WorldWideScience

Sample records for methylenedioxymethamphetamine mdma ketamine

  1. 3,4-methylenedioxymethamphetamine (MDMA): current perspectives

    OpenAIRE

    Meyer, Jerry

    2013-01-01

    Jerrold S Meyer Department of Psychology, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA Abstract: Ecstasy is a widely used recreational drug that usually consists primarily of 3,4-methylenedioxymethamphetamine (MDMA). Most ecstasy users consume other substances as well, which complicates the interpretation of research in this field. The positively rated effects of MDMA consumption include euphoria, arousal, enhanced mood, increased sociability, and heighten...

  2. Methylenedioxymethamphetamine (MDMA, 'Ecstasy': Neurodegeneration versus Neuromodulation

    Directory of Open Access Journals (Sweden)

    Elena Puerta

    2011-07-01

    Full Text Available The amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’ is widely abused as a recreational drug due to its unique psychological effects. Of interest, MDMA causes long-lasting deficits in neurochemical and histological markers of the serotonergic neurons in the brain of different animal species. Such deficits include the decline in the activity of tryptophan hydroxylase in parallel with the loss of 5-HT and its main metabolite 5-hydoxyindoleacetic acid (5-HIAA along with a lower binding of specific ligands to the 5-HT transporters (SERT. Of concern, reduced 5-HIAA levels in the CSF and SERT density have also been reported in human ecstasy users, what has been interpreted to reflect the loss of serotonergic fibers and terminals. The neurotoxic potential of MDMA has been questioned in recent years based on studies that failed to show the loss of the SERT protein by western blot or the lack of reactive astrogliosis after MDMA exposure. In addition, MDMA produces a long-lasting down-regulation of SERT gene expression; which, on the whole, has been used to invoke neuromodulatory mechanisms as an explanation to MDMA-induced 5-HT deficits. While decreased protein levels do not necessarily reflect neurodegeneration, the opposite is also true, that is, neuroregulatory mechanisms do not preclude the existence of 5-HT terminal degeneration.

  3. 3,4-methylenedioxymethamphetamine (MDMA: current perspectives

    Directory of Open Access Journals (Sweden)

    Meyer JS

    2013-11-01

    Full Text Available Jerrold S Meyer Department of Psychology, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA Abstract: Ecstasy is a widely used recreational drug that usually consists primarily of 3,4-methylenedioxymethamphetamine (MDMA. Most ecstasy users consume other substances as well, which complicates the interpretation of research in this field. The positively rated effects of MDMA consumption include euphoria, arousal, enhanced mood, increased sociability, and heightened perceptions; some common adverse reactions are nausea, headache, tachycardia, bruxism, and trismus. Lowering of mood is an aftereffect that is sometimes reported from 2 to 5 days after a session of ecstasy use. The acute effects of MDMA in ecstasy users have been attributed primarily to increased release and inhibited reuptake of serotonin (5-HT and norepinephrine, along with possible release of the neuropeptide oxytocin. Repeated or high-dose MDMA/ecstasy use has been associated with tolerance, depressive symptomatology, and persisting cognitive deficits, particularly in memory tests. Animal studies have demonstrated that high doses of MDMA can lead to long-term decreases in forebrain 5-HT concentrations, tryptophan hydroxylase activity, serotonin transporter (SERT expression, and visualization of axons immunoreactive for 5-HT or SERT. These neurotoxic effects may reflect either a drug-induced degeneration of serotonergic fibers or a long-lasting downregulation in 5-HT and SERT biosynthesis. Possible neurotoxicity in heavy ecstasy users has been revealed by neuroimaging studies showing reduced SERT binding and increased 5-HT2A receptor binding in several cortical and/or subcortical areas. MDMA overdose or use with certain other drugs can also cause severe morbidity and even death. Repeated use of MDMA may lead to dose escalation and the development of dependence, although such dependence is usually not as profound as is seen with many other drugs of abuse

  4. 3,4-methylenedioxymethamphetamine (MDMA): current perspectives.

    Science.gov (United States)

    Meyer, Jerrold S

    2013-01-01

    Ecstasy is a widely used recreational drug that usually consists primarily of 3,4-methylenedioxymethamphetamine (MDMA). Most ecstasy users consume other substances as well, which complicates the interpretation of research in this field. The positively rated effects of MDMA consumption include euphoria, arousal, enhanced mood, increased sociability, and heightened perceptions; some common adverse reactions are nausea, headache, tachycardia, bruxism, and trismus. Lowering of mood is an aftereffect that is sometimes reported from 2 to 5 days after a session of ecstasy use. The acute effects of MDMA in ecstasy users have been attributed primarily to increased release and inhibited reuptake of serotonin (5-HT) and norepinephrine, along with possible release of the neuropeptide oxytocin. Repeated or high-dose MDMA/ecstasy use has been associated with tolerance, depressive symptomatology, and persisting cognitive deficits, particularly in memory tests. Animal studies have demonstrated that high doses of MDMA can lead to long-term decreases in forebrain 5-HT concentrations, tryptophan hydroxylase activity, serotonin transporter (SERT) expression, and visualization of axons immunoreactive for 5-HT or SERT. These neurotoxic effects may reflect either a drug-induced degeneration of serotonergic fibers or a long-lasting downregulation in 5-HT and SERT biosynthesis. Possible neurotoxicity in heavy ecstasy users has been revealed by neuroimaging studies showing reduced SERT binding and increased 5-HT2A receptor binding in several cortical and/or subcortical areas. MDMA overdose or use with certain other drugs can also cause severe morbidity and even death. Repeated use of MDMA may lead to dose escalation and the development of dependence, although such dependence is usually not as profound as is seen with many other drugs of abuse. MDMA/ecstasy-dependent patients are treated with standard addiction programs, since there are no specific programs for this substance and no proven

  5. 3,4-Methylenedioxymethamphetamine's (MDMA's) Impact on Posttraumatic Stress Disorder.

    Science.gov (United States)

    White, C Michael

    2014-07-01

    Review the current literature assessing the role of 3,4-methylenedioxymethamphetamine (MDMA) on posttraumatic stress disorder (PTSD). OVID MEDLINE search (1960-February 2014) using the terms MDMA, 3,4-methylenedioxymethamphetamine, Molly, and Ecstasy crossed with posttraumatic stress disorder with backwards citation tracking using references from procured articles. English language studies assessing MDMA in patients with PTSD. Three randomized controlled trials (RCTs) were conducted along with follow-up open-label and extension evaluations. In the 3 RCTs, therapy with MDMA-assisted psychotherapy is promising, with reductions in PTSD rating scale scores (Clinician-Administered PTSD Scale, Severity of Symptoms Scale for PTSD Scale), although 2 of 3 trials did not show significant results, and all three had methodological limitations. The direction of effect for all trials was toward benefit in patients who were refractory to other PTSD therapies; the percentage reductions on rating scores ranged from 23% to 68%; and in 1 trial, the effect was sustained over a long period of time. MDMA ingestion without sustained psychotherapy over a 6- to 8-hour period is unlikely to be beneficial; trying to prolong the duration of effect with supplemental dosing is unlikely to provide additional benefits; and there are adverse effects on blood pressure and heart rate that should be appreciated. These studies used unadulterated MDMA with known and reproducible potency, which may not happen with street purchase of the product. MDMA-assisted psychotherapy may be an effective therapy in refractory PTSD but needs further evaluation to determine its place in contemporary therapy. © The Author(s) 2014.

  6. NEURAL AND CARDIAC TOXICITIES ASSOCIATED WITH 3,4-METHYLENEDIOXYMETHAMPHETAMINE (MDMA)

    OpenAIRE

    Baumann, Michael H.; Rothman, Richard B.

    2009-01-01

    (±)-3,4-Methylenedioxymethamphetamine (MDMA) is a commonly abused illicit drug which affects multiple organ systems. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been viewed as neurotoxicity. Recent data implicate MDMA in the development of valvular heart disease (VHD). The present paper reviews several issues related to MDMA-associated neural and cardiac toxicities. The hypothesis of MDMA neurotoxicit...

  7. Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

    DEFF Research Database (Denmark)

    Lozano-Torres, Beatriz; Pascual, Lluís; Bernardos, Andrea

    2017-01-01

    Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA).......Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA)....

  8. Club drugs: MDMA, gamma-hydroxybutyrate (GHB), Rohypnol, and ketamine.

    Science.gov (United States)

    Gahlinger, Paul M

    2004-06-01

    Club drugs are substances commonly used at nightclubs, music festivals, raves, and dance parties to enhance social intimacy and sensory stimulation. The most widely used club drugs are 3,4-methylenedioxymethamphetamine (MDMA), also known as ecstasy; gamma-hydroxybutyrate (GHB); flunitrazepam (Rohypnol); and ketamine (Ketalar). These drugs are popular because of their low cost and convenient distribution as small pills, powders, or liquids. Club drugs usually are taken orally and may be taken in combination with each other, with alcohol, or with other drugs. Club drugs often are adulterated or misrepresented. Any club drug overdose should therefore be suspected as polydrug use with the actual substance and dose unknown. Persons who have adverse reactions to these club drugs are likely to consult a family physician. Toxicologic screening generally is not available for club drugs. The primary management is supportive care, with symptomatic control of excess central nervous system stimulation or depression. There are no specific antidotes except for flunitrazepam, a benzodiazepine that responds to flumazenil. Special care must be taken for immediate control of hyperthermia, hypertension, rhabdomyolysis, and serotonin syndrome. Severe drug reactions can occur even with a small dose and may require critical care. Club drug over-dose usually resolves with full recovery within seven hours. Education of the patient and family is essential.

  9. Pharmacokinetics and pharmacodynamics of 3,4-methylenedioxymethamphetamine (MDMA): interindividual differences due to polymorphisms and drug-drug interactions

    NARCIS (Netherlands)

    Rietjens, S.J.; Hondebrink, L.; Westerink, R.H.S.; Meulenbelt, J.

    2012-01-01

    Clinical outcome following 3,4-methylenedioxymethamphetamine (MDMA) intake ranges from mild entactogenic effects to a life-threatening intoxication. Despite ongoing research, the clinically most relevant mechanisms causing acute MDMA-induced adverse effects remain largely unclear. This complicates

  10. Social Cognition and Interaction in Chronic Users of 3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy").

    Science.gov (United States)

    Wunderli, Michael D; Vonmoos, Matthias; Treichler, Lorena; Zeller, Carmen; Dziobek, Isabel; Kraemer, Thomas; Baumgartner, Markus R; Seifritz, Erich; Quednow, Boris B

    2018-04-01

    The empathogen 3,4-methylenedioxymethamphetamine (MDMA) is the prototypical prosocial club drug inducing emotional openness to others. It has recently been shown that acutely applied 3,4-MDMA in fact enhances emotional empathy and prosocial behavior, while it simultaneously decreases cognitive empathy. However, the long-term effects of 3,4-MDMA use on socio-cognitive functions and social interactions have not been investigated yet. Therefore, we examined emotional and cognitive empathy, social decision-making, and oxytocin plasma levels in chronic 3,4-MDMA users. We tested 38 regular but recently abstinent 3,4-MDMA users and 56 3,4-MDMA-naïve controls with the Movie for the Assessment of Social Cognition, the Multifaceted Empathy Test, and the Distribution Game and the Dictator Game. Drug use was objectively quantified by 6-month hair analyses. Furthermore, oxytocin plasma levels were determined in smaller subgroups (24 3,4-MDMA users, 9 controls). 3,4-MDMA users showed superior cognitive empathy compared with controls in the Multifaceted Empathy Test (Cohen's d=.39) and in the Movie for the Assessment of Social Cognition (d=.50), but they did not differ from controls in emotional empathy. Moreover, 3,4-MDMA users acted less self-serving in the Distribution Game. However, within 3,4-MDMA users, multiple regression analyses showed that higher 3,4-MDMA concentrations in hair were associated with lower cognitive empathy (βMDMA=-.34, t=-2.12, P<.05). Oxytocin plasma concentrations did not significantly differ between both groups. We conclude that people with high cognitive empathy abilities and pronounced social motivations might be more prone to 3,4-MDMA consumption. In contrast, long-term 3,4-MDMA use might nevertheless have a detrimental effect on cognitive empathy capacity.

  11. Oral fluid and plasma 3,4-methylenedioxymethamphetamine (MDMA) and metabolite correlation after controlled oral MDMA administration.

    Science.gov (United States)

    Desrosiers, Nathalie A; Barnes, Allan J; Hartman, Rebecca L; Scheidweiler, Karl B; Kolbrich-Spargo, Erin A; Gorelick, David A; Goodwin, Robert S; Huestis, Marilyn A

    2013-05-01

    Oral fluid (OF) offers a noninvasive sample collection for drug testing. However, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in OF has not been adequately characterized in comparison to plasma. We administered oral low-dose (1.0 mg/kg) and high-dose (1.6 mg/kg) MDMA to 26 participants and collected simultaneous OF and plasma specimens for up to 143 h after dosing. We compared OF/plasma (OF/P) ratios, time of initial detection (t first), maximal concentrations (C max), time of peak concentrations (t max), time of last detection (t last), clearance, and 3,4-methylenedioxyamphetamine (MDA)-to-MDMA ratios over time. For OF MDMA and MDA, C max was higher, t last was later, and clearance was slower compared to plasma. For OF MDA only, t first was later compared to plasma. Median (range) OF/P ratios were 5.6 (0.1-52.3) for MDMA and 3.7 (0.7-24.3) for MDA. OF and plasma concentrations were weakly but significantly correlated (MDMA: R(2) = 0.438, MDA: R(2) = 0.197, p MDMA low = 5.2 (0.1-40.4), high = 6.0 (0.4-52.3, p MDMA ratios in plasma were higher than those in OF (p MDMA ratios significantly increased over time in OF and plasma. The MDMA and MDA concentrations were higher in OF than in plasma. OF and plasma concentrations were correlated, but large inter-subject variability precludes the estimation of plasma concentrations from OF.

  12. Nonlinear pharmacokinetics of (+/-)3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat.

    Science.gov (United States)

    Concheiro, Marta; Baumann, Michael H; Scheidweiler, Karl B; Rothman, Richard B; Marrone, Gina F; Huestis, Marilyn A

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA's safety are needed. We evaluated MDMA's pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography-tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P MDMA's behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses.

  13. Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.

    Science.gov (United States)

    Yeh, S Y

    1997-11-01

    The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.

  14. Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol.

    Science.gov (United States)

    Heather, Erin; Shimmon, Ronald; McDonagh, Andrew M

    2015-03-01

    This work examines the organic impurity profile of 3,4-methylenedioxymethamphetamine (MDMA) that has been synthesised from catechol (1,2-dihydroxybenzene), a common chemical reagent available in industrial quantities. The synthesis of MDMA from catechol proceeded via the common MDMA precursor safrole. Methylenation of catechol yielded 1,3-benzodioxole, which was brominated and then reacted with magnesium allyl bromide to form safrole. Eight organic impurities were identified in the synthetic safrole. Safrole was then converted to 3,4-methylenedioxyphenyl-2-propanone (MDP2P) using two synthetic methods: Wacker oxidation (Route 1) and an isomerisation/peracid oxidation/acid dehydration method (Route 2). MDMA was then synthesised by reductive amination of MDP2P. Thirteen organic impurities were identified in MDMA synthesised via Route 1 and eleven organic impurities were identified in MDMA synthesised via Route 2. Overall, organic impurities in MDMA prepared from catechol indicated that synthetic safrole was used in the synthesis. The impurities also indicated which of the two synthetic routes was utilised. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Cerebral (1)H MRS alterations in recreational 3, 4-methylenedioxymethamphetamine (MDMA, "ecstasy") users.

    Science.gov (United States)

    Chang, L; Ernst, T; Grob, C S; Poland, R E

    1999-10-01

    3,4-methylenedioxymethamphetamine (MDMA) is an illicit drug that has been associated with serotonergic axonal degeneration in animals. This study evaluates neurochemical abnormalities in recreational MDMA users. Twenty-two MDMA users and 37 normal subjects were evaluated with magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H MRS) in the mid-frontal, mid-occipital, and parietal brain regions. (1)H MRS showed normal N-acetyl (NA) compounds in all brain regions. The myo-inositol (MI) concentration (+16.3%, P = 0.04) and the MI to creatine (CR) ratio (+14.1%, P = 0. 01) were increased in the parietal white matter of MDMA users. The cumulative lifetime MDMA dose showed significant effects on [MI] in the parietal white matter and the occipital cortex. The normal NA concentration suggests a lack of significant neuronal injury in recreational MDMA users. However, the usage-related increase in MI suggests that exposure to MDMA, even at recreational doses, may cause increased glial content. J. Magn. Reson. Imaging 1999;10:521-526. Copyright 1999 Wiley-Liss, Inc.

  16. Nonlinear Pharmacokinetics of (±)3,4-Methylenedioxymethamphetamine (MDMA) and Its Pharmacodynamic Consequences in the Rat

    Science.gov (United States)

    Concheiro, Marta; Baumann, Michael H.; Scheidweiler, Karl B.; Rothman, Richard B.; Marrone, Gina F.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA’s safety are needed. We evaluated MDMA’s pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography–tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P MDMA’s behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses. PMID:24141857

  17. Behavioral Effects and Pharmacokinetics of (±)-3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) after Intragastric Administration to Baboons

    OpenAIRE

    Goodwin, Amy K.; Mueller, Melanie; Shell, Courtney D.; Ricaurte, George A.; Ator, Nancy A.

    2013-01-01

    (±)-3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) is a popular drug of abuse. We aimed to characterize the behavioral effects of intragastric MDMA in a species closely related to humans and to relate behavioral effects to plasma MDMA and metabolite concentrations. Single doses of MDMA (0.32–7.8 mg/kg) were administered via an intragastric catheter to adult male baboons (N = 4). Effects of MDMA on food-maintained responding were assessed over a 20-hour period, whereas untrained behaviors...

  18. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  19. Effects of (± 3,4-Methylenedioxymethamphetamine (MDMA on Sleep and Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Una D. McCann

    2007-01-01

    Full Text Available Abuse of stimulant drugs invariably leads to a disruption in sleep-wake patterns by virtue of the arousing and sleep-preventing effects of these drugs. Certain stimulants, such as 3,4-methylenedioxymethamphetamine (MDMA, may also have the potential to produce persistent alterations in circadian regulation and sleep because they can be neurotoxic toward brain monoaminergic neurons involved in normal sleep regulation. In particular, MDMA has been found to damage brain serotonin (5-HT neurons in a variety of animal species, including nonhuman primates, with growing evidence that humans are also susceptible to MDMA-induced brain 5-HT neurotoxicity. 5-HT is an important modulator of sleep and circadian rhythms and, therefore, individuals who sustain MDMA-induced 5-HT neurotoxicity may be at risk for developing chronic abnormalities in sleep and circadian patterns. In turn, such abnormalities could play a significant role in other alterations reported in abstinent in MDMA users (e.g., memory disturbance. This paper will review preclinical and clinical studies that have explored the effects of prior MDMA exposure on sleep, circadian activity, and the circadian pacemaker, and will highlight current gaps in knowledge and suggest areas for future research.

  20. Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 4 h apart Human pharmacology of MDMA after repeated doses taken 4 h apart.

    Science.gov (United States)

    Farré, Magí; Tomillero, Angels; Pérez-Mañá, Clara; Yubero, Samanta; Papaseit, Esther; Roset, Pere-Nolasc; Pujadas, Mitona; Torrens, Marta; Camí, Jordi; de la Torre, Rafael

    2015-10-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a popular psychostimulant, frequently associated with multiple administrations over a short period of time. Repeated administration of MDMA in experimental settings induces tolerance and metabolic inhibition. The aim is to determine the acute pharmacological effects and pharmacokinetics resulting from two consecutive 100mg doses of MDMA separated by 4h. Ten male volunteers participated in a randomized, double-blind, crossover, placebo-controlled trial. The four conditions were placebo plus placebo, placebo plus MDMA, MDMA plus placebo, and MDMA plus MDMA. Outcome variables included pharmacological effects and pharmacokinetic parameters. After a second dose of MDMA, most effects were similar to those after a single dose, despite a doubling of MDMA concentrations (except for systolic blood pressure and reaction time). After repeated MDMA administration, a 2-fold increase was observed in MDMA plasma concentrations. For a simple dose accumulation MDMA and MDA concentrations were higher (+23.1% Cmax and +17.1% AUC for MDMA and +14.2% Cmax and +10.3% AUC for MDA) and HMMA and HMA concentrations lower (-43.3% Cmax and -39.9% AUC for HMMA and -33.2% Cmax and -35.1% AUC for HMA) than expected, probably related to MDMA metabolic autoinhibition. Although MDMA concentrations doubled after the second dose, most pharmacological effects were similar or slightly higher in comparison to the single administration, except for systolic blood pressure and reaction time which were greater than predicted. The pharmacokinetic-effects relationship suggests that when MDMA is administered at a 4h interval there exists a phenomenon of acute tolerance to its effects. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. The Prosocial Effects of 3,4-methylenedioxymethamphetamine (MDMA): Controlled Studies in Humans and Laboratory Animals

    Science.gov (United States)

    Kamilar-Britt, Philip; Bedi, Gillinder

    2015-01-01

    Users of ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) report prosocial effects such as sociability and empathy. Supporting these apparently unique social effects, data from controlled laboratory studies indicate that MDMA alters social feelings, information processing, and behavior in humans, and social behavior in rodents. Here, we review this growing body of evidence. In rodents, MDMA increases passive prosocial behavior (adjacent lying) and social reward while decreasing aggression, effects that may involve serotonin 1A receptor mediated oxytocin release interacting with vasopressin receptor 1A. In humans, MDMA increases plasma oxytocin and produces feelings of social affiliation. It decreases identification of negative facial expressions (cognitive empathy) and blunts responses to social rejection, while enhancing responses to others’ positive emotions (emotional empathy) and increasing social approach. Thus, consistent with drug folklore, laboratory administration of MDMA robustly alters social processing in humans and increases social approach in humans and animals. Effects are consistent with increased sociability, with mixed evidence about enhanced empathy. These neurobiologically-complex prosocial effects likely motivate recreational ecstasy use. PMID:26408071

  2. Memory performance in abstinent 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") users.

    Science.gov (United States)

    Groth-Marnat, Gary; Howchar, Hennedy; Marsh, Ali

    2007-02-01

    Research with animals and humans has suggested that acute and subacute use of 3,4-methylenedioxymethamphetamine (MDMA "ecstasy") may lead to memory impairment. However, research is limited by (1) low power due to small sample sizes, (2) the possible confound of polydrug use, and (3) the failure to consider intelligence as a covariate. The present study compared the memory performance on the Wechsler Memory Scale-III of 26 abstinent (2-wk. minimum) recreational MDMA users with 26 abstinent (2-wk. minimum) recreational polydrug users. Despite significantly greater polydrug use amongst these MDMA users, no significant group differences in memory were observed. Regression of total lifetime amount of MDMA use also did not predict memory performance after accounting for intelligence. In addition, the length of time since abstinence (at least 2 wk.) was not associated with an increase in memory performance. Greater total lifetime cocaine use, rather than total lifetime MDMA use, was significantly associated with greater decrements in General Memory and Delayed Verbal Memory performance.

  3. Behavioral effects and pharmacokinetics of (±)-3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) after intragastric administration to baboons.

    Science.gov (United States)

    Goodwin, Amy K; Mueller, Melanie; Shell, Courtney D; Ricaurte, George A; Ator, Nancy A

    2013-06-01

    (±)-3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug of abuse. We aimed to characterize the behavioral effects of intragastric MDMA in a species closely related to humans and to relate behavioral effects to plasma MDMA and metabolite concentrations. Single doses of MDMA (0.32-7.8 mg/kg) were administered via an intragastric catheter to adult male baboons (N = 4). Effects of MDMA on food-maintained responding were assessed over a 20-hour period, whereas untrained behaviors and fine-motor coordination were characterized every 30 minutes until 3 hours postadministration. Levels of MDMA and metabolites in plasma were measured in the same animals (n = 3) after dosing on a separate occasion. MDMA decreased food-maintained responding over the 20-hour period, and systematic behavioral observations revealed increased frequency of bruxism as the dose of MDMA was increased. Drug blood level determinations showed no MDMA after the lower doses of MDMA tested (0.32-1.0 mg/kg) and modest levels after higher MDMA doses (3.2-7.8 mg/kg). High levels of 3,4-dihydroxymethamphetamine (HHMA) were detected after all doses of MDMA, suggesting extensive first-pass metabolism of MDMA in the baboon. The present results demonstrate that MDMA administered via an intragastric catheter produced behavioral effects that have also been reported in humans. Similar to humans, blood levels of MDMA after oral administration may not be predictive of the behavioral effects of MDMA. Metabolites, particularly HHMA, may play a significant role in the behavioral effects of MDMA.

  4. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA).

    Science.gov (United States)

    Young, Matthew B; Norrholm, Seth D; Khoury, Lara M; Jovanovic, Tanja; Rauch, Sheila A M; Reiff, Collin M; Dunlop, Boadie W; Rothbaum, Barbara O; Howell, Leonard L

    2017-10-01

    3,4-Methylenedioxymethamphetamine (MDMA) persistently improves symptoms of post-traumatic stress disorder (PTSD) when combined with psychotherapy. Studies in rodents suggest that these effects can be attributed to enhancement of fear memory extinction. Therefore, MDMA may improve the effects of exposure-based therapy for PTSD, particularly in treatment-resistant patients. However, given MDMA's broad pharmacological profile, further investigation is warranted before moving to a complex clinical population. We aimed to inform clinical research by providing a translational model of MDMA's effect, and elucidating monoaminergic mechanisms through which MDMA enhances fear extinction. We explored the importance of monoamine transporters targeted by MDMA to fear memory extinction, as measured by reductions in conditioned freezing and fear-potentiated startle (FPS) in mice. Mice were treated with selective inhibitors of individual monoamine transporters prior to combined MDMA treatment and fear extinction training. MDMA enhanced the lasting extinction of FPS. Acute and chronic treatment with a 5-HT transporter (5-HTT) inhibitor blocked MDMA's effect on fear memory extinction. Acute inhibition of dopamine (DA) and norepinephrine (NE) transporters had no effect. 5-HT release alone did not enhance extinction. Blockade of MDMA's effect by 5-HTT inhibition also downregulated 5-HT 2A -mediated behavior, and 5-HT 2A antagonism disrupted MDMA's effect on extinction. We validate enhancement of fear memory extinction by MDMA in a translational behavioral model, and reveal the importance of 5-HTT and 5-HT 2A receptors to this effect. These observations support future clinical research of MDMA as an adjunct to exposure therapy, and provide important pharmacological considerations for clinical use in a population frequently treated with 5-HTT inhibitors.

  5. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  6. Tolerance to the locomotor-activating effects of 3,4-methylenedioxymethamphetamine (MDMA) predicts escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking in rats

    OpenAIRE

    Ball, Kevin T.; Slane, Mylissa

    2014-01-01

    Pre-clinical studies of individual differences in addiction vulnerability have been increasing over recent years, but the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) has received relatively little attention in this regard. Previously, we reported large individual differences both in rats' initial behavioral response to experimenter-administered MDMA and their degree of behavioral sensitization to repeated administration. To determine whether these differences coul...

  7. The combined effects of 3,4-methylenedioxymethamphetamine (MDMA) and selected substituted methcathinones on measures of neurotoxicity.

    Science.gov (United States)

    Miner, Nicholas B; O'Callaghan, James P; Phillips, Tamara J; Janowsky, Aaron

    2017-05-01

    The rise in popularity of substituted methcathinones (aka "bath salts") has increased the focus on their neurotoxic effects. Two commonly abused methcathinones, 3,4-methylenedioxymethcathinone (methylone, MDMC) and 3,4-methylenedioxypyrovalerone (MDPV), are often concomitantly ingested with the illicit drug 3,4-methylenedioxymethamphetamine (MDMA). To examine potential neurotoxic effects of these drug combinations, C57BL/6J mice were administered 4 i.p. injection of the drugs, at 2h intervals, either singularly: MDMA 15 or 30mg/kg, methylone 20mg/kg, MDPV 1mg/kg; or in combination: methylone/MDMA 20/15mg/kg, MDPV/MDMA 1/15mg/kg. Drug effects on thermoregulation were characterized and striatal tissue analyzed after 2 or 7days for dopamine (DA) and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. Two days following drug administration, DA and TH were decreased only in the MDMA 30mg/kg group, whereas GFAP expression was dose-dependently increased by MDMA alone. While the combination of the methcathinones with the lower MDMA dose did not affect DA or TH levels, both blocked the MDMA-induced increase in GFAP expression. Seven days following drug administration, there were no significant differences in DA, TH, or GFAP for any treatment group, indicating that changes in DA, TH, and GFAP were transient. Five of the six drug groups exhibited acute hypothermia followed by gradually increasing temperatures. Animals treated with MDPV did not exhibit these biphasic temperature changes, and resembled the saline group. These results indicate that specific effects of both methylone and MDPV on DA depletion or astrocyte activation in the striatum are not additive with effects of MDMA, but block astrogliosis caused by MDMA alone. Additionally, MDPV modulates thermoregulation through a different mechanism than methylone or MDMA. Published by Elsevier Inc.

  8. Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"): preliminary findings

    NARCIS (Netherlands)

    Reneman, L.; Lavalaye, J.; Schmand, B.; de Wolff, F. A.; van den Brink, W.; den Heeten, G. J.; Booij, J.

    2001-01-01

    BACKGROUND: Although the popular drug 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") has been shown to damage brain serotonin (5-HT) neurons in animals, the fate and functional consequences of 5-HT neurons after MDMA injury are not known in humans. We investigated the long-term effects of

  9. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats.

    Science.gov (United States)

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    Science.gov (United States)

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  11. Sex differences in abuse-related neurochemical and behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats.

    Science.gov (United States)

    Lazenka, M F; Suyama, J A; Bauer, C T; Banks, M L; Negus, S S

    2017-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a substrate for dopamine (DA), norepinephrine and serotonin (5HT) transporters that produces greater pharmacological effects on certain endpoints in females than males in both clinical and rodent preclinical studies. To evaluate potential for sex differences in abuse-related MDMA effects, the present study compared MDMA effects on intracranial self-stimulation (ICSS) and on in vivo microdialysis measurements of DA or 5HT in the nucleus accumbens (NAc) in female and male Sprague-Dawley rats. For ICSS studies, electrodes were implanted in the medial forebrain bundle and rats trained to press for electrical stimulation over a range of frequencies (56-158Hz, 0.05 log increments) under a fixed-ratio 1 schedule, and the potency (0.32-3.2mg/kg, 10min pretreatment) and time course (3.2. mg/kg, 10-180min pretreatment) of MDMA effects were determined. For in vivo microdialysis, rats were implanted with bilateral guide cannulae targeting the NAc, and the time course of MDMA effects (1.0-3.2mg/kg, 0-180min) on DA and 5HT was determined. MDMA produced qualitatively similar effects in both sexes on ICSS (both increases in low ICSS rates maintained by low brain-stimulation frequencies and decreases in high ICSS rates maintained by high brain-stimulation frequencies) and microdialysis (increases in both DA and 5HT). The duration and peak levels of both abuse-related ICSS facilitation and increases in NAc DA were longer in females. MDMA was also more potent to increase 5HT in females. These results provide evidence for heightened sensitivity of females to abuse-related behavioral and neurochemical effects of MDMA in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Two Simulation Cases to Prepare for a Public Festival: Pediatric Methylenedioxymethamphetamine (MDMA) Ingestion and Alcohol Toxicity

    Science.gov (United States)

    Mangold, Karen; Cochran, Christina

    2018-01-01

    Introduction Emergency departments (EDs) see a surge of intoxicated patients during large public summer events. These patients can be distracting and complicated for ED staff to care for. Methods We developed two cases to prepare emergency department staff for an anticipated surge of patients related to a large music festival that occurs proximal to our pediatric hospital. We developed and performed cases of simulated patients with alcohol intoxication and methylenedioxymethamphetamine (MDMA) ingestion to review medical management of these patients, as well as to review many of the social aspects of the cases. We surveyed simulation (sim) session participants to assess the degree to which the sessions were helpful and to glean ideas on how to improve sessions for future use. Results Over the course of two years, we have hosted eight simulations, for a total of 57 participants comprising various healthcare roles. We achieved an 85% response rate in the post-simulation surveys. The sessions were overall well-received and left participants feeling better prepared to care for intoxicated patients. Discussion Despite having a large number of staff from many disciplines working varied schedules, we were able to provide simulation training to many of them in preparation for an expected surge of intoxicated patients. Participants appreciated the training and gave feedback to improve sessions in the future. PMID:29686959

  13. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure.

    Science.gov (United States)

    Coman, Daniel; Sanganahalli, Basavaraju G; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L

    2015-10-01

    (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions

  14. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA,‘ecstasy’) exposure

    Science.gov (United States)

    Coman, Daniel; Sanganahalli, Basavaraju G.; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L.

    2015-01-01

    (+/−)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is an abused psychostimulant producing strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCP), primarily a type specific to skeletal muscle (UCP-3) and which is absent in brain, although other UCP types are expressed in brain (e.g., thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights of MDMA action, we measured spatial distributions of systemically-administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation of Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA4−)). The MDMA-induced temperature rise in cortex was greater than in subcortex (1.6±0.4°C vs. 1.3±0.4°C) and occurred more rapidly (2.0±0.2°C/h vs. 1.5±0.2°C/h). MDMA-induced temperature changes and dynamics in cortex and body were correlated, although body temperature exceeded cortex before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in cortex and subcortex (i.e., thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to cortex, a biphasic relationship was seen in subcortex (i.e., thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature >37°C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as

  15. Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy in anxiety-like responses in mice

    Directory of Open Access Journals (Sweden)

    V. Ferraz-de-Paula

    2011-05-01

    Full Text Available Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group. The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05 effects: a a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e increased serum corticosterone levels, and f increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.

  16. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus.

    Science.gov (United States)

    Pérez-Hernández, Mercedes; Fernández-Valle, María Encarnación; Rubio-Araiz, Ana; Vidal, Rebeca; Gutiérrez-López, María Dolores; O'Shea, Esther; Colado, María Isabel

    2017-05-15

    The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X 7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine.

    Science.gov (United States)

    Ball, Kevin T; Jarsocrak, Hanna; Hyacinthe, Johanna; Lambert, Justina; Lockowitz, James; Schrock, Jordan

    2015-11-01

    Although exposure to acute stress has been shown to reinstate extinguished responding for a wide variety of drugs, no studies have investigated stress-induced reinstatement in animals with a history of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) self-administration. Thus, rats were trained to press a lever for MDMA (0.50 mg/kg/infusion) in daily sessions, and lever pressing was subsequently extinguished in the absence of MDMA and conditioned cues (light and tone). We then tested the ability of acute yohimbine (2.0 mg/kg), a pharmacological stressor, to reinstate lever-pressing under extinction conditions. Additionally, to model chronic stress, some rats were injected daily with yohimbine (5.0 mg/kg × 10 days) prior to reinstatement tests. To assess dopaminergic involvement, chronic yohimbine injections were combined with injections of SCH-23390 (0.0 or 10.0 μg/kg), a dopamine D1-like receptor antagonist. In a separate experiment, rats with a history of food self-administration were treated and tested in the same way. Results showed that acute yohimbine injections reinstated extinguished MDMA and food seeking, but only in rats with a history of chronic yohimbine exposure. Co-administration of SCH-23390 with chronic yohimbine injections prevented the potentiation of subsequent food seeking, but not MDMA seeking. These results suggest that abstinent MDMA users who also are exposed to chronic stress may be at increased risk for future relapse, and also that the effects of chronic stress on relapse may be mediated by different mechanisms depending on one's drug use history. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and related psychostimulants: mechanisms and mediators

    Science.gov (United States)

    Vanattou-Saïfoudine, N; McNamara, R; Harkin, A

    2012-01-01

    Concomitant consumption of caffeine with recreational psychostimulant drugs of abuse can provoke severe acute adverse reactions in addition to longer term consequences. The mechanisms by which caffeine increases the toxicity of psychostimulants include changes in body temperature regulation, cardiotoxicity and lowering of the seizure threshold. Caffeine also influences the stimulatory, discriminative and reinforcing effects of psychostimulant drugs. In this review, we consider our current understanding of such caffeine-related drug interactions, placing a particular emphasis on an adverse interaction between caffeine and the substituted amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’), which has been most recently described and characterized. Co-administration of caffeine profoundly enhances the acute toxicity of MDMA in rats, as manifested by high core body temperature, tachycardia and increased mortality. In addition, co-administration of caffeine enhances the long-term serotonergic neurotoxicity induced by MDMA. Observations to date support an interactive model of drug-induced toxicity comprising MDMA-related enhancement of dopamine release coupled to a caffeine-mediated antagonism of adenosine receptors in addition to inhibition of PDE. These experiments are reviewed together with reports of caffeine-related drug interactions with cocaine, d-amphetamine and ephedrine where similar mechanisms are implicated. Understanding the underlying mechanisms will guide appropriate intervention strategies for the management of severe reactions and potential for increased drug-related toxicity, resulting from concomitant caffeine consumption. PMID:22671762

  19. Untargeted metabolomics applied retrospectively to UPLC-HR-TOFMS data of whole blood samples from Danish drivers exposed to 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Lykke; Telving, Rasmus; Andreasen, Mette Findal

    to evaluate the drug metabolism of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). Despite of the untraditional experimental setup, and a very heterogeneous population with different concentrations of MDMA/kg blood weight, as well as unknown information about amount and time of administration in relation...... to blood sampling, it was possible to extract meaningful information. Various statistical methods were tested and their predictability was validated by the positive identification of MDMA blood metabolites. In addition, endogenous metabolites that may be related to energy metabolism, the serotonergic...

  20. Depression, impulsiveness, sleep, and memory in past and present polydrug users of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy).

    Science.gov (United States)

    Taurah, Lynn; Chandler, Chris; Sanders, Geoff

    2014-02-01

    Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is a worldwide recreational drug of abuse. Unfortunately, the results from human research investigating its psychological effects have been inconsistent. The present study aimed to be the largest to date in sample size and 5HT-related behaviors; the first to compare present ecstasy users with past users after an abstinence of 4 or more years, and the first to include robust controls for other recreational substances. A sample of 997 participants (52 % male) was recruited to four control groups (non-drug (ND), alcohol/nicotine (AN), cannabis/alcohol/nicotine (CAN), non-ecstasy polydrug (PD)), and two ecstasy polydrug groups (present (MDMA) and past users (EX-MDMA). Participants completed a drug history questionnaire, Beck Depression Inventory, Barratt Impulsiveness Scale, Pittsburgh Sleep Quality Index, and Wechsler Memory Scale-Revised which, in total, provided 13 psychometric measures. While the CAN and PD groups tended to record greater deficits than the non-drug controls, the MDMA and EX-MDMA groups recorded greater deficits than all the control groups on ten of the 13 psychometric measures. Strikingly, despite prolonged abstinence (mean, 4.98; range, 4-9 years), past ecstasy users showed few signs of recovery. Compared with present ecstasy users, the past users showed no change for ten measures, increased impairment for two measures, and improvement on just one measure. Given this record of impaired memory and clinically significant levels of depression, impulsiveness, and sleep disturbance, the prognosis for the current generation of ecstasy users is a major cause for concern.

  1. Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") administration in awake rats

    DEFF Research Database (Denmark)

    Gramsbergen, Jan Bert; Cumming, Paul

    2007-01-01

     The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose...... was monitored by telemetry. A single dose of MDMA (2-10-20 mg/kg i.v.) evoked a transient increase of interstitial glucose concentrations in striatum (139-223%) with rapid onset and of less than 2h duration, a concomitant but more prolonged lactate increase (>187%) at the highest MDMA dose and no significant...... depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1...

  2. Sprague-Dawley rats display sex-linked differences in the pharmacokinetics of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA)

    International Nuclear Information System (INIS)

    Fonsart, Julien; Menet, Marie-Claude; Debray, Marcel; Hirt, Deborah; Noble, Florence; Scherrmann, Jean-Michel; Decleves, Xavier

    2009-01-01

    The use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has increased in recent years; it can lead to life-threatening hyperthermia and serotonin syndrome. Human and rodent males appear to be more sensitive to acute toxicity than are females. MDMA is metabolized to five main metabolites by the enzymes CYP1A2, CYP2D and COMT. Little is presently known about sex-dependent differences in the pharmacokinetics of MDMA and its metabolites. We therefore analyzed MDMA disposition in male and female rats by measuring the plasma and urine concentrations of MDMA and its metabolites using a validated LC-MS method. MDA AUC last and C max were 1.6- to 1.7-fold higher in males than in females given MDMA (5 mg/kg sc), while HMMA C max and AUC last were 3.2- and 3.5-fold higher, respectively. MDMA renal clearance was 1.26-fold higher in males, and that of MDA was 2.2-fold higher. MDMA AUC last and t 1/2 were 50% higher in females given MDMA (1 mg/kg iv). MDA C max and AUC last were 75-82% higher in males, with a 2.8-fold higher metabolic index. Finally, the AUC last of MDA was 0.73-fold lower in males given 1 mg/kg iv MDA. The volumes of distribution of MDMA and MDA at steady-state were similar in the two sexes. These data strongly suggest that differences in the N-demethylation of MDMA to MDA are major influences on the MDMA and MDA pharmacokinetics in male and female rats. Hence, males are exposed to significantly more toxic MDA, which could explain previously reported sexual dysmorphism in the acute effects and toxicity of MDMA in rats.

  3. The effect of the substituted amphetamines, 2.4-methylenedioxymethamphetamine (MDMA) and P-methoxyamphetamine (PMA), on platelet aggregation

    International Nuclear Information System (INIS)

    Sluggett, A.J.; Irvine, R.J.; Bochner, F.; Rodgers, S.; Lloyd, J.V.

    2001-01-01

    Full text: Illicit substituted amphetamines such as 3,4-methylenedioxymethamphetamine (MDMA) and p-methoxyamphetamine (PMA) can cause severe toxicity. Disruption of normal coagulation mechanisms have been observed in most fatal cases. However, the precise mechanisms underlying these events are not clearly understood. MDMA and PMA are known to inhibit serotonin transporter function in the central nervous system (Daws et al 2000) and platelet serotonin transporter sites (Rudnick and Wall 1992). Serotonin is in high concentrations in platelets and activation of 5HT 2 receptors on the platelet surface potentiates aggregation of platelets. Therefore, we postulated that MDMA and PMA may have effects on coagulation via inhibition of normal platelet function. Human citrated platelets were incubated in the presence of MDMA (43- 435μM) or PMA (49-498μM) and their aggregator y response to a critical dose of adenosine diphosphate (ADP) determined. These responses were compared to the serotonin reuptake inhibitor fluoxetine (13-130μM). All 3 compounds were found to inhibit platelet aggregation. The IC50s for % aggregation at 5 minutes were MDMA 197μM ± 63μM PMA 344μM ±76μM and fluoxetine 24μM ±1 1μM (n=4). The effect of these drugs on the uptake of 14 C-5HT (0.9 μM /ml) into platelets was also determined and the IC50s observed were MDMA 62.3 μM ±11μM , PMA 24μM ±6μM and fluoxetine 2.5μM ± 0.6μM (n=4). The in vitro effects of MDMA and PMA on aggregation and uptake observed here are close to concentrations reported to have occurred in human fatalities. Therefore it is possible that direct effects of these drugs on coagulation mechanisms may contribute to the toxicity of these compounds. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  4. Warning against co-administration of 3,4-methylenedioxymethamphetamine (MDMA) with methamphetamine from the perspective of pharmacokinetic and pharmacodynamic evaluations in rat brain.

    Science.gov (United States)

    Yuki, Fuchigami; Rie, Ikeda; Miki, Kuzushima; Mitsuhiro, Wada; Naotaka, Kuroda; Kenichiro, Nakashima

    2013-04-11

    3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine often cause serious adverse effects (e.g., rhabdomyolysis, and cardiac disease) following hyperthermia triggered by release of brain monoamines such as dopamine and serotonin. Therefore, evaluation of brain monoamine concentrations is useful to predict these drugs' risks in human. This study aimed to evaluate risks of co-administration of MDMA and methamphetamine, both of which are abused frequently in Japan, based on drug distribution and monoamine level in the rat brain. Rats were allocated to three groups: (1) sole MDMA administration (12 or 25 mg/kg, intraperitoneally), (2) sole methamphetamine administration (10 mg/kg, intraperitoneally) and (3) co-administration of MDMA (12 mg/kg, intraperitoneally) and methamphetamine (10 mg/kg, intraperitoneally). We monitored pharmacokinetic and pharmacodynamic variables for drugs and monoamines in the rat brain. Area under the curve for concentration vs. time until 600 min from drug administration (AUC₀₋₆₀₀) increased from 348.0 to 689.8 μgmin/L for MDMA and from 29.9 to 243.4 μMmin for dopamine in response to co-administration of methamphetamine and MDMA compared to sole MDMA (12 mg/kg) administration. After sole methamphetamine or that with MDMA administration, AUC₀₋₆₀₀ of methamphetamine were 401.8 and 671.1 μgmin/L, and AUC₀₋₆₀₀ of dopamine were 159.9 and 243.4 μMmin. In conclusion, the brain had greater exposure to MDMA, methamphetamine and dopamine after co-administration of MDMA and methamphetamine than when these two drugs were given alone. This suggests co-administration of MDMA with methamphetamine confers greater risk than sole administration, and that adverse events of MDMA ingestion may increase when methamphetamine is co-administered. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Sprague-Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)

    International Nuclear Information System (INIS)

    Fonsart, Julien; Menet, Marie-Claude; Decleves, Xavier; Galons, Herve; Crete, Dominique; Debray, Marcel; Scherrmann, Jean-Michel; Noble, Florence

    2008-01-01

    The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism of MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg -1 sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences

  6. The hyperthermia mediated by 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) is sensitive to sex differences

    International Nuclear Information System (INIS)

    Wyeth, Richard P.; Mills, Edward M.; Ullman, Alison; Kenaston, M. Alexander; Burwell, Johanna; Sprague, Jon E.

    2009-01-01

    Female subjects have been reported to be less sensitive to the hyperthermic effects of 3,4-methylenedioxymethamine (MDMA) than males. Studies were designed to examine the cellular mechanisms involved in these sex sensitive differences. Gonadectomized female and male rats were treated with a 200 μg 100 μL -1 of estrogen or 100 μg 100 μL -1 of testosterone respectively every 5 days for a total of three doses. Rats were then challenged with either saline or MDMA (20 mg kg -1 , sc). Rats were then euthanized and aortas were constricted, in vitro, by serial phenylephrine (Phe) addition with or without the inhibitor of nitric oxide (NO) synthase, g-nitro-L-Arginine-Methyl Ester (L-NAME). Skeletal muscle uncoupling protein-3 (UCP3) expression was measured as well as plasma norepinephrine (NE) levels. All males but no females developed hyperthermia following MDMA treatment. The EC 50 for Phe dose response curves increased only in the females treated with MDMA and T max for Phe increased following L-NAME only in the females. Both males and females demonstrated an increase in plasma NE following MDMA treatment; however, males displayed a significantly greater NE concentration. Skeletal muscle UCP3 expression was 80% less in females than in males. These results suggest that the inability of MDMA to induce a thermogenic response in the female subjects may be due to four sex-specific mechanisms: 1) Female subjects have reduced sympathetic activation following MDMA challenge; 2) Female vasculature is less sensitive to α 1 -AR stimulation following MDMA challenge; 3) Female vasculature has an increased sensitivity to NO; 4) UCP3 expression in skeletal muscle is less in females

  7. Release of [3H]-monoamines from superfused rat striatal slices by methylenedioxymethamphetamine (MDMA)

    International Nuclear Information System (INIS)

    Levin, J.A.; Schmidt, C.J.; Lovenberg, W.

    1986-01-01

    MDMA is a phenylisopropylamine which is reported to have unique behavioral effects in man. Because of its structural similarities to the amphetamines the authors have compared the effects of MDMA and two related amphetamines on the spontaneous release of tritiated dopamine (DA) and serotonin (5HT) from superfused rat striatal slices. At concentrations of 10 -7 - 10 -5 M MDMA and the serotonergic neurotoxin, p-chloroamphetamine, were equipotent releasers of [ 3 H]5HT being approximately 10x more potent than methamphetamine. However, methamphetamine was the more potent releaser of [ 3 H]DA by a factor of approximately 10x. MDMA-induced release of both [ 5 H]5HT and [ 3 H]DA was Ca 2+ -independent and inhibited by selective monoamine uptake blockers suggesting a carrier-dependent release mechanism. Synaptosomal uptake experiments with (+)[ 3 H]MDMA indicated no specific uptake of the drug further suggesting the effect of uptake blockers may be to inhibit the carrier-mediated export of amines displaced by MDMA

  8. Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry

    International Nuclear Information System (INIS)

    Tadini, Maraine Catarina; Balbino, Marco Antonio; Eleoterio, Izabel Cristina; Siqueirade Oliveira, Laura; Dias, Luis Gustavo; Jean-François Demets, Grégoire; Firmino de Oliveira, Marcelo

    2014-01-01

    Graphical abstract: - Highlights: • A new stand in forensic chemistry. • Voltammetric method for the determination of MDMA in seized samples. • A new voltammetric sensor for MDMA. - Abstract: This study aimed to develop an electrode chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA), the main active principle of ecstasy samples, by voltammetry. We modified the electrode surface with a film containing cucurbit[6]uril, Nafion, and methanol, using the dip coating or the spin coating technique. During analysis, we employed an electrochemical cell with a conventional three-electrode system and KCl solution (0.1 mol L −1 ) as the supporting electrolyte. We conducted cyclic voltammetry at concentrations ranging from 4.2 × 10 −6 to 4.8 × 10 −5 mol L −1 . We also accomplished scanning electron microscopy, to investigate the structural behavior of the film that originated on the electrode surface. We obtained the following results when we used dip coating to prepare the modified electrode: standard deviation (SD) = 0.024 μA, limit of detection (LOD) = 3.5 μmol L −1 , limit of quantification (LOQ) = 11.7 μmol L −1 , and amperometric sensitivity (m) = 20.9 × 10 3 μA L mol −1 . As for spin coating, we obtained SD = 0.024 μA, LOD = 2.7 μmol L −1 , LOQ = 9.1 μmol L −1 and m = 25.9 × 10 3 μA mol L −1 . These are very promising data: the modified electrode is more sensitive than the conventional glassy carbon electrode under the studied experimental conditions

  9. 3,4-Methylenedioxymethamphetamine (MDMA) alters acute gammaherpesvirus burden and limits Interleukin 27 responses in a mouse model of viral infection

    Science.gov (United States)

    Nelson, Daniel A.; Singh, Sam J.; Young, Amy B.; Tolbert, Melanie D.; Bost, Kenneth L.

    2011-01-01

    Aims To test whether 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide. Methods Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse. Results Acute viral burden was significantly increased in MDMA-treated mice when compared to controls. However the latent viral burden, and physiological and behavioral responses were not altered in infected mice despite repeated bingeing with MDMA. MDMA could limit the IL-27 response of HV-68 infected or LPS-exposed macrophages and dendritic cells in vitro and in vivo, demonstrating the ability of this drug to alter normal cytokine responses in the context of a viral infection and/or a TLR4 agonist. Conclusion MDMA bingeing could alter the host’s immune response resulting in greater acute viral replication and reductions in the production of the cytokine, IL-27 during immune responses. PMID:21269783

  10. Chiral separation of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling and its effects on oxidative stress status in rat liver.

    Science.gov (United States)

    Lourenço, Tiago C; Bósio, Graziela C; Cassiano, Neila M; Cass, Quezia B; Moreau, Regina L M

    2013-01-25

    This work reports the multimiligram separation of 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling. The effect of both enantiomers compared to the racemic mixture was examined on the oxidative stress status of rat liver. The enantiomeric purification was performed using a based cyclodextrin chiral selector and methanol:ammonium acetate buffer (pH 6.0, 100mM) (30:70, v/v) as mobile phase. The average mass rate obtained was 40.0mg/day, providing 45.0mg of the (R)-(-)-MDMA (e.r. 99.0%) and 75.0mg (e.r. 96.0%) of (S)-(+)-MDMA. Racemic MDMA and both enantiomers were administered per orally to Wistar rats and oxidative stress status parameters, as liver total glutathione levels and malondialdehyde (MDA) production in liver were evaluated. There was a significant decrease in hepatic glutathione content in the racemic MDMA and the (R)-(-)-MDMA-treated rats when compared to the control and to (S)-(+)-MDMA. These results demonstrate that the R-enantiomer is the enantiomer that contributes to the depletion of hepatic glutathione induced by the racemic mixture. The high reactivity of the R-enantiomer of MDMA in the liver can also be observed in animals treated with (R)-(-)-MDMA. The production of malondialdehyde (MDA) by (R)-(-)-MDMA was significantly higher when compared to the other treated groups and control. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA: regulation by CB2 receptors and implications for neurotoxicity

    Directory of Open Access Journals (Sweden)

    O'Shea Esther

    2011-05-01

    Full Text Available Abstract Background 3,4-Methylenedioxymethamphetamine (MDMA produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra levels and IL-1 receptor type I (IL-1RI expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p. and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p. was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v. was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity.

  12. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    Science.gov (United States)

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. A Case of 3,4-Dimethoxyamphetamine (3,4-DMA) and 3,4-Methylenedioxymethamphetamine (MDMA) Toxicity with Possible Metabolic Interaction.

    Science.gov (United States)

    Darracq, Michael A; Thornton, Stephen L; Minns, Alicia B; Gerona, Roy R

    2016-01-01

    We present a case of "ecstasy" ingestion revealing 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-dimethoxyamphetamine (3,4-DMA) and absence of cytochrome P450 (CYP)-2D6 MDMA metabolites. A 19-year-old presented following a seizure. Initial vital signs were normal. Laboratories were normal with the exception of sodium 127 mEq/L and urine drugs of abuse screen positive for amphetamines. Twelve hours later, serum sodium was 114 mEq/L and a second seizure occurred. After receiving hypertonic saline (3%), the patient had improvement in mental status and admitted to taking "ecstasy" at a rave prior to her initial presentation. Liquid chromatography-time-of-flight mass spectrometry (LC-TOF/MS) of serum and urine revealed MDMA, 3,4-DMA, and the CYP-2B6 MDMA metabolites 3,4-methylendioxyamphetamine (MDA) and 4-hydroxy-3-methoxyamphetamine (HMA). The CYP2D6 metabolites of MDMA, 3,4-dihydromethamphetamine (HHMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), were detected at very low levels. This case highlights the polypharmacy which may exist among users of psychoactive illicit substances and demonstrates that concurrent use of MDMA and 3,4-DMA may predispose patients to severe toxicity. Toxicologists and other healthcare providers should be aware of this potential toxicity.

  14. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA by an Immobilized Polysaccharide-Based Chiral Phase.

    Directory of Open Access Journals (Sweden)

    Juliana C Barreiro

    Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.

  15. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors.

    Science.gov (United States)

    Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel

    2014-08-01

    The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.

  16. Neurochemical and neuroanatomic effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats

    International Nuclear Information System (INIS)

    Virus, R.; Commins, D.; Vosmer, G.; Woolverton, W.; Schuster, C.; Seiden, L.

    1986-01-01

    Rats injected s.c. twice daily for 4 consecutive days with 10,20, or 40 mg/kg MDMA or saline and sacrificed 2 weeks after the last injection showed dose-dependent reductions in serotonin (5-HT) concentrations in hypothalamus, hippocampus (HIP), striatum (STR), somatosensory cortex (SC) and other cortical areas (CTX). 5-HT depletion was maximal in HIP (11.5 +/- 1.7%) and SC (15.3 +/- 3.2%, p 3 H)5-HT uptake sites (V/sub max/ 35.2% of control) without affecting the affinity (K/sub m/) in HIP. Fink-Heimer staining showed that rats injected s.c. twice daily for 2 days with 80 mg/kg MDMA had greater degeneration of nerve terminals in STR (p<0.005) and pyramidal cells in Layer III of SC (p<0.01) than did control rats. These results clearly suggest that repeated exposure to MDMA selectively damages serotonergic neurons in the central nervous system of rats

  17. Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells.

    Science.gov (United States)

    Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M; Rice, Kenner C; Gannon, Brenda M; Fantegrossi, William E; Gonzalez, Carmen; Paule, Merle G; Ali, Syed F

    2016-08-26

    Designer drugs such as synthetic psychostimulants are indicative of a worldwide problem of drug abuse and addiction. In addition to methamphetamine (METH), these drugs include 3,4-methylenedioxy-methamphetamine (MDMA) and commercial preparations of synthetic cathinones including 3,4-methylenedioxypyrovalerone (MDPV), typically referred to as "bath salts." These psychostimulants exert neurotoxic effects by altering monoamine systems in the brain. Additionally, METH and MDMA adversely affect the integrity of the blood-brain barrier (BBB): there are no current reports on the effects of MDPV on the BBB. The aim of this study was to compare the effects of METH, MDMA and MDPV on bovine brain microvessel endothelial cells (bBMVECs), an accepted in vitro model of the BBB. Confluent bBMVEC monolayers were treated with METH, MDMA and MDPV (0.5mM-2.5mM) for 24h. METH and MDMA increased lactate dehydrogenase release only at the highest concentration (2.5mM), whereas MDPV induced cytotoxicity at all concentrations. MDMA and METH decreased cellular proliferation only at 2.5mM, with similar effects observed after MDPV exposures starting at 1mM. Only MDPV increased reactive oxygen species production at all concentrations tested whereas all 3 drugs increased nitric oxide production. Morphological analysis revealed different patterns of compound-induced cell damage. METH induced vacuole formation at 1mM and disruption of the monolayer at 2.5mM. MDMA induced disruption of the endothelial monolayer from 1mM without vacuolization. On the other hand, MDPV induced monolayer disruption at doses ≥0.5mM without vacuole formation; at 2.5mM, the few remaining cells lacked endothelial morphology. These data suggest that even though these synthetic psychostimulants alter monoaminergic systems, they each induce BBB toxicity by different mechanisms with MDPV being the most toxic. Published by Elsevier Ireland Ltd.

