WorldWideScience

Sample records for metric measure spaces

  1. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  2. On the differential structure of metric measure spaces and applications

    CERN Document Server

    Gigli, Nicola

    2015-01-01

    The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like \\Delta g=\\mu, where g is a functi

  3. INFORMATIVE ENERGY METRIC FOR SIMILARITY MEASURE IN REPRODUCING KERNEL HILBERT SPACES

    Directory of Open Access Journals (Sweden)

    Songhua Liu

    2012-02-01

    Full Text Available In this paper, information energy metric (IEM is obtained by similarity computing for high-dimensional samples in a reproducing kernel Hilbert space (RKHS. Firstly, similar/dissimilar subsets and their corresponding informative energy functions are defined. Secondly, IEM is proposed for similarity measure of those subsets, which converts the non-metric distances into metric ones. Finally, applications of this metric is introduced, such as classification problems. Experimental results validate the effectiveness of the proposed method.

  4. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  5. Probabilistic metric spaces

    CERN Document Server

    Schweizer, B

    2005-01-01

    Topics include special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. 1983 edition, updated with 3 new appendixes. Includes 17 illustrations.

  6. Mass Customization Measurements Metrics

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev; Jørgensen, Kaj Asbjørn

    2014-01-01

    A recent survey has indicated that 17 % of companies have ceased mass customizing less than 1 year after initiating the effort. This paper presents measurement for a company’s mass customization performance, utilizing metrics within the three fundamental capabilities: robust process design, choice...... navigation, and solution space development. A mass customizer when assessing performance with these metrics can identify within which areas improvement would increase competitiveness the most and enable more efficient transition to mass customization....

  7. Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces

    Directory of Open Access Journals (Sweden)

    Guanghui Lu

    2016-01-01

    Full Text Available Let (X,d,μ be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel of Mκ⁎ satisfies a certain Hörmander-type condition, Mκ⁎,ρ is bounded from Lebesgue spaces Lp(μ to Lebesgue spaces Lp(μ for p≥2 and is bounded from L1(μ into L1,∞(μ. As a corollary, Mκ⁎,ρ is bounded on Lp(μ for 1space H1(μ into the Lebesgue space L1(μ.

  8. Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

    Directory of Open Access Journals (Sweden)

    Guanghui Lu

    2016-10-01

    Full Text Available Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integral M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel satisfies a certain Hörmander-type condition, the authors prove that M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded from Lebesgue space L 1 ( μ $L^{1}(\\mu$ into the weak Lebesgue space L 1 , ∞ ( μ $L^{1,\\infty}(\\mu$ , from the Lebesgue space L ∞ ( μ $L^{\\infty}(\\mu$ into the space RBLO ( μ $\\operatorname{RBLO}(\\mu$ , and from the atomic Hardy space H 1 ( μ $H^{1}(\\mu$ into the Lebesgue space L 1 ( μ $L^{1}(\\mu$ . Moreover, the authors also get a corollary, that is, M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded on L p ( μ $L^{p}(\\mu$ with 1 < p < ∞ $1< p<\\infty$ .

  9. Two classes of metric spaces

    Directory of Open Access Journals (Sweden)

    Isabel Garrido

    2016-04-01

    Full Text Available The class of metric spaces (X,d known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple metric spaces introduced by Hejcman are defined in terms of some kind of bornologies of bounded subsets of X. In this note we present a common framework where both classes of metric spaces can be studied which allows us to see not only the relationships between them but also to obtain new internal characterizations of these metric properties.

  10. Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Koskela, P.; Zhou, Y.

    2013-01-01

    Roč. 25, č. 4 (2013), s. 787-819 ISSN 0933-7741 R&D Projects: GA ČR GA201/08/0383 Institutional research plan: CEZ:AV0Z10190503 Keywords : Besov space * Triebel-Lizorkin space * Hajłasz-Besov space Subject RIV: BA - General Mathematics Impact factor: 0.733, year: 2013 http://www.degruyter.com/view/j/form.2013.25.issue-4/form.2011.135/form.2011.135. xml ?format=INT

  11. Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Koskela, P.; Zhou, Y.

    2013-01-01

    Roč. 25, č. 4 (2013), s. 787-819 ISSN 0933-7741 R&D Projects: GA ČR GA201/08/0383 Institutional research plan: CEZ:AV0Z10190503 Keywords : Besov space * Triebel-Lizorkin space * Hajłasz-Besov space Subject RIV: BA - General Mathematics Impact factor: 0.733, year: 2013 http://www.degruyter.com/view/j/form.2013.25.issue-4/form.2011.135/form.2011.135.xml?format=INT

  12. Galactically inertial space probes for the direct measurement of the metric expansion of the universe

    International Nuclear Information System (INIS)

    Cagnani, Ivan

    2011-01-01

    Astrometric data from the future GAIA and OBSS missions will allow a more precise calculation of the local galactic circular speed, and better measurements of galactic movements relative to the CMB will be obtained by post-WMAP missions (ie Planck). Contemporary development of high specific impulse electric propulsion systems (ie VASIMIR) will enable the development of space probes able to properly compensate the galactic circular speed as well as the resulting attraction to the centre of our galaxy. The probes would appear immobile to an ideal observer fixed at the centre of the galaxy, in contrast of every other galactic object, which would appear moving according to their local galactic circular speed and their proper motions. Arranging at least three of these galactically static probes in an extended formation and measuring reciprocal distances of the probes over time with large angle laser ranges could allow a direct measurement of the metric expansion of the universe. Free-drifting laser-ranged targets released by the spacecrafts could also be used to measure and compensate solar system's induced local perturbations. For further reducing local effects and increase the accuracy of the results, the distance between the probes should be maximized and the location of the probes should be as far as possible from the Sun and any massive object (ie Jupiter, Saturn). Gravitational waves could also induce random errors but data from GW observatories like the planned LISA could be used to correct them.

  13. Completion of a Dislocated Metric Space

    Directory of Open Access Journals (Sweden)

    P. Sumati Kumari

    2015-01-01

    Full Text Available We provide a construction for the completion of a dislocated metric space (abbreviated d-metric space; we also prove that the completion of the metric associated with a d-metric coincides with the metric associated with the completion of the d-metric.

  14. Experiential space is hardly metric

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal; Lukavský, Jiří

    2008-01-01

    Roč. 2008, č. 37 (2008), s. 58-58 ISSN 0301-0066. [European Conference on Visual Perception. 24.08-28.08.2008, Utrecht] R&D Projects: GA ČR GA406/07/1676 Institutional research plan: CEZ:AV0Z70250504 Keywords : visual space perception * metric and non-metric perceptual judgments * ecological validity Subject RIV: AN - Psychology

  15. Commutators of Littlewood-Paley gκ∗$g_{\\kappa}^{*} $-functions on non-homogeneous metric measure spaces

    Directory of Open Access Journals (Sweden)

    Lu Guanghui

    2017-11-01

    Full Text Available The main purpose of this paper is to prove that the boundedness of the commutator Mκ,b∗$\\mathcal{M}_{\\kappa,b}^{*} $ generated by the Littlewood-Paley operator Mκ∗$\\mathcal{M}_{\\kappa}^{*} $ and RBMO (μ function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of Mκ∗$\\mathcal{M}_{\\kappa}^{*} $ satisfies a certain Hörmander-type condition, the authors prove that Mκ,b∗$\\mathcal{M}_{\\kappa,b}^{*} $ is bounded on Lebesgue spaces Lp(μ for 1 < p < ∞, bounded from the space L log L(μ to the weak Lebesgue space L1,∞(μ, and is bounded from the atomic Hardy spaces H1(μ to the weak Lebesgue spaces L1,∞(μ.

  16. Remarks on G-Metric Spaces

    Directory of Open Access Journals (Sweden)

    Bessem Samet

    2013-01-01

    Full Text Available In 2005, Mustafa and Sims (2006 introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.

  17. The Metric of Colour Space

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2015-01-01

    and found the MacAdam ellipses which are often interpreted as defining the metric tensor at their centres. An important question is whether it is possible to define colour coordinates such that the Euclidean distance in these coordinates correspond to human perception. Using cubic splines to represent......The space of colours is a fascinating space. It is a real vector space, but no matter what inner product you put on the space the resulting Euclidean distance does not correspond to human perception of difference between colours. In 1942 MacAdam performed the first experiments on colour matching...

  18. NASA education briefs for the classroom. Metrics in space

    Science.gov (United States)

    The use of metric measurement in space is summarized for classroom use. Advantages of the metric system over the English measurement system are described. Some common metric units are defined, as are special units for astronomical study. International system unit prefixes and a conversion table of metric/English units are presented. Questions and activities for the classroom are recommended.

  19. Finite Metric Spaces of Strictly negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distance...

  20. Properties of C-metric spaces

    Science.gov (United States)

    Croitoru, Anca; Apreutesei, Gabriela; Mastorakis, Nikos E.

    2017-09-01

    The subject of this paper belongs to the theory of approximate metrics [23]. An approximate metric on X is a real application defined on X × X that satisfies only a part of the metric axioms. In a recent paper [23], we introduced a new type of approximate metric, named C-metric, that is an application which satisfies only two metric axioms: symmetry and triangular inequality. The remarkable fact in a C-metric space is that a topological structure induced by the C-metric can be defined. The innovative idea of this paper is that we obtain some convergence properties of a C-metric space in the absence of a metric. In this paper we investigate C-metric spaces. The paper is divided into four sections. Section 1 is for Introduction. In Section 2 we recall some concepts and preliminary results. In Section 3 we present some properties of C-metric spaces, such as convergence properties, a canonical decomposition and a C-fixed point theorem. Finally, in Section 4 some conclusions are highlighted.

  1. Fixed point theory in metric type spaces

    CERN Document Server

    Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco

    2015-01-01

    Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...

  2. Some observations on a fuzzy metric space

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, V.

    2017-07-01

    Let $(X,d)$ be a metric space. In this paper we provide some observations about the fuzzy metric space in the sense of Kramosil and Michalek $(Y,N,/wedge)$, where $Y$ is the set of non-negative real numbers $[0,/infty[$ and $N(x,y,t)=1$ if $d(x,y)/leq t$ and $N(x,y,t)=0$ if $d(x,y)/geq t$. (Author)

  3. Partial rectangular metric spaces and fixed point theorems.

    Science.gov (United States)

    Shukla, Satish

    2014-01-01

    The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.

  4. Metric space construction for the boundary of space-time

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1986-01-01

    A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples

  5. Strong Statistical Convergence in Probabilistic Metric Spaces

    OpenAIRE

    Şençimen, Celaleddin; Pehlivan, Serpil

    2008-01-01

    In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts.

  6. Metrics in Keplerian orbits quotient spaces

    Science.gov (United States)

    Milanov, Danila V.

    2018-03-01

    Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.

  7. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  8. Contraction theorems in fuzzy metric space

    International Nuclear Information System (INIS)

    Farnoosh, R.; Aghajani, A.; Azhdari, P.

    2009-01-01

    In this paper, the results on fuzzy contractive mapping proposed by Dorel Mihet will be proved for B-contraction and C-contraction in the case of George and Veeramani fuzzy metric space. The existence of fixed point with weaker conditions will be proved; that is, instead of the convergence of subsequence, p-convergence of subsequence is used.

  9. g-Weak Contraction in Ordered Cone Rectangular Metric Spaces

    Directory of Open Access Journals (Sweden)

    S. K. Malhotra

    2013-01-01

    Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.

  10. Another extension of Orlicz-Sobolev spaces to metric spaces

    Directory of Open Access Journals (Sweden)

    Noureddine Aïssaoui

    2004-01-01

    Full Text Available We propose another extension of Orlicz-Sobolev spaces to metric spaces based on the concepts of the Φ-modulus and Φ-capacity. The resulting space NΦ1 is a Banach space. The relationship between NΦ1 and MΦ1 (the first extension defined in Aïssaoui (2002 is studied. We also explore and compare different definitions of capacities and give a criterion under which NΦ1 is strictly smaller than the Orlicz space LΦ.

  11. Modified intuitionistic fuzzy metric spaces and some fixed point theorems

    International Nuclear Information System (INIS)

    Saadati, R.; Sedghi, S.; Shobe, N.

    2008-01-01

    Since the intuitionistic fuzzy metric space has extra conditions (see [Gregori V, Romaguera S, Veereamani P. A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2006;28:902-5]). In this paper, we consider modified intuitionistic fuzzy metric spaces and prove some fixed point theorems in these spaces. All the results presented in this paper are new

  12. A convergence theory for probabilistic metric spaces | Jäger ...

    African Journals Online (AJOL)

    We develop a theory of probabilistic convergence spaces based on Tardiff's neighbourhood systems for probabilistic metric spaces. We show that the resulting category is a topological universe and we characterize a subcategory that is isomorphic to the category of probabilistic metric spaces. Keywords: Probabilistic metric ...

  13. ST-intuitionistic fuzzy metric space with properties

    Science.gov (United States)

    Arora, Sahil; Kumar, Tanuj

    2017-07-01

    In this paper, we define ST-intuitionistic fuzzy metric space and the notion of convergence and completeness properties of cauchy sequences is studied. Further, we prove some properties of ST-intuitionistic fuzzy metric space. Finally, we introduce the concept of symmetric ST Intuitionistic Fuzzy metric space.

  14. The universal connection and metrics on moduli spaces

    International Nuclear Information System (INIS)

    Massamba, Fortune; Thompson, George

    2003-11-01

    We introduce a class of metrics on gauge theoretic moduli spaces. These metrics are made out of the universal matrix that appears in the universal connection construction of M. S. Narasimhan and S. Ramanan. As an example we construct metrics on the c 2 = 1 SU(2) moduli space of instantons on R 4 for various universal matrices. (author)

  15. Probabilistic G-Metric space and some fixed point results

    Directory of Open Access Journals (Sweden)

    A. R. Janfada

    2013-01-01

    Full Text Available In this note we introduce the notions of generalized probabilistic metric spaces and generalized Menger probabilistic metric spaces. After making our elementary observations and proving some basic properties of these spaces, we are going to prove some fixed point result in these spaces.

  16. Chaos of discrete dynamical systems in complete metric spaces

    International Nuclear Information System (INIS)

    Shi Yuming; Chen Guanrong

    2004-01-01

    This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces

  17. Network Community Detection on Metric Space

    Directory of Open Access Journals (Sweden)

    Suman Saha

    2015-08-01

    Full Text Available Community detection in a complex network is an important problem of much interest in recent years. In general, a community detection algorithm chooses an objective function and captures the communities of the network by optimizing the objective function, and then, one uses various heuristics to solve the optimization problem to extract the interesting communities for the user. In this article, we demonstrate the procedure to transform a graph into points of a metric space and develop the methods of community detection with the help of a metric defined for a pair of points. We have also studied and analyzed the community structure of the network therein. The results obtained with our approach are very competitive with most of the well-known algorithms in the literature, and this is justified over the large collection of datasets. On the other hand, it can be observed that time taken by our algorithm is quite less compared to other methods and justifies the theoretical findings.

  18. Light diffuseness metric, part 2 : Describing, measuring and visualizing the light flow and diffuseness in three-dimensional spaces

    NARCIS (Netherlands)

    Xia, L.; Pont, S.C.; Heynderickx, I.E.J.

    2017-01-01

    We introduce a way to simultaneously measure the light density, light vector and diffuseness of the light field using a cubic illumination meter based on the spherical harmonics representation of the light field. This approach was applied to six light probe images of natural scenes and four real

  19. The entire sequence over Musielak p-metric space

    Directory of Open Access Journals (Sweden)

    C. Murugesan

    2016-04-01

    Full Text Available In this paper, we introduce fibonacci numbers of Γ2(F sequence space over p-metric spaces defined by Musielak function and examine some topological properties of the resulting these spaces.

  20. Presic-Boyd-Wong Type Results in Ordered Metric Spaces

    Directory of Open Access Journals (Sweden)

    Satish Shukla

    2014-04-01

    Full Text Available The purpose of this paper is to prove some Presic-Boyd-Wong type fixed point theorems in ordered metric spaces. The results of this paper generalize the famous results of Presic and Boyd-Wong in ordered metric spaces. We also initiate the homotopy result in product spaces. Some examples are provided which illustrate the results proved herein.

  1. Measuring Information Security: Guidelines to Build Metrics

    Science.gov (United States)

    von Faber, Eberhard

    Measuring information security is a genuine interest of security managers. With metrics they can develop their security organization's visibility and standing within the enterprise or public authority as a whole. Organizations using information technology need to use security metrics. Despite the clear demands and advantages, security metrics are often poorly developed or ineffective parameters are collected and analysed. This paper describes best practices for the development of security metrics. First attention is drawn to motivation showing both requirements and benefits. The main body of this paper lists things which need to be observed (characteristic of metrics), things which can be measured (how measurements can be conducted) and steps for the development and implementation of metrics (procedures and planning). Analysis and communication is also key when using security metrics. Examples are also given in order to develop a better understanding. The author wants to resume, continue and develop the discussion about a topic which is or increasingly will be a critical factor of success for any security managers in larger organizations.

  2. Principle of space existence and De Sitter metric

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1990-01-01

    The selection principle for the solutions of the Einstein equations suggested in a series of papers implies the existence of space (g ik ≠ 0) only in the presence of matter (T ik ≠0). This selection principle (principle of space existence, in the Markov terminology) implies, in the general case, the absence of the cosmological solution with the De Sitter metric. On the other hand, the De Sitter metric is necessary for describing both inflation and deflation periods of the Universe. It is shown that the De Sitter metric is also allowed by the selection principle under discussion if the metric experiences the evolution into the Friedmann metric

  3. Measuring Design Metrics In Websites

    OpenAIRE

    Navarro, Emilio; Fitzpatrick, Ronan

    2011-01-01

    The current state of the World Wide Web demands website designs that engage consumers in order to allow them to consume services or generate leads to maximize revenue. This paper describes a software quality factor to measure the success of websites by analyzing web design structure and not relying only on websites traffic data. It is also documents the requirements and architecture to build a software tool that measures criteria for determining Engagibility. A new set of social crit...

  4. Scalar metric fluctuations in space-time matter inflation

    International Nuclear Information System (INIS)

    Anabitarte, Mariano; Bellini, Mauricio

    2006-01-01

    Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: G-bar AB =0, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space-time matter inflation

  5. On the L2-metric of vortex moduli spaces

    NARCIS (Netherlands)

    Baptista, J.M.

    2011-01-01

    We derive general expressions for the Kähler form of the L2-metric in terms of standard 2-forms on vortex moduli spaces. In the case of abelian vortices in gauged linear sigma-models, this allows us to compute explicitly the Kähler class of the L2-metric. As an application we compute the total

  6. A Lagrangian-dependent metric space

    International Nuclear Information System (INIS)

    El-Tahir, A.

    1989-08-01

    A generalized Lagrangian-dependent metric of the static isotropic spacetime is derived. Its behaviour should be governed by imposing physical constraints allowing to avert the pathological features of gravity at the strong field domain. This would restrict the choice of the Lagrangian form. (author). 10 refs

  7. Computing the Gromov hyperbolicity constant of a discrete metric space

    KAUST Repository

    Ismail, Anas

    2012-01-01

    , and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric

  8. On a Theorem of Khan in a Generalized Metric Space

    Directory of Open Access Journals (Sweden)

    Jamshaid Ahmad

    2013-01-01

    Full Text Available Existence and uniqueness of fixed points are established for a mapping satisfying a contractive condition involving a rational expression on a generalized metric space. Several particular cases and applications as well as some illustrative examples are given.

  9. Tripled Fixed Point in Ordered Multiplicative Metric Spaces

    Directory of Open Access Journals (Sweden)

    Laishram Shanjit

    2017-06-01

    Full Text Available In this paper, we present some triple fixed point theorems in partially ordered multiplicative metric spaces depended on another function. Our results generalise the results of [6] and [5].

  10. New fixed and periodic point results on cone metric spaces

    Directory of Open Access Journals (Sweden)

    Ghasem Soleimani Rad

    2014-05-01

    Full Text Available In this paper, several xed point theorems for T-contraction of two maps on cone metric spaces under normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.

  11. Reconstructing an economic space from a market metric

    OpenAIRE

    Mendes, R. Vilela; Araújo, Tanya; Louçã, Francisco

    2002-01-01

    Using a metric related to the returns correlation, a method is proposed to reconstruct an economic space from the market data. A reduced subspace, associated to the systematic structure of the market, is identified and its dimension related to the number of terms in factor models. Example were worked out involving sets of companies from the DJIA and S&P500 indexes. Having a metric defined in the space of companies, network topology coefficients may be used to extract further information from ...

  12. Second order elastic metrics on the shape space of curves

    DEFF Research Database (Denmark)

    Bauer, Martin; Bruveris, Martins; Harms, Philipp

    2015-01-01

    Second order Sobolev metrics on the space of regular unparametrized planar curves have several desirable completeness properties not present in lower order metrics, but numerics are still largely missing. In this paper, we present algorithms to numerically solve the initial and boundary value......, due to its generality, it could be applied to more general spaces of mapping. We demonstrate the effectiveness of our approach by analyzing a collection of shapes representing physical objects....

  13. Intuitionistic fuzzy 2-metric space and its completion

    International Nuclear Information System (INIS)

    Mursaleen, M.; Lohani, Q.M. Danish; Mohiuddine, S.A.

    2009-01-01

    Recently, Mursaleen and Lohani [Mursaleen M, Lohani Danish. Intuitionistic fuzzy 2-normed space and some related concepts. Chaos, Solitons and Fractals (2008), doi:10.1016/j.chaos.2008.11.006] have introduced the concept of intuitionistic fuzzy 2-normed space. In this paper, we introduce the concept of intuitionistic fuzzy 2-metric space and study its completion.

  14. On the space dimensionality based on metrics

    International Nuclear Information System (INIS)

    Gorelik, G.E.

    1978-01-01

    A new approach to space time dimensionality is suggested, which permits to take into account the possibility of altering dimensionality depending on the phenomenon scale. An attempt is made to give the definition of dimensionality, equivalent to a conventional definition for the Euclidean space and variety. The conventional definition of variety dimensionality is connected with the possibility of homeomorphic reflection of the Euclidean space on some region of each variety point

  15. Best Proximity Point Results in Complex Valued Metric Spaces

    Directory of Open Access Journals (Sweden)

    Binayak S. Choudhury

    2014-01-01

    complex valued metric spaces. We treat the problem as that of finding the global optimal solution of a fixed point equation although the exact solution does not in general exist. We also define and use the concept of P-property in such spaces. Our results are illustrated with examples.

  16. Finite Metric Spaces of Strictly Negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul; Lisonek, P.; Markvorsen, Steen

    1998-01-01

    of Euclidean spaces. We prove that, if the distance matrix is both hypermetric and regular, then it is of strictly negative type. We show that the strictly negative type finite subspaces of spheres are precisely those which do not contain two pairs of antipodal points. In connection with an open problem raised...

  17. Convexity and the Euclidean Metric of Space-Time

    Directory of Open Access Journals (Sweden)

    Nikolaos Kalogeropoulos

    2017-02-01

    Full Text Available We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point out the potential physical significance that functional analytical dualities play in this framework. Following the spirit of the variational principles employed in classical and quantum Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of space-time is induced by the inner product of such Hilbert spaces.

  18. Classification of locally 2-connected compact metric spaces

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2005-01-01

    The aim of this paper is to prove that, for compact metric spaces which do not contain infinite complete graphs, the (strong) property of being "locally 2-dimensional" is guaranteed just by a (weak) local connectivity condition. Specifically, we prove that a locally 2-connected, compact metric sp...... space M either contains an infinite complete graph or is surface like in the following sense: There exists a unique surface S such that S and M. contain the same finite graphs. Moreover, M is embeddable in S, that is, M is homeomorphic to a subset of S....

  19. On metric structure of ultrametric spaces

    International Nuclear Information System (INIS)

    Nechaev, S K; Vasilyev, O A

    2004-01-01

    In our work we have reconsidered the old problem of diffusion at the boundary of an ultrametric tree from a 'number theoretic' point of view. Namely, we use the modular functions (in particular, the Dedekind η-function) to construct the 'continuous' analogue of the Cayley tree isometrically embedded in the Poincare upper half-plane. Later we work with this continuous Cayley tree as with a standard function of a complex variable. In the framework of our approach, the results of Ogielsky and Stein on dynamics in ultrametric spaces are reproduced semi-analytically or semi-numerically. The speculation on the new 'geometrical' interpretation of replica n → 0 limit is proposed

  20. Real variables with basic metric space topology

    CERN Document Server

    Ash, Robert B

    2009-01-01

    Designed for a first course in real variables, this text presents the fundamentals for more advanced mathematical work, particularly in the areas of complex variables, measure theory, differential equations, functional analysis, and probability. Geared toward advanced undergraduate and graduate students of mathematics, it is also appropriate for students of engineering, physics, and economics who seek an understanding of real analysis.The author encourages an intuitive approach to problem solving and offers concrete examples, diagrams, and geometric or physical interpretations of results. Deta

  1. Computing the Gromov hyperbolicity of a discrete metric space

    KAUST Repository

    Fournier, Hervé ; Ismail, Anas; Vigneron, Antoine E.

    2015-01-01

    We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using

  2. Metrics of a 'mole hole' against the Lobachevsky space background

    International Nuclear Information System (INIS)

    Tentyukov, M.N.

    1994-01-01

    'Classical' mole hole are the Euclidean metrics consisting of two large space regions connected by a throat. They are the instanton solutions of the Einstein equations. It is shown that for existence of mole holes in the general relativity theory it is required the energy-momentum tensor breaking energetic conditions. 9 refs., 7 figs

  3. Fixed points for weak contractions in metric type spaces

    OpenAIRE

    Gaba, Yaé Ulrich

    2014-01-01

    In this article, we prove some fixed point theorems in metric type spaces. This article is just a generalization some results previously proved in \\cite{niyi-gaba}. In particular, we give some coupled common fixed points theorems under weak contractions. These results extend well known similar results existing in the literature.

  4. On planarity of compact, locally connected, metric spaces

    DEFF Research Database (Denmark)

    Richter, R. Bruce; Rooney, Brendan; Thomassen, Carsten

    2011-01-01

    Independently, Claytor [Ann. Math. 35 (1934), 809–835] and Thomassen [Combinatorica 24 (2004), 699–718] proved that a 2-connected, compact, locally connected metric space is homeomorphic to a subset of the sphere if and only if it does not contain K 5 or K 3;3. The “thumbtack space” consisting of...

  5. Killing vectors in empty space algebraically special metrics. II

    International Nuclear Information System (INIS)

    Held, A.

    1976-01-01

    Empty space algebraically special metrics possessing an expanding degenerate principal null vector and Killing vectors are investigated. Attention is centered on that class of Killing vector (called nonpreferred) which is necessarily spacelike in the asymptotic region. A detailed analysis of the relationship between the Petrov--Penrose classification and these Killing vectors is carried out

  6. Open Problem: Kernel methods on manifolds and metric spaces

    DEFF Research Database (Denmark)

    Feragen, Aasa; Hauberg, Søren

    2016-01-01

    Radial kernels are well-suited for machine learning over general geodesic metric spaces, where pairwise distances are often the only computable quantity available. We have recently shown that geodesic exponential kernels are only positive definite for all bandwidths when the input space has strong...... linear properties. This negative result hints that radial kernel are perhaps not suitable over geodesic metric spaces after all. Here, however, we present evidence that large intervals of bandwidths exist where geodesic exponential kernels have high probability of being positive definite over finite...... datasets, while still having significant predictive power. From this we formulate conjectures on the probability of a positive definite kernel matrix for a finite random sample, depending on the geometry of the data space and the spread of the sample....

  7. Quantum metric spaces as a model for pregeometry

    International Nuclear Information System (INIS)

    Alvarez, E.; Cespedes, J.; Verdaguer, E.

    1992-01-01

    A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold

  8. Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems

    Directory of Open Access Journals (Sweden)

    Radenović Stojan

    2010-01-01

    Full Text Available We develop the theory of topological vector space valued cone metric spaces with nonnormal cones. We prove three general fixed point results in these spaces and deduce as corollaries several extensions of theorems about fixed points and common fixed points, known from the theory of (normed-valued cone metric spaces. Examples are given to distinguish our results from the known ones.

  9. Economic Metrics for Commercial Reusable Space Transportation Systems

    Science.gov (United States)

    Shaw, Eric J.; Hamaker, Joseph (Technical Monitor)

    2000-01-01

    The success of any effort depends upon the effective initial definition of its purpose, in terms of the needs to be satisfied and the goals to be fulfilled. If the desired product is "A System" that is well-characterized, these high-level need and goal statements can be transformed into system requirements by traditional systems engineering techniques. The satisfaction of well-designed requirements can be tracked by fairly straightforward cost, schedule, and technical performance metrics. Unfortunately, some types of efforts, including those that NASA terms "Programs," tend to resist application of traditional systems engineering practices. In the NASA hierarchy of efforts, a "Program" is often an ongoing effort with broad, high-level goals and objectives. A NASA "project" is a finite effort, in terms of budget and schedule, that usually produces or involves one System. Programs usually contain more than one project and thus more than one System. Special care must be taken in the formulation of NASA Programs and their projects, to ensure that lower-level project requirements are traceable to top-level Program goals, feasible with the given cost and schedule constraints, and measurable against top-level goals. NASA Programs and projects are tasked to identify the advancement of technology as an explicit goal, which introduces more complicating factors. The justification for funding of technology development may be based on the technology's applicability to more than one System, Systems outside that Program or even external to NASA. Application of systems engineering to broad-based technology development, leading to effective measurement of the benefits, can be valid, but it requires that potential beneficiary Systems be organized into a hierarchical structure, creating a "system of Systems." In addition, these Systems evolve with the successful application of the technology, which creates the necessity for evolution of the benefit metrics to reflect the changing

  10. Absolutely minimal extensions of functions on metric spaces

    International Nuclear Information System (INIS)

    Milman, V A

    1999-01-01

    Extensions of a real-valued function from the boundary ∂X 0 of an open subset X 0 of a metric space (X,d) to X 0 are discussed. For the broad class of initial data coming under discussion (linearly bounded functions) locally Lipschitz extensions to X 0 that preserve localized moduli of continuity are constructed. In the set of these extensions an absolutely minimal extension is selected, which was considered before by Aronsson for Lipschitz initial functions in the case X 0 subset of R n . An absolutely minimal extension can be regarded as an ∞-harmonic function, that is, a limit of p-harmonic functions as p→+∞. The proof of the existence of absolutely minimal extensions in a metric space with intrinsic metric is carried out by the Perron method. To this end, ∞-subharmonic, ∞-superharmonic, and ∞-harmonic functions on a metric space are defined and their properties are established

  11. Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition

    International Nuclear Information System (INIS)

    Jesic, Sinisa N.; Babacev, Natasa A.

    2008-01-01

    The purpose of this paper is to prove some common fixed point theorems for a pair of R-weakly commuting mappings defined on intuitionistic fuzzy metric spaces [Park JH. Intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2004;22:1039-46] and L-fuzzy metric spaces [Saadati R, Razani A, Adibi H. A common fixed point theorem in L-fuzzy metric spaces. Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.01.023], with nonlinear contractive condition, defined with function, first observed by Boyd and Wong [Boyd DW, Wong JSW. On nonlinear contractions. Proc Am Math Soc 1969;20:458-64]. Following Pant [Pant RP. Common fixed points of noncommuting mappings. J Math Anal Appl 1994;188:436-40] we define R-weak commutativity for a pair of mappings and then prove the main results. These results generalize some known results due to Saadati et al., and Jungck [Jungck G. Commuting maps and fixed points. Am Math Mon 1976;83:261-3]. Some examples and comments according to the preceding results are given

  12. The metric and curvature properties of H-space

    International Nuclear Information System (INIS)

    Hansen, R.O.; Newman, E.T.; Penrose, R.; Tod, K.P.

    1978-01-01

    The space H of asymptotically (left-) shear-free cuts of the future null infinity (good cuts) of an asymptotically flat space-time M is defined. The connection between this space and the asymptotic projective twistor space of M is discussed, and this relation is used to prove that H is four-complex-dimensional for sufficiently 'calm' gravitational radiation in M. The metric on H-space is defined by a simple contour integral expression and is found to be complex Riemannian. The good cut equation governing H-space is solved to three orders by a Taylor series and the solution is used to demonstrate that the curvature of H-space is always a self dual (left flat) solution of the Einstein vacuum equations. (author)

  13. Algorithms for Planar Graphs and Graphs in Metric Spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...

  14. A primer on Hilbert space theory linear spaces, topological spaces, metric spaces, normed spaces, and topological groups

    CERN Document Server

    Alabiso, Carlo

    2015-01-01

    This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...

  15. Restrictive metric regularity and generalized differential calculus in Banach spaces

    Directory of Open Access Journals (Sweden)

    Bingwu Wang

    2004-10-01

    Full Text Available We consider nonlinear mappings f:X→Y between Banach spaces and study the notion of restrictive metric regularity of f around some point x¯, that is, metric regularity of f from X into the metric space E=f(X. Some sufficient as well as necessary and sufficient conditions for restrictive metric regularity are obtained, which particularly include an extension of the classical Lyusternik-Graves theorem in the case when f is strictly differentiable at x¯ but its strict derivative ∇f(x¯ is not surjective. We develop applications of the results obtained and some other techniques in variational analysis to generalized differential calculus involving normal cones to nonsmooth and nonconvex sets, coderivatives of set-valued mappings, as well as first-order and second-order subdifferentials of extended real-valued functions.

  16. Computing the Gromov hyperbolicity constant of a discrete metric space

    KAUST Repository

    Ismail, Anas

    2012-07-01

    Although it was invented by Mikhail Gromov, in 1987, to describe some family of groups[1], the notion of Gromov hyperbolicity has many applications and interpretations in different fields. It has applications in Biology, Networking, Graph Theory, and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric space is the brute force algorithm with running time O (n4) using the four-point condition. In this thesis, we first introduce an approximation algorithm which calculates a O (log n)-approximation of the hyperbolicity constant δ, based on a layering approach, in time O(n2), where n is the number of points in the metric space. We also calculate the fixed base point hyperbolicity constant δr for a fixed point r using a (max, min)−matrix multiplication algorithm by Duan in time O(n2.688)[2]. We use this result to present a 2-approximation algorithm for calculating the hyper-bolicity constant in time O(n2.688). We also provide an exact algorithm to compute the hyperbolicity constant δ in time O(n3.688) for a discrete metric space. We then present some partial results we obtained for designing some approximation algorithms to compute the hyperbolicity constant δ.

  17. Fixed Points of Multivalued Contractive Mappings in Partial Metric Spaces

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Khan

    2014-01-01

    Full Text Available The aim of this paper is to present fixed point results of multivalued mappings in the framework of partial metric spaces. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature. As an application of our main result, the existence and uniqueness of bounded solution of functional equations arising in dynamic programming are established.

  18. Some Extensions of Banach's Contraction Principle in Complete Cone Metric Spaces

    Directory of Open Access Journals (Sweden)

    Raja P

    2008-01-01

    Full Text Available Abstract In this paper we consider complete cone metric spaces. We generalize some definitions such as -nonexpansive and -uniformly locally contractive functions -closure, -isometric in cone metric spaces, and certain fixed point theorems will be proved in those spaces. Among other results, we prove some interesting applications for the fixed point theorems in cone metric spaces.

  19. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  20. Fixed Point in Topological Vector Space-Valued Cone Metric Spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Arshad

    2010-01-01

    Full Text Available We obtain common fixed points of a pair of mappings satisfying a generalized contractive type condition in TVS-valued cone metric spaces. Our results generalize some well-known recent results in the literature.

  1. Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control

    Directory of Open Access Journals (Sweden)

    Paul Watts

    2013-05-01

    Full Text Available We derive expressions for the invariant length element and measure for the simple compact Lie group SU(4 in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than 84% of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.

  2. Fixed point theorems for generalized α -β-weakly contraction mappings in metric spaces and applications.

    Science.gov (United States)

    Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol

    2014-01-01

    We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.

