WorldWideScience

Sample records for methylation hybridization dmh

  1. Resistance of sunflower hybrids to imazamox and tribenuron-methyl

    DEFF Research Database (Denmark)

    Bozic, D; Saric, M; Malidza, G

    2012-01-01

    The response of the imazamox resistant and susceptible sunflower hybrids Rimi and S to imazamox and of tribenuron-methyl resistant and susceptible hybrids Rsu and S to tribenuron-methyl was investigated both in a whole-plant bioassay and in field experiments. Plants were treated post-emergence wi......The response of the imazamox resistant and susceptible sunflower hybrids Rimi and S to imazamox and of tribenuron-methyl resistant and susceptible hybrids Rsu and S to tribenuron-methyl was investigated both in a whole-plant bioassay and in field experiments. Plants were treated post...

  2. 65Zn kinetics as a biomarker of DMH induced colon carcinogenesis

    International Nuclear Information System (INIS)

    Chadha, Vijayta Dani

    2012-01-01

    Dietary factors are considered crucial for the prevention of initiating events in the multistep progression of colon carcinoma. There is substantial evidence that zinc may play a pivotal role in host defense against several malignancies, including colon cancer. The present study was conducted to evaluate the kinetics of zinc utilization following experimental colon carcinogenesis in rat model. The rats were segregated into two groups viz., untreated control and DMH treated. Colon carcinogenesis was established through weekly subcutaneous injections of DMH (30mg/Kg body weight) for 16 weeks. Whole body 65 Zn kinetics followed two compartment kinetics, with Tb1 representing the initial fast component of the biological half-life and Tb2, the slower component. The present study revealed a significant depression in the Tb1 and Tb2 components of 65 Zn in DMH treated rats. Further, DMH treatment caused a significant increase in the percent uptake values of 65 Zn in the colon, small intestine, kidney and blood, whereas a significant decrease was observed in the liver. Subcellular distribution revealed a significant increase in 65 Zn uptake in the mitochondrial and microsomal fractions following 16 weeks of DMH supplementation. The present study demonstrated a slow mobilization of zinc during promotion of experimentally induced colon carcinogenesis and provides a physiological basis for the role of zinc in colon tumorigenesis, a paradigm which may have clinical implications in the management of colon cancer. (author)

  3. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Femia, Angelo Pietro; Luceri, Cristina; Toti, Simona; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna

    2010-01-01

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  4. DMH1 (4-[6-(4-isopropoxyphenylpyrazolo[1,5-a]pyrimidin-3-yl]quinoline inhibits chemotherapeutic drug-induced autophagy

    Directory of Open Access Journals (Sweden)

    Yue Sheng

    2015-07-01

    Full Text Available Our previous work found that DMH1 (4-[6-(4-isopropoxyphenylpyrazolo [1,5-a]pyrimidin-3-yl]quinoline was a novel autophagy inhibitor. Here, we aimed to investigate the effects of DMH1 on chemotherapeutic drug-induced autophagy as well as the efficacy of chemotherapeutic drugs in different cancer cells. We found that DMH1 inhibited tamoxifen- and cispcis-diaminedichloroplatinum (II (CDDP-induced autophagy responses in MCF-7 and HeLa cells, and potentiated the anti-tumor activity of tamoxifen and CDDP for both cells. DMH1 inhibited 5-fluorouracil (5-FU-induced autophagy responses in MCF-7 and HeLa cells, but did not affect the anti-tumor activity of 5-FU for these two cell lines. DMH1 itself did not induce cell death in MCF-7 and HeLa cells, but inhibited the proliferation of these cells. In conclusion, DMH1 inhibits chemotherapeutic drug-induced autophagy response and the enhancement of efficacy of chemotherapeutic drugs by DMH1 is dependent on the cell sensitivity to drugs.

  5. Bone Marrow Cell Therapy on 1,2-Dimethylhydrazine (DMH)-Induced Colon Cancer in Rats.

    Science.gov (United States)

    El-Khadragy, Manal F; Nabil, Heba M; Hassan, Basmaa N; Tohamy, Amany A; Waaer, Hanaa F; Yehia, Hany M; Alharbi, Afra M; Moneim, Ahmed Esmat Abdel

    2018-01-01

    Stem cell based therapies are being under focus due to their possible role in treatment of various tumors. Bone marrow stem cells believed to have anticancer potential and are preferred for their activities by stimulating the immune system, migration to the site of tumor and ability for inducting apoptosis in cancer cells. The current study was aimed to investigate the tumor suppressive effects of bone marrow cells (BMCs) in 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. The rats were randomly allocated into four groups: control, BMCs alone, DMH alone and BMCs with DMH. BMCs were injected intrarectally while DMH was injected subcutaneously at 20 mg/kg body weight once a week for 15 weeks. Histopathological examination and gene expression of survivin, β-catenin and multidrug resistance-1 (MDR-1) by real-time reverse transcription-polymerase chain reaction (RT-PCR) in rat colon tissues. This is in addition to oxidative stress markers in colon were performed across all groups. The presence of aberrant crypt foci was reordered once histopathological examination of colon tissue from rats which received DMH alone. Administration of BMCs into rats starting from zero-day of DMH injection improved the histopathological picture which showed a clear improvement in mucosal layer, few inflammatory cells infiltration periglandular and in the lamina propria. Gene expression in rat colon tissue demonstrated that BMCs down-regulated survivin, β-catenin, MDR-1 and cytokeratin 20 genes expression in colon tissues after colon cancer induction. Amelioration of the colon status after administration of MSCs has been evidenced by a major reduction of lipid peroxidation, nitric oxide, and increasing of glutathione content and superoxide dismutase along with catalase activities. Our findings demonstrated that BMCs have tumor suppressive effects in DMH-induced colon cancer as evidenced by down-regulation of survivin, β-catenin, and MDR-1 genes and enhancing the antioxidant

  6. Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and C-phycocyanin.

    Science.gov (United States)

    Saini, Manpreet Kaur; Vaiphei, Kim; Sanyal, Sankar Nath

    2012-02-01

    Cancer research illustrated that combinatorial studies can provide significant improvement in safety and effectiveness over the monotherapy regimens. A combination of two drugs may restrain precancerous colon polyps, opening a new possible opportunity for chemoprevention of colon cancer. In this context, chemopreventive efficacy of a combination regimen of C-phycocyanin, a biliprotein present in Spirulina platensis, a cyanobacterium, which is a selective cycloxygenase-2 (COX-2) inhibitor and piroxicam, a traditional non-steroidal anti-inflammatory drug was considered in 1,2 dimethylhyadrazine (DMH)-induced colon carcinogenesis in rats. Western blotting, immunohistochemistry, DNA fragmentation, fluorescent staining, PGE(2) enzyme immunoassay, and carrageenan-induced paw edema test were performed along with morphological and histological analysis. DMH treatment showed a rich presence of preneoplastic lesions such as multiple plaque lesions, aberrant crypt foci, and well-characterized dysplasia. These features were reduced with piroxicam and C-phycocyanin administration. The number of apoptotic cells was featured prominently in all the groups compared with DMH. DMH treatment revealed intact high molecular weight genomic DNA with no signs of laddering/DNA fragmentation while it was noticeable significantly in control and DMH + piroxicam + C-phycocyanin. DMH group showed highest COX-2 expression and PGE(2) level in comparison with other groups. Doses of piroxicam and C-phycocyanin used in the present study were established at an anti-inflammatory range. A combination regimen of piroxicam and C-phycocyanin, rather than individually has the much greater potential for reduction of DMH-induced colon cancer development and COX-2 being the prime possible target in such chemoprevention.

  7. New sunflower hybrids tolerant to tribenuron-methyl

    Directory of Open Access Journals (Sweden)

    Cvejić Sandra

    2016-01-01

    Full Text Available The creation of sunflower hybrids tolerant to tribenuron-methyl enabled the use of wider palette of herbicides to control effectively weeds during the growing season. Moreover, thanks to this tolerance, chemical control of broad-leaves weeds in sunflower, especially Cirsium arvense, is more efficient. The Institute of Field and Vegetable Crops offers four new hybrids tolerant to tribenuron-methyl: NS SUMO SUN, NS SUMO STAR, NS SUMO SjAj and NS SUMO SOL, released in 2016. Hybrids belong to early and medium-early maturity groups; have high yield potential and high oil content. They are adapted for cultivation in different environmental conditions. All hybrids are resistant to broomrape (Orobanche cumana Wallr races from A-E and have a high level of tolerance to Phomopsis, white rot (Sclerotinia sclorotiorum, rust (Puccinia helianthi and others. The paper presents the results of seed and oil yield from the official trials of the Department of variety registration within the Ministry of Agriculture and Environmental Protection of the Republic of Serbia.

  8. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    Science.gov (United States)

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  9. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique.

    Science.gov (United States)

    Xiong, L Z; Xu, C G; Saghai Maroof, M A; Zhang, Q

    1999-04-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we assessed the extent and pattern of cytosine methylation in the rice genome, using the technique of methylation-sensitive amplified polymorphism (MSAP), which is a modification of the amplified fragment length polymorphism (AFLP) method that makes use of the differential sensitivity of a pair of isoschizomers to cytosine methylation. The tissues assayed included seedlings and flag leaves of an elite rice hybrid, Shanyou 63, and the parental lines Zhenshan 97 and Minghui 63. In all, 1076 fragments, each representing a recognition site cleaved by either or both of the isoschizomers, were amplified using 16 pairs of selective primers. A total of 195 sites were found to be methylated at cytosines in one or both parents, and the two parents showed approximately the same overall degree of methylation (16.3%), as revealed by the incidence of differential digestion by the isoschizomers. Four classes of patterns were identified in a comparative assay of cytosine methylation in the parents and hybrid; increased methylation was detected in the hybrid compared to the parents at some of the recognition sites, while decreased methylation in the hybrid was detected at other sites. A small proportion of the sites was found to be differentially methylated in seedlings and flag leaves; DNA from young seedlings was methylated to a greater extent than that from flag leaves. Almost all of the methylation patterns detected by MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrate that the MSAP technique is highly efficient for large-scale detection of cytosine methylation in the rice genome. We believe that the technique can be adapted for use in other plant species.

  10. Validity of scoring caries and primary molar hypomineralization (DMH) on intraoral photographs.

    Science.gov (United States)

    Elfrink, M E C; Veerkamp, J S J; Aartman, I H A; Moll, H A; Ten Cate, J M

    2009-11-01

    The aims of this study were to assess whether intraoral photographs could be used to score caries and hypomineralization on primary molars (Using adapted Molar Incisor Hypomineralization (MIH)-criteria), and also to assess the reliability and validity in 3-7 year-old Dutch children of these scores by comparing them to direct clinical scorings. Cross-sectional study. In this study 62 children (38.7% girls) with a mean age of 4.96 years (SD 1.27) participated. The children were rated clinically by their own dentist (authors JV or ME) for caries reaching the dentine in their primary molars (WHO criteria) and also for primary molar hypomineralization using the adapted MIH-criteria. For the intraoral photographs, a digital intraoral camera was used. The two paediatric dentists rated all the intraoral photographs on caries and hypomineralizations on the second primary molars, using the same criteria for the clinical scoring as for the scoring of the photographs. They scored independently, at least 2 weeks after the initial clinical scoring to avoid observational bias with the clinical scoring. This clinical observation was used as the gold standard from which sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) and the Positive and Negative Likelihood Ratio were computed. To test the intra-observer agreement 25 % of the photographs were scored again, at least 2 weeks after the initial scoring of the images. Inter- and intra-observer agreement were tested using Cohen's Kappa. The mean prevalence of clinically detected caries at tooth level was 46.7% and the mean prevalence of clinically detected hypomineralizations in second primary molars at tooth level was 21.8%. The sensitivity of assessing caries using intraoral photographs was 85.5%, the specificity 83.6%, the positive likelihood ratio 5.2 and the negative likelihood ratio was 0.17. For Primary Molar Hypomineralization (DMH) the sensitivity was 72.3%, the specificity 92.8%, the

  11. The influence of surgical transection and anastomosis on the rate of cell proliferation in the colonic epithelium of normal and DMH-treated rats.

    Science.gov (United States)

    Barkla, D H; Tutton, P M

    1983-10-01

    Normal and DMH-treated male rats aged 18-20 weeks underwent surgical transection and anastomosis of the transverse colon. Animals were subsequently killed at intervals of 14, 30 and 72 days. Three hours prior to sacrifice animals were injected with vinblastine sulphate and mitotic indices were subsequently estimated in histological sections. Possible differences between experimental and control groups were tested using a Student's t-test. The results show that the accumulated mitotic indices in normal and DMH-treated colon are statistically similar. The results also show that transection and anastomosis stimulates cell division in both normal and DMH-treated colon and that the increase is of greater amplitude and more prolonged duration in the DMH-treated rats. Carcinomas developed close to the line of anastomosis in DMH-treated but not in control rats. The results support the hypothesis that non-specific injury to hyperplastic colonic epithelium promotes carcinogenesis.

  12. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF.

    Science.gov (United States)

    Kaur, Jasmeet; Sanyal, S N

    2011-09-01

    Angiogenesis is a physiological process involving growth of new blood vessels from pre-existing ones; however, it also plays a critical role in tumor progression. It favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore targeting angiogenesis will be profitable as a mechanism to inhibit tumor's lifeline. Further, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF)-master switch in angiogenesis and other molecules in the neoplastic and pro-inflammatory milieu. We studied the role of two important chemokines [monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-lα] alongwith VEGF and matrix metalloproteinases (MMPs) in non-steroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effect in experimental colon cancer in rat. 1,2-Dimethylhydrazine (DMH, 30 mg/kg body weight, subcutaneously (s.c.) once-a-week) for 18 wk was used as pro-carcinogen and diclofenac (8 mg/kg body weight, orally daily) as the preferential cyclooxygenase-2 (COX-2) inhibitor. Expression of COX-2 and VEGF was found to be significantly elevated in the DMH-treated group as compared to the control, which was lowered notably by Diclofenac co-administration with DMH. Gelatin zymography showed prominent MMP-9 activity in the DMH-treated rats, while the activity was nearly absent in all the other groups. Expression of MCP-1 was found to be markedly increased whereas MIP-1α expression was found to be decreased in colonic mucosa from DMH-treated rats, which was reversed in the DMH + Diclofenac group. Our results indicate potential role of chemokines alongwith VEGF in angiogenesis in DMH-induced cancer and its chemoprevention with diclofenac. Copyright ©2011 Wiley-Liss, Inc.

  13. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  14. SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates

    International Nuclear Information System (INIS)

    Schmidt, Bernd; Lewin, Jörn; Tetzner, Reimo; Weickmann, Sabine; Wille, Ulrike; Liloglou, Triantafillos; Raji, Olaide; Walshaw, Martin; Fleischhacker, Michael; Witt, Christian; Field, John K; Liebenberg, Volker; Dietrich, Dimo; Schlegel, Thomas; Kneip, Christoph; Seegebarth, Anke; Flemming, Nadja; Seemann, Stefanie; Distler, Jürgen

    2010-01-01

    This study aimed to show that SHOX2 DNA methylation is a tumor marker in patients with suspected lung cancer by using bronchial fluid aspirated during bronchoscopy. Such a biomarker would be clinically valuable, especially when, following the first bronchoscopy, a final diagnosis cannot be established by histology or cytology. A test with a low false positive rate can reduce the need for further invasive and costly procedures and ensure early treatment. Marker discovery was carried out by differential methylation hybridization (DMH) and real-time PCR. The real-time PCR based HeavyMethyl technology was used for quantitative analysis of DNA methylation of SHOX2 using bronchial aspirates from two clinical centres in a case-control study. Fresh-frozen and Saccomanno-fixed samples were used to show the tumor marker performance in different sample types of clinical relevance. Valid measurements were obtained from a total of 523 patient samples (242 controls, 281 cases). DNA methylation of SHOX2 allowed to distinguish between malignant and benign lung disease, i.e. abscesses, infections, obstructive lung diseases, sarcoidosis, scleroderma, stenoses, at high specificity (68% sensitivity [95% CI 62-73%], 95% specificity [95% CI 91-97%]). Hypermethylation of SHOX2 in bronchial aspirates appears to be a clinically useful tumor marker for identifying subjects with lung carcinoma, especially if histological and cytological findings after bronchoscopy are ambiguous

  15. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  16. Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination.

    Directory of Open Access Journals (Sweden)

    Chris R Smith

    Full Text Available BACKGROUND: DNA methylation is a common regulator of gene expression, including acting as a regulator of developmental events and behavioral changes in adults. Using the unique system of genetic caste determination in Pogonomyrmex barbatus, we were able to document changes in DNA methylation during development, and also across both ancient and contemporary hybridization events. METHODOLOGY/PRINCIPAL FINDINGS: Sodium bisulfite sequencing demonstrated in vivo methylation of symmetric CG dinucleotides in P. barbatus. We also found methylation of non-CpG sequences. This validated two bioinformatics methods for predicting gene methylation, the bias in observed to expected ratio of CpG dinucleotides and the density of CpG/TpG single nucleotide polymorphisms (SNP. Frequencies of genomic DNA methylation were determined for different developmental stages and castes using ms-AFLP assays. The genetic caste determination system (GCD is probably the product of an ancestral hybridization event between P. barbatus and P. rugosus. Two lineages obligately co-occur within a GCD population, and queens are derived from intra-lineage matings whereas workers are produced from inter-lineage matings. Relative DNA methylation levels of queens and workers from GCD lineages (contemporary hybrids were not significantly different until adulthood. Virgin queens had significantly higher relative levels of DNA methylation compared to workers. Worker DNA methylation did not vary among developmental stages within each lineage, but was significantly different between the currently hybridizing lineages. Finally, workers of the two genetic caste determination lineages had half as many methylated cytosines as workers from the putative parental species, which have environmental caste determination. CONCLUSIONS/SIGNIFICANCE: These results suggest that DNA methylation may be a conserved regulatory mechanism moderating division of labor in both bees and ants. Current and historic

  17. Parental DNA methylation states are associated with heterosis in epigenetic hybrids

    NARCIS (Netherlands)

    Lauss, Kathrin; Wardenaar, René; Oka, Rurika; van Hulten, Marieke H A; Guryev, Victor; Keurentjes, Joost J B; Stam, Maike; Johannes, Frank

    Despite the importance and wide exploitation of heterosis in commercial crop breeding, the molecular mechanisms behind this phenomenon are not completely understood. Recent studies have implicated changes in DNA methylation and small RNAs in hybrid performance, however, it remains unclear whether

  18. Parental DNA methylation states are associated with heterosis in epigenetic hybrids

    NARCIS (Netherlands)

    Lauss, K.; Wardenaar, R.; Oka, R.; van Hulten, M.H.A.; Guryev, V.; Keurentjes, J.J.B.; Stam, M.; Johannes, F.