  18. Amnesic syndrome and severe ataxia following the recreational use of 3,4-methylene-dioxymethamphetamine (MDMA, 'ecstasy') and other substances.

    Science.gov (United States)

    Kopelman, M D; Reed, L J; Marsden, P; Mayes, A R; Jaldow, E; Laing, H; Isaac, C

    2001-01-01

    A 26-year-old woman suffered disseminated intravascular coagulation (DIC) and a brief respiratory arrest following recreational use of 3,4-methylene-dioxymethamphetamine (MDMA; 'ecstasy'), together with amyl nitrate, lysergic acid (LSD), cannabis and alcohol. She was left with residual cognitive and physical deficits, particularly severe anterograde memory disorder, mental slowness, severe ataxia and dysarthria. Follow-up investigations have shown that these have persisted, although there has been some improvement in verbal recognition memory and in social functioning. Magnetic resonance imaging and quantified positron emission tomography investigations have revealed: (i) severe cerebellar atrophy and hypometabolism accounting for the ataxia and dysarthria; (ii) thalamic, retrosplenial and left medial temporal hypometabolism to which the anterograde amnesia can be attributed; and (iii) some degree of fronto-temporal-parietal hypometabolism, possibly accounting for the cognitive slowness. The putative relationship of these abnormalities to the direct and indirect effects of MDMA toxicity, hypoxia and ischaemia is considered.

  19. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.; Gandia, Luis; Escubedo, Elena; Pubill, David

    2010-01-01

    Previous work by our group demonstrated that homomeric α7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca 2+ increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific α7 agonist PNU 282987 with IC 50 values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human α7 but not with α4β2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and α-bungarotoxin but not by dihydro-β-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on α7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca 2+ release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca 2+ levels and induced an increase in α-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and α7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca 2+ -dependent enzymes such as

  20. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors

    International Nuclear Information System (INIS)

    Milhazes, Nuno; Martins, Pedro; Uriarte, Eugenio; Garrido, Jorge; Calheiros, Rita; Marques, M. Paula M.; Borges, Fernanda

    2007-01-01

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-β-methyl-β-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to the formation of a primary amine and an aldehyde. The vibrational spectroscopic experiments enable to afford a rapid and reliable detection of this type of compounds, since they yield characteristic spectral patterns that lead to an unequivocal identification. Moreover, the rational synthesis of the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') from one of its most relevant precursors 3,4-methylene-dioxyamphetamine (MDA), is reported. In addition, several approaches for the N-methylation of MDA, a limiting synthetic step, were attempted and the overall yields compared

  1. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors

    Energy Technology Data Exchange (ETDEWEB)

    Milhazes, Nuno [CEQOFFUP, Faculdade de Farmacia, Universidade do Porto (Portugal); Departamento de Quimica Organica, Faculdade de Farmacia, Universidade do Porto (Portugal); Instituto Superior de Ciencias da Saude-Norte, Gandra, Paredes (Portugal); Martins, Pedro [Departamento de Quimica Organica, Facultade de Farmacia, Universidad de Santiago de Compostela (Spain); Uriarte, Eugenio [Departamento de Quimica Organica, Facultade de Farmacia, Universidad de Santiago de Compostela (Spain); Garrido, Jorge [Unidade I and D ' Quimica-Fisica Molecular' (Portugal); Departamento de Engenharia Quimica, ISEP, Instituto Politecnico do Porto (Portugal); Calheiros, Rita [Unidade I and D ' Quimica-Fisica Molecular' (Portugal); Marques, M. Paula M. [Unidade I and D ' Quimica-Fisica Molecular' (Portugal); Departamento de Bioquimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra (Portugal); Borges, Fernanda [Departamento de Quimica Organica, Faculdade de Farmacia, Universidade do Porto (Portugal) and Unidade I and D ' Quimica-Fisica Molecular' (Portugal)]. E-mail: fborges@ff.up.pt

    2007-07-23

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-{beta}-methyl-{beta}-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to the formation of a primary amine and an aldehyde. The vibrational spectroscopic experiments enable to afford a rapid and reliable detection of this type of compounds, since they yield characteristic spectral patterns that lead to an unequivocal identification. Moreover, the rational synthesis of the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') from one of its most relevant precursors 3,4-methylene-dioxyamphetamine (MDA), is reported. In addition, several approaches for the N-methylation of MDA, a limiting synthetic step, were attempted and the overall yields compared.

  2. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors.

    Science.gov (United States)

    Milhazes, Nuno; Martins, Pedro; Uriarte, Eugenio; Garrido, Jorge; Calheiros, Rita; Marques, M Paula M; Borges, Fernanda

    2007-07-23

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-beta-methyl-beta-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to the formation of a primary amine and an aldehyde. The vibrational spectroscopic experiments enable to afford a rapid and reliable detection of this type of compounds, since they yield characteristic spectral patterns that lead to an unequivocal identification. Moreover, the rational synthesis of the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") from one of its most relevant precursors 3,4-methylene-dioxyamphetamine (MDA), is reported. In addition, several approaches for the N-methylation of MDA, a limiting synthetic step, were attempted and the overall yields compared.

  3. Mechanisms and environmental factors that underlying the intensification of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)-induced serotonin syndrome in rats

    Science.gov (United States)

    Tao, Rui; Shokry, Ibrahim M.; Callanan, John J.; Adams, H. Daniel; Ma, Zhiyuan

    2014-01-01

    Rationale Illicit use of MDMA (3,4-methylenedioxymethamphetamine; Ecstasy) may cause a mild or severe form of the serotonin syndrome. The syndrome intensity is not just influenced by drug doses but also by environmental factors. Objectives Warm environmental temperatures and physical activity are features of raves. The purpose of this study was to assess how these two factors can potentially intensify the syndrome. Methods Rats were administered MDMA at doses of 0.3, 1 or 3 mg/kg, and examined in the absence or presence of warm temperature and physical activity. The syndrome intensity was estimated by visual scoring for behavioral syndrome and also instrumentally measuring changes in symptoms of the syndrome. Results Our results showed that MDMA at 3 mg/kg, but not 0.3 or 1 mg/kg, caused a mild serotonin syndrome in rats. Each environmental factor alone moderately intensified the syndrome. When the two factors were combined, the intensification became more severe than each factor alone highlighting a synergistic effect. This intensification was blocked by the 5-HT2A receptor antagonist M100907, competitive NMDA receptor antagonist CGS19755, autonomic ganglionic blocker hexamethonium, and the benzodiazepine-GABAA receptor agonist midazolam, but not by the 5-HT1A receptor antagonist WAY100635 or nicotinic receptor antagonist methyllycaconitine. Conclusions Our data suggest that, in the absence of environmental factors, the MDMA-induced syndrome is mainly mediated through the serotonergic transmission (5HT-dependent mechanism), and therefore, is relatively mild. Warm temperature and physical activity facilitate serotonergic and other neural systems such as glutamatergic and autonomic transmissions, resulting in intensification of the syndrome (non-5HT mechanisms). PMID:25300903

  4. 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine.

    Science.gov (United States)

    Colado, M I; Murray, T K; Green, A R

    1993-03-01

    1. The present study has investigated whether the neurotoxic effects of the relatively selective 5-hydroxytryptamine (5-HT) neurotoxins, 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy'), p-chloroamphetamine (PCA) and fenfluramine on hippocampal and cortical 5-HT terminals in rat brain could be prevented by administration of either chlormethiazole or dizocilpine. 2. Administration of MDMA (20 mg kg-1, i.p.) resulted in an approximate 30% loss of cortical and hippocampal 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) content 4 days later. Injection of chlormethiazole (50 mg kg-1) 5 min before and 55 min after the MDMA provided complete protection in both regions, while dizocilpine (1 mg kg-1, i.p.) protected only the hippocampus. 3. Administration of a single dose of chlormethiazole (100 mg kg-1) 20 min after the MDMA also provided complete protection to the hippocampus but not the cortex. This regime also attenuated the sustained hyperthermia (approx +2.5 degrees C) induced by the MDMA injection. 4. Injection of PCA (5 mg kg-1, i.p.) resulted in a 70% loss of 5-HT and 5-HIAA content in hippocampus and cortex 4 days later. Injection of chlormethiazole (100 mg kg-1, i.p.) or dizocilpine (1 mg kg-1, i.p.) 5 min before and 55 min after the PCA failed to protect against the neurotoxicity, nor was protection afforded by chlormethiazole when a lower dose of PCA (2.5 mg kg-1, i.p.) was given which produced only a 30% loss of 5-HT content. Chlormethiazole did prevent the hyperthermia induced by PCA (5 mg kg-1), while the lower dose of PCA (2.5 mg kg-1) did not produce a change in body temperature.5. Neither chlormethiazole nor dizocilpine prevented the neurotoxic loss of hippocampal or cortical 5-HT neurones measured 4 days following administration of fenfluramine (25 mg kg-1, i.p.).6. In general, chlormethiazole and dizocilpine were effective antagonists of the 5-HT-mediated behaviours of head weaving and forepaw treading which appeared following injection of all three

  5. Simultaneous polysubstance use among Danish 3,4-methylenedioxymethamphetamine and hallucinogen users

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Christoffersen, Maria; Okholm, Mads

    2012-01-01

    To describe patterns of simultaneous polysubstance use (SPU) among Danish 3,4-methylenedioxymethamphetamine (MDMA) ("Ecstasy") and hallucinogen users.......To describe patterns of simultaneous polysubstance use (SPU) among Danish 3,4-methylenedioxymethamphetamine (MDMA) ("Ecstasy") and hallucinogen users....

  6. Ketamine

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Ketamine KidsHealth / For Teens / Ketamine Print en español Ketamina What It Is: Ketamine hydrochloride is a quick-acting anesthetic that is ...

  7. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans.

    Science.gov (United States)

    Steuer, Andrea E; Schmidhauser, Corina; Tingelhoff, Eva H; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.

  8. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA and Its Phase I and II Metabolites in Humans.

    Directory of Open Access Journals (Sweden)

    Andrea E Steuer

    Full Text Available 3,4-methylenedioxymethamphetamine (MDMA; ecstasy metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA, followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs, intermediate metabolizers (IMs, and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax and area under the plasma concentration-time curve from 0 to 24 h (AUC24 of R-MDMA (9% and 25%, respectively and S-MDMA (16% and 38%, respectively. Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.

  9. Discrete memory impairments in largely pure chronic users of MDMA.

    Science.gov (United States)

    Wunderli, Michael D; Vonmoos, Matthias; Fürst, Marina; Schädelin, Katrin; Kraemer, Thomas; Baumgartner, Markus R; Seifritz, Erich; Quednow, Boris B

    2017-10-01

    Chronic use of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") has repeatedly been associated with deficits in working memory, declarative memory, and executive functions. However, previous findings regarding working memory and executive function are inconclusive yet, as in most studies concomitant stimulant use, which is known to affect these functions, was not adequately controlled for. Therefore, we compared the cognitive performance of 26 stimulant-free and largely pure (primary) MDMA users, 25 stimulant-using polydrug MDMA users, and 56 MDMA/stimulant-naïve controls by applying a comprehensive neuropsychological test battery. Neuropsychological tests were grouped into four cognitive domains. Recent drug use was objectively quantified by 6-month hair analyses on 17 substances and metabolites. Considerably lower mean hair concentrations of stimulants (amphetamine, methamphetamine, methylphenidate, cocaine), opioids (morphine, methadone, codeine), and hallucinogens (ketamine, 2C-B) were detected in primary compared to polydrug users, while both user groups did not differ in their MDMA hair concentration. Cohen's d effect sizes for both comparisons, i.e., primary MDMA users vs. controls and polydrug MDMA users vs. controls, were highest for declarative memory (d primary =.90, d polydrug =1.21), followed by working memory (d primary =.52, d polydrug =.96), executive functions (d primary =.46, d polydrug =.86), and attention (d primary =.23, d polydrug =.70). Thus, primary MDMA users showed strong and relatively discrete declarative memory impairments, whereas MDMA polydrug users displayed broad and unspecific cognitive impairments. Consequently, even largely pure chronic MDMA use is associated with decreased performance in declarative memory, while additional deficits in working memory and executive functions displayed by polydrug MDMA users are likely driven by stimulant co-use. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  10. Causes and consequences of the loss of serotonergic presynapses elicited by the consumption of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") and its congeners.

    Science.gov (United States)

    Huether, G; Zhou, D; Rüther, E

    1997-01-01

    The massive and prolonged stimulation of serotonin (5-HT)-release and the increased dopaminergic activity are responsible for the acute psychomimetic and psychostimulatory effects of 3,4-methylenedioxy-methamphetamine (MDMA, "ecstasy") and its congeners. In vulnerable subjects, at high doses or repeated use, and under certain unfavorable conditions (crowding, high ambient temperature), severe, in some cases fatal, averse systemic reactions (hyperthermia, serotonin-syndrome) may occur during the first few hours. Animal experiments revealed the existence of similar differences in vulnerability and similar dose- and context-related influences on a similar sequence of acute responses. The severity of these acute systemic responses is closely related to the severity of the long-term damage to 5-HT axon terminals caused by the administration of substituted amphetamines. Attempts to identify the mechanisms involved in this selective degeneration of 5-HT presynapses brought to light a multitude of different factors and conditions which either attenuate or potentiate the loss of 5-HT terminals caused by MDMA and related amphetamine derivatives. These puzzling observations suggest that the degeneration of 5-HT presynapses represents only the final step in a sequence of events which compromise the ability of 5-HT terminals to maintain their functional and structural integrity. Substituted amphetamines selectively tax energy metabolism in 5-HT presynapses through their ability to exchange with 5-HT and to dissipate transmembrane ion gradients. The active carrier systems in the vesicular and presynaptic membrane operate at a permanently activated state. The resulting energy deficit can no longer adequately restored by the 5-HT presynapses when their availability of substrates for ATP production is additionally reduced by the hyperthermic and other energy consuming reactions which are elicited by the systemic administration of substituted amphetamines. The exhaustion of energy

  11. The external gate of the human and Drosophila serotonin transporters requires a basic/acidic amino acid pair for 3,4-methylenedioxymethamphetamine (MDMA) translocation and the induction of substrate efflux.

    Science.gov (United States)

    Sealover, Natalie R; Felts, Bruce; Kuntz, Charles P; Jarrard, Rachel E; Hockerman, Gregory H; Lamb, Patrick W; Barker, Eric L; Henry, L Keith

    2016-11-15

    The substituted amphetamine, 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy), is a widely used drug of abuse that induces non-exocytotic release of serotonin, dopamine, and norepinephrine through their cognate transporters as well as blocking the reuptake of neurotransmitter by the same transporters. The resulting dramatic increase in volume transmission and signal duration of neurotransmitters leads to psychotropic, stimulant, and entactogenic effects. The mechanism by which amphetamines drive reverse transport of the monoamines remains largely enigmatic, however, promising outcomes for the therapeutic utility of MDMA for post-traumatic stress disorder and the long-time use of the dopaminergic and noradrenergic-directed amphetamines in treatment of attention-deficit hyperactivity disorder and narcolepsy increases the importance of understanding this phenomenon. Previously, we identified functional differences between the human and Drosophila melanogaster serotonin transporters (hSERT and dSERT, respectively) revealing that MDMA is an effective substrate for hSERT but not dSERT even though serotonin is a potent substrate for both transporters. Chimeric dSERT/hSERT transporters revealed that the molecular components necessary for recognition of MDMA as a substrate was linked to regions of the protein flanking transmembrane domains (TM) V through IX. Here, we performed species-scanning mutagenesis of hSERT, dSERT and C. elegans SERT (ceSERT) along with biochemical and electrophysiological analysis and identified a single amino acid in TM10 (Glu394, hSERT; Asn484, dSERT, Asp517, ceSERT) that is primarily responsible for the differences in MDMA recognition. Our findings reveal that an acidic residue is necessary at this position for MDMA recognition as a substrate and serotonin releaser. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Opioid gene expression changes and post-translational histone modifications at promoter regions in the rat nucleus accumbens after acute and repeated 3,4-methylenedioxy-methamphetamine (MDMA) exposure.

    Science.gov (United States)

    Caputi, Francesca Felicia; Palmisano, Martina; Carboni, Lucia; Candeletti, Sanzio; Romualdi, Patrizia

    2016-12-01

    The recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) has been shown to produce neurotoxic damage and long-lasting changes in several brain areas. In addition to the involvement of serotoninergic and dopaminergic systems, little information exists about the contribution of nociceptin/orphaninFQ (N/OFQ)-NOP and dynorphin (DYN)-KOP systems in neuronal adaptations evoked by MDMA. Here we investigated the behavioral and molecular effects induced by acute (8mg/kg) or repeated (8mg/kg twice daily for seven days) MDMA exposure. MDMA exposure affected body weight gain and induced hyperlocomotion; this latter effect progressively decreased after repeated administration. Gene expression analysis indicated a down-regulation of the N/OFQ system and an up-regulation of the DYN system in the nucleus accumbens (NAc), highlighting an opposite systems regulation in response to MDMA exposure. Since histone modifications have been strongly associated to the addiction-related maladaptive changes, we examined two permissive (acH3K9 and me3H3K4) and two repressive transcription marks (me3H3K27 and me2H3K9) at the pertinent opioid gene promoter regions. Chromatin immunoprecipitation assays revealed that acute MDMA increased me3H3K4 at the pN/OFQ, pDYN and NOP promoters. Following acute and repeated treatment a significant decrease of acH3K9 at the pN/OFQ promoter was observed, which correlated with gene expression results. Acute treatment caused an acH3K9 increase and a me2H3K9 decrease at the pDYN promoter which matched its mRNA up-regulation. Our data indicate that the activation of the DYNergic stress system together with the inactivation of the N/OFQergic anti-stress system contribute to the neuroadaptive actions of MDMA and offer novel epigenetic information associated with MDMA abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ketamine

    African Journals Online (AJOL)

    MJZ

    anesthesia in extremely critical conditions (e.g., ... treatment. Some animal studies have shown that ketamine may produce a marked neuroprotective effect mediated ... IM) for pediatric surgery. .... prior personality disorders, excessive noise.

  14. Determinação de 3,4-metilenodioximetanfetamina (MDMA em comprimidos de Ecstasy por cromatografia líquida de alta eficiência com detecção por fluorescência (CLAE-DF Determination of 3,4-methylenedioxymethamphetamine (MDMA in Ecstasy tablets by high performance liquid chromatography with fluorescence detection (HPLC-FD

    Directory of Open Access Journals (Sweden)

    José Luiz da Costa

    2009-01-01

    Full Text Available This paper describes the development and validation of simple and selective analytical method for determination of 3.4-methylenedioxymethamphetamine (MDMA in Ecstasy tablets, using high performance liquid chromatography with fluorescence detection. Analysis was performed in a reversed phase column (LiChrospher 100 C18, 150 x 4.6 mm, 5 µm, isocratic elution with phosphate buffer 25 mmol/L pH 3.0 and acetonitrile (95:5, v/v. The method presents adequate linearity, selectivity, precision and accuracy. MDMA concentration in analyzed tablets showed a remarkable variability (from 8.5 to 59.5 mg/tablet although the tablet weights were uniform, indicating poor manufacturing control thus imposing additional health risks to the users.

  15. The most frequent psychopathology related to the use of 3,4-methylenedioxymethamphetamine (MDMA of medical help seekers: causality or coincidence?

    Directory of Open Access Journals (Sweden)

    Mercedes Lovrečič

    2011-11-01

    Full Text Available Background: 3,4-methylendioxymethamphetamine (MDMA represents the most popular recreational synthetic drug. The increasing popularity of MDMA, health consequences due to its recreational use and possibility of neurodegeneration of brain serotonin neurons are the reasons for increasing concern. Numerous studies suggest a link between exposure to MDMA and the consequent psychopathology. The literature indicates the incidence of various psychiatric disorders associated with single or multiple use of MDMA. The most frequent psychiatric disorders for which MDMA users search medical assistance are psychotic states, depression and panic attacks. However, it is not easy to conclude that there is a causal link between exposure to MDMA and psychopathology. This paper describes current knowledge of some aspects of this phenomenon, which represents the starting point for further challenges to various researchers and experts.

  16. Validação de método para determinação de 3,4-metilenodioximetanfetamina (MDMA em comprimidos de ecstasy por cromatografia em fase gasosa Validation of a gas-chromatographic method for the determination of 3,4-methylenedioxymethamphetamine(MDMA in ecstasy tablets

    Directory of Open Access Journals (Sweden)

    Silvio Fernandes Lapachinske

    2004-03-01

    Full Text Available O ecstasy é comercializado, de maneira ilegal, normalmente sob a forma de comprimidos, com cores, aspectos, dimensões e logotipos variados. Quimicamente, é a metilenodioximetanfetamina (MDMA, um composto sintético com propriedades estimulante central e alucinogênicas. Devido à grande expansão do abuso de ecstasy, também tem aumentado o número de casos de intoxicações, decorrentes diretamente da droga (MDMA e análogas e/ou de eventuais adulterantes. Algumas substâncias análogas à MDMA, já identificadas em comprimidos de ecstasy são: metilenodioxietilanfetamina (MDEA, metilenodioxianfetamina (MDA, metanfetamina e anfetamina. Como possíveis adulterantes, geralmente são encontradas cafeína e efedrinas. O objetivo deste trabalho foi a validação de um método analítico para quantificar a MDMA em comprimidos ou cápsulas de ecstasy, através da cromatografia em fase gasosa com detector de nitrogênio/fósforo (GC/NPD. Além disso, substâncias análogas à MDMA e adulterantes também foram identificados. O método, que consiste na dissolução direta da amostra em metanol, centrifugação e diluição do sobrenadante, demonstrou ser simples, rápido e eficiente. Os limites de detecção e quantificação para a MDMA foram respectivamente de 1,5 e 3,0 mg/100 mg de comprimido. Amostras de comprimidos e cápsulas apreendidos como sendo ecstasy provenientes de 25 lotes foram analisadas, apresentando considerável variabilidade na composição e na quantidade de MDMA.Ecstasy is illegally commercialized in the form of tablets with different aspects, colors, sizes, and logotypes. Chemically, ecstasy is 3,4-methylenedioxymethamphetamine (MDMA, a synthetic compound with stimulant and hallucinogenic proprieties. Due to the great expansion of ecstasy abuse, the number of cases of intoxications by MDMA, analogs and eventual adulterant compounds has also increased. Some MDMA analog substances, such as 3,4-methylenedioxyethylamphetamine (MDEA

  17. Ecstasy (MDMA) dependence.

    Science.gov (United States)

    Jansen, K L

    1999-01-07

    Methylenedioxymethamphetamine (MDMA) is generally described as non-addictive. However, this report describes three cases in which criteria for dependence were met. A wider understanding that MDMA can be addictive in rare cases is important as very heavy use may cause lasting neuronal changes. This risk could be reduced with effective identification and treatment of dependent persons. In one case dependence was linked with self-medication of post-traumatic stress disorder (PTSD).

  18. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors

    OpenAIRE

    Milhazes, Nuno; Martins, Pedro; Uriarte, Eugenio; Garrido, Jorge; Calheiros, Rita; Marques, M. Paula M.; Borges, Fernanda

    2007-01-01

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-beta-methyl-beta-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to t...

  19. A randomized, controlled pilot study of MDMA (± 3,4-Methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic Post-Traumatic Stress Disorder (PTSD).

    Science.gov (United States)

    Oehen, Peter; Traber, Rafael; Widmer, Verena; Schnyder, Ulrich

    2013-01-01

    Psychiatrists and psychotherapists in the US (1970s to 1985) and Switzerland (1988-1993) used MDMA legally as a prescription drug, to enhance the effectiveness of psychotherapy. Early reports suggest that it is useful in treating trauma-related disorders. Recently, the first completed pilot study of MDMA-assisted psychotherapy for PTSD yielded encouraging results. Designed to test the safety and efficacy of MDMA-assisted psychotherapy in patients with treatment-resistant PTSD; our randomized, double-blind, active-placebo controlled trial enrolled 12 patients for treatment with either low-dose (25 mg, plus 12.5 mg supplemental dose) or full-dose MDMA (125 mg, plus 62.5 mg supplemental dose). MDMA was administered during three experimental sessions, interspersed with weekly non-drug-based psychotherapy sessions. Outcome measures used were the Clinician-Administered PTSD Scale (CAPS) and the Posttraumatic Diagnostic Scale (PDS). Patients were assessed at baseline, three weeks after the second and third MDMA session (end of treatment), and at the 2-month and 1-year follow-ups. We found that MDMA-assisted psychotherapy can be safely administered in a clinical setting. No drug-related serious adverse events occurred. We did not see statistically significant reductions in CAPS scores (p = 0.066), although there was clinically and statistically significant self-reported (PDS) improvement (p = 0.014). CAPS scores improved further at the 1-year follow-up. In addition, three MDMA sessions were more effective than two (p = 0.016).

  20. A PET study of effects of chronic 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") on serotonin markers in Göttingen minipig brain

    DEFF Research Database (Denmark)

    Cumming, Paul; Møller, Mette; Benda, Kjeld

    2007-01-01

    The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive and neuroch......The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive...... with MDMA (i.m.), administered at a range of doses. In parallel PET studies, [(11)C]WAY-100635 was used to map the distribution of serotonin 5HT(1A) receptors. The acute MDMA treatment in awake pigs evoked 1 degrees C of hyperthermia. MDMA at total doses greater than 20 mg/kg administered over 2-4 days...... reduced the binding potential (pB) of [(11)C]DASB for serotonin transporters in porcine brain. A mean total dose of 42 mg/kg MDMA in four animals evoked a mean 32% decrease in [(11)C]DASB pB in mesencephalon and diencephalon, and a mean 53% decrease in telencephalic structures. However, this depletion...

  1. Investigating the potential neurotoxicity of Ecstasy (MDMA): an imaging approach

    NARCIS (Netherlands)

    Reneman, Liesbeth; Booij, Jan; Majoie, Charles B. L. M.; van den Brink, Wim; den Heeten, Gerard J.

    2001-01-01

    Human users of 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') users may be at risk of developing MDMA-induced neuronal injury. Previously, no methods were available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivo neuroimaging

  2. Designer Drug Confusion: A Focus on MDMA.

    Science.gov (United States)

    Beck, Jerome; Morgan, Patricia A.

    1986-01-01

    Discusses the competing definitions and issues surrounding various designer drugs, primarily 3, 4-methylenedioxy-methamphetamine (MDMA). Offers a rationale for why interest in MDMA, which possesses both stimulant and psychedelic properties, will continue to grow despite the drug's recent illegality and increasing evidence of neurotoxicity.…

  3. Potential Psychiatric Uses for MDMA

    OpenAIRE

    Yazar?Klosinski, BB; Mithoefer, MC

    2017-01-01

    Phase II trials of 3,4?methylenedioxymethamphetamine (MDMA)?assisted psychotherapy have demonstrated initial safety and efficacy for treatment of posttraumatic stress disorder (PTSD), with potential for expansion to depression and anxiety disorders. In these trials, single doses of MDMA are administered in a model of medication?assisted psychotherapy, differing from trials involving daily drug administration without psychotherapy. This model presents an opportunity to utilize accelerated regu...

  4. Elucidating the neurotoxic effects of MDMA and its analogs.

    Science.gov (United States)

    Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Deruiter, Jack; Clark, Randall; Dhanasekaran, Muralikrishnan

    2014-04-17

    There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning

    OpenAIRE

    Young, M B; Andero, R; Ressler, K J; Howell, L L

    2015-01-01

    Acutely administered 3,4-methylenedioxymethamphetamine (MDMA, ?ecstasy') has been proposed to have long-term positive effects on post-traumatic stress disorder (PTSD) symptoms when combined with psychotherapy. No preclinical data support a mechanistic basis for these claims. Given the persistent nature of psychotherapeutic gains facilitated by MDMA, we hypothesized that MDMA improves fear extinction learning, a key process in exposure-based therapies for PTSD. In these experiments, mice were ...

  6. Behavioral, Thermal and Neurochemical Effects Of Acute And Chronic 3,4-Methylenedioxymethamphetamine (“Ecstasy”) Self-Administration

    OpenAIRE

    Reveron, Maria Elena; Maier, Esther Y.; Duvauchelle, Christine L.

    2009-01-01

    3,4-methylenedioxymethamphetamine (MDMA) is a popular methamphetamine derivative associated with young adults and all-night dance parties. However, the enduring effects of MDMA at voluntary intake levels have not been extensively investigated. In this study, MDMA-influenced behaviors and core temperatures were assessed over the course of 20 daily MDMA self-administration sessions in rats. In vivo microdialysis techniques were used in a subsequent MDMA challenge test session to determine extra...

  7. Ecstasy (MDMA) and oral health

    NARCIS (Netherlands)

    Brand, H.S.; Dun, S.N.; Nieuw Amerongen, A.V.

    2008-01-01

    3,4-methylenedioxymethamphetamine (MDMA), more commonly known as 'ecstasy' or XTC, is frequently used by young adults in the major cities. Therefore, it is likely that dentists might be confronted with individuals who use ecstasy. This review describes systemic and oral effects of ecstasy.

  8. Discriminative Stimulus Effects of 3,4-Methylenedioxymethamphetamine and Its Enantiomers in Mice: Pharmacokinetic Considerations

    OpenAIRE

    Fantegrossi, William E.; Murai, Naoki; Mathúna, Brian Ó.; Pizarro, Nieves; de la Torre, Rafael

    2009-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a drug of abuse with mixed stimulant- and hallucinogen-like effects. The aims of the present studies were to establish discrimination of S(+)-MDMA, R(-)-MDMA, or their combination as racemic MDMA in separate groups of mice to assess cross-substitution tests among all three compounds, to determine the time courses of the training doses, to assess pharmacokinetic variables after single injections and after cumulative dosing, an...

  9. Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine.

    Science.gov (United States)

    Fattore, Liana; Piva, Alessandro; Zanda, Mary Tresa; Fumagalli, Guido; Chiamulera, Cristiano

    2018-02-01

    Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial "psychedelic effect," which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy. Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories. We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition. Metaplasticity may be the process in common between cannabinoids and ketamine/ketamine-like substance effects on the mediation and potential manipulation of maladaptive memories.

  10. Cannabis co-administration potentiates MDMA effects on temperature and heart rate

    NARCIS (Netherlands)

    Dumont, G.; Kramers, C.; Sweep, E.; Touw, D.; Van Hasselt, J.; De Kam, M.; Van Gerven, J.; Buitelaar, J.; Verkes, R.J.

    2009-01-01

    3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) is a frequently used club-drug in Western societies. Ecstasy users generally are multi-drug users, and cannabis (THC) is commonly combined with MDMA. MDMA is a potent psychostimulant, increasing heart rate, blood pressure and body temperature.

  11. Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects

    NARCIS (Netherlands)

    Reneman, Liesbeth; de Win, Maartje M. L.; van den Brink, Wim; Booij, Jan; den Heeten, Gerard J.

    2006-01-01

    Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in

  12. A mechanistic insight into MDMA-mediated hepatotoxicity

    NARCIS (Netherlands)

    Antolino Lobo, I.|info:eu-repo/dai/nl/304833088

    2011-01-01

    methylenedioxymethamphetamine (MDMA, Ecstasy) is a popular drug of abuse among young people that can induce adverse effects. However, these effects lack a specific pattern, as consumption quantities are not correlated with the initiation and severity of the injury. MDMA can cause drug-induced liver

  13. Metabolism and Disposition of 3,4-Methylenedioxymethamphetamine (“Ecstasy”) in Baboons after Oral Administration: Comparison with Humans Reveals Marked Differences

    OpenAIRE

    Mueller, Melanie; Goodwin, Amy K.; Ator, Nancy A.; McCann, Una D.; Ricaurte, George A.

    2011-01-01

    The baboon is potentially an attractive animal for modeling 3,4-methylenedioxymethamphetamine (MDMA) effects in humans. Baboons self-administer MDMA, are susceptible to MDMA neurotoxicity, and are suitable for positron emission tomography, the method most often used to probe for MDMA neurotoxicity in humans. Because pharmacokinetic equivalence is a key feature of a good predictive animal model, we compared the pharmacokinetics of MDMA in baboons and humans. Baboons were trained to orally cons...

  14. MDMA enhances emotional empathy and prosocial behavior

    Science.gov (United States)

    Hysek, Cédric M.; Schmid, Yasmin; Simmler, Linda D.; Domes, Gregor; Heinrichs, Markus; Eisenegger, Christoph; Preller, Katrin H.; Quednow, Boris B.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) releases serotonin and norepinephrine. MDMA is reported to produce empathogenic and prosocial feelings. It is unknown whether MDMA in fact alters empathic concern and prosocial behavior. We investigated the acute effects of MDMA using the Multifaceted Empathy Test (MET), dynamic Face Emotion Recognition Task (FERT) and Social Value Orientation (SVO) test. We also assessed effects of MDMA on plasma levels of hormones involved in social behavior using a placebo-controlled, double-blind, random-order, cross-over design in 32 healthy volunteers (16 women). MDMA enhanced explicit and implicit emotional empathy in the MET and increased prosocial behavior in the SVO test in men. MDMA did not alter cognitive empathy in the MET but impaired the identification of negative emotions, including fearful, angry and sad faces, in the FERT, particularly in women. MDMA increased plasma levels of cortisol and prolactin, which are markers of serotonergic and noradrenergic activity, and of oxytocin, which has been associated with prosocial behavior. In summary, MDMA sex-specifically altered the recognition of emotions, emotional empathy and prosociality. These effects likely enhance sociability when MDMA is used recreationally and may be useful when MDMA is administered in conjunction with psychotherapy in patients with social dysfunction or post-traumatic stress disorder. PMID:24097374

  15. MDMA enhances emotional empathy and prosocial behavior.

    Science.gov (United States)

    Hysek, Cédric M; Schmid, Yasmin; Simmler, Linda D; Domes, Gregor; Heinrichs, Markus; Eisenegger, Christoph; Preller, Katrin H; Quednow, Boris B; Liechti, Matthias E

    2014-11-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') releases serotonin and norepinephrine. MDMA is reported to produce empathogenic and prosocial feelings. It is unknown whether MDMA in fact alters empathic concern and prosocial behavior. We investigated the acute effects of MDMA using the Multifaceted Empathy Test (MET), dynamic Face Emotion Recognition Task (FERT) and Social Value Orientation (SVO) test. We also assessed effects of MDMA on plasma levels of hormones involved in social behavior using a placebo-controlled, double-blind, random-order, cross-over design in 32 healthy volunteers (16 women). MDMA enhanced explicit and implicit emotional empathy in the MET and increased prosocial behavior in the SVO test in men. MDMA did not alter cognitive empathy in the MET but impaired the identification of negative emotions, including fearful, angry and sad faces, in the FERT, particularly in women. MDMA increased plasma levels of cortisol and prolactin, which are markers of serotonergic and noradrenergic activity, and of oxytocin, which has been associated with prosocial behavior. In summary, MDMA sex-specifically altered the recognition of emotions, emotional empathy and prosociality. These effects likely enhance sociability when MDMA is used recreationally and may be useful when MDMA is administered in conjunction with psychotherapy in patients with social dysfunction or post-traumatic stress disorder. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Effects of Stress and MDMA on Hippocampal Gene Expression

    OpenAIRE

    Weber, Georg F.; Johnson, Bethann N.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neuro...

  17. Potential Psychiatric Uses for MDMA.

    Science.gov (United States)

    Yazar-Klosinski, B B; Mithoefer, M C

    2017-02-01

    Phase II trials of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy have demonstrated initial safety and efficacy for treatment of posttraumatic stress disorder (PTSD), with potential for expansion to depression and anxiety disorders. In these trials, single doses of MDMA are administered in a model of medication-assisted psychotherapy, differing from trials involving daily drug administration without psychotherapy. This model presents an opportunity to utilize accelerated regulatory pathways, such as the US Food and Drug Administration (FDA) Breakthrough Therapy Designation, to most effectively and expeditiously test such novel approaches. © 2016, The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  18. Repeated MDMA administration increases MDMA-produced locomotor activity and facilitates the acquisition of MDMA self-administration: role of dopamine D2 receptor mechanisms.

    Science.gov (United States)

    van de Wetering, Ross; Schenk, Susan

    2017-04-01

    Repeated exposure to ±3, 4-methylenedioxymethamphetamine (MDMA) produces sensitization to MDMA-produced hyperactivity, but the mechanisms underlying the development of this sensitized response or the relationship to the reinforcing effects of MDMA is unknown. This study determined the effect of a sensitizing regimen of MDMA exposure on the acquisition of MDMA self-administration and investigated the role of dopamine D 2 receptor mechanisms. Rats received the selective D 2 antagonist, eticlopride (0.0 or 0.3 mg/kg, i.p.) and MDMA (0.0 or 10.0 mg/kg, i.p.) during a five-day pretreatment regimen. Two days following the final session, the locomotor activating effects of MDMA (5 mg/kg, i.p.) and the latency to acquisition of MDMA self-administration were determined. Pretreatment with MDMA enhanced the locomotor activating effects of MDMA and facilitated the acquisition of MDMA self-administration. Administration of eticlopride during MDMA pretreatment completely blocked the development of sensitization to MDMA-produced hyperactivity but failed to significantly alter the facilitated acquisition of MDMA self-administration. Pretreatment with eticlopride alone facilitated the acquisition of self-administration. These data suggest that repeated MDMA exposure sensitized both the locomotor activating and reinforcing effects of MDMA. Activation of D 2 receptors during MDMA pretreatment appears critical for the development of sensitization to MDMA-produced hyperactivity. The role of D 2 receptor mechanisms in the development of sensitization to the reinforcing effects of MDMA is equivocal.

  19. Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release.

    Science.gov (United States)

    Bradbury, Sarah; Bird, Judith; Colussi-Mas, Joyce; Mueller, Melanie; Ricaurte, George; Schenk, Susan

    2014-09-01

    The current study aimed to elucidate the role of pharmacokinetic (PK) parameters and neurotransmitter efflux in explaining variability in (±) 3, 4-methylenedioxymethamphetamine (MDMA) self-administration in rats. PK profiles of MDMA and its major metabolites were determined after the administration of 1.0 mg/kg MDMA (iv) prior to, and following, the acquisition of MDMA self-administration. Synaptic levels of 5-hydroxytryptamine (5HT) and dopamine (DA) in the nucleus accumbens were measured following administration of MDMA (1.0 and 3.0 mg/kg, iv) using in vivo microdialysis and compared for rats that acquired or failed to acquire MDMA self-administration. Effects of the 5HT neurotoxin, 5,7 dihydroxytryptamine (5, 7-DHT), on the acquisition of MDMA and cocaine self-administration were also determined. In keeping with previous findings, approximately 50% of rats failed to meet a criterion for acquisition of MDMA self-administration. The PK profiles of MDMA and its metabolites did not differ between rats that acquired or failed to acquire MDMA self-administration. MDMA produced more overflow of 5HT than DA. The MDMA-induced 5HT overflow was lower in rats that acquired MDMA self-administration compared with those that did not acquire self-administration. In contrast, MDMA-induced DA overflow was comparable for the two groups. Prior 5,7-DHT lesions reduced tissue levels of 5HT and markedly increased the percentage of rats that acquired MDMA self-administration and also decreased the latency to acquisition of cocaine self-administration. These data suggest that 5HT limits the initial sensitivity to the positively reinforcing effects of MDMA and delays the acquisition of reliable self-administration. © 2013 Society for the Study of Addiction.

  20. Acute effects of 3,4-methylenedioxymethamphetamine and methylphenidate on circulating steroid levels in healthy subjects.

    OpenAIRE

    Seibert Julia; Hysek Cédric M; Penno Carlos A; Schmid Yasmin; Kratschmar Denise V; Liechti Matthias E; Odermatt Alex

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') and methylphenidate are widely used psychoactive substances. MDMA primarily enhances serotonergic neurotransmission, and methylphenidate increases dopamine but has no serotonergic effects. Both drugs also increase norepinephrine, resulting in sympathomimetic properties. Here we studied the effects of MDMA and methylphenidate on 24-h plasma steroid profiles. Sixteen healthy subjects (eight men, eight women) were treated with single doses of M...

  1. MDMA induces oxytocin release in humans

    NARCIS (Netherlands)

    Dumont, G.; Sweep, F.C.G.J.; Van Der Steen, R.V.; Hermsen, R.; Touw, D.J.; Buitelaar, J.K.; Verkes, R.J.

    2008-01-01

    Introduction: Appropriate social behavior is vital for human health and well-being, nevertheless the neurobiological mechanisms which mediate social behavior remain poorly understood. Ecstasy (3,4-methylenedioxymethamphetamine (MDMA)) is a street drug which gained widespread use in the 'club' scene,

  2. The identification of a chlorinated MDMA

    Czech Academy of Sciences Publication Activity Database

    Marešová, V.; Hampl, J.; Chundela, Z.; Zrcek, F.; Polášek, Miroslav; Chadt, J.

    2005-01-01

    Roč. 29, č. 5 (2005), s. 353-358 ISSN 0146-4760 Institutional research plan: CEZ:AV0Z40400503 Keywords : designer drugs ecstasy * 3,4-methylenedioxymethamphetamine MDMA * psychomot performance * clinical pharmacology Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.785, year: 2005

  3. Altered Insula Connectivity under MDMA.

    Science.gov (United States)

    Walpola, Ishan C; Nest, Timothy; Roseman, Leor; Erritzoe, David; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2017-10-01

    Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.

  4. Key interindividual determinants in MDMA pharmacodynamics.

    Science.gov (United States)

    Papaseit, E; Torrens, M; Pérez-Mañá, C; Muga, R; Farré, M

    2018-02-01

    MDMA, 3,4-methylenedioxymethamphetamine, is a synthetic phenethylamine derivative with structural and pharmacological similarities to both amphetamines and mescaline. MDMA produces characteristic amphetamine-like actions (euphoria, well-being), increases empathy, and induces pro-social effects that seem to motivate its recreational consumption and provide a basis for its potential therapeutic use. Areas covered: The aim of this review is to present the main interindividual determinants in MDMA pharmacodynamics. The principal sources of pharmacodynamic variability are reviewed, with special emphasis on sex-gender, race-ethnicity, genetic differences, interactions, and MDMA acute toxicity, as well as possible therapeutic use. Expert opinion: Acute MDMA effects are more pronounced in women than they are in men. Very limited data on the relationship between race-ethnicity and MDMA effects are available. MDMA metabolism includes some polymorphic enzymes that can slightly modify plasma concentrations and effects. Although a considerable number of studies exist about the acute effects of MDMA, the small number of subjects in each trial limits evaluation of the different interindividual factors and does not permit a clear conclusion about their influence. These issues should be considered when studying possible MDMA therapeutic use.

  5. Symptoms of anxiety and depression in childhood and use of MDMA: prospective, population based study

    NARCIS (Netherlands)

    Huizink, A.C.; Ferdinand, R.F.; Ende, J. van den; Verhulst, F.C.

    2006-01-01

    Objective To investigate whether using ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is preceded by symptoms of behavioural and emotional problems in childhood and early adolescence. Design Prospective, longitudinal, population based study. Setting The Dutch province of

  6. Symptoms of anxiety and depression in childhood and use of MDMA: prospective, population based study

    NARCIS (Netherlands)

    A.C. Huizink (Anja); R.F. Ferdinand (Robert); J. van der Ende (Jan); F.C. Verhulst (Frank)

    2006-01-01

    textabstractOBJECTIVE: To investigate whether using ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is preceded by symptoms of behavioural and emotional problems in childhood and early adolescence. DESIGN: Prospective, longitudinal, population based study SETTING: The Dutch

  7. Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results

    NARCIS (Netherlands)

    Reneman, Liesbeth; Majoie, Charles B. L. M.; Flick, Herman; den Heeten, Gerard J.

    2002-01-01

    BACKGROUND AND PURPOSE: The perceived safety of the recreational drug methylenedioxymethamphetamine (MDMA), or Ecstasy, conflicts with animal evidence indicating that MDMA damages cortical serotonin (5-HT) neurons at doses similar to those used by humans. Few data are available about the effects of

  8. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    OpenAIRE

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2009-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection...

  9. Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons

    NARCIS (Netherlands)

    Reneman, L.; Booij, J.; de Bruin, K.; Reitsma, J. B.; de Wolff, F. A.; Gunning, W. B.; den Heeten, G. J.; van den Brink, W.

    2001-01-01

    BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a popular recreational drug that has been shown to damage brain serotonin neurons in high doses. However, effects of moderate MDMA use on serotonin neurons have not been studied, and sex differences and the long-term effects of MDMA

  10. Chiral Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine and its Phase I and II Metabolites following Controlled Administration to Humans.

    OpenAIRE

    Steuer Andrea E; Schmidhauser Corina; Schmid Yasmin; Rickli Anna; Liechti Matthias E; Kraemer Thomas

    2015-01-01

    Generally, pharmacokinetic studies on 3,4-methylenedioxymethamphetamine (MDMA) in blood have been performed after conjugate cleavage, without taking into account that phase II metabolites represent distinct chemical entities with their own effects and stereoselective pharmacokinetics. The aim of the present study was to stereoselectively investigate the pharmacokinetics of intact glucuronide and sulfate metabolites of MDMA in blood plasma after a controlled single MDMA dose. Plasma samples fr...

  11. Rhabdomyolysis in MDMA intoxication : A rapid and underestimated killer. "clean" Ecstasy, a safe party drug?

    NARCIS (Netherlands)

    Eede, Herve Vanden; Montenij, Leon J.; Touw, Daan J.; Norris, Elizabeth M.

    Background: Ecstasy is a popular drug among young adults. It is often thought to be safe. The dose of methylenedioxymethamphetamine (MDMA) in a tablet of Ecstasy varies greatly, and there is also a difference in individual response to a dose of MDMA. Objectives: To increase the awareness of

  12. Memory function and serotonin transporter promoter gene polymorphism in ecstasy (MDMA) users

    NARCIS (Netherlands)

    Reneman, Liesbeth; Schilt, T.; de Win, Maartje M.; Booij, Jan; Schmand, Ben; van den Brink, Wim; Bakker, Onno

    2006-01-01

    Although 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) has been shown to damage brain serotonin (5-HT) neurons in animals and possibly humans, little is known about the long-term consequences of MDMA-induced 5-HT neurotoxic lesions on functions in which 5-HT is involved, such as cognitive

  13. Dissociable effects of a single dose of ecstasy (MDMA) on psychomotor skills and attentional performance

    NARCIS (Netherlands)

    Lamers, CTJ; Ramaekers, JG; Muntjewerff, ND; Sikkema, KL; Samyn, N; Read, NL; Brookhuis, KA; Riedel, WJ

    2003-01-01

    Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is a psychoactive recreational drug widely used by young people visiting dance parties, and has been associated with poor cognitive function. The current study assessed the influence of a single dose of MDMA 75 mg and alcohol 0.5 g/kg on cognition,

  14. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning.

    Science.gov (United States)

    Young, M B; Andero, R; Ressler, K J; Howell, L L

    2015-09-15

    Acutely administered 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') has been proposed to have long-term positive effects on post-traumatic stress disorder (PTSD) symptoms when combined with psychotherapy. No preclinical data support a mechanistic basis for these claims. Given the persistent nature of psychotherapeutic gains facilitated by MDMA, we hypothesized that MDMA improves fear extinction learning, a key process in exposure-based therapies for PTSD. In these experiments, mice were first exposed to cued fear conditioning and treated with drug vehicle or MDMA before extinction training 2 days later. MDMA was administered systemically and also directly targeted to brain structures known to contribute to extinction. In addition to behavioral measures of extinction, changes in mRNA levels of brain-derived neurotrophic factor (Bdnf) and Fos were measured after MDMA treatment and extinction. MDMA (7.8 mg kg(-1)) persistently and robustly enhanced long-term extinction when administered before extinction training. MDMA increased the expression of Fos in the amygdala and medial prefrontal cortex (mPFC), whereas increases in Bdnf expression were observed only in the amygdala after extinction training. Extinction enhancements were recapitulated when MDMA (1 μg) was infused directly into the basolateral complex of the amygdala (BLA), and enhancement was abolished when BDNF signaling was inhibited before extinction. These findings suggest that MDMA enhances fear memory extinction through a BDNF-dependent mechanism, and that MDMA may be a useful adjunct to exposure-based therapies for PTSD and other anxiety disorders characterized by altered fear learning.

  15. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    Science.gov (United States)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  16. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination.

    Science.gov (United States)

    Hysek, Cédric M; Simmler, Linda D; Schillinger, Nathalie; Meyer, Nicole; Schmid, Yasmin; Donzelli, Massimiliano; Grouzmann, Eric; Liechti, Matthias E

    2014-03-01

    Methylphenidate and 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') are widely misused psychoactive drugs. Methylphenidate increases brain dopamine and norepinephrine levels by blocking the presynaptic reuptake transporters. MDMA releases serotonin, dopamine and norepinephrine through the same transporters. Pharmacodynamic interactions of methylphenidate and MDMA are likely. This study compared the pharmacodynamic and pharmacokinetic effects of methylphenidate and MDMA administered alone or in combination in healthy subjects using a double-blind, placebo-controlled, crossover design. Methylphenidate did not enhance the psychotropic effects of MDMA, although it produced psychostimulant effects on its own. The haemodynamic and adverse effects of co-administration of methylphenidate and MDMA were significantly higher compared with MDMA or methylphenidate alone. Methylphenidate did not change the pharmacokinetics of MDMA and vice versa. Methylphenidate and MDMA shared some subjective amphetamine-type effects; however, 125 mg of MDMA increased positive mood more than 60 mg of methylphenidate, and methylphenidate enhanced activity and concentration more than MDMA. Methylphenidate and MDMA differentially altered facial emotion recognition. Methylphenidate enhanced the recognition of sad and fearful faces, whereas MDMA reduced the recognition of negative emotions. Additionally, the present study found acute pharmacodynamic tolerance to MDMA but not methylphenidate. In conclusion, the combined use of methylphenidate and MDMA does not produce more psychoactive effects compared with either drug alone, but potentially enhances cardiovascular and adverse effects. The findings may be of clinical importance for assessing the risks of combined psychostimulant misuse. Trial registration identification number: NCT01465685 (http://clinicaltrials.gov/ct2/show/NCT01465685).

  17. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users

    OpenAIRE

    Cowan, Ronald L.; Bolo, Nicolas R.; Dietrich, Mary; Haga, Erica; Lukas, Scott E.; Renshaw, Perry F.

    2007-01-01

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent...

  18. Making a medicine out of MDMA.

    Science.gov (United States)

    Sessa, Ben; Nutt, David

    2015-01-01

    From its first use 3,4,-methylenedioxymethamphetamine (MDMA) has been recognised as a drug with therapeutic potential. Research on its clinical utility stopped when it entered the recreational drug scene but has slowly resurrected in the past decade. Currently there is enough evidence for MDMA to be removed from its Schedule 1 status of 'no medical use' and moved into Schedule 2 (alongside other misused but useful medicines such as heroin and amphetamine). Such a regulatory move would liberate its use as a medicine for patients experiencing severe mental illnesses such as treatment-resistant post-traumatic stress disorder. Royal College of Psychiatrists.

  19. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine.

    Science.gov (United States)

    Halpin, Laura E; Collins, Stuart A; Yamamoto, Bryan K

    2014-02-27

    Amphetamines are a class of psychostimulant drugs that are widely abused for their stimulant, euphoric, empathogenic and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, methamphetamine and 3,4 methylenedioxymethamphetamine (MDMA) produce persistent damage to dopamine and serotonin nerve terminals. This review summarizes the numerous interdependent mechanisms including excitotoxicity, mitochondrial damage and oxidative stress that have been demonstrated to contribute to this damage. Emerging non-neuronal mechanisms by which the drugs may contribute to monoaminergic terminal damage, as well as the neuropsychiatric consequences of this terminal damage are also presented. Methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) have similar chemical structures and pharmacologic properties compared to other abused substances including cathinone (khat), as well as a relatively new class of novel synthetic amphetamines known as 'bath salts' that have gained popularity among drug abusers. © 2013.

  20. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    International Nuclear Information System (INIS)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon; Jung, Kwang Hwa; Kim, Jeong Kyu; Bae, Hyun Jin; Xie Hongjian; Ryu, Jae Chun; Ahn, Young Min; Min, Jin-Hye; Park, Won Sang; Lee, Jung Young; Rhee, Gyu Seek; Nam, Suk Woo

    2009-01-01

    The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.

  1. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity.

    Science.gov (United States)

    Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh

    2016-01-01

    It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of stress and MDMA on hippocampal gene expression.

    Science.gov (United States)

    Weber, Georg F; Johnson, Bethann N; Yamamoto, Bryan K; Gudelsky, Gary A

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.

  3. Effects of Stress and MDMA on Hippocampal Gene Expression

    Directory of Open Access Journals (Sweden)

    Georg F. Weber

    2014-01-01

    Full Text Available MDMA (3,4-methylenedioxymethamphetamine is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD. On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.

  4. MDMA (Ecstasy/Molly)

    Science.gov (United States)

    ... Molly often actually get other drugs such as synthetic cathinones ("bath salts") instead (see " Added Risk of MDMA "). Some people take MDMA in combination with other drugs such as alcohol or marijuana. How does MDMA affect the brain? MDMA increases ...

  5. Variability in the 3,4-methylenedioxymethamphetamine content of 'ecstasy' tablets in the UK.

    Science.gov (United States)

    Wood, David Michael; Stribley, Vasoulla; Dargan, Paul Ivor; Davies, Susannah; Holt, David W; Ramsey, John

    2011-09-01

    Toxicity, such as hyperpyrexia, associated with the use of 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') appears to be related to serum MDMA concentrations. However, there does not appear to be a similar association with the number of tablets ingested, suggesting variation in the tablet content of MDMA. Although work has shown this variation in other areas of the world, no studies have reported on the variation of MDMA content in UK ecstasy tablets. Ecstasy tablets seized from individuals attending nightclubs were analysed qualitatively to determine if they contained MDMA and quantitatively to determine the MDMA content per tablet. The mean amount of MDMA hydrochloride in 101 seized ecstasy tablets was 58.7±22.9 mg per tablet, with a range of 20 mg to 131 mg per tablet. The majority (96.0%) of tablets contained less than 100 mg MDMA per tablet. There appeared to be a bimodal distribution of MDMA content at approximately 20-40 mg per tablet and 60-80 mg per tablet. There is variability in the MDMA content of ecstasy tablets in the UK. This variability could potentially put users at increased risk of acute harm due to inadvertent excess ingestion of MDMA, as they are unaware of the differences in the MDMA content. Repeat sampling and quantification of MDMA content of ecstasy tablets in the UK will allow better education of users about the potential harms associated with the variability in the MDMA content. In addition, it will provide information to allow the monitoring of changes in not only the MDMA content, but also other adulterants, in ecstasy tablets.

  6. Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G.J.H.; Van Hasselt, J.G.C.; De Kam, M.; Van Gerven, J.M.A.; Touw, D.J.; Buitelaar, J.K.; Verkes, R.J.

    In Western societies a considerable percentage of young people expose themselves to the combination of 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') and cannabis. The aim of the present study was to assess the acute effects of co-administration of MDMA and THC (the main psychoactive compound

  7. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users.

    Science.gov (United States)

    Cowan, Ronald L; Bolo, Nicolas R; Dietrich, Mary; Haga, Erica; Lukas, Scott E; Renshaw, Perry F

    2007-08-15

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n=9) versus non-MDMA using (n=7) controls. Mean NAA in non-MDMA users was 10.47 mM (+/-2.51), versus 9.83 mM (+/-1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (+/-.68), versus 6.57 mM (+/-1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results.

  8. Maternal MDMA administration in mice leads to neonatal growth delay.

    Science.gov (United States)

    Kaizaki, Asuka; Tanaka, Sachiko; Yoshida, Takemi; Numazawa, Satoshi

    2014-02-01

    The psychoactive recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is widely abused. The fact that MDMA induces neurotoxic damage in serotonergic nerve endings is well known. However, the effects of MDMA on pregnant and neonatal animals remain unknown. Therefore, we studied the effects of gestational exposure to MDMA on birth, growth, and behavior of pups. Female BALB/c mice were orally administered either water (10 ml/kg) or MDMA (20 mg/10 ml/kg) from gestational day 1 to postnatal day (P) 21. MDMA did not affect the birth rate, but the survival rate of the pups significantly decreased. A significant reduction in body weight gain was observed in pups from MDMA-administered dams during P3-P21. Maternal MDMA treatment caused an attenuated cliff avoidance reaction and decreased motor function in the pups, as determined by the wire hanging test. These results suggest that MDMA treatment during pregnancy and lactation causes growth retardation and dysfunction of motor neurons in mouse pups.