  3. 22 CFR 226.15 - Metric system of measurement.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Metric system of measurement. 226.15 Section 226.15 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Pre-award Requirements § 226.15 Metric system of measurement. (a...

  4. 20 CFR 435.15 - Metric system of measurement.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Metric system of measurement. 435.15 Section 435.15 Employees' Benefits SOCIAL SECURITY ADMINISTRATION UNIFORM ADMINISTRATIVE REQUIREMENTS FOR... metric system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  5. Fixed point theorems in complex valued metric spaces

    Directory of Open Access Journals (Sweden)

    Naval Singh

    2016-07-01

    Full Text Available The aim of this paper is to establish and prove several results on common fixed point for a pair of mappings satisfying more general contraction conditions portrayed by rational expressions having point-dependent control functions as coefficients in complex valued metric spaces. Our results generalize and extend the results of Azam et al. (2011 [1], Sintunavarat and Kumam (2012 [2], Rouzkard and Imdad (2012 [3], Sitthikul and Saejung (2012 [4] and Dass and Gupta (1975 [5]. To substantiate the authenticity of our results and to distinguish them from existing ones, some illustrative examples are also furnished.

  6. Some Nonunique Fixed Point Theorems of Ćirić Type on Cone Metric Spaces

    Directory of Open Access Journals (Sweden)

    Erdal Karapınar

    2010-01-01

    Full Text Available Some results of (Ćirić, 1974 on a nonunique fixed point theorem on the class of metric spaces are extended to the class of cone metric spaces. Namely, nonunique fixed point theorem is proved in orbitally complete cone metric spaces under the assumption that the cone is strongly minihedral. Regarding the scalar weight of cone metric, we are able to remove the assumption of strongly minihedral.

  7. Path integral measure for first-order and metric gravities

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio; Zanelli, Jorge

    2003-01-01

    The equivalence between the path integrals for first-order gravity and the standard torsion-free, metric gravity in 3 + 1 dimensions is analysed. Starting with the path integral for first-order gravity, the correct measure for the path integral of the metric theory is obtained

  8. Measurable Control System Security through Ideal Driven Technical Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based

  9. Exact moduli space metrics for hyperbolic vortex polygons

    International Nuclear Information System (INIS)

    Krusch, S.; Speight, J. M.

    2010-01-01

    Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as Σ n,m , are spaces of C n -invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of Σ n,m are investigated, and it is found that Σ n,n-1 is isometric to the hyperbolic plane of curvature -(3πn) -1 . The geodesic flow on Σ n,m and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys. Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.

  10. Fixed Points of α-Admissible Mappings in Cone Metric Spaces with Banach Algebra

    Directory of Open Access Journals (Sweden)

    S.K. Malhotra

    2015-11-01

    Full Text Available In this paper, we introduce the $\\alpha$-admissible mappings in the setting of cone metric spaces equipped with Banach algebra and solid cones. Our results generalize and extend several known results of metric and cone metric spaces. An example is presented which illustrates and shows the significance of results proved herein.

  11. Computing the Gromov hyperbolicity of a discrete metric space

    KAUST Repository

    Fournier, Hervé

    2015-02-12

    We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using the (max,min) matrix product algorithm by Duan and Pettie, the fixed base-point hyperbolicity can be determined in O(n2.69) time. It follows that the Gromov hyperbolicity can be computed in O(n3.69) time, and a 2-approximation can be found in O(n2.69) time. We also give a (2log2⁡n)-approximation algorithm that runs in O(n2) time, based on a tree-metric embedding by Gromov. We also show that hyperbolicity at a fixed base-point cannot be computed in O(n2.05) time, unless there exists a faster algorithm for (max,min) matrix multiplication than currently known.

  12. The information metric on the moduli space of instantons with global symmetries

    Directory of Open Access Journals (Sweden)

    Emanuel Malek

    2016-02-01

    Full Text Available In this note we revisit Hitchin's prescription [1] of the Fisher metric as a natural measure on the moduli space of instantons that encodes the space–time symmetries of a classical field theory. Motivated by the idea of the moduli space of supersymmetric instantons as an emergent space in the sense of the gauge/gravity duality, we extend the prescription to encode also global symmetries of the underlying theory. We exemplify our construction with the instanton solution of the CPN sigma model on R2.

  13. Measures of agreement between computation and experiment:validation metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Oberkampf, William Louis

    2005-08-01

    With the increasing role of computational modeling in engineering design, performance estimation, and safety assessment, improved methods are needed for comparing computational results and experimental measurements. Traditional methods of graphically comparing computational and experimental results, though valuable, are essentially qualitative. Computable measures are needed that can quantitatively compare computational and experimental results over a range of input, or control, variables and sharpen assessment of computational accuracy. This type of measure has been recently referred to as a validation metric. We discuss various features that we believe should be incorporated in a validation metric and also features that should be excluded. We develop a new validation metric that is based on the statistical concept of confidence intervals. Using this fundamental concept, we construct two specific metrics: one that requires interpolation of experimental data and one that requires regression (curve fitting) of experimental data. We apply the metrics to three example problems: thermal decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and compressibility effects on the growth rate of a turbulent free-shear layer. We discuss how the present metrics are easily interpretable for assessing computational model accuracy, as well as the impact of experimental measurement uncertainty on the accuracy assessment.

  14. The extension of quadrupled xed point results in K-metric spaces

    Directory of Open Access Journals (Sweden)

    Ghasem Soleimani Rad

    2014-05-01

    Full Text Available Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] dened the conceptof quadrupled xed point in K-metric spaces and proved several quadrupled  xed point theorems for solid cones on K-metric spaces. In this paper some quadrupled xed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.

  15. Pre-Metric Spaces Along with Different Types of Triangle Inequalities

    Directory of Open Access Journals (Sweden)

    Hsien-Chung Wu

    2018-05-01

    Full Text Available The T 1 -spaces induced by the pre-metric spaces along with many forms of triangle inequalities are investigated in this paper. The limits in pre-metric spaces are also studied to demonstrate the consistency of limit concept in the induced topologies.

  16. Cognition in Space Workshop. 1; Metrics and Models

    Science.gov (United States)

    Woolford, Barbara; Fielder, Edna

    2005-01-01

    "Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.

  17. A Numerical Framework for Sobolev Metrics on the Space of Curves

    DEFF Research Database (Denmark)

    Bauer, Martin; Bruveris, Martins; Harms, Philipp

    2017-01-01

    Statistical shape analysis can be done in a Riemannian framework by endowing the set of shapes with a Riemannian metric. Sobolev metrics of order two and higher on shape spaces of parametrized or unparametrized curves have several desirable properties not present in lower order metrics...

  18. Fixed Point Theorems for Generalized α-β-Weakly Contraction Mappings in Metric Spaces and Applications

    Directory of Open Access Journals (Sweden)

    Abdul Latif

    2014-01-01

    Full Text Available We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011 to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.

  19. The canonical partial metric and the uniform convexity on normed spaces

    Directory of Open Access Journals (Sweden)

    S. Oltra

    2005-10-01

    Full Text Available In this paper we introduce the notion of canonical partial metric associated to a norm to study geometric properties of normed spaces. In particular, we characterize strict convexity and uniform convexity of normed spaces in terms of the canonical partial metric defined by its norm. We prove that these geometric properties can be considered, in this sense, as topological properties that appear when we compare the natural metric topology of the space with the non translation invariant topology induced by the canonical partial metric in the normed space.

  20. Measurement of vertical stability metrics in KSTAR

    Science.gov (United States)

    Hahn, Sang-Hee; Humphreys, D. A.; Mueller, D.; Bak, J. G.; Eidietis, N. W.; Kim, H.-S.; Ko, J. S.; Walker, M. L.; Kstar Team

    2017-10-01

    The paper summarizes results of multi-year ITPA experiments regarding measurement of the vertical stabilization capability of KSTAR discharges, including most recent measurements at the highest achievable elongation (κ 2.0 - 2.1). The measurements of the open-loop growth rate of VDE (γz) and the maximum controllable vertical displacement (ΔZmax) are done by the release-and-catch method. The dynamics of the vertical movement of the plasma is verified by both relevant magnetic reconstructions and non-magnetic diagnostics. The measurements of γz and ΔZmax were done for different plasma currents, βp, internal inductances, elongations and different configurations of the vessel conductors that surround the plasma as the first wall. Effects of control design choice and diagnostics noise are discussed, and comparison with the axisymmetric plasma response model is given for partial accounting for the measured control capability. This work supported by Ministry of Science, ICT, and Future Planning under KSTAR project.

  1. Simple model of variation of the signature of a space-time metric

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    2004-01-01

    The problem on the changes in the space-time signature metrics is discussed. The simple model, wherein the space-time metrics signature is determined by the nonlinear scalar field, is proposed. It is shown that both classical and quantum description of changes in the metrics signature is possible within the frames of the considered model; the most characteristic peculiarities and variations of the classical and quantum descriptions are also briefly noted [ru

  2. Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces

    International Nuclear Information System (INIS)

    Cho, Yeol Je; Sedghi, Shaban; Shobe, Nabi

    2009-01-01

    In this paper, we give some new definitions of compatible mappings of types (I) and (II) in fuzzy metric spaces and prove some common fixed point theorems for four mappings under the condition of compatible mappings of types (I) and (II) in complete fuzzy metric spaces. Our results extend, generalize and improve the corresponding results given by many authors.

  3. A family of metrics on the moduli space of CP2 instantons

    International Nuclear Information System (INIS)

    Habermann, L.

    1992-01-01

    A family of Riemannian metrics on the moduli space of irreducible self-dual connections of instanton number k=1 over CP 2 is considered. We find explicit formulas for these metrics and deduce conclusions concerning the geometry of the instant space. (orig.)

  4. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a ¡§universal¡¨ or ¡§best¡¨ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  5. 41 CFR 105-72.205 - Metric system of measurement.

    Science.gov (United States)

    2010-07-01

    ... Management Regulations System (Continued) GENERAL SERVICES ADMINISTRATION Regional Offices-General Services Administration 72-UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER... system of measurement. The Metric Conversion Act, as amended by the Omnibus Trade and Competitiveness Act...

  6. Metrics for measuring net-centric data strategy implementation

    Science.gov (United States)

    Kroculick, Joseph B.

    2010-04-01

    An enterprise data strategy outlines an organization's vision and objectives for improved collection and use of data. We propose generic metrics and quantifiable measures for each of the DoD Net-Centric Data Strategy (NCDS) data goals. Data strategy metrics can be adapted to the business processes of an enterprise and the needs of stakeholders in leveraging the organization's data assets to provide for more effective decision making. Generic metrics are applied to a specific application where logistics supply and transportation data is integrated across multiple functional groups. A dashboard presents a multidimensional view of the current progress to a state where logistics data shared in a timely and seamless manner among users, applications, and systems.

  7. A fixed point theorem for uniformly locally contractive mappings in a C-chainable cone rectangular metric space

    Directory of Open Access Journals (Sweden)

    Bessem Samet

    2011-09-01

    Full Text Available Recently, Azam, Arshad and Beg [ Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 2009] introduced the notion of cone rectangular metric spaces by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we introduce the notion of c-chainable cone rectangular metric space and we establish a fixed point theorem for uniformly locally contractive mappings in such spaces. An example is given to illustrate our obtained result.

  8. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-04-01

    Full Text Available It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric [1], and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy’s spiraling motion and redshift data as these have been done by Carmeli and Hartnett [4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  9. Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces

    Directory of Open Access Journals (Sweden)

    Sunny Chauhan

    2013-05-01

    Full Text Available The aim of this paper is to prove a common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space by using the (CLRg property. An example is also furnished which demonstrates the validity of our main result. As an application to our main result, we present a fixed point theorem for two finite families of self mappings in fuzzy metric space by using the notion of pairwise commuting. Our results improve the results of Sedghi, Shobe and Aliouche [A common fixed point theorem for weakly compatible mappings in fuzzy metric spaces, Gen. Math. 18(3 (2010, 3-12 MR2735558].

  10. A common fixed point theorem for weakly compatible mappings in Menger probabilistic quasi metric space

    Directory of Open Access Journals (Sweden)

    Badridatt Pant

    2014-02-01

    Full Text Available In this paper, we prove a common fixed point theorem for finite number of self mappings in Menger probabilistic quasi metric space. Our result improves and extends the results of Rezaiyan et al. [A common fixed point theorem in Menger probabilistic quasi-metric spaces, Chaos, Solitons and Fractals 37 (2008 1153-1157.], Miheţ [A note on a fixed point theorem in Menger probabilistic quasi-metric spaces, Chaos, Solitons and Fractals 40 (2009 2349-2352], Pant and Chauhan [Fixed points theorems in Menger probabilistic quasi metric spaces using weak compatibility, Internat. Math. Forum 5 (6 (2010 283-290] and Sastry et al. [A fixed point theorem in Menger PQM-spaces using weak compatibility, Internat. Math. Forum 5 (52 (2010 2563-2568

  11. Computing Best and Worst Shortcuts of Graphs Embedded in Metric Spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian; Luo, Jun

    2008-01-01

    Given a graph embedded in a metric space, its dilation is the maximum over all distinct pairs of vertices of the ratio between their distance in the graph and the metric distance between them. Given such a graph G with n vertices and m edges and consisting of at most two connected components, we ...

  12. Common fixed points for generalized contractive mappings in cone metric spaces

    Directory of Open Access Journals (Sweden)

    Hassen Aydi

    2012-06-01

    Full Text Available The purpose of this paper is to establish coincidence point and common fixed point results for four maps satisfying generalized weak contractions in cone metric spaces. Also, an example is given to illustrate our results.

  13. Some common random fixed point theorems for contractive type conditions in cone random metric spaces

    Directory of Open Access Journals (Sweden)

    Saluja Gurucharan S.

    2016-08-01

    Full Text Available In this paper, we establish some common random fixed point theorems for contractive type conditions in the setting of cone random metric spaces. Our results unify, extend and generalize many known results from the current existing literature.

  14. On reflexivity of random walks in a random environment on a metric space

    International Nuclear Information System (INIS)

    Rozikov, U.A.

    2002-11-01

    In this paper, we consider random walks in random environments on a countable metric space when jumps of the walks of the fractions are finite. The transfer probabilities of the random walk from x is an element of G (where G is the considering metric space) are defined by vector p(x) is an element of R k , k>1, where {p(x), x is an element of G} is the set of independent and indentically distributed random vectors. For the random walk, a sufficient condition of nonreflexivity is obtained. Examples for metric spaces Z d free groups and free product of finite numbers cyclic groups of the second order and some other metric spaces are considered. (author)

  15. Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity

    Science.gov (United States)

    Bengtsson, Ingemar

    Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.

  16. Metric and topology on a non-standard real line and non-standard space-time

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1981-04-01

    We study metric and topological properties of extended real line R* and compare it with the non-standard model of real line *R. We show that some properties, like triangular inequality, cannot be carried over R* from R. This confirms F. Wattenberg's result for measure theory on Dedekind completion of *R. Based on conclusions from these results we propose a non-standard model of space-time. This space-time is without undefined objects like singularities. (author)

  17. Measuring the user experience collecting, analyzing, and presenting usability metrics

    CERN Document Server

    Tullis, Thomas

    2013-01-01

    Measuring the User Experience was the first book that focused on how to quantify the user experience. Now in the second edition, the authors include new material on how recent technologies have made it easier and more effective to collect a broader range of data about the user experience. As more UX and web professionals need to justify their design decisions with solid, reliable data, Measuring the User Experience provides the quantitative analysis training that these professionals need. The second edition presents new metrics such as emotional engagement, personas, k

  18. Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space.

    Science.gov (United States)

    Gahm, Jin Kyu; Shi, Yonggang

    2018-05-01

    Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Metrical connection in space-time, Newton's and Hubble's laws

    International Nuclear Information System (INIS)

    Maeder, A.

    1978-01-01

    The theory of gravitation in general relativity is not scale invariant. Here, we follow Dirac's proposition of a scale invariant theory of gravitation (i.e. a theory in which the equations keep their form when a transformation of scale is made). We examine some concepts of Weyl's geometry, like the metrical connection, the scale transformations and invariance, and we discuss their consequences for the equation of the geodetic motion and for its Newtonian limit. Under general conditions, we show that the only non-vanishing component of the coefficient of metrical connection may be identified with Hubble's constant. In this framework, the equivalent to the Newtonian approximation for the equation of motion contains an additional acceleration term Hdr vector /dt, which produces an expansion of gravitational systems. The velocity of this expansion is shown to increase linearly with the distance between interacting objects. The relative importance of this new expansion term to the Newtonian one varies like (2rhosub(c)/rho)sup(1/2), where rhosub(c) is the critical density of the Einsteinde Sitter model and rho is the mean density of the considered gravitational configuration. Thus, this 'generalized expansion' is important essentially for systems of mean density not too much above the critical density. Finally, our main conclusion is that in the integrable Weyl geometry, Hubble's law - like Newton's law - would appear as an intrinsic property of gravitation, being only the most visible manifestation of a general effect characterizing the gravitational interaction. (orig.) [de

  20. Topological properties of function spaces $C_k(X,2)$ over zero-dimensional metric spaces $X$

    OpenAIRE

    Gabriyelyan, S.

    2015-01-01

    Let $X$ be a zero-dimensional metric space and $X'$ its derived set. We prove the following assertions: (1) the space $C_k(X,2)$ is an Ascoli space iff $C_k(X,2)$ is $k_\\mathbb{R}$-space iff either $X$ is locally compact or $X$ is not locally compact but $X'$ is compact, (2) $C_k(X,2)$ is a $k$-space iff either $X$ is a topological sum of a Polish locally compact space and a discrete space or $X$ is not locally compact but $X'$ is compact, (3) $C_k(X,2)$ is a sequential space iff $X$ is a Pol...

  1. Geometric approach to evolution problems in metric spaces

    NARCIS (Netherlands)

    Stojković, Igor

    2011-01-01

    This PhD thesis contains four chapters where research material is presented. In the second chapter the extension of the product formulas for semigroups induced by convex functionals, from the classical Hilbert space setting to the setting of general CAT(0) spaces. In the third chapter, the

  2. 43 CFR 12.915 - Metric system of measurement.

    Science.gov (United States)

    2010-10-01

    ... procurements, grants, and other business-related activities. Metric implementation may take longer where the... recipient, such as when foreign competitors are producing competing products in non-metric units. (End of...

  3. An Introduction to the SI Metric System. Inservice Guide for Teaching Measurement, Kindergarten Through Grade Eight.

    Science.gov (United States)

    California State Dept. of Education, Sacramento.

    This handbook was designed to serve as a reference for teacher workshops that: (1) introduce the metric system and help teachers gain confidence with metric measurement, and (2) develop classroom measurement activities. One chapter presents the history and basic features of SI metrics. A second chapter presents a model for the measurement program.…

  4. The locally connected compact metric spaces embeddable in the plane

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2004-01-01

    We prove that a 2-connected, locally connected, compact topological space M is homeomorphic to a subset of the 2-sphere if and only if M is metrizable and contains none of the Kuratowski graphs K-5 and K-3,K-3.......We prove that a 2-connected, locally connected, compact topological space M is homeomorphic to a subset of the 2-sphere if and only if M is metrizable and contains none of the Kuratowski graphs K-5 and K-3,K-3....

  5. Measurement of joint space width and erosion size

    NARCIS (Netherlands)

    Sharp, JI; van der Heijde, D; Angwin, J; Duryea, J; Moens, HJB; Jacobs, JWG; Maillefert, JF; Strand, CV

    2005-01-01

    Measurement of radiographic abnormalities in metric units has been reported by several investigators during the last 15 years. Measurement of joint space in large joints has been employed in a few trials to evaluate therapy in osteoarthritis. Measurement of joint space width in small joints has been

  6. Regular perturbations in a vector space with indefinite metric

    International Nuclear Information System (INIS)

    Chiang, C.C.

    1975-08-01

    The Klein space is discussed in connection with practical applications. Some lemmas are presented which are to be used for the discussion of regular self-adjoint operators. The criteria for the regularity of perturbed operators are given. (U.S.)

  7. Principles in selecting human capital measurements and metrics

    Directory of Open Access Journals (Sweden)

    Pharny D. Chrysler-Fox

    2014-09-01

    Research purpose: The study explored principles in selecting human capital measurements,drawing on the views and recommendations of human resource management professionals,all experts in human capital measurement. Motivation for the study: The motivation was to advance the understanding of selectingappropriate and strategic valid measurements, in order for human resource practitioners tocontribute to creating value and driving strategic change. Research design, approach and method: A qualitative approach, with purposively selectedcases from a selected panel of human capital measurement experts, generated a datasetthrough unstructured interviews, which were analysed thematically. Main findings: Nineteen themes were found. They represent a process that considers thecentrality of the business strategy and a systemic integration across multiple value chains inthe organisation through business partnering, in order to select measurements and generatemanagement level-appropriate information. Practical/managerial implications: Measurement practitioners, in partnership withmanagement from other functions, should integrate the business strategy across multiplevalue chains in order to select measurements. Analytics becomes critical in discoveringrelationships and formulating hypotheses to understand value creation. Higher educationinstitutions should produce graduates able to deal with systems thinking and to operatewithin complexity. Contribution: This study identified principles to select measurements and metrics. Noticeableis the move away from the interrelated scorecard perspectives to a systemic view of theorganisation in order to understand value creation. In addition, the findings may help toposition the human resource management function as a strategic asset.

  8. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    International Nuclear Information System (INIS)

    Reuter, Martin; Schollmeyer, Gregor M.

    2016-01-01

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.

  9. Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains

    International Nuclear Information System (INIS)

    Vazquez, Samuel E.

    2007-01-01

    Using the anti-de Sitter/conformal field theories (AdS/CFT) correspondence, we address the question of how to measure complicated space-time metrics using gauge theory probes. In particular, we consider the case of the 1/2 Bogomol'nyi-Prasad-Sommerfield geometries of type IIB supergravity. These geometries are classified by certain droplets in a two-dimensional spacelike hypersurface. We show how to reconstruct the full metric inside these droplets using the one-loop N=4 super Yang-Mills theory dilatation operator. This is done by considering long operators in the SU(2) sector, which are dual to fast rotating strings on the droplets. We develop new powerful techniques for large N complex matrix models that allow us to construct the Hamiltonian for these strings. We find that the Hamiltonian can be mapped to a dynamical spin chain. That is, the length of the chain is not fixed. Moreover, all of these spin chains can be explicitly constructed using an interesting algebra which is derived from the matrix model. Our techniques work for general droplet configurations. As an example, we study a single elliptical droplet and the hypotrochoid

  10. Extension and reconstruction theorems for the Urysohn universal metric space

    Czech Academy of Sciences Publication Activity Database

    Kubiś, Wieslaw; Rubin, M.

    2010-01-01

    Roč. 60, č. 1 (2010), s. 1-29 ISSN 0011-4642 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : Urysohn space * bilipschitz homeomorphism * modulus of continuity * reconstruction theorem * extension theorem Subject RIV: BA - General Mathematics Impact factor: 0.265, year: 2010 http://dml.cz/handle/10338.dmlcz/140544

  11. Risk Metrics and Measures for an Extended PSA

    International Nuclear Information System (INIS)

    Wielenberg, A.; Loeffler, H.; Hasnaoui, C.; Burgazzi, L.; Cazzoli, E.; Jan, P.; La Rovere, S.; Siklossy, T.; Vitazkova, J.; Raimond, E.

    2016-01-01

    This report provides a review of the main used risk measures for Level 1 and Level 2 PSA. It depicts their advantages, limitations and disadvantages and develops some more precise risk measures relevant for extended PSAs and helpful for decision-making. This report does not recommend or suggest any quantitative value for the risk measures. It does not discuss in details decision-making based on PSA results neither. The choice of one appropriate risk measure or a set of risk measures depends on the decision making approach as well as on the issue to be decided. The general approach for decision making aims at a multi-attribute approach. This can include the use of several risk measures as appropriate. Section 5 provides some recommendations on the main risk metrics to be used for an extended PSA. For Level 1 PSA, Fuel Damage Frequency and Radionuclide Mobilization Frequency are recommended. For Level 2 PSA, the characterization of loss of containment function and a total risk measure based on the aggregated activity releases of all sequences rated by their frequencies is proposed. (authors)

  12. Common Fixed Points of Generalized Cocyclic Mappings in Complex Valued Metric Spaces

    Directory of Open Access Journals (Sweden)

    Mujahid Abbas

    2015-01-01

    Full Text Available We present fixed point results of mappings satisfying generalized contractive conditions in complex valued metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of generalized contractive-type mappings involved in cocyclic representation of a nonempty subset of a complex valued metric space are also obtained. Some examples are also presented to support the results proved herein. These results extend and generalize many results in the existing literature.

  13. Common Fixed Points of Generalized Rational Type Cocyclic Mappings in Multiplicative Metric Spaces

    Directory of Open Access Journals (Sweden)

    Mujahid Abbas

    2015-01-01

    Full Text Available The aim of this paper is to present fixed point result of mappings satisfying a generalized rational contractive condition in the setup of multiplicative metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of pair of rational contractive types mappings involved in cocyclic representation of a nonempty subset of a multiplicative metric space are also obtained. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature.

  14. A new metric for measuring condition in large predatory sharks.

    Science.gov (United States)

    Irschick, D J; Hammerschlag, N

    2014-09-01

    A simple metric (span condition analysis; SCA) is presented for quantifying the condition of sharks based on four measurements of body girth relative to body length. Data on 104 live sharks from four species that vary in body form, behaviour and habitat use (Carcharhinus leucas, Carcharhinus limbatus, Ginglymostoma cirratum and Galeocerdo cuvier) are given. Condition shows similar levels of variability among individuals within each species. Carcharhinus leucas showed a positive relationship between condition and body size, whereas the other three species showed no relationship. There was little evidence for strong differences in condition between males and females, although more male sharks are needed for some species (e.g. G. cuvier) to verify this finding. SCA is potentially viable for other large marine or terrestrial animals that are captured live and then released. © 2014 The Fisheries Society of the British Isles.

  15. Measuring US Army medical evacuation: Metrics for performance improvement.

    Science.gov (United States)

    Galvagno, Samuel M; Mabry, Robert L; Maddry, Joseph; Kharod, Chetan U; Walrath, Benjamin D; Powell, Elizabeth; Shackelford, Stacy

    2018-01-01

    The US Army medical evacuation (MEDEVAC) community has maintained a reputation for high levels of success in transporting casualties from the point of injury to definitive care. This work served as a demonstration project to advance a model of quality assurance surveillance and medical direction for prehospital MEDEVAC providers within the Joint Trauma System. A retrospective interrupted time series analysis using prospectively collected data was performed as a process improvement project. Records were reviewed during two distinct periods: 2009 and 2014 to 2015. MEDEVAC records were matched to outcomes data available in the Department of Defense Trauma Registry. Abstracted deidentified data were reviewed for specific outcomes, procedures, and processes of care. Descriptive statistics were applied as appropriate. A total of 1,008 patients were included in this study. Nine quality assurance metrics were assessed. These metrics were: airway management, management of hypoxemia, compliance with a blood transfusion protocol, interventions for hypotensive patients, quality of battlefield analgesia, temperature measurement and interventions, proportion of traumatic brain injury (TBI) patients with hypoxemia and/or hypotension, proportion of traumatic brain injury patients with an appropriate assessment, and proportion of missing data. Overall survival in the subset of patients with outcomes data available in the Department of Defense Trauma Registry was 97.5%. The data analyzed for this study suggest overall high compliance with established tactical combat casualty care guidelines. In the present study, nearly 7% of patients had at least one documented oxygen saturation of less than 90%, and 13% of these patients had no documentation of any intervention for hypoxemia, indicating a need for training focus on airway management for hypoxemia. Advances in battlefield analgesia continued to evolve over the period when data for this study was collected. Given the inherent high

  16. 10 CFR 600.306 - Metric system of measurement.

    Science.gov (United States)

    2010-01-01

    ... cause significant inefficiencies or loss of markets to United States firms. (b) Recipients are... Requirements for Grants and Cooperative Agreements With For-Profit Organizations General § 600.306 Metric... Competitiveness Act of 1988 (15 U.S.C. 205) and implemented by Executive Order 12770, states that: (1) The metric...

  17. A Coupled Fixed Point Theorem in Fuzzy Metric Space Satisfying ϕ-Contractive Condition

    Directory of Open Access Journals (Sweden)

    B. D. Pant

    2013-01-01

    Full Text Available The intent of this paper is to prove a coupled fixed point theorem for two pairs of compatible and subsequentially continuous (alternately subcompatible and reciprocally continuous mappings, satisfying ϕ-contractive conditions in a fuzzy metric space. We also furnish some illustrative examples to support our results.

  18. Two fixed point theorems on quasi-metric spaces via mw- distances

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, C.

    2017-07-01

    In this paper we prove a Banach-type fixed point theorem and a Kannan-type theorem in the setting of quasi-metric spaces using the notion of mw-distance. These theorems generalize some results that have recently appeared in the literature. (Author)

  19. Common Fixed Points via λ-Sequences in G-Metric Spaces

    Directory of Open Access Journals (Sweden)

    Yaé Ulrich Gaba

    2017-01-01

    Full Text Available We use λ-sequences in this article to derive common fixed points for a family of self-mappings defined on a complete G-metric space. We imitate some existing techniques in our proofs and show that the tools employed can be used at a larger scale. These results generalize well known results in the literature.

  20. A Contraction Fixed Point Theorem in Partially Ordered Metric Spaces and Application to Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2012-01-01

    Full Text Available We generalize a fixed point theorem in partially ordered complete metric spaces in the study of A. Amini-Harandi and H. Emami (2010. We also give an application on the existence and uniqueness of the positive solution of a multipoint boundary value problem with fractional derivatives.

  1. A new type of contraction in a complete $G$-metric space

    Directory of Open Access Journals (Sweden)

    Nidhi Malhotra

    2015-09-01

    Full Text Available In this paper we extend and generalize the concept of $F$-contraction to $F$-weak contraction and prove a fixed point theorem for $F$-weak contraction in a complete $G$-metric space. The article includes a nontrivial example which verify the effectiveness and applicability of our main result.

  2. Fixed point results for contractions involving generalized altering distances in ordered metric spaces

    Directory of Open Access Journals (Sweden)

    Samet Bessem

    2011-01-01

    Full Text Available Abstract In this article, we establish coincidence point and common fixed point theorems for mappings satisfying a contractive inequality which involves two generalized altering distance functions in ordered complete metric spaces. As application, we study the existence of a common solution to a system of integral equations. 2000 Mathematics subject classification. Primary 47H10, Secondary 54H25

  3. Some Fixed Point Results for Caristi Type Mappings in Modular Metric Spaces with an Application

    Directory of Open Access Journals (Sweden)

    Duran Turkoglu

    2016-08-01

    Full Text Available In this paper we give Caristi type fixed point theorem in complete modular metric spaces. Moreover we give a theorem which can be derived from Caristi type. Also an application for the bounded solution of funcional equations is investigated.

  4. Sequence of maximal distance codes in graphs or other metric spaces

    Directory of Open Access Journals (Sweden)

    Charles Delorme

    2013-11-01

    Full Text Available Given a subset C in a metric space E, its successor is the subset  s(C of points at maximum distance from C in E. We study some properties of the sequence obtained by iterating this operation.  Graphs with their usual distance provide already typical examples.

  5. Parameter-space metric of semicoherent searches for continuous gravitational waves

    International Nuclear Information System (INIS)

    Pletsch, Holger J.

    2010-01-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical ''semicoherent'' search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  6. On the energy-momentum tensors for field theories in spaces with affine connection and metric

    International Nuclear Information System (INIS)

    Manoff, S.

    1991-01-01

    Generalized covariant Bianchi type identities are obtained and investigated for Lagrangian densities, depending on co- and contravariant tensor fields and their first and second covariant derivatives in spaces with affine connection and metric (L n -space). The notions of canonical, generalized canonical, symmetric and variational energy-momentum tensor are introduced and necessary and sufficient conditions for the existence of the symmetric energy-momentum tensor as a local conserved quantity are obtained. 19 refs.; 1 tab

  7. General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric

    OpenAIRE

    Aleksieva, Yana; Milousheva, Velichka; Turgay, Nurettin Cenk

    2016-01-01

    We define general rotational surfaces of elliptic and hyperbolic type in the pseudo-Euclidean 4-space with neutral metric which are analogous to the general rotational surfaces of C. Moore in the Euclidean 4-space. We study Lorentz general rotational surfaces with plane meridian curves and give the complete classification of minimal general rotational surfaces of elliptic and hyperbolic type, general rotational surfaces with parallel normalized mean curvature vector field, flat general rotati...

  8. Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds.

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David B

    2012-08-01

    This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels.

  9. An Observability Metric for Underwater Vehicle Localization Using Range Measurements

    Directory of Open Access Journals (Sweden)

    Filippo Arrichiello

    2013-11-01

    Full Text Available The paper addresses observability issues related to the general problem of single and multiple Autonomous Underwater Vehicle (AUV localization using only range measurements. While an AUV is submerged, localization devices, such as Global Navigation Satellite Systems, are ineffective, due to the attenuation of electromagnetic waves. AUV localization based on dead reckoning techniques and the use of affordable motion sensor units is also not practical, due to divergence caused by sensor bias and drift. For these reasons, localization systems often build on trilateration algorithms that rely on the measurements of the ranges between an AUV and a set of fixed transponders using acoustic devices. Still, such solutions are often expensive, require cumbersome calibration procedures and only allow for AUV localization in an area that is defined by the geometrical arrangement of the transponders. A viable alternative for AUV localization that has recently come to the fore exploits the use of complementary information on the distance from the AUV to a single transponder, together with information provided by on-board resident motion sensors, such as, for example, depth, velocity and acceleration measurements. This concept can be extended to address the problem of relative localization between two AUVs equipped with acoustic sensors for inter-vehicle range measurements. Motivated by these developments, in this paper, we show that both the problems of absolute localization of a single vehicle and the relative localization of multiple vehicles can be treated using the same mathematical framework, and tailoring concepts of observability derived for nonlinear systems, we analyze how the performance in localization depends on the types of motion imparted to the AUVs. For this effect, we propose a well-defined observability metric and validate its usefulness, both in simulation and by carrying out experimental tests with a real marine vehicle during which the

  10. Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces

    International Nuclear Information System (INIS)

    Sharma, Sushil; Deshpande, Bhavana

    2009-01-01

    The purpose of this paper is to prove some common fixed point theorems for finite number of discontinuous, noncompatible mappings on noncomplete intuitionistic fuzzy metric spaces. Our results extend, generalize and intuitionistic fuzzify several known results in fuzzy metric spaces. We give an example and also give formulas for total number of commutativity conditions for finite number of mappings.

  11. Kernel and wavelet density estimators on manifolds and more general metric spaces

    DEFF Research Database (Denmark)

    Cleanthous, G.; Georgiadis, Athanasios; Kerkyacharian, G.

    We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized...... spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established, which are analogous to the existing results in the classical setting of real...

  12. Computing the Dilation of Edge-Augmented Graphs Embedded in Metric Spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2008-01-01

    Let G = (V,E) be an undirected graph with n vertices embedded in a metric space. We consider the problem of adding a shortcut edge in G that minimizes the dilation of the resulting graph. The fastest algorithm to date for this problem has O(n^4) running time and uses O(n^2) space. We show how...... to improve running time to O(n^3*log n) while maintaining quadratic space requirement. In fact, our algorithm not only determines the best shortcut but computes the dilation of G U {(u,v)} for every pair of distinct vertices u and v....

  13. Computing the dilation of edge-augmented graphs in metric spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2010-01-01

    Let G=(V,E) be an undirected graph with n vertices embedded in a metric space. We consider the problem of adding a shortcut edge in G that minimizes the dilation of the resulting graph. The fastest algorithm to date for this problem has O(n4) running time and uses O(n2) space. We show how...... to improve the running time to O(n3logn) while maintaining quadratic space requirement. In fact, our algorithm not only determines the best shortcut but computes the dilation of G{(u,v)} for every pair of distinct vertices u and v....