    Despite the importance and wide exploitation of heterosis in commercial crop breeding, the molecular mechanisms behind this phenomenon are not completely understood. Recent studies have implicated changes in DNA methylation and small RNAs in hybrid performance; however, it remains unclear whether

  19. Parental DNA methylation states are associated with heterosis in epigenetic hybrids

    NARCIS (Netherlands)

    Lauss, Kathrin; Wardenaar, R.; Oka, Rurika; Hulten, M.H.A.; Guryev, Victor; Keurentjes, J.J.B.; Stam, Maike; Johannes, Frank

    2018-01-01

    Despite the importance and wide exploitation of heterosis in commercial crop breeding, the molecular mechanisms behind this phenomenon are not completely understood. Recent studies have implicated changes in DNA methylation and small RNAs in hybrid performance, however, it remains unclear whether

  20. Changes in cell proliferation and morphology in the large intestine of normal and DMH-treated rats following colostomy.

    Science.gov (United States)

    Barkla, D H; Tutton, P J

    1987-04-01

    Colostomies were formed in the midcolon of normal and DMH-treated rats. Changes in cell proliferation in the mucosa adjacent to the colostomy and in the defunctioned distal segment were measured at seven, 14, 30, and 72 days using a stathmokinetic technique. Animals were given intraperitoneal injections of vinblastine and sacrificed three hours later; counts of mitotic and nonmitotic cells were made in tissue sections, and three-hour accumulated mitotic indexes were estimated. The results show that, except at seven days in DMH-treated rats, cell proliferation was unchanged in the colon proximal to the colostomy. Morphologic evidence of hyperplasia was seen in some animals at seven and 14 days. The defunctioned segment showed rapid atrophy of both mucosa and muscularis and a gradual but progressive decrease in cell proliferation. The morphology of the mucosa adjacent to the suture line in both functioning and defunctioned segments in normal and DMH-treated rats was abnormal in many animals. Abnormalities that were seen included collections of dysplastic epithelial cells in the submucosa, focal adenomatous changes, and intramural carcinoma formation. Aggregates of lymphoid tissue often were associated with carcinomas.

  1. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  2. Alterations in Lipid Mediated Signaling and Wnt/β-Catenin Signaling in DMH Induced Colon Cancer on Supplementation of Fish Oil

    Directory of Open Access Journals (Sweden)

    Shevali Kansal

    2014-01-01

    Full Text Available Ceramide mediates inhibition of cyclooxygenase-2 (COX-2 which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptorγ (PPARγ and Wnt/β-catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2, PPARγ, and β-catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/β-catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1 and FO : CO(2.5 : 1, respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPARγ were observed in postinitiation phase only. On receiving FO+CO(1 : 1+DMH and FO+CO(2.5 : 1+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β-catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1+DMH. Treatment with oils increased PPARγ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.

  3. DNA methylation analysis of allotetraploid hybrids of red crucian carp (Carassius auratus red var. and common carp (Cyprinus carpio L..

    Directory of Open Access Journals (Sweden)

    Jun Xiao

    Full Text Available Hybridization and polyploidization may lead to divergence in adaptation and boost speciation in angiosperms and some lower animals. Epigenetic change plays a significant role in the formation and adaptation of polyploidy. Studies of the effects of methylation on genomic recombination and gene expression in allopolyploid plants have achieved good progress. However, relevant advances in polyploid animals have been relatively slower. In the present study, we used the bisexual, fertile, genetically stable allotetraploid generated by hybridization of Carassius auratus red var. and Cyprinus carpio L. to investigate cytosine methylation level using methylation-sensitive amplification polymorphism (MSAP analysis. We observed 38.31% of the methylation changes in the allotetraploid compared with the parents at 355 randomly selected CCGG sites. In terms of methylation status, these results indicate that the level of methylation modification in the allotetraploid may have increased relative to that in the parents. We also found that the major methylation changes were hypermethylation on some genomic fragments and genes related to metabolism or cell cycle regulation. These results provide circumstantial evidence that DNA methylation might be related to the gene expression and phenotype variation in allotetraploid hybrids. Our study partly fulfils the need for epigenetic research in polyploid animals, and provides evidence for the epigenetic regulation of allopolyploids.

  4. Modulation of expression of Programmed Death-1 by administration of probiotic Dahi in DMH-induced colorectal carcinogenesis in rats.

    Science.gov (United States)

    Mohania, Dheeraj; Kansal, Vinod K; Kumar, Manoj; Nagpal, Ravinder; Yamashiro, Yuichiro; Marotta, Francesco

    2013-09-01

    Interaction of probiotic bacteria with the host immune system elicits beneficial immune modulating effects. Although, there are many published studies on interaction of probiotics with immune system focusing on activation of immune system by bacterial cell wall through the engagement of Toll-like receptor family; very few studies have focused on molecules involved in the T-cell activation, and not much work has been executed to study the correlation of probiotics and programmed death-1 in colorectal carcinogenesis in animal models. Hence, the present study was carried out to assess the effect of probiotic Dahi on expression of programmed death (PD-1) in colorectum of 1, 2-dimethylhydrazine treated Wistar rats. DMH was injected subcutaneously at the rate of 40 mg/kg body weight per animal twice a week for 2 weeks. A total of 168 male Wistar rats were randomly allocated to seven groups, each group having twenty-four animals. The rats were euthanized at the 8th, 16th and 32nd week of the experiment and examined for the expression of PD-1 in colorectal tissues by immunohistochemical staining. Expression of PD-1 was observed in colorectal tissues of normal and DMH-treated rats. Feeding rats with probiotic Dahi or the treatment with piroxicam decreased the expression of PD-1 in DMH-induced colorectal mucosa, and the combined treatment with probiotic Dahi and piroxicam was significantly more effective in reducing the expression of PD-1. PD-1 expressed independent of carcinogen administration in normal colonic mucosa and may play a role in modulation of immune response in DMH-induced colorectal carcinogenesis. The present study suggests that probiotic Dahi can be used as an effective chemopreventive agent in the management of colorectal cancer.

  5. Instability of chromosome number and DNA methylation variation induced by hybridization and amphidiploid formation between Raphanus sativus L. and Brassica alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Wang Yanjie

    2010-09-01

    Full Text Available Abstract Background Distant hybridization can result genome duplication and allopolyploid formation which may play a significant role in the origin and evolution of many plant species. It is unclear how the two or more divergent genomes coordinate in one nucleus with a single parental cytoplasm within allopolyploids. We used cytological and molecular methods to investigate the genetic and epigenetic instabilities associated with the process of distant hybridization and allopolyploid formation, measuring changes in chromosome number and DNA methylation across multiple generations. Results F1 plants from intergeneric hybridization between Raphanus sativus L. (2n = 18, RR and Brassica alboglabra Bailey (2n = 18, CC were obtained by hand crosses and subsequent embryo rescue. Random amplification of polymorphic DNA (RAPD markers were used to identify the F1 hybrid plants. The RAPD data indicated that the hybrids produced specific bands similar to those of parents and new bands that were not present in either parent. Chromosome number variation of somatic cells from allotetraploids in the F4 to F10 generations showed that intensive genetic changes occurred in the early generations of distant hybridization, leading to the formation of mixopolyploids with different chromosome numbers. DNA methylation variation was revealed using MSAP (methylation-sensitive amplification polymorphism, which showed that cytosine methylation patterns changed markedly in the process of hybridization and amphidiploid formation. Differences in cytosine methylation levels demonstrated an epigenetic instability of the allopolyploid of Raphanobrassica between the genetically stable and unstable generations. Conclusions Our results showed that chromosome instability occurred in the early generations of allopolyploidy and then the plants were reverted to largely euploidy in later generations. During this process, DNA methylation changed markedly. These results suggest that

  6. Chemopreventive effect of Cynodon dactylon (L.) Pers. extract against DMH-induced colon carcinogenesis in experimental animals.

    Science.gov (United States)

    Albert-Baskar, Arul; Ignacimuthu, Savarimuthu

    2010-07-01

    The present study was aimed at evaluating the chemopreventive property of Cynodon dactylon. The antioxidant, antiproliferative and apoptotic potentials of the plant were investigated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, nitric oxide radical scavenging activity (NO(-)) and MTT assay on four cancer cell lines (COLO 320 DM, MCH-7, AGS, A549) and a normal cell line (VERO). In vivo chemopreventive property of the plant extract was studied in DMH-induced colon carcinogenesis. The methanolic extract of C. dactylon was found to be antiproliferative and antioxidative at lower concentrations and induced apoptotic cell death in COLO 320 DM cells. Treatment with methanolic extract of C. dactylon increased the levels of antioxidant enzymes and reduced the number of dysplastic crypts in DMH-induced colon of albino rats. The present investigation revealed the anticancer potential of methanolic extract of C. dactylon in COLO 320 DM cells and experimentally induced colon carcinogenesis in rats.

  7. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids.

    Science.gov (United States)

    Liu, Chao; Wang, Mingbo; Wang, Lingli; Guo, Qigao; Liang, Guolu

    2018-04-24

    We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.

  8. Patterns of DNA Methylation in Development, Division of Labor and Hybridization in an Ant with Genetic Caste Determination

    OpenAIRE

    Smith, Chris R.; Mutti, Navdeep S.; Jasper, W. Cameron; Naidu, Agni; Smith, Christopher D.; Gadau, Jürgen

    2012-01-01

    BACKGROUND: DNA methylation is a common regulator of gene expression, including acting as a regulator of developmental events and behavioral changes in adults. Using the unique system of genetic caste determination in Pogonomyrmex barbatus, we were able to document changes in DNA methylation during development, and also across both ancient and contemporary hybridization events. METHODOLOGY/PRINCIPAL FINDINGS: Sodium bisulfite sequencing demonstrated in vivo methylation of symmetric CG dinucle...

  9. Influence of Different Diets on Development of DMH-Induced Aberrant Crypt Foci and Colon Tumor Incidence in Wistar Rats

    DEFF Research Database (Denmark)

    Kristiansen, E.; Thorup, I.; Meyer, Otto A.

    1995-01-01

    The present study was undertaken to investigate certain dietary factors known to affect the development of colon cancer for their ability to modulate aberrant crypt foci (ACI;). Male Wistar rats were initiated with oral noses of dimethylhydrazine dihydrochloride (DMH-2HCl, 20 mg/kg body wt) once...... a week for to or 20 weeks. Throughout the study the animals were fed I) semisynthetic casein-based control diet, 2) control diet with 20% lard, 3) control diet with 20% lard and 20% dietary fiber, or 4) control diet where most of the carbohydrate pool was substituted with sucrose and dextrin....... The composition of the different diets was designed to achieve equivalent intakes of essential nutrients. Animals were killed after 10, 20, and 31 weeks. The study showed a pronounced effect of dietary composition on the development of DMH-induced ACF. The diet high in sucrose and dextrin caused a statistically...

  10. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations.

    Science.gov (United States)

    Zhang, Xueli; Ge, Xianhong; Shao, Yujiao; Sun, Genlou; Li, Zaiyun

    2013-01-01

    Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.

  11. 77 FR 43146 - Twin Cities & Western Railroad Company, the Estate of Douglas M. Head, and the DMH Trust fbo...

    Science.gov (United States)

    2012-07-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35642] Twin Cities & Western Railroad Company, the Estate of Douglas M. Head, and the DMH Trust fbo Martha M. Head--Continuance... Class III rail carrier, and the Estate of Douglas M. Head (the Estate), a noncarrier, to continue in...

  12. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations.

    Directory of Open Access Journals (Sweden)

    Xueli Zhang

    Full Text Available Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP, sequence-specific amplification polymorphism (SSAP and methylation-sensitive amplified polymorphism (MSAP were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8% and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.

  13. Synthesis of SnO{sub 2}-activated carbon fiber hybrid catalyst for the removal of methyl violet from water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: mse_lij@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Ng, Dickon H.L. [Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong (China); Song, Peng; Kong, Chao; Song, Yi [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China)

    2015-04-15

    Graphical abstract: - Highlights: • A new biomass route for the synthesis of SnO{sub 2}/ACF hybrid catalyst was proposed. • The original fibrous structure of kapok fiber was retained in the SnO{sub 2}/ACF hybrid catalyst. • SnO{sub 2}/ACF hybrid catalyst exhibited high BET surface area (647–897 m{sup 2}/g) and large pore volume (0.36–0.56 cm{sup 3} g{sup −1}). • High microwave-induced catalytic activity for methyl violet degradation was obtained. - Abstract: SnO{sub 2}/activated carbon fiber (ACF) hybrid catalyst was synthesized from kapok precursor via a two-step process involving pore-fabricating and self-assembly of SnO{sub 2} nanoparticles. The morphology and phase structure of the obtained samples were characterized by X-ray diffraction, field emission scanning electron microscope, high resolution transmission electron microscopy and N{sub 2} adsorption-desorption isotherm. These results demonstrated that the synthesized SnO{sub 2}/ACF retained the hollow-fiber structure of kapok fibers. SnO{sub 2} nanoparticles dispersed uniformly over the ACF support. The obtained hybrid catalyst showed porous structure with high surface area (647–897 m{sup 2}/g) and large pore volume (0.36–0.56 cm{sup 3} g{sup −1}). In addition, the catalytic activities of the obtained samples for methyl violet degradation under microwave irradiation were also evaluated. It was found that the SnO{sub 2}/ACF catalyst exhibited high catalytic activity for methyl violet degradation due to the synergistic effect of microwave and SnO{sub 2}/ACF catalyst.

  14. Effects of Aromatic Ammoniums on Methyl Ammonium Lead Iodide Hybrid Perovskite Materials

    Directory of Open Access Journals (Sweden)

    Jianli Yang

    2017-01-01

    Full Text Available The introduction of bulky ammoniums into methyl ammonium lead iodide hybrid perovskites (MAPbI3 has emerged as a promising strategy to improve the properties of these materials. In the present work, we studied the effects of several aromatic ammoniums onto the structural, electronic, and optical properties of MAPbI3. Although powder XRD data suggest that the bulky cations are not involved in the bulk phase of the MAPbI3, a surprisingly large effect of the bulky cations onto the photoluminescence properties was observed.

  15. Comments on 'Reconsidering the definition of a dose-volume histogram'-dose-mass histogram (DMH) versus dose-volume histogram (DVH) for predicting radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Mavroidis, Panayiotis; Plataniotis, Georgios A; Gorka, Magdalena Adamus; Lind, Bengt K

    2006-01-01

    In a recently published paper (Nioutsikou et al 2005 Phys. Med. Biol. 50 L17) the authors showed that the use of the dose-mass histogram (DMH) concept is a more accurate descriptor of the dose delivered to lung than the traditionally used dose-volume histogram (DVH) concept. Furthermore, they state that if a functional imaging modality could also be registered to the anatomical imaging modality providing a functional weighting across the organ (functional mass) then the more general and realistic concept of the dose-functioning mass histogram (D[F]MH) could be an even more appropriate descriptor. The comments of the present letter to the editor are in line with the basic arguments of that work since their general conclusions appear to be supported by the comparison of the DMH and DVH concepts using radiobiological measures. In this study, it is examined whether the dose-mass histogram (DMH) concept deviated significantly from the widely used dose-volume histogram (DVH) concept regarding the expected lung complications and if there are clinical indications supporting these results. The problem was investigated theoretically by applying two hypothetical dose distributions (Gaussian and semi-Gaussian shaped) on two lungs of uniform and varying densities. The influence of the deviation between DVHs and DMHs on the treatment outcome was estimated by using the relative seriality and LKB models using the Gagliardi et al (2000 Int. J. Radiat. Oncol. Biol. Phys. 46 373) and Seppenwoolde et al (2003 Int. J. Radiat. Oncol. Biol. Phys. 55 724) parameter sets for radiation pneumonitis, respectively. Furthermore, the biological equivalent of their difference was estimated by the biologically effective uniform dose (D-bar) and equivalent uniform dose (EUD) concepts, respectively. It is shown that the relation between the DVHs and DMHs varies depending on the underlying cell density distribution and the applied dose distribution. However, the range of their deviation in terms of

  16. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.

    Directory of Open Access Journals (Sweden)

    Jijun Hao

    Full Text Available The bone morphogenetic protein (BMP signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

  17. The nonfermentable dietary fiber lignin alters putative colon cancer risk factors but does not protect against DMH-induced colon cancer in rats.

    Science.gov (United States)

    Cameron, I L; Hardman, W E; Heitman, D W

    1997-01-01

    The effect of supplementation of the diet with autohydrolyzed lignin on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis was studied using 112 male Sprague-Dawley rats. Rats received eight weekly injections of DMH (9.5 mg/kg s.c.) or the saline vehicle solution and then were maintained on a basal AIN-76 fiber-free diet or the basal fiber-free diet plus 5% or 10% (wt/wt) lignin for 24 weeks. Rats were killed 32 weeks after the start of the experiment. Colon tumor incidence, location, and multiplicity were determined. Body weight, caloric intake, fecal dry weight, gut transit time, pH of cecal contents, and total fecal bile acid excretion were measured. Supplementation of the diet with 5% or 10% lignin resulted in increased fecal dry weight and total fecal bile acid excretion and in decreased gut transit time, colon pH, and fecal bile acid concentration. Dietary lignin did not significantly affect colon tumor incidence or multiplicity compared with the fiber-free diet. Thus dietary supplementation with autohydrolyzed lignin, a food fiber with good bulking characteristics, had a significant effect on several factors that have previously been linked to reduction of colon cancer risk, but the consumption of high levels of lignin did not decrease the risk for colon cancer.

  18. [GSTP1, APC and RASSF1 gene methylation in prostate cancer samples: comparative analysis of MS-HRM method and Infinium HumanMethylation450 BeadChip beadchiparray diagnostic value].

    Science.gov (United States)

    Skorodumova, L O; Babalyan, K A; Sultanov, R; Vasiliev, A O; Govorov, A V; Pushkar, D Y; Prilepskaya, E A; Danilenko, S A; Generozov, E V; Larin, A K; Kostryukova, E S; Sharova, E I

    2016-11-01

    There is a clear need in molecular markers for prostate cancer (PC) risk stratification. Alteration of DNA methylation is one of processes that occur during ÐÑ progression. Methylation-sensitive PCR with high resolution melting curve analysis (MS-HRM) can be used for gene methylation analysis in routine laboratory practice. This method requires very small amounts of DNA for analysis. Numerous results have been accumulated on DNA methylation in PC samples analyzed by the Infinium HumanMethylation450 BeadChip (HM450). However, the consistency of MS-HRM results with chip hybridization results has not been examined yet. The aim of this study was to assess the consistency of results of GSTP1, APC and RASSF1 gene methylation analysis in ÐÑ biopsy samples obtained by MS-HRM and chip hybridization. The methylation levels of each gene determined by MS-HRM were statistically different in the group of PC tissue samples and the samples without signs of tumor growth. Chip hybridization data analysis confirmed the results obtained with the MS-HRM. Differences in methylation levels between tumor tissue and histologically intact tissue of each sample determined by MS-HRM and chip hybridization, were consistent with each other. Thus, we showed that the assessment of GSTP1, APC and RASSF1 gene methylation analysis using MS-HRM is suitable for the design of laboratory assays that will differentiate the PC tissue from the tissue without signs of tumor growth.