  9. Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration

    NARCIS (Netherlands)

    Dumont, G J H; Sweep, F C G J; van der Steen, R; Hermsen, R; Donders, A R T; Touw, D J; van Gerven, J M A; Buitelaar, J K; Verkes, R J

    2009-01-01

    MDMA (3,4-methylenedioxymethamphetamine or "ecstasy") is a recreationally used drug with remarkable and characteristic prosocial effects. In spite of abundant attention in the scientific literature, the mechanism of its prosocial effects has not been elucidated in humans. Recently, research in

  10. Interspecies In Vitro Evaluation of Stereoselective Protein Binding for 3,4-Methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Wan Raihana Wan Aasim

    2017-01-01

    Full Text Available Abuse of 3,4-methylenedioxymethamphetamine (MDMA is becoming more common worldwide. To date, there is no information available on stereoselectivity of MDMA protein binding in humans, rats, and mice. Since stereoselectivity plays an important role in MDMA’s pharmacokinetics and pharmacodynamics, in this study we investigated its stereoselectivity in protein binding. The stereoselective protein binding of rac-MDMA was investigated using two different concentrations (20 and 200 ng/mL in human plasma and mouse and rat sera using an ultrafiltration technique. No significant stereoselectivity in protein binding was observed in both human plasma and rat serum; however, a significant stereoselective binding (p<0.05 was observed in mouse serum. Since the protein binding of MDMA in mouse serum is considerably lower than in humans and rats, caution should be exercised when using mice for in vitro studies involving MDMA.

  11. Safety pharmacology of acute MDMA administration in healthy subjects.

    Science.gov (United States)

    Vizeli, Patrick; Liechti, Matthias E

    2017-05-01

    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is being investigated in MDMA-assisted psychotherapy. The present study characterized the safety pharmacology of single-dose administrations of MDMA (75 or 125 mg) using data from nine double-blind, placebo-controlled, crossover studies performed in the same laboratory in a total of 166 healthy subjects. The duration of the subjective effects was 4.2 ± 1.3 h (range: 1.4-8.2 h). The 125 mg dose of MDMA produced greater 'good drug effect' ratings than 75 mg. MDMA produced moderate and transient 'bad drug effect' ratings, which were greater in women than in men. MDMA increased systolic blood pressure to >160 mmHg, heart rate >100 beats/min, and body temperature >38°C in 33%, 29% and 19% of the subjects, respectively. These proportions of subjects with hypertension (>160 mmHg), tachycardia, and body temperature >38°C were all significantly greater after 125 mg MDMA compared with the 75 mg dose. Acute and subacute adverse effects of MDMA as assessed by the List of Complaints were dose-dependent and more frequent in females. MDMA did not affect liver or kidney function at EOS 29 ± 22 days after use. No serious adverse events occurred. In conclusion, MDMA produced predominantly acute positive subjective drug effects. Bad subjective drug effects and other adverse effects were significantly more common in women. MDMA administration was overall safe in physically and psychiatrically healthy subjects and in a medical setting. However, the risks of MDMA are likely higher in patients with cardiovascular disease and remain to be investigated in patients with psychiatric disorders.

  12. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    Science.gov (United States)

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  13. MDMA: interactions with other psychoactive drugs.

    Science.gov (United States)

    Mohamed, Wael M Y; Ben Hamida, Sami; Cassel, Jean-Christophe; de Vasconcelos, Anne Pereira; Jones, Byron C

    2011-10-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is one of the most widely abused illegal drugs. Some users self-report euphoria and an increased perception and feeling of closeness to others. When taken in warm environments, MDMA users may develop acute complications with potential fatal consequences. In rodents, MDMA increases locomotor activity and, depending on ambient temperature, may produce a dose-dependent, potentially lethal hyperthermia. Like most other recreational drugs, MDMA is frequently taken in combination with other substances including tobacco, EtOH, marijuana, amphetamines, cocaine and, caffeine. Although polydrug use is very common, the understanding of the effects of this multiple substance use, as well as the analysis of consequences of different drug-drug associations, received rather little attention. The purpose of this review is to summarize our current knowledge about the changes on MDMA-related behavior, pharmacology, and neurotoxicity associated with co-consumption of other drugs of abuse and psychoactive agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Dissociable effects of a single dose of ecstasy (MDMA) on psychomotor skills and attentional performance.

    Science.gov (United States)

    Lamers, C T J; Ramaekers, J G; Muntjewerff, N D; Sikkema, K L; Samyn, N; Read, N L; Brookhuis, K A; Riedel, W J

    2003-12-01

    Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is a psychoactive recreational drug widely used by young people visiting dance parties, and has been associated with poor cognitive function. The current study assessed the influence of a single dose of MDMA 75 mg and alcohol 0.5 g/kg on cognition, psychomotor performance and driving-related task performance. Twelve healthy recreational ecstasy users participated in an experimental study conducted according to a double-blind, double-dummy, placebo-controlled three-way cross-over design. MDMA improved psychomotor performance, such as movement speed and tracking performance in a single task, as well as in a divided attention task. MDMA impaired the ability to predict object movement under divided attention. However, the inability to accurately predict object movement after MDMA may indicate impairment of particular performance skills relevant to driving. There was no effect of MDMA on visual search, planning or retrieval from semantic memory.

  15. Methaemoglobinemia Induced by MDMA?

    Directory of Open Access Journals (Sweden)

    L. L. W. Verhaert

    2011-01-01

    Full Text Available Case. A 45-year-old man with a blank medical history presented at the emergency room with dizziness and cyanosis. Physical examination showed cyanosis with a peripheral saturation (SpO2 of 85%, he did not respond to supplemental oxygen. Arterial blood gas analysis showed a striking chocolate brown colour. Based on these data, we determined the arterial methaemoglobin concentration. This was 32%. We gave 100% oxygen and observed the patient in a medium care unit. The next day, patient could be discharged in good condition. Further inquiry about exhibitions and extensive history revealed that the patient used MDMA (3,4- methylenedioxymethamphetamine, the active ingredient of ecstasy. Conclusion. Acquired methaemoglobinemia is a condition that occurs infrequently, but is potentially life threatening. Different nutrients, medications, and chemicals can induce methaemoglobinemia by oxidation of haemoglobin. The clinical presentation of a patient with methaemoglobinemia is due to the impossibility of O2 binding and transport, resulting in tissue hypoxia. Important is to think about methaemoglobin in a patient who presents with cyanosis, a peripheral saturation of 85% that fails to respond properly to the administration of O2. Because methaemoglobin can be reduced physiologically, it is usually sufficient to remove the causative agent, to give O2, and to observe the patient.

  16. Sex differences in MDMA-induced toxicity in Sprague-Dawley rats

    Science.gov (United States)

    Asl, Sara Soleimani; Mehdizadeh, Mehdi; Shahraki, Soudabeh Hamedi; Artimani, Tayebeh; Joghataei, Mohammad Taghi

    2015-01-01

    Summary Recent evidence demonstrates that female subjects show exaggerated responses to 3,4-methylenedioxymethamphetamine (MDMA) compared with males. The aim of our study was to evaluate sex differences and the role of endogenous gonadal hormones on the effects of MDMA. Fifty-six intact and gonadectomized male and female Sprague-Dawley rats were randomly assigned to either MDMA (5 mg/kg) or saline treatment. Learning and memory were assessed using the Morris water maze (MWM). The expression of Bax and Bcl-2 in the hippocampus was detected by Western blotting. Behavioral analysis showed that MDMA led to memory impairment in both male and female rats. The female rats showed more sensitivity to impairment than the males, as assessed using all the memory parameters in the MWM. Ovariectomy attenuated the MDMA-induced memory impairment. By contrast, orchiectomized rats showed more impairment than MDMA-treated intact male rats. Bcl-2 and Bax were down-regulated and up-regulated in MDMA-treated male and female rats, respectively. MDMA treatment in the orchiectomized rats led to up-regulation of Bax and down-regulation of Bcl-2. Ovariectomy attenuated the MDMA-induced up-regulation of Bax and caused more expression of Bcl-2 compared with what was observed in the MDMA-treated intact female rats. In summary, female rats showed exaggerated responses to the effects of MDMA and this may be explained by endogenous gonadal hormones. PMID:26415786

  17. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin.

    Science.gov (United States)

    Benzenhöfer, Udo; Passie, Torsten

    2010-08-01

    Alexander T. Shulgin is widely thought of as the 'father' of +/-3,4-methylenedioxymethamphetamine (MDMA). This paper re-assesses his role in the modern history of this drug. We analysed systematically Shulgin's original publications on MDMA, his publications on the history of MDMA and his laboratory notebook. According to Shulgin's book PIHKAL (1991), he synthesized MDMA in 1965, but did not try it. In the 1960s Shulgin also synthesized MDMA-related compounds such as 3,4-methylenedioxyamphetamine (MDA), 3-methoxy-4,5-methylenedioxyamphetamine (MMDA) and 3,4-methylenedioxyethylamphetamine (MDE), but this had no impact on his rediscovery of MDMA. In the mid-1970s Shulgin learned of a 'special effect' caused by MDMA, whereupon he re-synthesized it and tried it himself in September 1976, as confirmed by his laboratory notebook. In 1977 he gave MDMA to Leo Zeff PhD, who used it as an adjunct to psychotherapy and introduced it to other psychotherapists. Shulgin was not the first to synthesize MDMA, but he played an important role in its history. It seems plausible that he was so impressed by its effects that he introduced it to psychotherapist Zeff in 1977. This, and the fact that in 1978 he published with David Nichols the first paper on the pharmacological action of MDMA in humans, explains why Shulgin is sometimes (erroneously) called the 'father' of MDMA.

  18. Why Psychiatry Needs 3,4-Methylenedioxymethamphetamine: A Child Psychiatrist's Perspective.

    Science.gov (United States)

    Sessa, Ben

    2017-07-01

    Since the late 1980s the psychoactive drug 3,4-methylenedioxymethamphetamine (MDMA) has had a well-known history as the recreationally used drug ecstasy. What is less well known by the public is that MDMA started its life as a therapeutic agent and that in recent years an increasing amount of clinical research has been undertaken to revisit the drug's medical potential. MDMA has unique pharmacological properties that translate well to its proposed agent to assist trauma-focused psychotherapy. Psychological trauma-especially that which arises early in life from child abuse-underpins many chronic adult mental disorders, including addictions. Several studies of recent years have investigated the potential role of MDMA-assisted psychotherapy as a treatment for post-traumatic stress disorder, with ongoing plans to see MDMA therapy licensed and approved within the next 5 years. Issues of safety and controversy frequently surround this research, owing to MDMA's often negative media-driven bias. However, accurate examination of the relative risks and benefits of clinical MDMA-in contrast to the recreational use of ecstasy-must be considered when assessing its potential benefits and the merits of future research. In this review, the author describes these potential benefits and explores the relatives risks of MDMA-assisted psychotherapy in the context of his experience as a child and adolescent psychiatrist, having seen the relative limitations of current pharmacotherapies and psychotherapies for treating complex post-traumatic stress disorder arising from child abuse.

  19. The Psychopharmacology of ±3,4 Methylenedioxymethamphetamine and its Role in the Treatment of Posttraumatic Stress Disorder.

    Science.gov (United States)

    Amoroso, Timothy

    2015-01-01

    Prior to 1985, ±3,4-methylenedioxymethamphetamine (MDMA) was readily used as a psychotherapeutic adjunct. As MDMA became popular in treating various psychiatric illnesses by mental health professionals, the public started to abuse the MDMA-containing recreational drug "ecstasy." This alarmed the DEA, which led to emergency scheduling of MDMA as a Schedule I drug. Due to its scheduling in 1985, human research and clinical use has been limited. The majority of research on MDMA has been focused on the drug's potential harmful effects rather than its possible therapeutic effects. The limitations on retrospective human studies and preclinical animal models of MDMA neurotoxicity are examined in this analysis. New research has shown that MDMA, used as a catalyst in psychotherapy, is effective in treating posttraumatic stress disorder (PTSD). This review also examines the psychopharmacological basis for the efficacy of MDMA-assisted psychotherapy. Specifically, the brain regions involved with both PTSD and those activated by MDMA (i.e., amygdala, anterior cingulate cortex, and hippocampus) are examined. Also, the possible neurochemical mechanisms involved in MDMA's efficacy in treating PTSD are reviewed.

  20. The safety and efficacy of ±3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study

    OpenAIRE

    Mithoefer, Michael C; Wagner, Mark T; Mithoefer, Ann T; Jerome, Lisa; Doblin, Rick

    2011-01-01

    Case reports indicate that psychiatrists administered ±3,4-methylenedioxymethamphetamine (MDMA) as a catalyst to psychotherapy before recreational use of MDMA as ‘Ecstasy’ resulted in its criminalization in 1985. Over two decades later, this study is the first completed clinical trial evaluating MDMA as a therapeutic adjunct. Twenty patients with chronic posttraumatic stress disorder, refractory to both psychotherapy and psychopharmacology, were randomly assigned to psychotherapy with concomi...

  1. Oral Ketamine

    African Journals Online (AJOL)

    Oral Ketamine: A Four-years Experience in ... Key words: Oral Ketamine, Premedication and Oncology. .... form of a letter published in 19835. .... Acta. Anaesthesiol Scandinavica, 1998; 42: 750-758. 4. Murray P. Substitution of another opioid ...

  2. Differential effects of MDMA and methylphenidate on social cognition.

    Science.gov (United States)

    Schmid, Yasmin; Hysek, Cédric M; Simmler, Linda D; Crockett, Molly J; Quednow, Boris B; Liechti, Matthias E

    2014-09-01

    Social cognition is important in everyday-life social interactions. The social cognitive effects of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and methylphenidate (both used for neuroenhancement and as party drugs) are largely unknown. We investigated the acute effects of MDMA (75 mg), methylphenidate (40 mg) and placebo using the Facial Emotion Recognition Task, Multifaceted Empathy Test, Movie for the Assessment of Social Cognition, Social Value Orientation Test and the Moral Judgment Task in a cross-over study in 30 healthy subjects. Additionally, subjective, autonomic, pharmacokinetic, endocrine and adverse drug effects were measured. MDMA enhanced emotional empathy for positive emotionally charged situations in the MET and tended to reduce the recognition of sad faces in the Facial Emotion Recognition Task. MDMA had no effects on cognitive empathy in the Multifaceted Empathy Test or social cognitive inferences in the Movie for the Assessment of Social Cognition. MDMA produced subjective 'empathogenic' effects, such as drug liking, closeness to others, openness and trust. In contrast, methylphenidate lacked such subjective effects and did not alter emotional processing, empathy or mental perspective-taking. MDMA but not methylphenidate increased the plasma levels of oxytocin and prolactin. None of the drugs influenced moral judgment. Effects on emotion recognition and emotional empathy were evident at a low dose of MDMA and likely contribute to the popularity of the drug. © The Author(s) 2014.

  3. MDMA, cortisol, and heightened stress in recreational ecstasy users.

    Science.gov (United States)

    Parrott, Andrew C; Montgomery, Cathy; Wetherell, Mark A; Downey, Luke A; Stough, Con; Scholey, Andrew B

    2014-09-01

    Stress develops when an organism requires additional metabolic resources to cope with demanding situations. This review will debate how recreational 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') can increase some aspects of acute and chronic stress in humans. Laboratory studies on the acute effects of MDMA on cortisol release and neurohormone levels in drug-free regular ecstasy/MDMA users have been reviewed, and the role of the hypothalamic-pituitary-adrenal (HPA) axis in chronic changes in anxiety, stress, and cognitive coping is debated. In the laboratory, acute ecstasy/MDMA use can increase cortisol levels by 100-200%, whereas ecstasy/MDMA-using dance clubbers experience an 800% increase in cortisol levels, because of the combined effects of the stimulant drug and dancing. Three-month hair samples of abstinent users revealed cortisol levels 400% higher than those in controls. Chronic users show heightened cortisol release in stressful environments and deficits in complex neurocognitive tasks. Event-related evoked response potential studies show altered patterns of brain activation, suggestive of increased mental effort, during basic information processing. Chronic mood deficits include more daily stress and higher depression in susceptible individuals. We conclude that ecstasy/MDMA increases cortisol levels acutely and subchronically and that changes in the HPA axis may explain why recreational ecstasy/MDMA users show various aspects of neuropsychobiological stress.

  4. Progress and promise for the MDMA drug development program.

    Science.gov (United States)

    Feduccia, Allison A; Holland, Julie; Mithoefer, Michael C

    2018-02-01

    Pharmacotherapy is often used to target symptoms of posttraumatic stress disorder (PTSD), but does not provide definitive treatment, and side effects of daily medication are often problematic. Trauma-focused psychotherapies are more likely than drug treatment to achieve PTSD remission, but have high dropout rates and ineffective for a large percentage of patients. Therefore, research into drugs that might increase the effectiveness of psychotherapy is a logical avenue of investigation. The most promising drug studied as a catalyst to psychotherapy for PTSD thus far is 3,4-methylenedioxymethamphetamine (MDMA), commonly known as the recreational drug "Ecstasy." MDMA stimulates the release of hormones and neurochemicals that affect key brain areas for emotion and memory processing. A series of recently completed phase 2 clinical trials of MDMA-assisted psychotherapy for treatment of PTSD show favorable safety outcomes and large effect sizes that warrant expansion into multi-site phase 3 trials, set to commence in 2018. The nonprofit sponsor of the MDMA drug development program, the Multidisciplinary Association for Psychedelic Studies (MAPS), is supporting these trials to explore whether MDMA, administered on only a few occasions, can increase the effectiveness of psychotherapy. Brain imaging techniques and animal models of fear extinction are elucidating neural mechanisms underlying the robust effects of MDMA on psychological processing; however, much remains to be learned about the complexities of MDMA effects as well as the complexities of PTSD itself.

  5. Effects of MDMA on body temperature in humans

    Science.gov (United States)

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  6. Effects of 3,4-methylenedioxymethamphetamine administration on retinal physiology in the rat.

    Directory of Open Access Journals (Sweden)

    João Martins

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA; ecstasy is known to produce euphoric states, but may also cause adverse consequences in humans, such as hyperthermia and neurocognitive deficits. Although MDMA consumption has been associated with visual problems, the effects of this recreational drug in retinal physiology have not been addressed hitherto. In this work, we evaluated the effect of a single MDMA administration in the rat electroretinogram (ERG. Wistar rats were administered MDMA (15 mg/kg or saline and ERGs were recorded before (Baseline ERG, and 3 h, 24 h, and 7 days after treatment. A high temperature (HT saline-treated control group was also included. Overall, significantly augmented and shorter latency ERG responses were found in MDMA and HT groups 3 h after treatment when compared to Baseline. Twenty-four hours after treatment some of the alterations found at 3 h, mainly characterized by shorter latency, tended to return to Baseline values. However, MDMA-treated animals still presented increased scotopic a-wave and b-wave amplitudes compared to Baseline ERGs, which were independent of temperature elevation though the latter might underlie the acute ERG alterations observed 3 h after MDMA administration. Seven days after MDMA administration recovery from these effects had occurred. The effects seem to stem from specific changes observed at the a-wave level, which indicates that MDMA affects subacutely (at 24 h retinal physiology at the outer retinal (photoreceptor/bipolar layers. In conclusion, we have found direct evidence that MDMA causes subacute enhancement of the outer retinal responses (most prominent in the a-wave, though ERG alterations resume within one week. These changes in photoreceptor/bipolar cell physiology may have implications for the understanding of the subacute visual manifestations induced by MDMA in humans.

  7. Cortisol and 3,4-Methylenedioxymethamphetamine: Neurohormonal Aspects of Bioenergetic Stress in Ecstasy Users

    Science.gov (United States)

    Parrott, A.C.

    2009-01-01

    Aims 3,4-Methylenedioxymethamphetamine (MDMA) can affect both neurotransmitter and neurohormonal activity. This review will debate the role of the metabolic activation hormone cortisol for the psychobiological effects of ecstasy/MDMA. Methods The empirical literature on cortisol release following acute MDMA administration and cortisol functioning in drug-free recreational ecstasy/MDMA users will be reviewed. This will be followed by an overview of cortisol as a bioenergetic stress neurohormone, and a debate on how it could be modulating the acute and chronic psychobiological effects of MDMA. Results Cortisol release is increased by stimulatory factors, including physical activity, thermal stress and stimulant drugs. In laboratory studies MDMA leads to an acute cortisol increase of around 150% in sedentary humans. In MDMA-using dance clubbers, the cortisol levels are increased by around 800%, possibly due to the combined factors of stimulant drug, physical exertion and psychosocial stimulation. Regular ecstasy/MDMA users also demonstrate changes in baseline cortisol levels and cortisol reactivity, with compromised hypothalamic-pituitary-adrenal activity. Nonpharmacological research has shown how cortisol is important for psychological aspects such as memory, cognition, sleep, impulsivity, depression and neuronal damage. These same functions are often impaired in recreational ecstasy/MDMA users, and cortisol may be an important modulatory co-factor. Conclusions The energizing hormone cortisol is involved in the psychobiology of MDMA, probably via its effects on energy metabolism. Acute cortisol release may potentiate the stimulating effects of MDMA in dance clubbers. Chronically, cortisol may contribute to the variance in functional and structural consequences of repeated ecstasy usage. PMID:19893332

  8. Prosocial effects of MDMA: A measure of generosity.

    Science.gov (United States)

    Kirkpatrick, Matthew; Delton, Andrew W; Robertson, Theresa E; de Wit, Harriet

    2015-06-01

    3,4-methylenedioxymethamphetamine (MDMA) produces "prosocial" effects that contribute to its recreational use. Few studies have examined the cognitive and behavioral mechanisms by which MDMA produces these effects. Here we examined the effect of MDMA on a specific prosocial effect, i.e. generosity, using a task in which participants make decisions about whether they or another person will receive money (Welfare Trade-Off Task; WTT). The project included one study without drug administration and one with MDMA. In Study 1, we administered the WTT to healthy adults (N = 361) and examined their performance in relation to measures of personality and socioeconomic status. In Study 2, healthy volunteers with MDMA experience (N = 32) completed the WTT after MDMA administration (0, 0.5, or 1.0 mg/kg). As expected, in both studies participants were more generous with a close friend than an acquaintance or stranger. In Study 1, WTT generosity was related to household income and trait Agreeableness. In Study 2, MDMA (1.0 mg/kg) increased generosity toward a friend but not a stranger, whereas MDMA (0.5 mg/kg) slightly increased generosity toward a stranger, especially among female participants. These data indicate that the WTT is a valuable, novel tool to assess a component of prosocial behavior, i.e. generosity to others. The findings support growing evidence that MDMA produces prosocial effects, but, as with oxytocin, these appear to depend on the social proximity of the relationships. The brain mechanisms underlying the construct of generosity, or the effects of MDMA on this measure, remain to be determined. © The Author(s) 2015.

  9. Neuroimaging in human MDMA (Ecstasy) users: A cortical model

    Science.gov (United States)

    Cowan, Ronald L; Roberts, Deanne M; Joers, James M

    2009-01-01

    MDMA (3,4 methylenedioxymethamphetamine) has been used by millions of people worldwide as a recreational drug. MDMA and Ecstasy are often used synonymously but it is important to note that the purity of Ecstasy sold as MDMA is not certain. MDMA use is of public health concern, not so much because MDMA produces a common or severe dependence syndrome, but rather because rodent and non-human primate studies have indicated that MDMA (when administered at certain dosages and intervals) can cause long-lasting reductions in markers of brain serotonin (5-HT) that appear specific to fine diameter axons arising largely from the dorsal raphe nucleus (DR). Given the popularity of MDMA, the potential for the drug to produce long-lasting or permanent 5-HT axon damage or loss, and the widespread role of 5-HT function in the brain, there is a great need for a better understanding of brain function in human users of this drug. To this end, neuropsychological, neuroendocrine, and neuroimaging studies have all suggested that human MDMA users may have long-lasting changes in brain function consistent with 5-HT toxicity. Data from animal models leads to testable hypotheses regarding MDMA effects on the human brain. Because neuropsychological and neuroimaging findings have focused on the neocortex, a cortical model is developed to provide context for designing and interpreting neuroimaging studies in MDMA users. Aspects of the model are supported by the available neuroimaging data but there are controversial findings in some areas and most findings have not been replicated across different laboratories and using different modalities. This paper reviews existing findings in the context of a cortical model and suggests directions for future research. PMID:18991874

  10. The effects of MDMA on socio-emotional processing: Does MDMA differ from other stimulants?

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; Baggott, Matthew J; de Wit, Harriet

    2016-12-01

    ±3,4-Methylenedioxymethamphetamine (MDMA) is a popular recreational drug that enhances sociability and feelings of closeness with others. These "prosocial" effects appear to motivate the recreational use of MDMA and may also form the basis of its potential as an adjunct to psychotherapy. However, the extent to which MDMA differs from prototypic stimulant drugs, such as dextroamphetamine, methamphetamine, and methylphenidate, in either its behavioral effects or mechanisms of action, is not fully known. The purpose of this review is to evaluate human laboratory findings of the social effects of MDMA compared to other stimulants, ranging from simple subjective ratings of sociability to more complex elements of social processing and behavior. We also review the neurochemical mechanisms by which these drugs may impact sociability. Together, the findings reviewed here lay the groundwork for better understanding the socially enhancing effects of MDMA that distinguish it from other stimulant drugs, especially as these effects relate to the reinforcing and potentially therapeutic effects of the drug. © The Author(s) 2016.

  11. Identification and characterization of N-tert-butoxycarbonyl-MDMA: a new MDMA precursor.

    Science.gov (United States)

    Collins, Michael; Donnelly, Christopher; Cameron, Shane; Tahtouh, Mark; Salouros, Helen

    2017-03-01

    In September 2015, 80 litres of a viscous, light-red liquid, described as hair product, was seized by the Australian Border Force (ABF). Initial testing by ABF indicated that the liquid was the 3,4-methylenedioxymethamphetamine (MDMA) precursor chemical safrole and custody of the material was transferred to the Australian Federal Police (AFP) who coordinated all subsequent investigations. Initial gas chromatography-mass spectrometry (GC-MS) analysis by the AFP indicated that the material was not safrole and samples of the liquid were transferred to the National Measurement Institute Australia (NMIA) for identification. Using a combination of nuclear magnetic resonance spectroscopy (NMR), GC-MS, infrared spectroscopy, and synthesis, the unknown substance was identified as N-tert.-butoxycarbonyl-MDMA (t-BOC-MDMA). The substance was also converted in high yield to MDMA (aqueous HCl, 80 °C, 30 min). The possibility that the t-BOC-MDMA may act as a pro-drug following ingestion was explored by exposure to simulated gastric juice (pH 1.5) and monitored by NMR (37 °C) at various intervals. The majority of t-BOC-MDMA was converted to MDMA after 305 min, which suggested that this derivatized form might serve as a pro-drug in vivo. An investigation into the chemistry of potential pro-drugs showed that t-BOC derivatives of methamphetamine, pseudoephedrine and 4-methylmethcahtinone (mephedrone) could also be prepared using di-tert.-butyl dicarbonate. The appearance of t-BOC-derivatives on the drug market requires further monitoring. © 2016 Commonwealth of Australia. Drug Testing and Analysis © 2016 John Wiley & Sons, Ltd. © 2016 Commonwealth of Australia. Drug Testing and Analysis © 2016 John Wiley & Sons, Ltd.

  12. MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology.

    Science.gov (United States)

    Mercer, Linda D; Higgins, Gavin C; Lau, Chew L; Lawrence, Andrew J; Beart, Philip M

    2017-05-01

    Toxicity of 3,4-methylenedioxymethamphetamine (MDMA) towards biogenic amine neurons is well documented and in primate brain predominantly affects serotonin (5-HT) neurons. MDMA induces damage of 5-HT axons and nerve fibres and intracytoplasmic inclusions. Whilst its pathobiology involves mitochondrially-mediated oxidative stress, we hypothesised MDMA possessed the capacity to activate autophagy, a proteostatic mechanism for degradation of cellular debris. We established a culture of ventral pons from embryonic murine brain enriched in 5-HT neurons to explore mechanisms of MDMA neurotoxicity and recruitment of autophagy, and evaluated possible neuroprotective actions of the clinically approved agent rilmenidine. MDMA (100 μM-1 mM) reduced cell viability, like rapamycin (RM) and hydrogen peroxide (H 2 O 2 ), in a concentration- and time-dependent manner. Immunocytochemistry revealed dieback of 5-HT arbour: MDMA-induced injury was slower than for RM and H 2 O 2 , neuritic blebbing occurred at 48 and 72 h and Hoechst labelling revealed nuclear fragmentation with 100 μM MDMA. MDMA effected concentration-dependent inhibition of [ 3 H]5-HT uptake with 500 μM MDMA totally blocking transport. Western immunoblotting for microtubule associated protein light chain 3 (LC3) revealed autophagosome formation after treatment with MDMA. Confocal analyses and immunocytochemistry for 5-HT, Hoechst and LC3 confirmed MDMA induced autophagy with abundant LC3-positive puncta within 5-HT neurons. Rilmenidine (1 μM) protected against MDMA-induced injury and image analysis showed full preservation of 5-HT arbours. MDMA had no effect on GABA neurons, indicating specificity of action at 5-HT neurons. MDMA-induced neurotoxicity involves autophagy induction in 5-HT neurons, and rilmenidine via beneficial actions against toxic intracellular events represents a potential treatment for its pathobiology in sustained usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The involvement of brain-derived neurotrophic factor in 3,4-methylenedioxymethamphetamine-induced place preference and behavioral sensitization.

    Science.gov (United States)

    Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka

    2017-06-30

    3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Current Perspective on MDMA-Assisted Psychotherapy for Posttraumatic Stress Disorder

    NARCIS (Netherlands)

    Thal, Sascha B.; Lommen, Miriam J.J.

    2018-01-01

    The present paper discusses the current literature with regard to substance-assisted psychotherapy with Methylenedioxymethamphetamine (MDMA) for posttraumatic stress disorder (PTSD). The aim of the paper is to give a comprehensive overview of the development from MDMA’s early application in

  15. Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G J H; Schoemaker, R C; Touw, D J; Sweep, F C G J; Buitelaar, J K; van Gerven, J M A; Verkes, R J

    In Western societies, a considerable percentage of young people use 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'). The use of alcohol (ethanol) in combination with ecstasy is common. The aim of the present study was to assess the acute psychomotor and subjective effects of (co-)

  16. Acute effects of 3,4-methylenedioxymethamphetamine and methylphenidate on circulating steroid levels in healthy subjects.

    Science.gov (United States)

    Seibert, Julia; Hysek, Cédric M; Penno, Carlos A; Schmid, Yasmin; Kratschmar, Denise V; Liechti, Matthias E; Odermatt, Alex

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') and methylphenidate are widely used psychoactive substances. MDMA primarily enhances serotonergic neurotransmission, and methylphenidate increases dopamine but has no serotonergic effects. Both drugs also increase norepinephrine, resulting in sympathomimetic properties. Here we studied the effects of MDMA and methylphenidate on 24-hour plasma steroid profiles. 16 healthy subjects (8 men, 8 women) were treated with single doses of MDMA (125 mg), methylphenidate (60 mg), MDMA + methylphenidate, and placebo on 4 separate days using a cross-over study design. Cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, aldosterone, 11-deoxycorticosterone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), androstenedione, and testosterone were repeatedly measured up to 24 h using liquid chromatography-tandem mass spectroscopy. MDMA significantly increased the plasma concentrations of cortisol, corticosterone, 11-dehydrocorticosterone, and 11-deoxycorticosterone and also tended to moderately increase aldosterone levels compared with placebo. MDMA also increased the sum of cortisol + cortisone and the cortisol/cortisone ratio, consistent with an increase in glucocorticoid production. MDMA did not alter the levels of cortisone, DHEA, DHEAS, androstenedione, or testosterone. Methylphenidate did not affect any of the steroid concentrations, and it did not change the effects of MDMA on circulating steroids. In summary, the serotonin releaser MDMA has acute effects on circulating steroids. These effects are not observed after stimulation of the dopamine and norepinephrine systems with methylphenidate. The present findings support the view that serotonin rather than dopamine and norepinephrine mediates the acute pharmacologically induced stimulation of the hypothalamic-pituitary-adrenal axis in the absence of other stressors. © 2014 S. Karger AG, Basel.

  17. Stereoselective effects of MDMA on inhibition of monoamine uptake

    International Nuclear Information System (INIS)

    Steele, T.D.; Nichols, D.E.; Yim, G.K.W.

    1986-01-01

    The R(-)-isomers of hallucinogenic phenylisopropylamines are most active, whereas the S(+)-enantiomers of amphetamine (AMPH) and methylenedioxymethamphetamine (MDMA) are more potent centrally. To determine if MDMA exhibits stereoselective effects at the biochemical level that resemble either those of amphetamine or the potent hallucinogen 2,5-dimethoxy-4-methylamphetamine (DOM), the ability of the isomers of MDMA, AMPH and DOM to inhibit uptake of radiolabelled monoamines into synaptosomes was measured. AMPH was more potent than MDMA in inhibiting uptake of 3 H-norepinephrine (NE) into hypothalamic synaptosomes and 3 H-dopamine (DA) into striatal synaptosomes. The S(+)-isomer was more active in each case. MDMA was more potent than AMPH in inhibiting uptake of 3 H-serotonin (5-HT) into hippocampal synaptosomes and exhibited a high degree of stereoselectivity, in favor of the S(+)-isomer. DOM showed only minimal activity in inhibiting uptake of any monoamine (IC 50 > 10 -5 M). These results suggest that MDMA exhibits stereoselective effects similar to those of amphetamine on monoamine uptake inhibition, a parameter that is unrelated to the mechanism of action of the hallucinogen DOM

  18. Direct and indirect cardiovascular actions of cathinone and MDMA in the anaesthetized rat.

    Science.gov (United States)

    Alsufyani, Hadeel A; Docherty, James R

    2015-07-05

    The stimulants cathinone (from Khat leaves) and methylenedioxymeth-amphetamine (MDMA) produce adrenoceptor mediated tachycardia and vasopressor actions that may be the result of direct receptor stimulation, actions on the noradrenaline transporter, and/or displacement of noradrenaline from nerve terminals. Effects of cathinone or MDMA were compared with those of the indirect sympathomimetic tyramine. Male Wistar rats were anaesthetized with pentobarbitone for blood pressure and heart rate recording. Some rats were sympathectomised by treatment with 6-hydroxydopamine. In the anaesthetised rat, cathinone, MDMA and tyramine (all 0.001-1 mg/kg) produced marked tachycardia, tyramine produced marked pressor responses and MDMA produced small pressor responses. The tachycardia to cathinone and MDMA was almost abolished by propranolol (1mg/kg). Pretreatment with cocaine (1mg/kg) did not significantly affect the tachycardia to cathinone or MDMA, but reduced the response to tyramine. However, in sympathectomised rats, the tachycardia to cathinone or MDMA was markedly attenuated, but the tachycardia to tyramine was only partially reduced. Blood pressure effects of tyramine and MDMA were also markedly attenuated by sympathectomy. The results demonstrate firstly that cocaine may not be the most suitable agent for assessing direct versus indirect agonism in cardiovascular studies. Secondly, the use of chemical sympathectomy achieved the desired goal of demonstrating that cardiac β-adrenoceptor mediated actions of cathinone and MDMA are probably largely indirect. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    Science.gov (United States)

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  20. MDMA enhances "mind reading" of positive emotions and impairs "mind reading" of negative emotions.

    Science.gov (United States)

    Hysek, Cédric M; Domes, Gregor; Liechti, Matthias E

    2012-07-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) increases sociability. The prosocial effects of MDMA may result from the release of the "social hormone" oxytocin and associated alterations in the processing of socioemotional stimuli. We investigated the effects of MDMA (125 mg) on the ability to infer the mental states of others from social cues of the eye region in the Reading the Mind in the Eyes Test. The study included 48 healthy volunteers (24 men, 24 women) and used a double-blind, placebo-controlled, within-subjects design. A choice reaction time test was used to exclude impairments in psychomotor function. We also measured circulating oxytocin and cortisol levels and subjective drug effects. MDMA differentially affected mind reading depending on the emotional valence of the stimuli. MDMA enhanced the accuracy of mental state decoding for positive stimuli (e.g., friendly), impaired mind reading for negative stimuli (e.g., hostile), and had no effect on mind reading for neutral stimuli (e.g., reflective). MDMA did not affect psychomotor performance, increased circulating oxytocin and cortisol levels, and produced subjective prosocial effects, including feelings of being more open, talkative, and closer to others. The shift in the ability to correctly read socioemotional information toward stimuli associated with positive emotional valence, together with the prosocial feelings elicited by MDMA, may enhance social approach behavior and sociability when MDMA is used recreationally and facilitate therapeutic relationships in MDMA-assisted psychotherapeutic settings.

  1. Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice.

    Science.gov (United States)

    Barros-Miñones, L; Goñi-Allo, B; Suquia, V; Beitia, G; Aguirre, N; Puerta, E

    2015-06-01

    Methylenedioxymethamphetamine (MDMA) causes a persistent loss of dopaminergic cell bodies in the substantia nigra of mice. Current evidence indicates that MDMA-induced neurotoxicity is mediated by oxidative stress probably due to the inhibition of mitochondrial complex I activity. In this study we investigated the contribution of dopamine (DA) to such effects. For this, we modulated the dopaminergic system of mice at the synthesis, uptake or metabolism levels. Striatal mitochondrial complex I activity was decreased 1 h after MDMA; an effect not observed in the striatum of DA depleted mice or in the hippocampus, a dopamine spare region. The DA precursor, L-dopa, caused a significant reduction of mitochondrial complex I activity by itself and exacerbated the dopaminergic deficits when combined with systemic MDMA. By contrast, no damage was observed when L-dopa was combined with intrastriatal injections of MDMA. On the other hand, dopamine uptake blockade using GBR 12909, inhibited both, the acute inhibition of complex I activity and the long-term dopaminergic toxicity caused by MDMA. Moreover, the inhibition of DA metabolism with the monoamine oxidase (MAO) inhibitor, pargyline, afforded a significant protection against MDMA-induced complex I inhibition and neurotoxicity. Taken together, these findings point to the formation of hydrogen peroxide subsequent to DA metabolism by MAO, rather than a direct DA-mediated mitochondrial complex I inhibition, and the contribution of a peripheral metabolite of MDMA, as the key steps in the chain of biochemical events leading to DA neurotoxicity caused by MDMA in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice.

    Science.gov (United States)

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, J A; Colado, M I; O'Shea, E

    2010-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.

  3. Intimate insight: MDMA changes how people talk about significant others

    Science.gov (United States)

    Baggott, Matthew J.; Kirkpatrick, Matthew G.; Bedi, Gillinder; de Wit, Harriet

    2015-01-01

    Rationale ±3,4-methylenedioxymethamphetamine (MDMA) is widely believed to increase sociability. The drug alters speech production and fluency, and may influence speech content. Here, we investigated the effect of MDMA on speech content, which may reveal how this drug affects social interactions. Method 35 healthy volunteers with prior MDMA experience completed this two-session, within-subjects, double-blind study during which they received 1.5 mg/kg oral MDMA and placebo. Participants completed a 5-min standardized talking task during which they discussed a close personal relationship (e.g., a friend or family member) with a research assistant. The conversations were analyzed for selected content categories (e.g., words pertaining to affect, social interaction, and cognition), using both a standard dictionary method (Pennebaker’s Linguistic Inquiry and Word Count: LIWC) and a machine learning method using random forest classifiers. Results Both analytic methods revealed that MDMA altered speech content relative to placebo. Using LIWC scores, the drug increased use of social and sexual words, consistent with reports that MDMA increases willingness to disclose. Using the machine learning algorithm, we found that MDMA increased use of social words and words relating to both positive and negative emotions. Conclusions These findings are consistent with reports that MDMA acutely alters speech content, specifically increasing emotional and social content during a brief semistructured dyadic interaction. Studying effects of psychoactive drugs on speech content may offer new insights into drug effects on mental states, and on emotional and psychosocial interaction. PMID:25922420

  4. MDMA alters emotional processing and facilitates positive social interaction.

    Science.gov (United States)

    Wardle, Margaret C; de Wit, Harriet

    2014-10-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") produces "prosocial" effects, such as feelings of empathy and closeness, thought to be important to its abuse and its value in psychotherapy. However, it is not fully understood how MDMA alters basic emotional processes to produce these effects, or whether it produces corresponding changes in actual social behavior. Here, we examined how MDMA affects perceptions of and responses to emotional expressions, and tested its effects on behavior during a social interaction. We also examined whether MDMA's prosocial effects related to a measure of abuse liability. Over three sessions, 36 healthy volunteers with previous ecstasy use received MDMA (0.75, 1.5 mg/kg) and placebo under double-blind conditions. We measured (i) mood and cardiovascular effects, (ii) perception of and psychophysiological responses to emotional expressions, (iii) use of positive and negative words in a social interaction, and (iv) perceptions of an interaction partner. We then tested whether these effects predicted desire to take the drug again. MDMA slowed perception of angry expressions, increased psychophysiological responses to happy expressions, and increased positive word use and perceptions of partner empathy and regard in a social interaction. These effects were not strongly related to desire to take the drug again. MDMA alters basic emotional processes by slowing identification of negative emotions and increasing responses to positive emotions in others. Further, it positively affects behavior and perceptions during actual social interaction. These effects may contribute to the efficacy of MDMA in psychotherapy, but appear less closely related to its abuse potential.

  5. Neuronal reorganization in adult rats neonatally exposed to (±-3,4-methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Michael T. Williams

    2014-01-01

    Full Text Available The abuse of methylenedioxymethamphetamine (MDMA during pregnancy is of concern. MDMA treatment of rats during a period of brain growth analogous to late human gestation leads to neurochemical and behavioral changes. MDMA from postnatal day (P11–20 in rats produces reductions in serotonin and deficits in spatial and route-based navigation. In this experiment we examined the impact of MDMA from P11 to P20 (20 mg/kg twice daily, 8 h apart on neuronal architecture. Golgi impregnated sections showed significant changes. In the nucleus accumbens, the dendrites were shorter with fewer spines, whereas in the dentate gyrus the dendritic length was decreased but with more spines, and for the entorhinal cortex, reductions in basilar and apical dendritic lengths in MDMA animals compared with saline animals were seen. The data show that neuronal cytoarchitectural changes are long-lasting following developmental MDMA exposure and are in regions consistent with the learning and memory deficits observed in such animals.

  6. Differential effects of 3,4-methylenedioxypyrovalerone (MDPV) and 4-methylmethcathinone (mephedrone) in rats trained to discriminate MDMA or a d-amphetamine + MDMA mixture.

    Science.gov (United States)

    Harvey, Eric L; Baker, Lisa E

    2016-02-01

    Recent reports on the abuse of novel synthetic cathinone derivatives call attention to serious public health risks of these substances. In response to this concern, a growing body of preclinical research has characterized the psychopharmacology of these substances, particularly mephedrone (MEPH) or methylenedioxypyrovalerone (MDPV), noting their similarities to 3,4-methylenedioxymethamphetamine (MDMA) and cocaine. Few studies have utilized drug discrimination methodology to characterize the psychopharmacological properties of these substances. The present study employed a rodent drug discrimination assay to further characterize the stimulus effects of MEPH and MDPV in comparison to MDMA and to a drug mixture comprised of d-amphetamine and MDMA. Eight male Sprague-Dawley rats were trained to discriminate 1.5 mg/kg MDMA, and eight rats were trained to discriminate a mixture of 1.5 mg/kg MDMA and 0.5 mg/kg d-amphetamine (MDMA + AMPH) from vehicle. Substitution tests were conducted with MDMA, d-amphetamine, MDPV, MEPH, and cocaine. Dose-response curves generated with MDMA and MEPH were comparable between training groups. In contrast, AMPH, MDPV, and cocaine produced only partial substitution in animals trained to discriminate MDMA but produced full substitution in animals trained to discriminate the MDMA + AMPH mixture. These findings indicate that MDPV's effects may be more similar to those of traditional psychostimulants, whereas MEPH exerts stimulus effects more similar to those of MDMA. Additional experiments with selective DA and 5-hydroxytryptamine (5-HT) receptor antagonists are required to further elucidate specific receptor mechanisms mediating the discriminative stimulus effects of MDPV and mephedrone.

  7. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    Science.gov (United States)

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  8. Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251.

    Science.gov (United States)

    Nawata, Yoko; Kitaichi, Kiyoyuki; Yamamoto, Tsuneyuki

    2016-03-01

    3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  10. Effects of MDMA alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin on pupillary light reflex.

    Science.gov (United States)

    Hysek, Cédric M; Liechti, Matthias E

    2012-12-01

    Pupillometry can be used to characterize autonomic drug effects. This study was conducted to determine the autonomic effects of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), administered alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin, on pupillary function. Infrared pupillometry was performed in five placebo-controlled randomized studies. Each study included 16 healthy subjects (eight men, eight women) who received placebo-MDMA (125 mg), placebo-placebo, pretreatment-placebo, or pretreatment-MDMA using a crossover design. MDMA produced mydriasis, prolonged the latency, reduced the response to light, and shortened the recovery time. The impaired reflex response was associated with subjective, cardiostimulant, and hyperthermic drug effects and returned to normal within 6 h after MDMA administration when plasma MDMA levels were still high. Mydriasis was associated with changes in plasma MDMA concentration over time and longer-lasting. Both reboxetine and duloxetine interacted with the effects of MDMA on pupillary function. Clonidine did not significantly reduce the mydriatic effects of MDMA, although it produced miosis when administered alone. Carvedilol and doxazosin did not alter the effects of MDMA on pupillary function. The MDMA-induced prolongation of the latency to and reduction of light-induced miosis indicate indirect central parasympathetic inhibition, and the faster recovery time reflects an increased sympathomimetic action. Both norepinephrine and serotonin mediate the effects of MDMA on pupillary function. Although mydriasis is lasting and mirrors the plasma concentration-time curve of MDMA, the impairment in the reaction to light is associated with the subjective and other autonomic effects of MDMA and exhibits acute tolerance.

  11. Non-acute effects of different doses of 3, 4-methylenedioxymethamphetamine on spatial memory in the Morris water maze in Sprague-Dawley male rats

    Institute of Scientific and Technical Information of China (English)

    Sara Soleimani Asl; Mohammad Hassan Farhadi; Nasser Naghdi; Samira Choopani; Alireza Samzadeh-Kermani; Mehdi Mehdizadeh

    2011-01-01

    3, 4-methylenedioxymethamphetamine (MDMA; also known as 'ecstasy') has been shown to impair learning and spatial memory in adult and neonatal rats.Many studies have focused on the acute effects of MDMA on memory.In the present study, we intraperitoneally administered MDMA (0, 5, 10, 20 mg/kg) to adult male rats to investigate the effects of different doses on rat spatial memory in the Morris water maze, body temperature, and mortality, twice a day, for 7 successive days.The results indicated that MDMA impaired spatial memory dose-dependently, with the highest dose (20 mg/kg) exerting the strongest effects.In addition, MDMA also caused hyperthermia and increased mortality in rats.

  12. Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans

    Science.gov (United States)

    Hysek, CM; Schmid, Y; Rickli, A; Simmler, LD; Donzelli, M; Grouzmann, E; Liechti, ME

    2012-01-01

    BACKGROUND AND PURPOSE The use of ±3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is associated with cardiovascular complications and hyperthermia. EXPERIMENTAL APPROACH We assessed the effects of the α1- and β-adrenoceptor antagonist carvedilol on the cardiostimulant, thermogenic and subjective responses to MDMA in 16 healthy subjects. Carvedilol (50 mg) or placebo was administered 1 h before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, four-period crossover design. KEY RESULTS Carvedilol reduced MDMA-induced elevations in blood pressure, heart rate and body temperature. Carvedilol did not affect the subjective effects of MDMA including MDMA-induced good drug effects, drug high, drug liking, stimulation or adverse effects. Carvedilol did not alter the plasma exposure to MDMA. CONCLUSIONS AND IMPLICATIONS α1- and β-Adrenoceptors contribute to the cardiostimulant and thermogenic effects of MDMA in humans but not to its psychotropic effects. Carvedilol could be useful in the treatment of cardiovascular and hyperthermic complications associated with ecstasy use. PMID:22404145

  13. MDMA-assisted therapy: A new treatment model for social anxiety in autistic adults.

    Science.gov (United States)

    Danforth, Alicia L; Struble, Christopher M; Yazar-Klosinski, Berra; Grob, Charles S

    2016-01-04

    The first study of 3,4-methylenedioxymethamphetamine (MDMA)-assisted therapy for the treatment of social anxiety in autistic adults commenced in the spring of 2014. The search for psychotherapeutic options for autistic individuals is imperative considering the lack of effective conventional treatments for mental health diagnoses that are common in this population. Serious Adverse Events (SAEs) involving the administration of MDMA in clinical trials have been rare and non-life threatening. To date, MDMA has been administered to over 1133 individuals for research purposes without the occurrence of unexpected drug-related SAEs that require expedited reporting per FDA regulations. Now that safety parameters for limited use of MDMA in clinical settings have been established, a case can be made to further develop MDMA-assisted therapeutic interventions that could support autistic adults in increasing social adaptability among the typically developing population. As in the case with classic hallucinogens and other psychedelic drugs, MDMA catalyzes shifts toward openness and introspection that do not require ongoing administration to achieve lasting benefits. This infrequent dosing mitigates adverse event frequency and improves the risk/benefit ratio of MDMA, which may provide a significant advantage over medications that require daily dosing. Consequently, clinicians could employ new treatment models for social anxiety or similar types of distress administering MDMA on one to several occasions within the context of a supportive and integrative psychotherapy protocol. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Proton magnetic resonance spectroscopy in ecstasy (MDMA) users.

    Science.gov (United States)

    Daumann, Jörg; Fischermann, Thomas; Pilatus, Ulrich; Thron, Armin; Moeller-Hartmann, Walter; Gouzoulis-Mayfrank, Euphrosyne

    2004-05-20

    The popular recreational drug 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has well-recognized neurotoxic effects upon central serotonergic systems in animal studies. In humans, the use of MDMA has been linked to cognitive problems, particularly to deficits in long-term memory and learning. Recent studies with proton magnetic resonance spectroscopy (1H MRS) have reported relatively low levels of the neuronal marker N-acetylaspartate (NAA) in MDMA users, however, these results have been ambiguous. Moreover, the only available 1H MRS study of the hippocampus reported normal findings in a small sample of five MDMA users. In the present study, we compared 13 polyvalent ecstasy users with 13 matched controls. We found no differences between the NAA/creatine/phosphocreatine (Cr) ratios of users and controls in neocortical regions, and only a tendency towards lower NAA/Cr ratios in the left hippocampus of MDMA users. Thus, compared with cognitive deficits, 1H MRS appears to be a less sensitive marker of potential neurotoxic damage in ecstasy users. Copyright 2004 Elsevier Ireland Ltd.

  15. Determination of amphetamine, methamphetamine, MDA and MDMA in human hair by GC-EI-MS after derivatization with perfluorooctanoyl chloride

    DEFF Research Database (Denmark)

    Johansen, Sys Stybe; Jornil, Jakob

    2009-01-01

    ), methamphetamine (MA), methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA or ecstasy). An intra-day precision of 3-6% RSD and an inter-day precision of 3-17% RSD were observed. Trueness was between 96 % and 106% for the target compounds. The limit of detection ranged from 0.07 to 0.14 ng...

  16. Acute psychomotor, memory and subjective effects of MDMA and THC (co-) administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G.; Van Hasselt, J.; De Kam, M.; Van Gerven, J.; Touw, D.; Buitelaar, J.; Verkes, R.

    Introduction: In Western societies a considerable percentage of young people expose themselves to the combination of 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”). Cannabis (main active compound D9-tetrahydrocannabinol or THC) is frequently co-used with ecstasy (Parrott et al., 2007).

  17. Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice.

    Science.gov (United States)

    Curry, Daniel W; Young, Matthew B; Tran, Andrew N; Daoud, Georges E; Howell, Leonard L

    2018-01-01

    S,R(+/-)-3,4-methylenedioxymethamphetamine (SR-MDMA) is an amphetamine derivative with prosocial and putative therapeutic effects. Ongoing clinical trials are investigating it as a treatment for post-traumatic stress disorder (PTSD) and other conditions. However, its potential for adverse effects such as hyperthermia and neurotoxicity may limit its clinical viability. We investigated the hypothesis that one of the two enantiomers of SR-MDMA, R-MDMA, would retain the prosocial and therapeutic effects but with fewer adverse effects. Using male Swiss Webster and C57BL/6 mice, the prosocial effects of R-MDMA were measured using a social interaction test, and the therapeutic-like effects were assessed using a Pavlovian fear conditioning and extinction paradigm relevant to PTSD. Locomotor activity and body temperature were tracked after administration, and neurotoxicity was evaluated post-mortem. R-MDMA significantly increased murine social interaction and facilitated extinction of conditioned freezing. Yet, unlike racemic MDMA, it did not increase locomotor activity, produce signs of neurotoxicity, or increase body temperature. A key pharmacological difference between R-MDMA and racemic MDMA is that R-MDMA has much lower potency as a dopamine releaser. Pretreatment with a selective dopamine D1 receptor antagonist prevented SR-MDMA-induced hyperthermia, suggesting that differential dopamine signaling may explain some of the observed differences between the treatments. Together, these results indicate that the prosocial and therapeutic effects of SR-MDMA may be separable from the stimulant, thermogenic, and potential neurotoxic effects. To what extent these findings translate to humans will require further investigation, but these data suggest that R-MDMA could be a more viable therapeutic option for the treatment of PTSD and other disorders for which SR-MDMA is currently being investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cocaine enhances the conditioned rewarding effects of MDMA in adolescent mice.

    Science.gov (United States)

    Aguilar, M A; Roger-Sánchez, C; Rodríguez-Arias, M; Miñarro, J

    2015-04-01

    Although the consumption of cocaine is frequent in young users of MDMA (3,4-methylenedioxymethamphetamine), the influence of exposure to cocaine on the rewarding effects of MDMA in adolescents has not been studied. The purpose of the present work was to evaluate the effect of co-administration of cocaine (1 and 10 mg/kg) and a sub-threshold dose of MDMA (1.25 mg/kg) on the acquisition of conditioned place preference (CPP) (experiment 1). In addition, the effect of pre-treatment with cocaine on MDMA-induced CPP was evaluated (experiment 2). Levels of monoamines in striatum, hippocampus and cortex were measured in both experiments. Our hypotheses were that cocaine co-administration or pre-treatment would increase the rewarding effects of MDMA, and that these effects would be related with changes in brain monoamine levels. Our results showed that cocaine potentiated the rewarding effects of MDMA, since a sub-threshold dose of MDMA, which did not induce CPP by itself, induced a significant CPP in adolescent mice when administered along with cocaine during conditioning (experiment 1). Moreover, pre-treatment with cocaine several days before conditioning also increased the rewarding effects of MDMA (experiment 2). No significant changes in the levels of biogenic amines, which correlated with these behavioural effects, were observed. Our results confirm the involvement of the dopaminergic system in MDMA-induced CPP in adolescent mice and suggest that combined consumption with or pre-exposure to cocaine increases the conditioned rewarding effects of MDMA, which may enhance the capacity of MDMA to induce dependence. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Human Pharmacology of Mephedrone in Comparison with MDMA.

    Science.gov (United States)

    Papaseit, Esther; Pérez-Mañá, Clara; Mateus, Julián-Andrés; Pujadas, Mitona; Fonseca, Francina; Torrens, Marta; Olesti, Eulàlia; de la Torre, Rafael; Farré, Magí

    2016-10-01

    Mephedrone (4-methylmethcathinone) is a novel psychoactive substance popular among drug users because it displays similar effects to MDMA (3,4-methylenedioxymethamphetamine, ecstasy). Mephedrone consumption has been associated with undesirable effects and fatal intoxications. At present, there is no research available on its pharmacological effects in humans under controlled and experimental administration. This study aims to evaluate the clinical pharmacology of mephedrone and its relative abuse liability compared with MDMA. Twelve male volunteers participated in a randomized, double-blind, crossover, and placebo-controlled trial. The single oral dose conditions were: mephedrone 200 mg, MDMA 100 mg, and placebo. Outcome variables included physiological, subjective, and psychomotor effects, and pharmacokinetic parameters. The protocol was registered in ClinicalTrials.gov (NCT02232789). Mephedrone produced a significant increase in systolic and diastolic blood pressure, heart rate, and pupillary diameter. It elicited stimulant-like effects, euphoria, and well-being, and induced mild changes in perceptions with similar ratings to those observed after MDMA administration although effects peaked earlier and were shorter in duration. Maximal plasma concentration values for mephedrone and MDMA peaked at 1.25 h and 2.00 h, respectively. The elimination half-life for mephedrone was 2.15 h and 7.89 h for MDMA. In a similar manner to MDMA, mephedrone exhibits high abuse liability. Its earlier onset and shorter duration of effects, probably related to its short elimination half-life, could explain a more compulsive pattern of use as described by the users.