  14. Evidence-based Metrics Toolkit for Measuring Safety and Efficiency in Human-Automation Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — APRIL 2016 NOTE: Principal Investigator moved to Rice University in mid-2015. Project continues at Rice with the same title (Evidence-based Metrics Toolkit for...

  15. Common fixed point theorems for fuzzy mappings in metric space under φ-contraction condition

    International Nuclear Information System (INIS)

    Abu-Donia, H.M.

    2007-01-01

    Some common fixed point theorems for multi-valued mappings under φ-contraction condition have been studied by Rashwan [Rashwan RA, Ahmed MA. Fixed points for φ-contraction type multivalued mappings. J Indian Acad Math 1995;17(2):194-204]. Butnariu [Butnariu D. Fixed point for fuzzy mapping. Fuzzy Sets Syst 1982;7:191-207] and Helipern [Hilpern S. Fuzzy mapping and fixed point theorem. J Math Anal Appl 1981;83:566-9] also, discussed some fixed point theorems for fuzzy mappings in the category of metric spaces. In this paper, we discussed some common fixed point theorems for fuzzy mappings in metric space under φ-contraction condition. Our investigation are related to the fuzzy form of Hausdorff metric which is a basic tool for computing Hausdorff dimensions. These dimensions help in understanding ε ∞ -space [El-Naschie MS. On the unification of the fundamental forces and complex time in the ε ∞ -space. Chaos, Solitons and Fractals 2000;11:1149-62] and are used in high energy physics [El-Naschie MS. Wild topology hyperbolic geometry and fusion algebra of high energy particle physics. Chaos, Solitons and Fractals 2002;13:1935-45

  16. Common fixed point theorems for fuzzy mappings in metric space under {phi}-contraction condition

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Donia, H.M. [Department of Mathematics, Faculty of Science, Zagazig University, Zagazig (Egypt)

    2007-10-15

    Some common fixed point theorems for multi-valued mappings under {phi}-contraction condition have been studied by Rashwan [Rashwan RA, Ahmed MA. Fixed points for {phi}-contraction type multivalued mappings. J Indian Acad Math 1995;17(2):194-204]. Butnariu [Butnariu D. Fixed point for fuzzy mapping. Fuzzy Sets Syst 1982;7:191-207] and Helipern [Hilpern S. Fuzzy mapping and fixed point theorem. J Math Anal Appl 1981;83:566-9] also, discussed some fixed point theorems for fuzzy mappings in the category of metric spaces. In this paper, we discussed some common fixed point theorems for fuzzy mappings in metric space under {phi}-contraction condition. Our investigation are related to the fuzzy form of Hausdorff metric which is a basic tool for computing Hausdorff dimensions. These dimensions help in understanding {epsilon} {sup {infinity}}-space [El-Naschie MS. On the unification of the fundamental forces and complex time in the {epsilon} {sup {infinity}}-space. Chaos, Solitons and Fractals 2000;11:1149-62] and are used in high energy physics [El-Naschie MS. Wild topology hyperbolic geometry and fusion algebra of high energy particle physics. Chaos, Solitons and Fractals 2002;13:1935-45].

  17. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Science.gov (United States)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  18. Common Fixed Point Theorems in Fuzzy Metric Spaces Satisfying -Contractive Condition with Common Limit Range Property

    Directory of Open Access Journals (Sweden)

    Sunny Chauhan

    2013-01-01

    Full Text Available The objective of this paper is to emphasize the role of “common limit range property” to ascertain the existence of common fixed point in fuzzy metric spaces. Some illustrative examples are furnished which demonstrate the validity of the hypotheses and degree of utility of our results. We derive a fixed point theorem for four finite families of self-mappings which can be utilized to derive common fixed point theorems involving any finite number of mappings. As an application to our main result, we prove an integral-type fixed point theorem in fuzzy metric space. Our results improve and extend a host of previously known results including the ones contained in Imdad et al. (2012.

  19. Global Attractivity Results for Mixed-Monotone Mappings in Partially Ordered Complete Metric Spaces

    Directory of Open Access Journals (Sweden)

    Kalabušić S

    2009-01-01

    Full Text Available We prove fixed point theorems for mixed-monotone mappings in partially ordered complete metric spaces which satisfy a weaker contraction condition than the classical Banach contraction condition for all points that are related by given ordering. We also give a global attractivity result for all solutions of the difference equation , where satisfies mixed-monotone conditions with respect to the given ordering.

  20. Multidimensional coincidence point results for generalized $(\\psi ,\\theta ,\\varphi$-contraction on ordered metric spaces

    Directory of Open Access Journals (Sweden)

    Bhavana Deshpande

    2017-11-01

    Full Text Available The main objective of this research article is to establish some coincidence point theorem for $g$-non-decreasing mappings under generalized $(\\psi ,\\theta ,\\varphi $-contraction on a partially ordered metric space. Furthermore, we show how multidimensional results can be seen as a simple consequences of our unidimensional coincidence point theorem. Our results modify, improve, sharpen, enrich and generalize various known results.

  1. Study the topology of Branciari metric space via the structure proposed by Csaszar

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2017-06-01

    Full Text Available In this paper, we topologically study the generalized metric space proposed by Branciari [3] via the weak structure proposed by Cs´asz´ar [9, 10], and compare convergent sequences in several different senses. We also introduce the concepts of available points and unavailable points on such structures. Besides, we define the continuous function on structures and investigate further characterizations of continuous functions.

  2. Robust Design Impact Metrics: Measuring the effect of implementing and using Robust Design

    DEFF Research Database (Denmark)

    Ebro, Martin; Olesen, Jesper; Howard, Thomas J.

    2014-01-01

    Measuring the performance of an organisation’s product development process can be challenging due to the limited use of metrics in R&D. An organisation considering whether to use Robust Design as an integrated part of their development process may find it difficult to define whether it is relevant......, and afterwards measure the effect of having implemented it. This publication identifies and evaluates Robust Design-related metrics and finds that 2 metrics are especially useful: 1) Relative amount of R&D Resources spent after Design Verification and 2) Number of ‘change notes’ after Design Verification....... The metrics have been applied in a case company to test the assumptions made during the evaluation. It is concluded that the metrics are useful and relevant, but further work is necessary to make a proper overview and categorisation of different types of robustness related metrics....

  3. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

    CERN Document Server

    Lerner, Nicolas

    2010-01-01

    This book is devoted to the study of pseudo-differential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for nonselfadjoint operators. The first chapter is introductory and gives a presentation of classical classes of pseudo-differential operators. The second chapter is dealing with the general notion of metrics on the phase space. We expose some elements of the so-called Wick calculus and introduce g

  4. Knowledge metrics of Brand Equity; critical measure of Brand Attachment

    OpenAIRE

    Arslan Rafi (Corresponding Author); Arslan Ali; Sidra Waris; Dr. Kashif-ur-Rehman

    2011-01-01

    Brand creation through an effective marketing strategy is necessary for creation of unique associations in the customers memory. Customers attitude, awareness and association towards the brand are primarily focused while evaluating performance of a brand, before designing the marketing strategies and subsequent evaluation of the progress. In this research, literature establishes a direct and significant effect of Knowledge metrics of the Brand equity, i.e. Brand Awareness and Brand Associatio...

  5. On 0-Complete Partial Metric Spaces and Quantitative Fixed Point Techniques in Denotational Semantics

    Directory of Open Access Journals (Sweden)

    N. Shahzad

    2013-01-01

    Full Text Available In 1994, Matthews introduced the notion of partial metric space with the aim of providing a quantitative mathematical model suitable for program verification. Concretely, Matthews proved a partial metric version of the celebrated Banach fixed point theorem which has become an appropriate quantitative fixed point technique to capture the meaning of recursive denotational specifications in programming languages. In this paper we show that a few assumptions in statement of Matthews fixed point theorem can be relaxed in order to provide a quantitative fixed point technique useful to analyze the meaning of the aforementioned recursive denotational specifications in programming languages. In particular, we prove a new fixed point theorem for self-mappings between partial metric spaces in which the completeness has been replaced by 0-completeness and the contractive condition has been weakened in such a way that the new one best fits the requirements of practical problems in denotational semantics. Moreover, we provide examples that show that the hypothesis in the statement of our new result cannot be weakened. Finally, we show the potential applicability of the developed theory by means of analyzing a few concrete recursive denotational specifications, some of them admitting a unique meaning and others supporting multiple ones.

  6. Distributed consensus for metamorphic systems using a gossip algorithm for CAT(0) metric spaces

    Science.gov (United States)

    Bellachehab, Anass; Jakubowicz, Jérémie

    2015-01-01

    We present an application of distributed consensus algorithms to metamorphic systems. A metamorphic system is a set of identical units that can self-assemble to form a rigid structure. For instance, one can think of a robotic arm composed of multiple links connected by joints. The system can change its shape in order to adapt to different environments via reconfiguration of its constituting units. We assume in this work that several metamorphic systems form a network: two systems are connected whenever they are able to communicate with each other. The aim of this paper is to propose a distributed algorithm that synchronizes all the systems in the network. Synchronizing means that all the systems should end up having the same configuration. This aim is achieved in two steps: (i) we cast the problem as a consensus problem on a metric space and (ii) we use a recent distributed consensus algorithm that only make use of metrical notions.

  7. Geometry and dynamics in Gromov hyperbolic metric spaces with an emphasis on non-proper settings

    CERN Document Server

    Das, Tushar; Urbański, Mariusz

    2016-01-01

    This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.

  8. On iterative solution of nonlinear functional equations in a metric space

    Directory of Open Access Journals (Sweden)

    Rabindranath Sen

    1983-01-01

    Full Text Available Given that A and P as nonlinear onto and into self-mappings of a complete metric space R, we offer here a constructive proof of the existence of the unique solution of the operator equation Au=Pu, where u∈R, by considering the iterative sequence Aun+1=Pun (u0 prechosen, n=0,1,2,…. We use Kannan's criterion [1] for the existence of a unique fixed point of an operator instead of the contraction mapping principle as employed in [2]. Operator equations of the form Anu=Pmu, where u∈R, n and m positive integers, are also treated.

  9. $\\eta$-metric structures

    OpenAIRE

    Gaba, Yaé Ulrich

    2017-01-01

    In this paper, we discuss recent results about generalized metric spaces and fixed point theory. We introduce the notion of $\\eta$-cone metric spaces, give some topological properties and prove some fixed point theorems for contractive type maps on these spaces. In particular we show that theses $\\eta$-cone metric spaces are natural generalizations of both cone metric spaces and metric type spaces.

  10. Sharp metric obstructions for quasi-Einstein metrics

    Science.gov (United States)

    Case, Jeffrey S.

    2013-02-01

    Using the tractor calculus to study smooth metric measure spaces, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the Weyl tractor W to the setting of smooth metric measure spaces. The obstructions we obtain can be realized as tensorial invariants which are polynomial in the Riemann curvature tensor and its divergence. By taking suitable limits of their tensorial forms, we then find obstructions to the existence of static potentials, generalizing to higher dimensions a result of Bartnik and Tod, and to the existence of potentials for gradient Ricci solitons.

  11. Assessment of Performance Measures for Security of the Maritime Transportation Network, Port Security Metrics : Proposed Measurement of Deterrence Capability

    Science.gov (United States)

    2007-01-03

    This report is the thirs in a series describing the development of performance measures pertaining to the security of the maritime transportation network (port security metrics). THe development of measures to guide improvements in maritime security ...

  12. Examining Acoustic and Kinematic Measures of Articulatory Working Space: Effects of Speech Intensity.

    Science.gov (United States)

    Whitfield, Jason A; Dromey, Christopher; Palmer, Panika

    2018-04-18

    The purpose of this study was to examine the effect of speech intensity on acoustic and kinematic vowel space measures and conduct a preliminary examination of the relationship between kinematic and acoustic vowel space metrics calculated from continuously sampled lingual marker and formant traces. Young adult speakers produced 3 repetitions of 2 different sentences at 3 different loudness levels. Lingual kinematic and acoustic signals were collected and analyzed. Acoustic and kinematic variants of several vowel space metrics were calculated from the formant frequencies and the position of 2 lingual markers. Traditional metrics included triangular vowel space area and the vowel articulation index. Acoustic and kinematic variants of sentence-level metrics based on the articulatory-acoustic vowel space and the vowel space hull area were also calculated. Both acoustic and kinematic variants of the sentence-level metrics significantly increased with an increase in loudness, whereas no statistically significant differences in traditional vowel-point metrics were observed for either the kinematic or acoustic variants across the 3 loudness conditions. In addition, moderate-to-strong relationships between the acoustic and kinematic variants of the sentence-level vowel space metrics were observed for the majority of participants. These data suggest that both kinematic and acoustic vowel space metrics that reflect the dynamic contributions of both consonant and vowel segments are sensitive to within-speaker changes in articulation associated with manipulations of speech intensity.

  13. The Measurement of Negative Creativity: Metrics and Relationships

    Science.gov (United States)

    Kapoor, Hansika; Khan, Azizuddin

    2016-01-01

    Although the dark side of creativity and negative creativity are shaping into legitimate subconstructs, measures to assess the same remain to be validated. To meet this goal, two studies assessed the convergent, predictive, and criterion-related validities of two valence-inclusive creativity measures. One measure assessed the self-report…

  14. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  15. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  16. Weakly Compatible Mappings along with $CLR_{S}$ property in Fuzzy Metric Spaces

    Directory of Open Access Journals (Sweden)

    Saurabh Manro

    2013-11-01

    Full Text Available The aim of this work is to use newly introduced property, which is so called common limit in the range $(CLR_{S}$ for four self-mappings, and prove some theorems which satisfy this property. Moreover, we establish some new existence of a common fixed point theorem for generalized contractive mappings in fuzzy metric spaces by using this new property and give some examples to support our results. Ours results does not require condition of closeness of range and so our theorems generalize, unify, and extend many results in literature. Our results improve and extend the results of Cho et al. [4], Pathak et al. [20] and Imdad et. al. [10] besides several known results.

  17. New integrable model of quantum field theory in the state space with indefinite metric

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The system of coupled nonlinear Schroedinger eqs. (NLS) with noncompact internal symmetry group U(p, q) is considered. It describes in quasiclassical limit the system of two ''coloured'' Bose-gases with point-like interaction. The structure of tran-sition matrix is studied via the spectral transform (ST) (in-verse method). The Poisson brackets of the elements of this matrix and integrals of motion it generates are found. The theory under consideration may be put in the corresponding quantum field theory in the state vector space with indefinite metric. The so-called R matrix (Faddeev) and commutation relations for the transition matrix elements are also obtained, which implies the model to be investigated with the help of the quantum version of ST

  18. Measuring Patient-Reported Outcomes: Key Metrics in Reconstructive Surgery.

    Science.gov (United States)

    Voineskos, Sophocles H; Nelson, Jonas A; Klassen, Anne F; Pusic, Andrea L

    2018-01-29

    Satisfaction and improved quality of life are among the most important outcomes for patients undergoing plastic and reconstructive surgery for a variety of diseases and conditions. Patient-reported outcome measures (PROMs) are essential tools for evaluating the benefits of newly developed surgical techniques. Modern PROMs are being developed with new psychometric approaches, such as Rasch Measurement Theory, and their measurement properties (validity, reliability, responsiveness) are rigorously tested. These advances have resulted in the availability of PROMs that provide clinically meaningful data and effectively measure functional as well as psychosocial outcomes. This article guides the reader through the steps of creating a PROM and highlights the potential research and clinical uses of such instruments. Limitations of PROMs and anticipated future directions in this field are discussed.

  19. Measuring Metrics for Social Media Marketing : Case: Marsaana Communications

    OpenAIRE

    Yli-Pietilä, Heidi

    2016-01-01

    This thesis looks into social media marketing, what relationship public relations has with social media marketing and brand equity. The challenge with utilizing social media marketing is identifying the right tools to use in measuring the success or effectiveness of it. In this thesis I investigate a set of tools a Finnish PR agency could utilize in measuring the effects of their social media marketing efforts on their client’s brand equity. This thesis topics include new media in specifi...

  20. Investigation of a Complex Space-Time Metric to Describe Precognition of the Future

    Science.gov (United States)

    Rauscher, Elizabeth A.; Targ, Russell

    2006-10-01

    For more than 100 years scientists have attempted to determine the truth or falsity of claims that some people are able to describe and experience events or information blocked from ordinary perception. For the past 25 years, the authors of this paper - together with researchers in laboratories around the world — have carried out experiments in remote viewing. The evidence for this mode of perception, or direct knowing of distant events and objects, has convinced us of the validity of these claims. It has been widely observed that the accuracy and reliability of this sensory awareness does not diminish with either electromagnetic shielding, nor with increases in temporal or spatial separation between the percipient and the target to be described. Modern physics describes such a time-and-space independent connection between percipient and target as nonlocal. In this paper we present a geometrical model of space-time, which has already been extensively studied in the technical literature of mathematics and physics. This eight-dimensional metric is known as "complex Minkowski space," and has been shown to be consistent with our present understanding of the equations of Newton, Maxwell, Einstein, and Schrödinger. It also has the interesting property of allowing a connection of zero distance between points in the complex manifold, which appear to be separate from one another in ordinary observation. We propose a model that describes the major elements of experimental parapsychology, and at the same time is consistent with the present highly successful structure of modern physics.

  1. Introducing the Balanced Scorecard: Creating Metrics to Measure Performance

    Science.gov (United States)

    Gumbus, Andra

    2005-01-01

    This experiential exercise presents the concept of the Balanced Scorecard (BSC) and applies it in a university setting. The Balanced Scorecard was developed 12 years ago and has grown in popularity and is used by more than 50% of the Fortune 500 companies as a performance measurement and strategic management tool. The BSC expands the traditional…

  2. 41 CFR 101-29.102 - Use of metric system of measurement in Federal product descriptions.

    Science.gov (United States)

    2010-07-01

    ... PROCUREMENT 29-FEDERAL PRODUCT DESCRIPTIONS 29.1-General § 101-29.102 Use of metric system of measurement in... measurement in Federal product descriptions. 101-29.102 Section 101-29.102 Public Contracts and Property... Federal agencies to: (a) Maintain close liaison with other Federal agencies, State and local governments...

  3. Rice by Weight, Other Produce by Bulk, and Snared Iguanas at So Much Per One. A Talk on Measurement Standards and on Metric Conversion.

    Science.gov (United States)

    Allen, Harold Don

    This script for a short radio broadcast on measurement standards and metric conversion begins by tracing the rise of the metric system in the international marketplace. Metric units are identified and briefly explained. Arguments for conversion to metric measures are presented. The history of the development and acceptance of the metric system is…

  4. Contractive type non-self mappings on metric spaces of hyperbolic type

    Science.gov (United States)

    Ciric, Ljubomir B.

    2006-05-01

    Let (X,d) be a metric space of hyperbolic type and K a nonempty closed subset of X. In this paper we study a class of mappings from K into X (not necessarily self-mappings on K), which are defined by the contractive condition (2.1) below, and a class of pairs of mappings from K into X which satisfy the condition (2.28) below. We present fixed point and common fixed point theorems which are generalizations of the corresponding fixed point theorems of Ciric [L.B. Ciric, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998) 25-31; L.B. Ciric, J.S. Ume, M.S. Khan, H.K.T. Pathak, On some non-self mappings, Math. Nachr. 251 (2003) 28-33], Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978) 457-459] and many other authors. Some examples are presented to show that our results are genuine generalizations of known results from this area.

  5. A metric space for Type Ia supernova spectra: a new method to assess explosion scenarios

    Science.gov (United States)

    Sasdelli, Michele; Hillebrandt, W.; Kromer, M.; Ishida, E. E. O.; Röpke, F. K.; Sim, S. A.; Pakmor, R.; Seitenzahl, I. R.; Fink, M.

    2017-04-01

    Over the past years, Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, and considerable attention has been given to, both, observations and models of these events. However, until now, their progenitors are not known. The observed diversity of light curves and spectra seems to point at different progenitor channels and explosion mechanisms. Here, we present a new way to compare model predictions with observations in a systematic way. Our method is based on the construction of a metric space for SN Ia spectra by means of linear principal component analysis, taking care of missing and/or noisy data, and making use of partial least-squares regression to find correlations between spectral properties and photometric data. We investigate realizations of the three major classes of explosion models that are presently discussed: delayed-detonation Chandrasekhar-mass explosions, sub-Chandrasekhar-mass detonations and double-degenerate mergers, and compare them with data. We show that in the principal component space, all scenarios have observed counterparts, supporting the idea that different progenitors are likely. However, all classes of models face problems in reproducing the observed correlations between spectral properties and light curves and colours. Possible reasons are briefly discussed.

  6. Nearest Neighbor Search in the Metric Space of a Complex Network for Community Detection

    Directory of Open Access Journals (Sweden)

    Suman Saha

    2016-03-01

    Full Text Available The objective of this article is to bridge the gap between two important research directions: (1 nearest neighbor search, which is a fundamental computational tool for large data analysis; and (2 complex network analysis, which deals with large real graphs but is generally studied via graph theoretic analysis or spectral analysis. In this article, we have studied the nearest neighbor search problem in a complex network by the development of a suitable notion of nearness. The computation of efficient nearest neighbor search among the nodes of a complex network using the metric tree and locality sensitive hashing (LSH are also studied and experimented. For evaluation of the proposed nearest neighbor search in a complex network, we applied it to a network community detection problem. Experiments are performed to verify the usefulness of nearness measures for the complex networks, the role of metric tree and LSH to compute fast and approximate node nearness and the the efficiency of community detection using nearest neighbor search. We observed that nearest neighbor between network nodes is a very efficient tool to explore better the community structure of the real networks. Several efficient approximation schemes are very useful for large networks, which hardly made any degradation of results, whereas they save lot of computational times, and nearest neighbor based community detection approach is very competitive in terms of efficiency and time.

  7. Thermodynamic metrics for measuring the ``sustainability'' of design for recycling

    Science.gov (United States)

    Reuter, Markus; van Schaik, Antoinette

    2008-08-01

    In this article, exergy is applied as a parameter to measure the “sustainability” of a recycling system in addition to the fundamental prediction of material recycling and energy recovery, summarizing a development of over 20 years by the principal author supported by various co-workers, Ph.D., and M.Sc. students. In order to achieve this, recyclate qualities and particle size distributions throughout the system must be predicted as a function of product design, liberation during shredding, process dynamics, physical separation physics, and metallurgical thermodynamics. This crucial development enables the estimation of the true exergy of a recycling system from its inputs and outputs including all its realistic industrial traits. These models have among others been linked to computer aided design tools of the automotive industry and have been used to evaluate the performance of waste electric and electronic equipment recycling systems in The Netherlands. This paper also suggests that the complete system must be optimized to find a “truer” optimum of the material production system linked to the consumer market.

  8. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  9. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  10. Rosette of rosettes of Hilbert spaces in the indefinite metric state space of the quantized Maxwell field

    International Nuclear Information System (INIS)

    Gessner, W.; Ernst, V.

    1980-01-01

    The indefinite metric space O/sub M/ of the covariant form of the quantized Maxwell field M is analyzed in some detail. S/sub M/ contains not only the pre-Hilbert space X 0 of states of transverse photons which occurs in the Gupta--Bleuler formalism of the free M, but a whole rosette of continuously many, isomorphic, complete, pre-Hilbert spaces L/sup q/ disjunct up to the zero element o of S/sub M/. The L/sup q/ are the maximal subspaces of S/sub M/ which allow the usual statistical interpretation. Each L/sup q/ corresponds uniquely to one square integrable, spatial distribution j/sup o/(x) of the total charge Q=0. If M is in any state from L/sup q/, the bare charge j 0 (x) appears to be inseparably dressed by the quantum equivalent of its proper, classical Coulomb field E(x). The vacuum occurs only in the state space L 0 of the free Maxwell field. Each L/sup q/ contains a secondary rosette of continuously many, up to o disjunct, isomorphic Hilbert spaces H/sub g//sup q/ related to different electromagnetic gauges. The space H/sub o//sup q/, which corresponds to the Coulomb gauge within the Lorentz gauge, plays a physically distinguished role in that only it leads to the usual concept of energy. If M is in any state from H/sub g//sup q/, the bare 4-current j 0 (x), j(x), where j(x) is any square integrable, transverse current density in space, is endowed with its proper 4-potential which depends on the chosen gauge, and with its proper, gauge independent, Coulomb--Oersted field E(x), B(x). However, these fields exist only in the sense of quantum mechanical expectation values equipped with the corresponding field fluctuations. So they are basically different from classical electromagnetic fields

  11. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  12. Productivity in Pediatric Palliative Care: Measuring and Monitoring an Elusive Metric.

    Science.gov (United States)

    Kaye, Erica C; Abramson, Zachary R; Snaman, Jennifer M; Friebert, Sarah E; Baker, Justin N

    2017-05-01

    Workforce productivity is poorly defined in health care. Particularly in the field of pediatric palliative care (PPC), the absence of consensus metrics impedes aggregation and analysis of data to track workforce efficiency and effectiveness. Lack of uniformly measured data also compromises the development of innovative strategies to improve productivity and hinders investigation of the link between productivity and quality of care, which are interrelated but not interchangeable. To review the literature regarding the definition and measurement of productivity in PPC; to identify barriers to productivity within traditional PPC models; and to recommend novel metrics to study productivity as a component of quality care in PPC. PubMed ® and Cochrane Database of Systematic Reviews searches for scholarly literature were performed using key words (pediatric palliative care, palliative care, team, workforce, workflow, productivity, algorithm, quality care, quality improvement, quality metric, inpatient, hospital, consultation, model) for articles published between 2000 and 2016. Organizational searches of Center to Advance Palliative Care, National Hospice and Palliative Care Organization, National Association for Home Care & Hospice, American Academy of Hospice and Palliative Medicine, Hospice and Palliative Nurses Association, National Quality Forum, and National Consensus Project for Quality Palliative Care were also performed. Additional semistructured interviews were conducted with directors from seven prominent PPC programs across the U.S. to review standard operating procedures for PPC team workflow and productivity. Little consensus exists in the PPC field regarding optimal ways to define, measure, and analyze provider and program productivity. Barriers to accurate monitoring of productivity include difficulties with identification, measurement, and interpretation of metrics applicable to an interdisciplinary care paradigm. In the context of inefficiencies

  13. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  14. Semantic metrics

    OpenAIRE

    Hu, Bo; Kalfoglou, Yannis; Dupplaw, David; Alani, Harith; Lewis, Paul; Shadbolt, Nigel

    2006-01-01

    In the context of the Semantic Web, many ontology-related operations, e.g. ontology ranking, segmentation, alignment, articulation, reuse, evaluation, can be boiled down to one fundamental operation: computing the similarity and/or dissimilarity among ontological entities, and in some cases among ontologies themselves. In this paper, we review standard metrics for computing distance measures and we propose a series of semantic metrics. We give a formal account of semantic metrics drawn from a...

  15. Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces

    Directory of Open Access Journals (Sweden)

    Gurucharan Singh Saluja

    2010-01-01

    Full Text Available In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.

  16. A Step-Indexed Kripke Model of Hidden State via Recursive Properties on Recursively Defined Metric Spaces

    DEFF Research Database (Denmark)

    Schwinghammer, Jan; Birkedal, Lars; Støvring, Kristian

    2011-01-01

    ´eraud and Pottier’s type and capability system including both frame and anti-frame rules. The model is a possible worlds model based on the operational semantics and step-indexed heap relations, and the worlds are constructed as a recursively defined predicate on a recursively defined metric space. We also extend...

  17. A step-indexed Kripke model of hidden state via recursive properties on recursively defined metric spaces

    DEFF Research Database (Denmark)

    Birkedal, Lars; Schwinghammer, Jan; Støvring, Kristian

    2010-01-01

    for Chargu´eraud and Pottier’s type and capability system including frame and anti-frame rules, based on the operational semantics and step-indexed heap relations. The worlds are constructed as a recursively defined predicate on a recursively defined metric space, which provides a considerably simpler...

  18. Some Common Fixed Point Theorems for F-Contraction Type Mappings in 0-Complete Partial Metric Spaces

    Directory of Open Access Journals (Sweden)

    Satish Shukla

    2013-01-01

    Full Text Available We prove some common fixed point theorems for F-contractions in 0-complete partial metric spaces. Our results extend, generalize, and unify several known results in the literature. Some examples are included which show that the generalization is proper.

  19. On the necessity of connection between plane and curve space metrics in gravity theory on a plane background

    International Nuclear Information System (INIS)

    Vlasov, A.A.

    1988-01-01

    The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''

  20. Using measures of information content and complexity of time series as hydrologic metrics

    Science.gov (United States)

    The information theory has been previously used to develop metrics that allowed to characterize temporal patterns in soil moisture dynamics, and to evaluate and to compare performance of soil water flow models. The objective of this study was to apply information and complexity measures to characte...

  1. Quantifying, Measuring, and Strategizing Energy Security: Determining the Most Meaningful Dimensions and Metrics

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Sovacool, Benjamin

    2014-01-01

    subjective concepts of energy security into more objective criteria, to investigate the cause-effect relationships among these different metrics, and to provide some recommendations for the stakeholders to draft efficacious measures for enhancing energy security. To accomplish this feat, the study utilizes...

  2. Lean manufacturing measurement: the relationship between lean activities and lean metrics

    Directory of Open Access Journals (Sweden)

    Manotas Duque Diego Fernando

    2007-10-01

    Full Text Available Lean Manufacturing was developed by Toyota Motor company to address their specific needs in a restricted market in times of economic trouble. These concepts have been studied and proven to be transferrable and applicable to a wide variety of industries. This paper aims to integrate a set of metrics that have been proposed by different authors in such a way that they are consistent with the different stages and elements of Lean Manufacturing implementations. To achieve this, two frameworks for Lean implementations are presented and then the main factors for success are used as the basis to propose metrics that measure the advance in these factors. A tabular display of the impact of “Lean activities” on the metrics is presented, proposing that many a priori assumptions about the benefits on many different levels of improvement should be accurate. Finally, some ideas for future research and extension of the applications proposed on this paper are presented as closing points.

  3. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Han, Seok-Jung; Tak, Nam-IL

    2000-01-01

    A simple measure of uncertainty importance using the entire change of cumulative distribution functions (CDFs) has been developed for use in probability safety assessments (PSAs). The entire change of CDFs is quantified in terms of the metric distance between two CDFs. The metric distance measure developed in this study reflects the relative impact of distributional changes of inputs on the change of an output distribution, while most of the existing uncertainty importance measures reflect the magnitude of relative contribution of input uncertainties to the output uncertainty. The present measure has been evaluated analytically for various analytical distributions to examine its characteristics. To illustrate the applicability and strength of the present measure, two examples are provided. The first example is an application of the present measure to a typical problem of a system fault tree analysis and the second one is for a hypothetical non-linear model. Comparisons of the present result with those obtained by existing uncertainty importance measures show that the metric distance measure is a useful tool to express the measure of uncertainty importance in terms of the relative impact of distributional changes of inputs on the change of an output distribution

  4. On Probabilistic Alpha-Fuzzy Fixed Points and Related Convergence Results in Probabilistic Metric and Menger Spaces under Some Pompeiu-Hausdorff-Like Probabilistic Contractive Conditions

    OpenAIRE

    De la Sen, M.

    2015-01-01

    In the framework of complete probabilistic metric spaces and, in particular, in probabilistic Menger spaces, this paper investigates some relevant properties of convergence of sequences to probabilistic α-fuzzy fixed points under some types of probabilistic contractive conditions.

  5. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  6. Information Entropy-Based Metrics for Measuring Emergences in Artificial Societies

    Directory of Open Access Journals (Sweden)

    Mingsheng Tang

    2014-08-01

    Full Text Available Emergence is a common phenomenon, and it is also a general and important concept in complex dynamic systems like artificial societies. Usually, artificial societies are used for assisting in resolving several complex social issues (e.g., emergency management, intelligent transportation system with the aid of computer science. The levels of an emergence may have an effect on decisions making, and the occurrence and degree of an emergence are generally perceived by human observers. However, due to the ambiguity and inaccuracy of human observers, to propose a quantitative method to measure emergences in artificial societies is a meaningful and challenging task. This article mainly concentrates upon three kinds of emergences in artificial societies, including emergence of attribution, emergence of behavior, and emergence of structure. Based on information entropy, three metrics have been proposed to measure emergences in a quantitative way. Meanwhile, the correctness of these metrics has been verified through three case studies (the spread of an infectious influenza, a dynamic microblog network, and a flock of birds with several experimental simulations on the Netlogo platform. These experimental results confirm that these metrics increase with the rising degree of emergences. In addition, this article also has discussed the limitations and extended applications of these metrics.

  7. Measuring scientific impact beyond academia: An assessment of existing impact metrics and proposed improvements.

    Science.gov (United States)

    Ravenscroft, James; Liakata, Maria; Clare, Amanda; Duma, Daniel

    2017-01-01

    How does scientific research affect the world around us? Being able to answer this question is of great importance in order to appropriately channel efforts and resources in science. The impact by scientists in academia is currently measured by citation based metrics such as h-index, i-index and citation counts. These academic metrics aim to represent the dissemination of knowledge among scientists rather than the impact of the research on the wider world. In this work we are interested in measuring scientific impact beyond academia, on the economy, society, health and legislation (comprehensive impact). Indeed scientists are asked to demonstrate evidence of such comprehensive impact by authoring case studies in the context of the Research Excellence Framework (REF). We first investigate the extent to which existing citation based metrics can be indicative of comprehensive impact. We have collected all recent REF impact case studies from 2014 and we have linked these to papers in citation networks that we constructed and derived from CiteSeerX, arXiv and PubMed Central using a number of text processing and information retrieval techniques. We have demonstrated that existing citation-based metrics for impact measurement do not correlate well with REF impact results. We also consider metrics of online attention surrounding scientific works, such as those provided by the Altmetric API. We argue that in order to be able to evaluate wider non-academic impact we need to mine information from a much wider set of resources, including social media posts, press releases, news articles and political debates stemming from academic work. We also provide our data as a free and reusable collection for further analysis, including the PubMed citation network and the correspondence between REF case studies, grant applications and the academic literature.

  8. Measuring scientific impact beyond academia: An assessment of existing impact metrics and proposed improvements.

    Directory of Open Access Journals (Sweden)

    James Ravenscroft

    Full Text Available How does scientific research affect the world around us? Being able to answer this question is of great importance in order to appropriately channel efforts and resources in science. The impact by scientists in academia is currently measured by citation based metrics such as h-index, i-index and citation counts. These academic metrics aim to represent the dissemination of knowledge among scientists rather than the impact of the research on the wider world. In this work we are interested in measuring scientific impact beyond academia, on the economy, society, health and legislation (comprehensive impact. Indeed scientists are asked to demonstrate evidence of such comprehensive impact by authoring case studies in the context of the Research Excellence Framework (REF. We first investigate the extent to which existing citation based metrics can be indicative of comprehensive impact. We have collected all recent REF impact case studies from 2014 and we have linked these to papers in citation networks that we constructed and derived from CiteSeerX, arXiv and PubMed Central using a number of text processing and information retrieval techniques. We have demonstrated that existing citation-based metrics for impact measurement do not correlate well with REF impact results. We also consider metrics of online attention surrounding scientific works, such as those provided by the Altmetric API. We argue that in order to be able to evaluate wider non-academic impact we need to mine information from a much wider set of resources, including social media posts, press releases, news articles and political debates stemming from academic work. We also provide our data as a free and reusable collection for further analysis, including the PubMed citation network and the correspondence between REF case studies, grant applications and the academic literature.

  9. Four Dimensional Trace Space Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.

    2005-02-10

    Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.