  19. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    Science.gov (United States)

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  20. Excitatory amino acid receptors mediate asymmetry and lateralization in the descending cardiovascular pathways from the dorsomedial hypothalamus.

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Xavier

    Full Text Available The dorsomedial hypothalamus (DMH and lateral/dorsolateral periaqueductal gray (PAG are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R- sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA. In the current study, we investigated whether excitatory amino acid (EAA receptors in the DMH-PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p. anesthetized rats, we observed that: (i nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L- PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG.

  1. Hybrid methyl green/cobalt-polyoxotungstate nanostructured films: Self-assembly, electrochemical and electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Hugo C.; Fernandes, Diana M., E-mail: diana.fernandes@fc.up.pt; Freire, Cristina, E-mail: acfreire@fc.up.pt

    2015-08-30

    Graphical abstract: Hybrid {MG/Co(PW9)2}{sub n} multilayer films were successfully prepared and exhibit W-based electrocatalytic activity towards reduction of nitrite and iodate anions. - Highlights: • Layer-by-layer hybrid films {MG/Co(PW_9)_2}{sub n} were sucessfully prepared. • UV–vis was used to monitor film build-up and showed regular stepwise film growth. • XPS confirmed sucessfull {MG/Co(PW_9)_2}{sub n} film fabrication. • Films showed excellent electrocatalytic activity towards nitrite and iodate reduction. - Abstract: Hybrid multilayer films were prepared by alternately depositing cationic dye methyl green (MG) and anionic sandwich-type polyoxometalate K{sub 10}[Co{sub 4}(H{sub 2}O){sub 2}(PW{sub 9}O{sub 34}){sub 2}] (Co(PW{sub 9}){sub 2}) via electrostatic layer-by-layer (LbL) self-assembly method. Film build-up was monitored by UV–vis spectroscopy which showed a regular stepwise growth. X-ray photoelectron spectroscopy data confirmed the successful fabrication of the hybrid films with MG-Co(PW{sub 9}){sub 2} composition and scanning electron microscopy images revealed a completely covered surface with a non-uniform distribution of the molecular species. Electrochemical characterization of films by cyclic voltammetry revealed two tungsten-based reduction processes in the potential range between −0.9 and −0.5 V due to W{sup VI} → W{sup V} in Co(PW{sub 9}){sub 2}. Studies with the redox probes, [Fe(CN){sub 6}]{sup 3−/4−} and [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, revealed that not only the electrostatic attractions or repulsions have effects on the kinetics of the probe reactions, but also the film thickness. Additionally, the {MG/Co(PW_9)_2}{sub n} multilayer films exhibit efficient W-based electrocatalytic activity towards reduction of nitrite and iodate.

  2. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity.

    Science.gov (United States)

    Lee, Shin J; Sanchez-Watts, Graciela; Krieger, Jean-Philippe; Pignalosa, Angelica; Norell, Puck N; Cortella, Alyssa; Pettersen, Klaus G; Vrdoljak, Dubravka; Hayes, Matthew R; Kanoski, Scott; Langhans, Wolfgang; Watts, Alan G

    2018-05-01

    Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function. We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization. GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies. Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Analysis of Different Ploidy and Parent–Offspring Genomic DNA Methylation in the Loach Misgurnus anguillicaudatus

    Directory of Open Access Journals (Sweden)

    He Zhou

    2016-08-01

    Full Text Available In this study, we selected natural polyploidy loach (diploid, triploid and tetraploid and hybrid F1 generation obverse cross (4 × 2 and inverse cross (2 × 4 by diploids and tetraploids as the research model. The MSAP (methylation-sensitive amplified polymorphism reaction system was established by our laboratory to explore methylation levels and pattern diversification features at the whole genome level of the polyploidy loach. The results showed that the total methylation and full methylation rates decreased on increased ploidy individuals; moreover, the hemimethylation rate showed no consistent pattern. Compared with diploid loach, the methylation patterns of tetraploid sites changed 68.17%, and the methylation patterns of triploid sites changed 73.05%. The proportion of hypermethylation genes is significantly higher than the proportion of demethylation genes. The methylation level of reciprocal cross F1 generation is lower than the male diploid and higher than the female tetraploid. The hemimethylation and total methylation rate of the cross hybrid F1 generation is significantly higher than the orthogonal F1 generation (p < 0.01. After readjusting, the methylation pattern of genome DNA of reciprocal hybrids changed 69.59% and 72.83%, respectively.

  4. Analysis of Different Ploidy and Parent–Offspring Genomic DNA Methylation in the Loach Misgurnus anguillicaudatus

    Science.gov (United States)

    Zhou, He; Ma, Tian-Yu; Zhang, Rui; Xu, Qi-Zheng; Shen, Fu; Qin, Yan-Jie; Xu, Wen; Wang, Yuan; Li, Ya-Juan

    2016-01-01

    In this study, we selected natural polyploidy loach (diploid, triploid and tetraploid) and hybrid F1 generation obverse cross (4 × 2) and inverse cross (2 × 4) by diploids and tetraploids as the research model. The MSAP (methylation-sensitive amplified polymorphism) reaction system was established by our laboratory to explore methylation levels and pattern diversification features at the whole genome level of the polyploidy loach. The results showed that the total methylation and full methylation rates decreased on increased ploidy individuals; moreover, the hemimethylation rate showed no consistent pattern. Compared with diploid loach, the methylation patterns of tetraploid sites changed 68.17%, and the methylation patterns of triploid sites changed 73.05%. The proportion of hypermethylation genes is significantly higher than the proportion of demethylation genes. The methylation level of reciprocal cross F1 generation is lower than the male diploid and higher than the female tetraploid. The hemimethylation and total methylation rate of the cross hybrid F1 generation is significantly higher than the orthogonal F1 generation (p < 0.01). After readjusting, the methylation pattern of genome DNA of reciprocal hybrids changed 69.59% and 72.83%, respectively. PMID:27556458

  5. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    NARCIS (Netherlands)

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  6. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, S.R.; Cardoso, H.R.P. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Oliveira, C.T. [ICET, University Feevale, RS-239, 2755 Novo Hamburgo, RS (Brazil); Santana, J.A.; Sarmento, V.H.V. [Department of Chemistry, Federal University of Sergipe – UFS, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Muller, I.L. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Malfatti, C.F., E-mail: celia.malfatti@ufrgs.br [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2014-04-01

    Highlights: • Siloxane–PMMA film was produced by dip-coating on tin plate substrate. • It was evaluated the influence of (TEOS) addition on siloxane–PMMA hybrid films. • Siloxane–PMMA films without TEOS presented a regular coverage and lowest roughness. • The TEOS addition decrease the corrosion resistance of siloxane–PMMA films. • Siloxane–PMMA without TEOS presented is higher durability in the film wear test. - Abstract: The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane–poly (methyl methacrylate) (PMMA) hybrid film prepared by sol–gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane–PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase

  7. Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum

    Science.gov (United States)

    Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W

    2013-01-01

    Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938

  8. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies.

    Science.gov (United States)

    Needhamsen, Maria; Ewing, Ewoud; Lund, Harald; Gomez-Cabrero, David; Harris, Robert Adam; Kular, Lara; Jagodic, Maja

    2017-11-15

    The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.

  9. A novel method to quantify local CpG methylation density by regional methylation elongation assay on microarray

    Directory of Open Access Journals (Sweden)

    Qiao Yingjuan

    2008-01-01

    Full Text Available Abstract Background DNA methylation based techniques are important tools in both clinical diagnostics and therapeutics. But most of these methods only analyze a few CpG sites in a target region. Indeed, difference of site-specific methylation may also lead to a change of methylation density in many cases, and it has been found that the density of methylation is more important than methylation of single CpG site for gene silencing. Results We have developed a novel approach for quantitative analysis of CpG methylation density on the basis of microarray-based hybridization and incorporation of Cy5-dCTP into the Cy3 labeled target DNA by using Taq DNA Polymerase on microarray. The quantification is achieved by measuring Cy5/Cy3 signal ratio which is proportional to methylation density. This methylation-sensitive technique, termed RMEAM (regional methylation elongation assay on microarray, provides several advantages over existing methods used for methylation analysis. It can determine an exact methylation density of the given region, and has potential of high throughput. We demonstrate a use of this method in determining the methylation density of the promoter region of the tumor-related gene MLH1, TERT and MGMT in colorectal carcinoma patients. Conclusion This technique allows for quantitative analysis of regional methylation density, which is the representative of all allelic methylation patterns in the sample. The results show that this technique has the characteristics of simplicity, rapidness, specificity and high-throughput.

  10. Preparation of Oleyl Phosphate-Modified TiO2/Poly(methyl methacrylate Hybrid Thin Films for Investigation of Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Masato Fujita

    2015-01-01

    Full Text Available TiO2 nanoparticles (NPs modified with oleyl phosphate were synthesized through stable Ti–O–P bonds and were utilized to prepare poly(methyl methacrylate- (PMMA- based hybrid thin films via the ex situ route for investigation of their optical properties. After surface modification of TiO2 NPs with oleyl phosphate, IR and 13C CP/MAS NMR spectroscopy showed the presence of oleyl groups. The solid-state 31P MAS NMR spectrum of the product revealed that the signal due to oleyl phosphate (OP shifted upon reaction, indicating formation of covalent Ti–O–P bonds. The modified TiO2 NPs could be homogeneously dispersed in toluene, and the median size was 16.1 nm, which is likely to be sufficient to suppress Rayleigh scattering effectively. The TEM images of TiO2/PMMA hybrid thin films also showed a homogeneous dispersion of TiO2 NPs, and they exhibited excellent optical transparency even though the TiO2 content was 20 vol%. The refractive indices of the OP-modified TiO2/PMMA hybrid thin films changed higher with increases in TiO2 volume fraction, and the hybrid thin film with 20 vol% of TiO2 showed the highest refractive index (n = 1.86.

  11. Molecular and polymeric uranyl and thorium hybrid materials featuring methyl substituted pyrazole dicarboxylates and heterocyclic 1,3-diketones

    Science.gov (United States)

    Carter, Korey P.; Kerr, Andrew T.; Taydakov, Ilya V.; Cahill, Christopher L.

    2018-02-01

    A series of seven novel f-element bearing hybrid materials have been prepared from either methyl substituted 3,4 and 4,5-pyrazoledicarboxylic acids, or heterocyclic 1,3- diketonate ligands using hydrothermal conditions. Compounds 1, [UO2(C6H4N2O4)2(H2O)], and 3, [Th(C6H4N2O4)4(H2O)5]·H2O feature 1-Methyl-1H-pyrazole-3,4-dicarboxylate ligands (SVI-COOH 3,4), whereas 2, [UO2(C6H4N2O4)2(H2O)], and 4, [Th(C6H5N2O4)(OH)(H2O)6]2·2(C6H5N2O4)·3H2O feature 1-Methyl-1H-pyrazole-4,5-dicarboxylate moieties (SVI-COOH 4,5). Compounds 5, [UO2(C13H15N4O2)2(H2O)]·2H2O and 6, [UO2(C11H11N4O2)2(H2O)]·4.5H2O feature 1,3-bis(4-N1-methyl-pyrazolyl)propane-1,3-dione and 1,3-bis(4-N1,3-dimethyl-pyrazolyl)propane-1,3-dione respectively, whereas the heterometallic 7, [UO2(C11H11N4O2)2(CuCl2)(H2O)]·2H2O is formed by using 6 as a metalloligand starting material. Single crystal X-ray diffraction indicates that all coordination to either [UO2]2+ or Th(IV) metal centers is through O-donation as anticipated. Room temperature, solid-state luminescence studies indicate characteristic uranyl emissive behavior for 1 and 2, whereas those for 5 and 6 are weak and poorly resolved.

  12. Evaluation of the antitumor activity of interleukin-12 in an experimental murine model of colorectal cancer induced by 1,2 dimethyl-hydrazine (DMH).

    Science.gov (United States)

    Coca, S; Enrech, S; Moreno García, V; Sáez, M A; Gutiérrez, C; Colmenarejo, A; Hernández, J M; Pérez Piqueras, J

    2005-09-01

    Interleukin 12 (IL-12) is a cytokine that may enhance the proliferation and cytotoxic activity of T lymphocytes and natural killer (NK) cells. A relationship between extensive intratumoral infiltration of NK cells and longer survival rates in colorectal cancer (CRC) patients was previously noted. Preliminary evidence suggests that the combined administration of IL-12 and IL-2 may produce additive immunomodulatory activity. The purpose of this study was to determine whether the systemic administration of IL-12 (+/- IL-2) may induce an immune response against CRC as induced by 1,2-dimethylhydrazine (DMH). Sixty-five 6-week-old Wistar rats were treated with weekly subcutaneous injections of DMH for 26 weeks at a dose of 20 mg/kg of body weight. Once tumoral induction was over, the animals were randomly allocated to one of three groups: I, control; II, intraperitoneal injections of IL-12; III, intraperitoneal injections of IL-12 combined with IL-2. At 30 weeks, all surviving animals were sacrificed. We studied the following parameters in each rat--number of tumors, size of tumors, and total tumoral volume. Tumor samples were studied using the monoclonal antibody CD 57 for the detection of NK cells. The extent of NK infiltration was classified as small, less than 50 NK cells/50 high-power field (HPF); moderate, 50 to 150 NK cells/50 HPF, and extensive, more than 150 NK cells/50 HPF. Thirty-five rats died before completion of the carcinogen exposure, and 30 rats were randomized (10 each group). In group II, 2 animals died during treatment. All rats in groups I and III developed tumors, while in group II two rats (25%) were tumor-free. Moreover, only one rat in group II developed multiple neoplasms, in contrast with group I and group III, where six rats (60%) and seven rats (70%), respectively, had more than one tumor. We found statistically significant differences in the mean number of tumors found in group II when compared to group I (p = 0.028) and group III (p = 0

  13. Epigenomics: dissecting hybridization and polyploidization.

    Science.gov (United States)

    Jackson, Scott A

    2017-06-19

    Epigenetic profiling in diploid, allopolyploid, and domesticated cotton shows that despite most DNA methylation being conserved and stably inherited, alterations likely due to hybridization and domestication affect gene expression.

  14. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense×Tanacetum vulgare hybrid and allopolyploid (Asteraceae).

    Science.gov (United States)

    Qi, Xiangyu; Wang, Haibin; Song, Aiping; Jiang, Jiafu; Chen, Sumei; Chen, Fadi

    2018-01-01

    Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense × T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.

  15. Evaluation of the antitumor activity of interleukin-12 in an experimental murine model of colorectal cancer induced by 1,2 dimethylhydrazine (DMH Estudio de la respuesta antitumoral de la interleucina-12 en cáncer de colon inducido mediante 1,2-dimetilhidracina (DMH

    Directory of Open Access Journals (Sweden)

    S. Coca

    2005-09-01

    Full Text Available Objective: interlukin 12 (IL-12 is a cytokine that may enhance the proliferation and cytotoxic activity of T lymphocytes and natural killer (NK cells. A relationship between extensive intratumoral infiltration of NK cells and longer survival rates in colorectal cancer (CRC patients was previously noted. Preliminary evidence suggests that the combined administration of IL-12 and IL-2 may produce additive immunomodulatory activity. The purpose of this study was to determine whether the systemic administration of IL-12 (+/- IL-2 may induce an immune response against CRC as induced by 1,2-dimethylhydrazine (DMH. Methods: sixty-five 6-week-old Wistar rats were treated with weekly subcutaneous injections of DMH for 26 weeks at a dose of 20 mg/kg of body weight. Once tumoral induction was over, the animals were randomly allocated to one of three groups: I, control; II, intraperitoneal injections of IL-12; III, intraperitoneal injections of IL-12 combined with IL-2. At 30 weeks, all surviving animals were sacrificed. We studied the following parameters in each rat - number of tumors, size of tumors, and total tumoral volume.Tumor samples were studied using the monoclonal antibody CD 57 for the detection of NK cells. The extent of NK infiltration was classified as small, less than 50 NK cells/50 high-power field (HPF; moderate, 50 to 150 NK cells/50 HPF, and extensive, more than 150 NK cells/50 HPF. Results: thirty-five rats died before completion of the carcinogen exposure, and 30 rats were randomized (10 each group. In group II, 2 animals died during treatment. All rats in groups I and III developed tumors, while in group II two rats (25% were tumor-free. Moreover, only one rat in group II developed multiple neoplasms, in contrast with group I and group III, where six rats (60% and seven rats (70%, respectively, had more than one tumor. We found statistically significant differences in the mean number of tumors found in group II when compared to group

  16. Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Van Dijk, P.J.; Biere, A.

    2010-01-01

    DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual

  17. Surface hardness of hybrid ionomer cement after immersion in antiseptic solution

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2006-06-01

    Full Text Available Hybrid ionomer cement or resin modified glass ionomer cement is a developed form of conventional glass ionomer cement. This hybrid ionomer cement can be eroded if in direct contact with acid solution which will affect surface hardness. The aim of this study is to learn surface hardness of hybrid ionomer cement after immersion in methyl salicylate 0.06% (pH 3.6 and povidon iodine 1% (pH 2.9 solution. Sample of hybrid ionomer cement with 5 mm diameter and 3 mm thickness was immersed in sterile aquadest solution (control, methyl salicylate pH 3.6, povidon iodine pH 2.9 for 1 minute, 7 and 14 minutes. Surface hardness was measured with Micro Vickers Hardness Tester. The obtained data was analyzed statistically with ANOVA followed by LSD test. The result of hybrid ionomer cement after immersion in sterile aquadest, methyl salicylate 0.06% pH 3.6 and povidon iodine 1% pH 2.9 for one minute, showed no significant difference; while immersion for 7 and 14 minutes showed a significant difference. The conclusion states that hybrid ionomer cement after 14 minutes immersion in povidon iodine 1% pH 2.9 has the lowest surface hardness.

  18. In Situ Synthesis of Poly(methyl methacrylate/SiO2 Hybrid Nanocomposites via “Grafting Onto” Strategy Based on UV Irradiation in the Presence of Iron Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2012-01-01

    Full Text Available Poly(methyl methacrylate/SiO2 (PMMA/SiO2 hybrid composites were prepared via “grafting onto” strategy based on UV irradiation in the presence of iron aqueous solution. Two steps were used to graft polymethyl methacrylate (PMMA onto the surface of nanosilica, anchoring 3-(methacryloxy propyl trimethoxysilane (MPTS onto the surface of nanosilica to modify it with double bonds, and then grafting PMMA onto the surface of nanosilica with FeCl3 as photoinitiator. The products were characterized by FT-IR, TGA, TEM, DLS, and XPS. The results showed that it is easy to graft PMMA onto the surface of nanosilica under UV irradiation, and the hybrid particles are monodisperse and have core-shell structure with nanosilica as the core and PMMA layers as the shell. Furthermore, the products initiated by FeCl3 have higher monomer conversion, percent grafting, and better monodispersion compared with the products initiated by traditional photoinitiator such as 2-hydroxy-4-(2-hydroxyethoxy-2-methyl-propiophenone (Irgacure 2959.