  20. Oxytocin and MDMA ('Ecstasy') enhance social reward in rats.

    Science.gov (United States)

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; Goodwin, Jack; McGregor, Iain S

    2015-07-01

    Oxytocin (OT), vasopressin (AVP) and 3,4 methylenedioxymethamphetamine (MDMA, 'Ecstasy') all increase social interaction in rats, perhaps by enhancing the rewarding value of social encounters. Here, we used the conditioned place preference (CPP) paradigm to assess the intrinsic rewarding effects of OT, AVP and MDMA, and whether these effects are enhanced by the presence of a conspecific, or a dynamic, tactile object (a tennis ball). Adult male rats received conditioning sessions in a CPP apparatus twice a day (vehicle at 10 a.m., drug at 3 p.m.). Experiment 1 involved conditioning with OT (0.5 mg/kg, intraperitoneal (i.p.)), AVP (0.005 mg/kg, i.p.) or MDMA (5 mg/kg, i.p.). Experiments 2 and 3 involved conditioning with the same treatments but in the presence of a conspecific receiving the same treatment (social-CPP) or in the presence of a tennis ball (object-CPP), respectively. Conditioned place preference was assessed 24 h, 2 weeks and 4 weeks later. OT, AVP and MDMA did not produce a conventional CPP. However, when the conditioning environment also contained a conspecific both OT and MDMA induced a significant CPP lasting for at least 4 weeks. Rats given OT and MDMA also developed a more modest yet significant CPP for the environment where they encountered a tennis ball. These results indicate that OT and MDMA can augment the rewarding effects of social interaction, but also interaction with a dynamic and tactile non-social object. AVP does not condition social- or object-CPPs and may promote social proximity by inducing generalized anxiety and defensive aggregation.

  1. Studies on the mechanisms underlying amiloride enhancement of 3,4-methylenedioxymethamphetamine-induced serotonin depletion in rats.

    Science.gov (United States)

    Goñi-Allo, Beatriz; Puerta, Elena; Hervias, Isabel; Di Palma, Richard; Ramos, Maria; Lasheras, Berta; Aguirre, Norberto

    2007-05-21

    Amiloride and several of its congeners known to block the Na(+)/Ca(2+) and/or Na(+)/H(+) antiporters potentiate methamphetamine-induced neurotoxicity without altering methamphetamine-induced hyperthermia. We now examine whether amiloride also exacerbates 3,4-methylenedioxymethamphetamine (MDMA)-induced long-term serotonin (5-HT) loss in rats. Amiloride (2.5 mg/kg, every 2 h x 3, i.p.) given at ambient temperature 30 min before MDMA (5 mg/kg, every 2 h x 3, i.p.), markedly exacerbated long-term 5-HT loss. However, in contrast to methamphetamine, amiloride also potentiated MDMA-induced hyperthermia. Fluoxetine (10 mg/kg i.p.) completely protected against 5-HT depletion caused by the MDMA/amiloride combination without significantly altering the hyperthermic response. By contrast, the calcium channel antagonists flunarizine or diltiazem did not afford any protection. Findings with MDMA and amiloride were extended to the highly selective Na(+)/H(+) exchange inhibitor dimethylamiloride, suggesting that the potentiating effects of amiloride are probably mediated by the blockade of Na(+)/H(+) exchange. When the MDMA/amiloride combination was administered at 15 degrees C hyperthermia did not develop and brain 5-HT concentrations remained unchanged 7 days later. Intrastriatal perfusion of MDMA (100 microM for 8 h) in combination with systemic amiloride caused a small depletion of striatal 5-HT content in animals made hyperthermic but not in the striatum of normothermic rats. These data suggest that enhancement of MDMA-induced 5-HT loss caused by amiloride or dimethylamiloride depends on their ability to enhance MDMA-induced hyperthermia. We hypothesise that blockade of Na(+)/H(+) exchange could synergize with hyperthermia to render 5-HT terminals more vulnerable to the toxic effects of MDMA.

  2. Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results.

    Science.gov (United States)

    Reneman, Liesbeth; Majoie, Charles B L M; Flick, Herman; den Heeten, Gerard J

    2002-02-01

    The perceived safety of the recreational drug methylenedioxymethamphetamine (MDMA), or Ecstasy, conflicts with animal evidence indicating that MDMA damages cortical serotonin (5-HT) neurons at doses similar to those used by humans. Few data are available about the effects of MDMA on the human brain. This study was designed to evaluate MDMA-related alterations in metabolite ratios with single-voxel proton ((1)H) MR spectroscopy. Fifteen male MDMA users (mean lifetime exposure, 723 tablets; mean time since last tablet, 12.0 weeks) and 12 age-matched control subjects underwent single-voxel (1)H MR spectroscopy. N-Acetylaspartate (NAA)/creatine (Cr), NAA/Choline (Cho), and myoinositol (MI)/Cr ratios were measured in midfrontal gray matter, midoccipital gray matter, and right parietal white matter. Data were analyzed with linear model-based multivariate analysis of variance. NAA/Cr (P =.04) and NAA/Cho (P =.03) ratios, markers associated with neuronal loss or dysfunction, were reduced in the frontal cortex of MDMA users. Neither NAA/Cr (P =.72) nor NAA/Cho (P =.12) ratios were different between both groups in occipital gray matter and parietal white matter (P =.18). Extent of previous MDMA use and frontal cortical NAA/Cr (rho = -.50, P =.012) or NAA/Cho (rho = -.550, P spectroscopy provide evidence for neuronal abnormality in the frontal cortex of MDMA users; these are correlated with the degree of MDMA exposure. These data suggest that MDMA may be a neurotoxin in humans, as it is in animals.

  3. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    Science.gov (United States)

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2010-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  4. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    Science.gov (United States)

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  5. The effect of acutely administered MDMA on subjective and BOLD-fMRI responses to favourite and worst autobiographical memories.

    Science.gov (United States)

    Carhart-Harris, R L; Wall, M B; Erritzoe, D; Kaelen, M; Ferguson, B; De Meer, I; Tanner, M; Bloomfield, M; Williams, T M; Bolstridge, M; Stewart, L; Morgan, C J; Newbould, R D; Feilding, A; Curran, H V; Nutt, D J

    2014-04-01

    3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine-releaser that is widely used as a recreational drug. Preliminary work has supported the potential of MDMA in psychotherapy for post-traumatic stress disorder (PTSD). The neurobiological mechanisms underlying its putative efficacy are, however, poorly understood. Psychotherapy for PTSD usually requires that patients revisit traumatic memories, and it has been argued that this is easier to do under MDMA. Functional magnetic resonance imaging (fMRI) was used to investigate the effect of MDMA on recollection of favourite and worst autobiographical memories (AMs). Nineteen participants (five females) with previous experience with MDMA performed a blocked AM recollection (AMR) paradigm after ingestion of 100 mg of MDMA-HCl or ascorbic acid (placebo) in a double-blind, repeated-measures design. Memory cues describing participants' AMs were read by them in the scanner. Favourite memories were rated as significantly more vivid, emotionally intense and positive after MDMA than placebo and worst memories were rated as less negative. Functional MRI data from 17 participants showed robust activations to AMs in regions known to be involved in AMR. There was also a significant effect of memory valence: hippocampal regions showed preferential activations to favourite memories and executive regions to worst memories. MDMA augmented activations to favourite memories in the bilateral fusiform gyrus and somatosensory cortex and attenuated activations to worst memories in the left anterior temporal cortex. These findings are consistent with a positive emotional-bias likely mediated by MDMA's pro-monoaminergic pharmacology.

  6. Oxytocin, cortisol and 3,4-methylenedioxymethamphetamine: neurohormonal aspects of recreational 'ecstasy'.

    Science.gov (United States)

    Parrott, Andrew C

    2016-12-01

    Most research into 3,4-methylenedioxymethamphetamine (MDMA) has debated its psychobiological effects in relation to neurotransmission. This article debates the contributory roles of the neurohormones oxytocin and cortisol for their psychobiological effects in humans. The empirical literature on these neurohormones is reviewed and suggestions for future research outlined. Acute MDMA or 'ecstasy' can generate increased levels of oxytocin and cortisol, and these neurohormonal changes may be important for its mood-enhancing and energy-activation effects in humans. However, an initial finding of enhanced sociability correlating with oxytocin levels has not been replicated. Potential reasons are debated. There may be dynamic interactions between the two neurohormones, with greater activation under cortisol, facilitating stronger positive feelings under oxytocin. Chronic regular use of MDMA can adversely affect cortisol in several ways. Regular users show increased cortisol in 3-month hair samples, changes to the cortisol awakening response, and indications of greater daily stress. Furthermore, these cortisol findings suggest changes to the hypothalamic-pituitary-adrenal axis. The effects of chronic MDMA usage on oxytocin still need to be investigated. It is concluded that the neurohormones oxytocin and cortisol contribute in various ways to the psychobiological effects of recreational ecstasy/MDMA.

  7. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Pontes, Helena; Sousa, Carla; Silva, Renata; Fernandes, Eduarda; Carmo, Helena; Remiao, Fernando; Carvalho, Felix; Bastos, Maria Lourdes

    2008-01-01

    Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 deg. C) and hyperthermic (40.5 deg. C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24 h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent

  8. Verbal Memory Deficits Are Correlated with Prefrontal Hypometabolism in 18FDG PET of Recreational MDMA Users

    Science.gov (United States)

    Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.

    2013-01-01

    Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined

  9. MDMA does not alter responses to the Trier Social Stress Test in humans.

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; de Wit, Harriet

    2017-07-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a stimulant-psychedelic drug with unique social effects. It may dampen reactivity to negative social stimuli such as social threat and rejection. Perhaps because of these effects, MDMA has shown promise as a treatment for post-traumatic stress disorder (PTSD). However, the effect of single doses of MDMA on responses to an acute psychosocial stressor has not been tested. In this study, we sought to test the effects of MDMA on responses to stress in healthy adults using a public speaking task. We hypothesized that the drug would reduce responses to the stressful task. Volunteers (N = 39) were randomly assigned to receive placebo (N = 13), 0.5 mg/kg MDMA (N = 13), or 1.0 mg/kg MDMA (N = 13) during a stress and a no-stress session. Dependent measures included subjective reports of drug effects and emotional responses to the task, as well as salivary cortisol, heart rate, and blood pressure. The stress task produced its expected increase in physiological responses (cortisol, heart rate) and subjective ratings of stress in all three groups, and MDMA produced its expected subjective and physiological effects. MDMA alone increased ratings of subjective stress, heart rate, and saliva cortisol concentrations, but contrary to our hypothesis, it did not moderate responses to the Trier Social Stress Test. Despite its efficacy in PTSD and anxiety, MDMA did not reduce either the subjective or objective responses to stress in this controlled study. The conditions under which MDMA relieves responses to negative events or memories remain to be determined.

  10. Effects of repeated treatment with MDMA on working memory and behavioural flexibility in mice.

    Science.gov (United States)

    Viñals, Xavier; Maldonado, Rafael; Robledo, Patricia

    2013-03-01

    Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) produces dopaminergic neurotoxicity in mice. However, it is still not clear whether this exposure induces deficits in cognitive processing related to specific subsets of executive functioning. We evaluated the effects of neurotoxic and non-neurotoxic doses of MDMA (0, 3 and 30 mg/kg, twice daily for 4 days) on working memory and attentional set-shifting in mice, and changes in extracellular levels of dopamine (DA) in the striatum. Treatment with MDMA (30 mg/kg) disrupted performance of acquired operant alternation, and this impairment was still apparent 5 days after the last drug administration. Decreased alternation was not related to anhedonia because no differences were observed between groups in the saccharin preference test under similar experimental conditions. Correct responding on delayed alternation was increased 1 day after repeated treatment with MDMA (30 mg/kg), probably because of general behavioural quiescence. Notably, the high dose regimen of MDMA impaired attentional set-shifting related to an increase in total perseveration errors. Finally, basal extracellular levels of DA in the striatum were not modified in mice repeatedly treated with MDMA with respect to controls. However, an acute challenge with MDMA (10 mg/kg) failed to increase DA outflow in mice receiving the highest MDMA dose (30 mg/kg), corroborating a decrease in the functionality of DA transporters. Seven days after this treatment, the effects of MDMA on DA outflow were recovered. These results suggest that repeated neurotoxic doses of MDMA produce lasting impairments in recall of alternation behaviour and reduce cognitive flexibility in mice. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  11. Memory deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of frontal dysfunction.

    Science.gov (United States)

    Quednow, Boris B; Jessen, Frank; Kuhn, Kai-Uwe; Maier, Wolfgang; Daum, Irene; Wagner, Michael

    2006-05-01

    Chronic administration of the common club drug 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is associated with long-term depletion of serotonin (5-HT) and loss of 5-HT axons in the brains of rodents and non-human primates, and evidence suggests that recreational MDMA consumption may also affect the human serotonergic system. Moreover, it was consistently shown that abstinent MDMA users have memory deficits. Recently, it was supposed that these deficits are an expression of a temporal or rather hippocampal dysfunction caused by the serotonergic neurotoxicity of MDMA. The aim of this study is to examine the memory deficits of MDMA users neuropsychologically in order to evaluate the role of different brain regions. Nineteen male abstinent MDMA users, 19 male abstinent cannabis users and 19 male drug-naive control subjects were examined with a German version of the Rey Auditory Verbal Learning Test (RAVLT). MDMA users showed widespread and marked verbal memory deficits, compared to drug-naive controls as well as compared to cannabis users, whereas cannabis users did not differ from control subjects in their memory performance. MDMA users revealed impairments in learning, consolidation, recall and recognition. In addition, they also showed a worse recall consistency and strong retroactive interference whereby both measures were previously associated with frontal lobe function. There was a significant correlation between memory performance and the amount of MDMA taken. These results suggest that the memory deficits of MDMA users are not only the result of a temporal or hippocampal dysfunction, but also of a dysfunction of regions within the frontal cortex.

  12. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Escubedo, Elena; Pubill, David

    2007-01-01

    Previous work from our group indicated that α7 nicotinic acetylcholine receptors (α7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric α7 nAChR ([ 3 H]methyllycaconitine binding) and other heteromeric subtypes ([ 3 H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K i values in the micromolar range, MDMA revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [ 3 H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B max of high-affinity sites for both radioligands without affecting K d . The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes related to addiction and dependence

  13. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Dina Popova

    Full Text Available 3,4-methylenedioxymethamphetamine (MDMA; ecstasy is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT, that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A. The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  14. A 3-lever discrimination procedure reveals differences in the subjective effects of low and high doses of MDMA.

    Science.gov (United States)

    Harper, David N; Langen, Anna-Lena; Schenk, Susan

    2014-01-01

    Drug discrimination studies have suggested that the subjective effects of low doses of (±)3,4-methylenedioxymethamphetamine (MDMA) are readily differentiated from those of d-amphetamine (AMPH) and that the discriminative stimulus properties are mediated by serotonergic and dopaminergic mechanisms, respectively. Previous studies, however, have primarily examined responses to doses that do not produce substantial increases in extracellular dopamine. The present study determined whether doses of MDMA that produce increases in synaptic dopamine would also produce subjective effects that were more like AMPH and were sensitive to pharmacological manipulation of D1-like receptors. A three-lever drug discrimination paradigm was used. Rats were trained to respond on different levers following saline, AMPH (0.5mg/kg, IP) or MDMA (1.5mg/kg, IP) injections. Generalization curves were generated for a range of different doses of both drugs and the effect of the D1-like antagonist, SCH23390 on the discriminative stimulus effects of different doses of MDMA was determined. Rats accurately discriminated MDMA, AMPH and saline. Low doses of MDMA produced almost exclusive responding on the MDMA lever but at doses of 3.0mg/kg MDMA or higher, responding shifted to the AMPH lever. The AMPH response produced by higher doses of MDMA was attenuated by pretreatment with SCH23390. The data suggest that low doses and higher doses of MDMA produce distinct discriminative stimuli. The shift to AMPH-like responding following administration of higher doses of MDMA, and the decrease in this response following administration of SCH23390 suggests a dopaminergic component to the subjective experience of MDMA at higher doses. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Science.gov (United States)

    Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz; Jacobsson, Stig O P

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  16. Evaluation of drug incorporation into hair segments and nails by enantiomeric analysis following controlled single MDMA intakes.

    Science.gov (United States)

    Madry, Milena M; Steuer, Andrea E; Hysek, Cédric M; Liechti, Matthias E; Baumgartner, Markus R; Kraemer, Thomas

    2016-01-01

    Incorporation rates of the enantiomers of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA) into hair and nails were investigated after controlled administration. Fifteen subjects without MDMA use received two doses of 125 mg of MDMA. Hair, nail scrapings, and nail clippings were collected 9-77 days after the last administration (median 20 days). Hair samples were analyzed in segments of 1- to 2-cm length. After chiral derivatization with N-(2,4-dinitro-5-fluorophenyl)-L-valinamide, MDMA and MDA diastereomers were analyzed by liquid chromatography-tandem mass spectrometry. Highest concentrations in hair segments corresponded to the time of MDMA intake. They ranged from 101 to 3200 pg/mg and 71 to 860 pg/mg for R- and S-MDMA, and from 3.2 to 116 pg/mg and 4.4 to 108 pg/mg for R- and S-MDA, respectively. MDMA and MDA concentrations in nail scrapings and clippings were significantly lower than in hair samples. There was no significant difference between enantiomeric ratios of R/S-MDMA and R/S-MDA in hair and nail samples (medians 2.2-2.4 for MDMA and 0.85-0.95 for MDA). Metabolite ratios of MDA to MDMA were in the same range in hair and nail samples (medians 0.044-0.055). Our study demonstrates that administration of two representative doses of MDMA was detected in the hair segments corresponding to the time of intake based on average hair growth rates. MDMA was detected in all nail samples regardless of time passed after intake. Comparable R/S ratios in hair and nail samples may indicate that incorporation mechanisms into both matrices are comparable.

  17. Current Perspective on MDMA-Assisted Psychotherapy for Posttraumatic Stress Disorder

    OpenAIRE

    Thal, Sascha B.; Lommen, Miriam J.J.

    2018-01-01

    The present paper discusses the current literature with regard to substance-assisted psychotherapy with Methylenedioxymethamphetamine (MDMA) for posttraumatic stress disorder (PTSD). The aim of the paper is to give a comprehensive overview of the development from MDMA’s early application in psychotherapy to its present and future role in the treatment of PTSD. It is further attempted to increase the attention for MDMA’s therapeutic potential by providing a thorough depiction of the scientific...

  18. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy

    OpenAIRE

    Wagner, Mark T; Mithoefer, Michael C; Mithoefer, Ann T; MacAulay, Rebecca K; Jerome, Lisa; Yazar-Klosinski, Berra; Doblin, Rick

    2017-01-01

    A growing body of research suggests that traumatic events lead to persisting personality change characterized by increased neuroticism. Relevantly, enduring improvements in Post-Traumatic Stress Disorder (PTSD) symptoms have been found in response to 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy. There is evidence that lasting changes in the personality feature of ?openness? occur in response to hallucinogens, and that this may potentially act as a therapeutic mechanism of c...

  19. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    Science.gov (United States)

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  20. Is ecstasy an "empathogen"? Effects of ±3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others.

    Science.gov (United States)

    Bedi, Gillinder; Hyman, David; de Wit, Harriet

    2010-12-15

    Users of ±3,4-methylenedioxymethamphetamine (MDMA), "ecstasy," report that the drug produces unusual psychological effects, including increased empathy and prosocial feelings. These "empathogenic" effects are cited as reasons for recreational ecstasy use and also form the basis for the proposed use of MDMA in psychotherapy. However, they have yet to be characterized in controlled studies. Here, we investigate effects of MDMA on an important social cognitive capacity, the identification of emotional expression in others, and on socially relevant mood states. Over four sessions, healthy ecstasy-using volunteers (n = 21) received MDMA (.75, 1.5 mg/kg), methamphetamine (METH) (20 mg), and placebo under double-blind, randomized conditions. They completed self-report ratings of relevant affective states and undertook tasks in which they identified emotions from images of faces, pictures of eyes, and vocal cues. MDMA (1.5 mg/kg) significantly increased ratings of feeling "loving" and "friendly", and MDMA (.75 mg/kg) increased "loneliness". Both MDMA (1.5 mg/kg) and METH increased "playfulness"; only METH increased "sociability". MDMA (1.5 mg/kg) robustly decreased accuracy of facial fear recognition relative to placebo. The drug MDMA increased "empathogenic" feelings but reduced accurate identification of threat-related facial emotional signals in others, findings consistent with increased social approach behavior rather than empathy. This effect of MDMA on social cognition has implications for both recreational and therapeutic use. In recreational users, acute drug effects might alter social risk-taking while intoxicated. Socioemotional processing alterations such as those documented here might underlie possible psychotherapeutic benefits of this drug; further investigation of such mechanisms could inform treatment design to maximize active components of MDMA-assisted psychotherapy. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All

  1. Use of amphetamine by recreational users of ecstasy (MDMA) is associated with reduced striatal dopamine transporter densities: a [123I]beta-CIT SPECT study--preliminary report

    NARCIS (Netherlands)

    Reneman, Liesbeth; Booij, Jan; Lavalaye, Jules; de Bruin, Kora; Reitsma, Johannes B.; Gunning, BoudewijnW; den Heeten, Gerard J.; van den Brink, Wim

    2002-01-01

    RATIONALE: Tablets sold as ecstasy often contain not only 3,4-methylenedioxymethamphetamine (MDMA) but other compounds well known to cause dopaminergic neurotoxicity, such as (meth)amphetamine. Furthermore, the use of ecstasy in the Netherlands is often combined with the use of amphetamine. However,

  2. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.

    Science.gov (United States)

    Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2016-10-01

    Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Motor delays in MDMA (ecstasy) exposed infants persist to 2 years.

    Science.gov (United States)

    Singer, Lynn T; Moore, Derek G; Min, Meeyoung O; Goodwin, Julia; Turner, John J D; Fulton, Sarah; Parrott, Andrew C

    2016-01-01

    Recreational use of 3,4 methylenedioxymethamphetamine (ecstasy, MDMA) is increasing worldwide. Its use by pregnant women causes concern due to potentially harmful effects on the developing fetus. MDMA, an indirect monoaminergic agonist and reuptake inhibitor, affects the serotonin and dopamine systems. Preclinical studies of fetal exposure demonstrate effects on learning, motor behavior, and memory. In the first human studies, we found prenatal MDMA exposure related to poorer motor development in the first year of life. In the present study we assessed the effects of prenatal exposure to MDMA on the trajectory of child development through 2 years of age. We hypothesized that exposure would be associated with poorer mental and motor outcomes. The DAISY (Drugs and Infancy Study, 2003-2008) employed a prospective longitudinal cohort design to assess recreational drug use during pregnancy and child outcomes in the United Kingdom. Examiners masked to drug exposures followed infants from birth to 4, 12, 18, and 24 months of age. MDMA, cocaine, alcohol, tobacco, cannabis, and other drugs were quantified through a standardized clinical interview. The Bayley Scales (III) of Mental (MDI) and Motor (PDI) Development and the Behavior Rating Scales (BRS) were primary outcome measures. Statistical analyses included a repeated measures mixed model approach controlling for multiple confounders. Participants were pregnant women volunteers, primarily white, of middle class socioeconomic status, average IQ, with some college education, in stable partner relationships. Of 96 women enrolled, children of 93 had at least one follow-up assessment and 81 (87%) had ≥ two assessments. Heavier MDMA exposure (M=1.3±1.4 tablets per week) predicted lower PDI (pMDMA use during pregnancy had motor delays from 4 months to two years of age that were not attributable to other drug or lifestyle factors. Women of child bearing age should be cautioned about the use of MDMA and MDMA-exposed infants

  4. The preclinical pharmacology of mephedrone; not just MDMA by another name.

    Science.gov (United States)

    Green, A R; King, M V; Shortall, S E; Fone, K C F

    2014-05-01

    The substituted β-keto amphetamine mephedrone (4-methylmethcathinone) was banned in the UK in April 2010 but continues to be used recreationally in the UK and elsewhere. Users have compared its psychoactive effects to those of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'). This review critically examines the preclinical data on mephedrone that have appeared over the last 2-3 years and, where relevant, compares the pharmacological effects of mephedrone in experimental animals with those obtained following MDMA administration. Both mephedrone and MDMA enhance locomotor activity and change rectal temperature in rodents. However, both of these responses are of short duration following mephedrone compared with MDMA probably because mephedrone has a short plasma half-life and rapid metabolism. Mephedrone appears to have no pharmacologically active metabolites, unlike MDMA. There is also little evidence that mephedrone induces a neurotoxic decrease in monoamine concentration in rat or mouse brain, again in contrast to MDMA. Mephedrone and MDMA both induce release of dopamine and 5-HT in the brain as shown by in vivo and in vitro studies. The effect on 5-HT release in vivo is more marked with mephedrone even though both drugs have similar affinity for the dopamine and 5-HT transporters in vitro. The profile of action of mephedrone on monoamine receptors and transporters suggests it could have a high abuse liability and several studies have found that mephedrone supports self-administration at a higher rate than MDMA. Overall, current data suggest that mephedrone not only differs from MDMA in its pharmacological profile, behavioural and neurotoxic effects, but also differs from other cathinones. © 2014 The British Pharmacological Society.

  5. Differential response of nNOS knockout mice to MDMA ("ecstasy")- and methamphetamine-induced psychomotor sensitization and neurotoxicity.

    Science.gov (United States)

    Itzhak, Yossef; Anderson, Karen L; Ali, Syed F

    2004-10-01

    It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.

  6. Effects of 3,4-Methylenedioxymethamphetamine on Patient Utterances in a Psychotherapeutic Setting.

    Science.gov (United States)

    Corey, Vicka Rael; Pisano, Vincent D; Halpern, John H

    2016-07-01

    3,4-Methylenedioxymethamphetamine (MDMA) administered as an adjunct to talk therapy influences patient speech content and increases improvement in treatment-resistant posttraumatic stress disorder (PTSD). Data came from the recordings of Mithoefer et al. (2011). In the third therapeutic session studied, patients were assigned, double blind, to an MDMA or a placebo group. Condition-blind scorers listened to therapy recordings and scored utterances where patients initiated topics that were empathic (regarding others' emotions), entactic (requesting or appreciating physical touch), or ensuic (describing a change in their sense of themselves). Patients who received MDMA produced high levels of ensuic, empathic, and entactic utterances compared with those who received the placebo. Interrater discourse scoring was reliable. The relationship between the number of scored utterances and the Clinician Administered PTSD Scale scores measuring PTSD severity after the treatment was significant, and reanalysis grouped bimodally into "many" or "few" such utterances remained significant. MDMA assisted these patients in having meaningful and disorder-resolving thoughts and discourse in talk therapy.

  7. Chronic exposure to MDMA (Ecstasy elicits behavioral sensitization in rats but fails to induce cross-sensitization to other psychostimulants

    Directory of Open Access Journals (Sweden)

    Swann Alan C

    2006-01-01

    Full Text Available Abstract Background The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. Methods The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg and a saline control group (N = 9/group. All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13. Rats were then given an additional 25-day washout period, and re-challenged (day 38 with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39. Open-field locomotor activity was recorded using a computerized automated activity monitoring system. Results Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group, while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change

  8. Serotonin antagonists fail to alter MDMA self-administration in rats.

    Science.gov (United States)

    Schenk, Susan; Foote, Jason; Aronsen, Dane; Bukholt, Natasha; Highgate, Quenten; Van de Wetering, Ross; Webster, Jeremy

    2016-09-01

    Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA. Rats received extensive experience with self-administered MDMA prior to tests with 5-HT ligands. Doses of the 5-HT1A antagonist, WAY 100635 (0.1-1.0mg/kg), 5-HT1B antagonist, GR 127935 (1.0-3.0mg/kg), and the 5-HT2A antagonist, ketanserin (1.0-3.0mg/kg) that have previously been shown to decrease self-administration of other psychostimulants and that decreased MDMA-produced hyperactivity in the present study did not alter MDMA self-administration. Experimenter-administered injections of MDMA (10.0mg/kg, ip) reinstated extinguished drug-taking behavior, but this also was not decreased by any of the antagonists. In contrast, both WAY 100635 and ketanserin, but not GR 127935, decreased cocaine-produced drug seeking in rats that had been trained to self-administered cocaine. The 5-HT1A agonist, 8-OH-DPAT (0.1-1.0mg/kg), but not the 5-HT1B/1A agonist, RU 24969 (0.3-3.0mg/kg), decreased drug-seeking produced by the reintroduction of a light stimulus that had been paired with self-administered MDMA infusions. These findings suggest a limited role of activation of 5-HT1A, 5-HT1B or 5-HT2 receptor mechanisms in MDMA self-administration or in MDMA-produced drug-seeking following extinction. The data suggest, however, that 5-HT1A agonists inhibit cue-induced drug-seeking following extinction of MDMA self-administration and might, therefore, be useful adjuncts to therapies to limit relapse to MDMA use. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Duloxetine inhibits effects of MDMA ("ecstasy" in vitro and in humans in a randomized placebo-controlled laboratory study.

    Directory of Open Access Journals (Sweden)

    Cédric M Hysek

    Full Text Available This study assessed the effects of the serotonin (5-HT and norepinephrine (NE transporter inhibitor duloxetine on the effects of 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence.Clinicaltrials.gov NCT00990067.

  10. Cognitive and behavioural effects induced by social stress plus MDMA administration in mice.

    Science.gov (United States)

    García-Pardo, M P; Roger-Sánchez, C; Rodríguez-Arias, M; Miñarro, J; Aguilar, M A

    2017-02-15

    Adverse life experiences such as social stress may make an individual more vulnerable to drug addiction and mental disorders associated with drug consumption. The present work aimed to evaluate the effects of stress induced by acute social defeat combined with the administration of 3,4-methylenedioxymethamphetamine (MDMA) on depression-like behaviour, memory function and motor response to drug in late adolescent male mice. Two groups of mice were exposed to social defeat (SD) during four encounters with an aggressive co-specific, which took place on alternate days. Immediately after defeat, animals were treated with saline or MDMA 10mg/kg (SD+SAL and SD+MDMA). In control groups, mice were placed in a neutral cage without an opponent (Control+SAL, Control+MDMA). Corticosterone levels and temperature were measured on the last day of this phase. During the following days, the behaviour of the animals was evaluated in the tail suspension test (an animal model of depression), memory tasks (passive avoidance and object recognition) and, after administration of 5mg/kg of MDMA, in the open-field test. Exposure of adult mice to acute social defeat plus MDMA increased immobility in the tail suspension test (depression-like behaviour), produced cognitive impairment, and reduced the motor response to MDMA. An increase in corticosterone levels and a decrease of temperature were also observed. As hypothesised, a combination of social stress and consumption of MDMA increases the risk of developing mental and cognitive disorders. Our results support the idea that stress is a common contributing factor to the high rate of comorbidity between substance abuse and mental disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA ("Ecstasy") and MDA ("Love").

    Science.gov (United States)

    McNamara, Ruth; Kerans, Aoife; O'Neill, Barry; Harkin, Andrew

    2006-01-01

    The present study determined the effect of caffeine co-administration on the core body temperature response and long-term serotonin (5-HT) loss induced by methylenedioxymethamphetamine (MDMA; "Ecstasy") and its metabolite methylenedioxyamphetamine (MDA; "Love") to rats. In group-housed animals, caffeine (10 mg/kg) enhanced the acute toxicity of MDMA (15 mg/kg) and MDA (7.5 mg/kg), resulting in an exaggerated hyperthermic response (+2 degrees C for 5 h following MDMA and +1.5 degrees C for 3 h following MDA) when compared to MDMA (+1 degree C for 3 h) and MDA (+1 degree C for 1 h) alone. Co-administration of caffeine with MDMA or MDA was also associated with increased lethality. To reduce the risk of lethality, doses of MDMA and MDA were reduced in further experiments and the animals were housed individually. To examine the effects of repeated administration, animals received MDMA (10 mg/kg) or MDA (5 mg/kg) with or without caffeine (10 mg/kg) twice daily for 4 consecutive days. MDMA and MDA alone induced hypothermia (fall of 1 to 2 degrees C) over the 4 treatment days. Co-administration of caffeine with MDMA or MDA resulted in hyperthermia (increase of up to 2.5 degrees C) following acute administration compared to animals treated with caffeine or MDMA/MDA alone. This hyperthermic response to caffeine and MDMA was not observed with repeated administration, unlike caffeine + MDA, where hyperthermia was obtained over the 4 day treatment period. In addition, 4 weeks after the last treatment, co-administration of caffeine with MDA (but not MDMA) induced a reduction in 5-HT and 5-hydroxyindole acetic acid (5-HIAA) concentrations in frontal cortex (to 61% and 58% of control, respectively), hippocampus (48% and 60%), striatum (79% and 64%) and amygdala (63% and 37%). However, when caffeine (10 mg/kg) and MDMA (2.5 mg/kg) were co-administered four times daily for 2 days to group-housed animals, both hyperthermia and hippocampal 5-HT loss were observed (reduced to 68% of

  12. The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum.

    Science.gov (United States)

    Górska, A M; Gołembiowska, K

    2015-04-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a role in the effect of caffeine by investigating the effect of the selective adenosine A1 and A2A receptor antagonists, DPCPX and KW 6002 on DA and 5-HT release induced by MDMA. Mice were treated with caffeine (10 mg/kg) and MDMA (20 or 40 mg/kg) alone or in combination. DA and 5-HT release in the mouse striatum was measured using in vivo microdialysis. Caffeine exacerbated the effect of MDMA on DA and 5-HT release. DPCPX or KW 6002 co-administered with MDMA had similar influence as caffeine, but KW 6002 was more potent than caffeine or DPCPX. To exclude the contribution of MAO inhibition by caffeine in the caffeine effect on MDMA-induced increase in DA and 5-HT, we also tested the effect of the nonxanthine adenosine receptor antagonist CGS 15943A lacking properties of MAO activity modification. Our findings indicate that adenosine A1 and A2A receptor blockade may account for the caffeine-induced exacerbation of the MDMA effect on DA and 5-HT release and may aggravate MDMA toxicity.

  13. The Effects of Acutely Administered 3,4-Methylenedioxymethamphetamine on Spontaneous Brain Function in Healthy Volunteers Measured with Arterial Spin Labeling and Blood Oxygen Level–Dependent Resting State Functional Connectivity

    Science.gov (United States)

    Carhart-Harris, Robin L.; Murphy, Kevin; Leech, Robert; Erritzoe, David; Wall, Matthew B.; Ferguson, Bart; Williams, Luke T.J.; Roseman, Leor; Brugger, Stefan; De Meer, Ineke; Tanner, Mark; Tyacke, Robin; Wolff, Kim; Sethi, Ajun; Bloomfield, Michael A.P.; Williams, Tim M.; Bolstridge, Mark; Stewart, Lorna; Morgan, Celia; Newbould, Rexford D.; Feilding, Amanda; Curran, H. Val; Nutt, David J.

    2015-01-01

    Background The compound 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine releaser that produces an acute euphoria in most individuals. Methods In a double-blind, placebo-controlled, balanced-order study, MDMA was orally administered to 25 physically and mentally healthy individuals. Arterial spin labeling and seed-based resting state functional connectivity (RSFC) were used to produce spatial maps displaying changes in cerebral blood flow (CBF) and RSFC after MDMA administration. Participants underwent two arterial spin labeling and two blood oxygen level–dependent scans in a 90-minute scan session; MDMA and placebo study days were separated by 1 week. Results Marked increases in positive mood were produced by MDMA. Decreased CBF only was observed after MDMA, and this was localized to the right medial temporal lobe (MTL), thalamus, inferior visual cortex, and the somatosensory cortex. Decreased CBF in the right amygdala and hippocampus correlated with ratings of the intensity of global subjective effects of MDMA. The RSFC results complemented the CBF results, with decreases in RSFC between midline cortical regions, the medial prefrontal cortex, and MTL regions, and increases between the amygdala and hippocampus. There were trend-level correlations between these effects and ratings of intense and positive subjective effects. Conclusions The MTLs appear to be specifically implicated in the mechanism of action of MDMA, but further work is required to elucidate how the drug’s characteristic subjective effects arise from its modulation of spontaneous brain activity. PMID:24495461

  14. The Effects of Acutely Administered 3,4-Methylenedioxymethamphetamine on Spontaneous Brain Function in Healthy Volunteers Measured with Arterial Spin Labeling and Blood Oxygen Level-Dependent Resting State Functional Connectivity.

    Science.gov (United States)

    Carhart-Harris, Robin L; Murphy, Kevin; Leech, Robert; Erritzoe, David; Wall, Matthew B; Ferguson, Bart; Williams, Luke T J; Roseman, Leor; Brugger, Stefan; De Meer, Ineke; Tanner, Mark; Tyacke, Robin; Wolff, Kim; Sethi, Ajun; Bloomfield, Michael A P; Williams, Tim M; Bolstridge, Mark; Stewart, Lorna; Morgan, Celia; Newbould, Rexford D; Feilding, Amanda; Curran, H Val; Nutt, David J

    2015-10-15

    The compound 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine releaser that produces an acute euphoria in most individuals. In a double-blind, placebo-controlled, balanced-order study, MDMA was orally administered to 25 physically and mentally healthy individuals. Arterial spin labeling and seed-based resting state functional connectivity (RSFC) were used to produce spatial maps displaying changes in cerebral blood flow (CBF) and RSFC after MDMA administration. Participants underwent two arterial spin labeling and two blood oxygen level-dependent scans in a 90-minute scan session; MDMA and placebo study days were separated by 1 week. Marked increases in positive mood were produced by MDMA. Decreased CBF only was observed after MDMA, and this was localized to the right medial temporal lobe (MTL), thalamus, inferior visual cortex, and the somatosensory cortex. Decreased CBF in the right amygdala and hippocampus correlated with ratings of the intensity of global subjective effects of MDMA. The RSFC results complemented the CBF results, with decreases in RSFC between midline cortical regions, the medial prefrontal cortex, and MTL regions, and increases between the amygdala and hippocampus. There were trend-level correlations between these effects and ratings of intense and positive subjective effects. The MTLs appear to be specifically implicated in the mechanism of action of MDMA, but further work is required to elucidate how the drug's characteristic subjective effects arise from its modulation of spontaneous brain activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Effects of methylphenidate and MDMA on appraisal of erotic stimuli and intimate relationships.

    Science.gov (United States)

    Schmid, Yasmin; Hysek, Cédric M; Preller, Katrin H; Bosch, Oliver G; Bilderbeck, Amy C; Rogers, Robert D; Quednow, Boris B; Liechti, Matthias E

    2015-01-01

    Methylphenidate mainly enhances dopamine neurotransmission whereas 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") mainly enhances serotonin neurotransmission. However, both drugs also induce a weaker increase of cerebral noradrenaline exerting sympathomimetic properties. Dopaminergic psychostimulants are reported to increase sexual drive, while serotonergic drugs typically impair sexual arousal and functions. Additionally, serotonin has also been shown to modulate cognitive perception of romantic relationships. Whether methylphenidate or MDMA alter sexual arousal or cognitive appraisal of intimate relationships is not known. Thus, we evaluated effects of methylphenidate (40 mg) and MDMA (75 mg) on subjective sexual arousal by viewing erotic pictures and on perception of romantic relationships of unknown couples in a double-blind, randomized, placebo-controlled, crossover study in 30 healthy adults. Methylphenidate, but not MDMA, increased ratings of sexual arousal for explicit sexual stimuli. The participants also sought to increase the presentation time of implicit sexual stimuli by button press after methylphenidate treatment compared with placebo. Plasma levels of testosterone, estrogen, and progesterone were not associated with sexual arousal ratings. Neither MDMA nor methylphenidate altered appraisal of romantic relationships of others. The findings indicate that pharmacological stimulation of dopaminergic but not of serotonergic neurotransmission enhances sexual drive. Whether sexual perception is altered in subjects misusing methylphenidate e.g., for cognitive enhancement or as treatment for attention deficit hyperactivity disorder is of high interest and warrants further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  16. Measurement of 3,4-MDMA and related amines in diagnostic and forensic laboratories.

    Science.gov (United States)

    Skrinska, Victor A; Gock, Susan B

    2005-01-01

    The phenylalkylamine derivatives, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy, XTC, Adam), 3,4-methylenedioxyethamphetamine (MDEA, MDE, Eve), and 3,4-methylenedioxyamphetamine (MDA), are psychostimulants with hallucinogenic properties. MDA is also a metabolite of both MDMA and MDEA. These drugs are ring-substituted amphetamine derivatives that produce hallucinogenic, entactogenic ('love drug'), and stimulating effects. MDMA was initially developed as an appetite suppressant, however, its use as a therapeutic drug has been very limited. Because of its effects as a hallucinogenic psychostimulant with relatively low toxicity, it has emerged over the last two decades as a common recreational psychostimulant or 'club drug' at 'raves'. MDMA, MDEA, and MDA are often referred to as 'rave' or 'designer' drugs. They are produced in clandestine laboratories and have an increasing presence on the illicit drug market worldwide. Significant adverse health effects have been reported that include: serotonin neurotoxicity, severe psychiatric disorders, renal failure, malignant hyperthermia, hepatitis, rhabdomyolysis, and disseminated intravascular coagulation. A number of fatal outcomes associated with severe MDMA intoxication have been reported.

  17. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy.

    Science.gov (United States)

    Wagner, Mark T; Mithoefer, Michael C; Mithoefer, Ann T; MacAulay, Rebecca K; Jerome, Lisa; Yazar-Klosinski, Berra; Doblin, Rick

    2017-08-01

    A growing body of research suggests that traumatic events lead to persisting personality change characterized by increased neuroticism. Relevantly, enduring improvements in Post-Traumatic Stress Disorder (PTSD) symptoms have been found in response to 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy. There is evidence that lasting changes in the personality feature of "openness" occur in response to hallucinogens, and that this may potentially act as a therapeutic mechanism of change. The present study investigated whether heightened Openness and decreased Neuroticism served as a mechanism of change within a randomized trial of MDMA-assisted psychotherapy for chronic, treatment-resistant PTSD. The Clinician-Administered PTSD Scale (CAPS) Global Scores and NEO PI-R Personality Inventory (NEO) Openness and Neuroticism Scales served as outcome measures. Results indicated that changes in Openness but not Neuroticism played a moderating role in the relationship between reduced PTSD symptoms and MDMA treatment. Following MDMA-assisted psychotherapy, increased Openness and decreased Neuroticism when comparing baseline personality traits with long-term follow-up traits also were found. These preliminary findings suggest that the effect of MDMA-assisted psychotherapy extends beyond specific PTSD symptomatology and fundamentally alters personality structure, resulting in long-term persisting personality change. Results are discussed in terms of possible mechanisms of psychotherapeutic change.

  18. Ghrelin Alleviates MDMA-Induced Disturbance of Serum Glucose and Lipids Levels in the Rat

    Directory of Open Access Journals (Sweden)

    Ravieh Golchoobian

    2018-01-01

    Full Text Available Hepatotoxicity is one of the clinically adverse effects of ecstasy (3, 4-methylenedioxymethamphetamine; MDMA consumption. The detoxification tissue, liver, plays a central role in maintaining circulating levels of glucose and lipid. Hypoglycemia and hypotriglyceridemia have been reported due to ecstasy abuse. Ghrelin is a 28-amino-acid peptide secreted predominantly from the stomach. It has been demonstrated that ghrelin has hepatoprotective effects and is able to increase blood glucose concentration. In the current study, we explored the effect of hepatotoxic dose of MDMA and therapeutic use of exogenous ghrelin on the serum levels of glucose and lipids in four groups of rats. MDMA caused a severe and transient reduction in circulating levels of glucose and triglyceride and increased serum LDL. However, cholesterol and HDL levels remained unchanged. Meanwhile, altered hepatic architecture was observed with intracellular vacuolation that may indicate intracellular accumulation of lipid droplets. In addition, following ghrelin administration, the blood sugar levels improved and LDL levels returned to the baseline value, and ghrelin treatment did not improve triglycerides levels. These results showed that MDMA causes hypoglycemia, hypotriglyceridemia, and hyper LDL-cholesterolemia. To our knowledge, this is the first report showing ghrelin administration could improve hypoglycemia and normalize LDL levels induced by MDMA and partially restore hepatic architecture.

  19. Why MDMA therapy for alcohol use disorder? And why now?

    Science.gov (United States)

    Sessa, Ben

    2017-11-07

    Alcohol use disorder represents a serious clinical, social and personal burden on its sufferers and a significant financial strain on society. Current treatments, both psychological and pharmacological are poor, with high rates of relapse after medical detoxification and dedicated treatment programs. The earliest historical roots of psychedelic drug-assisted psychotherapy in the 1950s were associated with Lysergic acid diethylamide (LSD)-assisted psychotherapy to treat what was then called, alcoholism. But results were varied and psychedelic therapy with LSD and other 'classical' psychedelics fell out of favour in the wake of socio-political pressures and cultural changes. A current revisiting of psychedelic clinical research is now targeting substance use disorders - and particularly alcohol use disorder - again. 3,4-Methylenedioxymethamphetamine (MDMA)-assisted psychotherapy has never been formally explored as a treatment for any form of substance use disorder. But in recent years MDMA has risen in prominence as an agent to treat posttraumatic stress disorder (PTSD). With its unique receptor profile and a relatively well-tolerated subjective experience of drug effects when used clinically, MDMA Therapy is ideally suited to allow a patient to explore and address painful memories without being overwhelmed by negative affect. Given that alcohol use disorder is so often associated with early traumatic experiences, the author is proposing in a current on-going UK-based study that patients with alcohol use disorder who have undergone a medical detoxification from alcohol might benefit from a course of MDMA-assisted psychotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    Science.gov (United States)

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  1. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In abstinent MDMA users the cortisol awakening response is off-set but associated with prefrontal serotonin transporter binding as in non-users

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Erritzoe, David; Holst, Klaus Kähler

    2014-01-01

    awakening response (CAR). Here, we tested (1) if such a correlation persists in a human model of chronic serotonin depletion, namely in 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') users, and (2) if CAR differed between MDMA users (N = 18) and non-using healthy volunteers (N = 32). Participants...... underwent SERT brain imaging with [11C]DASB-PET, and performed home-sampling of CAR, defined as the area under curve with respect to cortisol increase from awakening level. When adjusting for age and group, CAR was positively coupled to prefrontal SERT binding (p = 0.006) and MDMA users showed significantly...... higher CAR than the control group (p = 0.0003). In conclusion, our data confirm the recently described positive association between prefrontal SERT binding and CAR, this time in a human model of serotonin deficiency. Also, we find that CAR was higher in MDMA users relative to non-users. We suggest...

  3. MDMA-evoked changes in the binding of dopamine D(2) receptor ligands in striatum of rats with unilateral serotonin depletion

    DEFF Research Database (Denmark)

    Ostergaard, Søren Dinesen; Alstrup, Aage Kristian Olsen; Gramsbergen, Jan Bert

    2010-01-01

    We earlier reported an anomalous 50% decrease in [(11)C]N-methylspiperone ([(11)C]NMSP) binding to dopamine D(2)-like receptors in living pig striatum after challenge with 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), suggesting either (1) a species peculiarity in the vulnerability...... lesions, later verified by [(125)I]RTI-55 autoradiography. Baseline [(11)C]NMSP microPET recordings were followed by either saline or MDMA-HCl (4 mg/kg) injections (i.v.), and a second [(11)C]NMSP recording, culminating with injection of [(3)H]raclopride for autoradiography ex vivo. Neither MDMA......-challenge nor serotonin lesion had any detectable effect on [(11)C]NMSP binding. In contrast, MDMA challenge increased receptor occupancy by [(3)H]raclopride ex vivo (relative to the B(max) in vitro) from 8% to 12%, and doubled the free ligand concentration in cerebral cortex, apparently by blocking hepatic CYP...

  4. MDMA and heightened cortisol: a neurohormonal perspective on the pregnancy outcomes of mothers used 'Ecstasy' during pregnancy.

    Science.gov (United States)

    Parrott, Andrew C; Moore, Derek G; Turner, John J D; Goodwin, Julia; Min, Meeyoung O; Singer, Lynn T

    2014-01-01

    The illicit recreational drug 3,4-methylenedioxymethamphetamine (MDMA) or Ecstasy has strong neurohormonal effects. When taken by recreational users at dance clubs and raves, it can generate an 800% increase in the stress hormone cortisol, whereas drug-free users show chronically raised levels of cortisol. The aim here is to critically debate this neurohormonal influence for the children of pregnant MDMA-using mothers. High levels of cortisol are known to be damaging for neuropsychobiological well-being in adult humans. MDMA can damage foetal development in laboratory animals, and the prospective Drugs and Infancy Study was established to monitor the effects of MDMA taken recreationally by pregnant women. The Drugs and Infancy Study revealed that young mothers, who took MDMA during the first trimester of pregnancy, gave birth to babies with significant gross psychomotor retardation. These mothers would have experienced high levels of cortisol due to Ecstasy/MDMA use, and since cortisol can cross the placenta, this is likely to have also occurred in the foetus. In terms of causation, the developmental problems may reflect a combination of neurotransmitter and neurohormonal effects on the hypothalamic-pituitary-adrenal axis, with serotonergic activity being influenced by the high levels of cortisol. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Quantitative determination of 3,4-methylenedioxymethamphetamine by thin-layer chromatography in ecstasy illicit pills in Tehran.

    Science.gov (United States)

    Shetab Boushehri, Seyed Vahid; Tamimi, Maryam; Kebriaeezadeh, Abbas

    2009-11-01

    3,4-Methylenedioxymethamphetamine (MDMA) is the major ingredient of ecstasy illicit pills. It is a hallucinogen, central nervous system stimulant, and serotonergic neurotoxin that strongly releases serotonin from serotonergic nerves terminals. Moreover, it releases norepinephrine and dopamine from nerves terminal, but to a lesser extent than serotonin. Poisoning and even death from abusing MDMA-containing ecstasy illicit pills among abusers is usual. Thus, quantitative determination of MDMA content of ecstasy illicit pills in illicit drug bazaar must be done regularly to find the most high dose ecstasy illicit pills and removing them from illicit drug bazaar. In the present study, MDMA contents of 13 most abundant ecstasy illicit pills were determined by quantitative thin-layer chromatography (TLC). Two procedures for quantitative determination of MDMA contents of ecstasy illicit pills by TLC were used: densitometric and so-called 'scraping off' methods. The former was done in a reflection mode at 285 nm and the latter was done by absorbance measurement of eluted scraped off spots. Limit of detection (LOD), considering signal-to-noise ratio (S/N) of 2, and limit of quantification (LOQ), regarding S/N of 10, of densitometric and scraping off methods were 0.40 microg, 1.20 microg, and 6.87 mug, 20.63 microg, respectively. Repeatabilities (within-laboratory error) of densitometric and scraping off methods were 0.5% and 3.6%, respectively. The results showed that the ecstasy illicit pills contained 24-124.5 mg and 23.9-122.2 mg MDMA by densitometric and scraping off methods, respectively.

  6. Usefulness of saliva for measurement of 3,4-methylenedioxymethamphetamine and its metabolites: correlation with plasma drug concentrations and effect of salivary pH.

    Science.gov (United States)

    Navarro, M; Pichini, S; Farré, M; Ortuño, J; Roset, P N; Segura, J; de la Torre, R

    2001-10-01

    Saliva is an alternative biologic matrix for drugs-of-abuse testing that offers the advantages of noninvasive, rapid, and easy sampling. We studied the excretion profile of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in both saliva and plasma, as well the effect of the drug on salivary pH. Saliva and plasma samples were obtained from eight healthy MDMA consumers after ingestion of a single 100-mg dose of the drug. Concentrations of MDMA and its main metabolites, 3,4-methylenedioxyamphetamine (MDA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), in saliva and plasma were measured by gas chromatography-mass spectrometry. Apparent pharmacokinetic parameters for MDMA in saliva were estimated, and the saliva-to-plasma ratio at each time interval was calculated and correlated with salivary pH. MDMA, MDA, and HMMA were detected in saliva. Salivary concentrations of MDMA were 1728.9-6510.6 microg/L and peaked at 1.5 h after drug intake. This was followed by a progressive decrease, with a mean concentration of 126.2 microg/L at 24 h. The saliva-to-plasma ratio was 32.3-1.2, with a peak of 18.1 at 1.5 h after drug administration. Salivary pH seemed to be affected by MDMA administration; pH values decreased by 0.6 units (mean pH values of 6.9 and 6.8 at 1.5 and 4 h after drug administration vs predose pH of 7.4). Measurement of MDMA in saliva is a valuable alternative to determination of plasma drug concentrations in both clinical and toxicologic studies. On-site testing is also facilitated by noninvasive and rapid collection of salivary specimens.

  7. Reduced efficacy of fluoxetine following MDMA ("Ecstasy")-induced serotonin loss in rats.

    Science.gov (United States)

    Durkin, Sarah; Prendergast, Alison; Harkin, Andrew

    2008-12-12

    Long-term serotonin (5-HT) neuronal loss is currently a major cause of concern associated with recreational use of the substituted amphetamine 3,4 methylenedioxymethamphetamine (MDMA; "Ecstasy"). Such loss may be problematic considering that psychiatric disorders such as depression and anxiety and responses to first line treatments for these disorders are associated with 5-HT. In this study the effects of prior exposure to MDMA on behavioural and central neurochemical changes induced by the serotonin (5-HT) re-uptake inhibitor and antidepressant fluoxetine were examined in rats. Animals were administered MDMA (10 mg/kg. i.p.) four times daily for two consecutive days. One week later the animals were subjected to treatment with fluoxetine (10 mg/kg, i.p.). Fluoxetine treatment groups received either acute (saline injections for 20 days followed by 3 fluoxetine treatments over 24 h) or chronic (once daily fluoxetine for 21 days) drug administration. Prior exposure to MDMA resulted in an attenuation of fluoxetine-induced swimming behaviour in the modified forced swimming test (FST); a behavioural test of antidepressant action. In parallel MDMA treatment resulted in significant regional depletions of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) accompanied by a reduction in cortical [3H] paroxetine binding to nerve terminal 5-HT transporters. MDMA-induced 5-HT loss was enhanced in animals following chronic fluoxetine administration. Elimination of fluoxetine and its metabolite norfluoxetine from the brain abolished this interaction between MDMA and fluoxetine treatment. Fluoxetine administration reduced both 5-HIAA and the 5-HIAA:5-HT metabolism ratio, which was attenuated in animals pre-treated with MDMA. Overall the results show that MDMA induces long-term 5-HT loss in the rodent brain and consequently diminishes behaviour and reductions in 5-HT metabolism induced by the antidepressant fluoxetine. These results have potential clinical relevance

  8. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study

    OpenAIRE

    Mithoefer, Michael C; Wagner, Mark T; Mithoefer, Ann T; Jerome, Lisa; Martin, Scott F; Yazar-Klosinski, Berra; Michel, Yvonne; Brewerton, Timothy D; Doblin, Rick

    2013-01-01

    We report follow-up data evaluating the long-term outcomes for the first completed trial of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for chronic, treatment-resistant post-traumatic stress disorder (PTSD) (Mithoefer et al., 2011). All of the 19 subjects who received MDMA-assisted treatment in the original trial participated in the long-term follow-up (LTFU), with 16 out of 19 completing all of the long-term outcome measures, which were administered from 17 to 74 months a...

  9. Psychiatric profiles of mothers who take Ecstasy/MDMA during pregnancy: reduced depression 1 year after giving birth and quitting Ecstasy.

    Science.gov (United States)

    Turner, John J D; Parrott, Andrew C; Goodwin, Julia; Moore, Derek G; Fulton, Sarah; Min, Meeyoung O; Singer, Lynn T

    2014-01-01

    The recreational drug MDMA (3,4-methylenedioxymethamphetamine) or 'Ecstasy' is associated with heightened psychiatric distress and feelings of depression. The Drugs and Infancy Study (DAISY) monitored the psychiatric symptom profiles of mothers who used Ecstasy/MDMA while pregnant, and followed them over the first year post-partum. We compared 28 young women whom took MDMA during their pregnancy with a polydrug control group of 68 women who took other psychoactive drugs while pregnant. The Brief Symptom Inventory (BSI) was completed for several periods: The first trimester of pregnancy; and 1, 4 and 12 months after childbirth. Recreational drug use was monitored at each time point. During the first trimester of pregnancy, MDMA-using mothers reported higher depression scores than the polydrug controls. At 1 year after childbirth, their BSI depression scores were significantly lower, now closer to the control group values. At the same time point, their self-reported use of MDMA became nearly zero, in contrast to their continued use of Cannabis/marijuana, nicotine and alcohol. We found significant symptom reductions in those with BSI obsessive-compulsive and interpersonal sensitivity, following Ecstasy/MDMA cessation. The findings from this unique prospective study of young recreational drug-using mothers are consistent with previous reports of improved psychiatric health after quitting MDMA.

  10. Agony of the ecstasy: report of five cases of MDMA smuggling.

    Science.gov (United States)

    Low, V H S; Dillon, E K

    2005-10-01

    The international smuggling of illicit drugs by the ingestion or rectal insertion of drug-filled packages is recognized in the trafficking of heroin and cocaine. Customs authorities, with suspicion of such activities, presented five subjects. The legally allowed radiological examination comprising one supine abdominal radiograph was performed. Radiographic findings demonstrated the presence of multiple enteric oval, capsule-shaped packages of soft tissue density. This was confirmed following supervised evacuation of bowel contents induced by the administration of laxatives. Analysis of the concealed material identified ecstasy (methylenedioxymethamphetamine (MDMA)), a substance not previously reported as transported by this route.

  11. Navigating intimacy with ecstasy: The emotional, \\ud spatial and boundaried dynamics of couples’ MDMA \\ud experiences

    OpenAIRE

    Anderson, Katie

    2017-01-01

    MDMA (3,4-methylenedioxy-methamphetamine or ‘ecstasy’) is well-known for its\\ud empathic and sociable effects (Bogt, Engels, Hibbel & Van Wel, 2002). Indeed, there \\ud is a body of work that discusses the role the drug plays in social bonding (Beck &\\ud Rosenbaum, 1998; Duff, 2008; Farrugia, 2015; Hinchliff, 2001; Solowij, Hall & Lee, \\ud 1992). However, there has been extremely limited research looking at MDMA’s \\ud impact specifically on romantic relationships (Vervaeke & Korf, 2006). Hence...

  12. Evaluation of brain SERT occupancy by resveratrol against MDMA-induced neurobiological and behavioral changes in rats: A 4-[¹⁸F]-ADAM/small-animal PET study.

    Science.gov (United States)

    Shih, Jui-Hu; Ma, Kuo-Hsing; Chen, Chien-Fu F; Cheng, Cheng-Yi; Pao, Li-Heng; Weng, Shao-Ju; Huang, Yuahn-Sieh; Shiue, Chyng-Yann; Yeh, Ming-Kung; Li, I-Hsun

    2016-01-01

    The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  13. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    Science.gov (United States)

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  14. Learning, Memory, and Executive Function in New MDMA Users: A Two-Year Follow-up Study

    Directory of Open Access Journals (Sweden)

    Daniel eWagner

    2015-12-01

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA is associated with changes in neurocognitive performance. Recent studies in laboratory animals have provided additional support for the neurodegeneration hypothesis. However, results from animal research need to be applied to humans with caution. Moreover, several of the studies that examine MDMA users suffer from methodological shortcomings. Therefore, a prospective cohort study was designed in order to overcome these previous methodological shortcomings and to assess the relationship between the continuing use of MDMA and cognitive performance in incipient MDMA users. It was hypothesized that, depending on the amount of MDMA taken, the continued use of MDMA over a two-year period would lead to further decreases in cognitive performance, especially in visual paired association learning tasks. 96 subjects were assessed at the second follow-up assessment: 31 of these were non-users, 55 moderate-users and 10 heavy-users. Separate repeated measures analyses of variance were conducted for each cognitive domain, including attention and information processing speed, episodic memory and executive functioning. Furthermore, possible confounders including age, general intelligence, cannabis use, alcohol use, use of other concomitant substances, recent medical treatment, participation in sports, level of nutrition, sleep patterns and subjective well-being were assessed.The Repeated measures analysis of variance (rANOVA revealed that a marginally significant change in immediate and delayed recall test performances of visual paired associates learning had taken place within the follow-up period of two years. No significant differences with the other neuropsychological tests were noted. It seems that MDMA use can impair visual paired associates learning in new users. However, in the recent study, further deterioration in continuing MDMA-users was not observed.

  15. Treating posttraumatic stress disorder with MDMA-assisted psychotherapy: A preliminary meta-analysis and comparison to prolonged exposure therapy.

    Science.gov (United States)

    Amoroso, Timothy; Workman, Michael

    2016-07-01

    Since the wars in Iraq and Afghanistan, posttraumatic stress disorder (PTSD) has become a major area of research and development. The most widely accepted treatment for PTSD is prolonged exposure (PE) therapy, but for many patients it is intolerable or ineffective. ±3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy (MDMA-AP) has recently re-emerged as a new treatment option, with two clinical trials having been published and both producing promising results. However, these results have yet to be compared to existing treatments. The present paper seeks to bridge this gap in the literature. Often the statistical significance of clinical trials is overemphasized, while the magnitude of the treatment effects is overlooked. The current meta-analysis aims to provide a comparison of the cumulative effect size of the MDMA-AP studies with those of PE. Effect sizes were calculated for primary and secondary outcome measures in the MDMA-AP clinical trials and compared to those of a meta-analysis including several PE clinical trials. It was found that MDMA-AP had larger effect sizes in both clinician-observed outcomes than PE did (Hedges' g=1.17 vs. g=1.08, respectively) and patient self-report outcomes (Hedges' g=0.87 vs. g=0.77, respectively). The dropout rates of PE and MDMA-AP were also compared, revealing that MDMA-AP had a considerably lower percentage of patients dropping out than PE did. These results suggest that MDMA-AP offers a promising treatment for PTSD. © The Author(s) 2016.

  16. Bilateral pneumothorax, surgical emphysema and pneumomediastinum in a young male patient following MDMA intake.

    Science.gov (United States)

    Obiechina, Nonyelum Evangeline; Jayakumar, Ahrane; Khan, Yusra; Bass, James

    2018-04-07

    MDMA (3,4-methylenedioxymethamphetamine) or 'Ecstasy' is an illicit drug frequently used by young people at parties and 'raves'. It is readily available in spite of the fact that it is illegal. 1 It is perceived by a lot of young people as being 'harmless', but there have been a few high-profile deaths associated with its use. 2 Known side effects of MDMA include hyperthermia, rhabdomyolysis, coagulopathy and cardiac arrhythmias. 3 Rarer side effects include surgical emphysema and pneumomediastinum, which have been better described with cocaine abuse. 4-6 We present a case of bilateral pneumothorax, surgical emphysema and pneumomediastinum in a young man after taking ecstasy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. The Role of MDMA (Ecstasy) in Coping with Negative Life Situations Among Urban Young Adults

    Science.gov (United States)

    Moonzwe, Lwendo S.; Schensul, Jean J.; Kostick, Kristin M.

    2011-01-01

    This article examines the role of Ecstasy (MDMA or 3, 4-methylenedioxymethamphetamine) as a drug used for self-medication and coping with both short- and long-term negative life situations. We show that urban youth who do not have a specific diagnosed mental illness are more likely than those who have been diagnosed and have received treatment to use Ecstasy to cope with both situational stress and lifetime trauma. Diagnosed and treated youth sometimes self-medicate with other drugs, but do not choose Ecstasy for mediation of their psychological stress. We discuss the implications of self-medication with Ecstasy for mental health services to urban youth experiencing mental health disparities, and for the continued testing and prescription of MDMA for therapeutic use in controlled clinical settings. PMID:22111403

  18. Ketamine and international regulations.

    Science.gov (United States)

    Liao, Yanhui; Tang, Yi-Lang; Hao, Wei

    2017-09-01

    Ketamine is an anesthetic commonly used in low-income countries and has recently been shown to be effective for treatment-resistant depression. However, the illicit manufacturing, trafficking, and nonmedical use of ketamine are increasing globally, and its illicit use poses major public health challenges in many countries. To review the nonmedical use of ketamine in selected countries and its regulatory control. We conducted a review of literature identified from searches of the China National Knowledge Infrastructure (CNKI) (1979-2016) and PubMed databases, supplemented by additional references identified by the authors. Special attention was given to the regulation of ketamine. Illicit manufacturing, trafficking, and use of ketamine appear to have begun on a large scale in several Asian nations, and it has subsequently spread to other regions. Regulations governing availability of ketamine vary across countries, but there is a clear trend toward tighter regulations. As nonmedical use of ketamine and its harmful consequences have worsened globally, stricter controls are necessary. Appropriate regulation of ketamine is important for international efforts to control ketamine's cross-border trafficking and its nonmedical use.

  19. Ketamine - A Multifaceted Drug.

    Science.gov (United States)

    Meng, Lingzhong; Li, Jian; Lu, Yi; Sun, Dajin; Tao, Yuan-Xiang; Liu, Renyu; Luo, Jin Jun

    There is a petition for tight control of ketamine from the Chinese government to classify ketamine as a Schedule I drug, which is defined as a drug with no currently accepted medical use but a high potential for abuse. However, ketamine has unique properties that can benefit different patient populations. Scholars from the Translational Perioperative and Pain Medicine and the International Chinese Academy of Anesthesiology WeChat groups had an interactive discussion on ketamine, including its current medical applications, future research priorities, and benefits versus risks. The discussion is summarized in this manuscript with some minor edits.

  20. Who is 'Molly'? MDMA adulterants by product name and the impact of harm-reduction services at raves.

    Science.gov (United States)

    Saleemi, Sarah; Pennybaker, Steven J; Wooldridge, Missi; Johnson, Matthew W

    2017-08-01

    Methylenedioxymethamphetamine (MDMA), often sold as 'Ecstasy' or 'Molly', is commonly used at music festivals and reported to be responsible for an increase in deaths over the last decade. Ecstasy is often adulterated and contains compounds that increase morbidity and mortality. While users and clinicians commonly assume that products sold as Molly are less-adulterated MDMA products, this has not been tested. Additionally, while pill-testing services are sometimes available at raves, the assumption that these services decrease risky drug use has not been studied. This study analyzed data collected by the pill-testing organization, DanceSafe, from events across the United States from 2010 to 2015. Colorimetric reagent assays identified MDMA in only 60% of the 529 samples collected. No significant difference in the percentage of samples testing positive for MDMA was determined between Ecstasy and Molly. Individuals were significantly less likely to report intent to use a product if testing did not identify MDMA (relative risk (RR) = 0.56, p = 0.01). Results suggest that Molly is not a less-adulterated substance, and that pill-testing services are a legitimate harm-reduction service that decreases intent to consume potentially dangerous substances and may warrant consideration by legislators for legal protection. Future research should further examine the direct effects of pill-testing services and include more extensive pill-testing methods.

  1. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study.

    Science.gov (United States)

    Kermanian, Fatemeh; Mehdizadeh, Mehdi; Soleimani, Mansureh; Ebrahimzadeh Bideskan, Ali Reza; Asadi-Shekaari, Majid; Kheradmand, Hamed; Haghir, Hossein

    2012-12-01

    There is abundant evidence showing that repeated use of MDMA (3, 4-Methylenedioxymethamphetamine, ecstasy) has been associated with depression, anxiety and deficits in learning and memory, suggesting detrimental effects on hippocampus. Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. In the present study, we investigated the role of A2a adenosine receptors agonist (CGS) and antagonist (SCH) on the body temperature, learning deficits, and hippocampal cell death induced by MDMA administration. In this study, 63 adult, male, Sprague - Dawley rats were subjected to MDMA (10 and 20 mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The animals were tested for spatial learning in the Morris water maze (MWM) task performance, accompanied by a recording of body temperature, electron microscopy and stereological study. Our results showed that MDMA treatment increased body temperature significantly, and impaired the ability of rats to locate the hidden platform(P learning deficits observed in MDMA users. However, the exact mechanism of these interactions requires further studies.

  2. Effects of adenosine A2a receptor agonist and antagonist on cerebellar nuclear factor-kB expression preceded by MDMA toxicity.

    Science.gov (United States)

    Kermanian, Fatemeh; Soleimani, Mansoureh; Pourheydar, Bagher; Samzadeh-Kermani, Alireza; Mohammadzadeh, Farzaneh; Mehdizadeh, Mehdi

    2014-01-01

    Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliated emotional response. MDMA is a potent monoaminergic neurotoxin with the potential of damage to brain neurons. The NF-kB family of proteins are ubiquitously expressed and are inducible transcription factors that regulate the expression of genes involved in disparate processes such as immunity and ingrowth, development and cell-death regulation. In this study we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Sixty three male Sprague-Dawley rats were injected to MDMA (10 and 20mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03mg/kg) injection. The cerebellum were then removed forcresylviolet staining, western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results showed that MDMA increased the number of cerebellar dark neurons. We observed that administration of CGS following MDMA, significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. These results indicated that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.

  3. Screening for illicit drugs in pooled human urine and urinated soil samples and studies on the stability of urinary excretion products of cocaine, MDMA, and MDEA in wastewater by hyphenated mass spectrometry techniques

    DEFF Research Database (Denmark)

    Mardal, Marie; Kinyua, Juliet; Ramin, Pedram

    2017-01-01

    were the most frequently detected illicit drugs; an analytical method was developed to quantify their excretion products. Hydroxymethoxymethamphetamine (HMMA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), HMMA sulfate (HMMA-S), benzoylecgonine (BE), and cocaethylene...... (CE) had 85–102% of initial concentration after 8 h of incubation, whereas COC and ecgonine methyl ester (EME) had 74 and 67% after 8 h, respectively. HMMA showed a net increase during 24 h of incubation (107% ± 27, n = 8), possibly due to the cleavage of HMMA conjugates, and biotransformation of MDMA....... The results suggest HMMA as analytical target for MDMA consumption in WBE, due to its stability in wastewater and its excretion as the main phase I metabolite of MDMA. Copyright © 2016 John Wiley & Sons, Ltd....

  4. Effect of intermittent exposure to ethanol and MDMA during adolescence on learning and memory in adult mice

    Directory of Open Access Journals (Sweden)

    Vidal-Infer Antonio

    2012-06-01

    Full Text Available Abstract Background Heavy binge drinking is increasingly frequent among adolescents, and consumption of 3,4-methylenedioxymethamphetamine (MDMA is often combined with ethanol (EtOH. The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on learning and memory were evaluated in adult mice using the Hebb-Williams maze. Methods Adolescent OF1 mice were exposed to EtOH (1.25 g/kg on two consecutive days at 48-h intervals over a 14-day period (from PD 29 to 42. MDMA (10 or 20 mg/kg was injected twice daily at 4-h intervals over two consecutive days, and this schedule was repeated six days later (PD 33, 34, 41 and 42, resulting in a total of eight injections. Animals were initiated in the Hebb-Williams maze on PND 64. The concentration of brain monoamines in the striatum and hippocampus was then measured. Results At the doses employed, both EtOH and MDMA, administered alone or together, impaired learning in the Hebb-Williams maze, as treated animals required more time to reach the goal than their saline-treated counterparts. The groups treated during adolescence with EtOH, alone or plus MDMA, also presented longer latency scores and needed more trials to reach the acquisition criterion score. MDMA induced a decrease in striatal DA concentration, an effect that was augmented by the co-administration of EtOH. All the treatment groups displayed an imbalance in the interaction DA/serotonin. Conclusions The present findings indicate that the developing brain is highly vulnerable to the damaging effects of EtOH and/or MDMA, since mice receiving these drugs in a binge pattern during adolescence exhibit impaired learning and memory in adulthood.

  5. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Chuang-Hsin Chiu

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA, also known as "Ecstasy", is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI. Rats were injected subcutaneously six times with MDMA (5 mg/kg or saline once daily. Eight days after the last injection, manganese ions (Mn2+ were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB, and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.

  6. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites

    International Nuclear Information System (INIS)

    Battaglia, G.; Yeh, S.Y.; O'Hearn, E.; Molliver, M.E.; Kuhar, M.J.; De Souza, E.B.

    1987-01-01

    This study examines the effects of repeated systemic administration (20 mg/kg s.c., twice daily for 4 days) of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on levels of brain monoamines, their metabolites and on the density of monoamine uptake sites in various regions of rat brain. Marked reductions (30-60%) in the concentration of 5-hydroxyindoleacetic acid were observed in cerebral cortex, hippocampus, striatum, hypothalamus and midbrain at 2 weeks after a 4-day treatment regimen of MDMA or MDA; less consistent reductions in serotonin (5-HT) content were observed in these brain regions. In addition, both MDMA and MDA caused comparable and substantial reductions (50-75%) in the density of [ 3 H]paroxetine-labeled 5-HT uptake sites in all brain regions examined. In contrast, neither MDMA nor MDA caused any widespread or long-term changes in the content of the catecholaminergic markers (i.e., norepinephrine, dopamine, 3,4 dihydroxyphenylacetic acid and homovanillic acid) or in the number of [ 3 H]mazindol-labeled norepinephrine or dopamine uptake sites in the brain regions examined. These data demonstrate that MDMA and MDA cause long-lasting neurotoxic effects with respect to both the functional and structural integrity of serotonergic neurons in brain. Furthermore, our measurement of reductions in the density of 5-HT uptake sites provides a means for quantification of the neurodegenerative effects of MDMA and MDA on presynaptic 5-HT terminals

  7. Acute behavioral effects of co-administration of mephedrone and MDMA in mice.

    Science.gov (United States)

    Budzynska, Barbara; Michalak, Agnieszka; Frankowska, Małgorzata; Kaszubska, Katarzyna; Biała, Grażyna

    2017-04-01

    Abuse of more than one psychoactive drug is becoming a global problem. Our experiments were designed to examine the effects of a concomitant administration of 3,4-methylenedioxy-methamphetamine (MDMA) and mephedrone on depression- and anxiety-like behaviors and cognitive processes in Swiss mice. In order to investigate the drug interactions the forced swimming test (FST) - an animal model of depression, the passive avoidance (PA) test - a memory and learning paradigm, as well as the elevated plus maze (EPM) test - test for anxiety level were used. The results revealed that a concomitant administration of non-effective doses of mephedrone (1mg/kg) and MDMA (1mg/kg) exerted marked antidepressive effects in the FST. Also a co-administration of mephedrone (2.5mg/kg) and MDMA (1mg/kg) displayed a pro-cognitive action in the PA paradigm. Furthermore, even though mephedrone and MDMA can, in general, exert some anxiogenic effects in mice, the concomitant administration of nonactive doses of both drugs (0.05 and 0.1mg/kg, respectively) in the EPM test, did not show any synergistic effect in our study. The effects of mephedrone and MDMA combination on mammalian organisms were attempted to be evaluated in our study and the results are described in the present report. These results may help explain the reasons for and consequences of a concomitant administration of psychoactive substances with regards to the central nervous system, while being possibly useful in the treatment of polydrug intoxication. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  8. The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study.

    Science.gov (United States)

    Mithoefer, Michael C; Wagner, Mark T; Mithoefer, Ann T; Jerome, Lisa; Doblin, Rick

    2011-04-01

    Case reports indicate that psychiatrists administered ±3,4-methylenedioxymethamphetamine (MDMA) as a catalyst to psychotherapy before recreational use of MDMA as 'Ecstasy' resulted in its criminalization in 1985. Over two decades later, this study is the first completed clinical trial evaluating MDMA as a therapeutic adjunct. Twenty patients with chronic posttraumatic stress disorder, refractory to both psychotherapy and psychopharmacology, were randomly assigned to psychotherapy with concomitant active drug (n = 12) or inactive placebo (n = 8) administered during two 8-h experimental psychotherapy sessions. Both groups received preparatory and follow-up non-drug psychotherapy. The primary outcome measure was the Clinician-Administered PTSD Scale, administered at baseline, 4 days after each experimental session, and 2 months after the second session. Neurocognitive testing, blood pressure, and temperature monitoring were performed. After 2-month follow-up, placebo subjects were offered the option to re-enroll in the experimental procedure with open-label MDMA. Decrease in Clinician-Administered PTSD Scale scores from baseline was significantly greater for the group that received MDMA than for the placebo group at all three time points after baseline. The rate of clinical response was 10/12 (83%) in the active treatment group versus 2/8 (25%) in the placebo group. There were no drug-related serious adverse events, adverse neurocognitive effects or clinically significant blood pressure increases. MDMA-assisted psychotherapy can be administered to posttraumatic stress disorder patients without evidence of harm, and it may be useful in patients refractory to other treatments.

  9. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice.

    Science.gov (United States)

    Edut, S; Rubovitch, V; Rehavi, M; Schreiber, S; Pick, C G

    2014-12-01

    Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.

  10. Ketamine for pain

    Science.gov (United States)

    Jonkman, Kelly; Dahan, Albert; van de Donk, Tine; Aarts, Leon; Niesters, Marieke; van Velzen, Monique

    2017-01-01

    The efficacy of the N-methyl-D-aspartate receptor antagonist ketamine as an analgesic agent is still under debate, especially for indications such as chronic pain. To understand the efficacy of ketamine for relief of pain, we performed a literature search for relevant narrative and systematic reviews and meta-analyses. We retrieved 189 unique articles, of which 29 were deemed appropriate for use in this review. Ketamine treatment is most effective for relief of postoperative pain, causing reduced opioid consumption. In contrast, for most other indications (that is, acute pain in the emergency department, prevention of persistent postoperative pain, cancer pain, and chronic non-cancer pain), the efficacy of ketamine is limited. Ketamine’s lack of analgesic effect was associated with an increase in side effects, including schizotypical effects. PMID:28979762

  11. MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?

    Directory of Open Access Journals (Sweden)

    Rafael eDe La Torre

    2012-11-01

    Full Text Available In vitro human studies show that the metabolism of most amphetamine-like psychostimulants is regulated by the polymorphic cytochrome P450 isozyme CYP2D6. Two compounds, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA, were selected as archetypes to discuss the translation and clinical significance of in vitro to in vivo findings. Both compounds were chosen based on their differential interaction with CYP2D6 and their high abuse prevalence in society. Methamphetamine behaves as both a weak substrate and competitive inhibitor of CYP2D6, while MDMA acts as a high affinity substrate and potent mechanism-based inhibitor (MBI of the enzyme. The MBI behavior of MDMA on CYP2D6 implies that subjects, irrespective of their genotype/phenotype, are phenocopied to the poor metabolizer phenotype. The fraction of metabolic clearance regulated by CYP2D6 for both drugs is substantially lower than expected from in vitro studies. Other isoenzymes of cytochrome P450 and a relevant contribution of renal excretion play a part in their clearance. These facts tune down the potential contribution of CYP2D6 polymorphism in the clinical outcomes of both substances. Globally, the clinical relevance of CYP2D6 polymorphism is lower than that predicted by in vitro studies.

  12. Acute toxicity of 3,4-methylenedioxymethamphetamine in the anxious mood of rats

    Institute of Scientific and Technical Information of China (English)

    Suxia Li; Jing Li; Xue Wang; Weihong Kuang; Zugui Peng; Mingsheng Huang

    2006-01-01

    BACKGROUND: The long-term neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) mainly caused by repeated exposure to MDMA or a single big dose of MDMA, which results in degeneration of serotonin terminal of central nervous system, and someone believe that the great release of serotonin transmitter in central nervous system will lead to anxious mood.OBJECTIVE: To observe the changes of anxiety related behaviors in rats after single administration of different doses of MDMA.DESIGN: A randomized control study.SETTING: Laboratory of Psychopharmacology of the Mental Health Center, West China Hospital of Sichuan University.MATERIALS: Thirty male adult Wistar rats, weighing (251.3±18.34) g, were used. MDMA were obtained from the National Institute for the Control of Pharmaceutical and Biological Products, and dissolved in saline. All the doses of the drug were administered in a volume of 1 mg/kg.METHODS: The experiment was carried out in the Laboratory of Psychopharmacology of the Mental Health Center, West China Hospital of Sichuan University in July 2003. ①The rats were randomly divided into control group (n=6) and experimental group (n=24), and then those in the latter were randomly assigned into four subgroups of MDMA 3, 5, 10 and 20 mg/kg groups, with 6 rats in each, which were administrated by single intraperitoneal injection of MDMA 3, 5, 10 and 20 mg/kg respectively, and those in the control group were administrated by single intraperitoneal injection of saline of the same volume. ② The open field test,elevated plus-maze test and social interaction test were performed immediately after administration. For the open field test, the apparatus was situated in a darkened room, illuminated by a single 60 W white light bulb located approximately 60 cm above the center of the open field. Before administration, all the rats were placed into the open field to be familiar with the open field for 5 minutes. They were observed for 45 minutes after administration. The

  13. Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice.

    Science.gov (United States)

    García-Pardo, M P; Blanco-Gandía, M C; Valiente-Lluch, M; Rodríguez-Arias, M; Miñarro, J; Aguilar, M A

    2015-12-03

    Previous studies have demonstrated that social defeat stress increases the rewarding effects of psychostimulant drugs such as cocaine and amphetamine. In the present study we evaluated the long-term effects of repeated social defeat (RSD) on the rewarding effects of ±3,4-methylenedioxymethamphetamine (MDMA) hydrochloride in the conditioned place preference (CPP) paradigm. Adolescent and young adult mice were exposed to four episodes of social defeat (on PND 29-40 and PND 47-56, respectively) and were conditioned three weeks later with 1.25 or 10mg/kg i.p. of MDMA (experiment 1). The long-term effects of RSD on anxiety, social behavior and cognitive processes were also evaluated in adult mice (experiment 2). RSD during adolescence enhanced vulnerability to priming-induced reinstatement in animals conditioned with 1.25mg/kg of MDMA and increased the duration of the CPP induced by the 10mg/kg of MDMA. The latter effect was also observed after RSD in young adult mice, as well as an increase in anxiety-like behavior, an alteration in social interaction (reduction in attack and increase in avoidance/flee and defensive/submissive behaviors) and an impairment of maze learning. These results support the idea that RSD stress increases the rewarding effects of MDMA and induces long-term alterations in anxiety, learning and social behavior in adult mice. Thus, exposure to stress may increase the vulnerability of individuals to developing MDMA dependence, which is a factor to be taken into account in relation to the prevention and treatment of this disorder. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Adaptive Plasticity in the Hippocampus of Young Mice Intermittently Exposed to MDMA Could Be the Origin of Memory Deficits.

    Science.gov (United States)

    Abad, S; Camarasa, J; Pubill, D; Camins, A; Escubedo, E

    2016-12-01

    (±)3,4-Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. This study was designed to evaluate whether MDMA exposure affects their recognition memory and hippocampal expression of plasticity markers. Mice were administered with increasing doses of MDMA once per week for 8 weeks (three times in 1 day, every 3 h) and killed 2 weeks (2w) or 3 months (3m) later. The treatment did not modify hippocampal tryptophan hydroxylase 2, a serotonergic indicator, but induced an initial reduction in dopaminergic markers in substantia nigra, which remained stable for at least 3 months. In parallel, MDMA produced a decrease in dopamine (DA) levels in the striatum at 2w, which were restored 3 months later, suggesting dopaminergic terminal regeneration (sprouting phenomenon). Moreover, recognition memory was assessed using the object recognition test. Young (2w) and mature (3m) adult mice exhibited impaired memory after 24-h but not after just 1-h retention interval. Two weeks after the treatment, animals showed constant levels of CREB but an increase in its phosphorylated form and in c-Fos expression. Brain-derived neurotrophic factor (BDNF) and especially Arc overexpression was sustained and long-lasting. We cannot rule out the absence of MDMA injury in the hippocampus being due to the generation of BDNF. The levels of NMDAR2B, PSD-95, and synaptophysin were unaffected. In conclusion, the young mice exposed to MDMA showed increased expression of early key markers of plasticity, which sometimes remained for 3 months, and suggests hippocampal maladaptive plasticity that could explain memory deficits evidenced here.

  15. Sex-Dependent Psychoneuroendocrine Effects of THC and MDMA in an Animal Model of Adolescent Drug Consumption

    Science.gov (United States)

    Llorente-Berzal, Alvaro; Puighermanal, Emma; Burokas, Aurelijus; Ozaita, Andrés; Maldonado, Rafael; Marco, Eva M.; Viveros, Maria-Paz

    2013-01-01

    Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd) 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46), MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB), whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs. PMID:24223797

  16. Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption.

    Directory of Open Access Journals (Sweden)

    Alvaro Llorente-Berzal

    Full Text Available Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46, MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB, whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs.

  17. [Ketamine as a party drug

    NARCIS (Netherlands)

    Vroegop, M.P.; Dongen, R.T.M. van; Vantroyen, B.; Kramers, C.

    2007-01-01

    Ketamine is a new party drug, which is easy to obtain. For this reason, it is possible that physicians will be increasingly confronted with users that have medical problems. Relatively few cases of ketamine intoxication with a fatal outcome have been reported thus far. Ketamine is very

  18. MDMA and the "ecstasy paradigm".

    Science.gov (United States)

    Cole, Jon C

    2014-01-01

    For nearly 30 years, there has been a steady flow of research papers highlighting the dangers of MDMA and the implications for ecstasy users. After such a long time, it would be reasonable to expect that these dangers would be obvious due to the large number of ecstasy users. The available evidence does not indicate that there are millions of ecstasy users experiencing any problems linked to their ecstasy use. The "precautionary principle" suggests that, in the absence of knowing for certain, "experts" should argue that MDMA be avoided. However, this may have been taken too far, as the dire warnings do not seem to be reducing with the lack of epidemiological evidence of clinically relevant problems. The "ecstasy paradigm" is one way of articulating this situation, in that the needs of research funders and publication bias lead to a specific set of subcultural norms around what information is acceptable in the public domain. By digging a little deeper, it is easy to find problems with the evidence base that informs the public debate around MDMA. The key question is whether it is acceptable to maintain this status quo given the therapeutic potential of MDMA.

  19. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.

    Science.gov (United States)

    Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L

    2013-05-01

    Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.

  20. Ketamine: A New Antidepressant?

    Directory of Open Access Journals (Sweden)

    Feride Karacaer

    2015-03-01

    Full Text Available Standart antidepressants are needed for the many individuals with major depressive disorder. However they do not respond adequately to treatment and because of a delay of weeks before the emergence of therapeutic effects. Recent studies show that subanesthetic dose of ketamine is efficacy and safety for the treatment of depression. Antidepressant effects of ketamine have been found to be short-lived and its psychotomimetic properties may limit the use of ketamine to depressive patients. Future research studies should focus on identifying predictors of response (pharmalogical and clinical , investigating application of different doses and routes of administration and maintaining antidepressant effect. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2015; 7(1: 30-40

  1. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Llorente-Berzal, Alvaro; Garcia-Segura, Luis M; Viveros, Maria-Paz

    2014-03-01

    Many young people consume ecstasy as a recreational drug and often in combination with cannabis. In this study, we aimed to mimic human consumption patterns and investigated, in male and female animals, the long-term effects of Δ(9) -tetrahydrocannabinol (THC) and 3,4-methylenedioxymethamphetamine (MDMA) on diverse neuroinflammation and neurotoxic markers. Male and female Wistar rats were chronically treated with increasing doses of THC and/or MDMA during adolescence. The effects of THC and/or MDMA on glial reactivity and on serotoninergic and cannabinoid systems were assessed by immunohistochemistry in the hippocampus and parietal cortex. THC increased the area staining for glial fibrilar acidic protein in both sexes. In males, both drugs, either separately or in combination, increased the proportion of reactive microglia cells [ionized calcium binding adaptor molecule 1 (Iba-1)]. In contrast, in females, each drug, administered alone, decreased of this proportion, whereas the combination of both drugs resulted in a 'normalization' to control values. In males, MDMA reduced the number of SERT positive fibres, THC induced the opposite effect and the group receiving both drugs did not significantly differ from the controls. In females, MDMA reduced the number of SERT positive fibres and the combination of both drugs counteracted this effect. THC also reduced immunostaining for CB1 receptors in females and this effect was aggravated by the combination with MDMA. Adolescent exposure of rats to THC and/or MDMA induced long-term, sex-dependent neurochemical and glial alterations, and revealed interactions between the two drugs. This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6. © 2013 The British Pharmacological Society.

  2. MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists.

    Science.gov (United States)

    Aronsen, Dane; Schenk, Susan

    2016-04-01

    Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.

  3. Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia.

    Science.gov (United States)

    Shortall, S E; Green, A R; Swift, K M; Fone, K C F; King, M V

    2013-02-01

    Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α(1) -adrenoceptor and dopamine D(1) receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  4. Êxtase (MDMA: efeitos farmacológicos e tóxicos, mecanismo de ação e abordagem clínica Ecstasy (MDMA: pharmacological and toxic effects, mechanism of action and clinical management

    Directory of Open Access Journals (Sweden)

    Caroline Addison Carvalho Xavier

    2008-01-01

    Full Text Available CONTEXTO: O 3,4-metilenodioximetanfetamina (MDMA, êxtase é um derivado da anfetamina, cujo consumo por jovens tem aumentado. OBJETIVOS: Conduzir uma revisão de literatura sobre os aspectos farmacológicos e fisiopatológicos do MDMA, incluindo o mecanismo de ação que possa explicar os efeitos neurotóxicos e a toxicidade aguda e a longo prazo. MÉTODOS: Revisão da literatura usando as palavras-chave: 3,4-methylenedioxymethamphetamine, ecstasy, neurotoxicity, intoxication, drug abuse, por intermédio do MEDLINE e LILACS. A busca incluiu todos os artigos publicados no período entre 1985 e 2007. RESULTADOS: Ainda existem muitas questões sem respostas sobre a farmacologia do êxtase e a fisiopatologia dos efeitos tóxicos dessa substância. A simples descrição do mecanismo de ação é insuficiente para explicar todos os efeitos induzidos pelo êxtase. O mecanismo exato responsável por mediar os efeitos tóxicos do MDMA sobre os neurônios da serotonina precisa ser elucidado. CONCLUSÕES: Existem poucas informações na literatura sobre a farmacologia e o mecanismo de ação do MDMA que possam explicar os efeitos neurotóxicos e outros efeitos fisiopatológicos. São necessários mais estudos para que o profissional de saúde possa obter informações e conhecimentos a fim de combater os efeitos terríveis do êxtase na população jovem vulnerável.BACKGROUND: The consumption of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy by young people increased in the past years. OBJECTIVES: To conduct a literature review on the pharmacology of MDMA and particularly with respect to the putative mechanism of action implicated in the acute and long-term toxicity and neurotoxic effects. METHODS: A literature review using the key words: 3,4-methylenedioxymethamphetamine, ecstasy, neurotoxicity, intoxication, abuse drugs was performed in the databases MEDLINE and LILACS. The search covered all articles published between 1985

  5. Versatility of Ketamine

    Directory of Open Access Journals (Sweden)

    MC Rajesh

    2017-07-01

    Full Text Available In the present day anaesthesia practice, ketamine is not routinely used as an induction agent. But it is a popular pharmacological agent in variety of pain conditions from nociceptive to neuropathic pains and for paediatric procedural sedation outside operation theatre complex. Of late, there is a renewed enthusiasm with regard to use of Ketamine for variety of indications like pain relief in pre hospital trauma victims, as an antidepressant, anticonvulsant, to prevent post operative sore throat and even in renal colic. Following text is a narrative review on the recent evidences with regard to pharmacology of the agent for its extended indications other than in day to day anaesthesia practice.

  6. Molecular Imaging on the Cerebral Pathological Damage Target of Ketamine Dependence

    Directory of Open Access Journals (Sweden)

    YANG Hong-jie1,2;HU Shu1;JIA Shao-wei1;GAO Zhou1;WANG Tong3;ZHAO Zheng-qin1

    2014-02-01

    Full Text Available To study the cerebral pathological damage target which result from abusing ketamine through molecular imaging techniques, 20 cases of ketamine dependent patients looking for treatment at the Peking University Shenzhen Hospital and 31 healthy volunteers were included in this study, all of them got brain SPECT DAT imaging. The results were analyzed by SPSS 16.0. The bilateral caudate nucleus and putamen of healthy volunteers were roughly equally large, and the radioactive distribution of DAT in healthy volunteers were uniform and symmetrical. The bilateral corpora striatum showed typical “panda eyes” pattern. But the bilateral corpora striatum of ketamine dependent patients got smaller in shape, got disorders in pattern, and the radioactive distribution of DAT reduced or defected or even got disturbance and with much more non-specific radioactive. The V, m and Ra of bilateral corpora striatum in ketamine dependent patients were (21.03±3.15) cm3, (22.08±3.31) g and (5.37±1.08) %, respectively, which were significantly lower than the healthy volunteers (p<0.01. The cerebral pathological damage target which resulted from abusing ketamine was similar to those of compound codeine phosphate antitussive solution dependence, heroin dependence and MDMA dependence, all of these psychoactive substances damaged the function of DAT.

  7. Evaluation of three rapid oral fluid test devices on the screening of multiple drugs of abuse including ketamine.

    Science.gov (United States)

    Tang, Magdalene H Y; Ching, C K; Poon, Simon; Chan, Suzanne S S; Ng, W Y; Lam, M; Wong, C K; Pao, Ronnie; Lau, Angus; Mak, Tony W L

    2018-05-01

    Rapid oral fluid testing (ROFT) devices have been extensively evaluated for their ability to detect common drugs of abuse; however, the performance of such devices on simultaneous screening for ketamine has been scarcely investigated. The present study evaluated three ROFT devices (DrugWipe ® 6S, Ora-Check ® and SalivaScreen ® ) on the detection of ketamine, opiates, methamphetamine, cannabis, cocaine and MDMA. A liquid chromatography tandem mass spectrometry (LCMS) assay was firstly established and validated for confirmation analysis of the six types of drugs and/or their metabolites. In the field test, the three ROFT devices were tested on subjects recruited from substance abuse clinics/rehabilitation centre. Oral fluid was also collected using Quantisal ® for confirmation analysis. A total of 549 samples were collected in the study. LCMS analysis on 491 samples revealed the following drugs: codeine (55%), morphine (49%), heroin (40%), methamphetamine (35%), THC (8%), ketamine (4%) and cocaine (2%). No MDMA-positive cases were observed. Results showed that the overall specificity and accuracy were satisfactory and met the DRUID standard of >80% for all 3 devices. Ora-Check ® had poor sensitivities (ketamine 36%, methamphetamine 63%, opiates 53%, cocaine 60%, THC 0%). DrugWipe ® 6S showed good sensitivities in the methamphetamine (83%) and opiates (93%) tests but performed relatively poorly for ketamine (41%), cocaine (43%) and THC (22%). SalivaScreen ® also demonstrated good sensitivities in the methamphetamine (83%) and opiates (100%) tests, and had the highest sensitivity for ketamine (76%) and cocaine (71%); however, it failed to detect any of the 28 THC-positive cases. The test completion rate (proportion of tests completed with quality control passed) were: 52% (Ora-Check ® ), 78% (SalivaScreen ® ) and 99% (DrugWipe ® 6S). Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Synthesis of isotopically labeled ketamine

    OpenAIRE

    Stuchlíková, Lucie

    2011-01-01

    In this work were synthesized ketamine isotopomers. Ketamine is used in human medicine and veterinary sectors. It has very broad spectrum of pharmacological effects: anesthetic, analgesic, hallucinogenic, bronchodilator, cardiovascular and antidepressive, which is currently in the research. At first was synthesized precursor of ketamine, N- desmethylketamine which was subsequently labeled the deuterium, tritium and carbon- 14. For the determination of purity and identity mass spectrometry and...

  9. Recreational 3,4-methylenedioxymethamphetamine or 'ecstasy': Current perspective and future research prospects.

    Science.gov (United States)

    Parrott, Andrew C; Downey, Luke A; Roberts, Carl A; Montgomery, Cathy; Bruno, Raimondo; Fox, Helen C

    2017-08-01

    The purpose of this article is to debate current understandings about the psychobiological effects of recreational 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'), and recommend theoretically-driven topics for future research. Recent empirical findings, especially those from novel topic areas were reviewed. Potential causes for the high variance often found in group findings were also examined. The first empirical reports into psychobiological and psychiatric aspects from the early 1990s concluded that regular users demonstrated some selective psychobiological deficits, for instance worse declarative memory, or heightened depression. More recent research has covered a far wider range of psychobiological functions, and deficits have emerged in aspects of vision, higher cognitive skill, neurohormonal functioning, and foetal developmental outcomes. However, variance levels are often high, indicating that while some recreational users develop problems, others are less affected. Potential reasons for this high variance are debated. An explanatory model based on multi-factorial causation is then proposed. A number of theoretically driven research topics are suggested, in order to empirically investigate the potential causes for these diverse psychobiological deficits. Future neuroimaging studies should study the practical implications of any serotonergic and/or neurohormonal changes, using a wide range of functional measures.

  10. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    2010-02-01

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  11. Cocaine, MDMA and methamphetamine residues in wastewater: Consumption trends (2009-2015) in South East Queensland, Australia.

    Science.gov (United States)

    Lai, Foon Yin; O'Brien, Jake W; Thai, Phong K; Hall, Wayne; Chan, Gary; Bruno, Raimondo; Ort, Christoph; Prichard, Jeremy; Carter, Steve; Anuj, Shalona; Kirkbride, K Paul; Gartner, Coral; Humphries, Melissa; Mueller, Jochen F

    2016-10-15

    Wastewater analysis, or wastewater-based epidemiology, has become a common tool to monitor trends of illicit drug consumption around the world. In this study, we examined trends in cocaine, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine consumption by measuring their residues in wastewater from two wastewater treatment plants in Australia (specifically, an urban and a rural catchment, both in South East Queensland) between 2009 and 2015. With direct injection of the samples, target analytes were identified and quantified using liquid chromatography-mass spectrometry. Cocaine and MDMA residues and metabolites were mainly quantifiable in the urban catchment while methamphetamine residues were consistently detected in both urban and rural catchments. There was no consistent trend in the population normalised mass loads observed for cocaine and MDMA at the urban site between 2009 and 2015. In contrast, there was a five-fold increase in methamphetamine consumption over this period in this catchment. For methamphetamine consumption, the rural area showed a very similar trend as the urban catchment starting at a lower baseline. The observed increase in per capita loads of methamphetamine via wastewater analysis over the past six years in South East Queensland provides objective evidence for increased methamphetamine consumption in the Australian population while the use of other illicit stimulants remained relatively stable. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The safety and efficacy of ±3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study

    Science.gov (United States)

    Mithoefer, Michael C; Wagner, Mark T; Mithoefer, Ann T; Jerome, Lisa; Doblin, Rick

    2011-01-01

    Case reports indicate that psychiatrists administered ±3,4-methylenedioxymethamphetamine (MDMA) as a catalyst to psychotherapy before recreational use of MDMA as ‘Ecstasy’ resulted in its criminalization in 1985. Over two decades later, this study is the first completed clinical trial evaluating MDMA as a therapeutic adjunct. Twenty patients with chronic posttraumatic stress disorder, refractory to both psychotherapy and psychopharmacology, were randomly assigned to psychotherapy with concomitant active drug (n = 12) or inactive placebo (n = 8) administered during two 8-h experimental psychotherapy sessions. Both groups received preparatory and follow-up non-drug psychotherapy. The primary outcome measure was the Clinician-Administered PTSD Scale, administered at baseline, 4 days after each experimental session, and 2 months after the second session. Neurocognitive testing, blood pressure, and temperature monitoring were performed. After 2-month follow-up, placebo subjects were offered the option to re-enroll in the experimental procedure with open-label MDMA. Decrease in Clinician-Administered PTSD Scale scores from baseline was significantly greater for the group that received MDMA than for the placebo group at all three time points after baseline. The rate of clinical response was 10/12 (83%) in the active treatment group versus 2/8 (25%) in the placebo group. There were no drug-related serious adverse events, adverse neurocognitive effects or clinically significant blood pressure increases. MDMA-assisted psychotherapy can be administered to posttraumatic stress disorder patients without evidence of harm, and it may be useful in patients refractory to other treatments. PMID:20643699

  13. Hair MDMA samples are consistent with reported ecstasy use: findings from a study investigating effects of ecstasy on mood and memory.

    Science.gov (United States)

    Scholey, A B; Owen, L; Gates, J; Rodgers, J; Buchanan, T; Ling, J; Heffernan, T; Swan, P; Stough, C; Parrott, A C

    2011-01-01

    Our group has conducted several Internet investigations into the biobehavioural effects of self-reported recreational use of MDMA (3,4-methylenedioxymethamphetamine or Ecstasy) and other psychosocial drugs. Here we report a new study examining the relationship between self-reported Ecstasy use and traces of MDMA found in hair samples. In a laboratory setting, 49 undergraduate volunteers performed an Internet-based assessment which included mood scales and the University of East London Drug Use Questionnaire, which asks for history and current drug use. They also provided a hair sample for determination of exposure to MDMA over the previous month. Self-report of Ecstasy use and presence in hair samples were consistent (p happiness and higher self-reported stress. Self-reported Ecstasy use, but not presence in hair, was also associated with decreased tension. Different psychoactive drugs can influence long-term mood and cognition in complex and dynamically interactive ways. Here we have shown a good correspondence between self-report and objective assessment of exposure to MDMA. These data suggest that the Internet has potentially high utility as a useful medium to complement traditional laboratory studies into the sequelae of recreational drug use. Copyright © 2010 S. Karger AG, Basel.

  14. MDMA ('Ecstasy'), oxytocin and vasopressin modulate social preference in rats: A role for handling and oxytocin receptors.

    Science.gov (United States)

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; Couto, Kalliu; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    In laboratory rats, peripheral administration of the neuropeptides oxytocin (OT) and vasopressin (AVP) induces similar prosocial effects (i.e. increased adjacent lying) to the party drug 3,4-methylenedioxymethamphetamine (MDMA), which are sensitive to vasopressin V 1A receptor (V 1A R) antagonism. Here, we employed a social preference paradigm to further compare the prosocial effects of OT, AVP and MDMA. We also investigated the possible involvement of the V 1A R and oxytocin receptor (OTR) in rodent social preference. The social preference paradigm measures investigation times towards an empty wire cage (presented for 4min) followed by an identical cage containing a novel rat (also presented for 4min). Social preference is defined as greater investigation time towards the inhabited cage than the empty cage. Results indicated that well-handled rats exhibited no social preference at baseline, while intraperitoneally injected MDMA (5mg/kg), OT (0.5mg/kg) and AVP (0.005mg/kg) increased social preference. However, this effect was primarily due to reduced investigation of the empty cage. In contrast, rats that received minimal prior handling displayed a social preference at baseline, while MDMA (5mg/kg), OT (0.5mg/kg) and AVP (0.005mg/kg) reduced investigation times towards both the empty and inhabited cages. Lower doses of MDMA, OT and AVP were ineffective. The OTR antagonist Compound 25 (C25, 5mg/kg), but not the V 1A R antagonist SR49059 (1mg/kg), reduced the baseline social preference seen in minimally-handled rats and prevented the social preference induced by OT and AVP (but not MDMA) in well-handled rats. Overall, these results further confirm prosocial actions of MDMA, OT and AVP, which are dependent on handling history. These findings also indicate that social preference is sensitive to OTR rather than V 1A R modulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3,4- methylenedioxymethamphetamine ("Ecstasy").

    Science.gov (United States)

    Taylor, J R; Jentsch, J D

    2001-07-15

    Psychomotor stimulant drugs can produce long-lasting changes in neurochemistry and behavior after multiple doses. In particular, neuroadaptations within corticolimbic brain structures that mediate incentive learning and motivated behavior have been demonstrated after chronic exposure to cocaine, d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). As stimulus-reward learning is likely relevant to addictive behavior (i.e., augmented conditioned reward and stimulus control of behavior), we have investigated whether prior repeated administration of psychomotor stimulant drugs (of abuse, including cocaine, d-amphetamine, or MDMA, would affect the acquisition of Pavlovian approach behavior. Water-deprived rats were tested for the acquisition of Pavlovian approach behavior after 5 days treatment with cocaine (15-20 mg/kg once or twice daily), d-amphetamine (2.5 mg/kg once or twice daily), or MDMA (2.5 mg/kg twice daily) followed by a 7-day, drug-free period. Prior repeated treatment with cocaine or d-amphetamine produced a significant enhancement of acquisition of Pavlovian approach behavior, indicating accelerated stimulus-reward learning, whereas MDMA administration produced increased inappropriate responding, indicating impulsivity. Abnormal drug-induced approach behavior was found to persist throughout the testing period. These studies demonstrate that psychomotor stimulant-induced sensitization can produce long-term alterations in stimulus-reward learning and impulse control that may contribute to the compulsive drug taking that typifies addiction.

  16. Ketamine and the Obstetric Patient

    African Journals Online (AJOL)

    1974-04-13

    Apr 13, 1974 ... Dream recall was more frequent in the ketamine series, but most dreams seemed to be pleasant in nature (Table ID. Total No. of cases. Definite 1Painful factual recall. Painless. Doubtful recall. Ketamine anaesthesia was administered to 135 mothers undergoing Caesarean section. The incidence of aware-.

  17. Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects.

    Science.gov (United States)

    Reneman, Liesbeth; de Win, Maartje M L; van den Brink, Wim; Booij, Jan; den Heeten, Gerard J

    2006-03-01

    Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivoneuroimaging tools have begun to provide insights into the effects of ecstasy on the human brain. Single photon emission computed tomography (SPECT), positron emission computed tomography (PET) and proton magnetic resonance spectroscopy (1H-MRS) studies which have evaluated ecstasy's neurotoxic potential will be reviewed and discussed in terms of technical aspects, conceptual issues and future prospects. Although PET and SPECT may be limited by several factors such as the low cortical uptake and the use of a non-optimal reference region (cerebellum) the few studies conducted so far provide suggestive evidence that people who heavily use ecstasy are at risk of developing subcortical, and probably also cortical reductions in serotonin transporter (SERT) densities, a marker of 5-HT neurotoxicity. There seem to be dose-dependent and transient reductions in SERT for which females may be more vulnerable than males. 1H-MRS appears to be a less sensitive technique for studying ecstasy's neurotoxic potential. Whether individuals with a relatively low ecstasy exposure also demonstrate loss of SERT needs to be determined. Because most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causal links can be implied, longitudinal studies in human ecstasy users are needed to draw definite conclusions.

  18. Ketamine induced renal fibrosis in a ketamine addition rat model

    Directory of Open Access Journals (Sweden)

    Mei-Yu Jang

    2017-09-01

    Conclusion: Ketamine treatment not only induced cystitis-like syndrome, but also renal fibrosis. These renal interstitial fibrosis changes may be induced by the TGF-β pathway. These preliminary results can provide valuable information from a clinical perspective.

  19. [Psychedelics and quasi-psychedelics in the light of contemporary research: medical cannabis, MDMA, salvinorin A, ibogaine and ayahuasca].

    Science.gov (United States)

    Szabó, Attila; Kazai, Anita; Frecska, Ede; Brys, Zoltán

    2015-09-01

    In lack of professional research and appropriate concepts our scientific knowledge of psychedelic agents is limited. According to the long-held official view these drugs are entirely harmful and have no medical use. However, a recent surge of clinical and pharmacological studies in the field indicates that many psychedelic-like agents have therapeutic potentials under proper circumstances. In this paper, from a biomedical and psychological perspective, we provide a brief review of the general effects and promising treatment uses of medical cannabis, 3,4-methylenedioxy-methamphetamine (MDMA), salvinorin A, ibogaine and the dimethyltryptamine-(DMT)-containing ayahuasca. In Hungary - similarly to many other countries - these compounds are classified as "narcotic drugs" and their research is difficult due to strict regulations.

  20. 21 CFR 522.1222a - Ketamine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ketamine. 522.1222a Section 522.1222a Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222a Ketamine. (a) Specifications. Each milliliter contains ketamine hydrochloride equivalent to 100 milligrams (mg...

  1. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Science.gov (United States)

    2011-01-01

    Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA. PMID:22114930

  2. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Directory of Open Access Journals (Sweden)

    Mayado Andrea

    2011-11-01

    Full Text Available Abstract Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p. 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.. IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v. prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA.

  3. Ketamine-snorting associated cystitis.

    Science.gov (United States)

    Chen, Chung-Hsien; Lee, Ming-Huei; Chen, Yi-Chang; Lin, Ming-Fong

    2011-12-01

    Ketamine hydrochloride, commonly used as a pediatric anesthetic agent, is an N-methyl-D-aspartic (NMDA) acid receptor antagonist with rapid onset and short duration of action. It produces a cataleptic-like state where the patient is dissociated from the surrounding environment by direct action on the cortex and limbic system. It has emerged as an increasingly popular choice among young drug users, especially within dance club venues. Cases of bladder dysfunction among recreational ketamine users were reported since Shahani et al first reported nine cases of ketamine-associated ulcerative cystitis in 2007. We report on four patients who had history of ketamine abuse, presenting with dysuria, fluctuating lower urinary tract symptoms (LUTS), lower abdominal or perineal pain, and impaired functional bladder capacities. Urinalysis showed pyuria and microhematuria. Urine culture was sterile. Bladder ulceration with severe diffuse hemorrhage and low bladder capacity were noted under anesthetized cystoscopic examination. Transurethral bladder mucosa biopsy was consistent with chronic cystitis. Cessation of ketamine abuse was the milestone of treatment, followed by the administration of mucosal protective agents, such as pentosan polysulphate or hyaluronic acid. Suprapubic pain was improved in three patients during follow-up. However, the outcome of treatment depends on the severity of the disease process, similar to that of interstitial cystitis (IC). Copyright © 2011. Published by Elsevier B.V.

  4. Anesthetic efficacy of ketamine-diazepam, ketamine-xylazine, and ketamine-acepromazine in Caspian Pond turtles (Mauremys caspica).

    Science.gov (United States)

    Adel, Milad; Sadegh, Amin Bigham; Arizza, Vincenzo; Abbasi, Hossein; Inguglia, Luigi; Saravi, Hasan Nasrollahzadeh

    2017-01-01

    The objective of this study was to assess the efficacy of different anesthetic drug combinations on the Caspian Pond turtles ( Mauremys caspica ). Three groups of the Caspian Pond turtles ( n = 6) were anesthetized with three different drug combinations. Initially, a pilot study was conducted to determine the best drug doses for the anesthetization of the turtles, and according to these results, ketamine-diazepam (120 mg/kg ketamine hydrochloride [5%] and 2 mg/kg diazepam [5%]), ketamine-acepromazine (120 mg/kg ketamine hydrochloride [5%] and 1 mg/kg acepromazine [1%]), and ketamine-xylazine (120 mg/kg ketamine hydrochloride [5%] and 1 mg/kg xylazine [2%]) were injected intramuscularly. The onset times of anesthetization and the recovery time were measured. Statistical analysis of the data was performed using one-way analysis of variance followed by t -tests, and P turtles, respectively, compared to that obtained with the ketamine-acepromazine combination and 64% (male turtles) and 50% (female turtles) shorter than that obtained with the ketamine-xylazine combination. Further, the recovery time, in male turtles, was 17% shorter in animals treated with the first drug combination than those treated with the ketamine-acepromazine combination and 37% shorter than those treated with the ketamine-xylazine combination. The recovery time, in female turtles, did not seem to be significantly different among treatments. The study showed that the ketamine-diazepam drug combination is the anesthetic combination with the fastest onset time and shortest recovery time.

  5. One day access to a running wheel reduces self-administration of d-methamphetamine, MDMA and Methylone

    Science.gov (United States)

    Aarde, Shawn M.; Miller, Michelle L.; Creehan, Kevin M.; Vandewater, Sophia A.; Taffe, Michael A.

    2015-01-01

    Background Exercise influences drug craving and consumption in humans and drug self-administration in laboratory animals, but the effects can be variable. Improved understanding of how exercise affects drug intake or craving would enhance applications of exercise programs to human drug users attempting cessation. Methods Rats were trained in the intravenous self-administration (IVSA) of d-methamphetamine (METH; 0.05 mg/kg/inf), 3,4-methylenedioxymethamphetamine (MDMA; 0.5 mg/kg/inf) or methylone (0.5 mg/kg/inf). Once IVSA was established, the effect of ~22 hrs of wheel access in the home cage on subsequent drug taking was assessed in a two cohort crossover design. Results Provision of home cage wheel access during the day prior to IVSA sessions significantly decreased the self-administration of METH, MDMA and methylone. At the individual level, there was no correlation between the amount a rat used the wheel and the size of the individual’s decrease in drug intake. Conclusions Wheel access can reduce self-administration of a variety of psychomotor stimulants. It does so immediately, i.e., without a need for weeks of exercise prior to drug access. This study therefore indicates that future mechanistic investigations should focus on acute effects of exercise. In sum, the results predict that exercise programs can be used to decrease stimulant drug use in individuals even with no exercise history and an established drug taking pattern. PMID:25863714

  6. Ketamine in the treatment of acute pain.

    Science.gov (United States)

    Brinck, Elina; Kontinen, Vesa

    2017-01-01

    Ketamine is an old anesthetic agent that relieves pain by reducing central sensitization in the central nervous system. This is advantageous for patients suffering from severe pain prior to surgery or are using a strong opioid. The S enantiomer of ketamine used for anesthesia is more powerful than racemic ketamine. The ideal dose of ketamine for pain relief is not yet known, and its adverse effects on the central nervous system, including hallucinations, sedation, and diplopia have limited its use in pain management. The significance of these effects at low doses is probably less than expected, particularly if benzodiazepines or an alpha-2 agonist, such as dexmedetomidine, are administered in addition to ketamine.

  7. Suppressive effects of ketamine on macrophage functions

    International Nuclear Information System (INIS)

    Chang Yi; Chen, T.-L.; Sheu, J.-R.; Chen, R.-M.

    2005-01-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 μM ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 μM, ketamine caused a release of lactate dehydrogenase and cell death. Ketamine, at 10 and 100 μM, did not affect the chemotactic activity of macrophages. Administration of 1000 μM ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-α, IL-1β, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-α, IL-1β, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-α, IL-1β, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 μM) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity

  8. Crime and Violence among MDMA Users in the United States

    Directory of Open Access Journals (Sweden)

    Michael G. Vaughn

    2015-03-01

    Full Text Available The question of whether MDMA use is associated with increased crime and violence has not been adequately explored especially in nationally representative samples. This study used data from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC to assess the association between MDMA use and violent and non-violent antisocial behavior while controlling for sociodemographic variables, lifetime psychiatric, alcohol and drug use disorders, and family history of antisocial behavior. MDMA users, both male and female, were involved in a number of crimes in acts of violence including drunk driving, shoplifting, theft, intimate partner violence, and fighting. Notably, female MDMA users were more antisocial than male non-MDMA users. Although adjusting the results for numerous confounds attenuated the relationships, MDMA users were still at significantly greater odds of engaging in violent and nonviolent crime than non-MDMA users. Although MDMA has been considered a facilitator of empathy and closeness, the current study suggests a dark side as MDMA is associated with a broad array of crimes and transgressions. Additional tests of the MDMA-crime link are needed to properly inform policy.

  9. Electromembrane extraction of stimulating drugs from undiluted whole blood

    DEFF Research Database (Denmark)

    Jamt, Ragnhild Elén Gjulem; Gjelstad, Astrid; Eibak, Lars Erik Eng

    2012-01-01

    For the first time, electromembrane extraction (EME) of six basic drugs of abuse from undiluted whole blood and post mortem blood in a totally stagnant system is reported. Cathinone, methamphetamine, 3,4-methylenedioxy-amphetamine (MDA), 3,4-methylenedioxy-methamphet-amine (MDMA), ketamine and 2...

  10. Ketamine: stimulating antidepressant treatment?

    Science.gov (United States)

    Malhi, Gin S; Byrow, Yulisha; Cassidy, Frederick; Cipriani, Andrea; Demyttenaere, Koen; Frye, Mark A; Gitlin, Michael; Kennedy, Sidney H; Ketter, Terence A; Lam, Raymond W; McShane, Rupert; Mitchell, Alex J; Ostacher, Michael J; Rizvi, Sakina J; Thase, Michael E; Tohen, Mauricio

    2016-05-01

    The appeal of ketamine - in promptly ameliorating depressive symptoms even in those with non-response - has led to a dramatic increase in its off-label use. Initial promising results await robust corroboration and key questions remain, particularly concerning its long-term administration. It is, therefore, timely to review the opinions of mood disorder experts worldwide pertaining to ketamine's potential as an option for treating depression and provide a synthesis of perspectives - derived from evidence and clinical experience - and to consider strategies for future investigations. G.S.M. Grant/research support: National Health Medical Research Council, NSW Health, Ramsay Health, American Foundation for Suicide Prevention, AstraZeneca, Eli Lilly & Co, Organon, Pfizer, Servier, and Wyeth; has been a speaker for Abbott, AstraZeneca, Eli Lilly & Co, Janssen Cilag, Lundbeck, Pfizer, Ranbaxy, Servier, and Wyeth; consultant: AstraZeneca, Eli Lilly & Co, Janssen Cilag, Lundbeck, and Servier. M.A.F. Grant support: AssureRx, Janssen Research & Development, Mayo Foundation, Myriad, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institute of Mental Health (NIMH), Pfizer. Consultant (Mayo): Janssen Research & Development, LLC, Mitsubishi Tanabe Pharma Corporation, Myriad Genetics, Neuralstem Inc., Sunovion, Supernus Pharmaceuticals, Teva Pharmaceuticals. CME/travel support: American Physician Institute, CME Outfitters. Financial interest/Mayo Clinic 2016: AssureRx. S.H.K. Grant/research support: Brain Canada, Bristol Meyer Squibb, CIHR, Janssen, Johnson & Johnson, Lundbeck, Ontario Brain Institute, Pfizer, Servier, St. Jude Medical, Sunovion. T.A.K. Grant/research support (through Stanford University): Sunovion Pharmaceuticals and Merck & Co., Inc.; consultant/advisory board bember: Allergan, Inc., Janssen Pharmaceuticals, Myriad Genetic Laboratories, Inc., and Sunovion Pharmaceuticals; lecture honoraria (not Speaker's Bureau payments): Glaxo

  11. Potential long-term effects of MDMA on the basal ganglia-thalamocortical circuit: a proton MR spectroscopy and diffusion-tensor imaging study.

    Science.gov (United States)

    Liu, Hua-Shan; Chou, Ming-Chung; Chung, Hsiao-Wen; Cho, Nai-Yu; Chiang, Shih-Wei; Wang, Chao-Ying; Kao, Hung-Wen; Huang, Guo-Shu; Chen, Cheng-Yu

    2011-08-01

    To investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA, commonly known as "ecstasy") on the alterations of brain metabolites and anatomic tissue integrity related to the function of the basal ganglia-thalamocortical circuit by using proton magnetic resonance (MR) spectroscopy and diffusion-tensor MR imaging. This study was approved by a local institutional review board, and written informed consent was obtained from all subjects. Thirty-one long-term (>1 year) MDMA users and 33 healthy subjects were enrolled. Proton MR spectroscopy from the middle frontal cortex and bilateral basal ganglia and whole-brain diffusion-tensor MR imaging were performed with a 3.0-T system. Absolute concentrations of metabolites were computed, and diffusion-tensor data were registered to the International Consortium for Brain Mapping template to facilitate voxel-based group comparison. The mean myo-inositol level in the basal ganglia of MDMA users (left: 4.55 mmol/L ± 2.01 [standard deviation], right: 4.48 mmol/L ± 1.33) was significantly higher than that in control subjects (left: 3.25 mmol/L ± 1.30, right: 3.31 mmol/L ± 1.19) (P 50 voxels). Increased myo-inositol and Cho concentrations in the basal ganglia of MDMA users are suggestive of glial response to degenerating serotonergic functions. The abnormal metabolic changes in the basal ganglia may consequently affect the inhibitory effect of the basal ganglia to the thalamus, as suggested by the increased FA in the thalamus and abnormal changes in water diffusion in the corresponding basal ganglia-thalamocortical circuit. © RSNA, 2011.

  12. Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations.

    Science.gov (United States)

    da Silva, Diana Dias; Silva, Elisabete; Carvalho, Félix; Carmo, Helena

    2014-06-01

    Hepatic injury after 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) intoxications is highly unpredictable and does not seem to correlate with either dosage or frequency of use. The mechanisms involved include the drug metabolic bioactivation and the hyperthermic state of the liver triggered by its thermogenic action and exacerbated by the environmental circumstances of abuse at hot and crowded venues. We became interested in understanding the interaction between ecstasy and its metabolites generated in vivo as users are always exposed to mixtures of parent drug and metabolites. With this purpose, Hep G2 cells were incubated with MDMA and its main human metabolites methylenedioxyamphetamine (MDA), α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA), individually and in mixture (drugs combined in proportion to their individual EC01 ), at normal (37 °C) and hyperthermic (40.5 °C) conditions. After 48 h, viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extensive concentration-response analysis was performed with single drugs and the parameters of the individual non-linear logit fits were used to predict joint effects using the well-founded models of concentration addition (CA) and independent action (IA). Experimental testing revealed that mixture effects on cell viability conformed to CA, for both temperature settings. Additionally, substantial combination effects were attained even when each substance was present at concentrations that individually produced unnoticeable effects. Hyperthermic incubations dramatically increased the toxicity of the tested drug and metabolites, both individually and combined. These outcomes suggest that MDMA metabolism has hazard implications to liver cells even when metabolites are found in low concentrations, as they contribute additively to the overall toxic effect of MDMA. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study.

    Science.gov (United States)

    Mithoefer, Michael C; Wagner, Mark T; Mithoefer, Ann T; Jerome, Lisa; Martin, Scott F; Yazar-Klosinski, Berra; Michel, Yvonne; Brewerton, Timothy D; Doblin, Rick

    2013-01-01

    We report follow-up data evaluating the long-term outcomes for the first completed trial of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for chronic, treatment-resistant post-traumatic stress disorder (PTSD) (Mithoefer et al., 2011). All of the 19 subjects who received MDMA-assisted treatment in the original trial participated in the long-term follow-up (LTFU), with 16 out of 19 completing all of the long-term outcome measures, which were administered from 17 to 74 months after the original study's final MDMA session (mean = 45.4; SD = 17.3). Our primary outcome measure used was the Clinician-Administered PTSD Scale (CAPS). Secondary outcome measures were the Impact of Events Scale-Revised (IES-R) and the Neuroticism Extroversion Oppenness Personality Inventory-Revised (NEO PI-R) Personality Inventory. We also collected a long-term follow-up questionnaire. Results for the 16 CAPS completers showed there were no statistical differences between mean CAPS score at LTFU (mean = 23.7; SD = 22.8) (t (matched) = 0.1; df = 15, p = 0.91) and the mean CAPS score previously obtained at Study Exit (mean = 24.6, SD = 18.6). On average, subjects maintained statistically and clinically-significant gains in symptom relief, although two of these subjects did relapse. It was promising that we found the majority of these subjects with previously severe PTSD who were unresponsive to existing treatments had symptomatic relief provided by MDMA-assisted psychotherapy that persisted over time, with no subjects reporting harm from participation in the study.

  14. A consideration of ketamine dreams.

    Science.gov (United States)

    Hejja, P; Galloon, S

    1975-01-01

    This study was designed to see whether covering of the eyes during and after ketamine anaesthesia would reduce the incidence of dreams. One hundred and fifty patients, randomly divided into three groups, underwent therapeutic abortion with ketamine as the sole anaesthesia. One hundred patients had their eyes completely covered, 50 in the operating room only and 50 in the operating room and in the recovery room. The third 50 were controls, with their eyes uncovered. All patients were questioned post-operatively about dreams, nausea and vomiting, headache, dizziness and experiences, and also how frequently they dreamed at home. Although covering the eyes in the recovery room only reduced the incidence of dreams marginally, it became obvious that the patients who dreamed after ketamine (in all 3 groups) were those who normally dreamed at home. There were 82 patients who were recorded as not being home-dreamers, and only two of these dreamed after ketamine. In contrast, of the 68 home-dreamers, 50 dreamed after ketamine, and 17 of these had unpleasant dreams. In the home-dreamers, covering the eyes reduced the incidence of dreams from 86 per cent in Group 1 to 72 per cent in Group 2 and 64 per cent in Group 3. It is suggested that goggles may be advantageous when dealing with home-dreamers, and a question about the patient's tendency to dream should be included in the preoperative questioning. Alterations in premedication and the use of a quiet dark room during recovery may even further reduce unpleasant dreams in this group.

  15. Late preconditioning is blocked by racemic ketamine, but not by S(+)-ketamine

    NARCIS (Netherlands)

    Müllenheim, J.; Rulands, R.; Wietschorke, T.; Frässdorf, J.; Preckel, B.; Schlack, W.

    2001-01-01

    Racemic ketamine blocks K(ATP) channels in isolated cells and abolishes short-term cardioprotection against prolonged ischemia. We investigated the effects of racemic ketamine and S(+)-ketamine on ischemic late preconditioning (LPC) in the rabbit heart in vivo. A coronary occluder was chronically

  16. Ketamine, but not S(+)-ketamine, blocks ischemic preconditioning in rabbit hearts in vivo

    NARCIS (Netherlands)

    Müllenheim, J.; Frässdorf, J.; Preckel, B.; Thämer, V.; Schlack, W.

    2001-01-01

    BACKGROUND: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S(+)-ketamine on ischemic preconditioning in the rabbit heart in vivo. METHODS: In 46

  17. MDMA reinstates cocaine-seeking behaviour in mice.

    Science.gov (United States)

    Trigo, José Manuel; Orejarena, Maria Juliana; Maldonado, Rafael; Robledo, Patricia

    2009-06-01

    MDMA effects are mediated by monoaminergic systems, which seem to play a central role in cocaine craving and relapse. CD1 mice trained to self-administer cocaine (1 mg/kg/infusion) underwent an extinction procedure in which the cues contingent with drug self-administration remained present. Mice achieving extinction were injected with MDMA (10 mg/kg), d-amphetamine (1 and 2 mg/kg) or saline and tested for reinstatement. Acute MDMA, but not d-amphetamine or saline reinstated cocaine-seeking behaviour in mice in which cocaine self-administration and contingent cues were previously extinguished. Acute MDMA can reinstate cocaine-seeking behaviour in mice.

  18. Ketamine-propofol sedation in circumcision

    Directory of Open Access Journals (Sweden)

    Handan Gulec

    2015-10-01

    Full Text Available ABSTRACTBACKGROUND AND OBJECTIVE: To compare the therapeutic effects of ketamine alone or ketamine plus propofol on analgesia, sedation, recovery time, side effects in premedicated children with midazolam-ketamine-atropin who are prepared circumcision operation.METHODS: 60 American Society of Anaesthesiologists physical status I-II children, aged between 3 and 9 years, undergoing circumcision operations under sedation were recruited according to a randomize and double-blind institutional review board-approved protocol. Patients were randomized into two groups via sealed envelope assignment. Both groups were administered a mixture of midazolam 0.05 mg/kg + ketamine 3 mg/kg + atropine 0.02 mg/kg intramuscularly in the presence of parents in the pre-operative holding area. Patients were induced with propofol-ketamine in Group I or ketamine alone in Group II.RESULTS: In the between-group comparisons, age, weight, initial systolic blood pressure, a difference in terms of the initial pulse rate was observed (p > 0.050. Initial diastolic blood pressure and subsequent serial measurements of 5, 10, 15, 20th min, systolic blood pressure, diastolic blood pressure and pulse rate in ketamine group were significantly higher (p < 0.050.CONCLUSION: Propofol-ketamine (Ketofol provided better sedation quality and hemodynamy than ketamine alone in pediatric circumcision operations. We did not observe significant complications during sedation in these two groups. Therefore, ketofol appears to be an effective and safe sedation method for circumcision operation.

  19. The potential dangers of using MDMA for psychotherapy.

    Science.gov (United States)

    Parrott, Andrew C

    2014-01-01

    MDMA has properties that may make it attractive for psychotherapy, although many of its effects are potentially problematic. These contrasting effects will be critically reviewed in order to assess whether MDMA could be safe for clinical usage. Early studies from the 1980s noted that MDMA was an entactogen, engendering feelings of love and warmth. However, negative experiences can also occur with MDMA since it is not selective in the thoughts or emotions it releases. This unpredictability in the psychological material released is similar to another serotonergic drug, LSD. Acute MDMA has powerful neurohormonal effects, increasing cortisol, oxytocin, testosterone, and other hormone levels. The release of oxytocin may facilitate psychotherapy, whereas cortisol may increase stress and be counterproductive. MDMA administration is followed by a period of neurochemical recovery, when low serotonin levels are often accompanied by lethargy and depression. Regular usage can also lead to serotonergic neurotoxicity, memory problems, and other psychobiological problems. Proponents of MDMA-assisted therapy state that it should only be used for reactive disorders (such as PTSD) since it can exacerbate distress in those with a prior psychiatric history. Overall, many issues need to be considered when debating the relative benefits and dangers of using MDMA for psychotherapy.

  20. MDMA ("Ecstasy") and its association with cerebrovascular accidents: preliminary findings

    NARCIS (Netherlands)

    Reneman, L.; Habraken, J. B.; Majoie, C. B.; Booij, J.; den Heeten, G. J.

    2000-01-01

    BACKGROUND AND PURPOSE: Abuse of the popular recreational drug "Ecstasy" (MDMA) has been linked to the occurrence of cerebrovascular accidents. It is known that MDMA alters brain serotonin (5-HT) concentrations and that brain postsynaptic 5-HT(2) receptors play a role in the regulation of brain

  1. Cost-Effectiveness of Postoperative Ketamine in Chiari Decompression.

    Science.gov (United States)

    McDowell, Michael M; Alhourani, Ahmad; Pearce-Smith, Beverly A; Mazurkiewicz, Anna; Friedlander, Robert M

    2018-02-01

    In Chiari I patients, postoperative pain and discomfort frequently slow the transition back to the home setting. We sought to determine the effect of standardized ketamine infusion protocols on hospital length of stay (LOS). This retrospective cohort study reviewed 100 consecutive adult patients undergoing Chiari I decompression. Fifty-nine patients were placed on a 2-3 mg/hr ketamine drip until postoperative day 1. This group was compared with a group who received 2-3 mg/hr of ketamine until postoperative day 2 (19 patients) and patients who did not receive ketamine at all (22 patients). Clinical characteristics, opioid use, LOS, and relative hospitalization costs were assessed. All narcotic amounts were converted into milligram equivalents of morphine. LOS of the short-ketamine group was 46.5 hours when compared with the long-ketamine group (66.8 hours) and no-ketamine group (56.9 hours). There was a statistically significant difference when comparing the short-ketamine group with the long-ketamine group and no-ketamine group together (P ketamine protocol was used (P ketamine group, 196 mg in the long-ketamine group, and 187 mg in the no-ketamine group (P = 0.65). No adverse events from ketamine were noted. Ketamine at subanesthetic levels may be an effective tool to facilitate early return home postoperatively and may significantly reduce medical costs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Non-Peptide Arginine-Vasopressin v1a Selective Receptor Antagonist, SR49059, Blocks the Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its Derivatives in Zebra Fish

    Directory of Open Access Journals (Sweden)

    Luisa Ponzoni

    2017-08-01

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA and its derivatives, 2,5-dimethoxy-4-bromo-amphetamine hydrobromide (DOB and para-methoxyamphetamine (PMA, are recreational drugs whose pharmacological effects have recently been attributed to serotonin 5HT2A/C receptors. However, there is growing evidence that the oxytocin (OT/vasopressin system can modulate some the effects of MDMA. In this study, MDMA (2.5–10 mg/kg, DOB (0.5 mg/kg, or PMA (0.005, 0.1, or 0.25 mg/kg were administered intramuscularly to adult zebra fish, alone or in combination with the V1a vasopressin antagonist, SR49059 (0.01–1 ng/kg, before carrying out conditioned place preference (CPP, social preference, novel tank diving, and light–dark tests in order to evaluate subsequent rewarding, social, and emotional-like behavior. The combination of SR49059 and each drug progressively blocked: (1 rewarding behavior as measured by CPP in terms of time spent in drug-paired compartment; (2 prosocial effects measured on the basis of the time spent in the proximity of a nacre fish picture; and (3 anxiolytic effects in terms of the time spent in the upper half of the novel tank and in the white compartment of the tank used for the light–dark test. Antagonism was obtained at SR49059 doses which, when given alone, did not change motor function. In comparison with a control group, receiving vehicle alone, there was a three to five times increase in the brain release of isotocin (the analog of OT in fish after treatment with the most active doses of MDMA (10 mg/kg, DOB (0.5 mg/kg, and PMA (0.1 mg/kg as evaluated by means of bioanalytical reversed-phase high-performance liquid chromatography. Taken together, these findings show that the OT/vasopressin system is involved in the rewarding, prosocial, and anxiolytic effects of MDMA, DOB, and PMA in zebra fish and underline the association between this system and the behavioral alterations associated with disorders related to substance

  3. Effects of alcohol (BAC 0.5‰) and ecstasy (MDMA 100 mg) on simulated driving performance and traffic safety.

    Science.gov (United States)

    Veldstra, Janet L; Brookhuis, Karel A; de Waard, Dick; Molmans, Barbara H W; Verstraete, Alain G; Skopp, Gisela; Jantos, Ricarda

    2012-08-01

    An increasing number of fatal road-accidents have been reported in which ecstasy was found in the blood of drivers. Although, ecstasy is frequently found to have been used in combination with alcohol, studies on the acute effects of ecstasy co-administered with alcohol on driving performance are relatively rare. The present study was designed to establish the extent of driver impairment as a consequence of ecstasy or combined ecstasy and alcohol use as compared to driving under the influence of 0.3‰, 0.5‰ and 0.8‰ alcohol. Furthermore, subjective performance was also assessed. Alcohol and ecstasy mainly influenced automated driving performance such as lateral and speed control. However, small to no effects of the substances were found on more complex driving behaviour. Overall, variance within the different driving measures was high especially when participants were treated with 3.4-methylenedioxy-methamphetamine (MDMA) and alcohol. Furthermore, equivalence testing showed that combined use may lead to impaired driving for some, but not all, drivers. Participants rated their own performance to be slightly worse than normal in both studies. Since driving was actually seriously deteriorated, this was a falsely positive assessment of their condition. The dissociation between subjective perceptions and objective performance decrements are important notions for traffic safety since this may affect a driver's judgement of whether or not it is safe to drive. For example, an intoxicated individual might decide to drive because the feelings of alertness caused by MDMA cloud the impairing effects of other drugs such as alcohol, thereby creating a potentially serious risk for traffic safety.

  4. Something new about ketamine for pediatric anesthesia?

    Science.gov (United States)

    Lois, Fernande; De Kock, Marc

    2008-06-01

    This review discusses the place of the old anesthetic ketamine in pediatric anesthesia. Despite the availability of modern alternatives, ketamine remains a frequently used drug particularly for anesthesia in high-risk children and for procedures outside the operating room. In adult patients undergoing surgery, a renewed interest in this drug is noted. It is the consequence of recent demonstrations of the following effects. First, ketamine is highly effective against surgery and opiate-induced hyperalgesia. Second, it has original antiproinflammatory properties. In other words, it promotes self-limitation of the inflammatory response that follows surgery. In the pediatric population, these benefits wait to be confirmed. Finally, questions arise about the safety of ketamine anesthesia. Ketamine is a potent proapoptotic drug. In rodents treated during the critical period for central nervous system development, long-term behavioral deficits were noted after an anesthetic dose of ketamine. The exact consequences of these proapoptotic properties on human brain tissue development have to be exactly determined and are still debatable. Ketamine has not yet revealed all its interactions in humans. Recent discoveries indicate interesting properties on the one hand and potentially deleterious effects on the other.

  5. Ketamine for chronic pain: risks and benefits

    Science.gov (United States)

    Niesters, Marieke; Martini, Christian; Dahan, Albert

    2014-01-01

    The anaesthetic ketamine is used to treat various chronic pain syndromes, especially those that have a neuropathic component. Low dose ketamine produces strong analgesia in neuropathic pain states, presumably by inhibition of the N-methyl-D-aspartate receptor although other mechanisms are possibly involved, including enhancement of descending inhibition and anti-inflammatory effects at central sites. Current data on short term infusions indicate that ketamine produces potent analgesia during administration only, while three studies on the effect of prolonged infusion (4–14 days) show long-term analgesic effects up to 3 months following infusion. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Blind extrapolation of these risks to clinical patients is difficult because of the variable, high and recurrent exposure to the drug in ketamine abusers and the high frequency of abuse of other illicit substances in this population. In clinical settings, ketamine is well tolerated, especially when benzodiazepines are used to tame the psychotropic side effects. Irrespective, close monitoring of patients receiving ketamine is mandatory, particularly aimed at CNS, haemodynamic, renal and hepatic symptoms as well as abuse. Further research is required to assess whether the benefits outweigh the risks and costs. Until definite proof is obtained ketamine administration should be restricted to patients with therapy-resistant severe neuropathic pain. PMID:23432384

  6. Ketamine for chronic pain: risks and benefits.

    Science.gov (United States)

    Niesters, Marieke; Martini, Christian; Dahan, Albert

    2014-02-01

    The anaesthetic ketamine is used to treat various chronic pain syndromes, especially those that have a neuropathic component. Low dose ketamine produces strong analgesia in neuropathic pain states, presumably by inhibition of the N-methyl-D-aspartate receptor although other mechanisms are possibly involved, including enhancement of descending inhibition and anti-inflammatory effects at central sites. Current data on short term infusions indicate that ketamine produces potent analgesia during administration only, while three studies on the effect of prolonged infusion (4-14 days) show long-term analgesic effects up to 3 months following infusion. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Blind extrapolation of these risks to clinical patients is difficult because of the variable, high and recurrent exposure to the drug in ketamine abusers and the high frequency of abuse of other illicit substances in this population. In clinical settings, ketamine is well tolerated, especially when benzodiazepines are used to tame the psychotropic side effects. Irrespective, close monitoring of patients receiving ketamine is mandatory, particularly aimed at CNS, haemodynamic, renal and hepatic symptoms as well as abuse. Further research is required to assess whether the benefits outweigh the risks and costs. Until definite proof is obtained ketamine administration should be restricted to patients with therapy-resistant severe neuropathic pain. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  7. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    OpenAIRE

    Shimshoni, JA; Winkler, I; Golan, E; Nutt, D

    2016-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-...

  8. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.

    Science.gov (United States)

    Bunzow, J R; Sonders, M S; Arttamangkul, S; Harrison, L M; Zhang, G; Quigley, D I; Darland, T; Suchland, K L; Pasumamula, S; Kennedy, J L; Olson, S B; Magenis, R E; Amara, S G; Grandy, D K

    2001-12-01

    The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine. An extensive pharmacological survey revealed that psychostimulant and hallucinogenic amphetamines, numerous ergoline derivatives, adrenergic ligands, and 3-methylated metabolites of the catecholamine neurotransmitters are also good agonists at the rat trace amine receptor 1 (rTAR1). These results suggest that the trace amines and catecholamine metabolites may serve as the endogenous ligands of a novel intercellular signaling system found widely throughout the vertebrate brain and periphery. Furthermore, the discovery that amphetamines, including 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy"), are potent rTAR1 agonists suggests that the effects of these widely used drugs may be mediated in part by this receptor as well as their previously characterized targets, the neurotransmitter transporter proteins.

  9. Screening for illicit drugs in pooled human urine and urinated soil samples and studies on the stability of urinary excretion products of cocaine, MDMA, and MDEA in wastewater by hyphenated mass spectrometry techniques.

    Science.gov (United States)

    Mardal, Marie; Kinyua, Juliet; Ramin, Pedram; Miserez, Bram; Van Nuijs, Alexander L N; Covaci, Adrian; Meyer, Markus R

    2017-01-01

    Monitoring population drug use through wastewater-based epidemiology (WBE) is a useful method to quantitatively follow trends and estimate total drug consumption in communities. Concentrations of drug biomarkers might be low in wastewater due to dilution; and therefore analysis of pooled urine (PU) is useful to detect consumed drugs and identify targets of illicit drugs use. The aims of the study were (1) to screen PU and urinated soil (US) samples collected at festivals for illicit drug excretion products using hyphenated techniques; (2) to develop and validate a hydrophilic interaction liquid chromatography - mass spectrometry / mass spectrometry (HILIC-MS/MS) method of quantifying urinary targets of identified drugs in wastewater; and (3) to conduct a 24 h stability study, using PU and US to better reflect the chemical environment for targets in wastewater. Cocaine (COC) and ecstasy-like compounds were the most frequently detected illicit drugs; an analytical method was developed to quantify their excretion products. Hydroxymethoxymethamphetamine (HMMA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), HMMA sulfate (HMMA-S), benzoylecgonine (BE), and cocaethylene (CE) had 85-102% of initial concentration after 8 h of incubation, whereas COC and ecgonine methyl ester (EME) had 74 and 67% after 8 h, respectively. HMMA showed a net increase during 24 h of incubation (107% ± 27, n = 8), possibly due to the cleavage of HMMA conjugates, and biotransformation of MDMA. The results suggest HMMA as analytical target for MDMA consumption in WBE, due to its stability in wastewater and its excretion as the main phase I metabolite of MDMA. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    Science.gov (United States)

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping

    2016-01-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID

  11. Current Ketamine Practice: Results of the 2016 American Society of Pain Management Nursing Survey on Ketamine.

    Science.gov (United States)

    Klaess, Cynthia C; Jungquist, Carla R

    2018-06-01

    Ketamine is increasingly utilized for a variety of pain management challenges. Audience comments from a ketamine presentation at the 2015 American Society of Pain Management Nursing (ASPMN) Conference reflected wide variation in ketamine practices as well as barriers to use. The goal was to gain a greater understanding of ASPMN member practice patterns and barriers related to ketamine as adjunctive therapy for pain management. A questionnaire survey design was used. Respondents represented 35 states and 2 countries. The participants were 146 respondents from ASPMN membership (1,485 members). The survey was distributed by ASPMN on SurveyMonkey. Practice setting and ketamine administration practices were assessed with areas for comments. Results were reviewed using frequencies to describe responses and formatted into tables. Comments were individually reviewed and grouped into common themes. Administration of ketamine as an analgesic was reported by 63% of respondents. Continuous intravenous ketamine infusions were the most common route of administration (65%); however, wide variability in dosing and length of therapy was reported. A wide variety of practices and challenges related to ketamine utilization were noted. Numerous studies have indicated the analgesic benefits of ketamine in pain management. The lack of practice standardization has created challenges to its consistent use and outcome measurement. Additionally, the off-label use of ketamine for pain management creates its own unique challenges. However, given the current national climate with intense focus on pain management, interdisciplinary practitioners have an ideal opportunity to evaluate ketamine's use in a comprehensive approach to pain management. Copyright © 2018 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  12. Ketamine use in current clinical practice

    Science.gov (United States)

    Gao, Mei; Rejaei, Damoon; Liu, Hong

    2016-01-01

    After nearly half a century on the market, ketamine still occupies a unique corner in the medical armamentarium of anesthesiologists or clinicians treating pain. Over the last two decades, much research has been conducted highlighting the drug's mechanisms of action, specifically those of its enantiomers. Nowadays, ketamine is also being utilized for pediatric pain control in emergency department, with its anti-hyperalgesic and anti-inflammatory effects being revealed in acute and chronic pain management. Recently, new insights have been gained on ketamine's potential anti-depressive and antisuicidal effects. This article provides an overview of the drug's pharmacokinetics and pharmacodynamics while also discussing the potential benefits and risks of ketamine administration in various clinical settings. PMID:27018176

  13. Perioperative Ketamine Administration for Thoracotomy Pain.

    Science.gov (United States)

    Moyse, Daniel W; Kaye, Alan D; Diaz, James H; Qadri, Muhammad Y; Lindsay, David; Pyati, Srinivas

    2017-03-01

    Of all the postsurgical pain conditions, thoracotomy pain poses a particular therapeutic challenge in terms of its prevalence, severity, and ensuing postoperative morbidity. Multiple pain generators contribute to the severity of post-thoracotomy pain, and therefore a multimodal analgesic therapy is considered to be a necessary strategy. Along with opioids, thoracic epidural analgesia, and paravertebral blocks, N-Methyl-D-Aspartate (NMDA) receptor antagonists such as ketamine have been used as adjuvants to improve analgesia. We reviewed the evidence for the efficacy of intravenous and epidural administration of ketamine in acute post-thoracotomy pain management, and its effectiveness in reducing chronic post-thoracotomy pain. Systematic literature review and an analytic study of a data subset were performed. We searched PubMed, Embase, and Cochrane reviews using the key terms "ketamine," "neuropathic pain," "postoperative," and "post-thoracotomy pain syndrome." The search was limited to human trials and included all studies published before January 2015. Data from animal studies, abstracts, and letters were excluded. All studies not available in the English language were excluded. The manuscript bibliographies were reviewed for additional related articles. We included randomized controlled trials and retrospective studies, while excluding individual case reports. This systematic literature search yielded 15 randomized control trials evaluating the efficacy of ketamine in the treatment of acute post-thoracotomy pain; fewer studies assessed its effect on attenuating chronic post-thoracotomy pain. The majority of reviewed studies demonstrated that ketamine has efficacy in reduction of acute pain, but the evidence is limited on the long-term benefits of ketamine to prevent post-thoracotomy pain syndrome, regardless of the route of administration. A nested analytical study found there is a statistically significant reduction in acute post-thoracotomy pain with IV or

  14. Ketamine for Treatment-Resistant Unipolar Depression

    Science.gov (United States)

    Mathew, Sanjay J.; Shah, Asim; Lapidus, Kyle; Clark, Crystal; Jarun, Noor; Ostermeyer, Britta; Murrough, James W.

    2013-01-01

    Currently available drugs for unipolar major depressive disorder (MDD), which target monoaminergic systems, have a delayed onset of action and significant limitations in efficacy. Antidepressants with primary pharmacological targets outside the monoamine system may offer the potential for more rapid activity with improved therapeutic benefit. The glutamate system has been scrutinized as a target for antidepressant drug discovery. The purpose of this article is to review emerging literature on the potential rapid-onset antidepressant properties of the glutamate NMDA receptor antagonist ketamine, an established anaesthetic agent. The pharmacology of ketamine and its enantiomer S-ketamine is reviewed, followed by examples of its clinical application in chronic, refractory pain conditions, which are commonly co-morbid with depression. The first generation of studies in patients with treatment-resistant depression (TRD) reported the safety and acute efficacy of a single subanaesthetic dose (0.5 mg/kg) of intravenous ketamine. A second generation of ketamine studies is focused on testing alternate routes of drug delivery, identifying methods to prevent relapse following resolution of depressive symptoms and understanding the neural basis for the putative antidepressant actions of ketamine. In addition to traditional depression rating endpoints, ongoing research is examining the impact of ketamine on neurocognition. Although the first clinical report in MDD was published in 2000, there is a paucity of adequately controlled double-blind trials, and limited clinical experience outside of research settings. Given the potential risks of ketamine, safety considerations will ultimately determine whether this old drug is successfully repositioned as a new therapy for TRD. PMID:22303887

  15. Ketamine-induced apoptosis in cultured rat cortical neurons

    International Nuclear Information System (INIS)

    Takadera, Tsuneo; Ishida, Akira; Ohyashiki, Takao

    2006-01-01

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons

  16. Ketamine cystitis: Its urological impact and management

    Directory of Open Access Journals (Sweden)

    Yao Chou Tsai

    2015-09-01

    Full Text Available Ketamine, an n-methyl-d-aspartic acid receptor complex antagonist, has been used as an anesthetic and/or analgesic. However, in the past decade, ketamine has been illegally available as a recreational drug in Asian countries and Taiwan. Due to the characteristic of being short-acting, youngsters widely assume that ketamine is not as harmful as other drugs, such as heroin. Consequently, many young patients used this drug for a longer duration before they presented with severe urinary frequency and urgency symptoms. Subsequently, other cases have been reported in Taiwan, Hong Kong, Singapore, Malaysia, and Europe. Ketamine abuse is increasing, with rates of 0.30% in 2006 to 0.40% in 2007 among those in the 16–59 year age group. In general, affected patients tend to be young with a peak age range of 16–35 years. The incidence of lower urinary tract symptoms in ketamine abuse patients is around 30%. The actual underlying pathomechanism of ketamine cystitis (KC and associated pelvic pain remains unclear. It is speculated that chronic contact and stimulation to the bladder or ureteral mucosa due to metabolites of ketamine will result in submucosal edema, vascular ectasia, fibrosis, detrusor muscle inflammation, and fibrosis. Presentations of KC include remarkable dysuria, urinary frequency/urgency, urge incontinence, and bladder pain. Urine culture usually fails to yield any microbiology in KC with bladder pain alone. The majority of patients can enjoy clinical improvement after cessation of ketamine and urological treatment similar to interstitial cystitis/bladder pain syndrome (IC/BPS. However, patients who are still abusing ketamine and/or who have a longer duration of ketamine abuse might suffer from severe bladder pain, which does not respond to empirical oral or intravesical treatments such as hyaluronic acid. Among these patients, most have a remarkably impaired quality of life and are at risk of developing upper urinary tract damage

  17. Comparison of three Ketamine drug combinations for short term ...

    African Journals Online (AJOL)

    Ketamine (XK) at a dose of 0.05/25mg/kg, acepromazine/ketamine (AK) at a dose of 0.05/25mg/kg and diazepam/ketamine (DK) at a dose of 0.5/25mg/kg were evaluated and compared in five non-fasted West African Dwarf (WAD) goats. The mean ...

  18. Ketamine

    Science.gov (United States)

    ... Brain Development and Affect Teens The Negative Health Effects of Marijuana Use State and Federal Drug Laws Treatment and ... Needle How does it affect the body? Hallucinatory effects last 30-60 minutes Distorts sights and sounds Induces feelings of calmness and relaxation, relief from pain Immobility and amnesia Body feels out of ... Articles What You Should Know About Marijuana ...

  19. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    Science.gov (United States)

    Shimshoni, Jakob A; Winkler, Ilan; Golan, Ezekiel; Nutt, David

    2017-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT 2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT 2a,b,c and NE α2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT 2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT 2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC 50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT 2a,c receptors as compared to MDMA.

  20. Effects of MDMA (ecstasy), and multiple drugs use on (simulated) driving performance and traffic safety

    NARCIS (Netherlands)

    Brookhuis, KA; de Waard, D; Samyn, N

    Rationale. The effects of MDMA on driving behaviour are not clear, since the direct effects of MDMA on cognitive performance are reported as not generally negative. Objectives. To assess in an advanced driving simulator acute effects on simulated driving behaviour and heart rate of MDMA, and effects

  1. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    Science.gov (United States)

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  2. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    Science.gov (United States)

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. © 2014 by the Society for Experimental Biology and Medicine.

  3. MDMA ("ecstasy") abuse as an example of dopamine neuroplasticity.

    Science.gov (United States)

    Schenk, Susan

    2011-04-01

    A number of reviews have focused on the short- and long-term effects of MDMA and, in particular, on the persistent deficits in serotonin neurotransmission that accompany some exposure regimens. The mechanisms underlying the serotonin deficits and their relevance to various behavioral and cognitive consequences of MDMA use are still being debated. It has become clear, however, that some individuals develop compulsive and uncontrolled drug-taking that is consistent with abuse. For other drugs of abuse, this transition has been attributed to neuroadaptations in central dopamine mechanisms that occur as a function of repeated drug exposure. A question remains as to whether similar neuroadaptations occur as a function of exposure to MDMA and the impact of serotonin neurotoxicity in the transition from use to abuse. This review focuses specifically on this issue by first providing an overview of human studies and then reviewing the animal literature with specific emphasis on paradigms that measure subjective effects of drugs and self-administration as indices of abuse liability. It is suggested that serotonin deficits resulting from repeated exposure to MDMA self-administration lead to a sensitized dopaminergic response to the drug and that this sensitized response renders MDMA comparable to other drugs of abuse. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. [Safety and efficacy of ketamine for pain relief].

    Science.gov (United States)

    Niesters, Marieke; Dahan, Albert; van Kleef, Maarten

    2016-01-01

    Intravenous ketamine treatment is frequently used for the management of chronic pain, especially in those patients who do not benefit from other therapies. In this commentary we discuss the efficacy of ketamine for relief of chronic pain and ketamine's safety profile. A review of the literature indicates that only a few studies show that intravenous ketamine has analgesic effects that persist beyond the infusion period, an effect that occurs in about two-thirds of patients. Ketamine has multiple safety issues, ranging from psychotomimetic and schizotypal symptoms, sympathetic stimulation, tachycardia and hypertension, and damage to the liver and the urogenital tract. Damage to the urogenital tract seems to be restricted to individuals who chronically abuse ketamine. We indicate the need for large randomized trials in which ketamine is compared with an 'active' placebo.

  5. KETAMINE ABREACTION : A NEW APPROACH TO NARCOANALYSIS

    OpenAIRE

    Golechha, G.R.; Sethi, I.C.; Misra, S.L.; Jayaprakash, N.P.

    1986-01-01

    SUMMARY Ketamine is a parenterally administered non barbiturate anaesthetic agent, in use for more than a decade. It is a safer than Na Pentothal. Administered intramuscularly, in dose of 6 to 15 mgm/Kg body wt. it produces dissociative anaesthesia. But, in smaller sub anaesthetic doses it may act as an abreactant. We report in this study the abreaction effect of Ketamine in dose of .5 to 1.5 mgm/kg body wt. given intramuscularly in 30 selected psychiatric cases requiring narcoanalysis for di...

  6. The History of MDMA as an Underground Drug in the United States, 1960-1979.

    Science.gov (United States)

    Passie, Torsten; Benzenhöfer, Udo

    2016-01-01

    MDMA (3,4-methylenedioxy-methylamphetamine, a.k.a. "ecstasy") was first synthesized in 1912 and resynthesized more than once for pharmaceutical reasons before it became a popular recreational drug. Partially based on previously overlooked U.S. government documentation, this article reconstructs the early history of MDMA as a recreational drug in the U.S. from 1960 to 1979. According to the literature, MDMA was introduced as a street drug at the end of the 1960s. The first forensic detection of MDMA "on the street" was reported in 1970 in Chicago. It appears that MDMA was first synthesized by underground chemists in search of "legal alternatives" for the closely related and highly sought-after drug MDA, which was scheduled under the Controlled Substances Act (CSA) in 1970. Until 1974, nearly all MDMA street samples seized came from the U.S. Midwest, the first "hot region" of MDMA use. In Canada, MDMA was first detected in 1974 and scheduled in 1976. From 1975 to 1979, MDMA was found in street samples in more than 10 U.S. states, the West Coast becoming the major "hot region" of MDMA use. Recreational use of MDMA spread across the U.S. in the early 1980s, and in 1985 it was scheduled under the CSA.

  7. Ketamine produces lasting disruptions in encoding of sensory stimuli.

    Science.gov (United States)

    Maxwell, Christina R; Ehrlichman, Richard S; Liang, Yuling; Trief, Danielle; Kanes, Stephen J; Karp, Jonathan; Siegel, Steven J

    2006-01-01

    The current study analyzed the acute, chronic, and lasting effects of ketamine administration in four inbred mouse strains (C3H/HeHsd, C57BL/6Hsd, FVB/Hsd, and DBA/2Hsd) to evaluate vulnerability to ketamine as a drug of abuse and as a model of schizophrenia. Serum half-life of ketamine was similar between all strains (approximately 13 min). Also, the ratio of brain-to-serum ketamine levels was 3:1. Examination of multiple phases of auditory processing using auditory-evoked potentials (AEPs) following acute ketamine (0, 5, and 20 mg/kg) treatment revealed C3H/HeHsd mice to be most vulnerable to ketamine-induced alterations in AEPs, whereas FVB/Hsd mice exhibited the least electrophysiological sensitivity to ketamine. Overall, the precortical P1-evoked potential component increased in amplitude and latency, whereas the cortically generated N1 and P2 components decreased in amplitude and latency following acute ketamine across all strains. Brain catecholamine analyses indicated that ketamine decreased hippocampus epinephrine levels in C3H/HeHsd but elevated hippocampus epinephrine levels in FVB/Hsd, suggesting one potential mechanism for AEP vulnerability to ketamine. Based on results of the acute study, the immediate and lasting effects of chronic low-dose ketamine on AEPs were examined among C3H/HeHsd (sensitive) and FVB/Hsd (insensitive) mice. We observed a decrement of the N1 amplitude that persisted at least 1 week after the last exposure to ketamine across both strains. This lasting deficit in information processing occurred in the absence of acute changes among the FVB/Hsd mice. Implications for both ketamine abuse and N-methyl-D-aspartate hypofunction models of schizophrenia are discussed.

  8. Chronic postthoracotomy pain and perioperative ketamine infusion.

    Science.gov (United States)

    Hu, Jie; Liao, Qin; Zhang, Fan; Tong, Jianbin; Ouyang, Wen

    2014-06-01

    The objectives of this study were to investigate whether continuous intravenous ketamine during the first 72 hours after thoracotomy could reduce the incidence and intensity of chronic postthoracotomy pain (CPTP) and to define the incidence and risk factors of CPTP. Seventy-eight patients receiving thoracotomy for lung tumor (benign or malignant) were randomly divided into two groups: ketamine group (n = 31) and control groups (n = 47). Patients in the ketamine group received intravenous ketamine 1 mg/kg before incision, followed by 2 μg/kg/minute infusion for 72 hours plus sufentanil patient-controlled intravenous analgesia after thoracotomy. Patients in the control group received intravenous a 0.9% normal saline and infusion plus sufentanil patient-controlled intravenous analgesia. The solutions patients received were blinded. The numerical rating scale (NRS) pain scores and the incidence and risk factors of CPTP were recorded during the first 6 months after surgery. Compared with control group, the incidence of chronic pain in the ketamine group did not decrease at 2 months (χ(2) = 1.599, P = .206) and 6 months (χ(2) = 0.368, P = .544) after surgery. Postoperative pain scores in the ketamine group were not significantly different from those of the control group patients at 2 months (U = 677.5, P = .593) and 6 months (U = 690.5, P = .680). The incidence of CPTP was 78.2% (61/78) at 2 months and 53.8% (42/78) at 6 months after surgery. Retractor used time (OR = 5.811, P = .002), inadequate acute pain control (NRS ≥ 5) (OR = 5.425, P = .048), and chemotherapy (OR = 3.784, P = .056) were independent risk factors for chronic postthoracotomy pain. The authors conclude that continuous intravenous ketamine (2 μg/kg/min) during the first 72 hours after thoracotomy was not beneficial to prevent chronic postthoracotomy pain. The independent risk factors for chronic postthoracotomy pain were retractor used time, inadequate acute pain control, and chemotherapy.

  9. From ecstasy to MDMA: Recreational drug use, symbolic boundaries, and drug trends.

    Science.gov (United States)

    Edland-Gryt, Marit; Sandberg, Sveinung; Pedersen, Willy

    2017-12-01

    Ecstasy pills with MDMA as the main ingredient were introduced in many European countries in the 1980s, and were often linked to the rave and club scenes. However, use gradually levelled off, in part as a response to increased concerns about possible mental health consequences and fatalities. Extensive use of MDMA now seems to be re-emerging in many countries. In this study, we investigated the cultural and social meaning associated with MDMA use in Oslo, Norway, with an emphasis on how users distinguish MDMA crystals and powder from "old ecstasy pills". Qualitative in-depth interviews (n=31, 61,3% males) were conducted with young adult party-goers and recreational MDMA/ecstasy users (20-34 years old, mean age 26.2 years). Research participants emphasised three important perceived differences between the MDMA crystals and ecstasy pills: (i) The effects of MDMA were described as better than ecstasy; (ii) MDMA was regarded as a safer drug; (iii) Users of MDMA crystals were described as more distinct from and less anchored in out-of-fashion rave culture than those using ecstasy. These differences were an important part of the symbolic boundary work MDMA users engaged in when justifying their drug use. MDMA has re-emerged as an important psychoactive substance in Oslo's club scene. One important reason for this re-emergence seems to be its perceived differentiation from ecstasy pills, even though the active ingredient in both drugs is MDMA. This perceived distinction between MDMA and ecstasy reveals the importance of social and symbolic meanings in relation to psychoactive substance use. Insights from this study can be important in terms of understanding how trends in drug use develop and how certain drugs gain or lose popularity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Oral ketamine for radiotherapy in children with cancer

    International Nuclear Information System (INIS)

    Shewale, S.; Saxena, Abha; Trikha, Anjan; Singh, Manorama; Sharief, Abeda

    2000-01-01

    Children coming for radiotherapy under sedation usually get repeated injections, which cause distress to both the child and the parents. A prospective study was conducted to evaluate the efficacy of oral ketamine for sedation for radiotherapy (RT) in children with cancer. Ten children who received 49 sittings of RT were given 8-15 mg/kg body weight of oral ketamine. The onset time, recovery time, efficacy of sedation and incidence of abnormal movements were compared with another group of 8 children, who received intramuscular ketamine in the dose of 6 mg/kg for a total of 28 sittings of RT. Onset time and recovery time were significantly longer in oral ketamine group as compared to the intramuscular group (p<0.001). Limb movements in patients receiving oral ketamine necessitated further supplement of sedation and interruption of RT. These drawbacks discourage use of oral ketamine as a good sedative for radiotherapy treatment in paediatric oncology patients. (author)

  11. Peripheral analgesic effects of ketamine in acute inflammatory pain

    DEFF Research Database (Denmark)

    Pedersen, J L; Galle, T S; Kehlet, H

    1998-01-01

    BACKGROUND. This study examined the analgesic effect of local ketamine infiltration, compared with placebo and systemic ketamine, in a human model of inflammatory pain. METHODS: Inflammatory pain was induced by a burn (at 47 degrees C for 7 min; wound size, 2.5 x 5 cm) on the calf in 15 volunteers...... on 3 separate days with 7-day intervals. They received either (1) subcutaneous infiltration with ketamine in the burn area (local treatment) and contralateral placebo injections, or (2) subcutaneous ketamine contralateral to the burn (systemic treatment) and placebo in the burn area, or (3) placebo...... hyperalgesia. Local ketamine infiltration reduced pain during the burn injury compared with systemic treatment and placebo (P ketamine treatment compared with placebo immediately after injection (P

  12. A review of the use of ketamine in pain management.

    Science.gov (United States)

    Tawfic, Qutaiba A

    2013-01-01

    Ketamine is a noncompetitive antagonist of N-methyl-d-aspartate receptor. It has been widely used in anesthesia and pain management. Ketamine has been administered via the intravenous, intramuscular, subcutaneous, oral, rectal, topical, intranasal, sublingual, epidural, and caudal routes. Ketamine improves postoperative and posttrauma pain scores and reduces opioid consumption. It has special indication for patients with opioid tolerance, acute hyperalgesia, and neuropathic pain. It also has a role in the management of chronic pain including both cancer and noncancer pain. Recreational use of ketamine is increasing as well through different routes of administration like inhalation, smoking, or intravenous injection. Long-time exposure to ketamine, especially in the abusers, may lead to serious side effects. This review is trying to define the role of ketamine in pain management.

  13. Ketamine for pain [version 1; referees: 2 approved

    OpenAIRE

    Kelly Jonkman; Albert Dahan; Tine van de Donk; Leon Aarts; Marieke Niesters; Monique van Velzen

    2017-01-01

    The efficacy of the N-methyl-D-aspartate receptor antagonist ketamine as an analgesic agent is still under debate, especially for indications such as chronic pain. To understand the efficacy of ketamine for relief of pain, we performed a literature search for relevant narrative and systematic reviews and meta-analyses. We retrieved 189 unique articles, of which 29 were deemed appropriate for use in this review. Ketamine treatment is most effective for relief of postoperative pain, causing red...

  14. Ketamine Dependence in an Anesthesiologist: An Occupational Hazard?

    OpenAIRE

    Goyal, Shrigopal; Ambekar, Atul; Ray, Rajat

    2014-01-01

    Substance abuse among medical professionals is a cause for concern. Certain psychotropic substances such as ketamine are at easy dispense to anesthesiologists increasing the likelihood of misuse and dependence and raise several issues including safety of patients. We discuss a case demonstrating ketamine dependence in an anesthesiologist from India. The reported psychotropic effects of ketamine ranged from dissociation and depersonalization to psychotic experiences. There was also development...

  15. Failure of Ketamine Anesthesia in a Patient with Lamotrigine Overdose

    Directory of Open Access Journals (Sweden)

    Daniel Kornhall

    2014-01-01

    Full Text Available Introduction. It is important to know which clinical situations prevent ketamine from working. Case Report. We present the case of the psychiatric inpatient who was admitted to our emergency department after ingesting a toxic dose of lamotrigine, unknown at that time. On admission, she was clearly in distress, displaying extreme agitation and violent ataxic movements. We opted to achieve sedation using intravenous ketamine boluses. Unexpectedly, after being injected with a total of 250 mg ketamine, our patient displayed no signs of dissociative anaesthesia. Discussion. There was no apparent reason for why ketamine failed, but an interaction between lamotrigine and ketamine was suspected. A literature search was performed. Very few articles describe interactions between lamotrigine and ketamine. Experimental studies, however, demonstrate how lamotrigine attenuates the neuropsychiatric effects of ketamine. Ketamine is classically described as an NMDA antagonist. Ketamine’s dissociative effects, however, are thought to be mediated by increased glutamate release via a pathway not dependent on NMDA receptors. Lamotrigine, on the other hand, is known to reduce cortical glutamate release. Conclusion. Lamotrigine reduces the glutamate release needed to mediate ketamine’s dissociative anaesthesia. This is important knowledge for anaesthesiologists in the emergency room where ketamine is often administered to unstable patients.

  16. Bilateral Hydronephrosis and Cystitis Resulting from Chronic Ketamine Abuse

    Directory of Open Access Journals (Sweden)

    Vu Huy Tran

    2014-07-01

    Full Text Available Ketamine associated urinary dysfunction has become increasingly more common worldwide. Point-of-care ultrasound (POCUS is an established modality for diagnosing hydronephrosis in the emergency department. We describe a case of a young male ketamine abuser with severe urinary urgency and frequency in which POCUS performed by the emergency physician demonstrated bilateral hydronephrosis and a focally thickened irregular shaped bladder. Emergency physicians should consider using POCUS evaluate for hydronephrosis and bladder changes in ketamine abusers with lower urinary tract symptoms. The mainstay of treatment is discontinuing ketamine abuse. [West J Emerg Med. 2014;15(4:382-384.

  17. Involvement of adenosine in the antiinflammatory action of ketamine.

    Science.gov (United States)

    Mazar, Julia; Rogachev, Boris; Shaked, Gad; Ziv, Nadav Y; Czeiger, David; Chaimovitz, Cidio; Zlotnik, Moshe; Mukmenev, Igor; Byk, Gerardo; Douvdevani, Amos

    2005-06-01

    Ketamine is an anesthetic drug. Subanesthetic doses of ketamine have been shown to reduce interleukin-6 concentrations after surgery and to reduce mortality and the production of tumor necrosis factor alpha and interleukin 6 in septic animals. Similarly, adenosine was shown to reduce tumor necrosis factor alpha and mortality of septic animals. The aim of this study was to determine whether adenosine mediates the antiinflammatory effects of ketamine. Sepsis was induced in mice by lipopolysaccharide or Escherichia coli inoculation. Leukocyte recruitment and cytokine concentrations were used as inflammation markers. Adenosine concentrations were assayed by high-performance liquid chromatography, and the involvement of adenosine in the effects of ketamine was demonstrated by adenosine receptor agonists and antagonists. Ketamine markedly reduced mortality from sepsis, leukocyte recruitment, and tumor necrosis factor-alpha and interleukin-6 concentrations. Ketamine administration in mice and rats was associated with a surge at 20-35 min of adenosine in serum (up to 5 microm) and peritoneal fluid. The adenosine A2A receptor agonist CGS-21680 mimicked the effect of ketamine in peritonitis, whereas the A2A receptor antagonists DMPX and ZM 241385 blocked its antiinflammatory effects. In contrast, A1 and A3 receptor antagonists had no effect. ZM 241385 reversed the beneficial effect of ketamine on survival from bacterial sepsis. The current data suggest that the sepsis-protective antiinflammatory effects of ketamine are mediated by the release of adenosine acting through the A2A receptor.

  18. Evidence for chronically altered cortical serotonin function in human female recreational ecstasy (MDMA) polydrug users

    Science.gov (United States)

    Di Iorio, Christina R; Watkins, Tristan J; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Rogers, Baxter; Ansari, Mohammed S; Baldwin, Ronald M; Li, Rui; Kessler, Robert M; Salomon, Ronald M; Benningfield, Margaret; Cowan, Ronald L

    2012-01-01

    Context MDMA (ecstasy) is a popular recreational drug that produces loss of serotonin (5-HT) axons in animal models. Whether MDMA produces chronic reductions in 5-HT signaling in humans remains controversial. Objective To determine if MDMA use is associated with chronic reductions in serotonin signaling in female human cerebral cortex as reflected by increased 5-HT2A receptors. Design Cross sectional case-control study comparing 5-HT2A receptor levels in abstinent female MDMA polydrug users to MDMA-naive females; within-group design assessing the association of lifetime MDMA use and 5-HT2A receptors. Subjects had at least 90 days abstinence from MDMA use as verified by hair sampling. Cortical 5-HT2A receptor levels were assayed with the 5HT2A-specific Positron Emission Tomography (PET) radioligand [18F]setoperone. Setting Academic Medical Center Research Laboratory. Participants Volunteer female MDMA users (N=14) and MDMA-naive controls (N=10). Main exclusion criteria were non-drug-related DSM-IV axis I psychiatric disorders and general medical illness. Main Outcome Measure Cortical 5-HT2A receptor non-displaceable binding potential (5-HT2ABPND). Results MDMA users had increased 5-HT2ABPND in occipital-parietal (19.7%), temporal (20.5%), occipito-temporal-parietal (18.3%), frontal (16.6%), and fronto-parietal (18.5%) regions (pMDMA use associated positively with 5-HT2ABPND in fronto-parietal (β=0.665;p=0.007), occipito-temporal (β=0.798;p=0.002), fronto-limbic (β=0.634;p=0.024), and frontal (β=0.691;p=0.008) regions. In contrast, there were no regions in which MDMA use was inversely associated with receptor levels. There were no statistically significant effects of the duration of MDMA abstinence on 5-HT2ABPND. Conclusions Human recreational MDMA use is associated with long-lasting increases in 5-HT2A receptor density. 5-HT2A receptor levels correlate positively with lifetime MDMA use and do not decrease with abstinence. These results suggest that MDMA produces

  19. High Performance Thin Layer Chromatography method for analysis of 3,4-methylenedioxymethamphetamine in seized tablets

    Directory of Open Access Journals (Sweden)

    Boris E. Duffau

    2015-12-01

    Full Text Available Context: Consumption of synthetic drugs had increased in recent years, used as a recreational drug by young people who presume that consumption of this drug is harmless for health; however clinical studies have shown that this stimulant and its metabolites are toxic. Due to these reasons, chemical analysis of this illicit drug is crucial from the points of view of occupational medicine, toxicology, and law enforcement with the aim of pursuit the traffic of illegal drug. Aims: Implement and fully validate a rapid and simple method for detection and quantitation of MDMA by High-Performance Thin Layer Chromatography in seized samples. Methods: With the implemented method was analyzed 12 positive samples seized by Chilean police, to found the concentration of MDMA in ecstasy tablets. Results: The method was fully validated, the linearity of the method was evaluated by the calibration curve between 51.0 – 510.0 µg/band (R2 0.9977; limit of detection was 12.1 µg per band, and limit of quantitation was 36.8 µg per band. The precision of the method (RSD was lower than 5.0%. Accuracy was evaluated by determination of the percentage of MDMA recovered by the assay (99.13%, and relative Uncertainty was 6.66%. With this method, it was analyzed real seized samples of MDMA, results showed that all samples contained MDMA and concentration was between 18.15 – 59.84 % w/w. Conclusions: The method is selective, sensitive, and specific, with possible application in forensic analysis. To the best of our knowledge, this is the first report about concentration of MDMA in ecstasy pills in Chile.

  20. Synthesis of racemic, S(+)- and R(-)-N-[methyl- [sup 3]H]3,4-methylenedioxymethamphetamine

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Hirai, Katsumi; Goromaru, Tsuyoshi (Fukuyama Univ. (Japan). Faculty of Pharmacy and Pharmaceutical Sciences)

    1990-04-01

    The synthesis of 3,4-methylenedioxymethampetamine (MDMA), a serotonergic neurotoxin, labeled with tritium is described. Labeling was accomplished by N-alkylation of the free base of the corresponding desmethyl compound using [[sup 3]H]methyl iodide. The compound was purified by preparative HPLC. The radiochemical yield was about 60% based on [[sup 3]H]methyl iodide. The radiochemical purity was more than 95% from HPLC and TLC. Furthermore, S(+)- and R(-)-[[sup 3]H]MDMA were completely separated by analytical HPLC with chiral column. (author).

  1. Synthesis of racemic, S(+)- and R(-)-N-[methyl- 3H]3,4-methylenedioxymethamphetamine

    International Nuclear Information System (INIS)

    Hashimoto, Kenji; Hirai, Katsumi; Goromaru, Tsuyoshi

    1990-01-01

    The synthesis of 3,4-methylenedioxymethampetamine (MDMA), a serotonergic neurotoxin, labeled with tritium is described. Labeling was accomplished by N-alkylation of the free base of the corresponding desmethyl compound using [ 3 H]methyl iodide. The compound was purified by preparative HPLC. The radiochemical yield was about 60% based on [ 3 H]methyl iodide. The radiochemical purity was more than 95% from HPLC and TLC. Furthermore, S(+)- and R(-)-[ 3 H]MDMA were completely separated by analytical HPLC with chiral column. (author)

  2. The novelty-seeking phenotype modulates the long-lasting effects of adolescent MDMA exposure.

    Science.gov (United States)

    Rodríguez-Arias, Marta; Vaccaro, Sonia; Arenas, M Carmen; Aguilar, María A; Miñarro, José

    2015-03-15

    Exposure to drugs such as ethanol or cocaine during adolescence induces alterations in the central nervous system that are modulated by the novelty-seeking trait. Our aim was to evaluate the influence of this trait on the long-term effects of MDMA administration during adolescence on spontaneous behavior and conditioned rewarding effects in adulthood. Adolescent mice were classified as high or low novelty seekers (HNS or LNS) according to the hole-board test and received either MDMA (0, 10 or 20mg/kg PND 33-42) or saline. Three weeks later, having entered adulthood (PND>68), one set of mice performed the elevated plus maze and social interaction tests, while another set performed the conditioning place preference (CPP) test induced by cocaine-(1mg/kg) or MDMA-(1mg/kg). Only HNS mice treated with MDMA during adolescence acquired CPP in adulthood with a non-effective dose of cocaine or MDMA. Although it did not produce changes in motor activity, exposure to MDMA during adolescence was associated with more aggressive behaviors (threat and attack) and increased social contacts in HNS mice, while an anxiolytic effect was noted in LNS mice pre-treated with the highest dose of MDMA (20mg/kg). Administration of MDMA (10 or 20mg/kg) induced a decrease in DA levels in the striatum in LNS mice only and lower striatal serotonin levels in mice treated with the highest MDMA dose. Our findings show that adolescent MDMA exposure results in higher sensitivity to the conditioned reinforcing properties of MDMA and cocaine in adult HNS mice, which suggests that the relationship between exposure to MDMA in adolescence and a higher probability of substance is a feature of high novelty seekers only. Copyright © 2015. Published by Elsevier Inc.

  3. Imaging diagnosis of ketamine-induced uropathy

    Directory of Open Access Journals (Sweden)

    Shu-Huei Shen

    2015-09-01

    Full Text Available With growing ketamine abuse, ketamine-induced uropathy (KIU has become a vital health issue in recent years. Although the lower urinary tract is the primary affected site, involvement of the upper urinary tract is common, and KIU may progress rapidly. The main objective of a baseline imaging study is evaluating the extent and complications of KIU after excluding other causes of uropathy. A comprehensive strategy for KIU evaluation through imaging is essential for effectively managing complications and preventing further renal function deterioration. In this study, we describe the imaging presentation of KIU and examine the role of various imaging modalities, such as ultrasound, intravenous urography, and computed tomography, in diagnosing patients with KIU.

  4. Radiographic assessment of laryngeal reflexes in ketamine-anesthetized cats

    International Nuclear Information System (INIS)

    Robinson, E.P.; Johnston, G.R.

    1986-01-01

    The competence of the laryngeal closure reflexes of cats anesthetized with ketamine was assessed. Radiographic evaluations of the respiratory and digestive tracts were made after colloidal barium suspension was instilled into the pharynges of conscious and ketamine-anesthetized cats. There was a significant ketamine dose-related response of spread of contrast medium into the supraglottic laryngeal area and into the stomach 2 minutes after contrast medium was instilled into the pharynx (P less than 0.05). Cats did not aspirate contrast medium into the lower respiratory tract. Three ketamine-anesthetized cats aspirated contrast medium into the subglottic area of the larynx, and 2 of these cats also aspirated the material into the cranial part of the trachea. This material was coughed up and swallowed within 5 minutes. Transit time of contrast medium into the stomach seemed to be increased in 11 of the 15 cats given the larger dosages of ketamine (24, 36, 48 mg/kg of body weight), compared with that in conscious cats and those given ketamine at 12 mg/kg. Competent laryngeal protective reflexes in cats can be maintained with ketamine anesthesia. Contrast radiography could be used as a diagnostic aid in ketamine-anesthetized cats suspected of laryngeal reflex abnormalities

  5. 21 CFR 522.1222 - Ketamine hydrochloride injectable dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ketamine hydrochloride injectable dosage forms. 522.1222 Section 522.1222 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 522.1222 Ketamine hydrochloride injectable dosage forms. ...

  6. Psychological effects of ketamine in healthy volunteers - Phenomenological study

    NARCIS (Netherlands)

    Pomarol-Clotet, E.; Honey, G. D.; Murray, G. K.; Corlett, P. R.; Absalom, A. R.; Lee, M.; McKenna, P. J.; Bullmore, E. T.; Fletcher, P. C.

    Background: The psychosis-inducing effect of ketamine is important evidence supporting the glutamate hypothesis of schizophrenia. However, the symptoms the drug produces have not been described systematically. Aim: To examine the effects of ketamine in healthy people using a structured psychiatric

  7. Ketamine for cancer pain: what is the evidence?

    Science.gov (United States)

    Jonkman, Kelly; van de Donk, Tine; Dahan, Albert

    2017-06-01

    In this review, we assess the benefit of ketamine in the treatment of terminal cancer pain that is refractory to opioid treatment and/or complicated by neuropathy. While randomized controlled trials consistently show lack of clinical efficacy of ketamine in treating cancer pain, a large number of open-label studies and case series show benefit. Ketamine is an N-methyl-D-aspartate receptor antagonist that at low-dose has effective analgesic properties. In cancer pain, ketamine is usually prescribed as adjuvant to opioid therapy when pain becomes opioid resistant or when neuropathic pain symptoms dominate the clinical picture. A literature search revealed four randomized controlled trials that examined the benefit of oral, subcutaneous or intravenous ketamine in opioid refractory cancer pain. None showed clinically relevant benefit in relieving pain or reducing opioid consumption. This suggests absence of evidence of benefit for ketamine as adjuvant analgesic in cancer pain. These findings contrast the benefit from ketamine observed in a large number of open-label studies and (retrospective) case series. We relate the opposite outcomes to methodological issues. The complete picture is such that there is still insufficient evidence to state with certainty that ketamine is not effective in cancer pain.

  8. Effects of Chloramphenicol Pretreatment on Xylazine/ketamine ...

    African Journals Online (AJOL)

    Keyword: Chloramphenicol, xylazine, ketamine, anaesthesia, cats. The effect of pretreatment with a single intramuscular (im) dose of chloramphenicol (10mg/kg) on the anaethesia induced with im injection of ketamine (25mg/kg) was investigated in five cats premedicated with im xylazine (1.0mg/kg) and atropine ...

  9. Abnormalities in white matter microstructure associated with chronic ketamine use.

    Science.gov (United States)

    Edward Roberts, R; Curran, H Valerie; Friston, Karl J; Morgan, Celia J A

    2014-01-01

    Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.

  10. Novel psychopharmacological therapies for psychiatric disorders: psilocybin and MDMA.

    Science.gov (United States)

    Mithoefer, Michael C; Grob, Charles S; Brewerton, Timothy D

    2016-05-01

    4-phosphorloxy-N,N-dimethyltryptamine (psilocybin) and methylenedioxymethamfetamine (MDMA), best known for their illegal use as psychedelic drugs, are showing promise as therapeutics in a resurgence of clinical research during the past 10 years. Psilocybin is being tested for alcoholism, smoking cessation, and in patients with advanced cancer with anxiety. MDMA is showing encouraging results as a treatment for refractory post-traumatic stress disorder, social anxiety in autistic adults, and anxiety associated with a life-threatening illness. Both drugs are studied as adjuncts or catalysts to psychotherapy, rather than as stand-alone drug treatments. This model of drug-assisted psychotherapy is a possible alternative to existing pharmacological and psychological treatments in psychiatry. Further research is needed to fully assess the potential of these compounds in the management of these common disorders that are difficult to treat with existing methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effect of ketamine on intraspinal acetylcholine release

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Goldkuhl, Renée Röstlinger; Nylund, Anders

    2006-01-01

    The general anaesthetic ketamine affects the central cholinergic system in several manners, but its effect on spinal acetylcholine release, which may be an important transmitter in spinal antinociception, is unknown. This study aimed to investigate the effect of ketamine on spinal acetylcholine...... release. Microdialysis probes were placed intraspinally in male rats, and acetylcholine was quantified with HPLC. Anaesthesia was switched from isoflurane (1.3%) to ketamine (150 mg/kg h), which resulted in a 500% increased acetylcholine release. The increase was attenuated during nicotinic receptor...... blockade (50 microM mecamylamine). The nicotinic receptor agonist epibatidine (175 microM) produced a ten-fold higher relative increase of acetylcholine release during isoflurane anaesthesia compared to ketamine anaesthesia (270% to 27%). Intraspinal administration of ketamine and norketamine both...

  12. Ketamine versus Ketamine / magnesium Sulfate for Procedural Sedation and Analgesia in the Emergency Department: A Randomized Clinical Trial.

    Science.gov (United States)

    Azizkhani, Reza; Bahadori, Azadeh; Shariati, Mohammadreza; Golshani, Keyhan; Ahmadi, Omid; Masoumi, Babak

    2018-01-01

    The present study was designed to evaluate the effectiveness of magnesium sulfate (MgSO 4 ) in procedural sedation and analgesia (PSA) when combined with ketamine in patients with fractures in emergency departments and required short and painful emergency procedures. In this study, 100 patients with fractures and dislocations who were presented to the emergency departments and required PSA for short and painful emergency procedures were randomly allocated to groups of ketamine plus MgSO 4 or ketamine alone. Train of four (TOF) stimulation pattern was assessed using nerve stimulator machine and compared between groups. The mean age of studied patients was 46.9 ± 9.3 years old. 48% were male and 52% were female. No significant differences were noted between groups in demographic variables. The status of TOF, 2 min after the injection of ketamine (1.5 mg/kg), in both groups was similar. After the injection of the second dose of ketamine (1 mg/kg) the status of TOF in four patients in ketamine plus MgSO 4 (0.45 mg/kg) group changed, it was three quarters but in ketamine group, the status of TOF in all patients was four quarters. The difference between groups was not statistically significant ( P = 0.12). The findings revealed that for muscle relaxation during medical procedures in the emergency department, ketamine in combination with MgSO 4 with this dose was not effective for muscle relaxation during procedures.

  13. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  14. Can MDMA play a role in the treatment of substance abuse?

    Science.gov (United States)

    Jerome, Lisa; Schuster, Shira; Yazar-Klosinski, B Berra

    2013-03-01

    A wider array of treatments are needed for people with substance abuse disorders. Some psychedelic compounds have been assessed as potential substance abuse treatments with promising results. MDMA may also help treat substance abuse based on shared features with psychedelic compounds and recent reports indicating that MDMAassisted psychotherapy can reduce symptoms of PTSD. Narrative reports and data from early investigations found that some people reduced or eliminated their substance use after receiving MDMA, especially in a therapeutic setting. MDMA is a potent monoamine releaser with sympathomimetic effects that may indirectly activate 5-HT2A receptors. It increases interpersonal closeness and prosocial feelings, potentially through oxytocin release. Findings suggest that ecstasy, material represented as containing MDMA, is associated with deleterious long-term effects after heavy lifetime use, including fewer serotonin transporter sites and impaired verbal memory. Animal and human studies demonstrate moderate abuse liability for MDMA, and this effect may be of most concern to those treating substance abuse disorders. However, subjects who received MDMA-assisted psychotherapy in two recent clinical studies were not motivated to seek out ecstasy, and tested negative in random drug tests during follow-up in one study. MDMA could either directly treat neuropharmacological abnormalities associated with addiction, or it could indirectly assist with the therapeutic process or reduce symptoms of comorbid psychiatric conditions, providing a greater opportunity to address problematic substance use. Studies directly testing MDMA-assisted psychotherapy in people with active substance abuse disorder may be warranted.

  15. MDMA (Ecstacy): Useful Information for Health Professionals Involved in Drug Education Programs.

    Science.gov (United States)

    Elk, Carrie

    1996-01-01

    Provides a brief history of 3,4-ethylenedioxymethamphetamine (MDMA). Presents a summation of current findings and implications including MDMA in drug education. Examines typical dosage, effects, user profile, and therapeutic aspects. Calls for increased research to address the lack of formal scientific data regarding the nature and effects of…

  16. [Ketamine--anticonvulsive and proconvulsive actions].

    Science.gov (United States)

    Kugler, J; Doenicke, A

    1994-11-01

    Animal experimentation has revealed that ketamine has anticonvulsive properties. Changes in the EEG have also been reported in animals; these have been designated non-convulsive generalized electrographic seizures because of their similarities to epileptiform potentials, even though there are no recognizable signs of seizures. The cataleptic condition of the cats in which these changes were observed led to the conclusion that ketamine could cause petit mal seizures, which took the course of petit mal status. Ketamine was therefore also seen as a dangerous anaesthetic agent predisposing to convulsions, the use of which could lead to status epilepticus and irreversible brain damage. These conflicts of opinion should be resolved, as they are based on various misconceptions. (1) The terminology used for epilepsy by specialized clinicians is not always correctly applied in the context of animal experimentation. (2) The activation of epileptiform potentials in the EEG of animals cannot be interpreted as a reliable sign of epileptogenic efficiency in humans. (3) Too little regard is paid to the different actions of anaesthetic agents in various sites of the brain, at different doses and with different routes of administration. (4) The statistical significance and biological relevance of the study results are inadequate because the numbers of observations are too small. Epileptologists regret the insufficiency of animal models as paradigma for the study of efficiency of antiepileptic drugs in humans. The degree by which extensor spasms in the front paw of Gerbils of rats induced by pentylentetrazol or electric current are reduced after application of an anticonvulsive drug is no reliable measure of its anticonvulsive effect in humans.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Cognitive impairments in poly-drug ketamine users.

    Science.gov (United States)

    Liang, H J; Lau, C G; Tang, A; Chan, F; Ungvari, G S; Tang, W K

    2013-11-01

    Cognitive impairment has been found to be reversible in people with substance abuse, particularly those using ketamine. Ketamine users are often poly-substance users. This study compared the cognitive functions of current and former ketamine users who were also abusing other psychoactive substances with those of non-users of illicit drugs as controls. One hundred ketamine poly-drug users and 100 controls were recruited. Drug users were divided into current (n = 32) and ex-users (n = 64) according to the duration of abstinence from ketamine (>30 days). The Beck Depression Inventory (BDI), the Hospital Anxiety Depression Scale (HADSA) and the Severity of Dependence Scale (SDS) were used to evaluate depression and anxiety symptoms and the severity of drug use, respectively. The cognitive test battery comprised verbal memory (Wechsler Memory Scale III: Logic Memory and Word List), visual memory (Rey-Osterrieth Complex Figure, ROCF), executive function (Stroop, Wisconsin Card Sorting Test, and Modified Verbal Fluency Test), working memory (Digit Span Backward), and general intelligence (Information, Arithmetic and Digit-Symbol Coding) tests. Current users had higher BDI and HADSA scores than ex-users (p recognition than controls (p = 0.002). No difference was found between the cognitive functions of current and ex-users. Ketamine poly-drug users displayed predominantly verbal and visual memory impairments, which persisted in ex-users. The interactive effect of ketamine and poly-drug use on memory needs further investigation. © 2013 Elsevier Ltd. All rights reserved.

  18. Spinal conduction block by intrathecal ketamine in dogs.

    Science.gov (United States)

    Iida, H; Dohi, S; Tanahashi, T; Watanabe, Y; Takenaka, M

    1997-07-01

    In addition to its use for intravenous (I.V.) anesthesia, ketamine can provide pain relief in humans when administered spinally. To elucidate the mechanisms of intrathecal (I.T.) ketamine analgesia, we observed differences in the effects of I.V. and I.T. ketamine on intraspinal evoked potentials (ISEPs) in 28 dogs anesthetized with pentobarbital. Bipolar extradural electrodes were inserted at the cervical and lumbar regions of the spinal cord for recording descending ISEPs represented by the two negative deflections, Waves I and II. I.V. ketamine 2 and 10 mg/ kg did not affect the amplitude and latency of Wave I, whereas the large dose (10 mg/kg) significantly decreased the amplitude but not the latency of Wave II. I.T. ketamine 1 and 5 mg/kg caused significant dose-dependent decreases in both Wave I and II amplitudes and prolongations of both Wave I and II latencies. These I.T. effects on ISEPs are consistent with previous in vitro observations that ketamine blocks axonal conduction. We conclude that axonal conduction block may contribute to the analgesic mechanism of I.T. ketamine.

  19. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor

    Directory of Open Access Journals (Sweden)

    Drew J. Puxty

    2017-07-01

    Full Text Available Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol, which are elevated by MDMA. In order to investigate the role of the 5-HT2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg, combined with placebo or a single oral dose of the 5-HT2 receptor blocker ketanserin (40 mg. Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations. Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA.

  20. The influence of genetic and environmental factors among MDMA users in cognitive performance.

    Directory of Open Access Journals (Sweden)

    Elisabet Cuyàs

    Full Text Available This study is aimed to clarify the association between MDMA cumulative use and cognitive dysfunction, and the potential role of candidate genetic polymorphisms in explaining individual differences in the cognitive effects of MDMA. Gene polymorphisms related to reduced serotonin function, poor competency of executive control and memory consolidation systems, and high enzymatic activity linked to bioactivation of MDMA to neurotoxic metabolites may contribute to explain variations in the cognitive impact of MDMA across regular users of this drug. Sixty ecstasy polydrug users, 110 cannabis users and 93 non-drug users were assessed using cognitive measures of Verbal Memory (California Verbal Learning Test, CVLT, Visual Memory (Rey-Osterrieth Complex Figure Test, ROCFT, Semantic Fluency, and Perceptual Attention (Symbol Digit Modalities Test, SDMT. Participants were also genotyped for polymorphisms within the 5HTT, 5HTR2A, COMT, CYP2D6, BDNF, and GRIN2B genes using polymerase chain reaction and TaqMan polymerase assays. Lifetime cumulative MDMA use was significantly associated with poorer performance on visuospatial memory and perceptual attention. Heavy MDMA users (>100 tablets lifetime use interacted with candidate gene polymorphisms in explaining individual differences in cognitive performance between MDMA users and controls. MDMA users carrying COMT val/val and SERT s/s had poorer performance than paired controls on visuospatial attention and memory, and MDMA users with CYP2D6 ultra-rapid metabolizers performed worse than controls on semantic fluency. Both MDMA lifetime use and gene-related individual differences influence cognitive dysfunction in ecstasy users.

  1. Memory and mood during MDMA intoxication, with and without memantine pretreatment.

    Science.gov (United States)

    de Sousa Fernandes Perna, E B; Theunissen, E L; Kuypers, K P C; Heckman, P; de la Torre, R; Farre, M; Ramaekers, J G

    2014-12-01

    Previous studies have shown that single doses of MDMA can affect mood and impair memory in humans. The neuropharmacological mechanisms involved in MDMA-induced memory impairment are not clear. Memantine, an NMDA and alpha 7 nicotinic acetylcholine (ACh) receptor antagonist, was able to reverse MDMA-induced memory impairment in rats. This study investigated whether treatment with memantine can prevent MDMA-induced memory impairment in humans. 15 subjects participated in a double-blind, placebo controlled, within-subject design. Subjects received both pre-treatment (placebo/memantine 20 mg) (T1) and treatment (placebo/MDMA 75 mg) (T2) on separate test days. T1 preceded T2 by 120 min. Memory function was assessed 90 min after T2 by means of a Visual Verbal Learning Task, a Prospective Memory Task, the Sternberg Memory Task and the Abstract Visual Pattern Learning Task. Profile of Mood State and psychomotor performance were also assessed to control whether MDMA and memantine interactions would selectively pertain to memory or transfer to other domains as well. MDMA significantly impaired performance in the visual verbal learning task and abstract visual pattern learning task. Pre-treatment with memantine did not prevent MDMA-induced memory impairment in these two tasks. Both positive (vigour, arousal, elation) and negative mood effects (anxiety) were increased by MDMA. The responses were not altered by pretreatment with memantine which had no effect on memory or mood when given alone. These preliminary results suggest that memantine does not reverse MDMA-induced memory impairment and mood in humans. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Ketamine for Pain Management-Side Effects & Potential Adverse Events.

    Science.gov (United States)

    Allen, Cheryl A; Ivester, Julius R

    2017-12-01

    An old anesthetic agent, ketamine is finding new use in lower doses for analgesic purposes. There are concerns stemming from its potential side effects-specifically psychomimetic effects. These side effects are directly related to dose amount. The doses used for analgesic purposes are much lower than those used for anesthesia purposes. A literature review was performed to ascertain potential side effects and/or adverse events when using ketamine for analgesia purposes. The search included CINAHL, PubMed, and Ovid using the search terms "ketamine," "ketamine infusion," "pain," "adverse events," "practice guideline," and "randomized controlled trial." Searches were limited to full-text, peer-reviewed articles and systematic reviews. Initially 1,068 articles were retrieved. The search was then narrowed by using the Boolean connector AND with various search term combinations. After adjusting for duplication, article titles and abstracts were reviewed, leaving 25 articles for an in-depth analysis. Specific exclusion criteria were then applied. The literature supports the use of ketamine for analgesic purposes, and ketamine offers a nonopioid option for the management of some pain conditions. Because ketamine is still classified as an anesthetic agent, health care institutions should develop their own set of policies and protocols for the administration of ketamine. By using forethought and understanding of the properties of ketamine, appropriate care may be planned to mitigate potential side effects and adverse events so that patients are appropriately cared for and their pain effectively managed. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  3. Effect of ketamine on endogenous pain modulation in healthy volunteers.

    Science.gov (United States)

    Niesters, Marieke; Dahan, Albert; Swartjes, Maarten; Noppers, Ingeborg; Fillingim, Roger B; Aarts, Leon; Sarton, Elise Y

    2011-03-01

    Inhibitory and facilitatory descending pathways, originating at higher central nervous system sites, modulate activity of dorsal horn nociceptive neurons, and thereby influence pain perception. Dysfunction of inhibitory pain pathways or a shift in the balance between pain facilitation and pain inhibition has been associated with the development of chronic pain. The N-methyl-d-aspartate receptor antagonist ketamine has a prolonged analgesic effect in chronic pain patients. This effect is due to desensitization of sensitized N-methyl-d-aspartate receptors. Additionally, ketamine may modulate or enhance endogenous inhibitory control of pain perception. Diffuse noxious inhibitory control (DNIC) and offset analgesia (OA) are 2 mechanisms involved in descending inhibition. The present study investigates the effect of a ketamine infusion on subsequent DNIC and OA responses to determine whether ketamine has an influence on descending pain control. Ten healthy subjects (4 men/6 women) received a 1-hour placebo or S(+)-ketamine (40mg per 70kg) infusion on 2 separate occasions in random order. Upon the termination of the infusion, DNIC and OA responses were obtained. After placebo treatment, significant descending inhibition of pain responses was present for DNIC and OA. In contrast, after ketamine infusion, no DNIC was observed, but rather a significant facilitatory pain response (Ppain inhibition and pain facilitation was shifted by ketamine towards pain facilitation. The absence of an effect of ketamine on OA indicates differences in the mechanisms and neurotransmitter influences between OA and DNIC. Diffuse noxious inhibitory control responses following a 1-hour low-dose ketamine treatment displayed facilitation of pain in response to experimental noxious thermal stimulation. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Procedural and declarative memory performance, and the memory consolidation function of sleep, in recent and abstinent Ecstasy/MDMA users

    Science.gov (United States)

    Blagrove, Mark; Seddon, Jennifer; George, Sophie; Parrott, Andrew C.; Stickgold, Robert; Walker, Matthew; Jones, Katy; Morgan, Michael J.

    2013-01-01

    This study assessed the effects of ecstasy/MDMA on declarative memory (Rivermead Behavioral Memory task - RBMT), on procedural learning (Finger Tapping Task - FTT), and on the memory consolidation function of sleep for these two tasks. Testing occurred in 2 afternoon testing sessions, 24 hours apart so that a full period of sleep was allowed between them. Groups were: Non-drug taking Controls (n=24); Recent Ecstasy/MDMA users, who had taken ecstasy and/or MDMA 2–3 days before the first testing session (n=25), and Abstinent Ecstasy/MDMA users, who had not taken ecstasy/MDMA for at least 8 days before the first session (n=17). The recent ecstasy/MDMA users performed significantly worse than controls on the RBMT (mean recall 76.1% of control group recall), but did not differ from controls on FTT performance. Correspondingly there was a significant regression between the continuous variable of recency of ecstasy/MDMA use and RBMT performance. However, there was an interaction between ecstasy/MDMA use and subsequent other drug use. Controls had similar RBMT scores to recent ecstasy/MDMA users who did not take other drugs 48 – 24 hours before testing, but scored significantly better than recent ecstasy/MDMA users who took various other drugs (mainly cannabis) 48 – 24 hours before testing. For both tasks the control, recent ecstasy/MDMA and abstinent ecstasy/MDMA users did not differ in their change of performance across 24 hours; there was thus no evidence that ecstasy/MDMA impairs the memory consolidation function of sleep for either declarative or procedural memory. For participants in the two ecstasy/MDMA groups greater lifetime consumption of ecstasy tablets was associated with significantly more deficits in procedural memory. Furthermore, greater lifetime consumption of ecstasy tablets and of cocaine, were also associated with significantly more deficits in declarative memory. PMID:20615932

  5. Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression.

    Science.gov (United States)

    Ho, Ming-Fen; Correia, Cristina; Ingle, James N; Kaddurah-Daouk, Rima; Wang, Liewei; Kaufmann, Scott H; Weinshilboum, Richard M

    2018-04-03

    Major depressive disorder (MDD) is the most common psychiatric illness worldwide, and it displays a striking sex-dependent difference in incidence, with two thirds of MDD patients being women. Ketamine treatment can produce rapid antidepressant effects in MDD patients, effects that are mediated-at least partially-through glutamatergic neurotransmission. Two active metabolites of ketamine, (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-HNK, also appear to play a key role in ketamine's rapid antidepressant effects through the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. In the present study, we demonstrated that estrogen plus ketamine or estrogen plus active ketamine metabolites displayed additive effects on the induction of the expression of AMPA receptor subunits. In parallel, the expression of estrogen receptor alpha (ERα) was also significantly upregulated. Even more striking, radioligand binding assays demonstrated that [ 3 H]-ketamine can directly bind to ERα (K D : 344.5 ± 13 nM). Furthermore, ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites displayed similar affinity for ERα (IC 50 : 2.31 ± 0.1, 3.40 ± 0.2, and 3.53 ± 0.2 µM, respectively) as determined by [ 3 H]-ketamine displacement assays. Finally, induction of AMPA receptors by either estrogens or ketamine and its metabolites was lost when ERα was knocked down or silenced pharmacologically. These results suggest a positive feedback loop by which estrogens can augment the effects of ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites on the ERα-induced transcription of CYP2A6 and CYP2B6, estrogen inducible enzymes that catalyze ketamine's biotransformation to form the two active metabolites. These observations provide novel insight into ketamine's molecular mechanism(s) of action and have potential implications for the treatment of MDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Ketamine for pain [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Kelly Jonkman

    2017-09-01

    Full Text Available The efficacy of the N-methyl-D-aspartate receptor antagonist ketamine as an analgesic agent is still under debate, especially for indications such as chronic pain. To understand the efficacy of ketamine for relief of pain, we performed a literature search for relevant narrative and systematic reviews and meta-analyses. We retrieved 189 unique articles, of which 29 were deemed appropriate for use in this review. Ketamine treatment is most effective for relief of postoperative pain, causing reduced opioid consumption. In contrast, for most other indications (that is, acute pain in the emergency department, prevention of persistent postoperative pain, cancer pain, and chronic non-cancer pain, the efficacy of ketamine is limited. Ketamine’s lack of analgesic effect was associated with an increase in side effects, including schizotypical effects.

  7. Intravenous sub-anesthetic ketamine for perioperative analgesia

    Directory of Open Access Journals (Sweden)

    Andrew W Gorlin

    2016-01-01

    Full Text Available Ketamine, an N-methyl-d-aspartate antagonist, blunts central pain sensitization at sub-anesthetic doses (0.3 mg/kg or less and has been studied extensively as an adjunct for perioperative analgesia. At sub-anesthetic doses, ketamine has a minimal physiologic impact though it is associated with a low incidence of mild psychomimetic symptoms as well as nystagmus and double vision. Contraindications to its use do exist and due to ketamine′s metabolism, caution should be exercised in patients with renal or hepatic dysfunction. Sub-anesthetic ketamine improves pain scores and reduces perioperative opioid consumption in a broad range of surgical procedures. In addition, there is evidence that ketamine may be useful in patients with opioid tolerance and for preventing chronic postsurgical pain.

  8. Morphine sparing effect of low dose ketamine during patient ...

    African Journals Online (AJOL)

    Adele

    2003-09-12

    Sep 12, 2003 ... KEY WORDS: Ketamine, morphine sparing effect, patient controlled intravenous analgesia. ... Measurements: Morphine consumption, visual analogue pain score (VAPS), pulse ..... Brain Research, 1990; 518: 218-222. 7.

  9. Synthesis of deuterium labeled ketamine metabolite dehydronorketamine-d₄.

    Science.gov (United States)

    Sulake, Rohidas S; Chen, Chinpiao; Lin, Huei-Ru; Lua, Ahai-Chang

    2011-10-01

    A convenient synthesis of ketamine metabolite dehydronorketamine-d(4), starting from commercially available deuterium labeled bromochlorobenzene, was achieved. Key steps include Grignard reaction, regioselective hydroxybromination, Staudinger reduction, and dehydrohalogenation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The Effect of Low‑Dose Ketamine (Preemptive Dose) on ...

    African Journals Online (AJOL)

    Reproductive Health Research Center, Alzahra Hospital, School of Medicine, 1Guilan University of Medical Sciences, .... pregnancy), who referred to the Alzahra Hospital, were ... Petidine consumption “during 24 “ was lesser in ketamine.

  11. Effects of MDMA on olfactory memory and reversal learning in rats.

    Science.gov (United States)

    Hawkey, Andrew; April, L Brooke; Galizio, Mark

    2014-10-01

    The effects of acute and sub-chronic MDMA were assessed using a procedure designed to test rodent working memory capacity: the odor span task (OST). Rats were trained to select an odor that they had not previously encountered within the current session, and the number of odors to remember was incremented up to 24 during the course of each session. In order to separate drug effects on the OST from more general performance impairment, a simple olfactory discrimination was also assessed in each session. In Experiment 1, acute doses of MDMA were administered prior to select sessions. MDMA impaired memory span in a dose-dependent fashion, but impairment was seen only at doses (1.8 and 3.0 mg/kg) that also increased response omissions on both the simple discrimination and the OST. In Experiment 2, a sub-chronic regimen of MDMA (10.0 mg/kg, twice daily over four days) was administered after OST training. There was no evidence of reduced memory span following sub-chronic MDMA, but a temporary increase in omission errors on the OST was observed. In addition, rats exposed to sub-chronic MDMA showed delayed learning when the simple discrimination was reversed. Overall, the disruptive effects of both acute and sub-chronic MDMA appeared to be due to non-mnemonic processes, rather than effects on specific memory functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms?

    Science.gov (United States)

    Feduccia, Allison A; Mithoefer, Michael C

    2018-06-08

    MDMA-assisted psychotherapy for treatment of PTSD has recently progressed to Phase 3 clinical trials and received Breakthrough Therapy designation by the FDA. MDMA used as an adjunct during psychotherapy sessions has demonstrated effectiveness and acceptable safety in reducing PTSD symptoms in Phase 2 trials, with durable remission of PTSD diagnosis in 68% of participants. The underlying psychological and neurological mechanisms for the robust effects in mitigating PTSD are being investigated in animal models and in studies of healthy volunteers. This review explores the potential role of memory reconsolidation and fear extinction during MDMA-assisted psychotherapy. MDMA enhances release of monoamines (serotonin, norepinephrine, dopamine), hormones (oxytocin, cortisol), and other downstream signaling molecules (BDNF) to dynamically modulate emotional memory circuits. By reducing activation in brain regions implicated in the expression of fear- and anxiety-related behaviors, namely the amygdala and insula, and increasing connectivity between the amygdala and hippocampus, MDMA may allow for reprocessing of traumatic memories and emotional engagement with therapeutic processes. Based on the pharmacology of MDMA and the available translational literature of memory reconsolidation, fear learning, and PTSD, this review suggests a neurobiological rationale to explain, at least in part, the large effect sizes demonstrated for MDMA in treating PTSD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. MDMA (Ecstasy) Decreases the Number of Neurons and Stem Cells in Embryonic Cortical Cultures

    DEFF Research Database (Denmark)

    Kindlundh-Högberg, Anna M S; Pickering, Chris; Wicher, Grzegorz

    2010-01-01

    Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated...... CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 muM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 muM) in NeuN-positive cells. By q......PCR, MDMA (200 muM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells...

  14. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.

    Science.gov (United States)

    Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M

    2016-02-01

    The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.

  15. A Cross-Reactivity of Fenofibric Acid With MDMA DRI Assay.

    Science.gov (United States)

    Bugier, Sarah; Garcia-Hejl, Carine; Vest, Philippe; Plantamura, Julie; Chianea, Denis; Renard, Christophe

    2016-09-01

    Within the framework of routine fitness examinations, French Air Force military crew underwent urine testing for 3,4 methylenedioxymetamphetamine (MDMA [ecstasy]). The cross-reactivity of a dyslipidemic drug, fenofibrate, with an MDMA immunoassay was studied and confirmed on a large population sample. A 3-year retrospective study was performed on the MDMA DRI Ecstasy Assay on the Unicel DXC 600. In the event of positive test result, a confirmatory testing was carried out by gas chromatography/mass spectrometry (GC/MS) to establish the presence of MDMA. When analysis by GC/MS did not confirm the presence of MDMA, a false-positive result was suspected and the samples were analyzed by high-performance liquid chromatography-mass spectrometry to identify a potential interfering substance. A total of 15,169 urine samples, from 7,803 patients, were tested for 3 years. Of the tested samples, 22 (0.15%) were positive by DRI Ecstasy Assay. None of them were positive by GC/MS. A cross-reactivity of fenofibrate's metabolite with MDMA using this assay was systematically found. Fenofibrate's interference with MDMA immunoassay was confirmed. Fenofibrate being widely prescribed, physicians had to be alerted that this treatment could lead to false-positive results. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  16. Ketamine for pain management in France, an observational survey.

    Science.gov (United States)

    Martinez, Valeria; Derivaux, Benoit; Beloeil, Helene

    2015-12-01

    Before updating the French guidelines on postoperative pain treatment in 2015, the Pain Committee of the French Society of Anaesthesiology and Intensive Care (SFAR) conducted a survey on the medical use of ketamine in France. An online questionnaire was nationally distributed to members of SFAR, the French Pain Society (SFETD) and the French Society of Emergency Medicine (SFMU). The questionnaire included questions on demographic data, the type of patients for whom ketamine was prescribed, the doses used, the side effects and safety measures associated with the administration of ketamine. A total of 1388 questionnaires were analysed. Ninety-two percent of the responders declared that they used ketamine. Ketamine was widely used as anti-hyperalgesic medication but the modalities of administration and the doses varied greatly and were not in accordance with the guidelines. Despite the lack of evidence and guidelines, ketamine has also been used to treat acute and chronic pain. Doses, duration and localization of the patients during administration have varied greatly. Psychedelic effects and hallucinations are the most feared side effects. In terms of monitoring during ketamine infusion, 15% of physicians declared that no monitoring was necessary while 59%, 55%, 59% and 77% monitored heart rate, SpO2, blood pressure and level of consciousness, respectively. Anaesthesiologists have integrated the benefit of ketamine in preventing hyperalgesia but there is no consensus on doses and duration. For other indications (acute and chronic pain treatment), toxicity and the absence of significant benefit call for guidelines from scientific societies. Copyright © 2015 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  17. COMPARATIVE EFFICACY OF DETOMIDINE AND DETOMIDINE - KETAMINE COCKTAIL IN QUAILS

    OpenAIRE

    U. F. Durrani, M. Ashraf and A. Khalid¹

    2005-01-01

    Twenty adult healthy quails (Coturnix coturnix) were divided into two equal groups. One group was administered detomidine (2.4 mg/kg, I/M) and other group was administered detomidine-ketamine cocktail (1.2 mg/kg + 30 mg/kg, I/M). Detomidine slowly and smoothly induced a light sedation accompanied by superficial analgesia, hypoventilation, hypothermia and bradycardia in all birds. Detomidine-ketamine cocktail rapidly and smoothly induced a deep anaesthesia accompanied by deep analgesia, hypove...

  18. Ketamine. A solution to procedural pain in burned children.

    Science.gov (United States)

    Groeneveld, A; Inkson, T

    1992-09-01

    Our experience has shown ketamine to be a safe and effective method of providing pain relief during specific procedures in burned children. It renders high doses of narcotics unnecessary and offers children the benefit of general anesthesia without the requirement of endotracheal intubation and a trip to the operating room. The response of parents and staff to the use of ketamine has been positive. Parents often experience feelings of guilt following injury to a child and are eager to employ methods that reduce their child's pain. So far, no parent has refused the administration of ketamine; some have even asked that it be used during subsequent procedures on their child. With adequate pre-procedure teaching, parents are prepared for the possible occurrence of emergent reactions and can assist in reorienting the child during recovery. Staff have found that the stress of doing painful procedures on children is reduced when ketamine is used. The procedures tend to be quicker and the predicament of working on a screaming, agitated child is eliminated. At the same time, nursing staff have had to get used to the nystagmic gaze of the children and accept that these patients are truly anesthetized even though they might move and talk. Despite the success we and others have had with ketamine, several questions about its use in burn patients remain unanswered. The literature does not answer such questions as: Which nursing measures reduce the incidence of emergent reactions? How many ketamine anesthetics can safely be administered to one individual? How does the frequency of administration relate to tolerance in a burn patient? Are there detrimental effects of frequent or long-term use? Clearly, an understanding of these questions is necessary to determine the safe boundaries of ketamine use in burn patients. Ketamine is not a panacea for the problem of pain in burned children. But it is one means of managing procedural pain, which is, after all, a significant clinical

  19. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density.

    Science.gov (United States)

    Abad, Sònia; Fole, Alberto; del Olmo, Nuria; Pubill, David; Pallàs, Mercè; Junyent, Fèlix; Camarasa, Jorge; Camins, Antonio; Escubedo, Elena

    2014-03-01

    Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.

  20. Monitoring MDMA metabolites in urban wastewater as novel biomarkers of consumption.

    Science.gov (United States)

    González-Mariño, Iria; Zuccato, Ettore; Santos, Miquel M; Castiglioni, Sara

    2017-05-15

    Consumption of 3,4-methylendioxymethamphetamine (MDMA) has been always estimated by measuring the parent substance through chemical analysis of wastewater. However, this may result in an overestimation of the use if the substance is directly disposed in sinks or toilets. Using specific urinary metabolites may overcome this limitation. This study investigated for the first time the suitability of a panel of MDMA metabolites as biomarkers of consumption, considering the specific criteria recently proposed, i.e. being detectable and stable in wastewater, being excreted in a known percentage in urine, and having human excretion as the sole source. A new analytical method was developed and validated for the extraction and analysis of MDMA and three of its main metabolites in wastewater. 24-h composite raw wastewater samples from three European cities were analysed and MDMA use was back-calculated. Results from single MDMA loads, 4-hydroxy-3-methoxymethamphetamine (HMMA) loads and from the sum of MDMA, HMMA and 4-hydroxy-3-methoxyamphetamine (HMA) loads were in line with the well-known recreational use of this drug: consumption was higher during the weekend in all cities. HMMA and HMA turned out to be suitable biomarkers of consumption; however, concentrations measured in wastewater did not resemble the expected pharmacokinetic profiles, quite likely due to the very limited information available on excretion profiles. Different options were tested to back-calculate MDMA use, including the sum of MDMA and its metabolites, to balance the biases associated with each single substance. Nevertheless, additional pharmacokinetic studies are urgently needed in order to get more accurate excretion rates and, therefore, improve the estimates of MDMA use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Increased cortisol levels in hair of recent Ecstasy/MDMA users.

    Science.gov (United States)

    Parrott, A C; Sands, H R; Jones, L; Clow, A; Evans, P; Downey, L A; Stalder, T

    2014-03-01

    Previous research has revealed an acute 8-fold increase in salivary cortisol following self-administrated Ecstasy/MDMA in dance clubbers. It is currently not known to what extent repeated usage impacts upon activity of the hypothalamic-pituitary-adrenal axis over a more prolonged period of time. This study investigated the integrated cortisol levels in 3-month hair samples from recent Ecstasy/MDMA users and non-user controls. One hundred and one unpaid participants (53 males, 48 females; mean age 21.75 years) completed the University of East London recreational drug use questionnaire, modified to cover the past 3-months of usage. They comprised 32 light recent Ecstasy/MDMA users (1-4 times in last 3 months), 23 recent heavy MDMA users (+5 times in last 3 months), and 54 non-user controls. Volunteers provided 3 cm hair samples for cortisol analysis. Hair cortisol levels were observed to be significantly higher in recent heavy MDMA users (mean = 55.0 ± 80.1 pg/mg), compared to recent light MDMA users (19.4 ± 16.0 pg/mg; p=0.015), and to non-users (13.8 ± 6.1 pg/mg; pEcstasy/MDMA was associated with almost 4-fold raised hair cortisol levels, in comparison with non-user controls. The present results are consistent with the bio-energetic stress model for Ecstasy/MDMA, which predicts that repeated stimulant drug use may increase cortisol production acutely, and result in greater deposits of the hormone in hair. These data may also help explain the neurocognitive, psychiatric, and other psychobiological problems of some abstinent users. Future study design and directions for research concerning the psychoneuroendocrinological impact of MDMA are also discussed. © 2013 Published by Elsevier B.V. and ECNP.

  2. Suppressed neural complexity during ketamine- and propofol-induced unconsciousness.

    Science.gov (United States)

    Wang, Jisung; Noh, Gyu-Jeong; Choi, Byung-Moon; Ku, Seung-Woo; Joo, Pangyu; Jung, Woo-Sung; Kim, Seunghwan; Lee, Heonsoo

    2017-07-13

    Ketamine and propofol have distinctively different molecular mechanisms of action and neurophysiological features, although both induce loss of consciousness. Therefore, identifying a common feature of ketamine- and propofol-induced unconsciousness would provide insight into the underlying mechanism of losing consciousness. In this study we search for a common feature by applying the concept of type-II complexity, and argue that neural complexity is essential for a brain to maintain consciousness. To test this hypothesis, we show that complexity is suppressed during loss of consciousness induced by ketamine or propofol. We analyzed the randomness (type-I complexity) and complexity (type-II complexity) of electroencephalogram (EEG) signals before and after bolus injection of ketamine or propofol. For the analysis, we use Mean Information Gain (MIG) and Fluctuation Complexity (FC), which are information-theory-based measures that quantify disorder and complexity of dynamics respectively. Both ketamine and propofol reduced the complexity of the EEG signal, but ketamine increased the randomness of the signal and propofol decreased it. The finding supports our claim and suggests EEG complexity as a candidate for a consciousness indicator. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Methamphetamine and MDMA: ‘Safe’ drugs of abuse

    Directory of Open Access Journals (Sweden)

    Allana M. Krolikowski

    2014-03-01

    Full Text Available Methamphetamine and MDMA have been called safe drugs of abuse. Worldwide there is an increased consumption of these drugs, which has become a focus of research in South Africa. As the number of methamphetamine users has increased in many African countries, it is essential that emergency care practitioners are able to diagnose and manage intoxication with methamphetamine, MDMA, and other derivatives. The most common presentations include restlessness, agitation, hypertension, tachycardia, and headache while hyperthermia, hyponatraemia, and rhabdomyolysis are among the most common serious complications. Most deaths are secondary to hyperthermia complicated by multiple organ failure. A number of laboratory analyses should be obtained if locally available. We provide a review of the current recommended general and specific management approaches. Benzodiazepines are the first line therapy for hyperthermia, agitation, critical hypertension, and seizures. Patients with serious complications are best managed in an intensive care unit if available. Emergency centres should create protocols and/or further train staff in the recognition and management of intoxication with these ‘not so safe’ drugs.

  4. Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies.

    Science.gov (United States)

    Kuypers, Kim Pc; Dolder, Patrick C; Ramaekers, Johannes G; Liechti, Matthias E

    2017-05-01

    Previous placebo-controlled experimental studies have shown that a single dose of MDMA can increase emotional empathy in the multifaceted empathy test (MET) without affecting cognitive empathy. Although sufficiently powered to detect main effects of MDMA, these studies were generally underpowered to also validly assess contributions of additional parameters, such as sex, drug use history, trait empathy and MDMA or oxytocin plasma concentrations. The present study examined the robustness of the MDMA effect on empathy and investigated the moderating role of these additional parameters. Participants ( n = 118) from six placebo-controlled within-subject studies and two laboratories were included in the present pooled analysis. Empathy (MET), MDMA and oxytocin plasma concentrations were assessed after oral administration of MDMA (single dose, 75 or 125 mg). Trait empathy was assessed using the interpersonal reactivity index. We confirmed that MDMA increased emotional empathy at both doses without affecting cognitive empathy. This MDMA-related increase in empathy was most pronounced during presentation of positive emotions as compared with negative emotions. MDMA-induced empathy enhancement was positively related to MDMA blood concentrations measured before the test, but independent of sex, drug use history and trait empathy. Oxytocin concentrations increased after MDMA administration but were not associated with behavioral effects. The MDMA effects on emotional empathy were stable across laboratories and doses. Sex did not play a moderating role in this effect, and oxytocin levels, trait empathy and drug use history were also unrelated. Acute drug exposure was of significant relevance in the MDMA-induced emotional empathy elevation.

  5. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p 1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Upper urinary tract damage caused by ketamine snorting—A report of nine cases

    Directory of Open Access Journals (Sweden)

    Hsiang-Ying Lee

    2015-09-01

    Conclusion: To the best of our knowledge, currently there is no standard therapy for ketamine-induced nephropathy, we therefore supplied a therapeutic choice for those ketamine abuser combined with hydronephrosis and/or acute kidney injury.

  7. Respiratory complications associated with ketamine anesthesia for ophthalmic procedures following intraocular pressure measurement in children

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2014-01-01

    Full Text Available Background: We compared respiratory complications (RCs in children who received intramuscular (IM versus intravenous (IV or no ketamine for intraocular pressure (IOP measurement to test our observation that IM ketamine is associated with higher incidence of RCs. Materials and Methods: We analyzed 149 eye examinations under anesthesia with ketamine in 27 patients and 263 non-ketamine examinations under anesthesia in 81 patients using a mixed effects logistic regression model. Results: IM ketamine was strongly associated with increased odds of RCs compared to no ketamine (odds ratio (OR: 20.23, P < 0.0001 and to IV ketamine (OR: 6.78, P = 0.02, as were higher American Society of Anesthesiologists (ASA classification (OR: 2.60, P = 0.04, and the use of volatile agents (OR: 3.32, P = 0.02. Conclusion: Further studies should be conducted to confirm our observation of increased RCs with IM ketamine.

  8. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury

    DEFF Research Database (Denmark)

    Sakowitz, Oliver W; Kiening, Karl L; Krajewski, Kara L

    2009-01-01

    by the noncompetitive N-methyl-d-aspartate receptor antagonist ketamine. This restored electrocorticographic activity. CONCLUSIONS: These anecdotal electrocorticographic findings suggest that ketamine has an inhibitory effect on spreading depolarizations in humans. This is of potential interest for future...

  9. Preemptive analgesia by peritonsillar ketamine versus ropivacaine for post-tonsillectomy pain in children

    Directory of Open Access Journals (Sweden)

    Manal S. Farmawy

    2014-01-01

    Conclusion: Perincisional peritonsillar infiltration of both ropivacaine and ketamine was effective in reduction of post-tonsillectomy pain. Ropivacaine was superior to ketamine in reduction of time to first analgesic demand.

  10. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects

    Science.gov (United States)

    Yang, C; Shirayama, Y; Zhang, J-c; Ren, Q; Yao, W; Ma, M; Dong, C; Hashimoto, K

    2015-01-01

    Although the efficacy of racemate ketamine, a rapid onset and sustained antidepressant, for patients with treatment-resistant depression was a serendipitous finding, clinical use of ketamine is limited, due to psychotomimetic side effects and abuse liability. Behavioral and side-effect evaluation tests were applied to compare the two stereoisomers of ketamine. To elucidate their potential therapeutic mechanisms, we examined the effects of these stereoisomers on brain-derived neurotrophic factor (BDNF)–TrkB signaling, and synaptogenesis in selected brain regions. In the social defeat stress and learned helplessness models of depression, R-ketamine showed a greater potency and longer-lasting antidepressant effect than S-ketamine (esketamine). Furthermore, R-ketamine induced a more potent beneficial effect on decreased dendritic spine density, BDNF–TrkB signaling and synaptogenesis in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of the hippocampus from depressed mice compared with S-ketamine. However, neither stereoisomer affected these alterations in the nucleus accumbens of depressed mice. In behavioral tests for side effects, S-ketamine, but not R-ketamine, precipitated behavioral abnormalities, such as hyperlocomotion, prepulse inhibition deficits and rewarding effects. In addition, a single dose of S-ketamine, but not R-ketamine, caused a loss of parvalbumin (PV)-positive cells in the prelimbic region of the medial PFC and DG. These findings suggest that, unlike S-ketamine, R-ketamine can elicit a sustained antidepressant effect, mediated by increased BDNF–TrkB signaling and synaptogenesis in the PFC, DG and CA3. R-ketamine appears to be a potent, long-lasting and safe antidepressant, relative to S-ketamine, as R-ketamine appears to be free of psychotomimetic side effects and abuse liability. PMID:26327690

  11. MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its Stereoisomers: Similarities and Differences in Behavioral Effects in an Automated Activity Apparatus in Mice

    OpenAIRE

    Young, Richard; Glennon, Richard A.

    2007-01-01

    Racemic MDMA (0.3 – 30 mg/kg), S(+)-MDMA (0.3 – 30 mg/kg), R(-)-MDMA (0.3 – 50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (±)-MDMA usually being more potent than R(-)-MD...

  12. Efficacy of Ketamine in Pediatric Sedation Dentistry: A Systematic Review.

    Science.gov (United States)

    Oh, Samuel; Kingsley, Karl

    2018-05-01

    Ketamine has been used as a safe and effective sedative to treat adults and children exhibiting high levels of anxiety or fear during dental treatment. Pediatric dentistry often involves patients with high levels of anxiety and fear and possibly few positive dental experiences. Patient management can involve behavioral approaches, as well as the use of sedation or general anesthesia with a variety of agents, including midazolam, diazepam, hydroxyzine, meperidine, and ketamine. The aim of this study was to investigate the clinical efficacy of ketamine use in pediatric sedation dentistry through systematic review and analysis. A systematic review of publications between 1990 and 2015 was conducted using PubMed and MEDLINE databases maintained by the US National Library of Medicine and the National Institutes of Health. The keywords used were (ketamine) AND (dental OR dentistry) AND (sedation). The abstract and title of all potential publications were then screened for clinical trials and to remove non-English articles, non-human or animal trials, and other non-dental or non-relevant studies. A total of 1,657 citations were initially identified, reviewed, and screened, eventually resulting in inclusion of 25 clinical trials in this systematic review. Nineteen studies evaluated ketamine effects in pediatric dental sedation using oral (non-invasive) administration, three involved subcutaneous or intramuscular injection, and three were completed intravenously. Evidence analysis of these trials revealed the majority (n = 22/25) provided strong, positive evidence for the use of ketamine (alone or in combination) to reduce dental anxiety and behavioral non-compliance with the remainder suggesting equivocal results. Additional endpoints evaluated in some studies involved dosage, as well as time to achieve sedation effect. The use of ketamine (alone or in combination) can provide safe, effective, and timely sedation in pediatric patients regardless of the route of

  13. Effects of ketamine on pro-inflammatory mediators in equine models

    NARCIS (Netherlands)

    Lankveld, D.P.K.

    2007-01-01

    Ketamine is frequently used in both human and veterinary anaesthesia. Beside its anaesthetic and analgesic effects, ketamine has been demonstrated to possess anti-inflammatory properties in rodents and humans. To date, no data are available on the anti-inflammatory effects of ketamine in horses.

  14. 21 CFR 522.1222b - Ketamine hydrochloride with promazine hydrochloride and aminopentamide hydrogen sulfate injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ketamine hydrochloride with promazine... RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1222b Ketamine.... Ketamine hydrochloride, (±),-2-(o-chlorophenyl)-2-(methylamino) cyclohexanone hydrochloride, with promazine...

  15. Oral ketamine for the treatment of pain and treatment-resistant depression†.

    Science.gov (United States)

    Schoevers, Robert A; Chaves, Tharcila V; Balukova, Sonya M; Rot, Marije Aan Het; Kortekaas, Rudie

    2016-02-01

    Recent studies with intravenous (i.v.) application of ketamine show remarkable but short-term success in patients with MDD. Studies in patients with chronic pain have used different ketamine applications for longer time periods. This experience may be relevant for psychiatric indications. To review the literature about the dosing regimen, duration, effects and side-effects of oral, intravenous, intranasal and subcutaneous routes of administration of ketamine for treatment-resistant depression and pain. Searches in PubMed with the terms 'oral ketamine', 'depression', 'chronic pain', 'neuropathic pain', 'intravenous ketamine', 'intranasal ketamine' and 'subcutaneous ketamine' yielded 88 articles. We reviewed all papers for information about dosing regimen, number of individuals who received ketamine, number of ketamine days per study, results and side-effects, as well as study quality. Overall, the methodological strength of studies investigating the antidepressant effects of ketamine was considered low, regardless of the route of administration. The doses for depression were in the lower range compared with studies that investigated analgesic use. Studies on pain suggested that oral ketamine may be acceptable for treatment-resistant depression in terms of tolerability and side-effects. Oral ketamine, given for longer time periods in the described doses, appears to be well tolerated, but few studies have systematically examined the longer-term negative consequences. The short- and longer-term depression outcomes as well as side-effects need to be studied with rigorous randomised controlled trials. © The Royal College of Psychiatrists 2016.

  16. Preemptive effects of epidural s (+ - ketamine or ketamine in the horse's postincisional pain

    Directory of Open Access Journals (Sweden)

    Nilson Oleskovicz

    2006-02-01

    Full Text Available The aim of this study was to evaluate the pre-emptive effect of epidural ketamine S (+ (SK or racemic ketamine (RK administration, in post-incisional pain in horses. Were used in a blinded, randomized experimental study, sixteen mixed breed mares, 6±2 years old, weighting 273.2±42.0 kg. An epidural catheter was inserted 24 hours before the trials. The thigh region was shaved bilaterally, and mechanical cutaneous sensibility was measured using von Frey filaments (T-30. Using the left side as the control one, local anesthesia was performed at the right side. Twenty-five minutes later, SK was injected in G1 or RK in G2 through the epidural catheter. Five minutes after the ketamine injection, a 10 cm skin incision was made on the right side, and then sutured. Mechanical post-incisional pain was measured using von Frey filaments, at 1, 3 and 5 cm around the incision at 15 minutes intervals, for 2 hours, then 4, 6 and 8 hours after suturing. No changes were observed in the heart and respiratory rate and rectal temperature among groups or times of each group. Hind limb ataxia was observed in 62.5% and 12.5% of G1 and G2 respectively. SK and RK reduced cutaneous sensibility in the right and the left sides to mechanical postincisional pain during all time of experiment. Epidural SK and RK produce similar post-incisional analgesic effects, did not interfere in the cardio-respiratory parameters. The SK induces more intense ataxia in mares and presents a larger analgesic potency in the first 60 minutes after the administration.

  17. Strenuous exercise aggravates MDMA-induced skeletal muscle damage in mice

    International Nuclear Information System (INIS)

    Duarte, Jose A.; Leao, Anabela; Magalhaes, Jose; Ascensao, Antonio; Bastos, Maria L.; Amado, Francisco L.; Vilarinho, Laura; Quelhas, Dulce; Appell, Hans J.; Carvalho, Felix

    2005-01-01

    The aim of this study was to investigate the influence of ecstasy (MDMA) administration on body temperature and soleus muscle histology in exercised and non-exercised mice. Charles-River mice were distributed into four groups: Control (C), exercise (EX), MDMA treated (M), and M + EX. The treated animals received an i.p. injection (10 mg/kg) of MDMA (saline for C and EX), and the exercise consisted of a 90 min level run at a velocity of 900 m/h, immediately after the MDMA or saline administration. Body temperature was recorded every 30 min via subcutaneous implanted transponder. Animals were sacrificed 1.5, 25.5, and 49.5 h after i.p. injection and the soleus muscles were removed and processed for light and electron microscopy. The MDMA-treated animals showed a significant increase in body temperature (similar in M and M + EX groups), reaching the peak 90 min after i.p. administration; their temperature remained higher than control for more than 5 h. The EX group evidenced a similar and parallel, yet lower temperature increase during exercise and recovery. Morphological signs of damage were rarely encountered in the EX group; they were more pronounced in M group and even aggravated in M + EX group. In conclusion, MDMA and exercise per se increased body temperature but in conjunction did not have a cumulated effect. However, ecstasy and concomitant physical activity might severely accumulate with regard to skeletal muscle toxicity and may lead to rhabdomyolysis

  18. Role of nitric oxide pathway in the conditioned rewarding effects of MDMA in mice.

    Science.gov (United States)

    García-Pardo, M P; Rodríguez-Arias, M; Miñarro, J; Aguilar, M A

    2017-07-14

    It is estimated that 2.1 million young adults used MDMA/Ecstasy in the last year in Europe. Vulnerable subjects can develop dependence after MDMA abuse but currently there does not exist an effective treatment for this disorder. The nitric oxide (NO) pathway seems to have an important role on the rewarding effects of different drugs and has been proposed as a new pharmacological treatment for psychostimulant addiction. In the present study, we intend to evaluate whether the blockade of the NO synthesis (NOS) interferes with the rewarding effects of MDMA in the conditioned preference place (CPP) paradigm in young adult male mice. Our results indicated that mice treated with 7-nitroindazole (a NOS inhibitor) did not show CPP after conditioning with MDMA (1.25mg/kg). These results demonstrated the role of the NO pathway in the rewarding effects of MDMA and suggested that the manipulation of this pathway could be a new therapeutic option for MDMA abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Human psychobiology of MDMA or 'Ecstasy': an overview of 25 years of empirical research.

    Science.gov (United States)

    Parrott, Andrew C

    2013-07-01

    This paper aimed to review how scientific knowledge about the human psychobiology of MDMA has developed over time. In this paper, the empirical findings from earlier and later studies will be reviewed. When MDMA was a 'novel psychoactive substance', it was not seen as a drug of abuse, as it displayed loss of efficacy. However, recreational users display a unique pattern of increasing doses, deteriorating cost-benefit ratios, and voluntary cessation. MDMA increases body temperature and thermal stress, with cortisol levels increased by 800% in dance clubbers. It can be extremely euphoric, although negative moods are also intensified. MDMA causes apoptosis (programmed cell death) and has been investigated for cancer therapy because of its anti-lymphoma properties. Recreational users show deficits in retrospective memory, prospective memory, higher cognition, problem solving, and social intelligence. Basic cognitive skills remain intact. Neuroimaging studies show reduced serotonin transporter levels across the cerebral cortex, which are associated with neurocognitive impairments. Deficits also occur in sleep architecture, sleep apnoea, complex vision, pain, neurohormones, and psychiatric status. Ecstasy/MDMA use during pregnancy leads to psychomotor impairments in the children. The damaging effects of Ecstasy/MDMA are far more widespread than was realized a few years ago, with new neuropsychobiological deficits still emerging. Copyright © 2013 John Wiley & Sons, Ltd.

  20. The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice.

    Science.gov (United States)

    Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard

    2006-03-01

    When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.

  1. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  2. The high prevalence of substance use disorders among recent MDMA users compared with other drug users: implications for intervention

    Science.gov (United States)

    Wu, Li-Tzy; Parrott, Andy C.; Ringwalt, Christopher L.; Patkar, Ashwin A.; Mannelli, Paolo; Blazer, Dan G.

    2009-01-01

    Aim In light of the resurgence in MDMA use and its association with polysubstance use, we investigated the 12-month prevalence of substance use disorders (SUDs) among adult MDMA users to determine whether they are at risk of other drug-related problems that would call for targeted interventions. Methods Data were drawn from the 2006 National Survey on Drug Use and Health. Past-year adult drug users were grouped into three mutually exclusive categories: 1) recent MDMA users, who had used the drug within the past year; 2) former MDMA users, who had a history of using this drug but had not done so within the past year; and 3) other drug users, who had never used MDMA. Logistic regression procedures were used to estimate the association between respondents’ SUDs and MDMA use while adjusting for their socioeconomic status, mental health, age of first use, and history of polydrug use. Results Approximately 14% of adults reported drug use in the past year, and 24% of those past-year drug users reported a history of MDMA use. Recent MDMA users exhibited the highest prevalence of disorders related to alcohol (41%), marijuana (30%), cocaine (10%), pain reliever/opioid (8%), and tranquilizer (3%) use. Adjusted logistic regression analyses revealed that, relative to other drug users, those who had recently used MDMA were twice as likely to meet criteria for marijuana and pain reliever/opioid use disorders. They were also about twice as likely as former MDMA users to meet criteria for marijuana, cocaine, and tranquilizer use disorders. Conclusions Seven out of ten recent MDMA users report experiencing an SUD in the past year. Adults who have recently used MDMA should be screened for possible SUDs to ensure early detection and treatment. PMID:19361931

  3. Influence of ketamine on regional brain glucose use

    International Nuclear Information System (INIS)

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-01-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with [6- 14 C]glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus

  4. Gargling with Ketamine Attenuates the Postoperative Sore Throat

    Directory of Open Access Journals (Sweden)

    A Rudra

    2009-01-01

    Full Text Available Postoperative sore throat (POST is a common complication of anaesthesia with endotracheal tube that affects patient satisfaction after surgery. Therefore, this complication remains to be resolved in patients undergoing endotra-cheal intubation. The aim of the study was to compare the effectiveness of ketamine gargles with placebo in prevent-ing POST after endotracheal intubation. Forty patients scheduled for elective surgery under general anaesthesia were randomized into: Group C, water 30 ml; Group K, ketamine 50 mg in water 29 ml. Patients were asked to gargle this mixture for 40 seconds, 5 minutes before induction of anaesthesia. POST was graded at 4, 8 and 24 hours after operation on a four-point scale (0-3. In the Control group POST occurred more frequently, when compared with patients belonging to Ketamine group, at 4, 8, and 24 hours and significantly more patients suffered severe POST in Control group at 8 and 24 hours compared with Ketamine group (P< 0.05. We demonstrated that gargling with ketamine significantly attenuated POST, with no drug-related side effects were observed.

  5. Depression in chronic ketamine users: Sex differences and neural bases.

    Science.gov (United States)

    Li, Chiang-Shan R; Zhang, Sheng; Hung, Chia-Chun; Chen, Chun-Ming; Duann, Jeng-Ren; Lin, Ching-Po; Lee, Tony Szu-Hsien

    2017-11-30

    Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2009-01-01

    Full Text Available Microglia activated in response to brain injury release neurotoxic factors including nitric oxide (NO and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. Ketamine, an anesthetic induction agent, is generally reserved for use in patients with severe hypotension or respiratory depression. In this study, we found that ketamine (100 and 250 μM concentration-dependently inhibited lipopolysaccharide (LPS-induced NO and IL-1β release in primary cultured microglia. However, ketamine (100 and 250 μM did not significantly inhibit the LPS-induced TNF-α production in microglia, except at the higher concentration (500 μM. Further study of the molecular mechanisms revealed that ketamine markedly inhibited extracellular signal-regulated kinase (ERK1/2 phosphorylation but not c-Jun N-terminal kinase or p38 mitogen-activated protein kinase stimulated by LPS in microglia. These results suggest that microglial inactivation by ketamine is at least partially due to inhibition of ERK1/2 phosphorylation.

  7. Adjunct Ketamine Use in the Management of Severe Ethanol Withdrawal.

    Science.gov (United States)

    Pizon, Anthony F; Lynch, Michael J; Benedict, Neal J; Yanta, Joseph H; Frisch, Adam; Menke, Nathan B; Swartzentruber, Greg S; King, Andrew M; Abesamis, Michael G; Kane-Gill, Sandra L

    2018-05-08

    Ketamine offers a plausible mechanism with favorable kinetics in treatment of severe ethanol withdrawal. The purpose of this study is to determine if a treatment guideline using an adjunctive ketamine infusion improves outcomes in patients suffering from severe ethanol withdrawal. Retrospective observational cohort study. Academic tertiary care hospital. Patients admitted to the ICU and diagnosed with delirium tremens by Diagnostic and Statistical Manual of Mental Disorders V criteria. Pre and post guideline, all patients were treated in a symptom-triggered fashion with benzodiazepines and/or phenobarbital. Postguideline, standard symptom-triggered dosing continued as preguideline, plus, the patient was initiated on an IV ketamine infusion at 0.15-0.3 mg/kg/hr continuously until delirium resolved. Based upon withdrawal severity and degree of agitation, a ketamine bolus (0.3 mg/kg) was provided prior to continuous infusion in some patients. A total of 63 patients were included (29 preguideline; 34 postguideline). Patients treated with ketamine were less likely to be intubated (odds ratio, 0.14; p trend toward a shorter hospitalization.

  8. Urine metabolomics in rats after administration of ketamine

    Directory of Open Access Journals (Sweden)

    Wen C

    2015-02-01

    Full Text Available Congcong Wen,1 Meiling Zhang,2 Jianshe Ma,2 Lufeng Hu,3 Xianqin Wang,2 Guanyang Lin31Laboratory Animal Centre, 2Analytical and Testing Center, 3First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of ChinaAbstract: In this study, we developed a urine metabonomic method, based on gas chromatography–mass spectrometry (GC-MS, to evaluate the effect of ketamine on rats. Pattern recognition analysis, including both principal component analysis and partial least squares discriminate analysis revealed that ketamine (50 mg/kg induced metabolic perturbations. Compared with the control group, at day 7, the level of alanine, butanoic acid, glutamine, butanedioic, trimethylsiloxy, L-aspartic acid, D-glucose, cholesterol, acetamide, and oleic acid of the ketamine group was increased, while the level of 2,3,4-trihydroxybutyric acid, benzene­acetic acid, threitol, ribitol, xylitol, and glycine decreased. At day 14, the level of alanine, ethanedioic acid, L-proline, glycerol, tetradecanoic acid, l-serine, l-phenylalanine, L-aspartic acid, d-glucose, cholesterol, heptadecanoic acid, and acetamide in rat urine of the ketamine group was increased, while the 2,3,4-trihydroxybutyric acid, benzeneacetic acid, d-ribose, threitol, ribitol, glycine, pyrazine, and oleic acid levels decreased. Our results indicate that metabonomic methods based on GC-MS may be useful to elucidate ketamine abuse, through the exploration of biomarkers.Keywords: GC-MS, abuse, biomarker, metabolite

  9. Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy.

    Science.gov (United States)

    Peltoniemi, Marko A; Hagelberg, Nora M; Olkkola, Klaus T; Saari, Teijo I

    2016-09-01

    Ketamine is a phencyclidine derivative, which functions primarily as an antagonist of the N-methyl-D-aspartate receptor. It has no affinity for gamma-aminobutyric acid receptors in the central nervous system. Ketamine shows a chiral structure consisting of two optical isomers. It undergoes oxidative metabolism, mainly to norketamine by cytochrome P450 (CYP) 3A and CYP2B6 enzymes. The use of S-ketamine is increasing worldwide, since the S(+)-enantiomer has been postulated to be a four times more potent anesthetic and analgesic than the R(-)-enantiomer and approximately two times more effective than the racemic mixture of ketamine. Because of extensive first-pass metabolism, oral bioavailability is poor and ketamine is vulnerable to pharmacokinetic drug interactions. Sublingual and nasal formulations of ketamine are being developed, and especially nasal administration produces rapid maximum plasma ketamine concentrations with relatively high bioavailability. Ketamine produces hemodynamically stable anesthesia via central sympathetic stimulation without affecting respiratory function. Animal studies have shown that ketamine has neuroprotective properties, and there is no evidence of elevated intracranial pressure after ketamine dosing in humans. Low-dose perioperative ketamine may reduce opioid consumption and chronic postsurgical pain after specific surgical procedures. However, long-term analgesic effects of ketamine in chronic pain patients have not been demonstrated. Besides analgesic properties, ketamine has rapid-acting antidepressant effects, which may be useful in treating therapy-resistant depressive patients. Well-known psychotomimetic and cognitive adverse effects restrict the clinical usefulness of ketamine, even though fewer psychomimetic adverse effects have been reported with S-ketamine in comparison with the racemate. Safety issues in long-term use are yet to be resolved.

  10. MDMA (ecstasy/molly) use among African Americans: The perceived influence of hip-hop/rap music.

    Science.gov (United States)

    Rigg, Khary K; Estreet, Anthony T

    2018-02-12

    Over the past two decades, the demographic profile of MDMA (ecstasy/molly) users has changed. In particular, African American MDMA use has risen in some cities. One explanation of this new trend is the drug's recent popularity (as molly) in hip-hop/rap (HHR) music. Several top rappers endorse the drug as a way to have fun or get women "loose." There are currently no studies, however, that investigate the extent to which African American MDMA users listen to HHR music or the influence that these pro-MDMA messages have on their use of the drug. To address this gap, the current study used survey data to (a) identify the extent to which HHR music is listened to by African American MDMA users and (b) assess the perceived influence of HHR music on their decision to begin using. Qualitative interview data are also presented to contextualize the influence of these messages on their use of MDMA. The findings of this study suggest that African American MDMA users are high consumers of HHR music and that pro-MDMA messages in HHR music are influencing their expectations of the drug and their decision to initiate use. These findings add to the limited amount of research on African American MDMA use and have the potential to inform future interventions.

  11. Pill content, dose and resulting plasma concentrations of 3,4-methylendioxymethamphetamine (MDMA) in recreational 'ecstasy' users.

    Science.gov (United States)

    Morefield, Kate M; Keane, Michael; Felgate, Peter; White, Jason M; Irvine, Rodney J

    2011-07-01

    To improve our understanding of the pharmacology of 'ecstasy' in recreational environments; in particular, to describe the composition of ecstasy pills, patterns of ecstasy use and the relationship between dose of 3,4-methylendioxymethamphetamine (MDMA) and resulting plasma concentrations. A naturalistic observational study of 56 experienced 'ecstasy' users in recreational settings in Australia. Drug use patterns (number of pills consumed, other drugs consumed). drug content of pills and resultant plasma concentrations of MDMA and related drugs were assessed by gas chromatography/mass spectrometry (GC/MS). Ecstasy pills generally contained MDMA, but this was often combined with other drugs such as 3,4-ethylendioxyethylamphetamine (MDEA) and methamphetamine. The dose of MDMA per pill ranged from 0 to 245 mg and users consumed from one-half to five pills, with the total dose consumed ranging up to 280 mg. Plasma concentrations of MDMA increased with number of pills consumed and cumulative MDMA dose. Use of larger numbers of pills was associated with extended exposure to the drug. MDMA is the major active drug in ecstasy pills, but there is a high degree of variation in doses. Use of multiple pills over the course of one session is common and results in a sustained increase in MDMA plasma concentrations over a number of hours. This is likely to lead to a much greater exposure of the brain to MDMA than would be predicted from controlled single-dose pharmacokinetic studies. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  12. Ketamine and phencyclidine: the good, the bad and the unexpected

    Science.gov (United States)

    Lodge, D; Mercier, M S

    2015-01-01

    The history of ketamine and phencyclidine from their development as potential clinical anaesthetics through drugs of abuse and animal models of schizophrenia to potential rapidly acting antidepressants is reviewed. The discovery in 1983 of the NMDA receptor antagonist property of ketamine and phencyclidine was a key step to understanding their pharmacology, including their psychotomimetic effects in man. This review describes the historical context and the course of that discovery and its expansion into other hallucinatory drugs. The relevance of these findings to modern hypotheses of schizophrenia and the implications for drug discovery are reviewed. The findings of the rapidly acting antidepressant effects of ketamine in man are discussed in relation to other glutamatergic mechanisms. PMID:26075331

  13. COMPARATIVE EFFICACY OF DETOMIDINE AND DETOMIDINE - KETAMINE COCKTAIL IN QUAILS

    Directory of Open Access Journals (Sweden)

    U. F. Durrani, M. Ashraf and A. Khalid¹

    2005-10-01

    Full Text Available Twenty adult healthy quails (Coturnix coturnix were divided into two equal groups. One group was administered detomidine (2.4 mg/kg, I/M and other group was administered detomidine-ketamine cocktail (1.2 mg/kg + 30 mg/kg, I/M. Detomidine slowly and smoothly induced a light sedation accompanied by superficial analgesia, hypoventilation, hypothermia and bradycardia in all birds. Detomidine-ketamine cocktail rapidly and smoothly induced a deep anaesthesia accompanied by deep analgesia, hypoventilation, hypothermia and bradycardia and complete loss of all reflexes in all birds. In both groups, recovery from sedation and anaesthesia was smooth and of short duration. From this study it was concluded that for minor and least painful procedures in quails detomidine can be used alone, while for major and painful surgical procedures detomidine-ketamine combination should be preferred.

  14. STREET KETAMINE-ASSOCIATED BLADDER DYSFUNCTION: AN EMERGING HEALTH PROBLEM

    Directory of Open Access Journals (Sweden)

    TEH GC

    2009-08-01

    Full Text Available Introduction: Ketamine is frequently abused nowadays as a recreational drug. Case reports are emerging since 2007 to describe a new clinical entity of severe bladder dysfunction associated with chronic abuse of street ketamine. Clinical presentation: Severe lower urinary tract symptoms of urinary frequency and urgency which are refractory to conventional treatment. Quality of life is adversely affected as a consequence. Chronic kidney disease will develop in advanced cases. Investigation findings: The urine is sterile on culture. Ultrasound will show reduced bladder capacity with thickened bladder wall. In advanced stage, hydronephrosis and renal impairment will develop. Treatment: Patients should be advised to stop street ketamine use immediately. Anticholinergic medication could be tried to alleviate the symptoms. Refractory cases with dilatation of the upper urinary tract might need urinary diversion. Conclusion: Awareness of this new condition is essential in diagnosis. Early intervention offers better treatment outcome.

  15. Other drug use does not impact cognitive impairments in chronic ketamine users.

    Science.gov (United States)

    Zhang, Chenxi; Tang, Wai Kwong; Liang, Hua Jun; Ungvari, Gabor Sandor; Lin, Shih-Ku

    2018-05-01

    Ketamine abuse causes cognitive impairments, which negatively impact on users' abstinence, prognosis, and quality of life. of cognitive impairments in chronic ketamine users have been inconsistent across studies, possibly due to the small sample sizes and the confounding effects of concomitant use of other illicit drugs. This study investigated the cognitive impairment and its related factors in chronic ketamine users with a large sample size and explored the impact of another drug use on cognitive functions. Cognitive functions, including working, verbal and visual memory and executive functions were assessed in ketamine users: 286 non-heavy other drug users and 279 heavy other drug users, and 261 healthy controls. Correlations between cognitive impairment and patterns of ketamine use were analysed. Verbal and visual memory were impaired, but working memory and executive functions were intact for all ketamine users. No significant cognitive differences were found between the two ketamine groups. Greater number of days of ketamine use in the past month was associated with worse visual memory performance in non-heavy other drug users. Higher dose of ketamine use was associated with worse short-term verbal memory in heavy other drug users. Verbal and visual memory are impaired in chronic ketamine users. Other drug use appears to have no impact on ketamine users' cognitive performance. Copyright © 2018. Published by Elsevier B.V.

  16. MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its stereoisomers: Similarities and differences in behavioral effects in an automated activity apparatus in mice.

    Science.gov (United States)

    Young, Richard; Glennon, Richard A

    2008-01-01

    Racemic MDMA (0.3-30 mg/kg), S(+)-MDMA (0.3-30 mg/kg), R(-)-MDMA (0.3-50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (+/-)-MDMA usually being more potent than R(-)-MDMA in measures such as movement (time, distance, velocity), margin distance, rotation (clockwise and counterclockwise), and retraced activities. Interestingly, racemic MDMA appeared to exert a greater than expected potency and/or an enhanced effect on measures such as movement episodes, center actions (entries and distance), clockwise rotations, and jumps; actions that might be explained by additive or synergistic (i.e. potentiation) effects of the stereoisomers. In other measures, the enantiomers displayed different effects: S(+)-MDMA produced a preference to induce counterclockwise (versus clockwise) rotations, and each isomer exerted a different profile of effect on vertical activities and jumps. Furthermore, each isomer of MDMA appeared to attenuate the effect of its opposite enantiomer on some behaviors; antagonism effects that were surmised from a lack of expected activities by racemic MDMA. S(+)-MDMA (but not R(-)-MDMA), for example, produced an increase in vertical entries (rearing) and a preference to increase counterclockwise (versus clockwise) rotations; (+/-)-MDMA also should have induced such effects but did not. Apparently, R(-)-MDMA, when combined with S(+)-MDMA to form (+/-)-MDMA, prevented the appearance of those increases (from control) in activities. Similarly, R(-)-MDMA (but not S(+)-MDMA) produced increases in episodes (i.e. jumps) and vertical distance that racemic MDMA also should have, but were not, exhibited. Evidently, the presence of S(+)-MDMA in the

  17. Use of Ketamine in Elderly Patients with Treatment-Resistant Depression.

    Science.gov (United States)

    Medeiros da Frota Ribeiro, Carolina; Riva-Posse, Patricio

    2017-11-15

    The purpose of this paper is to provide a review of the use of ketamine as an antidepressant for treatment-resistant depression (TRD) in the geriatric population. Available treatment options for late-life treatment-resistant depression are limited and include electroconvulsive therapy and transcranial magnetic stimulation as well as possible pharmacologic augmentation. Ketamine has been shown to be a promising treatment in TRD; however, data regarding the use of ketamine in the elderly includes only five case reports. We discuss the use of ketamine for late-life TRD and present two cases where ketamine led to a significant and sustained improvement in depressive symptoms. Ketamine is a promising treatment for geriatric patients with TRD. Further studies in the elderly will provide valuable insights into the use of ketamine for a population much in need of safe and effective treatments for TRD.

  18. Psychiatric side effects of ketamine in hospitalized medical patients administered subanesthetic doses for pain control.

    Science.gov (United States)

    Rasmussen, Keith G

    2014-08-01

    To assess the psychiatric side effects of ketamine when administered in subanesthetic doses to hospitalized patients. It is hypothesized that such effects occur frequently. In this retrospective study, the medical records of 50 patients hospitalized on medical and surgical units at our facility who had continuous intravenous infusions of ketamine for pain or mild sedation were reviewed. Patient progress in the days following the start of ketamine infusion was reviewed and response to ketamine was noted. Twenty-two percent of the patients were noted to have some type of psychiatric reaction to ketamine, including agitation, confusion, and hallucinations. These reactions were relatively short lived, namely, occurring during or shortly after the infusions. No association was found between patient response to ketamine and gender, age, or infusion rate. Awareness of the psychiatric side effects of ketamine is an important consideration for clinicians administering this medication either for pain control or for depressive illness.

  19. Ketamine for Depression: Where Do We Go from Here?

    Science.gov (United States)

    aan het Rot, Marije; Zarate, Carlos A.; Charney, Dennis S.; Mathew, Sanjay J.

    2012-01-01

    Since publication of the first randomized controlled trial describing rapid antidepressant effects of ketamine, several reports have confirmed the potential utility of this dissociative anesthetic medication for treatment of major depressive episodes, including those associated with bipolar disorder and resistant to other medications and electroconvulsive therapy. These reports have generated several questions with respect to who might respond to ketamine, how, and for how long. To start answering these questions. We used PubMed.gov and ClinicalTrials.gov to perform a systematic review of all available published data on the antidepressant effects of ketamine and of all recently completed, ongoing, and planned studies. To date, 163 patients, primarily with treatment-resistant depression, have participated in case studies, open-label investigations, or controlled trials. All controlled trials have used a within-subject, crossover design with an inactive placebo as the control. Ketamine administration has usually involved an anaesthesiologist infusing a single, subanesthetic, intravenous dose, and required hospitalization for at least 24 hours postinfusion. Response rates in the open-label investigations and controlled trials have ranged from 25% to 85% at 24 hours postinfusion and from 14% to 70% at 72 hours postinfusion. Although adverse effects have generally been mild, some patients have experienced brief changes in blood pressure, heart rate, or respiratory rate. Risk–benefit analyses support further research of ketamine for individuals with severe mood disorders. However, given the paucity of randomized controlled trials, lack of an active placebo, limited data on long-term outcomes, and potential risks, ketamine administration is not recommended outside of the hospital setting. PMID:22705040

  20. Rectal premedication in pediatric anesthesia: midazolam versus ketamine

    Directory of Open Access Journals (Sweden)

    Moshirian N

    2008-06-01

    Full Text Available Background: Premedication is widely used in pediatric anesthesia to reduce emotional trauma and ensure smooth induction. The rectal route is one of the most commonly accepted means of drug administration. The aim of our study was to investigate and compare the efficacy of rectally administered midazolam versus that of ketamine as a premedication in pediatric patients.Methods: We performed a prospective randomized double-blinded clinical trial in 64 children, 1 to 10 years of age, randomly allocated into two groups. The midazolam group received 0.5 mg/kg rectal midazolam and the ketamine group received 5 mg/kg rectal ketamine. The preoperative sedation scores were evaluated on a three-point scale. The anxiolysis and mask acceptance scores were evaluated separately on a four-point scale, with ease of parental separation, based on the presence or lack of crying, evaluated on a two-point scale. Results: Neither medication showed acceptable sedation (>75%, with no significant difference in sedation score between the two groups (P=0.725. Anxiolysis and mask acceptance using either midazolam or ketamine were acceptable, with  midazolam performing significantly better than ketamine (P=0.00 and P=0.042, respectively. Ease of parental separation was seen in both groups without significant difference (P=0.288 and no major adverse effects, such as apnea, occurred in either group.Conclusions: Rectal midazolam is more effective than ketamine in anxiolysis and mask acceptance. Although they both can ease separation anxiety in children before surgery, we found neither drug to be acceptable for sedation.

  1. Memantine reverses social withdrawal induced by ketamine in rats.

    Science.gov (United States)

    Uribe, Ezequiel; Landaeta, José; Wix, Richard; Eblen, Antonio

    2013-03-01

    The objective of this study was to determine the effect of memantine on schizophrenia-like symptoms in a ketamine-induced social withdrawal model in rats. We examined therapeutic effects of memantine, an NMDA antagonist, and haloperidol, a classic antipsychotic drug, on this behavioral model. Administration of memantine (10 or 15 mg·kg(-1)) significantly reduced ketamine-induced social withdrawal, and this effect was more effective than that of haloperidol (0.25 mg·kg(-1)) by restoring the social interaction between rats with no modification in general motor activity. These results suggest that memantine could have a therapeutic potential for schizophrenia.

  2. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    Directory of Open Access Journals (Sweden)

    Javier Navarro-Zaragoza

    Full Text Available Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA. The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27, after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA. Drinking in the dark (DID procedure was used as a model of binge. Noradrenaline (NA turnover, tyrosine hydroxylase (TH, TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN were determined by high-performance liquid chromatography (HPLC; TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  3. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    Science.gov (United States)

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  4. Subanesthetic, Subcutaneous Ketamine Infusion Therapy in the Treatment of Chronic Nonmalignant Pain.

    Science.gov (United States)

    Zekry, Olfat; Gibson, Stephen B; Aggarwal, Arun

    2016-06-01

    This study was designed to describe the efficacy and toxicity of subcutaneous ketamine infusions and sublingual ketamine lozenges for the treatment of chronic nonmalignant pain. Data were collected prospectively on 70 subjects managed in an academic, tertiary care hospital between 2007 and 2012 who received between 3 and 7 days of subanesthetic, subcutaneous ketamine infusion. Data were analyzed for efficacy, adverse effects, and reduction in use of opioid medication. We also analyzed whether subsequent treatment with sublingual ketamine lozenges resulted in longer-term efficacy of the beneficial effects of the initial ketamine infusion. There was a significant reduction in pain intensity measured by numerical rating scale (NRS) from mean of 6.38 before ketamine to 4.60 after ketamine (P ketamine infusion from a mean morphine equivalent dose (MMED) of 216 mg/day before ketamine to 89 mg/day after ketamine (P ketamine infusion was 59%. No subjects increased their use of opioids during their hospitalization for the ketamine infusion. A small proportion of subjects who responded to the infusion were continued on ketamine lozenges. This group was followed for between 3 months and 2 years. The use of ketamine lozenges after the infusion resulted in 31% of these subjects being able to cease their use of opioids compared with only 6% who did not receive ketamine lozenges. Eleven percent of subjects who received lozenges subsequently increased their opioid usage. Adverse effects were fairly common, but only mild, with 46% of patients experiencing light-headedness and dizziness, 25% tiredness and sedation, 12% headaches, 12% hallucinations, and 8% vivid dreams. Adverse effects were easily managed by reducing the rate of the ketamine infusion. The administration of subanesthetic, subcutaneous ketamine infusion was well tolerated, with mostly mild adverse effects and no serious adverse effects. The infusion provided significant pain relief in subjects who had failed a wide

  5. The prevalence and natural history of urinary symptoms among recreational ketamine users.

    Science.gov (United States)

    Winstock, Adam R; Mitcheson, Luke; Gillatt, David A; Cottrell, Angela M

    2012-12-01

    Study Type--Symptom prevalence (prospective cohort) Level of Evidence 1b. What's known on the subject? and What does the study add? Case series have described lower urinary tract symptoms associated with ketamine use including severe pain, frequency, haematuria and dysuria. Little is known regarding the frequency of symptoms, relationship of symptoms with dose and frequency of use and natural history of symptoms once the ketamine user has stopped. This study describes the prevalence of ketamine use in a population of recreational drug users in a dance music setting. It shows a dose-frequency relationship with ketamine use. It shows that urinary symptoms associated with recreational ketamine use may lead to a considerable demand on health resources in the primary-, secondary- and emergency-care settings. It shows that symptoms may improve once ketamine use is decreased. • To investigate the prevalence and natural history of urinary symptoms in a cohort of recreational ketamine users. • A purposeful sampling technique was used. • Between November 2009 and January 2010 participants were invited to undertake an on-line questionnaire promoted by a national dance music magazine and website. • Data regarding demographics and illicit drug-use were collected. • Among respondents reporting recent ketamine use, additional information detailing their ketamine use, experience of urinary symptoms and use of related healthcare services was obtained. • In all, 3806 surveys were completed, of which 1285 (33.8%) participants reported ketamine use within the last year. • Of the ketamine users, 17% were found to be dependent on the drug; 26.6% (340) of recent ketamine users reported experiencing urinary symptoms. • Urinary symptoms were significantly related to both dose of ketamine used and frequency of ketamine use. • Of 251 users reporting their experience of symptoms over time in relationship to their use of ketamine, 51% reported improvement in urinary symptoms

  6. Gender differences in hyperthermia and regional 5-HT and 5-HIAA depletion in the brain following MDMA administration in rats

    NARCIS (Netherlands)

    Wallinga, Alinde E.; Grahlmann, Carolin; Granneman, Ramon A.; Koolhaas, Jaap M.; Buwalda, Bauke

    2011-01-01

    In the present research the role of gender in MDMA-induced hyperthermia and serotonin depletion is studied by injecting male and female male rats with MDMA or saline 3 times (i.p.) with 3 h interval at dosages of 0.3, 1, 3 or 9 mg/kg at an ambient temperature of 25 degrees C. The acute hyperthermia

  7. Motivations for Using MDMA (Ecstasy/Molly) among African Americans: Implications for Prevention and Harm-Reduction Programs.

    Science.gov (United States)

    Rigg, Khary K

    2017-01-01

    Despite the growing popularity of MDMA (ecstasy/molly) among African Americans, their motives for using the drug are still largely unknown. The purpose of this study was to identify and describe the most salient motivations for using MDMA among this understudied population. In-depth interviews (n = 15) were conducted with a sample of African American young adults in Southwest Florida between August 2014 and November 2015. The primary motivations for using MDMA included: (1) altering the effects of marijuana and alcohol; (2) lasting longer sexually; (3) enhancing sexual pleasure; and (4) facilitating "freaky" sexual experiences. This is the first study to directly examine MDMA motivations specifically among African American drug users, and findings shed light on why some African Americans use MDMA. A better understanding of why African Americans use this drug should help to inform prevention and harm-reduction efforts. Study findings show the need for health messages that include the potential consequences of mixing MDMA with other drugs, and engaging in high-risk sexual behaviors after taking MDMA. These data contrast with motivations (e.g., introspection, self-enlightenment, getting into the music) commonly reported among groups of largely White MDMA users, suggesting that interventions tailored specifically for African American users are needed.

  8. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    Science.gov (United States)

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  9. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  10. Effects of MDMA on blood glucose levels and brain glucose metabolism

    International Nuclear Information System (INIS)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M.; Arango, C.; Ricaurte, G.

    2007-01-01

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  11. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  12. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Science.gov (United States)

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  13. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier; Niboyet, Jean

    2007-01-01

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 ± 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 ± 4.2 before ketamine and 31.8 ± 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  14. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    Science.gov (United States)

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P ketamine (100 μM) decreased the ATP level (22%, P ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  15. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  16. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice.

    Science.gov (United States)

    Lin, Jen-Cheng; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Yi-Chyan; Chen, Hwei-Hsien

    2016-11-03

    Ketamine, a dissociative anesthetic, produces rapid and sustained antidepressant effects at subanesthtic doses. However, it still inevitably induces psychotomimetic side effects. N,N-dimethylglycine (DMG) is a derivative of the amino acid glycine and is used as a dietary supplement. Recently, DMG has been found acting at glycine binding site of the N-methyl-d-aspartate receptor (NMDAR). As blockade of NMDARs is one of the main mechanisms responsible for the action of ketamine on central nervous system, DMG might modulate the behavioral responses to ketamine. The present study determined the effects of DMG on the ketamine-induced psychotomimetic, anesthetic and antidepressant-like effects in mice. DMG pretreatment reversed the ketamine-induced locomotor hyperactivity and impairment in the rotarod performance, novel location and novel object recognition tests, and prepulse inhibition. In addition, DMG alone exhibited antidepressant-like effects in the forced swim test and produced additive effects when combined with ketamine. However, DMG did not affect ketamine-induced anesthesia. These results reveal that DMG could antagonize ketamine's psychotomimetic effects, yet produce additive antidepressant-like effects with ketamine, suggesting that DMG might have antipsychotic potential and be suitable as an add-on therapy to ketamine for patients with treatment-resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Contribution of Impulsivity and Serotonin Receptor Neuroadaptations to the Development of an MDMA ('Ecstasy') Substance Use Disorder.

    Science.gov (United States)

    Schenk, Susan; Aronsen, Dane

    As is the case with other drugs of abuse, a proportion of ecstasy users develop symptoms consistent with a substance use disorder (SUD). In this paper, we propose that the pharmacology of MDMA, the primary psychoactive component of ecstasy tablets, changes markedly with repeated exposure and that neuroadaptations in dopamine and serotonin brain systems underlie the shift from MDMA use to MDMA misuse in susceptible subjects. Data from both the human and laboratory animal literature are synthesized to support the idea that (1) MDMA becomes a less efficacious serotonin releaser and a more efficacious dopamine releaser with the development of behaviour consistent with an SUD and (2) that upregulated serotonin receptor mechanisms contribute to the development of the MDMA SUD via dysregulated inhibitory control associated with the trait of impulsivity.

  18. Previous Ketamine Produces an Enduring Blockade of Neurochemical and Behavioral Effects of Uncontrollable Stress

    Science.gov (United States)

    Dolzani, Samuel D.; Tilden, Scott; Christianson, John P.; Kubala, Kenneth H.; Bartholomay, Kristi; Sperr, Katherine; Ciancio, Nicholas; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Recent interest in the antidepressant and anti-stress effects of subanesthetic doses of ketamine, an NMDA receptor antagonist, has identified mechanisms whereby ketamine reverses the effect of stress, but little is known regarding the prophylactic effect ketamine might have on future stressors. Here we investigate the prophylactic effect of ketamine against neurochemical and behavioral changes that follow inescapable, uncontrollable tail shocks (ISs) in Sprague Dawley rats. IS induces increased anxiety, which is dependent on activation of serotonergic (5-HT) dorsal raphe nucleus (DRN) neurons that project to the basolateral amygdala (BLA). Ketamine (10 mg/kg, i.p.) administered 2 h, 1 week, or 2 weeks before IS prevented the increased extracellular levels of 5-HT in the BLA typically produced by IS. In addition, ketamine administered at these time points blocked the decreased juvenile social investigation produced by IS. Microinjection of ketamine into the prelimbic (PL) region of the medial prefrontal cortex duplicated the effects of systemic ketamine, and, conversely, systemic ketamine effects were prevented by pharmacological inhibition of the PL. Although IS does not activate DRN-projecting neurons from the PL, IS did so after ketamine, suggesting that the prophylactic effect of ketamine is a result of altered functioning of this projection. SIGNIFICANCE STATEMENT The reported data show that systemic ketamine, given up to 2 weeks before a stressor, blunts behavioral and neurochemical effects of the stressor. The study also advances understanding of the mechanisms involved and suggests that ketamine acts at the prelimbic cortex to sensitize neurons that project to and inhibit the DRN. PMID:26740657

  19. NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    Science.gov (United States)

    Zanos, Panos; Moaddel, Ruin; Morris, Patrick J.; Georgiou, Polymnia; Fischell, Jonathan; Elmer, Greg I.; Alkondon, Manickavasagom; Yuan, Peixiong; Pribut, Heather J.; Singh, Nagendra S.; Dossou, Katina S.S.; Fang, Yuhong; Huang, Xi-Ping; Mayo, Cheryl L.; Wainer, Irving W.; Albuquerque, Edson X.; Thompson, Scott M.; Thomas, Craig J.; Zarate, Carlos A.; Gould, Todd D.

    2016-01-01

    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants. PMID:27144355

  20. Ketamine as an adjuvant to opioids for cancer pain.

    Science.gov (United States)

    Bell, Rae F; Eccleston, Christopher; Kalso, Eija A

    2017-06-28

    This is an update of a review first published in 2003 and updated in 2012.Ketamine is a commonly used anaesthetic agent, and in subanaesthetic doses is also given as an adjuvant to opioids for the treatment of refractory cancer pain, when opioids alone or in combination with appropriate adjuvant analgesics prove to be ineffective. Ketamine is known to have psychomimetic (including hallucinogenic), urological, and hepatic adverse effects. To determine the effectiveness and adverse effects of ketamine as an adjuvant to opioids for refractory cancer pain in adults. For this update, we searched MEDLINE (OVID) to December 2016. We searched CENTRAL (CRSO), Embase (OVID) and two clinical trial registries to January 2017. The intervention considered by this review was the addition of ketamine, given by any route of administration, in any dose, to pre-existing opioid treatment given by any route and in any dose, compared with placebo or active control. We included studies with a group size of at least 10 participants who completed the trial. Two review authors independently assessed the search results and performed 'Risk of bias' assessments. We aimed to extract data on patient-reported pain intensity, total opioid consumption over the study period; use of rescue medication; adverse events; measures of patient satisfaction/preference; function; and distress. We also assessed participant withdrawal (dropout) from trial. We assessed the quality of the evidence using GRADE (Grading of Recommendations Assessment, Development and Evaluation). One new study (185 participants) was identified by the updated search and included in the review. We included a total of three studies in this update.Two small studies, both with cross-over design, with 20 and 10 participants respectively, were eligible for inclusion in the original review. One study with 20 participants examined the addition of intrathecal ketamine to intrathecal morphine, compared with intrathecal morphine alone. The

  1. A Comparative Study of Ketamine Gargle and Lidocaine Jelly ...

    African Journals Online (AJOL)

    2017-06-28

    Jun 28, 2017 ... How to cite this article: Aigbedia SO, Tobi KU, Amadasun FE. A comparative ... 2017 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow ... KEYWORDS: Postoperative throat pain, ketamine gargle, lidocaine, general .... taste from the normal saline placebo of the group L and.

  2. Preparation and assessment of ketamine hydrogels for prolonged ...

    African Journals Online (AJOL)

    : 1596-5996 (print); ..... 15(11): 1249–1253. 16. Mahoney JM, Topical ketamine cream in the treatment of ... Transdermal drug delivery system of aceclofenac for rheumatoid arthritis and the effect of permeation enhancers: Invitro and in vivo ...

  3. Circulatory responses to propofol-ketamine combination compared ...

    African Journals Online (AJOL)

    propofol-ketamine infusion in maintaining hemodynamic stability when used for sedation as compared to propofol alone during spinal anesthesia. Sixty adult patients of either sex, belonging to ASA physical status I and II undergoing urological procedures were studied in a randomized manner. After administering spinal ...

  4. Use of combined paracetamol and low dose ketamine in pain ...

    African Journals Online (AJOL)

    Objective: To determine the effectiveness of Paracetamol and low dose Ketamine in controlling burn pain during dressings. Setting: The burns ward of Moi Teaching and Referral Hospital, a 750 bed capacity tertiary centre in Western Kenya. Subjects: Consenting patients were recruited to the study on admission. Babies and ...

  5. Intramuscular ketamine to facilitate pediatric central vascular access.

    Science.gov (United States)

    Denmark, T Kent; Hargrove, Jenny R; Brown, Lance

    2004-07-01

    Obtaining prompt vascular access in young children presenting to the emergency department (ED) is frequently both necessary and technically challenging. The objective of our study was to describe our experience using intramuscular (IM) ketamine to facilitate the placement of central venous catheters in children presenting to our ED needing vascular access in a timely fashion. We performed a retrospective medical record review of all pediatric patients central venous catheter facilitated by the use of IM ketamine. Eleven children met our inclusion criteria. Most of the children were young and medically complicated. The children ranged in age from 6 months to 8 years. The only complication identified was vomiting experienced by an 8-year-old boy. Emergency physicians successfully obtained central venous access in all subjects in the case series. The use of IM ketamine to facilitate the placement of central venous catheters in children who do not have peripheral venous access appears to be helpful. Emergency physicians may find it useful to be familiar with this use of IM ketamine.

  6. Efficacy of peritonsillar infilltration of ketamine, tramadol, and ...

    African Journals Online (AJOL)

    Backgrounds: Tonsillectomy is one of the most common surgeries in children. Controlling pain after tonsillectomy is still controversial. In this study, the efficacy of peritonsillar injection of lidocaine, tramadol, ketamine,and placebo is compared on post tonsillectomy pain. Methods: In a randomized double-blind clinical trial, ...

  7. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    Science.gov (United States)

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Immobilization of swift foxes with ketamine hydrochloride-xylazine hydrochloride

    Science.gov (United States)

    Telesco, R.L.; Sovada, Marsha A.

    2002-01-01

    There is an increasing need to develop field immobilization techniques that allow researchers to handle safely swift foxes (Vulpes velox) with minimal risk of stress or injury. We immobilized captive swift foxes to determine the safety and effectiveness of ketamine hydrochloride and xylazine hydrochloride at different dosages. We attempted to determine appropriate dosages to immobilize swift foxes for an adequate field-handling period based on three anesthesia intervals (induction period, immobilization period, and recovery period) and physiologic responses (rectal temperature, respiration rate, and heart rate). Between October 1998–July 1999, we conducted four trials, evaluating three different dosage ratios of ketamine and xylazine (2.27:1.2, 5.68:1.2, and 11.4:1.2 mg/kg ketamine:mg/kg xylazine, respectively), followed by a fourth trial with a higher dosage at the median ratio (11.4 mg/kg ketamine:2.4 mg/kg xylazine). We found little difference in induction and recovery periods among trials 1–3, but immobilization time increased with increasing dosage (Pimmobilization period and recovery period increased in trial 4 compared with trials 1–3 (P≤0.03). There was a high variation in responses of individual foxes across trials, making it difficult to identify an appropriate dosage for field handling. Heart rate and respiration rates were depressed but all physiologic measures remained within normal parameters established for domestic canids. We recommend a dosage ratio of 10 mg/kg ketamine to 1 mg/kg xylazine to immobilize swift foxes for field handling.

  9. To use or not to use: an update on licit and illicit ketamine use

    Directory of Open Access Journals (Sweden)

    Yuet-wah Cheung

    2011-03-01

    Full Text Available Jih-Heng Li1, Balasingam Vicknasingam2, Yuet-wah Cheung3, Wang Zhou4, Adhi Wibowo Nurhidayat5, Don C Des Jarlais6, Richard Schottenfeld71College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; 2National Centre for Drug Research, Universiti Sains Malaysia, Malaysia; 3Department of Sociology, The Chinese University of Hong Kong, Hong Kong, China; 4Wuhan Center for Disease Control and Prevention, Wuhan, China; 5Drug Dependence Hospital RSKO, Jakarta, Indonesia; 6Beth Israel Medical Center, New York, NY; 7School of Psychiatry, Yale University, CT, USAAbstract: Ketamine, a derivative of phencyclidine that was developed in the 1960s, is an anesthetic and analgesic with hallucinogenic effects. In this paper, the pharmacological and toxicological effects of ketamine are briefly reviewed. Ketamine possesses a wide safety margin but such a therapeutic benefit is somewhat offset by its emergence phenomenon (mind-body dissociation and delirium and hallucinogenic effects. The increasing abuse of ketamine, initially predominantly in recreational scenes to experience a “k-hole” and other hallucinatory effects but more recently also as a drug abused during the workday or at home, has further pushed governments to confine its usage in many countries. Recently, urinary tract dysfunction has been associated with long-term ketamine use. In some long-term ketamine users, such damage can be irreversible and could result in renal failure and dialysis. Although ketamine has not yet been scheduled in the United Nations Conventions, previous studies using different assessment parameters to score the overall harms of drugs indicated that ketamine may cause more harm than some of the United Nations scheduled drugs. Some countries in Southeast and East Asia have reported an escalating situation of ketamine abuse. Dependence, lower urinary tract dysfunction, and sexual impulse or violence were the most notable among the ketamine-associated symptoms in these

  10. Hippocampal nicotinic receptors have a modulatory role for ethanol and MDMA interaction in memory retrieval.

    Science.gov (United States)

    Rostami, Maryam; Rezayof, Ameneh; Alijanpour, Sakineh; Sharifi, Khadijeh Alsadat

    2017-08-15

    The aim of the current study was to examine the effect of dorsal hippocampal nicotinic acetylcholine receptors (nAChRs) activation on the functional interaction between ethanol and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) in memory retrieval. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and memory retrieval was measured in a step-down type passive avoidance apparatus. Post-training or pre-test systemic administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol reversed pre-training ethanol-induced amnesia, suggesting ethanol state-dependent learning. Pre-test intra-CA1 microinjection of different doses of MDMA (0.25-1µg/mouse) with an ineffective dose of ethanol (0.25g/kg, i.p.) also induced amnesia. Interestingly, pre-test intra-CA1 microinjection of MDMA (0.25-1µg/mouse) potentiated ethanol state-dependent learning. On the other hand, the activation of the dorsal hippocampal nAChRs by pre-test microinjection of nicotine (0.1-1µg/mouse, intra-CA1) improved amnesia induced by the co-administration of MDMD and ethanol. It is important to note that intra-CA1 microinjection of the same doses of MDMA or nicotine could not affect memory formation by itself. Pre-test intra-CA1 microinjection of nicotine (0.3-0.9µg/mouse) could not reverse amnesia induced by pre-training administration of ethanol while this treatment enhanced MDMA response on ethanol state-dependent learning. Thus, it can be concluded that there may be functional interactions among ethanol, MDMA and nicotine via the dorsal hippocampal nicotinic acetylcholine receptor mechanism in memory retrieval and drug state-dependent learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. COMPARATIVE EFFICACY (SEDATIVE AND ANAESTHETIC OF DETOMIDINE, KETAMINE AND DETOMIDINE-KETAMINE COCKTAIL IN PIGEONS (COLUMBA LIVIA

    Directory of Open Access Journals (Sweden)

    UZMA F. DURRANI, M. ARIF KHAN1 AND S. SALEEM AHMAD

    2008-07-01

    Full Text Available A study was conducted to compare the synergistic efficacy of detomidine, ketamine and their cocktail in pigeons (Columba livia. For this study, 15 adult and healthy pigeons were divided into three equal groups A, B and C. Birds of groups A and B were intramuscularly administered detomidine and ketamine @ 1.4 and 60 mg/kg b. wt., respectively. Pigeons of group C received detomidine + Ketamine cocktail @ 0.7 and 30 mg/kg b. wt. Induction of sedation and anaesthesia was smooth in all groups. Mean duration of induction was 11.1 + 2.03, 11.0 + 1.49 and 1.6 + 0.48 minutes in groups A, B, C, respectively. In groups A and B, smooth but light sedation and anaesthesia were observed accompanied by superficial analgesia, while in group C, birds showed deep anaesthesia alongwith deep analgesia. Birds in groups A and C elicited hypothermia, respiratory depression and bradycardia till complete recovery, while group B showed hyperthermia and tachycardia with rapid respiration. In group A, sedation persisted for 54.2 + 21.82 minutes and mean recovery period was 49.9 + 5.91 minutes, while groups B and C had anaesthesia for 47.7 + 8.06 and 103.5 + 27.52 minutes, and recovery periods were 52.6 + 9.64 and 61.3 + 17.26 minutes, respectively. Recovery was rough in group B and smooth in groups A and C. It was concluded that in pigeons, detomidine (alone is safe for handling and for least painful procedures, while detomidine-ketamine cocktail is safe as intramuscular anaesthetic for major surgical procedures. However, ketamine is not a good anaesthetic to be used alone in pigeons.

  12. Distinct effects of ketamine and acetyl l-carnitine on the dopamine system in zebrafish

    Science.gov (United States)

    Robinson, Bonnie L.; Dumas, Melanie; Cuevas, Elvis; Gu, Qiang; Paule, Merle G.; Ali, Syed F.; Kanungo, Jyotshna

    2016-01-01

    Ketamine, a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1–0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression. PMID:26898327

  13. Ketamine and the metabolite norketamine: persistence and phototransformation toxicity in hospital wastewater and surface water.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Lee, Wan-Ning; Wang, Xiao-Huan

    2014-04-15

    Ketamine has been increasingly used both recreationally and medicinally around the world. Although the metabolic pathways to form its metabolite norketamine have been carefully investigated in humans and animals, knowledge of their environmental occurrence and fate is limited. In this study, we investigated the occurrence of ketamine and norketamine in 20 natural bodies of water, effluents from 13 hospitals, two wastewater treatment plants and one water supply plant. Ketamine was found at concentrations as high as 10 μg/L. Ketamine and norketamine were consistently found in similar concentrations (ketamine/norketamine ratio: 0.3-4.6) in the collected water samples, and this ratio similar to that found in urine samples. Dark incubation experiments have shown that ketamine is not susceptible to microbial degradation or hydrolysis. Phototransformation was demonstrated to significantly reduce the concentration of ketamine and norketamine in river waters (t(1/2) = 12.6 ± 0.4 and 10.1 ± 0.4 h, respectively) and resulted in byproducts that are similar to human metabolites. Both direct and indirect photolysis led to the N-demethylation of ketamine to form norketamine and other byproducts, including hydroxy-norketamine (HNK), dehydronorketamine (DNK), hydroxy-ketamine (HK) and isomer forms of ketamine and norketamine. Irradiated solutions exhibited higher toxicity (via the Microtox test). Although a final risk assessment could not be made due to a lack of studies on the chronic effects on aquatic organisms, the high and persistent environmental occurrences of ketamine and norketamine as well as the increasingly acute toxicity of the photo byproducts demonstrate the importance of including metabolites in evaluation of the overall risk of ketamine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mechanistic Target of Rapamycin-Independent Antidepressant Effects of (R)-Ketamine in a Social Defeat Stress Model.

    Science.gov (United States)

    Yang, Chun; Ren, Qian; Qu, Youge; Zhang, Ji-Chun; Ma, Min; Dong, Chao; Hashimoto, Kenji

    2018-01-01

    The role of the mechanistic target of rapamycin (mTOR) signaling in the antidepressant effects of ketamine is controversial. In addition to mTOR, extracellular signal-regulated kinase (ERK) is a key signaling molecule in prominent pathways that regulate protein synthesis. (R)-Ketamine has a greater potency and longer-lasting antidepressant effects than (S)-ketamine. Here we investigated whether mTOR signaling and ERK signaling play a role in the antidepressant effects of two enantiomers. The effects of mTOR inhibitors (rapamycin and AZD8055) and an ERK inhibitor (SL327) on the antidepressant effects of ketamine enantiomers in the chronic social defeat stress (CSDS) model (n = 7 or 8) and on those of ketamine enantiomers in these signaling pathways in mouse brain regions were examined. The intracerebroventricular infusion of rapamycin or AZD8055 blocked the antidepressant effects of (S)-ketamine, but not (R)-ketamine, in the CSDS model. Furthermore, (S)-ketamine, but not (R)-ketamine, significantly attenuated the decreased phosphorylation of mTOR and its downstream effector, ribosomal protein S6 kinase, in the prefrontal cortex of susceptible mice after CSDS. Pretreatment with SL327 blocked the antidepressant effects of (R)-ketamine but not (S)-ketamine. Moreover, (R)-ketamine, but not (S)-ketamine, significantly attenuated the decreased phosphorylation of ERK and its upstream effector, mitogen-activated protein kinase/ERK kinase, in the prefrontal cortex and hippocampal dentate gyrus of susceptible mice after CSDS. This study suggests that mTOR plays a role in the antidepressant effects of (S)-ketamine, but not (R)-ketamine, and that ERK plays a role in (R)-ketamine's antidepressant effects. Thus, it is unlikely that the activation of mTOR signaling is necessary for antidepressant actions of (R)-ketamine. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Ketamin genopdaget af både læger og misbrugere

    DEFF Research Database (Denmark)

    Sørensen, Anne; Barnung, Steen; Rasmussen, Lars Simon

    2011-01-01

    Ketamine is a unique anaesthetic because it has both hypnotic and analgesic effects and also potential hallucinogenic side effects. Lack of cardiopulmonary depression makes the drug a popular choice for anaesthesia in the prehospital setting. In recent years ketamine has been found to have anti......-hyperalgesic and opioid saving effects, opening to new ways of managing post-operative and chronic pain states. Recreational use of ketamine among night clubbers is increasing and makes acute and chronic symptoms of ketamine abuse a new challenge in emergency departments....

  16. Ketamine for Analgosedation in the Intensive Care Unit: A Systematic Review.

    Science.gov (United States)

    Patanwala, Asad E; Martin, Jennifer R; Erstad, Brian L

    2017-07-01

    To evaluate the evidence for the use of intravenous ketamine for analgosedation in the intensive care unit. MEDLINE and EMBASE were queried from inception until July 2015. Search terms used included ketamine, intensive care, and critical care. The search retrieved 584 articles to be screened for inclusion. The intent was to include randomized controlled studies using sustained intravenous infusions (>24 hours) of ketamine in the critically ill patients. One trial evaluated opioid consumption as an outcome in postoperative critically ill patients who were randomized to ketamine or saline infusions. The mean cumulative morphine consumption at 48 hours was significantly lower in the ketamine group (58 ± 35 mg) compared to the morphine-only group (80 ± 37 mg; P ketamine in terms of cerebral hemodynamics in patients with traumatic brain injury, improved gastrointestinal motility, and decreased vasopressor requirements. The observational study and case reports suggest that ketamine is safe and effective and may have a role in patients who are refractory to other therapies. Ketamine use may decrease analgesic consumption in the intensive care unit. Additional trials are needed to further delineate the role of ketamine for analgosedation.

  17. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    Science.gov (United States)

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  18. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna.

    Science.gov (United States)

    Li, Shih-Wei; Wang, Yu-Hsiang; Lin, Angela Yu-Chen

    2017-09-01

    Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC 50 ) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p ketamine concentration cannot be ignored and warrant further examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ketamin genopdaget af både læger og misbrugere

    DEFF Research Database (Denmark)

    Sørensen, Anne; Barnung, Steen; Rasmussen, Lars Simon

    2011-01-01

    -hyperalgesic and opioid saving effects, opening to new ways of managing post-operative and chronic pain states. Recreational use of ketamine among night clubbers is increasing and makes acute and chronic sym