  10. Using Complexity Metrics With R-R Intervals and BPM Heart Rate Measures

    DEFF Research Database (Denmark)

    Wallot, Sebastian; Fusaroli, Riccardo; Tylén, Kristian

    2013-01-01

    Lately, growing attention in the health sciences has been paid to the dynamics of heart rate as indicator of impending failures and for prognoses. Likewise, in social and cognitive sciences, heart rate is increasingly employed as a measure of arousal, emotional engagement and as a marker of inter......Lately, growing attention in the health sciences has been paid to the dynamics of heart rate as indicator of impending failures and for prognoses. Likewise, in social and cognitive sciences, heart rate is increasingly employed as a measure of arousal, emotional engagement and as a marker...... of interpersonal coordination. However, there is no consensus about which measurements and analytical tools are most appropriate in mapping the temporal dynamics of heart rate and quite different metrics are reported in the literature. As complexity metrics of heart rate variability depend critically...

  11. The role of metrics and measurements in a software intensive total quality management environment

    Science.gov (United States)

    Daniels, Charles B.

    1992-01-01

    Paramax Space Systems began its mission as a member of the Rockwell Space Operations Company (RSOC) team which was the successful bidder on a massive operations consolidation contract for the Mission Operations Directorate (MOD) at JSC. The contract awarded to the team was the Space Transportation System Operations Contract (STSOC). Our initial challenge was to accept responsibility for a very large, highly complex and fragmented collection of software from eleven different contractors and transform it into a coherent, operational baseline. Concurrently, we had to integrate a diverse group of people from eleven different companies into a single, cohesive team. Paramax executives recognized the absolute necessity to develop a business culture based on the concept of employee involvement to execute and improve the complex process of our new environment. Our executives clearly understood that management needed to set the example and lead the way to quality improvement. The total quality management policy and the metrics used in this endeavor are presented.

  12. EXISTENCE THEOREM FOR THE PRICES FIXED POINT PROBLEM OF THE OVERLAPPING GENERATIONS MODEL, VIA METRIC SPACES ENDOWED WITH A GRAPH

    Directory of Open Access Journals (Sweden)

    Magnolia Tilca

    2014-10-01

    Full Text Available The aim of this paper is to study the existence of the solution for the overlapping generations model, using fixed point theorems in metric spaces endowed with a graph. The overlapping generations model has been introduced and developed by Maurice Allais (1947, Paul Samuelson (1958, Peter Diamond (1965 and so on. The present paper treats the case presented by Edmond (2008 in (Edmond, 2008 for a continuous time. The theorem of existence of the solution for the prices fixed point problem derived from the overlapping generations model gives an approximation of the solution via the graph theory. The tools employed in this study are based on applications of the Jachymski fixed point theorem on metric spaces endowed with a graph (Jachymski, 2008

  13. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr; Zagalak, Petr

    2013-01-01

    Roč. 33, č. 2 (2013), s. 819-835 ISSN 1078-0947 R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Partial differential equations with delay s * well-posedness * metric space Subject RIV: BC - Control Systems Theory Impact factor: 0.923, year: 2013 http://library.utia.cas.cz/separaty/2012/AS/zagalak-0381969.pdf

  14. Shaping of arm configuration space by prescription of non-Euclidean metrics with applications to human motor control

    Science.gov (United States)

    Biess, Armin

    2013-01-01

    The study of the kinematic and dynamic features of human arm movements provides insights into the computational strategies underlying human motor control. In this paper a differential geometric approach to movement control is taken by endowing arm configuration space with different non-Euclidean metric structures to study the predictions of the generalized minimum-jerk (MJ) model in the resulting Riemannian manifold for different types of human arm movements. For each metric space the solution of the generalized MJ model is given by reparametrized geodesic paths. This geodesic model is applied to a variety of motor tasks ranging from three-dimensional unconstrained movements of a four degree of freedom arm between pointlike targets to constrained movements where the hand location is confined to a surface (e.g., a sphere) or a curve (e.g., an ellipse). For the latter speed-curvature relations are derived depending on the boundary conditions imposed (periodic or nonperiodic) and the compatibility with the empirical one-third power law is shown. Based on these theoretical studies and recent experimental findings, I argue that geodesics may be an emergent property of the motor system and that the sensorimotor system may shape arm configuration space by learning metric structures through sensorimotor feedback.

  15. National Quality Forum Colon Cancer Quality Metric Performance: How Are Hospitals Measuring Up?

    Science.gov (United States)

    Mason, Meredith C; Chang, George J; Petersen, Laura A; Sada, Yvonne H; Tran Cao, Hop S; Chai, Christy; Berger, David H; Massarweh, Nader N

    2017-12-01

    To evaluate the impact of care at high-performing hospitals on the National Quality Forum (NQF) colon cancer metrics. The NQF endorses evaluating ≥12 lymph nodes (LNs), adjuvant chemotherapy (AC) for stage III patients, and AC within 4 months of diagnosis as colon cancer quality indicators. Data on hospital-level metric performance and the association with survival are unclear. Retrospective cohort study of 218,186 patients with resected stage I to III colon cancer in the National Cancer Data Base (2004-2012). High-performing hospitals (>75% achievement) were identified by the proportion of patients achieving each measure. The association between hospital performance and survival was evaluated using Cox shared frailty modeling. Only hospital LN performance improved (15.8% in 2004 vs 80.7% in 2012; trend test, P fashion [0 metrics, reference; 1, hazard ratio (HR) 0.96 (0.89-1.03); 2, HR 0.92 (0.87-0.98); 3, HR 0.85 (0.80-0.90); 2 vs 1, HR 0.96 (0.91-1.01); 3 vs 1, HR 0.89 (0.84-0.93); 3 vs 2, HR 0.95 (0.89-0.95)]. Performance on metrics in combination was associated with lower risk of death [LN + AC, HR 0.86 (0.78-0.95); AC + timely AC, HR 0.92 (0.87-0.98); LN + AC + timely AC, HR 0.85 (0.80-0.90)], whereas individual measures were not [LN, HR 0.95 (0.88-1.04); AC, HR 0.95 (0.87-1.05)]. Less than half of hospitals perform well on these NQF colon cancer metrics concurrently, and high performance on individual measures is not associated with improved survival. Quality improvement efforts should shift focus from individual measures to defining composite measures encompassing the overall multimodal care pathway and capturing successful transitions from one care modality to another.

  16. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    International Nuclear Information System (INIS)

    Xue, Zhenyu; Charonko, John J; Vlachos, Pavlos P

    2014-01-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, U 68.5 uncertainties are estimated at the 68.5% confidence level while U 95 uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements. (paper)

  17. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    Science.gov (United States)

    Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.

    2014-11-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.

  18. Weighted semiconvex spaces of measurable functions

    International Nuclear Information System (INIS)

    Olaleru, J.O.

    2001-12-01

    Semiconvex spaces are intermediates between locally convex spaces and the non locally convex topological vector spaces. They include all locally convex spaces; hence it is a generalization of locally convex spaces. In this article, we make a study of weighted semiconvex spaces parallel to weighted locally convex spaces where continuous functions are replaced with measurable functions and N p family replaces Nachbin family on a locally compact space X. Among others, we examine the Hausdorffness, completeness, inductive limits, barrelledness and countably barrelledness of weighted semiconvex spaces. New results are obtained while we have a more elegant proofs of old results. Furthermore, we get extensions of some of the old results. It is observed that the technique of proving theorems in weighted locally convex spaces can be adapted to that of weighted semicovex spaces of measurable functions in most cases. (author)

  19. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  20. Complex Monge–Ampère equations and geodesics in the space of Kähler metrics

    CERN Document Server

    2012-01-01

    The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruc...

  1. Measures and metrics of sustainable diets with a focus on milk, yogurt, and dairy products

    Science.gov (United States)

    Drewnowski, Adam

    2018-01-01

    The 4 domains of sustainable diets are nutrition, economics, society, and the environment. To be sustainable, foods and food patterns need to be nutrient-rich, affordable, culturally acceptable, and sparing of natural resources and the environment. Each sustainability domain has its own measures and metrics. Nutrient density of foods has been assessed through nutrient profiling models, such as the Nutrient-Rich Foods family of scores. The Food Affordability Index, applied to different food groups, has measured both calories and nutrients per penny (kcal/$). Cultural acceptance measures have been based on relative food consumption frequencies across population groups. Environmental impact of individual foods and composite food patterns has been measured in terms of land, water, and energy use. Greenhouse gas emissions assess the carbon footprint of agricultural food production, processing, and retail. Based on multiple sustainability metrics, milk, yogurt, and other dairy products can be described as nutrient-rich, affordable, acceptable, and appealing. The environmental impact of dairy farming needs to be weighed against the high nutrient density of milk, yogurt, and cheese as compared with some plant-based alternatives. PMID:29206982

  2. Measurement of innovation in South Africa: An analysis of survey metrics and recommendations

    Directory of Open Access Journals (Sweden)

    Sibusiso T. Manzini

    2015-11-01

    Full Text Available The National System of Innovation (NSI is an important construct in South Africa’s policy discourse as illustrated in key national planning initiatives, such as the National Development Plan. The country’s capacity to innovate is linked to the prospects for industrial development leading to social and economic growth. Proper measurement of innovation activity is therefore crucial for policymaking. In this study, a constructive analytical critique of the innovation surveys that are conducted in South Africa is presented, the case for broadening current perspectives of innovation in the national policy discourse is reinforced, the significance of a broad perspective of innovation is demonstrated and new metrics for use in the measurement of the performance of the NSI are proposed. Current NSI survey instruments lack definition of non-technological innovation. They emphasise inputs rather than outputs, lack regional and sectoral analyses, give limited attention to innovation diffusion and are susceptible to respondent interpretation. Furthermore, there are gaps regarding the wider conditions of innovation and system linkages and learning. In order to obtain a comprehensive assessment of innovation in South Africa, there is a need to sharpen the metrics for measuring non-technological innovation and to define, account for and accurately measure the ‘hidden’ innovations that drive the realisation of value in management, the arts, public service and society in general. The new proposed indicators, which are mostly focused on innovation outputs, can be used as a basis for plugging the gaps identified in the existing surveys.

  3. Determining Type I and Type II Errors when Applying Information Theoretic Change Detection Metrics for Data Association and Space Situational Awareness

    Science.gov (United States)

    Wilkins, M.; Moyer, E. J.; Hussein, Islam I.; Schumacher, P. W., Jr.

    Correlating new detections back to a large catalog of resident space objects (RSOs) requires solving one of three types of data association problems: observation-to-track, track-to-track, or observation-to-observation. The authors previous work has explored the use of various information divergence metrics for solving these problems: Kullback-Leibler (KL) divergence, mutual information, and Bhattacharrya distance. In addition to approaching the data association problem strictly from the metric tracking aspect, we have explored fusing metric and photometric data using Bayesian probabilistic reasoning for RSO identification to aid in our ability to correlate data to specific RS Os. In this work, we will focus our attention on the KL Divergence, which is a measure of the information gained when new evidence causes the observer to revise their beliefs. We can apply the Principle of Minimum Discrimination Information such that new data produces as small an information gain as possible and this information change is bounded by ɛ. Choosing an appropriate value for ɛ for both convergence and change detection is a function of your risk tolerance. Small ɛ for change detection increases alarm rates while larger ɛ for convergence means that new evidence need not be identical in information content. We need to understand what this change detection metric implies for Type I α and Type II β errors when we are forced to make a decision on whether new evidence represents a true change in characterization of an object or is merely within the bounds of our measurement uncertainty. This is unclear for the case of fusing multiple kinds and qualities of characterization evidence that may exist in different metric spaces or are even semantic statements. To this end, we explore the use of Sequential Probability Ratio Testing where we suppose that we may need to collect additional evidence before accepting or rejecting the null hypothesis that a change has occurred. In this work, we

  4. Metric-independent measures for supersymmetric extended object theories on curved backgrounds

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2014-01-01

    For Green–Schwarz superstring σ-model on curved backgrounds, we introduce a non-metric measure Φ≡ϵ ij ϵ IJ (∂ i φ I )(∂ j φ J ) with two scalars φ I (I=1,2) used in ‘Two-Measure Theory’ (TMT). As in the flat-background case, the string tension T=(2πα ′ ) −1 emerges as an integration constant for the A i -field equation. This mechanism is further generalized to supermembrane theory, and to super-p-brane theory, both on general curved backgrounds. This shows the universal applications of dynamical measure of TMT to general supersymmetric extended objects on general curved backgrounds

  5. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics

    Directory of Open Access Journals (Sweden)

    Kang Rui

    2016-06-01

    Full Text Available In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence-theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis-based reliability metrics, possibility-theory-based reliability metrics (posbist reliability and uncertainty-theory-based reliability metrics (belief reliability. It is pointed out that a qualified reliability metric that is able to consider the effect of epistemic uncertainty needs to (1 compensate the conservatism in the estimations of the component-level reliability metrics caused by epistemic uncertainty, and (2 satisfy the duality axiom, otherwise it might lead to paradoxical and confusing results in engineering applications. The five commonly used non-probabilistic reliability metrics are compared in terms of these two properties, and the comparison can serve as a basis for the selection of the appropriate reliability metrics.

  6. RAAK PRO project: measuring safety in aviation : concept for the design of new metrics

    NARCIS (Netherlands)

    Karanikas, Nektarios; Kaspers, Steffen; Roelen, Alfred; Piric, Selma; van Aalst, Robbert; de Boer, Robert

    2017-01-01

    Following the completion of the 1st phase of the RAAK PRO project Aviation Safety Metrics, during which the researchers mapped the current practice in safety metrics and explored the validity of monotonic relationships of SMS, activity and demographic metrics with safety outcomes, this report

  7. Dosimetric radiation measurements in space

    International Nuclear Information System (INIS)

    Benton, E.V.

    1983-01-01

    In reviewing radiation exposures recorded during spaceflights of the United States and the Soviet Union, this paper examines absorbed dose and dose rates as a function of parameters such as inclination, altitude, spacecraft type and shielding. Complete shielding from galactic cosmic rays does not appear practical because of spacecraft weight limitations. Preliminary data on neutron and HZE-particle components and LET spectra are available. Most of the data in this paper are from manned missions; for low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence on inclination. The doses range from about 6 millirad per day for the Space Transportation System (STS) No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. (author)

  8. Comparison of continuous versus categorical tumor measurement-based metrics to predict overall survival in cancer treatment trials

    Science.gov (United States)

    An, Ming-Wen; Mandrekar, Sumithra J.; Branda, Megan E.; Hillman, Shauna L.; Adjei, Alex A.; Pitot, Henry; Goldberg, Richard M.; Sargent, Daniel J.

    2011-01-01

    Purpose The categorical definition of response assessed via the Response Evaluation Criteria in Solid Tumors has documented limitations. We sought to identify alternative metrics for tumor response that improve prediction of overall survival. Experimental Design Individual patient data from three North Central Cancer Treatment Group trials (N0026, n=117; N9741, n=1109; N9841, n=332) were used. Continuous metrics of tumor size based on longitudinal tumor measurements were considered in addition to a trichotomized response (TriTR: Response vs. Stable vs. Progression). Cox proportional hazards models, adjusted for treatment arm and baseline tumor burden, were used to assess the impact of the metrics on subsequent overall survival, using a landmark analysis approach at 12-, 16- and 24-weeks post baseline. Model discrimination was evaluated using the concordance (c) index. Results The overall best response rates for the three trials were 26%, 45%, and 25% respectively. While nearly all metrics were statistically significantly associated with overall survival at the different landmark time points, the c-indices for the traditional response metrics ranged from 0.59-0.65; for the continuous metrics from 0.60-0.66 and for the TriTR metrics from 0.64-0.69. The c-indices for TriTR at 12-weeks were comparable to those at 16- and 24-weeks. Conclusions Continuous tumor-measurement-based metrics provided no predictive improvement over traditional response based metrics or TriTR; TriTR had better predictive ability than best TriTR or confirmed response. If confirmed, TriTR represents a promising endpoint for future Phase II trials. PMID:21880789

  9. Randomized Approaches for Nearest Neighbor Search in Metric Space When Computing the Pairwise Distance Is Extremely Expensive

    Science.gov (United States)

    Wang, Lusheng; Yang, Yong; Lin, Guohui

    Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.

  10. Measuring and managing radiologist productivity, part 1: clinical metrics and benchmarks.

    Science.gov (United States)

    Duszak, Richard; Muroff, Lawrence R

    2010-06-01

    Physician productivity disparities are not uncommonly debated within radiology groups, sometimes in a contentious manner. Attempts to measure productivity, identify and motivate outliers, and develop equitable management policies can present challenges to private and academic practices alike but are often necessary for a variety of professional, financial, and personnel reasons. This is the first of a two-part series that will detail metrics for evaluating radiologist productivity and review published benchmarks, focusing primarily on clinical work. Issues and limitations that may prevent successful implementation of measurement systems are explored. Part 2 will expand that discussion to evaluating nonclinical administrative and academic activities, outlining advantages and disadvantages of addressing differential productivity, and introducing potential models for practices seeking to motivate physicians on the basis of both clinical and nonclinical work.

  11. Prognostic Performance Metrics

    Data.gov (United States)

    National Aeronautics and Space Administration — This chapter presents several performance metrics for offline evaluation of prognostics algorithms. A brief overview of different methods employed for performance...

  12. Measuring the curvature of space with stretched strings

    International Nuclear Information System (INIS)

    Lyth, D.H.

    1983-01-01

    The equilibrium of a stretched string in curved space is studied. The problem is first formulated without detailed assumptions, then the force of gravity on the string is calculated from general relativity with a static metric. Apart from the latter calculation everything is done in ordinary space rather than in space-time. A number of simple cases are worked out explicitly. (author)

  13. Metric learning

    CERN Document Server

    Bellet, Aurelien; Sebban, Marc

    2015-01-01

    Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learnin

  14. A City and National Metric measuring Isolation from the Global Market for Food Security Assessment

    Science.gov (United States)

    Brown, Molly E.; Silver, Kirk Coleman; Rajagopalan, Krishnan

    2013-01-01

    The World Bank has invested in infrastructure in developing countries for decades. This investment aims to reduce the isolation of markets, reducing both seasonality and variability in food availability and food prices. Here we combine city market price data, global distance to port, and country infrastructure data to create a new Isolation Index for countries and cities around the world. Our index quantifies the isolation of a city from the global market. We demonstrate that an index built at the country level can be applied at a sub-national level to quantify city isolation. In doing so, we offer policy makers with an alternative metric to assess food insecurity. We compare our isolation index with other indices and economic data found in the literature.We show that our Index measures economic isolation regardless of economic stability using correlation and analysis

  15. Multi-linear model set design based on the nonlinearity measure and H-gap metric.

    Science.gov (United States)

    Shaghaghi, Davood; Fatehi, Alireza; Khaki-Sedigh, Ali

    2017-05-01

    This paper proposes a model bank selection method for a large class of nonlinear systems with wide operating ranges. In particular, nonlinearity measure and H-gap metric are used to provide an effective algorithm to design a model bank for the system. Then, the proposed model bank is accompanied with model predictive controllers to design a high performance advanced process controller. The advantage of this method is the reduction of excessive switch between models and also decrement of the computational complexity in the controller bank that can lead to performance improvement of the control system. The effectiveness of the method is verified by simulations as well as experimental studies on a pH neutralization laboratory apparatus which confirms the efficiency of the proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  17. Young Measures and Compactness in Measure Spaces

    CERN Document Server

    Florescu, Liviu C

    2012-01-01

    Many problems in science can be formulated in the language of optimization theory, in which case an optimal solution or the best response to a particular situation is required. In situations of interest, such classical optimal solutions are lacking, or at least, the existence of such solutions is far from easy to prove. So, non-convex optimization problems may not possess a classical solution because approximate solutions typically show rapid oscillations. This phenomenon requires the extension of such problems' solution often constructed by means of Young measures. This book is written to int

  18. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  19. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  20. Measuring Success: Metrics that Link Supply Chain Management to Aircraft Readiness

    National Research Council Canada - National Science Library

    Balestreri, William

    2002-01-01

    This thesis evaluates and analyzes current strategic management planning methods that develop performance metrics linking supply chain management to aircraft readiness, Our primary focus is the Marine...

  1. About the possibility of a generalized metric

    International Nuclear Information System (INIS)

    Lukacs, B.; Ladik, J.

    1991-10-01

    The metric (the structure of the space-time) may be dependent on the properties of the object measuring it. The case of size dependence of the metric was examined. For this dependence the simplest possible form of the metric tensor has been constructed which fulfils the following requirements: there be two extremal characteristic scales; the metric be unique and the usual between them; the change be sudden in the neighbourhood of these scales; the size of the human body appear as a parameter (postulated on the basis of some philosophical arguments). Estimates have been made for the two extremal length scales according to existing observations. (author) 19 refs

  2. Measurement of parapharyngeal space using CT images

    International Nuclear Information System (INIS)

    Ichimura, Keiichi; Kase, Yasuhiro; Iinuma, Toshitaka

    1991-01-01

    Parapharyngeal space can be defined as a potential space surrounded by deglutitional and masticator muscles and their covering, superficial and middle layer of deep cervical fascia. Parapharyngeal space has traditionally been divided by styloid process and fascia of tensor veli palatini muscle (nasopharyngeal level) or fascia of stylopharyngeus muscle (oropharyngeal level) into two compartments, prestyloid and poststyloid spaces. The latter is often called as carotid space. Prestyloid portion exclusively contains fat tissue, which yields hypoabsorption area in CT films and high density area in MRI. In most of papers in radiological journals, the term of parapharyngeal space is regarded as its prestyloid portion which is clearly identified. Axial CT images of 144 patients without any naso- or oropharyngeal lesions were analyzed. Two reference levels of nasopharynx were adopted for the study. The upper level passes through the plane of fossa of Rosenmuller, and the lower reference level transects soft palate. The following parameters of the space were measured; Length and width of the whole space, length and width of prestyloid fatty space, and furthermore, width of pre- and poststyloid space, that were divided by a imaginary line pararell to the axis of the whole space (the upper level); Length and width of the whole space, length of base and height of a triangle of the prestyloid part (the lower level). While parapharyngeal space was symmmetrical in the upper level, the rate of asymmetry amounted to a fourth in the lower level. Prestyloid space was broader than poststyloid one in the upper level. Men were dominant in length of the space in both the upper and the lower level and in length of the base of fatty space in the lower level. There was no difference between any age groups other than in fatty area in the lower level. Teens tended to be narrow, while 60's and older were wide. (author)

  3. The metric approximation property and Lipschitz-free spaces over subsets of R-N

    Czech Academy of Sciences Publication Activity Database

    Pernecká, Eva; Smith, R.J.

    2015-01-01

    Roč. 199, November (2015), s. 29-44 ISSN 0021-9045 R&D Projects: GA ČR(CZ) GAP201/11/0345 Institutional support: RVO:67985840 Keywords : Lipschitz-free space * approximation property Subject RIV: BA - General Mathematics Impact factor: 0.921, year: 2015 http://www.sciencedirect.com/science/article/pii/S0021904515000970

  4. Business process performance measurement: a structured literature review of indicators, measures and metrics.

    Science.gov (United States)

    Van Looy, Amy; Shafagatova, Aygun

    2016-01-01

    Measuring the performance of business processes has become a central issue in both academia and business, since organizations are challenged to achieve effective and efficient results. Applying performance measurement models to this purpose ensures alignment with a business strategy, which implies that the choice of performance indicators is organization-dependent. Nonetheless, such measurement models generally suffer from a lack of guidance regarding the performance indicators that exist and how they can be concretized in practice. To fill this gap, we conducted a structured literature review to find patterns or trends in the research on business process performance measurement. The study also documents an extended list of 140 process-related performance indicators in a systematic manner by further categorizing them into 11 performance perspectives in order to gain a holistic view. Managers and scholars can consult the provided list to choose the indicators that are of interest to them, considering each perspective. The structured literature review concludes with avenues for further research.

  5. Metrics Feedback Cycle: measuring and improving user engagement in gamified eLearning systems

    Directory of Open Access Journals (Sweden)

    Adam Atkins

    2017-12-01

    Full Text Available This paper presents the identification, design and implementation of a set of metrics of user engagement in a gamified eLearning application. The 'Metrics Feedback Cycle' (MFC is introduced as a formal process prescribing the iterative evaluation and improvement of application-wide engagement, using data collected from metrics as input to improve related engagement features. This framework was showcased using a gamified eLearning application as a case study. In this paper, we designed a prototype and tested it with thirty-six (N=36 students to validate the effectiveness of the MFC. The analysis and interpretation of metrics data shows that the gamification features had a positive effect on user engagement, and helped identify areas in which this could be improved. We conclude that the MFC has applications in gamified systems that seek to maximise engagement by iteratively evaluating implemented features against a set of evolving metrics.

  6. Verification of Equivalence of the Axial Gauge to the Coulomb Gauge in QED by Embedding in the Indefinite Metric Hilbert Space : Particles and Fields

    OpenAIRE

    Yuji, NAKAWAKI; Azuma, TANAKA; Kazuhiko, OZAKI; Division of Physics and Mathematics, Faculty of Engineering Setsunan University; Junior College of Osaka Institute of Technology; Faculty of General Education, Osaka Institute of Technology

    1994-01-01

    Gauge Equivalence of the A_3=0 (axial) gauge to the Coulomb gauge is directly verified in QED. For that purpose a pair of conjugate zero-norm fields are introduced. This enables us to construct a canonical formulation in the axial gauge embedded in the indefinite metric Hilbert space in such a way that the Feynman rules are not altered. In the indefinite metric Hilbert space we can implement a gauge transformation, which otherwise has to be carried out only by hand, as main parts of a canonic...

  7. Common Fixed Points for Asymptotic Pointwise Nonexpansive Mappings in Metric and Banach Spaces

    Directory of Open Access Journals (Sweden)

    P. Pasom

    2012-01-01

    Full Text Available Let C be a nonempty bounded closed convex subset of a complete CAT(0 space X. We prove that the common fixed point set of any commuting family of asymptotic pointwise nonexpansive mappings on C is nonempty closed and convex. We also show that, under some suitable conditions, the sequence {xk}k=1∞ defined by xk+1=(1-tmkxk⊕tmkTmnky(m-1k, y(m-1k=(1-t(m-1kxk⊕t(m-1kTm-1nky(m-2k,y(m-2k=(1-t(m-2kxk⊕t(m-2kTm-2nky(m-3k,…,y2k=(1-t2kxk⊕t2kT2nky1k,y1k=(1-t1kxk⊕t1kT1nky0k,y0k=xk,  k∈N, converges to a common fixed point of T1,T2,…,Tm where they are asymptotic pointwise nonexpansive mappings on C, {tik}k=1∞ are sequences in [0,1] for all i=1,2,…,m, and {nk} is an increasing sequence of natural numbers. The related results for uniformly convex Banach spaces are also included.

  8. Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time

    Science.gov (United States)

    Noble, J. H.; Jentschura, U. D.

    2016-03-01

    We investigate the spin-1 /2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG , where α is the fine-structure constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric, electrostatically bound systems (with gravitational corrections) is evaluated for example cases.

  9. Project management metrics, KPIs, and dashboards a guide to measuring and monitoring project performance

    CERN Document Server

    Kerzner, Harold

    2013-01-01

    Today, with the growth of complex projects, stakeholder involvement in projects, advances in computer technology for dashboard designs, metrics, and key performance indicators for project management have become an important focus. This Second Edition of the bestselling book walks readers through everything from the basics of project management metrics and key performance indicators to establishing targets and using dashboards to monitor performance. The content is aligned with PMI's PMBOK Guide and stresses "value" as the main focal point.

  10. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    Science.gov (United States)

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation

  11. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    Science.gov (United States)

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our

  12. Space volcano observatory (SVO): a metric resolution system on-board a micro/mini-satellite

    Science.gov (United States)

    Briole, P.; Cerutti-Maori, G.; Kasser, M.

    2017-11-01

    1500 volcanoes on the Earth are potentially active, one third of them have been active during this century and about 70 are presently erupting. At the beginning of the third millenium, 10% of the world population will be living in areas directly threatened by volcanoes, without considering the effects of eruptions on climate or air-trafic for example. The understanding of volcanic eruptions, a major challenge in geoscience, demands continuous monitoring of active volcanoes. The only way to provide global, continuous, real time and all-weather information on volcanoes is to set up a Space Volcano Observatory closely connected to the ground observatories. Spaceborne observations are mandatory and implement the ground ones as well as airborne ones that can be implemented on a limited set of volcanoes. SVO goal is to monitor both the deformations and the changes in thermal radiance at optical wavelengths from high temperature surfaces of the active volcanic zones. For that, we propose to map at high resolution (1 to 1,5 m pixel size) the topography (stereoscopic observation) and the thermal anomalies (pixel-integrated temperatures above 450°C) of active volcanic areas in a size of 6 x 6 km to 12 x 12 km, large enough for monitoring most of the target features. A return time of 1 to 3 days will allow to get a monitoring useful for hazard mitigation. The paper will present the concept of the optical payload, compatible with a micro/mini satellite (mass in the range 100 - 400 kg), budget for the use of Proteus platform in the case of minisatellite approach will be given and also in the case of CNES microsat platform family. This kind of design could be used for other applications like high resolution imagery on a limited zone for military purpose, GIS, evolution cadaster…

  13. Regge calculus from discontinuous metrics

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2003-01-01

    Regge calculus is considered as a particular case of the more general system where the linklengths of any two neighbouring 4-tetrahedra do not necessarily coincide on their common face. This system is treated as that one described by metric discontinuous on the faces. In the superspace of all discontinuous metrics the Regge calculus metrics form some hypersurface defined by continuity conditions. Quantum theory of the discontinuous metric system is assumed to be fixed somehow in the form of quantum measure on (the space of functionals on) the superspace. The problem of reducing this measure to the Regge hypersurface is addressed. The quantum Regge calculus measure is defined from a discontinuous metric measure by inserting the δ-function-like phase factor. The requirement that continuity conditions be imposed in a 'face-independent' way fixes this factor uniquely. The term 'face-independent' means that this factor depends only on the (hyper)plane spanned by the face, not on it's form and size. This requirement seems to be natural from the viewpoint of existence of the well-defined continuum limit maximally free of lattice artefacts

  14. Project management metrics, KPIs, and dashboards a guide to measuring and monitoring project performance

    CERN Document Server

    Kerzner, Harold

    2017-01-01

    With the growth of complex projects, stakeholder involvement, and advancements in visual-based technology, metrics and KPIs (key performance indicators) are key factors in evaluating project performance. Dashboard reporting systems provide accessible project performance data, and sharing this vital data in a concise and consistent manner is a key communication responsibility of all project managers. This 3rd edition of Kerzner’s groundbreaking work includes the following updates: new sections on processing dashboard information, portfolio management PMO and metrics, and BI tool flexibility. PPT decks by chapter and a test bank will be available for use in seminar presentations and courses.

  15. Standard deviation of scatterometer measurements from space.

    Science.gov (United States)

    Fischer, R. E.

    1972-01-01

    The standard deviation of scatterometer measurements has been derived under assumptions applicable to spaceborne scatterometers. Numerical results are presented which show that, with sufficiently long integration times, input signal-to-noise ratios below unity do not cause excessive degradation of measurement accuracy. The effects on measurement accuracy due to varying integration times and changing the ratio of signal bandwidth to IF filter-noise bandwidth are also plotted. The results of the analysis may resolve a controversy by showing that in fact statistically useful scatterometer measurements can be made from space using a 20-W transmitter, such as will be used on the S-193 experiment for Skylab-A.

  16. The relationship between settlement population size and sustainable development measured by two sustainability metrics

    International Nuclear Information System (INIS)

    O'Regan, Bernadette; Morrissey, John; Foley, Walter; Moles, Richard

    2009-01-01

    This paper reports on a study of the relative sustainability of 79 Irish villages, towns and a small city (collectively called 'settlements') classified by population size. Quantitative data on more than 300 economic, social and environmental attributes of each settlement were assembled into a database. Two aggregated metrics were selected to model the relative sustainability of settlements: Ecological Footprint (EF) and Sustainable Development Index (SDI). Subsequently these were aggregated to create a single Combined Sustainable Development Index. Creation of this database meant that metric calculations did not rely on proxies, and were therefore considered to be robust. Methods employed provided values for indicators at various stages of the aggregation process. This allowed both the first reported empirical analysis of the relationship between settlement sustainability and population size, and the elucidation of information provided at different stages of aggregation. At the highest level of aggregation, settlement sustainability increased with population size, but important differences amongst individual settlements were masked by aggregation. EF and SDI metrics ranked settlements in differing orders of relative sustainability. Aggregation of indicators to provide Ecological Footprint values was found to be especially problematic, and this metric was inadequately sensitive to distinguish amongst the relative sustainability achieved by all settlements. Many authors have argued that, for policy makers to be able to inform planning decisions using sustainability indicators, it is necessary that they adopt a toolkit of aggregated indicators. Here it is argued that to interpret correctly each aggregated metric value, policy makers also require a hierarchy of disaggregated component indicator values, each explained fully. Possible implications for urban planning are briefly reviewed

  17. Measures and Metrics for Feasibility of Proof-of-Concept Studies With Human Immunodeficiency Virus Rapid Point-of-Care Technologies

    Science.gov (United States)

    Pant Pai, Nitika; Chiavegatti, Tiago; Vijh, Rohit; Karatzas, Nicolaos; Daher, Jana; Smallwood, Megan; Wong, Tom; Engel, Nora

    2017-01-01

    Objective Pilot (feasibility) studies form a vast majority of diagnostic studies with point-of-care technologies but often lack use of clear measures/metrics and a consistent framework for reporting and evaluation. To fill this gap, we systematically reviewed data to (a) catalog feasibility measures/metrics and (b) propose a framework. Methods For the period January 2000 to March 2014, 2 reviewers searched 4 databases (MEDLINE, EMBASE, CINAHL, Scopus), retrieved 1441 citations, and abstracted data from 81 studies. We observed 2 major categories of measures, that is, implementation centered and patient centered, and 4 subcategories of measures, that is, feasibility, acceptability, preference, and patient experience. We defined and delineated metrics and measures for a feasibility framework. We documented impact measures for a comparison. Findings We observed heterogeneity in reporting of metrics as well as misclassification and misuse of metrics within measures. Although we observed poorly defined measures and metrics for feasibility, preference, and patient experience, in contrast, acceptability measure was the best defined. For example, within feasibility, metrics such as consent, completion, new infection, linkage rates, and turnaround times were misclassified and reported. Similarly, patient experience was variously reported as test convenience, comfort, pain, and/or satisfaction. In contrast, within impact measures, all the metrics were well documented, thus serving as a good baseline comparator. With our framework, we classified, delineated, and defined quantitative measures and metrics for feasibility. Conclusions Our framework, with its defined measures/metrics, could reduce misclassification and improve the overall quality of reporting for monitoring and evaluation of rapid point-of-care technology strategies and their context-driven optimization. PMID:29333105

  18. Measures and Metrics for Feasibility of Proof-of-Concept Studies With Human Immunodeficiency Virus Rapid Point-of-Care Technologies: The Evidence and the Framework.

    Science.gov (United States)

    Pant Pai, Nitika; Chiavegatti, Tiago; Vijh, Rohit; Karatzas, Nicolaos; Daher, Jana; Smallwood, Megan; Wong, Tom; Engel, Nora

    2017-12-01

    Pilot (feasibility) studies form a vast majority of diagnostic studies with point-of-care technologies but often lack use of clear measures/metrics and a consistent framework for reporting and evaluation. To fill this gap, we systematically reviewed data to ( a ) catalog feasibility measures/metrics and ( b ) propose a framework. For the period January 2000 to March 2014, 2 reviewers searched 4 databases (MEDLINE, EMBASE, CINAHL, Scopus), retrieved 1441 citations, and abstracted data from 81 studies. We observed 2 major categories of measures, that is, implementation centered and patient centered, and 4 subcategories of measures, that is, feasibility, acceptability, preference, and patient experience. We defined and delineated metrics and measures for a feasibility framework. We documented impact measures for a comparison. We observed heterogeneity in reporting of metrics as well as misclassification and misuse of metrics within measures. Although we observed poorly defined measures and metrics for feasibility, preference, and patient experience, in contrast, acceptability measure was the best defined. For example, within feasibility, metrics such as consent, completion, new infection, linkage rates, and turnaround times were misclassified and reported. Similarly, patient experience was variously reported as test convenience, comfort, pain, and/or satisfaction. In contrast, within impact measures, all the metrics were well documented, thus serving as a good baseline comparator. With our framework, we classified, delineated, and defined quantitative measures and metrics for feasibility. Our framework, with its defined measures/metrics, could reduce misclassification and improve the overall quality of reporting for monitoring and evaluation of rapid point-of-care technology strategies and their context-driven optimization.

  19. Metric diffusion along foliations

    CERN Document Server

    Walczak, Szymon M

    2017-01-01

    Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

  20. A Unique Coupled Common Fixed Point Theorem for Symmetric (φ,ψ-Contractive Mappings in Ordered G-Metric Spaces with Applications

    Directory of Open Access Journals (Sweden)

    Manish Jain

    2013-01-01

    Full Text Available We establish the existence and uniqueness of coupled common fixed point for symmetric (φ,ψ-contractive mappings in the framework of ordered G-metric spaces. Present work extends, generalize, and enrich the recent results of Choudhury and Maity (2011, Nashine (2012, and Mohiuddine and Alotaibi (2012, thereby, weakening the involved contractive conditions. Our theoretical results are accompanied by suitable examples and an application to integral equations.

  1. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  2. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  3. Results of dosimetric measurements in space missions

    Science.gov (United States)

    Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Leicher, M.; Strauch, K.

    Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 muSv d^-1 to 770 muSv d^-1. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported.

  4. Radiation measurement on the International Space Station

    International Nuclear Information System (INIS)

    Akopova, A.B.; Manaseryan, M.M.; Melkonyan, A.A.; Tatikyan, S.Sh.; Potapov, Yu.

    2005-01-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380km and inclination 51.6 o are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z>=2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during last years it has already been successfully used on board the MIR station, Space Shuttles and 'Kosmos' spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2x103keV/μm and the value of equivalent dose 360μSv/day was estimated. The flux of biologically dangerous heavy particles with Z>=2 was measured (3.85x103particles/cm2)

  5. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    International Nuclear Information System (INIS)

    Spears, B.K.; Glenzer, S.; Edwards, M.J.; Brandon, S.; Clark, D.; Town, R.; Cerjan, C.; Dylla-Spears, R.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.; Weber, S.; Hatchett, S.; Haan, S.; Springer, P.; Moses, E.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.

    2011-01-01

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  6. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  7. Symmetries of the dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric

  8. Measuring distance “as the horse runs”: Cross-scale comparison of terrain-based metrics

    Science.gov (United States)

    Buttenfield, Barbara P.; Ghandehari, M; Leyk, S; Stanislawski, Larry V.; Brantley, M E; Qiang, Yi

    2016-01-01

    Distance metrics play significant roles in spatial modeling tasks, such as flood inundation (Tucker and Hancock 2010), stream extraction (Stanislawski et al. 2015), power line routing (Kiessling et al. 2003) and analysis of surface pollutants such as nitrogen (Harms et al. 2009). Avalanche risk is based on slope, aspect, and curvature, all directly computed from distance metrics (Gutiérrez 2012). Distance metrics anchor variogram analysis, kernel estimation, and spatial interpolation (Cressie 1993). Several approaches are employed to measure distance. Planar metrics measure straight line distance between two points (“as the crow flies”) and are simple and intuitive, but suffer from uncertainties. Planar metrics assume that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny facets of ceramic tile approximating a continuous terrain surface. In truth, terrain can bend, twist and undulate within each pixel.Work with Light Detection and Ranging (lidar) data or High Resolution Topography to achieve precise measurements present challenges, as filtering can eliminate or distort significant features (Passalacqua et al. 2015). The current availability of lidar data is far from comprehensive in developed nations, and non-existent in many rural and undeveloped regions. Notwithstanding computational advances, distance estimation on DEMs has never been systematically assessed, due to assumptions that improvements are so small that surface adjustment is unwarranted. For individual pixels inaccuracies may be small, but additive effects can propagate dramatically, especially in regional models (e.g., disaster evacuation) or global models (e.g., sea level rise) where pixels span dozens to hundreds of kilometers (Usery et al 2003). Such models are increasingly common, lending compelling reasons to understand shortcomings in the use of planar distance metrics. Researchers have studied curvature-based terrain modeling. Jenny et al. (2011) use curvature to generate

  9. Measuring gravitational effects on antimatter in space

    Directory of Open Access Journals (Sweden)

    Piacentino Giovanni Maria

    2017-01-01

    Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  10. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity

    Directory of Open Access Journals (Sweden)

    Deusiano Florêncio dos Reis

    2017-01-01

    Full Text Available Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge and the Index of Habitat Integrity (HII. The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP, total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera richness, only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the

  11. Overview of journal metrics

    Directory of Open Access Journals (Sweden)

    Kihong Kim

    2018-02-01

    Full Text Available Various kinds of metrics used for the quantitative evaluation of scholarly journals are reviewed. The impact factor and related metrics including the immediacy index and the aggregate impact factor, which are provided by the Journal Citation Reports, are explained in detail. The Eigenfactor score and the article influence score are also reviewed. In addition, journal metrics such as CiteScore, Source Normalized Impact per Paper, SCImago Journal Rank, h-index, and g-index are discussed. Limitations and problems that these metrics have are pointed out. We should be cautious to rely on those quantitative measures too much when we evaluate journals or researchers.

  12. Relative Citation Ratio of Top Twenty Macedonian Biomedical Scientists in PubMed: A New Metric that Uses Citation Rates to Measure Influence at the Article Level

    Directory of Open Access Journals (Sweden)

    Mirko Spiroski

    2016-06-01

    Conclusion: It is necessary to accept top twenty Macedonian biomedical scientists as an example of new metric that uses citation rates to measure influence at the article level, rather than qualification of the best Macedonian biomedical scientists.

  13. Revisiting measurement invariance in intelligence testing in aging research: Evidence for almost complete metric invariance across age groups.

    Science.gov (United States)

    Sprague, Briana N; Hyun, Jinshil; Molenaar, Peter C M

    2017-01-01

    Invariance of intelligence across age is often assumed but infrequently explicitly tested. Horn and McArdle (1992) tested measurement invariance of intelligence, providing adequate model fit but might not consider all relevant aspects such as sub-test differences. The goal of the current paper is to explore age-related invariance of the WAIS-R using an alternative model that allows direct tests of age on WAIS-R subtests. Cross-sectional data on 940 participants aged 16-75 from the WAIS-R normative values were used. Subtests examined were information, comprehension, similarities, vocabulary, picture completion, block design, picture arrangement, and object assembly. The two intelligence factors considered were fluid and crystallized intelligence. Self-reported ages were divided into young (16-22, n = 300), adult (29-39, n = 275), middle (40-60, n = 205), and older (61-75, n = 160) adult groups. Results suggested partial metric invariance holds. Although most of the subtests reflected fluid and crystalized intelligence similarly across different ages, invariance did not hold for block design on fluid intelligence and picture arrangement on crystallized intelligence for older adults. Additionally, there was evidence of a correlated residual between information and vocabulary for the young adults only. This partial metric invariance model yielded acceptable model fit compared to previously-proposed invariance models of Horn and McArdle (1992). Almost complete metric invariance holds for a two-factor model of intelligence. Most of the subtests were invariant across age groups, suggesting little evidence for age-related bias in the WAIS-R. However, we did find unique relationships between two subtests and intelligence. Future studies should examine age-related differences in subtests when testing measurement invariance in intelligence.

  14. The PROMIS Physical Function item bank was calibrated to a standardized metric and shown to improve measurement efficiency

    DEFF Research Database (Denmark)

    Rose, Matthias; Bjørner, Jakob; Gandek, Barbara

    2014-01-01

    OBJECTIVE: To document the development and psychometric evaluation of the Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank and static instruments. STUDY DESIGN AND SETTING: The items were evaluated using qualitative and quantitative methods. A total...... response model was used to estimate item parameters, which were normed to a mean of 50 (standard deviation [SD]=10) in a US general population sample. RESULTS: The final bank consists of 124 PROMIS items covering upper, central, and lower extremity functions and instrumental activities of daily living...... to identify differences between age and disease groups. CONCLUSION: The item bank provides a common metric and can improve the measurement of PF by facilitating the standardization of patient-reported outcome measures and implementation of CATs for more efficient PF assessments over a larger range....

  15. Sustainability, Health and Environmental Metrics: Impact on Ranking and Associations with Socioeconomic Measures for 50 U.S. Cities

    Directory of Open Access Journals (Sweden)

    Timothy Wade

    2013-02-01

    Full Text Available Waste and materials management, land use planning, transportation and infrastructure including water and energy can have indirect or direct beneficial impacts on the environment and public health. The potential for impact, however, is rarely viewed in an integrated fashion. To facilitate such an integrated view in support of community-based policy decision making, we catalogued and evaluated associations between common, publically available, Environmental (e, Health (h, and Sustainability (s metrics and sociodemographic measurements (n = 10 for 50 populous U.S. cities. E, H, S indices combined from two sources were derived from component (e (h (s metrics for each city. A composite EHS Index was derived to reflect the integration across the E, H, and S indices. Rank order of high performing cities was highly dependent on the E, H and S indices considered. When viewed together with sociodemographic measurements, our analyses further the understanding of the interplay between these broad categories and reveal significant sociodemographic disparities (e.g., race, education, income associated with low performing cities. Our analyses demonstrate how publically available environmental, health, sustainability and socioeconomic data sets can be used to better understand interconnections between these diverse domains for more holistic community assessments.

  16. MO-G-BRE-06: Metrics of Success: Measuring Participation and Attitudes Related to Near-Miss Incident Learning Systems

    International Nuclear Information System (INIS)

    Nyflot, MJ; Kusano, AS; Zeng, J; Carlson, JC; Novak, A; Sponseller, P; Jordan, L; Kane, G; Ford, EC

    2014-01-01

    Purpose: Interest in incident learning systems (ILS) for improving safety and quality in radiation oncology is growing, as evidenced by the upcoming release of the national ILS. However, an institution implementing such a system would benefit from quantitative metrics to evaluate performance and impact. We developed metrics to measure volume of reporting, severity of reported incidents, and changes in staff attitudes over time from implementation of our institutional ILS. Methods: We analyzed 2023 incidents from our departmental ILS from 2/2012–2/2014. Incidents were prospectively assigned a near-miss severity index (NMSI) at multidisciplinary review to evaluate the potential for error ranging from 0 to 4 (no harm to critical). Total incidents reported, unique users reporting, and average NMSI were evaluated over time. Additionally, departmental safety attitudes were assessed through a 26 point survey adapted from the AHRQ Hospital Survey on Patient Safety Culture before, 12 months, and 24 months after implementation of the incident learning system. Results: Participation in the ILS increased as demonstrated by total reports (approximately 2.12 additional reports/month) and unique users reporting (0.51 additional users reporting/month). Also, the average NMSI of reports trended lower over time, significantly decreasing after 12 months of reporting (p<0.001) but with no significant change at months 18 or 24. In survey data significant improvements were noted in many dimensions, including perceived barriers to reporting incidents such as concern of embarrassment (37% to 18%; p=0.02) as well as knowledge of what incidents to report, how to report them, and confidence that these reports were used to improve safety processes. Conclusion: Over a two-year period, our departmental ILS was used more frequently, incidents became less severe, and staff confidence in the system improved. The metrics used here may be useful for other institutions seeking to create or evaluate

  17. MO-G-BRE-06: Metrics of Success: Measuring Participation and Attitudes Related to Near-Miss Incident Learning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nyflot, MJ; Kusano, AS; Zeng, J; Carlson, JC; Novak, A; Sponseller, P; Jordan, L; Kane, G; Ford, EC [University of Washington, Seattle, WA (United States)

    2014-06-15

    Purpose: Interest in incident learning systems (ILS) for improving safety and quality in radiation oncology is growing, as evidenced by the upcoming release of the national ILS. However, an institution implementing such a system would benefit from quantitative metrics to evaluate performance and impact. We developed metrics to measure volume of reporting, severity of reported incidents, and changes in staff attitudes over time from implementation of our institutional ILS. Methods: We analyzed 2023 incidents from our departmental ILS from 2/2012–2/2014. Incidents were prospectively assigned a near-miss severity index (NMSI) at multidisciplinary review to evaluate the potential for error ranging from 0 to 4 (no harm to critical). Total incidents reported, unique users reporting, and average NMSI were evaluated over time. Additionally, departmental safety attitudes were assessed through a 26 point survey adapted from the AHRQ Hospital Survey on Patient Safety Culture before, 12 months, and 24 months after implementation of the incident learning system. Results: Participation in the ILS increased as demonstrated by total reports (approximately 2.12 additional reports/month) and unique users reporting (0.51 additional users reporting/month). Also, the average NMSI of reports trended lower over time, significantly decreasing after 12 months of reporting (p<0.001) but with no significant change at months 18 or 24. In survey data significant improvements were noted in many dimensions, including perceived barriers to reporting incidents such as concern of embarrassment (37% to 18%; p=0.02) as well as knowledge of what incidents to report, how to report them, and confidence that these reports were used to improve safety processes. Conclusion: Over a two-year period, our departmental ILS was used more frequently, incidents became less severe, and staff confidence in the system improved. The metrics used here may be useful for other institutions seeking to create or evaluate

  18. Use of performance metrics for the measurement of universal coverage for maternal care in Mexico.

    Science.gov (United States)

    Serván-Mori, Edson; Contreras-Loya, David; Gomez-Dantés, Octavio; Nigenda, Gustavo; Sosa-Rubí, Sandra G; Lozano, Rafael

    2017-06-01

    This study provides evidence for those working in the maternal health metrics and health system performance fields, as well as those interested in achieving universal and effective health care coverage. Based on the perspective of continuity of health care and applying quasi-experimental methods to analyse the cross-sectional 2009 National Demographic Dynamics Survey (n = 14 414 women), we estimated the middle-term effects of Mexico's new public health insurance scheme, Seguro Popular de Salud (SPS) (vs women without health insurance) on seven indicators related to maternal health care (according to official guidelines): (a) access to skilled antenatal care (ANC); (b) timely ANC; (c) frequent ANC; (d) adequate content of ANC; (e) institutional delivery; (f) postnatal consultation and (g) access to standardized comprehensive antenatal and postnatal care (or the intersection of the seven process indicators). Our results show that 94% of all pregnancies were attended by trained health personnel. However, comprehensive access to ANC declines steeply in both groups as we move along the maternal healthcare continuum. The percentage of institutional deliveries providing timely, frequent and adequate content of ANC reached 70% among SPS women (vs 64.7% in the uninsured), and only 57.4% of SPS-affiliated women received standardized comprehensive care (vs 53.7% in the uninsured group). In Mexico, access to comprehensive antenatal and postnatal care as defined by Mexican guidelines (in accordance to WHO recommendations) is far from optimal. Even though a positive influence of SPS on maternal care was documented, important challenges still remain. Our results identified key bottlenecks of the maternal healthcare continuum that should be addressed by policy makers through a combination of supply side interventions and interventions directed to social determinants of access to health care. © The Author 2017. Published by Oxford University Press in association with The

  19. Metric Indices for Performance Evaluation of a Mixed Measurement based State Estimator

    Directory of Open Access Journals (Sweden)

    Paula Sofia Vide

    2013-01-01

    Full Text Available With the development of synchronized phasor measurement technology in recent years, it gains great interest the use of PMU measurements to improve state estimation performances due to their synchronized characteristics and high data transmission speed. The ability of the Phasor Measurement Units (PMU to directly measure the system state is a key over SCADA measurement system. PMU measurements are superior to the conventional SCADA measurements in terms of resolution and accuracy. Since the majority of measurements in existing estimators are from conventional SCADA measurement system, it is hard to be fully replaced by PMUs in the near future so state estimators including both phasor and conventional SCADA measurements are being considered. In this paper, a mixed measurement (SCADA and PMU measurements state estimator is proposed. Several useful measures for evaluating various aspects of the performance of the mixed measurement state estimator are proposed and explained. State Estimator validity, performance and characteristics of the results on IEEE 14 bus test system and IEEE 30 bus test system are presented.

  20. Learning Low-Dimensional Metrics

    OpenAIRE

    Jain, Lalit; Mason, Blake; Nowak, Robert

    2017-01-01

    This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric;4) we also bound the accuracy ...

  1. CWT and RWT Metrics Measure the Performance of the Army's Logistics Chain for Spare Parts

    National Research Council Canada - National Science Library

    2003-01-01

    .... As part of its efforts to improve the logistics chain for spare parts, the Army must measure the performance of its supply system in filling orders for materiel. Velocity Management (VM) is a RAND-developed and Army implemented system that measures such performance and seeks ways to improve it through its Define-Measure- Improve (DMI) methodology. As the term DMI implies, measurement is central to this improvement approach.

  2. Cardiovascular health metrics and accelerometer-measured physical activity levels: National Health and Nutrition Examination Survey, 2003-2006.

    Science.gov (United States)

    Barreira, Tiago V; Harrington, Deirdre M; Katzmarzyk, Peter T

    2014-01-01

    To determine whether relationships exist between accelerometer-measured moderate-to-vigorous physical activity (MVPA) and other cardiovascular (CV) health metrics in a large sample. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) collected from January 1, 2003, through December 31, 2006, were used. Overall, 3454 nonpregnant adults 20 years or older who fasted for 6 hours or longer, with valid accelerometer data and with CV health metrics, were included in the study. Blood pressure (BP), body mass index (BMI), smoking status, diet, fasting plasma glucose level, and total cholesterol level were defined as ideal, intermediate, and poor on the basis of American Heart Association criteria. Results were weighted to account for sampling design, oversampling, and nonresponse. Significant increasing linear trends in mean daily MVPA were observed across CV health levels for BMI, BP, and fasting plasma glucose (Pphysical activity in the overall definition of ideal CV health. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  3. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  4. Tracker Performance Metric

    National Research Council Canada - National Science Library

    Olson, Teresa; Lee, Harry; Sanders, Johnnie

    2002-01-01

    .... We have developed the Tracker Performance Metric (TPM) specifically for this purpose. It was designed to measure the output performance, on a frame-by-frame basis, using its output position and quality...

  5. The PROMIS Physical Function item bank was calibrated to a standardized metric and shown to improve measurement efficiency.

    Science.gov (United States)

    Rose, Matthias; Bjorner, Jakob B; Gandek, Barbara; Bruce, Bonnie; Fries, James F; Ware, John E

    2014-05-01

    To document the development and psychometric evaluation of the Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank and static instruments. The items were evaluated using qualitative and quantitative methods. A total of 16,065 adults answered item subsets (n>2,200/item) on the Internet, with oversampling of the chronically ill. Classical test and item response theory methods were used to evaluate 149 PROMIS PF items plus 10 Short Form-36 and 20 Health Assessment Questionnaire-Disability Index items. A graded response model was used to estimate item parameters, which were normed to a mean of 50 (standard deviation [SD]=10) in a US general population sample. The final bank consists of 124 PROMIS items covering upper, central, and lower extremity functions and instrumental activities of daily living. In simulations, a 10-item computerized adaptive test (CAT) eliminated floor and decreased ceiling effects, achieving higher measurement precision than any comparable length static tool across four SDs of the measurement range. Improved psychometric properties were transferred to the CAT's superior ability to identify differences between age and disease groups. The item bank provides a common metric and can improve the measurement of PF by facilitating the standardization of patient-reported outcome measures and implementation of CATs for more efficient PF assessments over a larger range. Copyright © 2014. Published by Elsevier Inc.

  6. Measuring Cognitive Load and Cognition: Metrics for Technology-Enhanced Learning

    Science.gov (United States)

    Martin, Stewart

    2014-01-01

    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive…

  7. A family of metric gravities

    Science.gov (United States)

    Shuler, Robert

    2018-04-01

    The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one

  8. Square root metric in the analysis of the measurements of high energy physics instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Petrillo, L; Severi, M [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Rome Univ. (Italy). Ist. di Fisica)

    1982-09-15

    A vast category of detectors are characterized by a charge output with a distribution which has a variance proportional to the mean value. In all these cases a square root scale achieved in the hardware seems more suitable from the point of view of the resolution of the measurements, of the number of ADC channels needed, and of a preliminary analysis in the stage of tuning and checking of the detector.

  9. Microcomputer-based tests for repeated-measures: Metric properties and predictive validities

    Science.gov (United States)

    Kennedy, Robert S.; Baltzley, Dennis R.; Dunlap, William P.; Wilkes, Robert L.; Kuntz, Lois-Ann

    1989-01-01

    A menu of psychomotor and mental acuity tests were refined. Field applications of such a battery are, for example, a study of the effects of toxic agents or exotic environments on performance readiness, or the determination of fitness for duty. The key requirement of these tasks is that they be suitable for repeated-measures applications, and so questions of stability and reliability are a continuing, central focus of this work. After the initial (practice) session, seven replications of 14 microcomputer-based performance tests (32 measures) were completed by 37 subjects. Each test in the battery had previously been shown to stabilize in less than five 90-second administrations and to possess retest reliabilities greater than r = 0.707 for three minutes of testing. However, all the tests had never been administered together as a battery and they had never been self-administered. In order to provide predictive validity for intelligence measurement, the Wechsler Adult Intelligence Scale-Revised and the Wonderlic Personnel Test were obtained on the same subjects.

  10. Measuring fitness of Kenyan children with polyparasitic infections using the 20-meter shuttle run test as a morbidity metric.

    Directory of Open Access Journals (Sweden)

    Amaya L Bustinduy

    2011-07-01

    Full Text Available To date, there has been no standardized approach to the assessment of aerobic fitness among children who harbor parasites. In quantifying the disability associated with individual or multiple chronic infections, accurate measures of physical fitness are important metrics. This is because exercise intolerance, as seen with anemia and many other chronic disorders, reflects the body's inability to maintain adequate oxygen supply (VO(2 max to the motor tissues, which is frequently linked to reduced quality-of-life in terms of physical and job performance. The objective of our study was to examine the associations between polyparasitism, anemia, and reduced fitness in a high risk Kenyan population using novel implementation of the 20-meter shuttle run test (20mSRT, a well-standardized, low-technology physical fitness test.Four villages in coastal Kenya were surveyed during 2009-2010. Children 5-18 years were tested for infection with Schistosoma haematobium (Sh, malaria, filaria, and geohelminth infections by standard methods. After anthropometric and hemoglobin testing, fitness was assessed with the 20 mSRT. The 20 mSRT proved easy to perform, requiring only minimal staff training. Parasitology revealed high prevalence of single and multiple parasitic infections in all villages, with Sh being the most common (25-62%. Anemia prevalence was 45-58%. Using multiply-adjusted linear modeling that accounted for household clustering, decreased aerobic capacity was significantly associated with anemia, stunting, and wasting, with some gender differences.The 20 mSRT, which has excellent correlation with VO(2, is a highly feasible fitness test for low-resource settings. Our results indicate impaired fitness is common in areas endemic for parasites, where, at least in part, low fitness scores are likely to result from anemia and stunting associated with chronic infection. The 20 mSRT should be used as a common metric to quantify physical fitness and compare sub

  11. Using the Solution Space Diagram in Measuring the Effect of Sector Complexity During Merging Scenarios

    NARCIS (Netherlands)

    Abdul Rahman, S.M.B.; Van Paassen, M.M.; Mulder, M.

    2011-01-01

    When designing Air Traffic Control (ATC) sectors and procedures, traffic complexity and workload are important issues. For predicting ATC workload, metrics based on the Solution Space Diagram (SSD) have been proposed. This paper studies the effect of sector design on workload and SSD metrics. When

  12. Space Suit Joint Torque Measurement Method Validation

    Science.gov (United States)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  13. Natural metrics and least-committed priors for articulated tracking

    DEFF Research Database (Denmark)

    Hauberg, Søren; Sommer, Stefan Horst; Pedersen, Kim Steenstrup

    2012-01-01

    of joint positions, which is embedded in a high dimensional Euclidean space. This Riemannian manifold inherits the metric from the embedding space, such that distances are measured as the combined physical length that joints travel during movements. We then develop a least-committed Brownian motion model...

  14. Reference Clinical Database for Fixation Stability Metrics in Normal Subjects Measured with the MAIA Microperimeter.

    Science.gov (United States)

    Morales, Marco U; Saker, Saker; Wilde, Craig; Pellizzari, Carlo; Pallikaris, Aristophanes; Notaroberto, Neil; Rubinstein, Martin; Rui, Chiara; Limoli, Paolo; Smolek, Michael K; Amoaku, Winfried M

    2016-11-01

    The purpose of this study was to establish a normal reference database for fixation stability measured with the bivariate contour ellipse area (BCEA) in the Macular Integrity Assessment (MAIA) microperimeter. Subjects were 358 healthy volunteers who had the MAIA examination. Fixation stability was assessed using two BCEA fixation indices (63% and 95% proportional values) and the percentage of fixation points within 1° and 2° from the fovea (P1 and P2). Statistical analysis was performed with linear regression and Pearson's product moment correlation coefficient. Average areas of 0.80 deg 2 (min = 0.03, max = 3.90, SD = 0.68) for the index BCEA@63% and 2.40 deg 2 (min = 0.20, max = 11.70, SD = 2.04) for the index BCEA@95% were found. The average values of P1 and P2 were 95% (min = 76, max = 100, SD = 5.31) and 99% (min = 91, max = 100, SD = 1.42), respectively. The Pearson's product moment test showed an almost perfect correlation index, r = 0.999, between BCEA@63% and BCEA@95%. Index P1 showed a very strong correlation with BCEA@63%, r = -0.924, as well as with BCEA@95%, r = -0.925. Index P2 demonstrated a slightly lower correlation with both BCEA@63% and BCEA@95%, r = -0.874 and -0.875, respectively. The single parameter of the BCEA@95% may be taken as accurately reporting fixation stability and serves as a reference database of normal subjects with a cutoff area of 2.40 ± 2.04 deg 2 in MAIA microperimeter. Fixation stability can be measured with different indices. This study originates reference fixation values for the MAIA using a single fixation index.

  15. From Fractals to Fractional Vector Calculus: Measurement in the Correct Metric

    Science.gov (United States)

    Wheatcraft, S. W.; Meerschaert, M. M.; Mortensen, J.

    2005-12-01

    Traditional (stationary) stochastic theories have been fairly successful in reproducing transport behavior at relatively homogeneous field sites such as the Borden and Cape Code sites. However, the highly heterogeneous MADE site has produced tracer data that can not be adequately explained with traditional stochastic theories. In recent years, considerable attention has been focused on developing more sophisticated theories that can predict or reproduce the behavior of complex sites such as the MADE site. People began to realize that the model for geologic complexity may in many cases be very different than the model required for stochastic theory. Fractal approaches were useful in conceptualizing scale-invariant heterogeneity by demonstrating that scale dependant transport was just an artifact of our measurement system. Fractal media have dimensions larger than the dimension that measurement is taking place in, thus assuring the scale-dependence of parameters such as dispersivity. What was needed was a rigorous way to develop a theory that was consistent with the fractal dimension of the heterogeneity. The fractional advection-dispersion equation (FADE) was developed with this idea in mind. The second derivative in the dispersion term of the advection-dispersion equation is replaced with a fractional derivative. The order of differentiation, α, is fractional. Values of α in the range: 1 equation is recovered. The 1-D version of the FADE has been used successfully to back-predict tracer test behavior at several heterogeneous field sites, including the MADE site. It has been hypothesized that the order of differentiation in the FADE is equivalent to (or at least related to) the fractal dimension of the particle tracks (or geologic heterogeneity). With this way of thinking, one can think of the FADE as a governing equation written for the correct dimension, thus eliminating scale-dependent behavior. Before a generalized multi-dimensional form of the FADE can be

  16. Dust Measurements Onboard the Deep Space Gateway

    Science.gov (United States)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  17. Measuring Intrinsic Curvature of Space with Electromagnetism

    Science.gov (United States)

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-01-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface,…

  18. How to measure top-down vs. bottom-up effects: A new population metric and its calibration on Daphnia

    NARCIS (Netherlands)

    Polishchuk, L.; Vijverberg, J.; Voronov, D.A.; Mooij, W.M.

    2013-01-01

    Research on the role of top–down (predation) and bottom–up (food) effects in food webs has led to the understanding that the variability of these effects in space and time is a fundamental feature of natural systems. Consequently, our measurement tools must allow us to evaluate the effects from a

  19. Numerical Calabi-Yau metrics

    International Nuclear Information System (INIS)

    Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene

    2008-01-01

    We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results

  20. A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns.

    Directory of Open Access Journals (Sweden)

    Benjamin G Schultz

    Full Text Available Implicit learning (IL occurs unconsciously and without intention. Perceptual fluency is the ease of processing elicited by previous exposure to a stimulus. It has been assumed that perceptual fluency is associated with IL. However, the role of perceptual fluency following IL has not been investigated in temporal pattern learning. Two experiments by Schultz, Stevens, Keller, and Tillmann demonstrated the IL of auditory temporal patterns using a serial reaction-time task and a generation task based on the process dissociation procedure. The generation task demonstrated that learning was implicit in both experiments via motor fluency, that is, the inability to suppress learned information. With the aim to disentangle conscious and unconscious processes, we analyze unreported recognition data associated with the Schultz et al. experiments using the sequence identification measurement model. The model assumes that perceptual fluency reflects unconscious processes and IL. For Experiment 1, the model indicated that conscious and unconscious processes contributed to recognition of temporal patterns, but that unconscious processes had a greater influence on recognition than conscious processes. In the model implementation of Experiment 2, there was equal contribution of conscious and unconscious processes in the recognition of temporal patterns. As Schultz et al. demonstrated IL in both experiments using a generation task, and the conditions reported here in Experiments 1 and 2 were identical, two explanations are offered for the discrepancy in model and behavioral results based on the two tasks: 1 perceptual fluency may not be necessary to infer IL, or 2 conscious control over implicitly learned information may vary as a function of perceptual fluency and motor fluency.

  1. Space Particle Hazard Measurement and Modeling

    Science.gov (United States)

    2007-11-30

    the spacecraft and perturbations of the environment generated by the spacecraft. Koons et al. (1999) compiled and studied all spacecraft anomalies...unrealistic for D12 than for Dα0p). However, unlike the stability problems associated with the original cross diffusion terms, they are quite manageable ...E), to mono-energetic beams of charged particles of known energies which enables one, in principle , to unfold the space environment spectrum, j(E

  2. Assessment of Performance Measures for Security of the Maritime Transportation Network. Port Security Metrics: Proposed Measurement of Deterrence Capability

    National Research Council Canada - National Science Library

    Hoaglund, Robert; Gazda, Walter

    2007-01-01

    The goal of this analysis is to provide ASCO and its customers with a comprehensive approach to the development of quantitative performance measures to assess security improvements to the port system...

  3. "Prime" Advertising Space: Measuring Implict Memory Online

    OpenAIRE

    Barratt, Madeleine

    2012-01-01

    In marketing literature, click-through-rates are generally employed to measure the success of banner advertisements online. This measure has led to the banner blindness hypothesis, which posits that internet users ignore banner advertisements. However, this measurement does not take into account the consumer action which may result from memory for advertised brands. This study illustrates that although there may not be explicit memory for these advertisements, consumers can be primed for adve...

  4. Cyber threat metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  5. On characterizations of quasi-metric completeness

    Energy Technology Data Exchange (ETDEWEB)

    Dag, H.; Romaguera, S.; Tirado, P.

    2017-07-01

    Hu proved in [4] that a metric space (X, d) is complete if and only if for any closed subspace C of (X, d), every Banach contraction on C has fixed point. Since then several authors have investigated the problem of characterizing the metric completeness by means of fixed point theorems. Recently this problem has been studied in the more general context of quasi-metric spaces for different notions of completeness. Here we present a characterization of a kind of completeness for quasi-metric spaces by means of a quasi-metric versions of Hu’s theorem. (Author)

  6. Tomographic Measurements of Longitudinal Phase Space Density

    CERN Document Server

    Hancock, S; McIntosh, E; Metcalf, M

    1999-01-01

    Tomography : the reconstruction of a two-dimensional image from a series of its one-dimensional projections is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. One of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion in a particle accelerator. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The algorithm was developed in Mathematica TM in order to exploit the extensive built-in functions and graphics. Subsequently, it has been recoded in Fortran 90 with the aim of reducing the execution time by at least a factor of one hundred. The choice of Fortran 90 was governed by the desire ultimately to exploit parallel architectures, but sequential compilation and execution have already largely yielded the required gain in speed. The use of the method to produce longitudinal phase space plots, animated sequences o...

  7. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  8. MEASURING THE PERFORMANCE OF GUYANA’S CONSTRUCTION INDUSTRY USING A SET OF PROJECT PERFORMANCE BENCHMARKING METRICS

    Directory of Open Access Journals (Sweden)

    Christopher J. Willis

    2011-10-01

    Full Text Available A study measuring the performance of Guyana’s construction industry using a set of project performance benchmarking metrics was recently completed. The underlying premise of the study was that the aggregated performance of construction projects provides a realistic assessment of the performance of the construction industry, on the basis that construction projects are the mechanism through which the construction industry creates its tangible products. The fact that an influential government agency acted as owner of the study was critical to the data collection phase. The best approach for collecting project performance data in Guyana involves the utilisation of a researcher or team of researchers mining electronic and hard copy project documents. This study analysed approximately 270 construction projects to obtain an indication of the performance of guyana’s construction industry. It was found that sea defence projects performed the worst, whereas health facility projects performed the best. The main implication of this is that sea defence projects are likely to be the least efficient and, given their critical nature, there is an argument for urgent performance improvement interventions.

  9. Does Objective Quality of Physicians Correlate with Patient Satisfaction Measured by Hospital Compare Metrics in New York State?

    Science.gov (United States)

    Bekelis, Kimon; Missios, Symeon; MacKenzie, Todd A; O'Shaughnessy, Patrick M

    2017-07-01

    It is unclear whether publicly reported benchmarks correlate with quality of physicians and institutions. We investigated the association of patient satisfaction measures from a public reporting platform with performance of neurosurgeons in New York State. This cohort study comprised patients undergoing neurosurgical operations from 2009 to 2013 who were registered in the Statewide Planning and Research Cooperative System database. The cohort was merged with publicly available data from the Centers for Medicare and Medicaid Services Hospital Compare website. Propensity-adjusted regression analysis was used to investigate the association of patient satisfaction metrics with neurosurgeon quality, as measured by the neurosurgeon's individual rate of mortality and average length of stay. During the study period, 166,365 patients underwent neurosurgical procedures. Using propensity-adjusted multivariable regression analysis, we demonstrated that undergoing neurosurgical operations in hospitals with a greater percentage of patient-assigned "high" scores was associated with higher chance of being treated by a physician with superior performance in terms of mortality (odds ratio 1.90, 95% confidence interval 1.86-1.95), and a higher chance of being treated by a physician with superior performance in terms of length of stay (odds ratio 1.24, 95% confidence interval 1.21-1.27). Similar associations were identified for hospitals with a higher percentage of patients who claimed they would recommend these institutions to others. Merging a comprehensive all-payer cohort of neurosurgery patients in New York State with data from the Hospital Compare website, we observed an association of superior hospital-level patient satisfaction measures with objective performance of individual neurosurgeons in the corresponding hospitals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Phantom metrics with Killing spinors

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2015-11-01

    Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.

  11. Metric regularity and subdifferential calculus

    International Nuclear Information System (INIS)

    Ioffe, A D

    2000-01-01

    The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces

  12. Deep Transfer Metric Learning.

    Science.gov (United States)

    Junlin Hu; Jiwen Lu; Yap-Peng Tan; Jie Zhou

    2016-12-01

    Conventional metric learning methods usually assume that the training and test samples are captured in similar scenarios so that their distributions are assumed to be the same. This assumption does not hold in many real visual recognition applications, especially when samples are captured across different data sets. In this paper, we propose a new deep transfer metric learning (DTML) method to learn a set of hierarchical nonlinear transformations for cross-domain visual recognition by transferring discriminative knowledge from the labeled source domain to the unlabeled target domain. Specifically, our DTML learns a deep metric network by maximizing the inter-class variations and minimizing the intra-class variations, and minimizing the distribution divergence between the source domain and the target domain at the top layer of the network. To better exploit the discriminative information from the source domain, we further develop a deeply supervised transfer metric learning (DSTML) method by including an additional objective on DTML, where the output of both the hidden layers and the top layer are optimized jointly. To preserve the local manifold of input data points in the metric space, we present two new methods, DTML with autoencoder regularization and DSTML with autoencoder regularization. Experimental results on face verification, person re-identification, and handwritten digit recognition validate the effectiveness of the proposed methods.

  13. Interrelationships Among Several Variables Reflecting Quantitative Thinking in Elementary School Children with Particular Emphasis upon Those Measures Involving Metric and Decimal Skills

    Science.gov (United States)

    Selman, Delon; And Others

    1976-01-01

    The relationships among measures of quantitative thinking in first through fifth grade children assigned either to an experimental math program emphasizing tactile, manipulative, or individual activity in learning metric and decimal concepts, or to a control group, were examined. Tables are presented and conclusions discussed. (Author/JKS)

  14. Metrication manual

    International Nuclear Information System (INIS)

    Harper, A.F.A.; Digby, R.B.; Thong, S.P.; Lacey, F.

    1978-04-01

    In April 1978 a meeting of senior metrication officers convened by the Commonwealth Science Council of the Commonwealth Secretariat, was held in London. The participants were drawn from Australia, Bangladesh, Britain, Canada, Ghana, Guyana, India, Jamaica, Papua New Guinea, Solomon Islands and Trinidad and Tobago. Among other things, the meeting resolved to develop a set of guidelines to assist countries to change to SI and to compile such guidelines in the form of a working manual

  15. MEASURING ECONOMIC GROWTH FROM OUTER SPACE

    Science.gov (United States)

    Henderson, J. Vernon; Storeygard, Adam; Weil, David N.

    2013-01-01

    GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which “empirical growth” need no longer be synonymous with “national income accounts.” PMID:25067841

  16. The challenge of measuring emergency preparedness: integrating component metrics to build system-level measures for strategic national stockpile operations.

    Science.gov (United States)

    Jackson, Brian A; Faith, Kay Sullivan

    2013-02-01

    Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.

  17. Development of the Digital Arthritis Index, a Novel Metric to Measure Disease Parameters in a Rat Model of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Maria A. Lim

    2017-11-01

    Full Text Available Despite a broad spectrum of anti-arthritic drugs currently on the market, there is a constant demand to develop improved therapeutic agents. Efficient compound screening and rapid evaluation of treatment efficacy in animal models of rheumatoid arthritis (RA can accelerate the development of clinical candidates. Compound screening by evaluation of disease phenotypes in animal models facilitates preclinical research by enhancing understanding of human pathophysiology; however, there is still a continuous need to improve methods for evaluating disease. Current clinical assessment methods are challenged by the subjective nature of scoring-based methods, time-consuming longitudinal experiments, and the requirement for better functional readouts with relevance to human disease. To address these needs, we developed a low-touch, digital platform for phenotyping preclinical rodent models of disease. As a proof-of-concept, we utilized the rat collagen-induced arthritis (CIA model of RA and developed the Digital Arthritis Index (DAI, an objective and automated behavioral metric that does not require human-animal interaction during the measurement and calculation of disease parameters. The DAI detected the development of arthritis similar to standard in vivo methods, including ankle joint measurements and arthritis scores, as well as demonstrated a positive correlation to ankle joint histopathology. The DAI also determined responses to multiple standard-of-care (SOC treatments and nine repurposed compounds predicted by the SMarTRTM Engine to have varying degrees of impact on RA. The disease profiles generated by the DAI complemented those generated by standard methods. The DAI is a highly reproducible and automated approach that can be used in-conjunction with standard methods for detecting RA disease progression and conducting phenotypic drug screens.

  18. Visible Counterterrorism Measures in Urban Spaces

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja; Laisen, Jesper; Wandorf, Charlotte

    2014-01-01

    factors impacting positively or negatively on the feelings of safety of Danish citizens, when being in a crowded place. Surprisingly, the response to security measures like fences, cameras, and uniformed guards was positive. More visible security apparently reinforced feelings of safety. This article...

  19. Dispersion analysis of spaced antenna scintillation measurement

    Directory of Open Access Journals (Sweden)

    M. Grzesiak

    2009-07-01

    Full Text Available We present a dispersion analysis of the phase of GPS signals received at high latitude. Basic theoretical aspects for spectral analysis of two-point measurement are given. To account for nonstationarity and statistical robustness a power distribution of the windowed Fourier transform cross-spectra as a function of frequency and phase is analysed using the Radon transform.

  20. Measuring Forest Height and Biomass from Space

    Science.gov (United States)

    Agueh, Temilola Elisabeth Fato

    2013-01-01

    Talk about doing earth science at NASA and how what we do is focus on the biosphere- that is the living portion of the earth.In particular, we are interested in looking at forests-quantifying deforestation, regrowth, change in general and helping develop new cutting-edge technologies and instruments to be able to measure these changes in land use, land cover and quality more accurately.

  1. Results of dosimetric measurements in space missions

    International Nuclear Information System (INIS)

    Reitz, G.; Strauch, K.; Beaujean, R.; Kopp, J.; Leicher, M.; Heilmann, C.

    1997-01-01

    Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different locations inside spacecraft. The detector systems, which supplement each other in their registration characteristics, allow the recording of biologically relevant portions of the radiation field independently. Results are presented and compared with calculations. Dose equivalents for the astronauts have been calculated based on the measurements; they lie between 190 μSv.d -1 and 860 μSv.d -1 . (author)

  2. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  3. Calculations of two new dose metrics proposed by AAPM Task Group 111 using the measurements with standard CT dosimetry phantoms

    International Nuclear Information System (INIS)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2013-01-01

    Purpose: AAPM Task Group 111 proposed to measure the equilibrium dose-pitch product D-caret eq for scan modes involving table translation and the midpoint dose D L (0) for stationary-table modes on the central and peripheral axes of sufficiently long (e.g., at least 40 cm) phantoms. This paper presents an alternative approach to calculate both metrics using the measurements of scanning the standard computed tomographic (CT) dosimetry phantoms on CT scanners.Methods: D-caret eq was calculated from CTDI 100 and ε(CTDI 100 ) (CTDI 100 efficiency), and D L (0) was calculated from D-caret eq and the approach to equilibrium function H(L) =D L (0)/D eq , where D eq was the equilibrium dose. CTDI 100 may be directly obtained from several sources (such as medical physicist's CT scanner performance evaluation or the IMPACT CT patient dosimetry calculator), or be derived from CTDI Vol using the central to peripheral CTDI 100 ratio (R 100 ). The authors have provided the required ε(CTDI 100 ) and H(L) data in two previous papers [X. Li, D. Zhang, and B. Liu, Med. Phys. 39, 901–905 (2012); and ibid. 40, 031903 (10pp.) (2013)]. R 100 was assessed for a series of GE, Siemens, Philips, and Toshiba CT scanners with multiple settings of scan field of view, tube voltage, and bowtie filter.Results: The calculated D L (0) and D L (0)/D eq in PMMA and water cylinders were consistent with the measurements on two GE CT scanners (LightSpeed 16 and VCT) by Dixon and Ballard [Med. Phys. 34, 3399–3413 (2007)], the measurements on a Siemens CT scanner (SOMATOM Spirit Power) by Descamps et al. [J. Appl. Clin. Med. Phys. 13, 293–302 (2012)], and the Monte Carlo simulations by Boone [Med. Phys. 36, 4547–4554 (2009)].Conclusions: D-caret eq and D L (0) can be calculated using the alternative approach. The authors have provided the required ε(CTDI 100 ) and H(L) data in two previous papers. R 100 is presented for a majority of multidetector CT scanners currently on the market, and can be

  4. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  5. Engineering performance metrics

    Science.gov (United States)

    Delozier, R.; Snyder, N.

    1993-03-01

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  6. Broadband Ionospheric Scintillation Measurements from Space

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  7. MEASUREMENT OF LARGE-SCALE SOLAR POWER PLANT BY USING IMAGES ACQUIRED BY NON-METRIC DIGITAL CAMERA ON BOARD UAV

    Directory of Open Access Journals (Sweden)

    R. Matsuoka

    2012-07-01

    Full Text Available This paper reports an experiment conducted in order to investigate the feasibility of the deformation measurement of a large-scale solar power plant on reclaimed land by using images acquired by a non-metric digital camera on board a micro unmanned aerial vehicle (UAV. It is required that a root mean squares of errors (RMSE in height measurement should be less than 26 mm that is 1/3 of the critical limit of deformation of 78 mm off the plane of a solar panel. Images utilized in the experiment have been obtained by an Olympus PEN E-P2 digital camera on board a Microdrones md4-1000 quadrocopter. The planned forward and side overlap ratios of vertical image acquisition have been 60 % and 60 % respectively. The planned flying height of the UAV has been 20 m above the ground level and the ground resolution of an image is approximately 5.0 mm by 5.0 mm. 8 control points around the experiment area are utilized for orientation. Measurement results are evaluated by the space coordinates of 220 check points which are corner points of 55 solar panels selected from 1768 solar panels in the experiment area. Two teams engage in the experiment. One carries out orientation and measurement by using 171 images following the procedure of conventional aerial photogrammetry, and the other executes those by using 126 images in the manner of close range photogrammetry. The former fails to satisfy the required accuracy, while the RMSE in height measurement by the latter is 8.7 mm that satisfies the required accuracy. From the experiment results, we conclude that the deformation measurement of a large-scale solar power plant on reclaimed land by using images acquired by a nonmetric digital camera on board a micro UAV would be feasible if points utilized in orientation and measurement have a sufficient number of bundles in good geometry and self-calibration in orientation is carried out.

  8. A Metric for Heterotic Moduli

    Science.gov (United States)

    Candelas, Philip; de la Ossa, Xenia; McOrist, Jock

    2017-12-01

    Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in {α^{\\backprime}}, in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Kähler, as is required by supersymmetry. Checking the metric is Kähler is intricate and the anomaly cancellation equation for the H field plays an essential role. The Kähler potential nevertheless takes a remarkably simple form: it is the Kähler potential of special geometry with the Kähler form replaced by the {α^{\\backprime}}-corrected hermitian form.

  9. Technical Privacy Metrics: a Systematic Survey

    OpenAIRE

    Wagner, Isabel; Eckhoff, David

    2018-01-01

    The file attached to this record is the author's final peer reviewed version The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving user privacy in the digital world. The diversity and complexity of privacy metrics in the literature makes an informed choice of metrics challenging. As a result, instead of using existing metrics, n...

  10. Doppler Wind Lidar Measurements and Scalability to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Global measurements of wind speed and direction from Doppler wind lidars, if available, would significantly improve forecasting of severe weather events such as...

  11. Apparatus for Measurements of Time and Space Correlation

    Science.gov (United States)

    Favre, Alexandre; Gaviglio, J; Dumas, R

    1955-01-01

    A brief review is made of improvements to an experimental apparatus for time and space correlation designed for study of turbulence. Included is a description of the control of the measurements and a few particular applications.

  12. Evaluation of the performance of a micromethod for measuring urinary iodine by using six sigma quality metrics.

    Science.gov (United States)

    Hussain, Husniza; Khalid, Norhayati Mustafa; Selamat, Rusidah; Wan Nazaimoon, Wan Mohamud

    2013-09-01

    The urinary iodine micromethod (UIMM) is a modification of the conventional method and its performance needs evaluation. UIMM performance was evaluated using the method validation and 2008 Iodine Deficiency Disorders survey data obtained from four urinary iodine (UI) laboratories. Method acceptability tests and Sigma quality metrics were determined using total allowable errors (TEas) set by two external quality assurance (EQA) providers. UIMM obeyed various method acceptability test criteria with some discrepancies at low concentrations. Method validation data calculated against the UI Quality Program (TUIQP) TEas showed that the Sigma metrics were at 2.75, 1.80, and 3.80 for 51±15.50 µg/L, 108±32.40 µg/L, and 149±38.60 µg/L UI, respectively. External quality control (EQC) data showed that the performance of the laboratories was within Sigma metrics of 0.85-1.12, 1.57-4.36, and 1.46-4.98 at 46.91±7.05 µg/L, 135.14±13.53 µg/L, and 238.58±17.90 µg/L, respectively. No laboratory showed a calculated total error (TEcalc)Sigma metrics at all concentrations. Only one laboratory had TEcalc

  13. Metrics for Probabilistic Geometries

    DEFF Research Database (Denmark)

    Tosi, Alessandra; Hauberg, Søren; Vellido, Alfredo

    2014-01-01

    the distribution over mappings is given by a Gaussian process. We treat the corresponding latent variable model as a Riemannian manifold and we use the expectation of the metric under the Gaussian process prior to define interpolating paths and measure distance between latent points. We show how distances...

  14. Is Time the Best Metric to Measure Carbon-Related Climate Change Potential and Tune the Economy Toward Reduced Fossil Carbon Extraction?

    Science.gov (United States)

    DeGroff, F. A.

    2016-12-01

    Anthropogenic changes to non-anthropogenic carbon fluxes are a primary driver of climate change. There currently exists no comprehensive metric to measure and value anthropogenic changes in carbon flux between all states of carbon. Focusing on atmospheric carbon emissions as a measure of anthropogenic activity on the environment ignores the fungible characteristics of carbon that are crucial in both the biosphere and the worldwide economy. Focusing on a single form of inorganic carbon as a proxy metric for the plethora of anthropogenic activity and carbon compounds will prove inadequate, convoluted, and unmanageable. A broader, more basic metric is needed to capture the entirety of carbon activity, particularly in an economic, profit-driven environment. We propose a new metric to measure changes in the temporal distance of any form or state of carbon from one state to another. Such a metric would be especially useful to measure the temporal distance of carbon from sinks such as the atmosphere or oceans. The effect of changes in carbon flux as a result of any human activity can be measured by the difference between the anthropogenic and non-anthropogenic temporal distance. The change in the temporal distance is a measure of the climate change potential much like voltage is a measure of electrical potential. The integral of the climate change potential is proportional to the anthropogenic climate change. We also propose a logarithmic vector scale for carbon quality, cq, as a measure of anthropogenic changes in carbon flux. The distance between the cq vector starting and ending temporal distances represents the change in cq. A base-10 logarithmic scale would allow the addition and subtraction of exponents to calculate changes in cq. As anthropogenic activity changes the temporal distance of carbon, the change in cq is measured as: cq = ß ( log10 [mean carbon temporal distance] ) where ß represents the carbon price coefficient for a particular country. For any

  15. A complete metric in the set of mixing transformations

    International Nuclear Information System (INIS)

    Tikhonov, Sergei V

    2007-01-01

    A metric in the set of mixing measure-preserving transformations is introduced making of it a complete separable metric space. Dense and massive subsets of this space are investigated. A generic mixing transformation is proved to have simple singular spectrum and to be a mixing of arbitrary order; all its powers are disjoint. The convolution powers of the maximal spectral type for such transformations are mutually singular if the ratio of the corresponding exponents is greater than 2. It is shown that the conjugates of a generic mixing transformation are dense, as are also the conjugates of an arbitrary fixed Cartesian product. Bibliography: 28 titles.

  16. Software Quality Assurance Metrics

    Science.gov (United States)

    McRae, Kalindra A.

    2004-01-01

    Software Quality Assurance (SQA) is a planned and systematic set of activities that ensures conformance of software life cycle processes and products conform to requirements, standards and procedures. In software development, software quality means meeting requirements and a degree of excellence and refinement of a project or product. Software Quality is a set of attributes of a software product by which its quality is described and evaluated. The set of attributes includes functionality, reliability, usability, efficiency, maintainability, and portability. Software Metrics help us understand the technical process that is used to develop a product. The process is measured to improve it and the product is measured to increase quality throughout the life cycle of software. Software Metrics are measurements of the quality of software. Software is measured to indicate the quality of the product, to assess the productivity of the people who produce the product, to assess the benefits derived from new software engineering methods and tools, to form a baseline for estimation, and to help justify requests for new tools or additional training. Any part of the software development can be measured. If Software Metrics are implemented in software development, it can save time, money, and allow the organization to identify the caused of defects which have the greatest effect on software development. The summer of 2004, I worked with Cynthia Calhoun and Frank Robinson in the Software Assurance/Risk Management department. My task was to research and collect, compile, and analyze SQA Metrics that have been used in other projects that are not currently being used by the SA team and report them to the Software Assurance team to see if any metrics can be implemented in their software assurance life cycle process.

  17. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  18. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  19. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  20. Measuring the quality of public open space using Google Earth.

    Science.gov (United States)

    Taylor, Bronwen T; Fernando, Peter; Bauman, Adrian E; Williamson, Anna; Craig, Jonathan C; Redman, Sally

    2011-02-01

    Proximity to public open space, such as parks and other green spaces, has considerable health benefits, and people have been shown to be more likely to use such space for physical activity if it is of high quality. This paper describes a new remote-assessment approach that makes use of Google Earth Pro (the free version of this program is Google Earth) to provide rapid and inexpensive measurement of the quality of public open space. The aim of the study was to assess the correlation between assessments of the quality of public open space using (1) the remote method (making use of Google Earth Pro) and (2) direct observation with a well-established measure of quality, the Public Open Space Tool (POST). Fifty parks selected from the southwest part of Sydney, Australia, were assessed in 2009 with the remote method (using Google Earth Pro), and scores were compared with those obtained from direct observation of the same parks using POST. The time taken to conduct the assessments using each method was also recorded. Raters for each method were blind to scores obtained from using the other method. Analyses were conducted in 2009. The Spearman correlation coefficient between the quality scores obtained for the 50 parks using the remote method and direct observation was 0.9 (pspaces without the need for in-person visits, dramatically reducing the time required for environmental audits of public open space. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Metric and structural equivalence of core cognitive abilities measured with the Wechsler Adult Intelligence Scale-III in the United States and Australia.

    Science.gov (United States)

    Bowden, Stephen C; Lissner, Dianne; McCarthy, Kerri A L; Weiss, Lawrence G; Holdnack, James A

    2007-10-01

    Equivalence of the psychological model underlying Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) scores obtained in the United States and Australia was examined in this study. Examination of metric invariance involves testing the hypothesis that all components of the measurement model relating observed scores to latent variables are numerically equal in different samples. The assumption of metric invariance is necessary for interpretation of scores derived from research studies that seek to generalize patterns of convergent and divergent validity and patterns of deficit or disability. An Australian community volunteer sample was compared to the US standardization data. A pattern of strict metric invariance was observed across samples. In addition, when the effects of different demographic characteristics of the US and Australian samples were included, structural parameters reflecting values of the latent cognitive variables were found not to differ. These results provide important evidence for the equivalence of measurement of core cognitive abilities with the WAIS-III and suggest that latent cognitive abilities in the US and Australia do not differ.

  2. Secondary beam line phase space measurement and modeling at LAMPF

    International Nuclear Information System (INIS)

    Floyd, R.; Harrison, J.; Macek, R.; Sanders, G.

    1979-01-01

    Hardware and software have been developed for precision on-line measurement and fitting of secondary beam line phase space parameters. A system consisting of three MWPC planes for measuring particle trajectories, in coincidence with a time-of-flight telescope and a range telescope for particle identification, has been interfaced to a computer. Software has been developed for on-line track reconstruction, application of experimental cuts, and fitting of two-dimensional phase space ellipses for each particle species. The measured distributions have been found to agree well with the predictions of the Monte Carlo program DECAY TURTLE. The fitted phase space ellipses are a useful input to optimization routines, such as TRANSPORT, used to search for superior tunes. Application of this system to the LAMPF Stopped Muon Channel is described

  3. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  4. Smarandache Spaces as a New Extension of the Basic Space-Time of General Relativity

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2010-04-01

    Full Text Available This short letter manifests how Smarandache geometries can be employed in order to extend the “classical” basis of the General Theory of Relativity (Riemannian geometry through joining the properties of two or more (different geometries in the same single space. Perspectives in this way seem much profitable: the basic space-time of General Relativity can be extended to not only metric geometries, but even to non-metric ones (where no distances can be measured, or to spaces of the mixed kind which possess the properties of both metric and non-metric spaces (the latter should be referred to as “semi-metric spaces”. If both metric and non-metric properties possessed at the same (at least one point of a space, it is one of Smarandache geometries, and should be re- ferred to as “Smarandache semi-metric space”. Such spaces can be introduced accord- ing to the mathematical apparatus of physically observable quantities (chronometric invariants, if we consider a breaking of the observable space metric in the continuous background of the fundamental metric tensor.

  5. Metrics for energy resilience

    International Nuclear Information System (INIS)

    Roege, Paul E.; Collier, Zachary A.; Mancillas, James; McDonagh, John A.; Linkov, Igor

    2014-01-01

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today's energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system's energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth. - Highlights: • Resilience is the ability of a system to recover from adversity. • There is a need for methods to quantify and measure system resilience. • We developed a matrix-based approach to generate energy resilience metrics. • These metrics can be used in energy planning, system design, and operations

  6. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  7. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  8. Assessing Built Environment Walkability using Activity-Space Summary Measures.

    Science.gov (United States)

    Tribby, Calvin P; Miller, Harvey J; Brown, Barbara B; Werner, Carol M; Smith, Ken R

    There is increasing emphasis on active transportation, such as walking, in transportation planning as a sustainable form of mobility and in public health as a means of achieving recommended physical activity and better health outcomes. A research focus is the influence of the built environment on walking, with the ultimate goal of identifying environmental modifications that invite more walking. However, assessments of the built environment for walkability are typically at a spatially disaggregate level (such as street blocks) or at a spatially aggregate level (such as census block groups). A key issue is determining the spatial units for walkability measures so that they reflect potential walking behavior. This paper develops methods for assessing walkability within individual activity spaces : the geographic region accessible to an individual during a given walking trip. We first estimate street network-based activity spaces using the shortest path between known trip starting/ending points and a travel time budget that reflects potential alternative paths. Based on objective walkability measures of the street blocks, we use three summary measures for walkability within activity spaces: i) the average walkability score across block segments (representing the general level of walkability in the activity space); ii) the standard deviation (representing the walkability variation), and; iii) the network autocorrelation (representing the spatial coherence of the walkability pattern). We assess the method using data from an empirical study of built environment walkability and walking behavior in Salt Lake City, Utah, USA. We visualize and map these activity space summary measures to compare walkability among individuals' trips within their neighborhoods. We also compare summary measures for activity spaces versus census block groups, with the result that they agree less than half of the time.

  9. First laser measurements to space debris in Poland

    Science.gov (United States)

    Lejba, Paweł; Suchodolski, Tomasz; Michałek, Piotr; Bartoszak, Jacek; Schillak, Stanisław; Zapaśnik, Stanisław

    2018-05-01

    The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014-2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10 Hz repetition rate, a pulse width of 3-5 ns and a pulse energy of 450 mJ for green (532 nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS). Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 - January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10 s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.

  10. Invariant metrics for Hamiltonian systems

    International Nuclear Information System (INIS)

    Rangarajan, G.; Dragt, A.J.; Neri, F.

    1991-05-01

    In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs

  11. A new kind of droplet space distribution measuring method

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    A new kind of droplet space distribution measuring technique was introduced mainly, and the experimental device which was designed for the measuring the space distribution and traces of the flying film droplet produced by the bubble breaking up near the free surface of the water. This experiment was designed with a kind of water-sensitivity test paper (rice paper) which could record the position and size of the colored scattering droplets precisely. The rice papers were rolled into cylinders with different diameters by using tools. The bubbles broke up exactly in the center of the cylinder, and the space distribution and the traces of the droplets would be received by analysing all the positions of the droplets produced by the same size bubble on the rice papers. (authors)

  12. Enterprise Sustainment Metrics

    Science.gov (United States)

    2015-06-19

    are negatively impacting KPIs” (Parmenter, 2010: 31). In the current state, the Air Force’s AA and PBL metrics are once again split . AA does...must have the authority to “take immediate action to rectify situations that are negatively impacting KPIs” (Parmenter, 2010: 31). 3. Measuring...highest profitability and shareholder value for each company” (2014: 273). By systematically diagraming a process, either through a swim lane flowchart

  13. Spectrograph dedicated to measuring tropospheric trace gas constituents from space

    NARCIS (Netherlands)

    Vries, J. de; Laan, E.C.; Deutz, A.F.; Escudero-Sanz, I.; Bokhove, H.; Hoegee, J.; Aben, I.; Jongma, R.; Landgraf, J.; Hasekamp, O.P.; Houweling, S.; Weele, M. van; Oss, R. van; Oord, G. van den; Levelt, P.

    2005-01-01

    Several organizations in the Netherlands are cooperating to develop user requirements and instrument concepts in the line of SCIAMACHY and OMI but with an increased focus on measuring tropospheric constituents from space. The concepts use passive spectroscopy in dedicated wavelength sections in the

  14. Quantitative approach to measuring the cerebrospinal fluid space with CT

    Energy Technology Data Exchange (ETDEWEB)

    Zeumer, H.; Hacke, W.; Hartwich, P.

    1982-01-01

    A method for measuring the subarachnoid space by using an independent CT evaluation unit is described. The normal values have been calculated for patients, according to age, and three examples are presented demonstrating reversible decrease of brain volume in patients suffering anorexia nervosa and chronic alcoholism.

  15. Foundations of symmetric spaces of measurable functions Lorentz, Marcinkiewicz and Orlicz spaces

    CERN Document Server

    Rubshtein, Ben-Zion A; Muratov, Mustafa A; Pashkova, Yulia S

    2016-01-01

    Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.

  16. Reproducibility of graph metrics in fMRI networks

    Directory of Open Access Journals (Sweden)

    Qawi K Telesford

    2010-12-01

    Full Text Available The reliability of graph metrics calculated in network analysis is essential to the interpretation of complex network organization. These graph metrics are used to deduce the small-world properties in networks. In this study, we investigated the test-retest reliability of graph metrics from functional magnetic resonance imaging (fMRI data collected for two runs in 45 healthy older adults. Graph metrics were calculated on data for both runs and compared using intraclass correlation coefficient (ICC statistics and Bland-Altman (BA plots. ICC scores describe the level of absolute agreement between two measurements and provide a measure of reproducibility. For mean graph metrics, ICC scores were high for clustering coefficient (ICC=0.86, global efficiency (ICC=0.83, path length (ICC=0.79, and local efficiency (ICC=0.75; the ICC score for degree was found to be low (ICC=0.29. ICC scores were also used to generate reproducibility maps in brain space to test voxel-wise reproducibility for unsmoothed and smoothed data. Reproducibility was uniform across the brain for global efficiency and path length, but was only high in network hubs for clustering coefficient, local efficiency and degree. BA plots were used to test the measurement repeatability of all graph metrics. All graph metrics fell within the limits for repeatability. Together, these results suggest that with exception of degree, mean graph metrics are reproducible and suitable for clinical studies. Further exploration is warranted to better understand reproducibility across the brain on a voxel-wise basis.

  17. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    Science.gov (United States)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  18. An Analysis and Review of Measures and Relationships in Space Transportation Affordability

    Science.gov (United States)

    Zapata, Edgar; McCleskey, Carey

    2014-01-01

    The affordability of transportation to or from space is of continued interest across numerous and diverse stakeholders in our aerospace industry. Such an important metric as affordability deserves a clear understanding among stakeholders about what is meant by affordability, costs, and related terms, as otherwise it's difficult to see where specific improvements are needed or where to target specific investments. As captured in the famous words of Lewis Carroll, "If you don't know where you are going, any road will get you there". As important as understanding a metric may be, with terms such as costs, prices, specific costs, average costs, marginal costs, etc., it is equally important to understand the relationship among these measures. In turn, these measures intermingle with caveats and factors that introduce more measures in need of a common understanding among stakeholders. These factors include flight rates, capability, and payload. This paper seeks to review the costs of space transportation systems and the relationships among the many factors involved in costs from the points of view of diverse decision makers. A decision maker may have an interest in acquiring a single launch considering the best price (along with other factors in their business case), or an interest in many launches over time. Alternately, a decision maker may have a specific interest in developing a space transportation system that will offer certain prices, or flight rate capability, or both, at a certain up-front cost. The question arises for the later, to reuse or to expend? As it is necessary in thinking about the future to clearly understand the past and the present, this paper will present data and graphics to assist stakeholders in visualizing trends and the current state of affairs in the launch industry. At all times, raw data will be referenced (or made available separately) alongside detailed explanations about the data, so as to avoid the confusion or misleading conclusions

  19. Study of localized photon source in space of measures

    International Nuclear Information System (INIS)

    Lisi, M.

    2010-01-01

    In this paper we study a three-dimensional photon transport problem in an interstellar cloud, with a localized photon source inside. The problem is solved indirectly, by defining the adjoint of an operator acting on an appropriate space of continuous functions. By means of sun-adjoint semi groups theory of operators in a Banach space of regular Borel measures, we prove existence and uniqueness of the solution of the problem. A possible approach to identify the localization of the photon source is finally proposed.

  20. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  1. A device for automated phase space measurement of ion beams

    International Nuclear Information System (INIS)

    Lukas, J.; Priller, A.; Steier, P.

    2007-01-01

    Equipment for automated phase-space measurements was developed at the VERA Lab. The measurement of the beam's intensity distribution, as well as its relative position with respect to the reference orbit is performed at two locations along the beam line. The device basically consists of moveable slits and a beam profile monitor, which are both coordinated and controlled by an embedded controller. The operating system of the controller is based on Linux with real-time extension. It controls the movement of the slits and records the data synchronized to the movement of the beam profile monitor. The data is sent via TCP/IP to the data acquisition system of VERA where visualization takes place. The duration of one phase space measurement is less than 10 s, which allows for using the device during routine beam tuning

  2. A new system for the measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2000-01-01

    Radiation from space mainly consists of charged heavy particles (protons and heavier particles). Due to this fact, the effective dose significantly differs from the physical dose. Current measuring equipment is not fully suitable to measure both of the quantities simultaneously. A combined device for measurement of the mentioned values consists of an on-board thermoluminescence dosimeter reader and a three-axis silicon detector linear energy transfer spectrometer. This paper deals with the main characteristic of the new system. This system can be, applied for dosimetry of air crew as well. (authors)

  3. A new system for measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2001-01-01

    The space radiation mainly consists of heavy charged particles (protons and heavier particles). Due to this fact its effective dose significantly differs from the physical dose. The recently used measuring equipment is not fully suitable to measure both quantities simultaneously. The combined device for measurement of mentioned values consists of an on board thermoluminescent dosimeter reader and a three axis silicon telescope as a linear energy transfer spectrometer. The paper deals with the main characteristics of the new system. This system can be applied for dosimetry of air-crew as well. (authors)

  4. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  5. Space Shuttle dosimetry measurements with RME-III

    International Nuclear Information System (INIS)

    Hardy, K.A.; Golightly, M.J.; Hardy, A.C.; Atwell, W.; Quam, W.

    1991-10-01

    A description of the radiation monitoring equipment (RME-III) dosimetry instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in measuring the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space

  6. Issues in Benchmark Metric Selection

    Science.gov (United States)

    Crolotte, Alain

    It is true that a metric can influence a benchmark but will esoteric metrics create more problems than they will solve? We answer this question affirmatively by examining the case of the TPC-D metric which used the much debated geometric mean for the single-stream test. We will show how a simple choice influenced the benchmark and its conduct and, to some extent, DBMS development. After examining other alternatives our conclusion is that the “real” measure for a decision-support benchmark is the arithmetic mean.

  7. The Future of Carbon Monoxide Measurements from Space

    Science.gov (United States)

    Drummond, J.

    It is now over 20 years since the Measurements of Air Pollution from Space MAPS instrument made the first measurements of tropospheric carbon monoxide from the shuttle Since that time a number of instruments have flown including the Measurements Of Pollution In The Troposphere MOPITT Tropospheric Emission Spectrometer TES and SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY SCIAMCHY to name only three of many Each of these instruments has a unique observing method and unique mission characteristics It is accepted that measurements of carbon monoxide provide a useful proxy of the pollution of the troposphere and contribute significantly to studies of various phenomena in the atmosphere and atmosphere-surface interactions These measurements should therefore be continued -- but in what form Technology has progresses significantly since the current generation of instruments was designed and our ability to interpret the data from such instrumentation has likewise expanded It is therefore fruitful to consider what is the best set of measurements that can be made which parameters should be emphasized and which compromised on the way to the next generation of sensors The Measurements of Air Pollution Levels in the Environment MAPLE instrument is a study financed by the Canadian Space Agency to design a next-generation instrument and since instrument spacecraft and mission are now intimately linked a consideration of the whole mission is appropriate This talk will outline some potential developments in the hardware

  8. A measurement concept for hot-spot BRDFs from space

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.

    1996-09-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  9. A measurement concept for hot-spot BRDFs from space

    Science.gov (United States)

    Gerstl, S.A.W.

    1996-01-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  10. Metrics of quantum states

    International Nuclear Information System (INIS)

    Ma Zhihao; Chen Jingling

    2011-01-01

    In this work we study metrics of quantum states, which are natural generalizations of the usual trace metric and Bures metric. Some useful properties of the metrics are proved, such as the joint convexity and contractivity under quantum operations. Our result has a potential application in studying the geometry of quantum states as well as the entanglement detection.

  11. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish [U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Minniti, Ronaldo [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Parry, Marie I. [Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889 (United States); Skopec, Marlene [National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 (United States)

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  12. Exploring the Design Space of Longitudinal Censorship Measurement Platforms

    OpenAIRE

    Razaghpanah, Abbas; Li, Anke; Filastò, Arturo; Nithyanand, Rishab; Ververis, Vasilis; Scott, Will; Gill, Phillipa

    2016-01-01

    Despite the high perceived value and increasing severity of online information controls, a data-driven understanding of the phenomenon has remained elusive. In this paper, we consider two design points in the space of Internet censorship measurement with particular emphasis on how they address the challenges of locating vantage points, choosing content to test, and analyzing results. We discuss the trade offs of decisions made by each platform and show how the resulting data provides compleme...

  13. Elliptic equations with measure data in Orlicz spaces

    Directory of Open Access Journals (Sweden)

    Ge Dong

    2008-05-01

    Full Text Available This article shows the existence of solutions to the nonlinear elliptic problem $A(u=f$ in Orlicz-Sobolev spaces with a measure valued right-hand side, where $A(u=-mathop{ m div}a(x,u, abla u$ is a Leray-Lions operator defined on a subset of $W_{0}^{1}L_{M}(Omega$, with general $M$.

  14. Measuring redshift-space distortions using photometric surveys

    OpenAIRE

    Ross, Ashley; Percival, Will; Crocce, M.; Cabre, A.; Gaztanaga, E.

    2011-01-01

    We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({\\theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable ...

  15. Relative Citation Ratio of Top Twenty Macedonian Biomedical Scientists in PubMed: A New Metric that Uses Citation Rates to Measure Influence at the Article Level.

    Science.gov (United States)

    Spiroski, Mirko

    2016-06-15

    The aim of this study was to analyze relative citation ratio (RCR) of top twenty Macedonian biomedical scientists with a new metric that uses citation rates to measure influence at the article level. Top twenty Macedonian biomedical scientists were identified by GoPubMed on the base of the number of deposited abstracts in PubMed, corrected with the data from previously published paper, and completed with the Macedonian biomedical scientists working in countries outside the Republic of Macedonia, but born or previously worked in the country. iCite was used as a tool to access a dashboard of bibliometrics for papers associated with a portfolio. The biggest number of top twenty Macedonian biomedical scientists has RCR lower than one. Only four Macedonian biomedical scientists have bigger RCR in comparison with those in PubMed. The most prominent RCR of 2.29 has Rosoklija G. RCR of the most influenced individual papers deposited in PubMed has shown the biggest value for the paper of Efremov D (35.19). This paper has the biggest number of authors (860). It is necessary to accept top twenty Macedonian biomedical scientists as an example of new metric that uses citation rates to measure influence at the article level, rather than qualification of the best Macedonian biomedical scientists.

  16. Coverage Metrics for Model Checking

    Science.gov (United States)

    Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)

    2001-01-01

    When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.

  17. Measuring the Microlensing Parallax from Various Space Observatories

    Science.gov (United States)

    Bachelet, E.; Hinse, T. C.; Street, R.

    2018-05-01

    A few observational methods allow the measurement of the mass and distance of the lens-star for a microlensing event. A first estimate can be obtained by measuring the microlensing parallax effect produced by either the motion of the Earth (annual parallax) or the contemporaneous observation of the lensing event from two (or more) observatories (space or terrestrial parallax) sufficiently separated from each other. Further developing ideas originally outlined by Gould as well as Mogavero & Beaulieu, we review the possibility of measuring systematically the microlensing parallax using a telescope based on the Moon surface and other space-based observing platforms, including the upcoming WFIRST space-telescope. We first generalize the Fisher matrix formulation and present results demonstrating the advantage for each observing scenario. We conclude by outlining the limitation of the Fisher matrix analysis when submitted to a practical data modeling process. By considering a lunar-based parallax observation, we find that parameter correlations introduce a significant loss in detection efficiency of the probed lunar parallax effect.

  18. Measuring population transmission risk for HIV: an alternative metric of exposure risk in men who have sex with men (MSM in the US.

    Directory of Open Access Journals (Sweden)

    Colleen F Kelley

    Full Text Available Various metrics for HIV burden and treatment success [e.g. HIV prevalence, community viral load (CVL, population viral load (PVL, percent of HIV-positive persons with undetectable viral load] have important public health limitations for understanding disparities.Using data from an ongoing HIV incidence cohort of black and white men who have sex with men (MSM, we propose a new metric to measure the prevalence of those at risk of transmitting HIV and illustrate its value. MSM with plasma VL>400 copies/mL were defined as having 'transmission risk'. We calculated HIV prevalence, CVL, PVL, percent of HIV-positive with undetectable viral loads, and prevalence of plasma VL>400 copies/ml (%VL400 for black and white MSM. We used Monte Carlo simulation incorporating data on sexual mixing by race to estimate exposure of black and white HIV-negative MSM to a partner with transmission risk via unprotected anal intercourse (UAI. Of 709 MSM recruited, 42% (168/399 black and 14% (44/310 white MSM tested HIV-positive (p<.0001. No significant differences were seen in CVL, PVL, or percent of HIV positive with undetectable viral loads. The %VL400 was 25% (98/393 for black vs. 8% (25/310 for white MSM (p<.0001. Black MSM with 2 UAI partners were estimated to have 40% probability (95% CI: 35%, 45% of having ≥1 UAI partner with transmission risk vs. 20% for white MSM (CI: 15%, 24%.Despite similarities in other metrics, black MSM in our cohort are three times as likely as white MSM to have HIV transmission risk. With comparable risk behaviors, HIV-negative black MSM have a substantially higher likelihood of encountering a UAI partner at risk of transmitting HIV. Our results support increasing HIV testing, linkage to care, and antiretroviral treatment of HIV-positive MSM to reduce prevalence of those with transmission risk, particularly for black MSM.

  19. Real analysis measure theory, integration, and Hilbert spaces

    CERN Document Server

    Stein, Elias M

    2005-01-01

    Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After

  20. Space dependence of reactivity parameters on reactor dynamic perturbation measurements

    International Nuclear Information System (INIS)

    Maletti, R.; Ziegenbein, D.

    1985-01-01

    Practical application of reactor-dynamic perturbation measurements for on-power determination of differential reactivity weight of control rods and power coefficients of reactivity has shown a significant dependence of parameters on the position of outcore detectors. The space dependence of neutron flux signal in the core of a VVER-440-type reactor was measured by means of 60 self-powered neutron detectors. The greatest neutron flux alterations are located close to moved control rods and in height of the perturbation position. By means of computations, detector positions can be found in the core in which the one-point model is almost valid. (author)

  1. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  2. Kerr metric in the deSitter background

    International Nuclear Information System (INIS)

    Vaidya, P.C.

    1984-01-01

    In addition to the Kerr metric with cosmological constant Λ several other metrics are presented giving a Kerr-like solution of Einstein's equations in the background of deSitter universe. A new metric of what may be termed as rotating deSitter space-time devoid of matter but containing null fluid with twisting null rays, has been presented. This metric reduces to the standard deSitter metric when the twist in the rays vanishes. Kerr metric in this background is the immediate generalization of Schwarzschild's exterior metric with cosmological constant. (author)

  3. Invariant metric for nonlinear symplectic maps

    Indian Academy of Sciences (India)

    In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we ...

  4. Defining a Progress Metric for CERT RMM Improvement

    Science.gov (United States)

    2017-09-14

    REV-03.18.2016.0 Defining a Progress Metric for CERT-RMM Improvement Gregory Crabb Nader Mehravari David Tobar September 2017 TECHNICAL ...fendable resource allocation decisions. Technical metrics measure aspects of controls implemented through technology (systems, soft- ware, hardware...implementation metric would be the percentage of users who have received anti-phishing training . • Effectiveness/efficiency metrics measure whether

  5. Apparent rotation properties of space debris extracted from photometric measurements

    Science.gov (United States)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  6. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  7. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  8. Generalization of Vaidya's radiation metric

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, R J; Kozameh, C N [Universidad Nacional de Cordoba (Argentina). Instituto de Matematica, Astronomia y Fisica

    1981-11-01

    In this paper it is shown that if Vaidya's radiation metric is considered from the point of view of kinetic theory in general relativity, the corresponding phase space distribution function can be generalized in a particular way. The new family of spherically symmetric radiation metrics obtained contains Vaidya's as a limiting situation. The Einstein field equations are solved in a ''comoving'' coordinate system. Two arbitrary functions of a single variable are introduced in the process of solving these equations. Particular examples considered are a stationary solution, a nonvacuum solution depending on a single parameter, and several limiting situations.

  9. Measuring the Rate of Change in Sea Level and Its Adherence to USACE Sea Level Rise Planning Scenarios Using Timeseries Metrics

    Science.gov (United States)

    White, K. D.; Huang, N.; Huber, M.; Veatch, W.; Moritz, H.; Obrien, P. S.; Friedman, D.

    2017-12-01

    In 2013, the United States Army Corps of Engineers (USACE) issued guidance for all Civil Works activities to incorporate the effects of sea level change as described in three distinct planning scenarios.[1] These planning scenarios provided a useful framework to incorporate these effects into Civil Works activities, but required the manual calculation of these scenarios for a given gage and set of datum. To address this need, USACE developed the Sea Level Change Curve Calculator (SLCCC) in 2014 which provided a "simple, web-based tool to provide repeatable analytical results."[2]USACE has been developing a successor to the SLCCC application which retains the same, intuitive functionality to calculate these planning scenarios, but it also allows the comparison of actual sea level change between 1992 and today against the projections, and builds on the user's ability to understand the rate of change using a variety of timeseries metrics (e.g. moving averages, trends) and related visualizations. These new metrics help both illustrate and measure the complexity and nuances of sea level change. [1] ER 1000-2-8162. http://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1100-2-8162.pdf. [2] SLCC Manual. http://www.corpsclimate.us/docs/SLC_Calculator_Manual_2014_88.pdf.

  10. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space...... coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...... enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led...

  11. Angular signatures, and a space-borne measurement concept

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.

    1996-05-01

    The nature and value of angular signatures in remote sensing are reviewed with emphasis on the canopy hot-spot as a directionally localized angular signature and an important special case of a BRDF (bidirectional reflectance distribution function). A new concept is presented that allows hot spot measurements from space by using active (laser) illumination and bistatic detection. The detectors are proposed as imaging array sensors that are circulating the illumination source (or vice versa) and are connected with it through tethers in space which also provide the directional controls needed so that the entire system becomes pointable like a search light. Near infrared or IR operation in an atmospheric transmission winodw is envisioned with night-time data acquistion. Detailed feasibility and systems analyses have yet to be performed.

  12. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  13. Open problems in Banach spaces and measure theory | Rodríguez ...

    African Journals Online (AJOL)

    We collect several open questions in Banach spaces, mostly related to measure theoretic aspects of the theory. The problems are divided into five categories: miscellaneous problems in Banach spaces (non-separable Lp spaces, compactness in Banach spaces, w*-null sequences in dual spaces), measurability in Banach ...

  14. Covariant electrodynamics in linear media: Optical metric

    Science.gov (United States)

    Thompson, Robert T.

    2018-03-01

    While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.

  15. Measuring emergency physicians' work: factoring in clinical hours, patients seen, and relative value units into 1 metric.

    Science.gov (United States)

    Silich, Bert A; Yang, James J

    2012-05-01

    Measuring workplace performance is important to emergency department management. If an unreliable model is used, the results will be inaccurate. Use of inaccurate results to make decisions, such as how to distribute the incentive pay, will lead to rewarding the wrong people and will potentially demoralize top performers. This article demonstrates a statistical model to reliably measure the work accomplished, which can then be used as a performance measurement.

  16. Measuring Emergency Physicians’ Work: Factoring in Clinical Hours, Patients Seen, and Relative Value Units into 1 Metric

    Directory of Open Access Journals (Sweden)

    Bert A. Silich, MD, MS

    2012-05-01

    Full Text Available Measuring workplace performance is important to emergency department management. If anunreliable model is used, the results will be inaccurate. Use of inaccurate results to make decisions,such as how to distribute the incentive pay, will lead to rewarding the wrong people and will potentiallydemoralize top performers. This article demonstrates a statistical model to reliably measure the workaccomplished, which can then be used as a performance measurement.

  17. Flight Crew State Monitoring Metrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — eSky will develop specific crew state metrics based on the timeliness, tempo and accuracy of pilot inputs required by the H-mode Flight Control System (HFCS)....

  18. Precision interplanar spacings measurements of boron doped silicon

    International Nuclear Information System (INIS)

    Soares, D.A.W.; Pimentel, C.A.F.

    1982-05-01

    A study of lattice parameters of boron doped silicon (10 14 -10 19 atom/cc) grown in and directions by Czochralski technique has been undertaken. Interplanar spacings (d) were measured by pseudo-Kossel technique to a precision up to 0,001%; different procedures to obtain d and the errors are discussed. It is concluded that the crystallographic planes contract preferentially and the usual study of parameter variation must be made as a function of d. The diffused B particularly contracts the [333] plane and in a more pronunciate way in high concentrations. An orientation dependence of the diffusion during growth was observed. (Author) [pt

  19. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING

    DEFF Research Database (Denmark)

    Zhu, Wei; Novati, S. Calchi; Gould, A.

    2016-01-01

    lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}⊙ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses...... is dramatically increased once simultaneous ground- and space-based observations are conducted....

  20. Some measurements of time and space correlation in wind tunnel

    Science.gov (United States)

    Favre, A; Gaviglio, J; Dumas, R

    1955-01-01

    Results are presented of research obtained by means of an apparatus for measurement of time and space correlation and of a spectral analyzer in the study of the longitudinal component of turbulence velocities in a wind tunnel downstream of a grid of meshes. Application to the case of a flat-plate boundary layer is illustrated. These researches were made at the Laboratoire de Mecanique de l'Atmosphere de l'I.M.F.M. for the O.N.E.R.A.

  1. The rhesus measurement system: A new instrument for space research

    Science.gov (United States)

    Schonfeld, Julie E.; Hines, John W.

    1993-01-01

    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.

  2. Web metrics for library and information professionals

    CERN Document Server

    Stuart, David

    2014-01-01

    This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional.Th...

  3. Measuring Progress in Conflict Environments (MPICE) - A Metrics Framework for Assessing Conflict Transformation and Stabilization. Version 1.0

    National Research Council Canada - National Science Library

    Dziedzic, Michael; Sotirin, Barbara; Agoglia, John

    2008-01-01

    There has been a long standing need for "Measures of Effectiveness," as they are often called in the private sector, focused on diplomatic, military and development efforts in places prone to conflict. Traditionally, U.S...

  4. Sex determination in femurs of modern Egyptians: A comparative study between metric measurements and SRY gene detection

    Directory of Open Access Journals (Sweden)

    Iman F. Gaballah

    2014-12-01

    Conclusion: The SRY gene detection method for sex determination is quick and simple, requiring only one PCR reaction. It corroborates the results obtained from anatomical measurements and further confirms the sex of the femur bone in question.

  5. Interobserver agreement of semi-automated and manual measurements of functional MRI metrics of treatment response in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Bonekamp, David; Bonekamp, Susanne; Halappa, Vivek Gowdra; Geschwind, Jean-Francois H.; Eng, John; Corona-Villalobos, Celia Pamela; Pawlik, Timothy M.; Kamel, Ihab R.

    2014-01-01

    Purpose: To assess the interobserver agreement in 50 patients with hepatocellular carcinoma (HCC) before and 1 month after intra-arterial therapy (IAT) using two semi-automated methods and a manual approach for the following functional, volumetric and morphologic parameters: (1) apparent diffusion coefficient (ADC), (2) arterial phase enhancement (AE), (3) portal venous phase enhancement (VE), (4) tumor volume, and assessment according to (5) the Response Evaluation Criteria in Solid Tumors (RECIST), and (6) the European Association for the Study of the Liver (EASL). Materials and methods: This HIPAA-compliant retrospective study had institutional review board approval. The requirement for patient informed consent was waived. Tumor ADC, AE, VE, volume, RECIST, and EASL in 50 index lesions was measured by three observers. Interobserver reproducibility was evaluated using intraclass correlation coefficients (ICC). P < 0.05 was considered to indicate a significant difference. Results: Semi-automated volumetric measurements of functional parameters (ADC, AE, and VE) before and after IAT as well as change in tumor ADC, AE, or VE had better interobserver agreement (ICC = 0.830–0.974) compared with manual ROI-based axial measurements (ICC = 0.157–0.799). Semi-automated measurements of tumor volume and size in the axial plane before and after IAT had better interobserver agreement (ICC = 0.854–0.996) compared with manual size measurements (ICC = 0.543–0.596), and interobserver agreement for change in tumor RECIST size was also higher using semi-automated measurements (ICC = 0.655) compared with manual measurements (ICC = 0.169). EASL measurements of tumor enhancement in the axial plane before and after IAT ((ICC = 0.758–0.809), and changes in EASL after IAT (ICC = 0.653) had good interobserver agreement. Conclusion: Semi-automated measurements of functional changes assessed by ADC and VE based on whole-lesion segmentation demonstrated better reproducibility than

  6. Virtual reality as a metric for the assessment of laparoscopic psychomotor skills. Learning curves and reliability measures.

    Science.gov (United States)

    Gallagher, A G; Satava, R M

    2002-12-01

    The objective assessment of the psychomotor skills of surgeons is now a priority; however, this is a difficult task because of measurement difficulties associated with the assessment of surgery in vivo. In this study, virtual reality (VR) was used to overcome these problems. Twelve experienced (>50 minimal-access procedures), 12 inexperienced laparoscopic surgeons (Virtual Reality (MIST VR). Experienced laparoscopic surgeons performed the tasks significantly (p < 0.01) faster, with less error, more economy in the movement of instruments and the use of diathermy, and with greater consistency in performance. The standardized coefficient alpha for performance measures ranged from a = 0.89 to 0.98, showing high internal measurement consistency. Test-retest reliability ranged from r = 0.96 to r = 0.5. VR is a useful tool for evaluating the psychomotor skills needed to perform laparoscopic surgery.

  7. A framework for operationalization of strategic plans and metrics for corporate performance measurement in transportation asset management

    Science.gov (United States)

    Mteri, Hassan H.

    This thesis investigated the business processes required to translate corporate-level strategic plans into tactical and operational plans in the context of transportation asset management. The study also developed a framework for effective performance measure for departments of transportation. The thesis was based on a case study of transportation agencies in the U.S.A. and Canada. The scope is therefore limited or more directly applicable to transportation assets such as pavement, bridges and culverts. The goal was to address the problem of translating or managing strategic plans, especially in the context of the public sector responsible for operating transportation infrastructure. It was observed that many agencies have been successful in formulating good strategic plans but they have performed relatively poorly in translating such corporate-level strategic plans into operational activities. A questionnaire survey was designed and targeted about 30 state agencies that are currently active in transportation asset management. Twenty one (21) transportation agencies in the USA and Canada responded to the questionnaire. The analysis of the questionnaire data showed that there is a lack of a standard approach to managing corporate strategic plans in transportation agencies. The results also indicated that most transportation agencies operate in three organizational levels but there was no systematic approach of translating goal and objectives from high level to lower levels. Approaches in performance measurement were found to vary from agency to agency. A number of limitations were identified in the existing practice on performance measurements. Key weaknesses include the large number of measures in use (as many as 25 or more), and the disconnection between the measures used and the corporate goals and objectives. Lessons from the private sector were thoroughly reviewed in order to build the groundwork for adapting existing tools to the public sector. The existing

  8. Measure and category a survey of the analogies between topological and measure spaces

    CERN Document Server

    Oxtoby, John C

    1980-01-01

    In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main themes: the Baire category theorem as a method for proving existence, and the "duality" between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not es...

  9. ISS Logistics Hardware Disposition and Metrics Validation

    Science.gov (United States)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  10. Multivariate analytical figures of merit as a metric for evaluation of quantitative measurements using comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Eftekhari, Ali; Parastar, Hadi

    2016-09-30

    The present contribution is devoted to develop multivariate analytical figures of merit (AFOMs) as a new metric for evaluation of quantitative measurements using comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). In this regard, new definition of sensitivity (SEN) is extended to GC×GC-MS data and then, other multivariate AFOMs including analytical SEN (γ), selectivity (SEL) and limit of detection (LOD) are calculated. Also, two frequently used second- and third-order calibration algorithms of multivariate curve resolution-alternating least squares (MCR-ALS) as representative of multi-set methods and parallel factor analysis (PARAFAC) as representative of multi-way methods are discussed to exploit pure component profiles and to calculate multivariate AFOMs. Different GC×GC-MS data sets with different number of components along with various levels of artifacts are simulated and analyzed. Noise, elution time shifts in both chromatographic dimensions, peak overlap and interferences are considered as the main artifacts in this work. Additionally, a new strategy is developed to estimate the noise level using variance-covariance matrix of residuals which is very important to calculate multivariate AFOMs. Finally, determination of polycyclic aromatic hydrocarbons (PAHs) in aromatic fraction of heavy fuel oil (HFO) analyzed by GC×GC-MS is considered as real case to confirm applicability of the proposed metric in real samples. It should be pointed out that the proposed strategy in this work can be used for other types of comprehensive two-dimensional chromatographic (CTDC) techniques like comprehensive two dimensional liquid chromatography (LC×LC). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Group covariance and metrical theory

    International Nuclear Information System (INIS)

    Halpern, L.

    1983-01-01

    The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references

  12. METRIC context unit architecture

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R.O.

    1988-01-01

    METRIC is an architecture for a simple but powerful Reduced Instruction Set Computer (RISC). Its speed comes from the simultaneous processing of several instruction streams, with instructions from the various streams being dispatched into METRIC's execution pipeline as they become available for execution. The pipeline is thus kept full, with a mix of instructions for several contexts in execution at the same time. True parallel programming is supported within a single execution unit, the METRIC Context Unit. METRIC's architecture provides for expansion through the addition of multiple Context Units and of specialized Functional Units. The architecture thus spans a range of size and performance from a single-chip microcomputer up through large and powerful multiprocessors. This research concentrates on the specification of the METRIC Context Unit at the architectural level. Performance tradeoffs made during METRIC's design are discussed, and projections of METRIC's performance are made based on simulation studies.

  13. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  14. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  15. A Risk Metric Assessment of Scenario-Based Market Risk Measures for Volatility and Risk Estimation: Evidence from Emerging Markets

    Directory of Open Access Journals (Sweden)

    Sitima Innocent

    2015-03-01

    Full Text Available The study evaluated the sensitivity of the Value- at- Risk (VaR and Expected Shortfalls (ES with respect to portfolio allocation in emerging markets with an index portfolio of a developed market. This study utilised different models for VaR and ES techniques using various scenario-based models such as Covariance Methods, Historical Simulation and the GARCH (1, 1 for the predictive ability of these models in both relatively stable market conditions and extreme market conditions. The results showed that Expected Shortfall has less risk tolerance than VaR based on the same scenario-based market risk measures

  16. Metric adjusted skew information

    DEFF Research Database (Denmark)

    Hansen, Frank

    2008-01-01

    ) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We...... establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible......We extend the concept of Wigner-Yanase-Dyson skew information to something we call "metric adjusted skew information" (of a state with respect to a conserved observable). This "skew information" is intended to be a non-negative quantity bounded by the variance (of an observable in a state...

  17. A condition metric for Eucalyptus woodland derived from expert evaluations.

    Science.gov (United States)

    Sinclair, Steve J; Bruce, Matthew J; Griffioen, Peter; Dodd, Amanda; White, Matthew D

    2018-02-01

    The evaluation of ecosystem quality is important for land-management and land-use planning. Evaluation is unavoidably subjective, and robust metrics must be based on consensus and the structured use of observations. We devised a transparent and repeatable process for building and testing ecosystem metrics based on expert data. We gathered quantitative evaluation data on the quality of hypothetical grassy woodland sites from experts. We used these data to train a model (an ensemble of 30 bagged regression trees) capable of predicting the perceived quality of similar hypothetical woodlands based on a set of 13 site variables as inputs (e.g., cover of shrubs, richness of native forbs). These variables can be measured at any site and the model implemented in a spreadsheet as a metric of woodland quality. We also investigated the number of experts required to produce an opinion data set sufficient for the construction of a metric. The model produced evaluations similar to those provided by experts, as shown by assessing the model's quality scores of expert-evaluated test sites not used to train the model. We applied the metric to 13 woodland conservation reserves and asked managers of these sites to independently evaluate their quality. To assess metric performance, we compared the model's evaluation of site quality with the managers' evaluations through multidimensional scaling. The metric performed relatively well, plotting close to the center of the space defined by the evaluators. Given the method provides data-driven consensus and repeatability, which no single human evaluator can provide, we suggest it is a valuable tool for evaluating ecosystem quality in real-world contexts. We believe our approach is applicable to any ecosystem. © 2017 State of Victoria.

  18. Design Optimization for Interferometric Space-Based 21-cm Power Spectrum Measurements

    Science.gov (United States)

    Pober, Jonathan

    2018-06-01

    Observations of the highly-redshifted 21 cm hyperfine line of neutral hydrogen (HI) are one of the most promising probes for the future of cosmology. At redshifts z > 30, the HI signal is likely the only measurable emission, as luminous objects have yet to form. At these very low radio frequencies, however, the earth’s ionosphere becomes opaque — necessitating observations from space. The major challenge to neutral hydrogen cosmology (at all redshifts) lies in the presence of bright foreground emission, which can dominate the HI signal by as much as eight orders of magnitude at the highest redshifts. The only method for extracting the cosmological signal relies on the spectral smoothness of the foregrounds; since each frequency of the HI signal probes a different redshift, the cosmological emission is essentially uncorrelated from frequency to frequency. The key challenge for designing an experiment lies in maintaining the spectral smoothness of the foregrounds. If the frequency response of the instrument introduces spectral structure (or at least, a residual that cannot be calibrated out at the necessary precision), it quickly becomes impossible to distinguish the cosmological signal from the foregrounds. This principle has guided the design of ground-based experiments like the Precision Array for Probing the Epoch of Reionization (PAPER) and the Hydrogen Epoch of Reionization Array (HERA). However, there still exists no unifying framework for turning this design "philosophy" into a robust, quantitative set of performance metrics and specifications. In this talk, I will present updates on the efforts of my research group to translate lessons learned from ground-based experiments into a fully traceable set of mission requirements for Cosmic Dawn Mapper or other space-based 21 cm interferometer.

  19. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  20. Measuring Galactic Feedback with the Origins Space Telescope

    Science.gov (United States)

    Armus, Lee; Bolatto, Alberto; Pope, Alexandra; Bradford, Charles Matt; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    Since a significant fraction of star formation and black hole growth occurs behind dust, our understanding of how and why galaxies evolve will remain incomplete until deep, wide area spectroscopic surveys in the FIRcan be carried out from space. The Origins Space Telescope (OST), a mission concept being studied for presentation to the 2020 Decadal Survey, represents an enormous leap over any existing infrared mission, and will uniquely measure black hole growth and star formation in dusty galaxies over more than 95% of cosmic history. Energetic feedback from AGN, young stars, and supernovae can regulate galaxy growth over a wide range in mass and be important for the enrichment of the interstellar and circumgalactic medium, yet the existence and type of feedback as a function of redshift, luminosity, and environment is poorly constrained. With wide wavelength coverage (5-600 microns), a large primary mirror actively cooled to ~4K, and a capable suite of imagers and spectrometers, OST will be an extremely sensitive probe of the effects of feedback on the multi-phase ISM in galaxies, through measurement of key feedback tracers such as OH and H2O absorption lines, fine structure emission lines, and PAH dust features. With OST we can directly observe the role of feedback in quenching galaxies, derive the wind kinetic energy and mass outflow rates, and correlate these with key galaxy properties (AGN or starburst power, environment, mass, age). In this poster we will explain how blind and targeted surveys with OST will have an enormous impact on our understanding of the duty cycle and basic physical properties of feedback in AGN and starburst galaxies over the last 12 Gyr.

  1. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  2. On Nakhleh's metric for reduced phylogenetic networks

    OpenAIRE

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente Feruglio, Gabriel Alejandro

    2009-01-01

    We prove that Nakhleh’s metric for reduced phylogenetic networks is also a metric on the classes of tree-child phylogenetic networks, semibinary tree-sibling time consistent phylogenetic networks, and multilabeled phylogenetic trees. We also prove that it separates distinguishable phylogenetic networks. In this way, it becomes the strongest dissimilarity measure for phylogenetic networks available so far. Furthermore, we propose a generalization of that metric that separates arbitrary phyl...

  3. Gravitational lensing in metric theories of gravity

    International Nuclear Information System (INIS)

    Sereno, Mauro

    2003-01-01

    Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat's principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other

  4. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  5. Directed energy deflection laboratory measurements of common space based targets

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  6. Airborne protein concentration: a key metric for type 1 allergy risk assessment-in home measurement challenges and considerations.

    Science.gov (United States)

    Tulum, Liz; Deag, Zoë; Brown, Matthew; Furniss, Annette; Meech, Lynn; Lalljie, Anja; Cochrane, Stella

    2018-01-01

    Exposure to airborne proteins can be associated with the development of immediate, IgE-mediated respiratory allergies, with genetic, epigenetic and environmental factors also playing a role in determining the likelihood that sensitisation will be induced. The main objective of this study was to determine whether airborne concentrations of selected common aeroallergens could be quantified in the air of homes using easily deployable, commercially available equipment and analytical methods, at low levels relevant to risk assessment of the potential to develop respiratory allergies. Additionally, air and dust sampling were compared and the influence of factors such as different filter types on allergen quantification explored. Low volume air sampling pumps and DUSTREAM ® dust samplers were used to sample 20 homes and allergen levels were quantified using a MARIA ® immunoassay. It proved possible to detect a range of common aeroallergens in the home with sufficient sensitivity to quantify airborne concentrations in ranges relevant to risk assessment (Limits of Detection of 0.005-0.03 ng/m 3 ). The methodology discriminates between homes related to pet ownership and there were clear advantages to sampling air over dust which are described in this paper. Furthermore, in an adsorption-extraction study, PTFE (polytetrafluoroethylene) filters gave higher and more consistent recovery values than glass fibre (grade A) filters for the range of aeroallergens studied. Very low airborne concentrations of allergenic proteins in home settings can be successfully quantified using commercially available pumps and immunoassays. Considering the greater relevance of air sampling to human exposure of the respiratory tract and its other advantages, wider use of standardised, sensitive techniques to measure low airborne protein concentrations and how they influence development of allergic sensitisation and symptoms could accelerate our understanding of human dose-response relationships

  7. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  8. Simple procedure for phase-space measurement and entanglement validation

    Science.gov (United States)

    Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.

    2017-08-01

    It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.

  9. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  10. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    Science.gov (United States)

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  11. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  12. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.

    2009-01-01

    analysts have difficulties grasping the dynamics implied by a process model. Recent empirical studies show that people make numerous errors when modeling complex business processes, e.g., about 20 percent of the EPCs in the SAP reference model have design flaws resulting in potential deadlocks, livelocks......, etc. It seems obvious that the complexity of the model contributes to design errors and a lack of understanding. It is not easy to measure complexity, however. This paper presents three complexity metrics that have been implemented in the process analysis tool ProM. The metrics are defined...... for a subclass of Petri nets named Workflow nets, but the results can easily be applied to other languages. To demonstrate the applicability of these metrics, we have applied our approach and tool to 262 relatively complex Protos models made in the context of various student projects. This allows us to validate...

  13. Otherwise Engaged : Social Media from Vanity Metrics to Critical Analytics

    NARCIS (Netherlands)

    Rogers, R.

    2018-01-01

    Vanity metrics is a term that captures the measurement and display of how well one is doing in the “success theater” of social media. The notion of vanity metrics implies a critique of metrics concerning both the object of measurement as well as their capacity to measure unobtrusively or only to

  14. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  15. Validation of Metrics for Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2008-01-01

    Full Text Available This paper describe the new concepts of collaborative systems metrics validation. The paper define the quality characteristics of collaborative systems. There are proposed a metric to estimate the quality level of collaborative systems. There are performed measurements of collaborative systems quality using a specially designed software.

  16. Validation of Metrics for Collaborative Systems

    OpenAIRE

    Ion IVAN; Cristian CIUREA

    2008-01-01

    This paper describe the new concepts of collaborative systems metrics validation. The paper define the quality characteristics of collaborative systems. There are proposed a metric to estimate the quality level of collaborative systems. There are performed measurements of collaborative systems quality using a specially designed software.

  17. Software Power Metric Model: An Implementation | Akwukwuma ...

    African Journals Online (AJOL)

    ... and the execution time (TIME) in each case was recorded. We then obtain the application functions point count. Our result shows that the proposed metric is computable, consistent in its use of unit, and is programming language independent. Keywords: Software attributes, Software power, measurement, Software metric, ...

  18. TU-FG-209-05: Demonstration of the Line Focus Principle Using the Generalized Measured-Relative Object Detectability (GM-ROD) Metric

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Shankar, A; Lau, A; Bednarek, D; Rudin, S [University at Buffalo (SUNY), Buffalo, NY (United States)

    2016-06-15

    Purpose: Demonstrate and quantify the augmented resolution due to focalspot size decrease in images acquired on the anode side of the field, for both small and medium (0.3 and 0.6mm) focal-spot sizes using the experimental task-based GM-ROD metric. Theoretical calculations have shown that a medium focal-spot can achieve the resolution of a small focal-spot if acquired with a tilted anode, effectively providing a higher-output small focal-spot. Methods: The MAF-CMOS (micro-angiographic fluoroscopic complementary-metal-oxide semiconductor) detector (75µm pixel pitch) imaged two copper wire segments of different diameter and a pipeline stent at the central axis and on the anode side of the beam, achieved by tilting the x-ray C-arm (Toshiba Infinix) to 6° and realigning the detector with the perpendicular ray to correct for x-ray obliquity. The relative gain in resolution was determined using the GM-ROD metric, which compares images on the basis of the Fourier transform of the image and the measured NNPS. To emphasize the geometric unsharpness, images were acquired at a magnification of two. Results: Images acquired on the anode side were compared to those acquired on the central axis with the same target-area focal-spot to consider the effect of an angled tube, and for all three objects the advantage of the smaller effective focal-spot was clear, showing a maximum improvement of 36% in GM-ROD. The images obtained with the small focal-spot at the central axis were compared to those of the medium focal-spot at the anode side and, for all objects, the relative performance was comparable. Conclusion: For three objects, the GM-ROD demonstrated the advantage of the anode side focal-spot. The comparable performance of the medium focal-spot on the anode side will allow for a high-output small focal-spot; a necessity in endovascular image-guided interventions. Partial support from an NIH grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.

  19. TU-FG-209-05: Demonstration of the Line Focus Principle Using the Generalized Measured-Relative Object Detectability (GM-ROD) Metric

    International Nuclear Information System (INIS)

    Russ, M; Shankar, A; Lau, A; Bednarek, D; Rudin, S

    2016-01-01

    Purpose: Demonstrate and quantify the augmented resolution due to focalspot size decrease in images acquired on the anode side of the field, for both small and medium (0.3 and 0.6mm) focal-spot sizes using the experimental task-based GM-ROD metric. Theoretical calculations have shown that a medium focal-spot can achieve the resolution of a small focal-spot if acquired with a tilted anode, effectively providing a higher-output small focal-spot. Methods: The MAF-CMOS (micro-angiographic fluoroscopic complementary-metal-oxide semiconductor) detector (75µm pixel pitch) imaged two copper wire segments of different diameter and a pipeline stent at the central axis and on the anode side of the beam, achieved by tilting the x-ray C-arm (Toshiba Infinix) to 6° and realigning the detector with the perpendicular ray to correct for x-ray obliquity. The relative gain in resolution was determined using the GM-ROD metric, which compares images on the basis of the Fourier transform of the image and the measured NNPS. To emphasize the geometric unsharpness, images were acquired at a magnification of two. Results: Images acquired on the anode side were compared to those acquired on the central axis with the same target-area focal-spot to consider the effect of an angled tube, and for all three objects the advantage of the smaller effective focal-spot was clear, showing a maximum improvement of 36% in GM-ROD. The images obtained with the small focal-spot at the central axis were compared to those of the medium focal-spot at the anode side and, for all objects, the relative performance was comparable. Conclusion: For three objects, the GM-ROD demonstrated the advantage of the anode side focal-spot. The comparable performance of the medium focal-spot on the anode side will allow for a high-output small focal-spot; a necessity in endovascular image-guided interventions. Partial support from an NIH grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.

  20. Kennedy Space Center Press Site (SWMU 074) Interim Measure Report

    Science.gov (United States)

    Applegate, Joseph L.

    2015-01-01

    This report summarizes the Interim Measure (IM) activities conducted at the Kennedy Space Center (KSC) Press Site ("the Press Site"). This facility has been designated as Solid Waste Management Unit 074 under KSC's Resource Conservation and Recovery Act Corrective Action program. The activities were completed as part of the Vehicle Assembly Building (VAB) Area Land Use Controls Implementation Plan (LUCIP) Elimination Project. The purpose of the VAB Area LUCIP Elimination Project was to delineate and remove soil affected with constituents of concern (COCs) that historically resulted in Land Use Controls (LUCs). The goal of the project was to eliminate the LUCs on soil. LUCs for groundwater were not addressed as part of the project and are not discussed in this report. This report is intended to meet the Florida Department of Environmental Protection (FDEP) Corrective Action Management Plan requirement as part of the KSC Hazardous and Solid Waste Amendments permit and the U.S. Environmental Protection Agency's (USEPA's) Toxic Substance Control Act (TSCA) self-implementing polychlorinated biphenyl (PCB) cleanup requirements of 40 Code of Federal Regulations (CFR) 761.61(a).

  1. CALET: a calorimeter for cosmic-ray measurements in space

    International Nuclear Information System (INIS)

    Mori, Nicola

    2013-01-01

    The CALorimetric Electron Telescope (CALET) instrument is scheduled for a launch in 2014 and attached to the Exposed Facility of the Japanese Experimental Module (JEM-EF) on the International Space Station. Its main objective is to perform precise measurements of the electron+positron spectrum in cosmic rays at energies up to some TeV, searching for signals from dark matter and/or contributions from nearby astrophysical sources like pulsars. Other scientific goals include the investigation of heavy ions spectra up to Fe, elemental abundance of trans-iron nuclei and a measurement of the diffuse γ ray emission with high energy resolution. The instrument is now under construction, and consists of a charge detection device (CHD) composed of two layers of plastic scintillators, a finely-segmented sampling calorimeter (IMC) and a deep, homogeneous calorimeter (TASC) made of PbWO scintillating bars. The good containment of electromagnetic showers (total depth ∼3X 0 (IMC)+27X 0 (TASC)=30X 0 ) together with the homogeneity of TASC give an energy resolution for electrons and γ rays about 2%. CHD can discriminate the charge of primary particles with a resolution between 15% and 30% up to Fe. The finely-segmented IMC, made by tungsten layers and 1mm-wide scintillating fibers, can provide detailed information about the start and early development of particle showers. Lateral and longitudinal shower-development information from TASC, together with informations from IMC, can be used to achieve an electron/proton rejection power about 10 5 . High-statistics for collected data will be achieved by means of the planned 5-years exposure time together with a geometrical factor of 0.12 m 2 sr. Furthermore, a Gamma-Ray Burst monitor will complement the main detector. In this paper the status of the mission, the design and expected performance of the instrument will be detailed

  2. Weyl metrics and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Gary W. [DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA U.K. (United Kingdom); Volkov, Mikhail S., E-mail: gwg1@cam.ac.uk, E-mail: volkov@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, LMPT CNRS—UMR 7350, Université de Tours, Parc de Grandmont, Tours, 37200 France (France)

    2017-05-01

    We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.

  3. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  4. Determination of a Screening Metric for High Diversity DNA Libraries.

    Science.gov (United States)

    Guido, Nicholas J; Handerson, Steven; Joseph, Elaine M; Leake, Devin; Kung, Li A

    2016-01-01

    The fields of antibody engineering, enzyme optimization and pathway construction rely increasingly on screening complex variant DNA libraries. These highly diverse libraries allow researchers to sample a maximized sequence space; and therefore, more rapidly identify proteins with significantly improved activity. The current state of the art in synthetic biology allows for libraries with billions of variants, pushing the limits of researchers' ability to qualify libraries for screening by measuring the traditional quality metrics of fidelity and diversity of variants. Instead, when screening variant libraries, researchers typically use a generic, and often insufficient, oversampling rate based on a common rule-of-thumb. We have developed methods to calculate a library-specific oversampling metric, based on fidelity, diversity, and representation of variants, which informs researchers, prior to screening the library, of the amount of oversampling required to ensure that the desired fraction of variant molecules will be sampled. To derive this oversampling metric, we developed a novel alignment tool to efficiently measure frequency counts of individual nucleotide variant positions using next-generation sequencing data. Next, we apply a method based on the "coupon collector" probability theory to construct a curve of upper bound estimates of the sampling size required for any desired variant coverage. The calculated oversampling metric will guide researchers to maximize their efficiency in using highly variant libraries.

  5. Determination of a Screening Metric for High Diversity DNA Libraries.

    Directory of Open Access Journals (Sweden)

    Nicholas J Guido

    Full Text Available The fields of antibody engineering, enzyme optimization and pathway construction rely increasingly on screening complex variant DNA libraries. These highly diverse libraries allow researchers to sample a maximized sequence space; and therefore, more rapidly identify proteins with significantly improved activity. The current state of the art in synthetic biology allows for libraries with billions of variants, pushing the limits of researchers' ability to qualify libraries for screening by measuring the traditional quality metrics of fidelity and diversity of variants. Instead, when screening variant libraries, researchers typically use a generic, and often insufficient, oversampling rate based on a common rule-of-thumb. We have developed methods to calculate a library-specific oversampling metric, based on fidelity, diversity, and representation of variants, which informs researchers, prior to screening the library, of the amount of oversampling required to ensure that the desired fraction of variant molecules will be sampled. To derive this oversampling metric, we developed a novel alignment tool to efficiently measure frequency counts of individual nucleotide variant positions using next-generation sequencing data. Next, we apply a method based on the "coupon collector" probability theory to construct a curve of upper bound estimates of the sampling size required for any desired variant coverage. The calculated oversampling metric will guide researchers to maximize their efficiency in using highly variant libraries.

  6. Accessibility of green space in urban areas: an examination of various approaches to measure it

    OpenAIRE

    Zhang, Xin

    2007-01-01

    In the present research, we attempt to improve the methods used for measuring accessibility of green spaces by combining two components of accessibility-distance and demand relative to supply. Three modified approaches (Joseph and Bantock gravity model measure, the two-step floating catchment area measure and a measure based on kernel densities) will be applied for measuring accessibility to green spaces. We select parks and public open spaces (metropolitan open land) of south London as a cas...

  7. General relativity: An erfc metric

    Science.gov (United States)

    Plamondon, Réjean

    2018-06-01

    This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space-time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.

  8. Measuring the Value of AI in Space Science and Exploration

    Science.gov (United States)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  9. Brand metrics that matter

    NARCIS (Netherlands)

    Muntinga, D.; Bernritter, S.

    2017-01-01

    Het merk staat steeds meer centraal in de organisatie. Het is daarom essentieel om de gezondheid, prestaties en ontwikkelingen van het merk te meten. Het is echter een uitdaging om de juiste brand metrics te selecteren. Een enorme hoeveelheid metrics vraagt de aandacht van merkbeheerders. Maar welke

  10. Privacy Metrics and Boundaries

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2005-01-01

    textabstractThis paper aims at defining a set of privacy metrics (quantitative and qualitative) in the case of the relation between a privacy protector ,and an information gatherer .The aims with such metrics are: -to allow to assess and compare different user scenarios and their differences; for

  11. H-Metric: Characterizing Image Datasets via Homogenization Based on KNN-Queries

    Directory of Open Access Journals (Sweden)

    Welington M da Silva

    2012-01-01

    Full Text Available Precision-Recall is one of the main metrics for evaluating content-based image retrieval techniques. However, it does not provide an ample perception of the properties of an image dataset immersed in a metric space. In this work, we describe an alternative metric named H-Metric, which is determined along a sequence of controlled modifications in the image dataset. The process is named homogenization and works by altering the homogeneity characteristics of the classes of the images. The result is a process that measures how hard it is to deal with a set of images in respect to content-based retrieval, offering support in the task of analyzing configurations of distance functions and of features extractors.

  12. Construction of Einstein-Sasaki metrics in D≥7

    International Nuclear Information System (INIS)

    Lue, H.; Pope, C. N.; Vazquez-Poritz, J. F.

    2007-01-01

    We construct explicit Einstein-Kaehler metrics in all even dimensions D=2n+4≥6, in terms of a 2n-dimensional Einstein-Kaehler base metric. These are cohomogeneity 2 metrics which have the new feature of including a NUT-type parameter, or gravomagnetic charge, in addition to..' in addition to mass and rotation parameters. Using a canonical construction, these metrics all yield Einstein-Sasaki metrics in dimensions D=2n+5≥7. As is commonly the case in this type of construction, for suitable choices of the free parameters the Einstein-Sasaki metrics can extend smoothly onto complete and nonsingular manifolds, even though the underlying Einstein-Kaehler metric has conical singularities. We discuss some explicit examples in the case of seven-dimensional Einstein-Sasaki spaces. These new spaces can provide supersymmetric backgrounds in M theory, which play a role in the AdS 4 /CFT 3 correspondence

  13. www.common-metrics.org: a web application to estimate scores from different patient-reported outcome measures on a common scale.

    Science.gov (United States)

    Fischer, H Felix; Rose, Matthias

    2016-10-19

    Recently, a growing number of Item-Response Theory (IRT) models has been published, which allow estimation of a common latent variable from data derived by different Patient Reported Outcomes (PROs). When using data from different PROs, direct estimation of the latent variable has some advantages over the use of sum score conversion tables. It requires substantial proficiency in the field of psychometrics to fit such models using contemporary IRT software. We developed a web application ( http://www.common-metrics.org ), which allows estimation of latent variable scores more easily using IRT models calibrating different measures on instrument independent scales. Currently, the application allows estimation using six different IRT models for Depression, Anxiety, and Physical Function. Based on published item parameters, users of the application can directly estimate latent trait estimates using expected a posteriori (EAP) for sum scores as well as for specific response patterns, Bayes modal (MAP), Weighted likelihood estimation (WLE) and Maximum likelihood (ML) methods and under three different prior distributions. The obtained estimates can be downloaded and analyzed using standard statistical software. This application enhances the usability of IRT modeling for researchers by allowing comparison of the latent trait estimates over different PROs, such as the Patient Health Questionnaire Depression (PHQ-9) and Anxiety (GAD-7) scales, the Center of Epidemiologic Studies Depression Scale (CES-D), the Beck Depression Inventory (BDI), PROMIS Anxiety and Depression Short Forms and others. Advantages of this approach include comparability of data derived with different measures and tolerance against missing values. The validity of the underlying models needs to be investigated in the future.

  14. Office Skills: Metric Problems in the Typing Classroom

    Science.gov (United States)

    Panagoplos, Nicholas A.

    1978-01-01

    Discusses problems of metric conversion in the typewriting classroom, as most typewriters have spacing in inches, and shows how to teach students to adjust their typewritten work for this spacing. (MF)

  15. The metrics of science and technology

    CERN Document Server

    Geisler, Eliezer

    2000-01-01

    Dr. Geisler's far-reaching, unique book provides an encyclopedic compilation of the key metrics to measure and evaluate the impact of science and technology on academia, industry, and government. Focusing on such items as economic measures, patents, peer review, and other criteria, and supported by an extensive review of the literature, Dr. Geisler gives a thorough analysis of the strengths and weaknesses inherent in metric design, and in the use of the specific metrics he cites. His book has already received prepublication attention, and will prove especially valuable for academics in technology management, engineering, and science policy; industrial R&D executives and policymakers; government science and technology policymakers; and scientists and managers in government research and technology institutions. Geisler maintains that the application of metrics to evaluate science and technology at all levels illustrates the variety of tools we currently possess. Each metric has its own unique strengths and...

  16. A production of non-strain spacing of lattice planes measurement equipment and a measurement of general structure material

    International Nuclear Information System (INIS)

    Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio

    2001-01-01

    It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)

  17. Research on the method of measuring space information network capacity in communication service

    Directory of Open Access Journals (Sweden)

    Zhu Shichao

    2017-02-01

    Full Text Available Because of the large scale characteristic of space information network in terms of space and time and the increasing of its complexity,existing measuring methods of information transmission capacity have been unable to measure the existing and future space information networkeffectively.In this study,we firstly established a complex model of space information network,and measured the whole space information network capacity by means of analyzing data access capability to the network and data transmission capability within the network.At last,we verified the rationality of the proposed measuring method by using STK and Matlab simulation software for collaborative simulation.

  18. Some fixed point theorems for weakly compatible mappings in Non-Archimedean Menger probabilistic metric spaces via common limit range property

    Directory of Open Access Journals (Sweden)

    Sunny Chauhan

    2013-11-01

    Full Text Available In this paper, we utilize the notion of common limit range property in Non-Archimedean Menger PM-spaces and prove some fixed point theorems for two pairs of weakly compatible mappings. Some illustrative examples are furnished to support our results. As an application to our main result, we present a common fixed point theorem for four finite families of self mappings. Our results improve and extend several known results existing in the literature.

  19. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  20. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  1. Metrics for image segmentation

    Science.gov (United States)

    Rees, Gareth; Greenway, Phil; Morray, Denise

    1998-07-01

    An important challenge in mapping image-processing techniques onto applications is the lack of quantitative performance measures. From a systems engineering perspective these are essential if system level requirements are to be decomposed into sub-system requirements which can be understood in terms of algorithm selection and performance optimization. Nowhere in computer vision is this more evident than in the area of image segmentation. This is a vigorous and innovative research activity, but even after nearly two decades of progress, it remains almost impossible to answer the question 'what would the performance of this segmentation algorithm be under these new conditions?' To begin to address this shortcoming, we have devised a well-principled metric for assessing the relative performance of two segmentation algorithms. This allows meaningful objective comparisons to be made between their outputs. It also estimates the absolute performance of an algorithm given ground truth. Our approach is an information theoretic one. In this paper, we describe the theory and motivation of our method, and present practical results obtained from a range of state of the art segmentation methods. We demonstrate that it is possible to measure the objective performance of these algorithms, and to use the information so gained to provide clues about how their performance might be improved.

  2. Energy functionals for Calabi-Yau metrics

    International Nuclear Information System (INIS)

    Headrick, M; Nassar, A

    2013-01-01

    We identify a set of ''energy'' functionals on the space of metrics in a given Kähler class on a Calabi-Yau manifold, which are bounded below and minimized uniquely on the Ricci-flat metric in that class. Using these functionals, we recast the problem of numerically solving the Einstein equation as an optimization problem. We apply this strategy, using the ''algebraic'' metrics (metrics for which the Kähler potential is given in terms of a polynomial in the projective coordinates), to the Fermat quartic and to a one-parameter family of quintics that includes the Fermat and conifold quintics. We show that this method yields approximations to the Ricci-flat metric that are exponentially accurate in the degree of the polynomial (except at the conifold point, where the convergence is polynomial), and therefore orders of magnitude more accurate than the balanced metrics, previously studied as approximations to the Ricci-flat metric. The method is relatively fast and easy to implement. On the theoretical side, we also show that the functionals can be used to give a heuristic proof of Yau's theorem

  3. Networks and centroid metrics for understanding football

    African Journals Online (AJOL)

    Gonçalo Dias

    games. However, it seems that the centroid metric, supported only by the position of players in the field ...... the strategy adopted by the coach (Gama et al., 2014). ... centroid distance as measures of team's tactical performance in youth football.

  4. IT Project Management Metrics

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Many software and IT projects fail in completing theirs objectives because different causes of which the management of the projects has a high weight. In order to have successfully projects, lessons learned have to be used, historical data to be collected and metrics and indicators have to be computed and used to compare them with past projects and avoid failure to happen. This paper presents some metrics that can be used for the IT project management.

  5. Marketing communication metrics for social media

    OpenAIRE

    Töllinen, Aarne; Karjaluoto, Heikki

    2011-01-01

    The objective of this paper is to develop a conceptual framework for measuring the effectiveness of social media marketing communications. Specifically, we study whether the existing marketing communications performance metrics are still valid in the changing digitalised communications landscape, or whether it is time to rethink them, or even to devise entirely new metrics. Recent advances in information technology and marketing bring a need to re-examine measurement models. We combine two im...

  6. When L1 of a vector measure is an AL-space

    OpenAIRE

    Curbera Costello, Guillermo

    1994-01-01

    We consider the space of real functions which are integrable with respect to a countably additive vector measure with values in a Banach space. In a previous paper we showed that this space can be any order continuous Banach lattice with weak order unit. We study a priori conditions on the vector measure in order to guarantee that the resulting L is order isomorphic to an AL-space. We prove that for separable measures with no atoms there exists a Co-valued measure that generates the same spac...

  7. Ideal Based Cyber Security Technical Metrics for Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    W. F. Boyer; M. A. McQueen

    2007-10-01

    Much of the world's critical infrastructure is at risk from attack through electronic networks connected to control systems. Security metrics are important because they provide the basis for management decisions that affect the protection of the infrastructure. A cyber security technical metric is the security relevant output from an explicit mathematical model that makes use of objective measurements of a technical object. A specific set of technical security metrics are proposed for use by the operators of control systems. Our proposed metrics are based on seven security ideals associated with seven corresponding abstract dimensions of security. We have defined at least one metric for each of the seven ideals. Each metric is a measure of how nearly the associated ideal has been achieved. These seven ideals provide a useful structure for further metrics development. A case study shows how the proposed metrics can be applied to an operational control system.

  8. Understanding Acceptance of Software Metrics--A Developer Perspective

    Science.gov (United States)

    Umarji, Medha

    2009-01-01

    Software metrics are measures of software products and processes. Metrics are widely used by software organizations to help manage projects, improve product quality and increase efficiency of the software development process. However, metrics programs tend to have a high failure rate in organizations, and developer pushback is one of the sources…

  9. Street as Public Space - Measuring Street Life of Kuala Lumpur

    Science.gov (United States)

    Sulaiman, Normah; Ayu Abdullah, Yusfida; Hamdan, Hazlina

    2017-10-01

    Kuala Lumpur has envisioning in becoming World Class City by the year 2020. Essential elements of form and function of the urban environment are streets. Streets showcase the community and connect people. It’s one of the most comfortable social environment that provides aesthetical and interaction pleasure for everyone. Classified as main shopping streets in the local Kuala Lumpur urban design guidelines, Jalan Masjid India (JMI) has its uniqueness of shopping experience and social interaction. This conceptual paper will study the physical and cultural characteristics of the street that will generate the street character by mapping its original characters. The findings will focus on strengthening the methodology applied to promote improvements in evaluating it as a great public space. Results will also contribute to understanding the overall site context, the street connectivity, and urban dynamics. This paper is part of a larger study that addresses on transforming the sociability of public space.

  10. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  11. Characterising risk - aggregated metrics: radiation and noise

    International Nuclear Information System (INIS)

    Passchier, W.

    1998-01-01

    The characterisation of risk is an important phase in the risk assessment - risk management process. From the multitude of risk attributes a few have to be selected to obtain a risk characteristic or profile that is useful for risk management decisions and implementation of protective measures. One way to reduce the number of attributes is aggregation. In the field of radiation protection such an aggregated metric is firmly established: effective dose. For protection against environmental noise the Health Council of the Netherlands recently proposed a set of aggregated metrics for noise annoyance and sleep disturbance. The presentation will discuss similarities and differences between these two metrics and practical limitations. The effective dose has proven its usefulness in designing radiation protection measures, which are related to the level of risk associated with the radiation practice in question, given that implicit judgements on radiation induced health effects are accepted. However, as the metric does not take into account the nature of radiation practice, it is less useful in policy discussions on the benefits and harm of radiation practices. With respect to the noise exposure metric, only one effect is targeted (annoyance), and the differences between sources are explicitly taken into account. This should make the metric useful in policy discussions with respect to physical planning and siting problems. The metric proposed has only significance on a population level, and can not be used as a predictor for individual risk. (author)

  12. Acerca da métrica da percepção do espaço visual On the metric of visual space

    Directory of Open Access Journals (Sweden)

    José Aparecido da Silva

    2006-02-01

    Full Text Available Nesta revisão, analisamos diferentes aspectos relacionados à métrica da percepção visual. Atenção especial foi dada à mensuração de distância egocêntrica (distância de um observador a um objeto e à mensuração de distância exocêntrica (distância entre dois objetos, ou partes de um objeto. Além disso, foram, brevemente, consideradas as teorias, a natureza dos indícios de distância, os tipos de indicadores de distância percebida, e os ambientes nos quais as distâncias são mensuradas. Concluímos que, a relação entre distância percebida e distância real não reflete uma simples transformação de sua contraparte física; em vez disso, esta relação depende substancialmente do ambiente no qual as distâncias são estimadas bem como da combinação de indícios de distância presente neste ambiente.The major aim of this overview was the visual perception of egocentric (distance from an observer to a target and exocentric distance (distance between two targets. We considered different issues concerning the relationship between perceived distance and physical distance, giving special attention to the theories, to the cues regarding distance, how perceived distances are measured, and the types of visual environments where the measuring of distances occurred. We concluded that the perceived distance does not reflect a simple transformation of its physical counterpart; rather, the mapping between perceived distance and physical distance depends substantially on the type of visual environments where distances are measured, and, on the cue combination available in these environments.

  13. Software metrics a rigorous and practical approach

    CERN Document Server

    Fenton, Norman

    2014-01-01

    A Framework for Managing, Measuring, and Predicting Attributes of Software Development Products and ProcessesReflecting the immense progress in the development and use of software metrics in the past decades, Software Metrics: A Rigorous and Practical Approach, Third Edition provides an up-to-date, accessible, and comprehensive introduction to software metrics. Like its popular predecessors, this third edition discusses important issues, explains essential concepts, and offers new approaches for tackling long-standing problems.New to the Third EditionThis edition contains new material relevant

  14. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    Science.gov (United States)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  15. SU-G-BRB-16: Vulnerabilities in the Gamma Metric

    International Nuclear Information System (INIS)

    Neal, B; Siebers, J

    2016-01-01

    Purpose: To explore vulnerabilities in the gamma index metric that undermine its wide use as a radiation therapy quality assurance tool. Methods: 2D test field pairs (images) are created specifically to achieve high gamma passing rates, but to also include gross errors by exploiting the distance-to-agreement and percent-passing components of the metric. The first set has no requirement of clinical practicality, but is intended to expose vulnerabilities. The second set exposes clinically realistic vulnerabilities. To circumvent limitations inherent to user-specific tuning of prediction algorithms to match measurements, digital test cases are manually constructed, thereby mimicking high-quality image prediction. Results: With a 3 mm distance-to-agreement metric, changing field size by ±6 mm results in a gamma passing rate over 99%. For a uniform field, a lattice of passing points spaced 5 mm apart results in a passing rate of 100%. Exploiting the percent-passing component, a 10×10 cm"2 field can have a 95% passing rate when an 8 cm"2=2.8×2.8 cm"2 highly out-of-tolerance (e.g. zero dose) square is missing from the comparison image. For clinically realistic vulnerabilities, an arc plan for which a 2D image is created can have a >95% passing rate solely due to agreement in the lateral spillage, with the failing 5% in the critical target region. A field with an integrated boost (e.g whole brain plus small metastases) could neglect the metastases entirely, yet still pass with a 95% threshold. All the failure modes described would be visually apparent on a gamma-map image. Conclusion: The %gamma<1 metric has significant vulnerabilities. High passing rates can obscure critical faults in hypothetical and delivered radiation doses. Great caution should be used with gamma as a QA metric; users should inspect the gamma-map. Visual analysis of gamma-maps may be impractical for cine acquisition.

  16. Analytic convergence of harmonic metrics for parabolic Higgs bundles

    Science.gov (United States)

    Kim, Semin; Wilkin, Graeme

    2018-04-01

    In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.

  17. Variability in Measured Space Temperatures in 60 Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.; Lay, K.

    2013-03-01

    This report discusses the observed variability in indoor space temperature in a set of 60 homes located in Florida, New York, Oregon, and Washington. Temperature data were collected at 15-minute intervals for an entire year, including living room, master bedroom, and outdoor air temperature (Arena, et. al). The data were examined to establish the average living room temperature for the set of homes for the heating and cooling seasons, the variability of living room temperature depending on climate, and the variability of indoor space temperature within the homes. The accuracy of software-based energy analysis depends on the accuracy of input values. Thermostat set point is one of the most influential inputs for building energy simulation. Several industry standards exist that recommend differing default thermostat settings for heating and cooling seasons. These standards were compared to the values calculated for this analysis. The data examined for this report show that there is a definite difference between the climates and that the data do not agree well with any particular standard.

  18. Computer based methods for measurement of joint space width: update of an ongoing OMERACT project

    NARCIS (Netherlands)

    Sharp, John T.; Angwin, Jane; Boers, Maarten; Duryea, Jeff; von Ingersleben, Gabriele; Hall, James R.; Kauffman, Joost A.; Landewé, Robert; Langs, Georg; Lukas, Cédric; Maillefert, Jean-Francis; Bernelot Moens, Hein J.; Peloschek, Philipp; Strand, Vibeke; van der Heijde, Désirée

    2007-01-01

    Computer-based methods of measuring joint space width (JSW) could potentially have advantages over scoring joint space narrowing, with regard to increased standardization, sensitivity, and reproducibility. In an early exercise, 4 different methods showed good agreement on measured change in JSW over

  19. A new universal colour image fidelity metric

    NARCIS (Netherlands)

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated colour space. The resulting colour image fidelity metric quantifies the distortion of a processed colour image relative to its original version. We evaluated the new colour image

  20. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  1. The European Person Equivalent: Measuring the personal environmental space

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Wenzel, Henrik

    2001-01-01

    The European person equivalent (PE) is a quantification of the environmental impact caused annually by the activities of an average European. It comprises contributions to all the major environmental impacts from global to local as well as our consumption of resources. Similarly, the targeted...... European person equivalent is a quantification of the average person’s environmental impact in a near future according to the current politically set environmental targets. In addition to expressing the current societal priorities in pollution reduction, the targeted PE expresses the environmental space...... available to all of us according to the current environmental policy. Both concepts were developed in the mid-nineties for use in life cycle impact assessment to help comparisons across different environmental impact categories. Since then they have shown their value as a pedagogic tool in the presentation...

  2. An automated tunnel evaporation measurement system for confined spaces

    Science.gov (United States)

    Salve, Rohit

    2002-04-01

    An automated tunnel evaporation-rate measurement system (TEMS) has been designed to measure automatically the evaporation from a cylinder 0·30 m in diameter and 0·10 m tall. This cylinder continuously maintains a constant height of water, with losses to evaporation replenished from a stilling cylinder connected to a water reservoir. The evaporation rate is measured by a transducer located at the bottom of the stilling well. The TEMS was tested over a period of 3 months in an underground research facility with relatively strong wind effects, changing temperature, and changing humidity. During this period, the TEMS continued to function uninterrupted, automatically measuring the evaporation amounts along a tunnel and an enclosed niche. These observations suggest that this tool can be useful for investigations of evaporation processes both in enclosed and ventilated environments. Published in 2002 by John Wiley & Sons, Ltd.

  3. The independence of software metrics taken at different life-cycle stages

    Science.gov (United States)

    Kafura, D.; Canning, J.; Reddy, G.

    1984-01-01

    Over the past few years a large number of software metrics have been proposed and, in varying degrees, a number of these metrics have been subjected to empirical validation which demonstrated the utility of the metrics in the software development process. Attempts to classify these metrics and to determine if the metrics in these different classes appear to be measuring distinct attributes of the software product are studied. Statistical analysis is used to determine the degree of relationship among the metrics.

  4. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  5. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  6. Duality and free measures in vector spaces, the spectral theory of actions of non-locally compact groups

    OpenAIRE

    Vershik, A.

    2017-01-01

    The paper presents a general duality theory for vector measure spaces taking its origin in the author's papers written in the 1960s. The main result establishes a direct correspondence between the geometry of a measure in a vector space and the properties of the space of measurable linear functionals on this space regarded as closed subspaces of an abstract space of measurable functions. An example of useful new features of this theory is the notion of a free measure and its applications.

  7. Measurements of longitudinal phase space in the SLC linac

    International Nuclear Information System (INIS)

    Bane, K.; Adolphsen, C.; Lavine, T.L.; Ross, M.; Seeman, J.; Thompson, K.

    1990-05-01

    In the Stanford Linear Collider the beam leaves a damping ring and then enters the Ring-to-Linac (RTL) transfer line. In the RTL it is compressed in length by a factor of 10 by means of an rf section, with which a longitudinally correlated energy variation is induced in the beam, and a following beam line which has non-zero momentum compaction. The compressed beam then enters the linac proper. In this paper we describe three measurements of longitudinal properties of the beam in the SLC linac. We present measurements of single bunch beam loading, of the energy spectrum at the end of the linac, and of the linac bunch length. Since the results of all three measurements depend on the beam's longitudinal charge distribution in the linac they, in turn, also depend on the bunch lengthening that occurs in the damping rings, as well as on the behavior of the compressor. The results of the first two measurements, in addition, depend critically on the strength of the longitudinal wakefields in the linac. The results of these three measurements are compared with simulations. For these calculations, at any given current, the potential well distortion in the damping ring is first computed. The compression process is then simulated to obtain the longitudinal charge distribution in the linac. For the first two measurements this distribution is then convolved with the calculated longitudinal wake function of the SLAC linac in order to obtain the induced voltage. Finally, the induced voltage is combined with the effect of the linac rf wave to give the final energy spectrum. 8 refs., 5 figs

  8. Direct liquid content measurement applicable for He II space cryostats

    International Nuclear Information System (INIS)

    Wanner, M.

    1988-01-01

    A direct calorimetric method for content measurement in the He II cryostat ISO was assessed. A well defined heat pulse into the He II bath causes a small temperature increase which can be measured and directly correlated to the liquid mass through the He II specific heat. To study this method under the potential zero gravity constraints of disconnected liquid volumes a setup was established for investigating heat transfer between separated liquid volumes. The results for different fluid configurations confirm that even for completely disconnected volumes the heat is almost immediately distributed throughout the whole liquid by evaporation and recondensation

  9. On the topology defined by Thurston's asymmetric metric

    DEFF Research Database (Denmark)

    Papadopoulos, Athanase; Theret, Guillaume

    2007-01-01

    that the topology that the asymmetric metric L induces on Teichmüller space is the same as the usual topology. Furthermore, we show that L satisfies the axioms of a (not necessarily symmetric) metric in the sense of Busemann and conclude that L is complete in the sense of Busemann....

  10. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  11. Ischiofemoral space on MRI in an asymptomatic population: Normative width measurements and soft tissue signal variations

    International Nuclear Information System (INIS)

    Maras Oezdemir, Zeynep; Goermeli, Cemile Ayse; Sagir Kahraman, Ayseguel; Aydingoez, Uestuen

    2015-01-01

    To make normative width measurements of the ischiofemoral (IF) space in an asymptomatic population and to record soft tissue MRI signal variations within the IF space in order to determine whether such variations are associated with IF space dimensions. Normative width measurements of the IF space were prospectively made in 418 hips on 1.5 T MR images of 209 asymptomatic volunteers. Quantitative and qualitative assessments of the IF soft tissues including the quadratus femoris (QF) muscle were also made. The mean IF space width was 2.56 ± 0.75 cm (right, 2.60 ± 0.75 cm; left, 2.53 ± 0.75 cm). Soft tissue MRI signal abnormalities were present within the IF space in 19 (9.1 %) of 209 volunteers. Soft tissue abnormalities within the IF space included oedema (3/209, 1.4 %) of the QF and/or surrounding soft tissue, and only fatty infiltration (16/209, 7.7 %) of the QF. Bilateral IF spaces are asymmetrical in asymptomatic persons. There is ≥10 % of width difference between right and left IF spaces in approximately half of asymptomatic individuals. Fatty infiltration and oedema can be present at the IF space in a small portion of the asymptomatic population, who also have narrower IF spaces than those without soft tissue MRI signal abnormalities. (orig.)

  12. Metrical Phonology and SLA.

    Science.gov (United States)

    Tice, Bradley S.

    Metrical phonology, a linguistic process of phonological stress assessment and diagrammatic simplification of sentence and word stress, is discussed as it is found in the English language with the intention that it may be used in second language instruction. Stress is defined by its physical and acoustical correlates, and the principles of…

  13. Electron-Scale Measurements of Magnetic Reconnection in Space

    Science.gov (United States)

    Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.; hide

    2016-01-01

    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

  14. Cosmic Ray-Air Shower Measurement from Space

    Science.gov (United States)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  15. Pragmatic security metrics applying metametrics to information security

    CERN Document Server

    Brotby, W Krag

    2013-01-01

    Other books on information security metrics discuss number theory and statistics in academic terms. Light on mathematics and heavy on utility, PRAGMATIC Security Metrics: Applying Metametrics to Information Security breaks the mold. This is the ultimate how-to-do-it guide for security metrics.Packed with time-saving tips, the book offers easy-to-follow guidance for those struggling with security metrics. Step by step, it clearly explains how to specify, develop, use, and maintain an information security measurement system (a comprehensive suite of metrics) to

  16. Multipoint Space Measurements of TGF's with the TRYAD Mission

    Science.gov (United States)

    Fuchs, J.; Briggs, M. S.; Jenke, P.

    2017-12-01

    The Terrestrial RaY Analysis and Detection (TRYAD) is a twin 6U cubesat mission designed to detect Terrestrial Gamma-ray Flashes (TGF's) from low earth orbit. Current observations of TGF's are predominantly done from single point measurements; the objective of this mission is to capture two simultaneous observations to identify a characteristic beam profile. Working models for production of TGF's suggest two main scenarios exist: one being creation in the lightening step leader which results in a wider beam profile, the other is a larger field effect in the storm resulting in a narrow beam. The TRYAD detector consists of four plastic scintillation bars that will detect flux correlated with GPS position and time. Both satellites will fly at a controlled separation of several hundred kilometers gathering data over the tropics. The data gathered from the spacecraft are matched to lightening data from the World Wide Lightning Location Network (WWLLN) to get ground and time localization along with the two point flux measurement. TRYAD will fly in 2019. We will present simulations describing TRYADs ability to discriminate between current TGF models, the TRYAD science instrument, along with its capabilities and impact for TGF science.

  17. Observable traces of non-metricity: New constraints on metric-affine gravity

    Science.gov (United States)

    Delhom-Latorre, Adrià; Olmo, Gonzalo J.; Ronco, Michele

    2018-05-01

    Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-metricity may allow to explore new physics associated with defects in a hypothetical space-time microstructure. Here we show that non-metricity produces observable effects in quantum fields in the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained represents an improvement of several orders of magnitude to previous experimental constraints.

  18. Metric approach to quantum constraints

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P; Gustavsson, Anna C T

    2009-01-01

    A framework for deriving equations of motion for constrained quantum systems is introduced and a procedure for its implementation is outlined. In special cases, the proposed new method, which takes advantage of the fact that the space of pure states in quantum mechanics has both a symplectic structure and a metric structure, reduces to a quantum analogue of the Dirac theory of constraints in classical mechanics. Explicit examples involving spin-1/2 particles are worked out in detail: in the first example, our approach coincides with a quantum version of the Dirac formalism, while the second example illustrates how a situation that cannot be treated by Dirac's approach can nevertheless be dealt with in the present scheme.

  19. Quality Markers in Cardiology. Main Markers to Measure Quality of Results (Outcomes) and Quality Measures Related to Better Results in Clinical Practice (Performance Metrics). INCARDIO (Indicadores de Calidad en Unidades Asistenciales del Área del Corazón): A SEC/SECTCV Consensus Position Paper.

    Science.gov (United States)

    López-Sendón, José; González-Juanatey, José Ramón; Pinto, Fausto; Cuenca Castillo, José; Badimón, Lina; Dalmau, Regina; González Torrecilla, Esteban; López-Mínguez, José Ramón; Maceira, Alicia M; Pascual-Figal, Domingo; Pomar Moya-Prats, José Luis; Sionis, Alessandro; Zamorano, José Luis

    2015-11-01

    Cardiology practice requires complex organization that impacts overall outcomes and may differ substantially among hospitals and communities. The aim of this consensus document is to define quality markers in cardiology, including markers to measure the quality of results (outcomes metrics) and quality measures related to better results in clinical practice (performance metrics). The document is mainly intended for the Spanish health care system and may serve as a basis for similar documents in other countries. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Wireless sensor network performance metrics for building applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, W.S. (Department of Civil Engineering Yeungnam University 214-1 Dae-Dong, Gyeongsan-Si Gyeongsangbuk-Do 712-749 South Korea); Healy, W.M. [Building and Fire Research Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899-8632 (United States)

    2010-06-15

    Metrics are investigated to help assess the performance of wireless sensors in buildings. Wireless sensor networks present tremendous opportunities for energy savings and improvement in occupant comfort in buildings by making data about conditions and equipment more readily available. A key barrier to their adoption, however, is the uncertainty among users regarding the reliability of the wireless links through building construction. Tests were carried out that examined three performance metrics as a function of transmitter-receiver separation distance, transmitter power level, and obstruction type. These tests demonstrated, via the packet delivery rate, a clear transition from reliable to unreliable communications at different separation distances. While the packet delivery rate is difficult to measure in actual applications, the received signal strength indication correlated well with the drop in packet delivery rate in the relatively noise-free environment used in these tests. The concept of an equivalent distance was introduced to translate the range of reliability in open field operation to that seen in a typical building, thereby providing wireless system designers a rough estimate of the necessary spacing between sensor nodes in building applications. It is anticipated that the availability of straightforward metrics on the range of wireless sensors in buildings will enable more widespread sensing in buildings for improved control and fault detection. (author)