  19. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  20. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying; Moganty, Surya S.; Schaefer, Jennifer L.; Archer, Lynden A.

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2

  1. Preparation of acryloyl β-cyclodextrin-silica hybrid monolithic column and its application in pipette tip solid-phase extraction and HPLC analysis of methyl parathion and fenthion.

    Science.gov (United States)

    Chen, Ling; Dang, Xueping; Ai, Youhong; Chen, Huaixia

    2018-05-07

    An acryloyl β-cyclodextrin-silica hybrid monolithic column for pipette tip solid-phase extraction and high-performance liquid chromatography determination of methyl parathion and fenthion have been prepared through a sol-gel polymerization method. The synthesis conditions, including the volume of cross-linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid-phase extraction with high-performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15-400 μg/kg for methyl parathion and 20-400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57" t" h Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Wong, Keith T.; Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia/San Sebastian (Spain)

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  3. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    International Nuclear Information System (INIS)

    th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Hund, Zachary M.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Nihill, Kevin J.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.

    2015-01-01

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD 3 -Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH 3 -Ge(111) and CH 3 -Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers

  4. MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility

    Directory of Open Access Journals (Sweden)

    Daniel Luxen

    2017-02-01

    Full Text Available Epigenetic silencing by DNA methylation in brain tumors has been reported for many genes, however, their function on pathogenesis needs to be evaluated. We investigated the MTSS1 gene, identified as hypermethylated by differential methylation hybridization (DMH. Fifty-nine glioma tissue samples and seven glioma cell lines were examined for hypermethylation of the MTSS1 promotor, MTSS1 expression levels and gene dosage. GBM cell lines were treated with demethylating agents and interrogated for functional consequences of MTSS1 expression after transient transfection. Hypermethylation was significantly associated with IDH1/2 mutation. Comparative SNP analysis indicates higher incidence of loss of heterozygosity of MTSS1 in anaplastic astrocytomas and secondary glioblastomas as well as hypermethylation of the remaining allele. Reversal of promoter hypermethylation results in an increased MTSS1 expression. Cell motility was significantly inhibited by MTSS1 overexpression without influencing cell growth or apoptosis. Immunofluorescence analysis of MTSS1 in human astrocytes indicates co-localization with actin filaments. MTSS1 is down-regulated by DNA methylation in glioblastoma cell lines and is part of the G-CIMP phenotype in primary glioma tissues. Our data on normal astrocytes suggest a function of MTSS1 at focal contact structures with an impact on migratory capacity but no influence on apoptosis or cellular proliferation.

  5. Synthesis of polymer hybrid latex poly(methyl methacrylate-co-butyl acrylate) with organo montmorillonite via miniemulsion polymerization method for barrier paper

    Science.gov (United States)

    Chanra, J.; Budianto, E.; Soegijono, B.

    2018-03-01

    Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay’s interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.

  6. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan

    International Nuclear Information System (INIS)

    Kenessov, Bulat; Alimzhanova, Mereke; Sailaukhanuly, Yerbolat; Baimatova, Nassiba; Abilev, Madi; Batyrbekova, Svetlana; Carlsen, Lars; Tulegenov, Akyl; Nauryzbayev, Mikhail

    2012-01-01

    In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg −1 , of 1-ethyl-1H-1,2,4-triazole — 5.45, 3.66 and 0.66 mg kg −1 , of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg −1 in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg −1 , respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites. - Highlights: ► We study metabolites of 1,1-dimethylhydrazine and their distribution in soils. ► Fifty four metabolites can be formed in soils polluted with 1,1-dimethylhydrazine. ► Metabolites are detected in the epicenter having diameter of about 10 m. ► Metabolites can migrate down to the depth of 120 cm. ► Volatile metabolites

  7. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Kenessov, Bulat, E-mail: bkenesov@gmail.com [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan); Alimzhanova, Mereke; Sailaukhanuly, Yerbolat; Baimatova, Nassiba; Abilev, Madi; Batyrbekova, Svetlana [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan); Carlsen, Lars [Awareness Center, Linkopingvej 35, Trekroner, DK-4000 Roskilde (Denmark); Department of Chemical Engineering, Kazakh-British Technical University, 59 Tole Bi st., Almaty, 050000 (Kazakhstan); Tulegenov, Akyl; Nauryzbayev, Mikhail [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan)

    2012-06-15

    In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg{sup -1}, of 1-ethyl-1H-1,2,4-triazole - 5.45, 3.66 and 0.66 mg kg{sup -1}, of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg{sup -1} in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg{sup -1}, respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites. - Highlights: Black-Right-Pointing-Pointer We study metabolites of 1,1-dimethylhydrazine and their distribution in soils. Black-Right-Pointing-Pointer Fifty four metabolites can be formed in soils polluted with 1,1-dimethylhydrazine. Black-Right-Pointing-Pointer Metabolites are detected in the epicenter having diameter of about 10 m

  8. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    Science.gov (United States)

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Parental epigenetic difference in DNA methylation-level may play ...

    African Journals Online (AJOL)

    Parental epigenetic difference in DNA methylation-level may play contrasting roles for different agronomic traits related to yield heterosis in maize. ... or hybrid vigor has been exploited to nearly the fullest extent, the molecular and genetic basis underlying this remarkable biological phenomenon remains largely an enigma.

  10. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  11. Immediate Genetic and Epigenetic Changes in F1 Hybrids Parented by Species with Divergent Genomes in the Rice Genus (Oryza.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    Full Text Available Inter-specific hybridization occurs frequently in higher plants, and represents a driving force of evolution and speciation. Inter-specific hybridization often induces genetic and epigenetic instabilities in the resultant homoploid hybrids or allopolyploids, a phenomenon known as genome shock. Although genetic and epigenetic consequences of hybridizations between rice subspecies (e.g., japonica and indica and closely related species sharing the same AA genome have been extensively investigated, those of inter-specific hybridizations between more remote species with different genomes in the rice genus, Oryza, remain largely unknown.We investigated the immediate chromosomal and molecular genetic/epigenetic instability of three triploid F1 hybrids produced by inter-specific crossing between species with divergent genomes of Oryza by genomic in situ hybridization (GISH and molecular marker analysis. Transcriptional and transpositional activity of several transposable elements (TEs and methylation stability of their flanking regions were also assessed. We made the following principle findings: (i all three triploid hybrids are stable in both chromosome number and gross structure; (ii stochastic changes in both DNA sequence and methylation occurred in individual plants of all three triploid hybrids, but in general methylation changes occurred at lower frequencies than genetic changes; (iii alteration in DNA methylation occurred to a greater extent in genomic loci flanking potentially active TEs than in randomly sampled loci; (iv transcriptional activation of several TEs commonly occurred in all three hybrids but transpositional events were detected in a genetic context-dependent manner.Artificially constructed inter-specific hybrids of remotely related species with divergent genomes in genus Oryza are chromosomally stable but show immediate and highly stochastic genetic and epigenetic instabilities at the molecular level. These novel hybrids might

  12. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA

    Energy Technology Data Exchange (ETDEWEB)

    Slamborova, Irena [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Zajicova, Veronika, E-mail: veronika.zajicova@tul.cz [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Karpiskova, Jana [Institute of Novel Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 2, 461 17 Liberec 1 (Czech Republic); Exnar, Petr; Stibor, Ivan [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic)

    2013-01-01

    Epidemics spread many types of pathogenic bacterial strains, especially strains of MRSA (Methicillin-resistant Staphylococcus aureus), which are being increasingly reported in many geographical areas [1]. This is becoming to be a serious global problem, particularly in hospitals. Not only are antibiotics proving to be increasingly ineffective but also the bacteria responsible for more than 70% of hospital-acquired bacterial infections are resistant to at least one of the drugs commonly used to treat them. In this study, hybrid coating A1 and nanocomposite hybrid coating A2 based on TMSPM (3-(trimethoxysilyl)propyl methacrylate, MMA (methyl methacrylate), TEOS (tetraethyl orthosilicate) and IPTI (titanium isopropoxide) containing silver and copper ions with or without nanoparticles of titanium dioxide were prepared by the sol-gel method. They were deposited on glass, poly(methyl methacrylate) and cotton using dip-coating or spin-coating, and then cured at 150 Degree-Sign C for 3 h or, in the case of poly(methyl methacrylate), at 100 Degree-Sign C for 4.5 h. The morphology and microstructure of these hybrid coatings were examined by SEM. The abrasion resistance was tested using a washability tester and found to depend heavily on the curing temperature. Seven types of bacterial strains were used to determine the profile of antibacterial activity, namely Escherichia coli, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus - MRSA (CCM 4223), MRSA-2 (CCM 7112), Acinetobacter baumanii, Pseudomonas aeruginosa, and Proteus vulgaris (according to ALE-G18, CSNI). All the samples were tested by irradiating with either a UV-A or a daylight fluorescent lamp. All types of hybrid coating A1 and nanocomposite hybrid coating A2 were found to possess an excellent antibacterial effect, including against the pathogenic bacterial strains of MRSA, which present a dangerous threat on a global scale.

  13. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA

    International Nuclear Information System (INIS)

    Šlamborová, Irena; Zajícová, Veronika; Karpíšková, Jana; Exnar, Petr; Stibor, Ivan

    2013-01-01

    Epidemics spread many types of pathogenic bacterial strains, especially strains of MRSA (Methicillin-resistant Staphylococcus aureus), which are being increasingly reported in many geographical areas [1]. This is becoming to be a serious global problem, particularly in hospitals. Not only are antibiotics proving to be increasingly ineffective but also the bacteria responsible for more than 70% of hospital-acquired bacterial infections are resistant to at least one of the drugs commonly used to treat them. In this study, hybrid coating A1 and nanocomposite hybrid coating A2 based on TMSPM (3-(trimethoxysilyl)propyl methacrylate, MMA (methyl methacrylate), TEOS (tetraethyl orthosilicate) and IPTI (titanium isopropoxide) containing silver and copper ions with or without nanoparticles of titanium dioxide were prepared by the sol–gel method. They were deposited on glass, poly(methyl methacrylate) and cotton using dip-coating or spin-coating, and then cured at 150 °C for 3 h or, in the case of poly(methyl methacrylate), at 100 °C for 4.5 h. The morphology and microstructure of these hybrid coatings were examined by SEM. The abrasion resistance was tested using a washability tester and found to depend heavily on the curing temperature. Seven types of bacterial strains were used to determine the profile of antibacterial activity, namely Escherichia coli, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus — MRSA (CCM 4223), MRSA-2 (CCM 7112), Acinetobacter baumanii, Pseudomonas aeruginosa, and Proteus vulgaris (according to ALE-G18, CSNI). All the samples were tested by irradiating with either a UV-A or a daylight fluorescent lamp. All types of hybrid coating A1 and nanocomposite hybrid coating A2 were found to possess an excellent antibacterial effect, including against the pathogenic bacterial strains of MRSA, which present a dangerous threat on a global scale.

  14. Wheat hybridization and polyploidization results in deregulation of small RNAs.

    Science.gov (United States)

    Kenan-Eichler, Michal; Leshkowitz, Dena; Tal, Lior; Noor, Elad; Melamed-Bessudo, Cathy; Feldman, Moshe; Levy, Avraham A

    2011-06-01

    Speciation via interspecific or intergeneric hybridization and polyploidization triggers genomic responses involving genetic and epigenetic alterations. Such modifications may be induced by small RNAs, which affect key cellular processes, including gene expression, chromatin structure, cytosine methylation and transposable element (TE) activity. To date, the role of small RNAs in the context of wide hybridization and polyploidization has received little attention. In this work, we performed high-throughput sequencing of small RNAs of parental, intergeneric hybrid, and allopolyploid plants that mimic the genomic changes occurring during bread wheat speciation. We found that the percentage of small RNAs corresponding to miRNAs increased with ploidy level, while the percentage of siRNAs corresponding to TEs decreased. The abundance of most miRNA species was similar to midparent values in the hybrid, with some deviations, as seen in overrepresentation of miR168, in the allopolyploid. In contrast, the number of siRNAs corresponding to TEs strongly decreased upon allopolyploidization, but not upon hybridization. The reduction in corresponding siRNAs, together with decreased CpG methylation, as shown here for the Veju element, represent hallmarks of TE activation. TE-siRNA downregulation in the allopolyploid may contribute to genome destabilization at the initial stages of speciation. This phenomenon is reminiscent of hybrid dysgenesis in Drosophila.

  15. Genetic diversity analysis of Jatropha curcas L. (Euphorbiaceae) based on methylation-sensitive amplification polymorphism.

    Science.gov (United States)

    Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V

    2012-04-13

    Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.

  16. Refined carbohydrate enhancement of aberrant crypt foci (ACF) in rat colon induced by the food-borne carcinogen 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ)

    DEFF Research Database (Denmark)

    Kristiansen, E.; Meyer, Otto A.; Thorup, I.

    1996-01-01

    ,2-dimethylhydrazine dihydrochloride (DMH) and azoxymethane (AOM), the use of a diet-related colon cancer initiator, such as the heterocyclic amine 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) formed during meat cooking, would probably give a more relevant insight into diet-related colon carcinogenesis......The aberrant crypt foci (ACF) bioassay has been used extensively to study the early effects of different dietary components on the colonic mucosa of laboratory rodents. ACF are proposed to represent preneoplastic lesions of colon cancer. Compared to the normally used initiators 1....... In the present study it is shown that a feeding regimen with continuous low IQ doses (0.03% in the diet) throughout a study period of 10 weeks has a significant effect on the induction of ACF in the colon of male F344 rats. In addition, the study illustrates that the incidence of the IQ-induced ACF can...

  17. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    Directory of Open Access Journals (Sweden)

    Hong Long

    Full Text Available The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins.

  18. Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation.

    Directory of Open Access Journals (Sweden)

    Christopher D Wiley

    Full Text Available Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW, and P. polionotus (PO, produce parent-of-origin effects on growth and development. BW females mated to PO males (bwxpo produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (POxBW produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include POxBW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the POxBW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences.Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal POxBW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1 reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids.These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variation exists in recently diverged species suggests a role in reproductive isolation, and that this variation is likely to be adaptive.

  19. The Application of Restriction Landmark Genome Scanning Method for Surveillance of Non-Mendelian Inheritance in F1 Hybrids

    Directory of Open Access Journals (Sweden)

    Tomoko Takamiya

    2009-01-01

    Full Text Available We analyzed inheritance of DNA methylation in reciprocal F1 hybrids (subsp. japonica cv. Nipponbare × subsp. indica cv. Kasalath of rice (Oryza sativa L. using restriction landmark genome scanning (RLGS, and detected differing RLGS spots between the parents and reciprocal F1 hybrids. MspI/HpaII restriction sites in the DNA from these different spots were suspected to be heterozygously methylated in the Nipponbare parent. These spots segregated in F1 plants, but did not segregate in selfed progeny of Nipponbare, showing non-Mendelian inheritance of the methylation status. As a result of RT-PCR and sequencing, a specific allele of the gene nearest to the methylated sites was expressed in reciprocal F1 plants, showing evidence of biased allelic expression. These results show the applicability of RLGS for scanning of non-Mendelian inheritance of DNA methylation and biased allelic expression.

  20. Chemical and Molecular Biological Aspects of Alkylhydrazine-Induced Carcinogenesis in Human Cells in Vitro. Revised

    Science.gov (United States)

    1984-04-01

    DMH) and the metabolite methylazoxymethanol acetate ( MAMA ) have been shown to induce cancer in vivo in several species of rodents producing a variety of...The Pharmaceutical and Toxicological Research Institute (PTRI) I Co-Director, Developmental Chemotherapeutics, OSU Comprehensive Cancer Center...NNL[Methyl-l 4 C] I -dimethylhydrazine) of high specific activity Chapter III - Synthesis of (14 C] -labeled methylazoxymethanol 13 acetate ( MAMA ) of

  1. Thermal, Mechanical and UV-Shielding Properties of Poly(Methyl Methacrylate/Cerium Dioxide Hybrid Systems Obtained by Melt Compounding

    Directory of Open Access Journals (Sweden)

    María A. Reyes-Acosta

    2015-09-01

    Full Text Available Thick and homogeneous hybrid film systems based on poly(methyl methacrylate (PMMA and CeO2 nanoparticles were synthesized using the melt compounding method to improve thermal stability, mechanical and UV-shielding properties, as well as to propose them for use in the multifunctional materials industry. The effect of the inorganic phase on these properties was assessed by using two different weight percentages of synthesized CeO2 nanoparticles (0.5 and 1.0 wt % with the sol–gel method and thermal treatment at different temperatures (120, 235, 400, 600 and 800 °C. Thereafter, the nanoceria powders were added to the polymer matrix by single screw extrusion. The absorption in the UV region was increased with the crystallite size of the CeO2 nanoparticles and the PMMA/CeO2 weight ratio. Due to the crystallinity of CeO2 nanoparticles, the thermal, mechanical and UV-shielding properties of the PMMA matrix were improved. The presence of CeO2 nanostructures exerts an influence on the mobility of PMMA chain segments, leading to a different glass transition temperature.

  2. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  3. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  4. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina

    2017-01-01

    specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection...

  5. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    Science.gov (United States)

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  6. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  7. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    Science.gov (United States)

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  8. Preparation and Characterization of InP/Poly(methyl methacrylate) Nanocomposite Films.

    Science.gov (United States)

    Kwon, Younghoon; Kim, Jongsung

    2017-04-01

    Quantum dots (QDs) are nanocrystalline semiconductors with many unusual optical properties. They exhibit very high fluorescence intensities and possess exceptional stability against photo-bleaching. In this study, we report the preparation of InP QDs-poly(methyl methacrylate) (PMMA) hybrids by fabricating QDs via a thermal decomposition reaction, followed by radical polymerization. The InP QDs were synthesized using indium(III) chloride and tris(dimethylamino)phosphine. Flexible composite films were obtained by radical polymerization using methyl methacrylate (MMA) as the monomer and 2,2′-azobis(2-methylpropionitrile) (AIBN) as a radical initiator. The PL intensity of the QDs was lowered upon composite formation with PMMA. However, the composites exhibited higher thermal stability than pure PMMA.

  9. Understanding the effect of locked nucleic acid and 2'-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein.

    Science.gov (United States)

    Kumar, Santosh; Mapa, Koyeli; Maiti, Souvik

    2014-03-18

    miRNAs are some of the key epigenetic regulators of gene expression. They act through hybridization with their target mRNA and modulate the level of respective proteins via different mechanisms. Various cancer conditions are known to be associated with up- and downregulation of the oncogenic and tumor suppressor miRNAs, respectively. The levels of aberrantly expressed oncogenic miRNAs can be downregulated in different ways. Similarly, restoration of tumor suppressor miRNAs to their normal levels can be achieved using miRNA mimics. However, the use of miRNA mimics is limited by their reduced biostability and function. We have studied the hybridization thermodynamics of the miRNA 26a (11-mer, including the seed sequence) guide strand with the mRNA (11-mer) target strand in the absence and presence of AfPiwi protein. We have also inserted locked nucleic acids (LNAs) and 2'-O-methyl-modified nucleotides into the guide strand, in a walk-through manner, to assess their effect on the binding efficiency between guide and target RNA. Insertion of LNA and 2'-O-methyl-modified nucleotides into the guide strand helped to strengthen the binding affinity irrespective of the position of insertion. However, in the presence of AfPiwi protein, these modifications reduced the binding affinity to different extents depending on the position of insertion. Insertion of a modification leads to an increase in the enthalpic contribution with an increased unfavorable entropic contribution, which negatively compensates for the higher favorable enthalpy.

  10. Analysis of mutation/rearrangement frequencies and methylation patterns at a given DNA locus using restriction fragment length polymorphism.

    Science.gov (United States)

    Boyko, Alex; Kovalchuk, Igor

    2010-01-01

    Restriction fragment length polymorphism (RFLP) is a difference in DNA sequences of organisms belonging to the same species. RFLPs are typically detected as DNA fragments of different lengths after digestion with various restriction endonucleases. The comparison of RFLPs allows investigators to analyze the frequency of occurrence of mutations, such as point mutations, deletions, insertions, and gross chromosomal rearrangements, in the progeny of stressed plants. The assay involves restriction enzyme digestion of DNA followed by hybridization of digested DNA using a radioactively or enzymatically labeled probe. Since DNA can be digested with methylation sensitive enzymes, the assay can also be used to analyze a methylation pattern of a particular locus. Here, we describe RFLP analysis using methylation-insensitive and methylation-sensitive enzymes.

  11. Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials for super-capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mallouki, M.; Tran-Van, F.; Sarrazin, C.; Chevrot, C. [Cergy-Pontoise Univ., Lab. de Physicochimie des Polymeres et des Interfaces (LPPI), EA 2528 95 (France); Fauvarque, J.F. [CNAM, Lab. d' Electrochimie Industrielle, 75 - Paris (France); Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, UMR 5085, 31 - Toulouse (France); De, A. [Saha Institute of Nuclear Physics, Calcutta (India)

    2004-07-01

    Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials chemically synthesized from colloid particles of iron oxide in aqueous solution have been processed to realize electrode materials for super-capacitor applications. The performances have been evaluated by cyclic voltammetry and galvano-static techniques in a three-electrode cell. The capacitance of Fe{sub 2}O{sub 3}-PPy hybrid nano-composite doped with para-toluene-sulfonate reaches 47 mAh/g in PC/NEt{sub 4}BF{sub 4} with a good stability during cycling (loss of 3% after 1000 cycles). Transmission Electronic Microscopy indicates a porous nano-structure with spherical particles in a range of 400-500 nm which ensures a good accessibility of the electrolyte in the bulk of the electro-active hybrid material. Preliminary studies with room temperature ionic liquid show promising results since the specific capacitance reaches 427 F/g in 1- ethyl-3-methyl-imidazolium bis((tri-fluoro-methyl)sulfonyl)amide (EMITFSI). (authors)

  12. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases

    Science.gov (United States)

    Maschietto, Mariana; Bastos, Laura Caroline; Tahira, Ana Carolina; Bastos, Elen Pereira; Euclydes, Veronica Luiza Vale; Brentani, Alexandra; Fink, Günther; de Baumont, Angelica; Felipe-Silva, Aloísio; Francisco, Rossana Pulcineli Vieira; Gouveia, Gisele; Grisi, Sandra Josefina Ferraz Ellero; Escobar, Ana Maria Ulhoa; Moreira-Filho, Carlos Alberto; Polanczyk, Guilherme Vanoni; Miguel, Euripedes Constantino; Brentani, Helena

    2017-03-01

    Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes.

  13. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats.

    Science.gov (United States)

    McIntosh, G H; Royle, P J; Playne, M J

    1999-01-01

    Probiotic bacteria strains were examined for their influence on 1,2-dimethylhydrazine (DMH)-induced intestinal tumors in 100 male Sprague-Dawley rats. Lactobacillus acidophilus (Delvo Pro LA-1), Lactobacillus rhamnosus (GG), Bifidobacterium animalis (CSCC1941), and Streptococcus thermophilus (DD145) strains were examined for their influence when added as freeze-dried bacteria to an experimental diet based on a high-fat semipurified (AIN-93) rodent diet. Four bacterial treatments were compared: L. acidophilus, L. acidophilus + B. animalis, L. rhamnosus, and S. thermophilus, the bacteria being added daily at 1% freeze-dried weight (10(10) colony-forming units/g) to the diet. Trends were observed in the incidence of rats with large intestinal tumors for three treatments: 25% lower than control for L. acidophilus, 20% lower for L. acidophilus + B. animalis and L. rhamnosus treatments, and 10% lower for S. thermophilus. Large intestinal tumor burden was significantly lower for treated rats with L. acidophilus than for the control group (10 and 3 tumors/treatment group, respectively, p = 0.05). Large intestinal tumor mass index was also lower for the L. acidophilus treatment than for control (1.70 and 0.10, respectively, p L. acidophilus, no adenocarcinomas were present in the colons. Pulsed-field gel electrophoresis of bacterial chromosomal DNA fragments was used to differentiate introduced (exogenous) bacterial strains from indigenous bacteria of the same genera present in the feces. Survival during gut passage and displacement of indigenous lactobacilli occurred with introduced L. acidophilus and L. rhamnosus GG during the probiotic treatment period. However, introduced strains of B. animalis and S. thermophilus were not able to be isolated from feces. It is concluded that this strain of L. acidophilus supplied as freeze-dried bacteria in the diet was protective, as seen by a small but significant inhibition of tumors within the rat colon.

  14. Identification of Differentially Methylated Sites with Weak Methylation Effects

    Directory of Open Access Journals (Sweden)

    Hong Tran

    2018-02-01

    Full Text Available Deoxyribonucleic acid (DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same

  15. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    Science.gov (United States)

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  16. DNA methylation of miRNA coding sequences putatively associated with childhood obesity.

    Science.gov (United States)

    Mansego, M L; Garcia-Lacarte, M; Milagro, F I; Marti, A; Martinez, J A

    2017-02-01

    Epigenetic mechanisms may be involved in obesity onset and its consequences. The aim of the present study was to evaluate whether DNA methylation status in microRNA (miRNA) coding regions is associated with childhood obesity. DNA isolated from white blood cells of 24 children (identification sample: 12 obese and 12 non-obese) from the Grupo Navarro de Obesidad Infantil study was hybridized in a 450 K methylation microarray. Several CpGs whose DNA methylation levels were statistically different between obese and non-obese were validated by MassArray® in 95 children (validation sample) from the same study. Microarray analysis identified 16 differentially methylated CpGs between both groups (6 hypermethylated and 10 hypomethylated). DNA methylation levels in miR-1203, miR-412 and miR-216A coding regions significantly correlated with body mass index standard deviation score (BMI-SDS) and explained up to 40% of the variation of BMI-SDS. The network analysis identified 19 well-defined obesity-relevant biological pathways from the KEGG database. MassArray® validation identified three regions located in or near miR-1203, miR-412 and miR-216A coding regions differentially methylated between obese and non-obese children. The current work identified three CpG sites located in coding regions of three miRNAs (miR-1203, miR-412 and miR-216A) that were differentially methylated between obese and non-obese children, suggesting a role of miRNA epigenetic regulation in childhood obesity. © 2016 World Obesity Federation.

  17. On-Chip Evaluation of DNA Methylation with Electrochemical Combined Bisulfite Restriction Analysis Utilizing a Carbon Film Containing a Nanocrystalline Structure.

    Science.gov (United States)

    Kurita, Ryoji; Yanagisawa, Hiroyuki; Kamata, Tomoyuki; Kato, Dai; Niwa, Osamu

    2017-06-06

    This paper reports an on-chip electrochemical assessment of the DNA methylation status in genomic DNA on a conductive nanocarbon film electrode realized with combined bisulfite restriction analysis (COBRA). The film electrode consists of sp 2 and sp 3 hybrid bonds and is fabricated with an unbalanced magnetron (UBM) sputtering method. First, we studied the effect of the sp 2 /sp 3 ratio of the UBM nanocarbon film electrode with p-aminophenol, which is a major electro-active product of the labeling enzyme from p-aminophenol phosphate. The signal current for p-aminophenol increases as the sp 2 content in the UBM nanocarbon film electrode increases because of the π-π interaction between aromatic p-aminophenol and the graphene-like sp 2 structure. Furthermore, the capacitative current at the UBM nanocarbon film electrode was successfully reduced by about 1 order of magnitude thanks to the angstrom-level surface flatness. Therefore, a high signal-to-noise ratio was achieved compared with that of conventional electrodes. Then, after performing an ELISA-like hybridization assay with a restriction enzyme, we undertook an electrochemical evaluation of the cytosine methylation status in DNA by measuring the oxidation current derived from p-aminophenol. When the target cytosine in the analyte sequence is methylated (unmethylated), the restriction enzyme of HpyCH4IV is able (unable) to cleave the sequence, that is, the detection probe cannot (can) hybridize. We succeeded in estimating the methylation ratio at a site-specific CpG site from the peak current of a cyclic voltammogram obtained from a PCR product solution ranging from 0.01 to 1 nM.

  18. Development and Characterization of Somatic Hybrids of Ulva reticulata Forsskål (× Monostroma oxyspermum (Kutz.Doty

    Directory of Open Access Journals (Sweden)

    Vishal eGupta

    2015-01-01

    Full Text Available Ulvophycean species with diverse trait characteristics provide an opportunity to create novel allelic recombinant variants. The present study reports the development of seaweed variants with improved agronomic traits through protoplast fusion between Monostroma oxyspermum (Kutz. Doty and Ulva reticulata Forsskål. A total of 12 putative hybrids were screened based on the variations in morphology and total DNA content over the fusion partners. DNA-fingerprinting by inter simple sequence repeat (ISSR and amplified fragment length polymorphism (AFLP analysis confirmed genomic introgression in the hybrids. The DNA fingerprint revealed sharing of parental alleles in regenerated hybrids and a few alleles that were unique to hybrids. The epigenetic variations in hybrids estimated in terms of DNA methylation polymorphism also revealed sharing of methylation loci with both the fusion partners. The functional trait analysis for growth showed a hybrid with heterotic trait (DGR%= 36.7±1.55% over the fusion partners U. reticulata (33.2±2.6% and M. oxyspermum (17.8±1.77%, while others were superior to the mid-parental value (25.2±2.2% (p<0.05. The fatty acid (FA analysis of hybrids showed notable variations over fusion partners. Most hybrids showed increased polyunsaturated FAs (PUFAs compared to saturated FAs (SFAs and mainly includes the nutritionally important linoleic acid, α-linolenic acid, oleic acid, stearidonic acid, and docosahexaenoic acid. The other differences observed include superior cellulose content and antioxidative potential in hybrids over fusion partners. The hybrid varieties with superior traits developed in this study unequivocally demonstrate the significance of protoplast fusion technique in developing improved varients of macroalgae.

  19. Development and Characterization of Somatic Hybrids of Ulva reticulata Forsskål (×) Monostroma oxyspermum (Kutz.)Doty

    Science.gov (United States)

    Gupta, Vishal; Kumari, Puja; Reddy, CRK

    2015-01-01

    Ulvophycean species with diverse trait characteristics provide an opportunity to create novel allelic recombinant variants. The present study reports the development of seaweed variants with improved agronomic traits through protoplast fusion between Monostroma oxyspermum (Kutz.) Doty and Ulva reticulata Forsskål. A total of 12 putative hybrids were screened based on the variations in morphology and total DNA content over the fusion partners. DNA-fingerprinting by inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) analysis confirmed genomic introgression in the hybrids. The DNA fingerprint revealed sharing of parental alleles in regenerated hybrids and a few alleles that were unique to hybrids. The epigenetic variations in hybrids estimated in terms of DNA methylation polymorphism also revealed sharing of methylation loci with both the fusion partners. The functional trait analysis for growth showed a hybrid with heterotic trait (DGR% = 36.7 ± 1.55%) over the fusion partners U. reticulata (33.2 ± 2.6%) and M. oxyspermum (17.8 ± 1.77%), while others were superior to the mid-parental value (25.2 ± 2.2%) (p < 0.05). The fatty acid (FA) analysis of hybrids showed notable variations over fusion partners. Most hybrids showed increased polyunsaturated FAs (PUFAs) compared to saturated FAs (SFAs) and mainly includes the nutritionally important linoleic acid, α-linolenic acid, oleic acid, stearidonic acid, and docosahexaenoic acid. The other differences observed include superior cellulose content and antioxidative potential in hybrids over fusion partners. The hybrid varieties with superior traits developed in this study unequivocally demonstrate the significance of protoplast fusion technique in developing improved varients of macroalgae. PMID:25688248

  20. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus

    Directory of Open Access Journals (Sweden)

    Zesemdorj Otgon-Uul

    2016-08-01

    Full Text Available Objective: The dorsomedial hypothalamus (DMH has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY, cocaine- and amphetamine-regulated transcript (CART, cholecystokinin (CCK, leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. Methods: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. Results: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN, where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. Conclusion: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN. Keywords: Dorsomedial hypothalamus, GABAergic neuron, Feeding, Leptin, Glucose, Optogenetics

  1. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Our method uses a single-CpG-resolution, whole-genome methylation ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, ...... methylation is prevalent in embryonic stem cells andmaybe mediated.

  2. Novel kaolin/polysiloxane based organic-inorganic hybrid materials: Sol-gel synthesis, characterization and photocatalytic properties

    Science.gov (United States)

    dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro

    2018-04-01

    New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).

  3. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  4. Identification of endometrial cancer methylation features using combined methylation analysis methods.

    Directory of Open Access Journals (Sweden)

    Michael P Trimarchi

    Full Text Available DNA methylation is a stable epigenetic mark that is frequently altered in tumors. DNA methylation features are attractive biomarkers for disease states given the stability of DNA methylation in living cells and in biologic specimens typically available for analysis. Widespread accumulation of methylation in regulatory elements in some cancers (specifically the CpG island methylator phenotype, CIMP can play an important role in tumorigenesis. High resolution assessment of CIMP for the entire genome, however, remains cost prohibitive and requires quantities of DNA not available for many tissue samples of interest. Genome-wide scans of methylation have been undertaken for large numbers of tumors, and higher resolution analyses for a limited number of cancer specimens. Methods for analyzing such large datasets and integrating findings from different studies continue to evolve. An approach for comparison of findings from a genome-wide assessment of the methylated component of tumor DNA and more widely applied methylation scans was developed.Methylomes for 76 primary endometrial cancer and 12 normal endometrial samples were generated using methylated fragment capture and second generation sequencing, MethylCap-seq. Publically available Infinium HumanMethylation 450 data from The Cancer Genome Atlas (TCGA were compared to MethylCap-seq data.Analysis of methylation in promoter CpG islands (CGIs identified a subset of tumors with a methylator phenotype. We used a two-stage approach to develop a 13-region methylation signature associated with a "hypermethylator state." High level methylation for the 13-region methylation signatures was associated with mismatch repair deficiency, high mutation rate, and low somatic copy number alteration in the TCGA test set. In addition, the signature devised showed good agreement with previously described methylation clusters devised by TCGA.We identified a methylation signature for a "hypermethylator phenotype" in

  5. Methylation of food commodities during fumigation with methyl bromide

    International Nuclear Information System (INIS)

    Starratt, A.N.; Bond, E.J.

    1990-01-01

    Sites of methylation in several commodities (wheat, oatmeal, peanuts, almonds, apples, oranges, maize, alfalfa and potatoes) during fumigation with 14 C-methyl bromide were studied. Differences were observed in levels of the major volatiles: methanol, dimethyl sulphide and methyl mercaptan, products of O- and S-methylation, resulting from treatment of the fumigated materials with 1N sodium hydroxide. In studies of maize and wheat, histidine was the amino acid which underwent the highest level of N-methylation. (author). 24 refs, 3 tabs

  6. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  7. Dietary fish oil modulates the effect of dimethylhydrazine-induced colon cancer in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rasmy, G. E.; Khalil, W. K. B.; Moharib, S. A.; Kawab, A. A.; Jwanny, E. W.

    2011-07-01

    This study was conducted to examine the efficacy of fish oil supplementation in male wistar rat colon carcinogenesis. In order to induce colon cancer, the rats were given a weekly subcutaneous injection of 1,2-Dimethylhydrazine (DMH) at a dose of 20 mg/kg b.w. for five weeks. Afterwards, some of the rats ingested fish oil for either 4 weeks (DMH-FO4 group), or 17 weeks (DMH-FO17 group). The remaining rats continued without any supplementation for the same 4 weeks (DMH4 group), or 17 weeks (DMH17 group). Another two groups of rats did not receive the DMH and were given fish oil (FO17 group) or a normal diet only and considered as the control group (CN group). At the end of the experiment, the rats were sacrificed; and were subsequently subjected to biochemical and molecular biological analyses as well as histopathological examinations. The results showed increased levels of lactate dehydrogenase (LDH), malondialdehyde (MDA) and alkaline phosphatase (ALP) activities in the DMH rats compared to the control. The liver and colonic changes that were induced by DMH were significantly improved through fish oil supplementation in the DMH-FO17 group. The molecular analysis revealed that DMH treatment induced the expression alterations of genes p53, p27 and p21 and increased DNA band patterns related to cancer, while both FO17 and DMH-FO17 groups showed much better results. A histopathological examination of the DMH17 group revealed colon adenocarcinoma and several lesions in rat liver tissues. An improvement in the histopathological picture was seen in the livers and colons of groups DMHFO17. In conclusion, the present results demonstrated the anti-carciongenic effect of herring fish oil against DMH induced colon carcinogenesis in rats. The inhibitory effect of FO was due to the modulation of elevated biochemical parameters, DNA damage, gene expression and histopathological lesions caused by DMH. (Author) 70 refs.

  8. Automated Extraction Of Associations Between Methylated Genes and Diseases From Biomedical Literature

    KAUST Repository

    Bin Res, Arwa A.

    2012-12-01

    Associations between methylated genes and diseases have been investigated in several studies, and it is critical to have such information available for better understanding of diseases and clinical decisions. However, such information is scattered in a large number of electronic publications and it is difficult to manually search for it. Therefore, the goal of the project is to develop a machine learning model that can efficiently extract such information. Twelve machine learning algorithms were applied and compared in application to this problem based on three approaches that involve: document-term frequency matrices, position weight matrices, and a hybrid approach that uses the combination of the previous two. The best results we obtained by the hybrid approach with a random forest model that, in a 10-fold cross-validation, achieved F-score and accuracy of nearly 85% and 84%, respectively. On a completely separate testing set, F-score and accuracy of 89% and 88%, respectively, were obtained. Based on this model, we developed a tool that automates extraction of associations between methylated genes and diseases from electronic text. Our study contributed an efficient method for extracting specific types of associations from free text and the methodology developed here can be extended to other similar association extraction problems.

  9. Silver Nanoparticles Influence on Photocatalytic Activity of Hybrid Materials Based on TiO2 P25

    Directory of Open Access Journals (Sweden)

    Tomkouani Kodom

    2015-01-01

    Full Text Available The aim of the present study consists in the obtaining of a hybrid material film, obtained using TiO2 P25 and silver nanoparticles (AgNPs. The film manufacturing process involved realization of physical mixtures of TiO2 P25 and AgNPs dispersions. The size distribution of the AgNPs proved to be a key factor determining the photodegradation activity of the materials measured using methyl orange. The best result was 33% degradation of methyl orange (MO after 150 min. The second approach was the generation of AgNPs on the surface of TiO2 P25. The obtained hybrid material presents photocatalytic activity of 45% MO degradation after 150 min. The developed materials were characterized by UV-VIS, SEM, and DLS analyses.

  10. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  11. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  12. Microwave oven fabricated hybrid memristor devices for non-volatile memory storage

    International Nuclear Information System (INIS)

    Verrelli, E; Gray, R J; O’Neill, M; Kemp, N T; Kelly, S M

    2014-01-01

    Novel hybrid non-volatile memories made using an ultra-fast microwave heating method are reported for the first time. The devices, consisting of aligned ZnO nanorods embedded in poly (methyl methacrylate), require no forming step and exhibit reliable and reproducible bipolar resistive switching at low voltages and with low power usage. We attribute these properties to a combination of the high aspect ratio of the nanorods and the polymeric hybrid structure of the device. The extremely easy, fast and low-cost solution based method of fabrication makes possible the simple and quick production of cheap memory cells. (paper)

  13. Dietary fish oil modulates the effect of dimethylhydrazine- induced colon cancer in rats

    Directory of Open Access Journals (Sweden)

    Rasmy, G. E.

    2011-09-01

    Full Text Available This study was conducted to examine the efficacy of fish oil supplementation in male wistar rat colon carcinogenesis. In order to induce colon cancer, the rats were given a weekly subcutaneous injection of 1,2-Dimethylhydrazine (DMH at a dose of 20 mg/kg b.w. for five weeks. Afterwards, some of the rats ingested fish oil for either 4 weeks (DMH-FO4 group, or 17 weeks (DMH-FO17 group. The remaining rats continued without any supplementation for the same 4 weeks (DMH4 group, or 17 weeks (DMH17 group. Another two groups of rats did not receive the DMH and were given fish oil (FO17 group or a normal diet only and considered as the control group (CN group. At the end of the experiment, the rats were sacrificed; and were subsequently subjected to biochemical and molecular biological analyses as well as histopathological examinations. The results showed increased levels of lactate dehydrogenase (LDH, malondialdehyde (MDA and alkaline phoshatase (ALP activities in the DMH rats compared to the control. The liver and colonic changes that were induced by DMH were significantly improved through fish oil supplementation in the DMH-FO17 group. The molecular analysis revealed that DMH treatment induced the expression alterations of genes p53, p27 and p21 and increased DNA band patterns related to cancer, while both FO17 and DMH-FO17 groups showed much better results. A histopathological examination of the DMH17 group revealed colon adenocarcinoma and several lesions in rat liver tissues. An improvement in the histopathological picture was seen in the livers and colons of groups DMHFO17. In conclusion, the present results demonstrated the anti-carciongenic effect of herring fish oil against DMH induced colon carcinogenesis in rats. The inhibitory effect of FO was due to the modulation of elevated biochemical parameters, DNA damage, gene expression and histopathological lesions caused by DMH.

    Este estudio fue realizado para examinar la eficacia de la

  14. Systemic effects of chronically administered methyl prednisolonate and methyl 17-deoxyprednisolonate.

    Science.gov (United States)

    Olejniczak, E; Lee, H J

    1984-06-01

    The systemic activities of methyl prednisolonate and methyl 17-deoxyprednisolonate (1) were studied in rats. Methyl 17-deoxyprednisolonate produced significant changes in the amount of sodium ion (decreased) and potassium ion (increased) in urine; however, methyl prednisolonate had no effect on electrolyte balance. Both methyl prednisolonate and methyl 17-deoxyprednisolonate had no effect on liver glycogen content, plasma corticosterone level and relative adrenal weight. In contrast, the parent compound prednisolone caused a significant decrease in liver glycogen content, plasma corticosterone level and relative adrenal weight.

  15. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  16. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  17. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization

    International Nuclear Information System (INIS)

    Passos, Dario O.; Quaresma, Alexandre J.C.; Kobarg, Joerg

    2006-01-01

    Protein arginine methylation is an irreversible post-translational protein modification catalyzed by a family of at least nine different enzymes entitled PRMTs (protein arginine methyl transferases). Although PRMT1 is responsible for 85% of the protein methylation in human cells, its substrate spectrum has not yet been fully characterized nor are the functional consequences of methylation for the protein substrates well understood. Therefore, we set out to employ the yeast two-hybrid system in order to identify new substrate proteins for human PRMT1. We were able to identify nine different PRMT1 interacting proteins involved in different aspects of RNA metabolism, five of which had been previously described either as substrates for PRMT1 or as functionally associated with PRMT1. Among the four new identified possible protein substrates was hnRNPQ3 (NSAP1), a protein whose function has been implicated in diverse steps of mRNA maturation, including splicing, editing, and degradation. By in vitro methylation assays we were able to show that hnRNPQ3 is a substrate for PRMT1 and that its C-terminal RGG box domain is the sole target for methylation. By further studies with the inhibitor of methylation Adox we provide evidence that hnRNPQ1-3 are methylated in vivo. Finally, we demonstrate by immunofluorescence analysis of HeLa cells that the methylation of hnRNPQ is important for its nuclear localization, since Adox treatment causes its re-distribution from the nucleus to the cytoplasm

  18. DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

    Directory of Open Access Journals (Sweden)

    Jochen Gohlke

    Full Text Available Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes

  19. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    International Nuclear Information System (INIS)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X.

    2010-01-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  20. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X., E-mail: qdchen@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, No. 5, Yiheyuan Load, Haidian District Beijing 100871 (China)

    2010-07-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  1. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement.

    Science.gov (United States)

    Wang, Gui-Xiang; Lv, Jing; Zhang, Jie; Han, Shuo; Zong, Mei; Guo, Ning; Zeng, Xing-Ying; Zhang, Yue-Yun; Wang, You-Ping; Liu, Fan

    2016-01-01

    Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  2. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  3. Third-order nonlinear optical properties of the poly(methyl methacrylate)-phenothiazinium dye hybrid thin films

    International Nuclear Information System (INIS)

    Sun, Ru; Lu, Yue-Ting; Yan, Bao-Long; Lu, Jian-Mei; Wu, Xing-Zhi; Song, Ying-Lin; Ge, Jian-Feng

    2014-01-01

    The third-order nonlinear optical properties of poly(methyl methacrylate) films doped with charge flowable 3,7-di(piperidinyl)phenothiazin-5-ium chloride, which tested by Z-scan method with nanosecond laser beam at 532 nm, are reported. Large third-order nonlinear optical susceptibilities (up to 10 −7 esu) and high second hyperpolarizabilities (up to 10 −27 esu) are found. The third-order nonlinear absorptions change from reverse saturated absorptions to saturated absorptions with different percentage of the phenothiazinium dye in the poly(methyl methacrylate) films, which can be explained by the accumulation phenomenon of the phenothiazinium. The results suggest that the phenothiazinium salt is a promising material for third order non-linear applications. - Highlights: • Phenothiazinium containing optical films • Strong third-order nonlinear optical (NLO) absorption • Large third-order NLO susceptibilities

  4. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors

    International Nuclear Information System (INIS)

    Amatruda, James F; Frazier, A Lindsay; Poynter, Jenny N; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh

    2013-01-01

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy

  5. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  6. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2010-11-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  7. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    International Nuclear Information System (INIS)

    Varghese, Jini; Varghese, K.T.

    2015-01-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr  > GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min"−"1 corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  8. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Jini, E-mail: jini.nano@gmail.com; Varghese, K.T., E-mail: ktvscs@gmail.com

    2015-11-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr <<< GCZ >> GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min{sup −1} corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  9. Physical localization and DNA methylation of 45S rRNA gene loci in Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Zhiyun Gong

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays of repeat units, and not all copies are transcribed during mitosis. DNA methylation is considered to be an epigenetic marker for rDNA activation. Here, we established a clear and accurate karyogram for Jatropha curcas L. The chromosomal formula was found to be 2n=2x=22=12m+10 sm. We found that the 45S rDNA loci were located at the termini of chromosomes 7 and 9 in J. curcas. The distribution of 45S rDNA has no significant difference in J. curcas from different sources. Based on the hybridization signal patterns, there were two forms of rDNA - dispersed and condensed. The dispersed type of signals appeared during interphase and prophase, while the condensed types appeared during different stages of mitosis. DNA methylation analysis showed that when 45S rDNA stronger signals were dispersed and connected to the nucleolus, DNA methylation levels were lower at interphase and prophase. However, when the 45S rDNA loci were condensed, especially during metaphase, they showed different forms of DNA methylation.

  10. Physical Localization and DNA Methylation of 45S rRNA Gene Loci in Jatropha curcas L.

    Science.gov (United States)

    Gong, Zhiyun; Xue, Chao; Zhang, Mingliang; Guo, Rui; Zhou, Yong; Shi, Guoxin

    2013-01-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays of repeat units, and not all copies are transcribed during mitosis. DNA methylation is considered to be an epigenetic marker for rDNA activation. Here, we established a clear and accurate karyogram for Jatropha curcas L. The chromosomal formula was found to be 2n = 2x = 22 = 12m+10sm. We found that the 45S rDNA loci were located at the termini of chromosomes 7 and 9 in J. curcas. The distribution of 45S rDNA has no significant difference in J. curcas from different sources. Based on the hybridization signal patterns, there were two forms of rDNA - dispersed and condensed. The dispersed type of signals appeared during interphase and prophase, while the condensed types appeared during different stages of mitosis. DNA methylation analysis showed that when 45S rDNA stronger signals were dispersed and connected to the nucleolus, DNA methylation levels were lower at interphase and prophase. However, when the 45S rDNA loci were condensed, especially during metaphase, they showed different forms of DNA methylation. PMID:24386362

  11. Derivation of hybrid ES cell lines from two different strains of mice

    Directory of Open Access Journals (Sweden)

    Ho-Tak Lau

    2016-03-01

    Full Text Available Parental origin-dependent expression of the imprinted genes is essential for mammalian development. Zfp57 maintains genomic imprinting in mouse embryos and ES cells. To examine the allelic expression patterns of the imprinted genes in ES cells, we obtained multiple hybrid ES clones that were directly derived from the blastocysts generated from the cross between mice on two different genetic backgrounds. The blastocyst-derived ES clones displayed largely intact DNA methylation imprint at the tested imprinted regions. These hybrid ES clones will be useful for future studies to examine the allelic expression of the imprinted genes in ES cells and their differentiated progeny.

  12. MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature

    Directory of Open Access Journals (Sweden)

    Fang Yu-Ching

    2011-12-01

    Full Text Available Abstract Background DNA methylation is regarded as a potential biomarker in the diagnosis and treatment of cancer. The relations between aberrant gene methylation and cancer development have been identified by a number of recent scientific studies. In a previous work, we used co-occurrences to mine those associations and compiled the MeInfoText 1.0 database. To reduce the amount of manual curation and improve the accuracy of relation extraction, we have now developed MeInfoText 2.0, which uses a machine learning-based approach to extract gene methylation-cancer relations. Description Two maximum entropy models are trained to predict if aberrant gene methylation is related to any type of cancer mentioned in the literature. After evaluation based on 10-fold cross-validation, the average precision/recall rates of the two models are 94.7/90.1 and 91.8/90% respectively. MeInfoText 2.0 provides the gene methylation profiles of different types of human cancer. The extracted relations with maximum probability, evidence sentences, and specific gene information are also retrievable. The database is available at http://bws.iis.sinica.edu.tw:8081/MeInfoText2/. Conclusion The previous version, MeInfoText, was developed by using association rules, whereas MeInfoText 2.0 is based on a new framework that combines machine learning, dictionary lookup and pattern matching for epigenetics information extraction. The results of experiments show that MeInfoText 2.0 outperforms existing tools in many respects. To the best of our knowledge, this is the first study that uses a hybrid approach to extract gene methylation-cancer relations. It is also the first attempt to develop a gene methylation and cancer relation corpus.

  13. Genetic and epigenetic alterations of Brassica nigra introgression lines from somatic hybridization: a resource for cauliflower improvement

    Directory of Open Access Journals (Sweden)

    Guixiang Wang

    2016-08-01

    Full Text Available Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower ‘Korso’ (Brassica oleracea var. botrytis, 2n = 18, CC genome and black mustard ‘G1/1’ (Brassica nigra, 2n = 16, BB genome. However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits and physiological (black rot/club root resistance characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from ‘Korso’. Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms analysis identified the presence of ‘G1/1’ DNA segments (average 7.5%. Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1% was significantly higher than presence of novel bands (1.4%, and the presence of fragments specific to B. carinata (BBCC 2n = 34 were common (average 15.5%. Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4% was more frequent than hypomethylation (4.8%. Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  14. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    International Nuclear Information System (INIS)

    Yang, Jiazhi; Yu, Junwei; Fan, Jun; Sun, Dongping; Tang, Weihua; Yang, Xuejie

    2011-01-01

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl 2 and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  15. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application.

    Science.gov (United States)

    Yang, Jiazhi; Yu, Junwei; Fan, Jun; Sun, Dongping; Tang, Weihua; Yang, Xuejie

    2011-05-15

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl(2) and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiazhi; Yu, Junwei [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Fan, Jun [School of Environment, Nanjing University, Nanjing 210093 (China); Sun, Dongping [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Tang, Weihua [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Xuejie [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-05-15

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl{sub 2} and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  17. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear overhauser enhancement spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, Vincenzo; Fawzi, Nicolas L.; Clore, G. Marius, E-mail: mariusc@mail.nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2011-11-15

    Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to {approx}1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the protein, nor experiments that transfer magnetization between methyl groups and the protein backbone, are required. PRE-derived assignments are refined by 4D methyl-methyl nuclear Overhauser enhancement data, eliminating ambiguities and errors that may arise due to the high sensitivity of PREs to the potential presence of sparsely-populated transient states.

  18. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  19. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    Science.gov (United States)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  20. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model.

    Science.gov (United States)

    Gamallat, Yaser; Meyiah, Abdo; Kuugbee, Eugene D; Hago, Ahmed Musa; Chiwala, Gift; Awadasseid, Annoor; Bamba, Djibril; Zhang, Xin; Shang, Xueqi; Luo, Fuwen; Xin, Yi

    2016-10-01

    Probiotics have been suggested as prophylactic measure in colon carcinogenesis. This study aimed at determining the potential prophylactic activity of Lactobacillus rhamnosus GG CGMCC 1.2134 (LGG) strain on colorectal carcinogenesis via measuring its effect on Nuclear factor kappa B (NFκB) inflammatory pathway and apoptosis. 64 Sprague Dawley rats were grouped into four as follows; Group 1 (Healthy control), Group 2 (LGG), Group 3 (cancer control Dimethyl hydrazine (DMH)) and Group 4 (LGG+DMH). LGG was administered orally to LGG and LGG+DMH groups. Colon carcinogenesis was chemically induced in LGG+DMH and DMH groups by weekly injection of 40mg/kg DMH. Animals were sacrificed after 25 weeks of experiment and tumor characteristics assessed. The change in expression of NFκB-p65, COX-2, TNFα, Bcl-2, Bax, iNOS, VEGFα, β-catenin, Casp3 and p53 were evaluated by western blotting and qRT-PCR. LGG treatment significantly reduced tumor incidence, multiplicity and volume in LGG+DMH treatment group compared to DMH cancer control group. Also, LGG treatment reduced the expression of β-catenin and the inflammatory proteins NFκB-p65, COX-2 and TNFα; the anti-apoptotic protein Bcl-2, but increased the expression of the pro-apoptotic proteins Bax, casp3 and p53 compared with DMH group. LGG have a potential protection effect against colon carcinogenesis; inducing apoptosis and ameliorating inflammation, and may hold a promise as bio-therapeutic dietary agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence

    Directory of Open Access Journals (Sweden)

    Mark Lucock

    2015-06-01

    Conclusion: A methylation diet influences methyl group synthesis in the regulation of blood homocysteine level, and is modulated by genetic interactions. Methylation-related nutrients also interact with key genes to modify risk of AP, a precursor of colorectal cancer. Independent of diet, two methylation-related genes (A2756G-MS and A66G-MSR were directly associated with AP occurrence.

  2. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    Science.gov (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  3. Trans-methylation reactions in plants: focus on the activated methyl cycle.

    Science.gov (United States)

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa

    2018-02-01

    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.

  4. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Science.gov (United States)

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  5. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, Hidden ... its response to environmental cues. .... have a great potential to become the most cost-effective ... hg18 reference genome (set to 0 if not present in retrieved reads). ..... DNA methylation patterns and epigenetic memory.

  6. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    Science.gov (United States)

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  7. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    Science.gov (United States)

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  8. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  9. Preparation of ZnO/CdS/BC Photocatalyst Hybrid Fiber and Research of Its Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Beibei Dai

    2015-01-01

    Full Text Available An environment-friendly biomaterial bacterial cellulose (BC is introduced to substitute general organic polymers to assist the preparation of ZnO/CdS/BC photocatalyst hybrid nanofiber through coprecipitation method under the low-temperature condition. The XRD, XPS, and SEM results show that high load of ZnO/CdS/BC ternary hybrid fiber can be produced. TGA curves scan shows that ZnO/CdS/BC hybrid fiber has better thermal properties than bacterial cellulose. The UV-Vis spectra of the ZnO/CdS/BC hybrid nanofiber (0, 10, 20, and 50 wt%, resp. show that photocatalytic activities of ZnO/CdS/BC are influenced by the added amount of CdS. The degradation curve of methyl shows that ZnO/CdS/BC nanohybrid fibers exhibit excellent photocatalytic efficiency.

  10. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  11. Dose response study of conjugated fatty acid derived from safflower oil on mammary and colon carcinogenesis pretreated with 7,12-dimethylbenz[a]anthracene (DMBA) and 1,2-dimethylhydrazine (DMH) in female Sprague-Dawley rats.

    Science.gov (United States)

    Cheng, Jing Lei; Futakuchi, Mitsuru; Ogawa, Kumiko; Iwata, Toshio; Kasai, Masaaki; Tokudome, Shinkan; Hirose, Masao; Shirai, Tomoyuki

    2003-07-10

    To clarify the chemopreventive effects of conjugated fatty acid derived from safflower oil (CFA-S), rich in conjugated linoleic acid (CLA), on mammary and colon carcinogenesis, 6 week old female Sprague-Dawley (SD) rats received diet containing 0.01, 0.05, 0.1, 1, or 2% CFA-S subsequent to five times subcutaneous injections of 1,2-dimethyl-hydrazine (DMH) at a dose of 40 mg/kg b.w. and a single 50 mg/kg b.w. intragastric application of 7,12-dimethylbenz[a]anthracene (DMBA) during the first 11 days. The experiment was terminated at week 36. Numbers of mammary tumors, colon aberrant crypt foci (ACF), and proliferative indices of mammary tumors, and colon epithelium were analyzed. The 1% dose was found to be optimal for suppression of carcinogenesis in both target organs, a good correlation being noted with between data for cell proliferation. These results suggest that a diet containing appropriate levels of CFA-S may be useful for prevention of mammary and colon cancer.

  12. Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation.

    Science.gov (United States)

    Rosellini, Daniele; Ferradini, Nicoletta; Allegrucci, Stefano; Capomaccio, Stefano; Zago, Elisa Debora; Leonetti, Paola; Balech, Bachir; Aversano, Riccardo; Carputo, Domenico; Reale, Lara; Veronesi, Fabio

    2016-04-07

    Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16) Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32) hybrids, the latter being the result of bilateral sexual polyploidization (BSP). These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture. Copyright © 2016 Rosellini et al.

  13. Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation

    Directory of Open Access Journals (Sweden)

    Daniele Rosellini

    2016-04-01

    Full Text Available Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16 Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32 hybrids, the latter being the result of bilateral sexual polyploidization (BSP. These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture.

  14. Rapid Genetic and Epigenetic Alterations under Intergeneric Genomic Shock in Newly Synthesized Chrysanthemum morifolium × Leucanthemum paludosum Hybrids (Asteraceae)

    Science.gov (United States)

    Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Fang, Weimin; Guan, Zhiyong; Teng, Nianjun; Liao, Yuan; Chen, Fadi

    2014-01-01

    The Asteraceae family is at the forefront of the evolution due to frequent hybridization. Hybridization is associated with the induction of widespread genetic and epigenetic changes and has played an important role in the evolution of many plant taxa. We attempted the intergeneric cross Chrysanthemum morifolium × Leucanthemum paludosum. To obtain the success in cross, we have to turn to ovule rescue. DNA profiling of the amphihaploid and amphidiploid was investigated using amplified fragment length polymorphism, sequence-related amplified polymorphism, start codon targeted polymorphism, and methylation-sensitive amplification polymorphism (MSAP). Hybridization induced rapid changes at the genetic and the epigenetic levels. The genetic changes mainly involved loss of parental fragments and gaining of novel fragments, and some eliminated sequences possibly from the noncoding region of L. paludosum. The MSAP analysis indicated that the level of DNA methylation was lower in the amphiploid (∼45%) than in the parental lines (51.5–50.6%), whereas it increased after amphidiploid formation. Events associated with intergeneric genomic shock were a feature of C. morifolium × L. paludosum hybrid, given that the genetic relationship between the parental species is relatively distant. Our results provide genetic and epigenetic evidence for understanding genomic shock in wide crosses between species in Asteraceae and suggest a need to expand our current evolutionary framework to encompass a genetic/epigenetic dimension when seeking to understand wide crosses. PMID:24407856

  15. Rapid genetic and epigenetic alterations under intergeneric genomic shock in newly synthesized Chrysanthemum morifolium x Leucanthemum paludosum hybrids (Asteraceae).

    Science.gov (United States)

    Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Fang, Weimin; Guan, Zhiyong; Teng, Nianjun; Liao, Yuan; Chen, Fadi

    2014-01-01

    The Asteraceae family is at the forefront of the evolution due to frequent hybridization. Hybridization is associated with the induction of widespread genetic and epigenetic changes and has played an important role in the evolution of many plant taxa. We attempted the intergeneric cross Chrysanthemum morifolium × Leucanthemum paludosum. To obtain the success in cross, we have to turn to ovule rescue. DNA profiling of the amphihaploid and amphidiploid was investigated using amplified fragment length polymorphism, sequence-related amplified polymorphism, start codon targeted polymorphism, and methylation-sensitive amplification polymorphism (MSAP). Hybridization induced rapid changes at the genetic and the epigenetic levels. The genetic changes mainly involved loss of parental fragments and gaining of novel fragments, and some eliminated sequences possibly from the noncoding region of L. paludosum. The MSAP analysis indicated that the level of DNA methylation was lower in the amphiploid (∼45%) than in the parental lines (51.5-50.6%), whereas it increased after amphidiploid formation. Events associated with intergeneric genomic shock were a feature of C. morifolium × L. paludosum hybrid, given that the genetic relationship between the parental species is relatively distant. Our results provide genetic and epigenetic evidence for understanding genomic shock in wide crosses between species in Asteraceae and suggest a need to expand our current evolutionary framework to encompass a genetic/epigenetic dimension when seeking to understand wide crosses.

  16. An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus.

    Science.gov (United States)

    Chu, Pu; Liu, Huijuan; Yang, Qing; Wang, Yankun; Yan, Guixia; Guan, Rongzhan

    2014-12-01

    Interspecific hybridizations promote gene transfer between species and play an important role in plant speciation and crop improvement. However, hybrid sterility that commonly found in the first generation of hybrids hinders the utilization of interspecific hybridization. The combination of divergent parental genomes can create extensive transcriptome variations, and to determine these gene expression alterations and their effects on hybrids, an interspecific Brassica hybrid of B. carinata × B. napus was generated. Scanning electron microscopy analysis indicated that some of the hybrid pollen grains were irregular in shape and exhibited abnormal exine patterns compared with those from the parents. Using the Illumina HiSeq 2000 platform, 39,598, 32,403 and 42,208 genes were identified in flower buds of B. carinata cv. W29, B. napus cv. Zhongshuang 11 and their hybrids, respectively. The differentially expressed genes were significantly enriched in pollen wall assembly, pollen exine formation, pollen development, pollen tube growth, pollination, gene transcription, macromolecule methylation and translation, which might be associated with impaired fertility in the F1 hybrid. These results will shed light on the mechanisms underlying the low fertility of the interspecific hybrids and expand our knowledge of interspecific hybridization.

  17. A tailored approach to BRAF and MLH1 methylation testing in a universal screening program for Lynch syndrome.

    Science.gov (United States)

    Adar, Tomer; Rodgers, Linda H; Shannon, Kristen M; Yoshida, Makoto; Ma, Tianle; Mattia, Anthony; Lauwers, Gregory Y; Iafrate, Anthony J; Chung, Daniel C

    2017-03-01

    To determine the correlation between BRAF genotype and MLH1 promoter methylation in a screening program for Lynch syndrome (LS), a universal screening program for LS was established in two medical centers. Tumors with abnormal MLH1 staining were evaluated for both BRAF V600E genotype and MLH1 promoter methylation. Tumors positive for both were considered sporadic, and genetic testing was recommended for all others. A total 1011 colorectal cancer cases were screened for Lynch syndrome, and 148 (14.6%) exhibited absent MLH1 immunostaining. Both BRAF and MLH1 methylation testing were completed in 126 cases. Concordant results (both positive or both negative) were obtained in 86 (68.3%) and 16 (12.7%) cases, respectively, with 81% concordance overall. The positive and negative predictive values for a BRAF mutation in predicting MLH1 promoter methylation were 98.9% and 41%, respectively, and the negative predictive value fell to 15% in patients ≥70 years old. Using BRAF genotyping as a sole test to evaluate cases with absent MLH1 staining would have increased referral rates for genetic testing by 2.3-fold compared with MLH1 methylation testing alone (31% vs 13.5%, respectively, PMLH1 methylation testing for BRAF wild-type cases only would significantly decrease the number of methylation assays performed and reduce the referral rate for genetic testing to 12.7%. A BRAF mutation has an excellent positive predictive value but poor negative predictive value in predicting MLH1 promoter methylation. A hybrid use of these tests may reduce the number of low-risk patients referred to genetic counseling and facilitate wider implementation of Lynch syndrome screening programs.

  18. A genome-wide methylation study on obesity Differential variability and differential methylation

    NARCIS (Netherlands)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-01-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common

  19. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-01

    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  20. Dimethylhydrazine model is not appropriate for evaluating effect of ethanol on colorectal cancer El modelo de la dimetilhidrazina no sirve para evaluar el efecto del etanol sobre el cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    M. Perše

    2007-08-01

    Full Text Available 1,2 dimethylhydrazine (DMH rat model has been proven to be a valuable animal model of colorectal cancer. Because of its morphological similarity to human colorectal cancer, DMH rat model was used to produce information in histology and biochemistry of tumours development as well as on factors that retard or enhance tumorigenesis. Nevertheless, it has been shown that DMH model has limitations, which raise the question, whether experiments evaluating effect of ethanol on DMH model are ethically justified. In this paper authors summarize experimental results evaluating effect of ethanol consumption on DMH rat model with aim to prevent unnecessary duplication of animal experimentation or execution of ethically unjustified animal experiments in the future and to warn scientists that results from studies evaluating ethanol on DMH rat model can not be generalized to humans.Se ha observado que el modelo de la 1,2-dimetilhidrazina (DMH en la rata es un valioso modelo animal de cáncer colorrectal. Debido a su parecido morfológico con el cáncer colorrectal humano, el modelo de la DMH en la rata se ha empleado para conseguir información acerca de la histología y la bioquímica del desarrollo tumoral, además de sobre los factores que retrasan o potencian la tumorigénesis. No obstante, se ha visto que el modelo de la DMH tiene sus limitaciones, lo que lleva a preguntarse si están justificados, desde el punto de vista ético, los experimentos que evalúan el efecto del etanol sobre este modelo. En este documento, los autores resumen los resultados experimentales que evalúan el efecto del consumo de etanol sobre el modelo de la DMH en la rata con el fin de evitar la duplicación innecesaria de la experimentación animal o la ejecución de experimentos con animales sin justificación ética en el futuro, además de avisar a los científicos de que los resultados obtenidos de los estudios que han evaluado el etanol con el modelo de la DMH en la rata no

  1. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  2. DNA sequence explains seemingly disordered methylation levels in partially methylated domains of Mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Dimos Gaidatzis

    2014-02-01

    Full Text Available For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs, recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%-40% of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS. Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R(2 of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features.

  3. Aberrant TET1 Methylation Closely Associated with CpG Island Methylator Phenotype in Colorectal Cancer.

    Science.gov (United States)

    Ichimura, Norihisa; Shinjo, Keiko; An, Byonggu; Shimizu, Yasuhiro; Yamao, Kenji; Ohka, Fumiharu; Katsushima, Keisuke; Hatanaka, Akira; Tojo, Masayuki; Yamamoto, Eiichiro; Suzuki, Hiromu; Ueda, Minoru; Kondo, Yutaka

    2015-08-01

    Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer. ©2015 American Association for Cancer Research.

  4. Application of radiotracers in the assessment of prophylactic role of zinc in experimental model of colon carcinogenesis

    International Nuclear Information System (INIS)

    Dani, Vijayata; Vaiphei, K.; Dhawan, D.K.

    2010-01-01

    Full text: The present study elucidated the modulatory effects of zinc in 1,2 dimethylhydrazine (DMH) induced colon carcinogenesis using radiotracer techniques. Rats were segregated into four groups viz., untreated control, DMH treated, zinc treated, DMH+zinc treated. Colon carcinogenesis was induced through weekly subcutaneous injections of DMH (30 mg/Kg body weight) for 16 weeks. Zinc was supplemented to rats at a dose level of 227mg/L in drinking water, ad libitum. The prophylactic role of zinc was assessed by following radiotracer techniques viz: whole body biological half life of 65 Zn and 65 Zn biodistribution, subcellular distribution, uptake of 3 H-Thymidine to assess rate of DNA synthesis, radiorespirometric determination of 14 C-D-Glucose metabolism and in-vitro uptake of labeled aminoacids. The statistical significance of the data has been determined by using one way analysis of variance (ANOVA) followed by multiple post - hoc test. The carcinogenic state in the animals was confirmed by histopathological examination, whereby, well-differentiated signs of dysplasia were evident in colonic tissue sections of DMH treated rats. The biokinetics study of zinc revealed a significant decrease in the biological half life of 65 Zn. Also, DMH treatment caused a significant increase in the percent uptake values of 65 Zn in the colon, small intestine, kidney and blood, whereas a significant decrease was observed in the liver. The uptake rates of amino acids viz: 14 C-glycine, 14 C-alanine and 14 C-lysine were significantly higher in the DMH treated colons. Moreover, a significant increase in the uptake and turnover of 14 C-D-Glucose was also observed after DMH treatment. A significant increase in the ( 3 H)-thymidine uptake was observed following 16 weeks DMH treatment. However, supplementation of zinc significantly reversed the proliferative effect of DMH as evidenced by ameliorating the altered parameters. Radiotracer techniques play an important role in assessing

  5. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  6. Histaminergic and cholinergic neuron systems in the impairment of human thermoregulation during motion sickness.

    Science.gov (United States)

    Nobel, Gerard; Tribukait, Arne; Mekjavic, Igor B; Eiken, Ola

    2010-05-31

    Motion sickness (MS) exaggerates body cooling during cold-water immersion. The aim of the present study was to investigate whether such MS-induced predisposition to hypothermia is influenced by two anti-MS drugs: the histamine-receptor blocker dimenhydrinate (DMH) and the muscarine-receptor blocker scopolamine (Scop). Nine healthy male subjects were immersed in 15 degrees C water for a maximum of 90min in five conditions: (1) control (CN): no medication, no MS provocation; (2) MS-control (MS-CN): no medication, MS provocation; (3) MS-placebo (MS-P): placebo DMH and placebo Scop, MS provocation; (4) MS-DMH: DMH and placebo Scop, MS provocation; (5) MS-Scop: Scop and placebo DMH, MS provocation. MS was induced by use of a rotating chair. Throughout the experiments rectal temperature (T(re)), the difference in temperature between the non-immersed right forearm and third finger (T(ff)) as an index of peripheral vasoconstriction, and oxygen uptake (VO(2)) as a measure of shivering thermogenesis, were recorded. DMH and Scop were similarly efficacious in ameliorating nausea. The fall in T(re) was greater in the MS-CN and MS-P conditions than in the CN condition. DMH, but not Scop, prevented the MS-induced increase in body-core cooling. MS attenuated the cold-induced vasoconstriction, an effect which was fully prevented by DMH but only partially by Scop. MS provocation did not affect VO(2) in any condition. The results suggest that the MS-induced predisposition to hypothermia is predominantly mediated by histaminergic mechanisms and that DMH might be useful in conjunction with maritime accidents or other scenarios where exposure to cold and MS are imminent features. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Pre- and postnatal determinants of deciduous molar hypomineralisation in 6-year-old children. The generation R study.

    Directory of Open Access Journals (Sweden)

    Marlies E C Elfrink

    Full Text Available BACKGROUND: Deciduous Molar Hypomineralisation (DMH and Molar Incisor Hypomineralisation (MIH are common developmental disturbances in pediatric dentistry. Their occurrence is related. The same determinants as suggested for MIH are expected for DMH, though somewhat earlier in life. Perinatal medical problems may influence the prevalence of DMH but this has not been studied sufficiently. OBJECTIVE: This study aimed to identify possible determinants of DMH in a prospective cohort study among 6-year-old children. STUDY DESIGN: This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. The the data were used to identify the determinants of DMH. Clinical photographs of clean, moist teeth were taken with an intra-oral camera in 6690 children (mean age 6.2 years; 49.9% girls. Data on possible determinants that had occurred during pregnancy and/or the child's first year of life were on the basis of manual standardized measurements (like length and weight and questionnaires. Multivariate analyse with backward and forward selection was performed. RESULTS: A number of factors in the pre-, peri- and postnatal phase were found to be associated with DMH. After multivariate logistic regression analyses, Dutch ethnic background, low birth weight, maternal alcohol consumption during pregnancy, and fever episodes in the first year of the child's life were found to play a role in the development of DMH in 6-year-old children. CONCLUSION: This study shows that Dutch ethnicity, low birth weight, alcohol consumption by the mother during pregnancy and any fever in the first year of the child's life are associated with DMH. Not only childhood factors but also prenatal lifestyle factors need to be taken into account when studying determinants for DMH.

  8. Pre- and Postnatal Determinants of Deciduous Molar Hypomineralisation in 6-Year-Old Children. The Generation R Study

    Science.gov (United States)

    Elfrink, Marlies E. C.; Moll, Henriette A.; Kiefte-de Jong, Jessica C.; Jaddoe, Vincent W. V.; Hofman, Albert; ten Cate, Jacob M.; Veerkamp, Jaap S. J.

    2014-01-01

    Background Deciduous Molar Hypomineralisation (DMH) and Molar Incisor Hypomineralisation (MIH) are common developmental disturbances in pediatric dentistry. Their occurrence is related. The same determinants as suggested for MIH are expected for DMH, though somewhat earlier in life. Perinatal medical problems may influence the prevalence of DMH but this has not been studied sufficiently. Objective This study aimed to identify possible determinants of DMH in a prospective cohort study among 6-year-old children. Study Design This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. The the data were used to identify the determinants of DMH. Clinical photographs of clean, moist teeth were taken with an intra-oral camera in 6690 children (mean age 6.2 years; 49.9% girls). Data on possible determinants that had occurred during pregnancy and/or the child's first year of life were on the basis of manual standardized measurements (like length and weight) and questionnaires. Multivariate analyse with backward and forward selection was performed. Results A number of factors in the pre-, peri- and postnatal phase were found to be associated with DMH. After multivariate logistic regression analyses, Dutch ethnic background, low birth weight, maternal alcohol consumption during pregnancy, and fever episodes in the first year of the child's life were found to play a role in the development of DMH in 6-year-old children. Conclusion This study shows that Dutch ethnicity, low birth weight, alcohol consumption by the mother during pregnancy and any fever in the first year of the child's life are associated with DMH. Not only childhood factors but also prenatal lifestyle factors need to be taken into account when studying determinants for DMH. PMID:24988443

  9. DISTANT HYBRIDS IN F4 (VITIS VINIFERA L. X MUSCADINIA ROTUNDIFOLIA MICHX. AND OF CULTIVARS OF VITIS VINIFERA L. AND OF CONCERNING THE CONTENT OF SOME BIOCHEMICAL COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Eugeniu ALEXANDROV

    2015-04-01

    Full Text Available The process of obtaining distant hybrids, as well as any crossing of cultivars of Vitis vinifera L. with representatives of species possessing the necessary qualities (resistance to diseases and pests, low temperature, etc. may change the spectrum of chemical and biochemical compounds responsible for flavour, colour and taste of grapes, obtained juice and wine. Botanical description of distant hybrids was performed during all phases of the vegetative stages; the organs of the plants were studied from spring, at bud unfolding, until early autumn, at the fall of the leaves. For the determination of diglucoside-3,5-malvidin, the fluorimetric method, for determining the methyl anthranilate, the gas chromatographic method was applied. Based on the analyzes of biochemical constituents of grapes of the distant hybrids: DRX-M4-578; -502; -571; -660; -609; -580; etc., compared to the traditional cultivars „Feteasca albă” and „Rară neagră”, it has been found that these varieties are similar. So, the distant hybrids of grapevine haven’t inherited unwanted characters for vines, some of them are strictly limited (diglucoside-3,5-malvidol. These hybrids don’t have the specific characteristics of direct production hybrids, characterised by the foxat taste of the grape berries, caused by the presence of the methyl anthranilate. The distant hybrids studied according to the classical uvologic and technological principles can be classified as follows: 5 distant hybrids are attributed to the table vine species and 2 distant hybrids have mixed properties. According to the physical and biochemical indices of the grapes of the studied distant hybrids, their characteristics are similar to European vine species.

  10. Non-coding RNAs and epigenome: de novo DNA methylation, allelic exclusion and X-inactivation

    Directory of Open Access Journals (Sweden)

    V. A. Halytskiy

    2013-12-01

    Full Text Available Non-coding RNAs are widespread class of cell RNAs. They participate in many important processes in cells – signaling, posttranscriptional silencing, protein biosynthesis, splicing, maintenance of genome stability, telomere lengthening, X-inactivation. Nevertheless, activity of these RNAs is not restricted to posttranscriptional sphere, but cover also processes that change or maintain the epigenetic information. Non-coding RNAs can directly bind to the DNA targets and cause their repression through recruitment of DNA methyltransferases as well as chromatin modifying enzymes. Such events constitute molecular mechanism of the RNA-dependent DNA methylation. It is possible, that the RNA-DNA interaction is universal mechanism triggering DNA methylation de novo. Allelic exclusion can be also based on described mechanism. This phenomenon takes place, when non-coding RNA, which precursor is transcribed from one allele, triggers DNA methylation in all other alleles present in the cell. Note, that miRNA-mediated transcriptional silencing resembles allelic exclusion, because both miRNA gene and genes, which can be targeted by this miRNA, contain elements with the same sequences. It can be assumed that RNA-dependent DNA methylation and allelic exclusion originated with the purpose of counteracting the activity of mobile genetic elements. Probably, thinning and deregulation of the cellular non-coding RNA pattern allows reactivation of silent mobile genetic elements resulting in genome instability that leads to ageing and carcinogenesis. In the course of X-inactivation, DNA methylation and subsequent hete­rochromatinization of X chromosome can be triggered by direct hybridization of 5′-end of large non-coding RNA Xist with DNA targets in remote regions of the X chromosome.

  11. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    Science.gov (United States)

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  12. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Suegama, P.H. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Sarmento, V.H.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Benedetti, A.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); de Melo, H.G.; Aoki, I.V. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Santilli, C.V., E-mail: santilli@iq.unesp.b [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2010-07-15

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  13. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    International Nuclear Information System (INIS)

    Suegama, P.H.; Sarmento, V.H.V.; Montemor, M.F.; Benedetti, A.V.; de Melo, H.G.; Aoki, I.V.; Santilli, C.V.

    2010-01-01

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  14. Chromosomal regions involved in hybrid performance and heterosis : their AFLP-based identification and practical use in prediction models

    NARCIS (Netherlands)

    Vuylsteke, M.; Kuiper, M.; Stam, P.

    2000-01-01

    In this paper, a novel approach towards the prediction of hybrid performance and heterosis is presented. Here, we describe an approach based on: (i) the assessment of associations between AFLPÒ22 AFLPÒ is a registered trademark of Keygene N.V. ,33 The methylation AFLPÒ method is subject to a patent

  15. CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci.

    Science.gov (United States)

    Kawasaki, Takako; Ohnishi, Mutsuko; Nosho, Katsuhiko; Suemoto, Yuko; Kirkner, Gregory J; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2008-03-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct phenotype in colorectal cancer. However, the concept of CIMP-low with less extensive CpG island methylation is still evolving. Our aim is to examine whether density of methylation in individual CpG islands was different between CIMP-low and CIMP-high tumors. Utilizing MethyLight technology and 889 population-based colorectal cancers, we quantified DNA methylation (methylation index, percentage of methylated reference) at 14 CpG islands, including 8 CIMP-high-specific loci (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1). Methylation positivity in each locus was defined as methylation index>4. Low-level methylation (methylation index>0, CIMP-high-specific locus was significantly more common in 340 CIMP-low tumors (1/8-5/8 methylation-positive loci) than 133 CIMP-high tumors (> or =6/8 methylation-positive loci) and 416 CIMP-0 tumors (0/8 methylation-positive loci) (PCIMP-high, low-level methylation, was not persistently more prevalent in CIMP-low tumors. In conclusion, compared to CIMP-high and CIMP-0 tumors, CIMP-low colorectal cancers show not only few methylated CIMP-high-specific CpG islands, but also more frequent low-level methylation at individual loci. Our data may provide supporting evidence for a difference in pathogenesis of DNA methylation between CIMP-low and CIMP-high tumors.

  16. Origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, G.A.; Lamb, N.A.; Maxwell, J.R.

    1986-03-01

    Treatment of 4-methylcholest-4-ene under mild acid conditions at low temperatures gives chemical evidence for certain features seen in the distributions of sedimentary 4-methyl steroid hydrocarbons, and further indicates that many low temperature diagenetic reactions of steroids are explicable in terms of acid catalyzed rearrangements. Specifically, the results provide: (i) Indirect evidence that the 4-ene skeleton is a key intermediate in the dehydration of 4-methyl stanols in sediments. (ii) An explanation for the distribution of 4-methyl sterenes and A-nor sterenes in the lacustrine Messel shale (Eocene). (iii) An explanation for the presence of 4..beta..-methyl steranes in relatively immature sedimentary rocks, despite the precursor stanols having the 4..cap alpha..-methyl configuration. With increasing maturity in the Paris Basin shales (Lower Toarcian), the less stable 4..beta..-methyl steranes decrease gradually in abundance relative to their 4..cap alpha..-methyl counterparts, at a rate fairly similar to the change in pristane stereochemistry.

  17. Analysis of DNA Cytosine Methylation Patterns Using Methylation-Sensitive Amplification Polymorphism (MSAP).

    Science.gov (United States)

    Guevara, María Ángeles; de María, Nuria; Sáez-Laguna, Enrique; Vélez, María Dolores; Cervera, María Teresa; Cabezas, José Antonio

    2017-01-01

    Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.

  18. Evidence for methyl group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis

    International Nuclear Information System (INIS)

    Bedale, W.A.; Nettleton, D.O.; Sopata, C.S.; Thoelke, M.S.; Ordal, G.W.

    1988-01-01

    The authors present evidence for methyl (as methyl or methoxy) transfer from the methyl-accepting chemotaxis proteins H1 and possibly H3 of Bacillus subtilis to the methyl-accepting chemotaxis protein H2. This methyl transfer, which has been observed in vitro was strongly stimulated by the chemoattractant aspartate and thus may plan an important role in the sensory processing system of this organism. Although radiolabeling of H1 and H3 began at once after the addition of [ 3 H] methionine, radiolabeling of H2 showed a lag. Furthermore, the addition of excess nonradioactive methionine caused immediate exponential delabeling of H1 and H3 while labeling of H2 continued to increase. Methylation of H2 required the chemotactic methyltransferase, probably to first methylate H1 and H3. Aspartate caused increased labeling of H2 and strongly decreased labeling of H1 and H3 after the addition of nonradioactive methionine. Without the addition of nonradioactive methionine, aspartate caused demethylation of H1 and to a lesser extent H3, with an approximately equal increase of methylation of H2

  19. [Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique].

    Science.gov (United States)

    Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li

    2007-06-01

    The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.

  20. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine

    Science.gov (United States)

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.

    1973-01-01

    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  1. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  2. Comprehensive physicochemical studies of a new hybrid material: 2-Amino-4-methyl-3-nitropyridinium hydrogen oxalate

    Science.gov (United States)

    Bryndal, I.; Kucharska, E.; Wandas, M.; Lorenc, J.; Hermanowicz, K.; Mączka, M.; Lis, T.; Marchewka, M.; Hanuza, J.

    2014-01-01

    A new organic-organic salt, 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate (AMNPO), and its deuterium analogue have been synthesized and characterized by means of FT-IR, FT-Raman, DSC and single crystal X-ray studies. The DSC measurements and temperature dependence of the IR and Raman spectra in the range 4-295 K show that it undergoes a reversible phase transition at ∼240 K. At room temperature it crystallizes in noncentrosymmetric space group P21. The unit-cell is built of the 2-amino-4-methyl-3-nitropyridinium cations and oxalate monoanions which are connected via the Nsbnd H⋯O and Osbnd H⋯O hydrogen bonds. The geometrical and hydrogen bond parameters are similar for non-deuterated (at 120 and 293 K) and deuterated compounds (at 90 K). The phase transition is probably a consequence of order-disorder transition inside of hydrogen network. The 6-311G(2d,2p) basis set with B3LYP functional have been used to discuss the structure and vibrational spectra of the studied compound.

  3. Synthesis of [methyl-14C]crotonobetaine from DL-[methyl-14C]carnitine

    International Nuclear Information System (INIS)

    Loester, H.; Seim, H.

    1996-01-01

    The causes of carnitine deficiency syndromes are not completely understood, but decomposition of L-carnitine in vivo is likely to be involved. Carnitine is metabolized to γ-butyrobetaine, and crotonobetaine is probably an intermediate in this pathway. To validate experimentally the precursor-product relationship between the three physiologically occuring γ-betaines - L-carnitine, crotonobetaine, γ-butyrobetaine - labelling with stable or radioactive isotopes became necessary. Methyl-labelled carnitine isomers (L(-)-, D(+)- or DL-) or γ-butyrobetaine can be easily synthesized by methylation of 4-amino-3-hydroxybutyric acid isomers or 4-aminobutyric acid, respectively. Because of problems with the 4-aminocrotonic acid, we synthesized labelled crotonbetaine from labelled carnitine. Thus, DL-[methyl- 14 C]carnitine was dehydrated by reaction with concentrated sulfuric acid. After removal of the latter the products were separated and purified by ion exchange chromatography on DOWEX 50 WX8 (200 - 400 mesh) and gradient elution with hydrochloric acid. In addition to the labelled main product [methyl- 14 C]crotonobetaine (yield about 50 %), [methyl- 14 C]glycine betaine and [methyl- 14 C]acetonyl-trimethylammonium (ATMA) were formed. The end products were identified by combined thin layer chromatography/autoradiography and quantified by liquid scintillation counting. (Author)

  4. Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation.

    Science.gov (United States)

    Dou, John; Schmidt, Rebecca J; Benke, Kelly S; Newschaffer, Craig; Hertz-Picciotto, Irva; Croen, Lisa A; Iosif, Ana-Maria; LaSalle, Janine M; Fallin, M Daniele; Bakulski, Kelly M

    2018-01-01

    Cord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells, generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability. We evaluated differences in cell composition and DNA methylation between cord blood buffy coat and whole cord blood samples. Cord blood DNA methylation was measured with the Infinium EPIC BeadChip (Illumina) in eight individuals, each contributing buffy coat and whole blood samples. We analyzed principal components (PC) of methylation, performed hierarchical clustering, and computed correlations of mean-centered methylation between pairs. We conducted moderated t-tests on single sites and estimated cell composition. DNA methylation PCs were associated with individual (P PC1 = 1.4 × 10 -9 ; P PC2 = 2.9 × 10 -5 ; P PC3 = 3.8 × 10 -5 ; P PC4 = 4.2 × 10 -6 ; P PC5 = 9.9 × 10 -13 , P PC6 = 1.3 × 10 -11 ) and not with sample type (P PC1-6 >0.7). Samples hierarchically clustered by individual. Pearson correlations of mean-centered methylation between paired samples ranged from r = 0.66 to r = 0.87. No individual site significantly differed between buffy coat and whole cord blood when adjusting for multiple comparisons (five sites had unadjusted Pcoat and whole cord blood are much lower than inter-individual variation, demonstrating that both sample preparation types can be analytically combined and compared.

  5. Value of PAX1 Methylation Analysis by MS-HRM in the Triage of Atypical Squamous Cells of Undetermined Significance.

    Science.gov (United States)

    Li, Shi-Rong; Wang, Zhen-Ming; Wang, Yu-Hui; Wang, Xi-Bo; Zhao, Jian-Qiang; Xue, Hai-Bin; Jiang, Fu-Guo

    2015-01-01

    Detection of cervical high grade lesions in patients with atypical squamous cells of undetermined significance (ASCUS) is still a challenge. Our study tested the efficacy of the paired boxed gene 1 (PAX1) methylation analysis by methylation-sensitive high-resolution melting (MS-HRM) in the detection of high grade lesions in ASCUS and compared performance with the hybrid capture 2 (HC2) human papillomavirus (HPV) test. A total of 463 consecutive ASCUS women from primary screening were selected. Their cervical scrapings were collected and assessed by PAX1 methylation analysis (MS-HRM) and high-risk HPV-DNA test (HC2). All patients with ASCUS were admitted to colposcopy and cervical biopsies. The Chi- square test was used to test the differences of PAX1 methylation or HPV infection between groups. The specificity, sensitivity, and accuracy for detecting CIN2 + lesions were: 95.6%, 82.4%, and 94.6%, respectively, for the PAX1 MS-HRM test; and 59.7%, 64.7%, and 60.0% for the HC2 HPV test. The PAX1 methylation analysis by MS-HRM demonstrated a better performance than the high-risk HPV-DNA test for the detection of high grade lesions (CIN2 +) in ASCUS cases. This approach could screen out the majority of low grade cases of ASCUS, and thus reduce the referral rate to colposcopy.

  6. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  7. Methyl methacrylate oligomerically-modified clay and its poly(methyl methacrylate) nanocomposites

    International Nuclear Information System (INIS)

    Zheng Xiaoxia; Jiang, David D.; Wilkie, Charles A.

    2005-01-01

    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

  8. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  9. Maternal Methyl-Group Donor Intake and Global DNA (HydroxyMethylation before and during Pregnancy

    Directory of Open Access Journals (Sweden)

    Sara Pauwels

    2016-08-01

    Full Text Available It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxylmethylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring’s Epigenome study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxymethylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxymethylation levels were highest pre-pregnancy and at weeks 18–22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04 and hydroxymethylation (p = 0.04. A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxymethylation percentage in weeks 11–13 and weeks 18–22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxymethylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy.

  10. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; A S Langie, Sabine; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-02

    Maternal nutrition is critically involved in the development and health of the fetus. We evaluated maternal methyl-group donor intake through diet (methionine, betaine, choline, folate) and supplementation (folic acid) before and during pregnancy in relation to global DNA methylation and hydroxymethylation and gene specific (IGF2 DMR, DNMT1, LEP, RXRA) cord blood methylation. A total of 115 mother-infant pairs were enrolled in the MAternal Nutrition and Offspring's Epigenome (MANOE) study. The intake of methyl-group donors was assessed using a food-frequency questionnaire. LC-MS/MS and pyrosequencing were used to measure global and gene specific methylation, respectively. Dietary intake of methyl-groups before and during pregnancy was associated with changes in LEP, DNMT1, and RXRA cord blood methylation. Statistically significant higher cord blood LEP methylation was observed when mothers started folic acid supplementation more than 6 months before conception compared with 3-6 months before conception (34.6 ± 6.3% vs. 30.1 ± 3.6%, P = 0.011, LEP CpG1) or no folic acid used before conception (16.2 ± 4.4% vs. 13.9 ± 3%, P = 0.036 for LEP CpG3 and 24.5 ± 3.5% vs. 22.2 ± 3.5%, P = 0.045 for LEP mean CpG). Taking folic acid supplements during the entire pregnancy resulted in statistically significantly higher cord blood RXRA methylation as compared with stopping supplementation in the second trimester (12.3 ± 1.9% vs. 11.1 ± 2%, P = 0.008 for RXRA mean CpG). To conclude, long-term folic acid use before and during pregnancy was associated with higher LEP and RXRA cord blood methylation, respectively. To date, pregnant women are advised to take a folic acid supplement of 400 µg/day from 4 weeks before until 12 weeks of pregnancy. Our results suggest significant epigenetic modifications when taking a folic acid supplement beyond the current advice.

  11. Chemoprevention by Probiotics During 1,2-Dimethylhydrazine-Induced Colon Carcinogenesis in Rats.

    Science.gov (United States)

    Walia, Sohini; Kamal, Rozy; Dhawan, D K; Kanwar, S S

    2018-04-01

    Probiotics are believed to have properties that lower the risk of colon cancer. However, the mechanisms by which they exert their beneficial effects are relatively unknown. To assess the impact of probiotics in preventing induction of colon carcinogenesis in rats. The rats were divided into six groups viz., normal control, Lactobacillus plantarum (AdF10)-treated, Lactobacillus rhamnosus GG (LGG)-treated, 1,2-dimethylhydrazine (DMH)-treated, L. plantarum (AdF10) + DMH-treated and L. rhamnosus GG (LGG) + DMH-treated. Both the probiotics were supplemented daily at a dose of 2 × 10 10 cells per day. DMH at a dose of 30 mg/kg body weight was administered subcutaneously twice a week for the first 4 weeks and then once every week for a duration of 16 weeks. Glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and catalase as protein expression of genes involved in apoptosis were assessed during DMH-induced colon carcinogenesis in rats. DMH treatment decreased the activity of GSH, GPx, GST, SOD and catalase. However, AdF10 and LGG supplementation to DMH-treated rats significantly increased the activity of these enzymes. Further, DMH treatment revealed alterations in the protein expressions of various genes involved in the p53-mediated apoptotic pathway such as p53, p21, Bcl-2, Bax, caspase-9 and caspase-3, which, however, were shifted towards normal control levels upon simultaneous supplementation with probiotics. The present study suggests that probiotics can provide protection against oxidative stress and apoptotic-related protein disregulation during experimentally induced colon carcinogenesis.

  12. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.

    2001-07-01

    The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.

  13. Influence of dietary fiber from coconut kernel (Cocos nucifera) on the 1,2-dimethylhydrazine-induced lipid peroxidation in rats.

    Science.gov (United States)

    Pillai, M G; Thampi, B S; Menon, V P; