect” optical components is a key to the success of these experiments. Still a few years ago it would have been impossible to make optical components that would satisfy the required specifications for such interferometric detectors. For nearly ten years constant R&D efforts in optical coating manufacturing, optical material fabrication and optical metrology, allow us today to make such components. This text is intended to describe the field of optical metrology as it is needed for the testing of optical parts having performances far beyond than everything previously made. The first chapter is an introduction to gravitationnal waves, their sources and their effects on detectors. Starting by newtonian mechanics we jump rapidly to the general theory of relativity and describe particular solutions of Einstein's equations in the case of weak gravitationnal fields, which are periodic perturbations of the space-time metric in the form of plane waves, the so-called gravitationnal waves. We present various candidate sources, terrestrial and extra-terrestrial and give a short description of the two families of detectors: resonnant bars and optical interferometers. The second part of this chapter

  3. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  4. Mirror surface metrology and polishing for AXAF/TMA

    International Nuclear Information System (INIS)

    Slomba, A.; Babish, R.; Glenn, P.

    1985-01-01

    The achievement of the derived goals for mirror surface quality on the Advanced X-ray Astrophysics Facility (AXAF), Technology Mirror Assembly (TMA) required a combination of state-of-the-art metrology and polishing techniques. In this paper, the authors summarize the derived goals and cover the main facets of the various metrology instruments employed, as well as the philosophy and technique used in the polishing work. In addition, they show how progress was measured against the goals, using the detailed error budget for surface errors and a mathematical model for performance prediction. The metrology instruments represented a considerable advance on the state-of-the-art and fully satisfied the error budget goals for the various surface errors. They were capable of measuring the surface errors over a large range of spatial periods, from low-frequency figure errors to microroughness. The polishing was accomplished with a computer-controlled process, guided by the combined data from various metrology instruments. This process was also tailored to reduce the surface errors over the full range of spatial periods

  5. Information system planning work on maintenance metrological equipment

    Directory of Open Access Journals (Sweden)

    Dmitry V. Shtoller

    2011-05-01

    Full Text Available Computerization has entered into all human activities. Important role in the work now is a workstation, which increases productivity. Did not remain without attention and work of the metrological services of enterprises. Electronic records can help solve many problems for the organization of data.

  6. Optical antennas for far and near field metrology

    NARCIS (Netherlands)

    Silvestri, F.; Bernal Arango, F.; Vendel, K.J.A.; Gerini, G.; Bäumer, S.M.B.; Koenderink, A.F.

    2016-01-01

    This paper presents the use of optical antennas in metrology scenarios. Two design concepts are presented: dielectric nanoresonator arrays and plasmonic nanoantennas arrays. The first ones are able to focus an incident light beam at an arbitrary focal plane. The nanoantennas arrays can be employed

  7. Accuracy and Metrological Reliability Enhancing of Thermoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Bogdan Stadnyk

    2010-12-01

    Full Text Available This article is devoted to development and use of thermoelectric thermotransducers with an enhanced accuracy and metrological reliability. The actuality of a problem is stipulated. Investigating changes at typical external environments, the mechanisms of transformation function instability are considered; possibilities of thermodynamic presentation use are analyzed concerning a thermometric substance. The algorithm of thermotransducer instrumental errors’ minimization is developed.

  8. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  9. 7/5nm logic manufacturing capabilities and requirements of metrology

    Science.gov (United States)

    Bunday, Benjamin; Bello, A. F.; Solecky, Eric; Vaid, Alok

    2018-03-01

    This paper will provide an update to previous works [2][4][9] to our view of the future for in-line high volume manufacturing (HVM) metrology for the semiconductor industry, concentrating on logic technology for foundries. First, we will review of the needs of patterned defect, critical dimensional (CD/3D), overlay and films metrology, and present the extensive list of applications for which metrology solutions are needed. We will then update the industry's progress towards addressing gating technical limits of the most important of these metrology solutions, highlighting key metrology technology gaps requiring industry attention and investment.

  10. A new approach to stitching optical metrology data

    Science.gov (United States)

    King, Christopher W.

    The next generation of optical instruments, including telescopes and imaging apparatus, will generate an increased requirement for larger and more complex optical forms. A major limiting factor for the production of such optical components is the metrology: how do we measure such parts and with respect to what reference datum This metrology can be thought of as part of a complete cycle in the production of optical components and it is currently the most challenging aspect of production. This thesis investigates a new and complete approach to stitching optical metrology data to extend the effective aperture or, in future, the dynamic range of optical metrology instruments. A practical approach is used to build up a complete process for stitching on piano and spherical parts. The work forms a basis upon which a stitching system for aspheres might be developed in the future, which is inherently more complicated. Beginning with a historical perspective and a review of optical polishing and metrology, the work presented relates the commercially available metrology instruments to the stitching process developed. The stitching is then performed by a numerical optimization routine that seeks to join together overlapping sub-aperture measurements by consideration of the aberrations introduced by the measurement scenario, and by the overlap areas between measurements. The stitching is part of a larger project, the PPARC Optical Manipulation and Metrology project, and was to benefit from new wavefront sensing technology developed by a project partner, and to be used for the sub-aperture measurement. Difficult mathematical problems meant that such a wavefront sensor was not avail able for this work and a work-around was therefore developed using commercial instruments. The techniques developed can be adapted to work on commercial ma chine platforms, and in partuicular, the OMAM NPL/UCL swing-arm profilometer described in chapter 5, or the computer controlled polishing machines

  11. La Metrología Óptica y sus Aplicaciones La Metrología Óptica y sus Aplicaciones

    OpenAIRE

    Daniel Malacara Hernández

    2012-01-01

    En este trabajo se presenta una introducción al campo de la metrología óptica y de su herramienta principal que es la interferometría. También se presenta un panorama de los diferentes métodos empleados en metrología describiendo con especial detalle los avances más recientes en este campo. In this work an introduction to optical metrology is presented with a brief description of its main tool which is interferometry. Also, a survey of the main different methods used in optical metrology is ...

  12. The ELSA laser beamline for electron polarization measurements via Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Switka, Michael; Hinterkeuser, Florian; Koop, Rebecca; Hillert, Wolfgang [Electron Stretcher Facility ELSA, Physics Institute of Bonn University (Germany)

    2016-07-01

    The Electron Stretcher Facility ELSA provides a spin polarized electron beam with energies of 0.5 - 3.2 GeV for double polarization hadron physics experiments. As of 2015, the laser beamline of the polarimeter based on Compton backscattering restarted operation. It consists of a cw disk laser with design total beam power of 40 W and features two polarized 515 nm photon beams colliding head-on with the stored electron beam in ELSA. The polarization measurement is based on the vertical profile asymmetry of the back-scattered photons, which is dependent on the polarization degree of the stored electron beam. After recent laser repairs, beamline and detector modifications, the properties of the beamline have been determined and first measurements of the electron polarization degree were conducted. The beamline performance and first measurements are presented.

  13. I18--the microfocus spectroscopy beamline at the Diamond Light Source.

    Science.gov (United States)

    Mosselmans, J Frederick W; Quinn, Paul D; Dent, Andrew J; Cavill, Stuart A; Moreno, Sofia Diaz; Peach, Andrew; Leicester, Peter J; Keylock, Stephen J; Gregory, Simon R; Atkinson, Kirk D; Rosell, Josep Roque

    2009-11-01

    The design and performance of the microfocus spectroscopy beamline at the Diamond Light Source are described. The beamline is based on a 27 mm-period undulator to give an operable energy range between 2 and 20.7 keV, enabling it to cover the K-edges of the elements from P to Mo and the L(3)-edges from Sr to Pu. Micro-X-ray fluorescence, micro-EXAFS and micro-X-ray diffraction have all been achieved on the beamline with a spot size of approximately 3 microm. The principal optical elements of the beamline consist of a toroid mirror, a liquid-nitrogen-cooled double-crystal monochromator and a pair of bimorph Kirkpatrick-Baez mirrors. The performance of the optics is compared with theoretical values and a few of the early experimental results are summarized.

  14. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  15. National Synchrotron Light Source user's manual: Guide to the VUV and x-ray beamlines

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User's Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines

  16. Beamline for Photoemission Spectromicroscopy and Spin Polarized Microscopy with Slow Electrons at CESLAB

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk

    2008-01-01

    Roč. 15, č. 1 (2008), s. 111-112 ISSN 1210-8529 Institutional research plan: CEZ:AV0Z20650511 Keywords : CESLAB * beamline * LEEM/PEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Safety upgrades for NSRRC beamlines in the upcoming top-up operation

    International Nuclear Information System (INIS)

    Liu, Joseph C.; Sheu, R.-J.; Wang, J.-P.; Chen, C.-R.; Chang, F.-D.; Kao, S.-P.

    2006-01-01

    The original beamline shielding of NSRRC was designed for the decay mode operation that safety shutter was closed during injection. The proposed top-up operation that opens safety shutter during top-up injection will introduce additional beam loss scenarios and radiation sources, especially when the injection efficiency needs to be improved. Careful comparison was made to differentiate the radiation doses into beamlines for both operation modes. Detailed evaluation was made to identify the possible inadequacies of the old beamline shielding and safety control procedures. Remedy actions and safety upgrades for each individual beamline were issued to ensure that dose limit of 2 mSv/yr for users can be fulfilled when running top-up operation

  18. The bio-crystallography beamline (BL41XU) at SPring-8

    CERN Document Server

    Kawamoto, M; Kamiya, N

    2001-01-01

    The bio-crystallography beamline (BL41XU), one of two pilot beamlines at SPring-8, was constructed using a standard in-vacuum-type undulator and opened for general users from domestic and overseas countries. Many tests and improvements were carried out on beamline elements and equipment for macromolecular crystallography, especially on the so-called 'pin-post' water cooling crystal of rotated-inclined double crystal monochromator. The maximum brilliance at sample position reached to 4x10 sup 1 sup 5 photons/s/mm sup 2 /mrad sup 2 at an X-ray energy of 11 keV. Commercially available X-ray detectors of CCD and imaging plate were installed in the experimental station. A beamline control software system for beam tracking and an on-line reader for large-format imaging plate were newly developed.

  19. PF-AR NW14, a new time-resolved diffraction/scattering beamline

    International Nuclear Information System (INIS)

    Nozawa, Shunsuke; Adachi, Shin-ichi; Tazaki, Ryoko; Takahashi, Jun-ichi; Itatani, Jiro; Daimon, Masahiro; Mori, Takeharu; Sawa, Hiroshi; Kawata, Hiroshi; Koshihara, Shin-ya

    2005-01-01

    NW14 is a new insertion device beamline at the Photon Factory Advanced Ring (PF-AR), which is a unique ring with full-time single-bunched operation, aiming for timeresolved x-ray diffraction/scattering and XAFS experiments. The primary scientific goal of this beamline is to observe the ultrafast dynamics of condensed matter systems such as organic and inorganic crystals, biological systems and liquids triggered by optical pulses. With the large photon fluxes derived from the undulator, it should become possible to take a snapshoot an atomic-scale image of the electron density distribution. By combining a series of images it is possible to produce a movie of the photo-induced dynamics with 50-ps resolution. The construction of the beamline is being funded by the ERATO Koshihara Non-equilibrium Dynamics Project of the Japan Science and Technology Agency (JST), and the beamline will be operational from autumn 2005

  20. PF-AR NW14, a new time-resolved diffraction/scattering beamline

    Science.gov (United States)

    Nozawa, Shunsuke; Adachi, Shin-ichi; Tazaki, Ryoko; Takahashi, Jun-ichi; Itatani, Jiro; Daimon, Masahiro; Mori, Takeharu; Sawa, Hiroshi; Kawata, Hiroshi; Koshihara, Shin-ya

    2005-01-01

    NW14 is a new insertion device beamline at the Photon Factory Advanced Ring (PF-AR), which is a unique ring with full-time single-bunched operation, aiming for timeresolved x-ray diffraction/scattering and XAFS experiments. The primary scientific goal of this beamline is to observe the ultrafast dynamics of condensed matter systems such as organic and inorganic crystals, biological systems and liquids triggered by optical pulses. With the large photon fluxes derived from the undulator, it should become possible to take a snapshoot an atomic-scale image of the electron density distribution. By combining a series of images it is possible to produce a movie of the photo-induced dynamics with 50-ps resolution. The construction of the beamline is being funded by the ERATO Koshihara Non-equilibrium Dynamics Project of the Japan Science and Technology Agency (JST), and the beamline will be operational from autumn 2005.

  1. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography

  2. Evaluation of beam-line components for use in a large neutral-beam injector

    International Nuclear Information System (INIS)

    Fink, J.H.

    1977-01-01

    A conceptual model of a neutral-beam injector was used to examine the effect of beam-line components on reactor performance. Criteria were established to optimize a reactor's reliability and minimize its cost

  3. Toward reliable and repeatable automated STEM-EDS metrology with high throughput

    Science.gov (United States)

    Zhong, Zhenxin; Donald, Jason; Dutrow, Gavin; Roller, Justin; Ugurlu, Ozan; Verheijen, Martin; Bidiuk, Oleksii

    2018-03-01

    New materials and designs in complex 3D architectures in logic and memory devices have raised complexity in S/TEM metrology. In this paper, we report about a newly developed, automated, scanning transmission electron microscopy (STEM) based, energy dispersive X-ray spectroscopy (STEM-EDS) metrology method that addresses these challenges. Different methodologies toward repeatable and efficient, automated STEM-EDS metrology with high throughput are presented: we introduce the best known auto-EDS acquisition and quantification methods for robust and reliable metrology and present how electron exposure dose impacts the EDS metrology reproducibility, either due to poor signalto-noise ratio (SNR) at low dose or due to sample modifications at high dose conditions. Finally, we discuss the limitations of the STEM-EDS metrology technique and propose strategies to optimize the process both in terms of throughput and metrology reliability.

  4. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    Science.gov (United States)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  5. Fully automated data collection and processing system on macromolecular crystallography beamlines at the PF

    International Nuclear Information System (INIS)

    Yamada, Yusuke; Hiraki, Masahiko; Matsugaki, Naohiro; Chavas, Leonard M.G.; Igarashi, Noriyuki; Wakatsuki, Soichi

    2012-01-01

    Fully automated data collection and processing system has been developed on macromolecular crystallography beamlines at the Photon Factory. In this system, the sample exchange, centering and data collection are sequentially performed for all samples stored in the sample exchange system at a beamline without any manual operations. Data processing of collected data sets is also performed automatically. These results are stored into the database system, and users can monitor the progress and results of automated experiment via a Web browser. (author)

  6. The design of the beamline for magnetic circular dichroism study at HNSRL

    CERN Document Server

    ShengWeiFan; Li Da Shi; Yan Yong Lia

    2000-01-01

    A synchrotron radiation beamline for MCD study is being developed at Hefei National Synchrotron Radiation Laboratory (HNSRL) in the P. R. China. As a key component on the beamline, the varied line-spacing plane grating (VLSPG) monochromator is designed to cover a broad photon energy range from 100 to 1000 eV with a medium energy resolving power of 2000. The design is analyzed and optimized to meet the high requirements of MCD studying.

  7. Inelastic X-ray Scattering Beamline Collaborative Development Team Final Report

    International Nuclear Information System (INIS)

    Burns, Clement

    2008-01-01

    This is the final report for the project to create a beam line for inelastic x-ray scattering at the Advanced Photon Source. The facility is complete and operating well, with spectrometers for both high resolution and medium resolution measurements. With the advent of third generation synchrotron sources, inelastic x-ray scattering (IXS) has become a valuable technique to probe the electronic and vibrational states of a wide variety of systems of interest in physics, chemistry, and biology. IXS is a weak probe, and experimental setups are complex and require well-optimized spectrometers which need a dedicated beamline to function efficiently. This project was the result of a proposal to provide a world-class, user friendly beamline for IXS at the Advanced Photon Source. The IXS Collaborative Development Team (IXS-CDT) was formed from groups at the national laboratories and a number of different universities. The beamline was designed from the front end to the experimental stations. Two different experimental stations were provided, one for medium resolution inelastic x-ray scattering (MERIX) and a spectrometer for high resolution inelastic x-ray scattering (HERIX). Funding for this project came from several sources as well as the DOE. The beamline is complete with both spectrometers operating well. The facility is now open to the general user community and there has been a tremendous demand to take advantage of the beamline's capabilities. A large number of different experiments have already been carried out on the beamline. A detailed description of the beamline has been given in the final design report (FDR) for the beamline from which much of the material in this report came. The first part of this report contains a general overview of the project with more technical details given later.

  8. Construction and characterization of a laser-driven proton beamline at GSI

    OpenAIRE

    Busold, Simon

    2014-01-01

    The thesis includes the first experiments with the new 100 TW laser beamline of the PHELIX laser facility at GSI Darmstadt to drive a TNSA (Target Normal Sheath Acceleration) proton source at GSI's Z6 experimental area. At consecutive stages a pulsed solenoid has been applied for beam transport and energy selection via chromatic focusing, as well as a radiofrequency cavity for energy compression of the bunch. This novel laser-driven proton beamline, representing a central experiment of the...

  9. eBooking of beam-time over internet for beamlines of Indus synchrotron radiation sources

    International Nuclear Information System (INIS)

    Jain, Alok; Verma, Rajesh; Rajan, Alpana; Modi, M.H.; Rawat, Anil

    2015-01-01

    Users from various research labs and academic institutes carry out experiments on beamlines of two Synchrotron Radiation Sources Indus-1 and Indus-2 available at RRCAT, Indore. To carry out experimental work on beamlines of both synchrotron radiation sources, beam-time is booked over Internet by the users of beamlines using user portal designed, developed and deployed over Internet. This portal has made the process of beamtime booking fast, hassle free and paperless as manual booking of beam-time for carrying out experiment on a particular beamline is cumbersome. The portal facilitates in-charge of Indus-1 and Indus-2 beamlines to keep track of users' records, work progress and other activities linked to experiments carried on beamlines. It is important to keep record and provide statistics about the usage of the beam lines from time-to-time. The user portal for e-booking of beam-time has been developed in-house using open source software development tools. Multi-step activities of users and beamline administrators are workflow based with seamless flow of information across various modules and fully authenticated using role based mechanism for different roles of software usage. The software is in regular use since November 2013 and has helped beamline in- charges in efficiently managing various activities related to user registration, booking of beam-time, booking of Guest House, Generation of Security permits, User feedback etc. Design concept, role based authentication mechanism and features provided by the web portal are discussed in detail in this paper. (author)

  10. General design of the layout for new undulator-only beamline front ends

    International Nuclear Information System (INIS)

    Shu Deming; Ramanathan, Mohan; Kuzay, Tuncer M.

    2001-01-01

    A great majority of the Advanced Photon Source (APS) users have chosen an undulator as the only source for their insertion device beamline. Compared with a wiggler source, the undulator source has a much smaller horizontal divergence, providing us with an opportunity to optimize the beamline front-end design further. In this paper, the particular designs and specifications, as well as the optical and bremsstrahlung ray-tracing analysis of the new APS front ends for undulator-only operation are presented

  11. Protein crystallography beamline (PX-BL21); its utilization and research highlights

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Ghosh, Biplab; Singh, Rahul; Makde, Ravindra; Sharma, Surinder M.

    2016-01-01

    The protein crystallography beamline (PX-BL21) is sourced on 1.5 T bending magnet of 2.5 GeV Indus-2 synchrotron. This beamline has been designed to perform monochromatic and anomalous diffraction experiments on single crystals of biological macromolecules such as protein, DNA and their complexes. PX beamline also has a state-of-art ancillary biochemical laboratory to prepare single crystals of biological macromolecules. Since the commissioning of the beamline, it has been utilized by more than 70% of research groups working in the area of protein crystallography in India. About 30 crystal structures of proteins, determined using this beamline, have been deposited in Protein Data Bank (PDB). Some of these structures have been determined using experimental phasing, such as the single wavelength anomalous diffraction (SAD) experiments. The energy tunability of the synchrotron have been exploited to carry our various SAD experiments: Selenium-SAD, Zinc-SAD and Manganese-SAD and Sulphar-SAD. In the present talk, the key results from the PX-BL21 beamline will be discussed. (author)

  12. NSLS [National Synchrotron Light Source] X-19A beamline performance for x-ray absorption measurements

    International Nuclear Information System (INIS)

    Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M.

    1989-01-01

    Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs

  13. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    International Nuclear Information System (INIS)

    Souza Neto, Narcizo

    2016-01-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10 14 photons/sec with beam size down to 0.5 x 0.5 μm 2 ) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  14. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    Energy Technology Data Exchange (ETDEWEB)

    Souza Neto, Narcizo, E-mail: narcizo.souza@lnls.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil)

    2016-07-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10{sup 14} photons/sec with beam size down to 0.5 x 0.5 μm{sup 2}) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  15. Realtime control system for microprobe beamline at PLS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J.C.; Lee, J.W.; Kim, K.H.; Ko, I.S. [Pohang Accelerator Laboratory, POSTECH, Pohang (Korea)

    1998-11-01

    The microprobe beamline of the Pohang Light Source (PLS) consists of main and second slits, a microprobe system, two ion chambers, a video-microscope, and a Si(Li) detector. These machine components must be controlled remodely through the computer system to make user's experiments precise and speedy. A real-time computer control system was developed to control and monitor these components. A VMEbus computer with an OS-9 real-time operating system was used for the low-level data acquisition and control. VME I/O modules were used for the step motor control and the scalar control. The software has a modular structure for the maximum performance and the easy maintenance. We developed the database, the I/O driver, and the control software. We used PC/Windows 95 for the data logging and the operator interface. Visual C{sup ++} was used for the graphical user interface programming. RS232C was used for the communication between the VME and the PC. (author)

  16. Mirror boxes and mirror mounts for photophysics beamline

    International Nuclear Information System (INIS)

    Raja Rao, P.M.; Raja Sekhar, B.N.; Das, N.C.; Khan, H.A.; Bhattacharya, S.S.; Roy, A.P.

    1996-01-01

    Photophysics beamline makes use of one metre Seya-Namioka monochromator and two toroidal mirrors in its fore optics. The first toroidal mirror (pre mirror) focuses light originating from the tangent point of the storage ring onto the entrance slit of the monochromator and second toroidal mirror (post mirror) collects light from the exit slit of the monochromator and focuses light onto the sample placed at a distance of about one metre away from the 2nd mirror. To steer light through monochromator and to focus it on the sample of 1mm x 1mm size require precision rotational and translational motion of the mirrors and this has been achieved with the help of precision mirror mounts. Since Indus-1 operates at pressures less than 10 -9 m.bar, the mirror mounts should be manipulated under similar ultra high vacuum conditions. Considering these requirements, two mirror boxes and two mirror mounts have been designed and fabricated. The coarse movements to the mirrors are imparted from outside the mirror chamber with the help of x-y tables and precision movements to the mirrors are achieved with the help of mirror mounts. The UHV compatibility and performance of the mirror mounts connected to mirror boxes under ultra high vacuum condition is evaluated. The details of the design, fabrication and performance evaluation are discussed in this report. 5 refs., 9 figs., 1 tab

  17. Neutrino Flux Prediction for the NuMI Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga Soplin, Leonidas [William-Mary Coll.

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the fl ux for the upcoming DUNE experiment.

  18. Neutrino Flux Prediction for the NuMI Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Soplin, Leonidas Aliaga [Coll. William and Mary

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the flux for the upcoming DUNE experiment.

  19. An x-ray beamline for the LNLS

    International Nuclear Information System (INIS)

    Cusatis, C.; Giles, C.

    1990-01-01

    In this paper an x-ray optics and high energy-resolution beamline for the XUV ring at LNLS is described. It consists of a monochromator serving a station for x-ray optics and another for high energy-resolution experiments. The constant offset, vacuum compatible double crystal monochromator is to be mounted in a bending magnet or wiggler port and will be located as near as possible of the ring. One rotation movement of both mechanically linked crystals and one short elastic translation of each crystal covers the energy range of 1 to 10 KeV. For θ B ∼ 90 on the first monochromator crystal the monochromatized beam is sent back through the electron ring and is received on the opposite side of the line at the high energy-resolution station. The main instrument at the x-ray optics station will be a triple axis diffractometer. This station, located as far as possible of the ring and, possibly, outside of main hall, will be used for x-ray interferometry, perfect crystal diffractometry, etc

  20. Optimized baffle and aperture placement in neutral beamlines

    International Nuclear Information System (INIS)

    Stone, R.; Duffy, T.; Vetrovec, J.

    1983-01-01

    Most neutral beamlines contain an iron-core ion-bending magnet that requires shielding between the end of the neutralizer and this magnet. This shielding allows the gas pressure to drop prior to the beam entering the magnet and therefore reduces beam losses in this drift region. We have found that the beam losses can be reduced even further by eliminating the iron-core magnet and the magnetic shielding altogether. The required bending field can be supplied by current coils without the iron poles. In addition, placement of the baffles and apertures can affect the cold gas entering the plasma region and the losses in the neutral beam due to re-ionization. In our study we varied the placement of the baffles, which determine the amount of pumping in each chamber, and the apertures, which determine the beam loss. Our results indicate that a baffle/aperture configuration can be set for either minimum cold gas into the plasma region or minimum beam losses, but not both

  1. Emittance measurements in Grumman 1 MeV beamline

    International Nuclear Information System (INIS)

    Debiak, T.; Gammel, G.; Melnychuk, S.

    1992-01-01

    The emittance of a 30 keV H - beam has been measured with an Allison type electrostatic analyser at two positions separated by 85 cm along the Grumman 1 MeV beamline LEBT at low currents (about 4 mA, no Cs 2 O additive in the source) and at higher currents (10-15 mA, with Cs 2 O additive in the source). No emittance growth was observed between the two positions, but, at the higher current level, the emittance was about 60% higher than at the low current level (Σ n ,rms = .0045 π cm-mrad vs. 0070 π cm-mrad). Argon was then introduced up to a partial pressure of 4x10 -5 torr, and the emittance decreased back to a range corresponding to that found at the lower currents. However, beam noise was observed at the downstream position, and there is evidence for a small amount of emittance growth (<20%) between the two positions

  2. An OCD perspective of line edge and line width roughness metrology

    Science.gov (United States)

    Bonam, Ravi; Muthinti, Raja; Breton, Mary; Liu, Chi-Chun; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Patlolla, Raghuveer; Huang, Huai

    2017-03-01

    Metrology of nanoscale patterns poses multiple challenges that range from measurement noise, metrology errors, probe size etc. Optical Metrology has gained a lot of significance in the semiconductor industry due to its fast turn around and reliable accuracy, particularly to monitor in-line process variations. Apart from monitoring critical dimension, thickness of films, there are multiple parameters that can be extracted from Optical Metrology models3. Sidewall angles, material compositions etc., can also be modeled to acceptable accuracy. Line edge and Line Width roughness are much sought of metrology following critical dimension and its uniformity, although there has not been much development in them with optical metrology. Scanning Electron Microscopy is still used as a standard metrology technique for assessment of Line Edge and Line Width roughness. In this work we present an assessment of Optical Metrology and its ability to model roughness from a set of structures with intentional jogs to simulate both Line edge and Line width roughness at multiple amplitudes and frequencies. We also present multiple models to represent roughness and extract relevant parameters from Optical metrology. Another critical aspect of optical metrology setup is correlation of measurement to a complementary technique to calibrate models. In this work, we also present comparison of roughness parameters extracted and measured with variation of image processing conditions on a commercially available CD-SEM tool.

  3. Development of the metrology and imaging of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Postek, Michael T; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J; Sabo, Ronald; Wegner, Theodore H; Beecher, James

    2011-01-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs

  4. Development of the metrology and imaging of cellulose nanocrystals

    Science.gov (United States)

    Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2011-02-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.

  5. Development of ITER in-vessel viewing and metrology systems

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation ({approx}30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  6. Development of ITER in-vessel viewing and metrology systems

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation (∼30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  7. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  8. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  9. Nonlinear Quantum Metrology of Many-Body Open Systems

    Science.gov (United States)

    Beau, M.; del Campo, A.

    2017-07-01

    We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.

  10. Metrology for industrial quantum communications: the MIQC project

    Science.gov (United States)

    Rastello, M. L.; Degiovanni, I. P.; Sinclair, A. G.; Kück, S.; Chunnilall, C. J.; Porrovecchio, G.; Smid, M.; Manoocheri, F.; Ikonen, E.; Kubarsepp, T.; Stucki, D.; Hong, K. S.; Kim, S. K.; Tosi, A.; Brida, G.; Meda, A.; Piacentini, F.; Traina, P.; Natsheh, A. Al; Cheung, J. Y.; Müller, I.; Klein, R.; Vaigu, A.

    2014-12-01

    The ‘Metrology for Industrial Quantum Communication Technologies’ project (MIQC) is a metrology framework that fosters development and market take-up of quantum communication technologies and is aimed at achieving maximum impact for the European industry in this area. MIQC is focused on quantum key distribution (QKD) technologies, the most advanced quantum-based technology towards practical application. QKD is a way of sending cryptographic keys with absolute security. It does this by exploiting the ability to encode in a photon's degree of freedom specific quantum states that are noticeably disturbed if an eavesdropper trying to decode it is present in the communication channel. The MIQC project has started the development of independent measurement standards and definitions for the optical components of QKD system, since one of the perceived barriers to QKD market success is the lack of standardization and quality assurance.

  11. Characteristics of the radiation prevention metrology laboratory 'Cajavec' - Banjaluka

    International Nuclear Information System (INIS)

    Tomljenovic, I.; Ninkovic, M.; Kolonic, Dz.

    2004-01-01

    Radiation metrology laboratory built in the factory 'Cajavec' in Banja Luka, planed for gauge the detectors of ionization radiation. Laboratory as part of the large factory building , thus projected and formed according to positive radiation principles. Walls are constructed of basic concrete, main entrance of lead, approaching the radiation bench from the back side. Sound and light signal system connected with dosemeter for showing mini dose of radiation creating conditions for safe work of the dosemeterists. (author) [sr

  12. Clean focus, dose and CD metrology for CD uniformity improvement

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck

    2018-03-01

    Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.

  13. Innovative Ge Quantum Dot Functional Sensing and Metrology Devices

    Science.gov (United States)

    2017-08-21

    Sensing/Metrology Devices Period: May 26th 2015May 25th 2017 Investigators: Pei-Wen Li Affiliation: Department of Electrical Engineering , National...light sources as well as low-power, high-speed Ge photodetectors indeed requires the growth of direct-gap Ge, heterostructure engineering for...All these tasks cannot be simply conducted in terms of bulk Ge technology, and it is no doubt that nanoscience and nanotechnology would offer

  14. Metrology and Proportion in the Ecclesiastical Architecture of Medieval Ireland

    OpenAIRE

    Behan, Avril; Moss, Rachel

    2008-01-01

    The aim of this paper is to examine the extent to which detailed empirical analysis of the metrology and proportional systems used in the design of Irish ecclesiastical architecture can be analysed to provide historical information not otherwise available. Focussing on a relatively limited sample of window tracery designs as a case study, it will first set out to establish what, if any, systems were in use, and then what light these might shed on the background, training and work practices of...

  15. A blueprint for radioanalytical metrology CRMs, intercomparisons, and PE

    International Nuclear Information System (INIS)

    Inn, Kenneth G.W.; Kurosaki, Hiromu; Frechou, Carole; Gilligan, Chris; Jones, Robert; LaMont, Stephen; Leggitt, Jeff; Li Chunsheng; McCroan, Keith; Swatski, Ronald

    2008-01-01

    A workshop was held from 28 February to 2 March 2006 at the National Institute of Standards and Technology (NIST) to evaluate the needs for new directions for complex matrix reference materials certified for radionuclide content, interlaboratory comparisons and performance evaluation (PE) programs. The workshop identified new radioanalytical metrology thrust areas needed for environmental, radiobioassay, emergency consequence management, and nuclear forensics, attribution, nonproliferation, and safeguards

  16. Overlay improvement methods with diffraction based overlay and integrated metrology

    Science.gov (United States)

    Nam, Young-Sun; Kim, Sunny; Shin, Ju Hee; Choi, Young Sin; Yun, Sang Ho; Kim, Young Hoon; Shin, Si Woo; Kong, Jeong Heung; Kang, Young Seog; Ha, Hun Hwan

    2015-03-01

    To accord with new requirement of securing more overlay margin, not only the optical overlay measurement is faced with the technical limitations to represent cell pattern's behavior, but also the larger measurement samples are inevitable for minimizing statistical errors and better estimation of circumstance in a lot. From these reasons, diffraction based overlay (DBO) and integrated metrology (IM) were mainly proposed as new approaches for overlay enhancement in this paper.

  17. Optical design of an x-ray absorption spectroscopy beamline at Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Das, N.C.; Jha, S.N.; Roy, A.P.

    1999-10-01

    Details of optical design of EXAFS beamline at Indus-2 SRS, under development at CAT, Indore, have been discussed in this report. This beamline will cover the photon energy range of 5 keV to 20 keV and will use a bent crystal of Si(111) having 2d value equal to 6.2709 A. It will accept a horizontal divergence of 1.5 mrad. The heart of the beamline is the bent crystal polychromator which will disperse and focus the synchrotron beam at the experimental sample position. The transmitted radiation from the sample will be, subsequently, detected by a position sensitive detector (CCD type). The detector length is 25 mm. Assuming a suitable value for the distance between the source and the crystal, we have computed several geometrical parameters of the beamline, such as, Bragg angle, crystal length, crystal radius, crystal to sample distance, sample to detector distance, etc. for three different photon energies, namely, 5 keV, 10 keV, and 20 keV. The band passes around these photon energies are 0.3 keV, 1 keV and 2 keV respectively. It has been found that computed geometrical parameters are well within acceptable limits. An extensive ray tracing work was done using the software program SHADOW to evaluate the imaging properties of the beamline. It was established that the image spot size at the sample position improved substantially when the crystal is changed from spherical cylinder shape to elliptic cylinder shape. From the ray intensity plots, the average resolution of the crystal bender was estimated to be 1 eV per channel. Finally based on the optical layout of the beamline, a schematic mechanical layout of the beamline has been prepared. (author)

  18. UHV mirror mounts for photophysics beamline at Indus-I

    International Nuclear Information System (INIS)

    Meenakshi Raja Rao, P.; Bhattacharya, S.S.; Das, N.C.; Rajasekhar, B.N.; Roy, A.P.

    1995-01-01

    Photophysics beamline makes use of a combination of two toroidal mirrors and one meter Seya-Namioka Monochromator in its fore optics. The fore optics monochromatises and steers the synchrotron radiation source (SRS) beam from its tangent point to the sample situated at a distance of about five meters. Slit widths of the monochromator are of the order of 100μ and the sample size is one mm 2 . Hence it is essential to impart precision rotational and translational movements of the same order of magnitude to the mirrors with the use of appropriate mirror mounts. Since Indus-1 operates at a pressure -9 mbar, the mirror mounts should be UHV compatible and the movements should be actuated under UHV. The mirrors along with the mirror mounts are enclosed in UHV chambers. The mirror chambers have been fabricated at Centre for Advanced Technology (CAT) workshops and tested up to a pressure of 10 -9 mbar. The mirror mounts are designed, fabricated and leak checked (He leak rate -10 std cc/s) The precision movements are achieved with the help of bellow sealed shaft mechanism and adjustable screws provided with the kinematic mount of the mirror frame. The performance of the mirror mount was tested at atmospheric pressure by using a laser beam and found to be good. The minimum displacement of the laser beam at slit and sample positions is ∼ 70μ which is quite adequate for optical alignment. The performance of the mirror mount under UHV conditions is being evaluated. (author). 4 refs., 3 figs

  19. World wide matching of registration metrology tools of various generations

    Science.gov (United States)

    Laske, F.; Pudnos, A.; Mackey, L.; Tran, P.; Higuchi, M.; Enkrich, C.; Roeth, K.-D.; Schmidt, K.-H.; Adam, D.; Bender, J.

    2008-10-01

    Turn around time/cycle time is a key success criterion in the semiconductor photomask business. Therefore, global mask suppliers typically allocate work loads based on fab capability and utilization capacity. From a logistical point of view, the manufacturing location of a photomask should be transparent to the customer (mask user). Matching capability of production equipment and especially metrology tools is considered a key enabler to guarantee cross site manufacturing flexibility. Toppan, with manufacturing sites in eight countries worldwide, has an on-going program to match the registration metrology systems of all its production sites. This allows for manufacturing flexibility and risk mitigation.In cooperation with Vistec Semiconductor Systems, Toppan has recently completed a program to match the Vistec LMS IPRO systems at all production sites worldwide. Vistec has developed a new software feature which allows for significantly improved matching of LMS IPRO(x) registration metrology tools of various generations. We will report on the results of the global matching campaign of several of the leading Toppan sites.

  20. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  1. The Remarkable Metrological History of Radiocarbon Dating [II].

    Science.gov (United States)

    Currie, Lloyd A

    2004-01-01

    This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought (14)C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for "molecular dating" at the 10 µg to 100 µg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the "bomb effect," that gave rise to new multidisciplinary areas of application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthropogenic pollutants to the reconstruction of environmental history. Beyond the specific topic of natural (14)C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanticipated metrological advances in their own chosen fields, and unanticipated anthropogenic or natural chemical events in the environment, can spawn new areas of research having exciting theoretical and practical implications.

  2. Improving automated 3D reconstruction methods via vision metrology

    Science.gov (United States)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  3. The future of 2D metrology for display manufacturing

    Science.gov (United States)

    Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin

    2016-10-01

    The race to 800 PPI and higher in mobile devices and the transition to OLED displays are driving a dramatic development of mask quality: resolution, CDU, registration, and complexity. 2D metrology for large area masks is necessary and must follow the roadmap. Driving forces in the market place point to continued development of even more dense displays. State-of-the-art metrology has proven itself capable of overlay below 40 nm and registration below 65 nm for G6 masks. Future developments include incoming and recurrent measurements of pellicalized masks at the panel maker's factory site. Standardization of coordinate systems across supplier networks is feasible. This will enable better yield and production economy for both mask and panel maker. Better distortion correction methods will give better registration on the panels and relax the flatness requirements of the mask blanks. If panels are measured together with masks and the results are used to characterize the aligners, further quality and yield improvements are possible. Possible future developments include in-cell metrology and integration with other instruments in the same platform.

  4. Experimental realization of the quantum metrological triangle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chenaud, B; Devoille, L; Steck, B; Feltin, N; Gonzalez-Cano, A; Poirier, W; Schopfer, F; Spengler, G; Djordjevic, S; Seron, O; Piquemal, F [Laboratoire national de metrologie et d' essais (LNE), Trappes (France); Lotkhov, S [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)], E-mail: laurent.devoille@lne.fr

    2009-02-01

    The quantum metrological triangle experiment (QMTE) consists in realizing Ohm's law with Josephson (JE), quantum Hall (QHE) and single electron tunneling (SET) effects. The aim is to check the consistency of the link among the phenomenological constants K {sub J}, R{sub K} and Q {sub X} involved in these effects and theoretically expressed with the fundamental constants e and h. Such an experiment could be a contribution for a new definition of the systeme international d'unites (SI) base units. In the QMTE, a current generated by a SET device flows through a resistor calibrated against QHE standard and the voltage induced at its terminals is compared to the metrological voltage generated by a Josephson junctions array. At LNE, the studied SET devices are 3 junctions single electron pumps with on chip resistors. The quantized current generated by this pump is theoretically equal to ef (f is the frequency of the driving signals applied on the gates) and is measured through a cryogenic current comparator (CCC), which allows to amplify the low pumping current with a metrological accuracy. We will present and discuss the experimental set-up developed at LNE and the first results. In addition to the main aim of QMTE described above, these preliminary results are also a first step towards a determination of e.

  5. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    Science.gov (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  6. Metrological traceability of carbon dioxide measurements in atmosphere and seawater

    International Nuclear Information System (INIS)

    Rolle, F; Pessana, E; Sega, M

    2017-01-01

    The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO 2 ), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO 2 in the atmosphere. The well established activity to assure the metrological traceability of CO 2 in the atmosphere will be applied to the determination of CO 2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use. (paper)

  7. Utilization of the research and measurement reactor Braunschweig for neutron metrology

    International Nuclear Information System (INIS)

    Alberts, W.G.

    1982-01-01

    The objectives of the Physikalisch-Technische Bundesanstalt (PTB) with regard to neutron metrology are briefly described. The use of the PTB's Research and Measuring Reactor as neutron source for metrological purposes is discussed. Reference neutron beams are described which serve as irradiation facilities for the calibration of detectors for radiation protection purposes in the frame of the legal metrology work in the PTB. (orig.) [de

  8. European research project 'Metrology for radioactive waste management'

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. This poster presents impact, excellence, relevance to EMPR objectives, and implementation and management of this project.(author)

  9. A second beam-diagnostic beamline for the advanced light source

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Baum, Dennis; Kelez, Nicholas; Scarvie, Tom; Holldack, Karsten

    2003-01-01

    A second beamline, BL 7.2, completely dedicated to beam diagnostics is being installed at the Advanced Light Source (ALS). The design has been optimized for the measurement of the momentum spread and emittance of the stored beam in combination with the existing diagnostic beamline, BL 3.1. A detailed analysis of the experimental error has allowed the definition of the system parameters. The obtained requirements found a good matching with a simple and reliable system based on the detection of X-ray synchrotron radiation (SR) through a pinhole system. The actual beamline, which also includes a port for visible and infrared SR as well as an X-ray beam position monitor (BPM), is mainly based on the design of two similar diagnostic beamlines at BESSY II. This approach allowed a significant saving in time, cost and engineering effort. The design criteria, including a summary of the experimental error analysis, as well as a brief description of the beamline are presented

  10. CAT Guide and Beamline Directory. A key to APS Collaborative Access Teams

    International Nuclear Information System (INIS)

    1999-01-01

    The Advanced Photon Source (APS), a national user facility for synchrotrons radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotrons radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology. Researchers use the APS either as members of Collaborative Access Teams (CATS) or as Independent Investigators (IIs). CATS are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly. CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIs. This document was written to help prospective IIs determine which beamlines are suitable for their specific experiments

  11. Solutions to mitigate heat loads due to electrons on sensitive components of ITER HNB beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Emanuele, E-mail: emanuele.sartori@gmail.com [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Veltri, Pierluigi; Dalla Palma, Mauro; Agostinetti, Piero [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Hemsworth, Ronald; Singh, Mahendrajit [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2016-11-01

    Highlights: • Energetic electrons leaking out of the ITER HNB accelerator are simulated. • Electrons generated along the ITER HNB beamline are simulated. • Heat loads and heat load maps on cryopumps are calculated for ITER HNB and test facility. • Protection solutions that will be installed are presented and their effect discussed. - Abstract: The operation of neutral beam injectors for plasma heating and current drive in a fusion device provides challenges in the thermal management of beamline components. Sensitive components such as the cryogenic pumps at beamline periphery shall be protected from the heat flux due to stray electrons. These are emitted by the negative ion accelerator or generated along the beamline by interaction of fast electrons, ions or atoms with background gas and surfaces. In this article the case of the ITER Heating Neutral Beam (HNB) and its test facility MITICA is discussed, for which the beam parameters and the required pulse length of one hour is a major leap forward with respect to the present experience with neutral beam systems. The engineering solutions adopted for effective cryopump protection against the heat load from electrons are described. The use of three-dimensional numerical simulations of particle trajectories in the complex geometry of the beamline was needed for the quantitative estimations of the heat loads. The presented solutions were optimized to minimize the impact on gas pumping and on the functionality of other components.

  12. New beamline dedicated to solution scattering from biological macromolecules at the ESRF

    International Nuclear Information System (INIS)

    Pernot, P; Theveneau, P; Giraud, T; Fernandes, R Nogueira; Nurizzo, D; Spruce, D; Surr, J; McSweeney, S; Round, A; Felisaz, F; Foedinger, L; Gobbo, A; Huet, J; Villard, C; Cipriani, F

    2010-01-01

    The new bio-SAXS beamline (ID14-3 at the ESRF, Grenoble, France) is dedicated exclusively to small-angle scattering experiments of biological macromolecules in solution and has been in user operation since November 2008. Originally a protein crystallography beamline, ID14-3 was refurbished, still as a part of the ESRF Structural Biology group, with the main aim to provide a facility with 'quick and easy' access to satisfy rapidly growing demands from crystallographers, biochemists and structural biologists. The beamline allows manual and automatic sample loading/unloading, data collection, processing (conversion of a 2D image to a normalized 1D X-ray scattering profile) and analysis. The users obtain on-line standard data concerning the size (radius of gyration, maximum dimension and volume) and molecular weight of samples which allow on-the fly ab-inito shape reconstruction in order to provide feedback enabling the data collection strategies to be optimized. Automation of sample loading is incorporated on the beamline using a device constructed in collaboration between the EMBL (Grenoble and Hamburg outstations) and the ESRF. Semi/automated data analysis is implemented following the model of the SAXS facility at X33, EMBL Hamburg. This paper describes the bio-SAXS beamline and set-up characteristics together with the examples of user data obtained.

  13. Design of a High-Throughput Biological Crystallography Beamline for Superconducting Wiggler

    International Nuclear Information System (INIS)

    Tseng, P.C.; Chang, C.H.; Fung, H.S.; Ma, C.I.; Huang, L.J.; Jean, Y.C.; Song, Y.F.; Huang, Y.S.; Tsang, K.L.; Chen, C.T.

    2004-01-01

    We are constructing a high-throughput biological crystallography beamline BL13B, which utilizes the radiation generated from a 3.2 Tesla, 32-pole superconducting multipole wiggler, for multi-wavelength anomalous diffraction (MAD), single-wavelength anomalous diffraction (SAD), and other related experiments. This beamline is a standard double crystal monochromator (DCM) x-ray beamline equipped with a collimating mirror (CM) and a focusing mirror (FM). Both the CM and FM are one meter long and made of Si substrate, and the CM is side-cooled by water. Based on detailed thermal analysis, liquid nitrogen (LN2) cooling for both crystals of the DCM has been adopted to optimize the energy resolution and photon beam throughput. This beamline will deliver, through a 100 μm diameter pinhole, photon flux of greater than 1011 photons/sec in the energy range from 6.5 keV to 19 keV, which is comparable to existing protein crystallography beamlines from bending magnet source at high energy storage rings

  14. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  15. Neutron imaging options at the BOA beamline at Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Morgano, M.; Peetermans, S.; Lehmann, E.H.; Panzner, T.; Filges, U.

    2014-01-01

    The BOA beamline at the Swiss spallation neutron source SINQ at Paul Scherrer Institut is a flexible instrument used mainly for testing novel techniques and devices for neutron scattering and optics, but, due to the large and relatively homogeneous field of view, it can be successfully used for experiments in the field of neutron imaging. The beamline allows also for the exploitation of advanced imaging concepts such as polarized neutron imaging and diffractive neutron imaging. In this paper we present the characterization of the BOA beamline in the light of its neutron imaging capabilities. We show also the different techniques that can be employed there as user-friendly plugins for non-standard neutron imaging experiments

  16. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  17. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  18. Using the particle beam optics lab. (PBO LABtm) for beamline design and analysis

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Martono, H.; Moore, J.M.; Lampel, M.C.; Brown, N.A.

    1999-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) represents a new approach to providing software for particle beam optics modeling. The PBO Lab includes four key elements: a graphic user interface shell; a graphic beamline construction kit for users to interactively and visually construct optical beam lines; a knowledge database on the physics and technology of optical elements, and various charged particle optics computational engines. A first-order matrix code, including a space charge model, can be used to produce scaled images of beamlines together with overlays of single trajectories and beam envelopes. The qualitative results of graphically sliding beamline components, or adjusting bend angles, can be explored interactively. Quantitative computational engines currently include the third-order TRANSPORT code and the multi-particle ray tracing program TURTLE. The use of the PBO Lab for designing and analyzing a second order achromatic bend is illustrated with the Windows 95/NT version of the software. (authors)

  19. Soft x-ray beamline BL7A at the UVSOR

    International Nuclear Information System (INIS)

    Murata, T.; Matsukawa, T.; Naoe, S.; Horigome, T.; Matsudo, O.; Watanabe, M.

    1992-01-01

    A vacuum-compatible double-crystal monochromator with constant exit-beam height has been installed and operated for several years at beamline BL7A at the UVSOR facility at the Institute for Molecular Science, Okazaki, Japan, The beamline is used both for the photons from a normal bending-magnet section and those from a 4 T superconducting three-pole horizontal wiggler. Various pairs of monochromator crystals are being used with sufficient intensity and signal to noise ratio of the output signal. Basic structure of the beamline, the mechanism of the monochromator, and some typical spectra of materials with absorption edges between 850 eV and 4 keV are reported

  20. The first synchrotron infrared beamlines at the Advanced Light Source: Microspectroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, M.C.; McKinney, W.R.

    1998-05-01

    A set of new infrared (IR) beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides considerable brightness advantages, which manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated microspectroscopy beamline, where the much smaller focused spot size using the synchrotron source is utilized. This enables an entirely new set of experiments to be performed where spectroscopy on a truly microscopic scale is now possible. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capabilities. The fast timing is demonstrated by observing the synchrotron electron storage pattern at the ALS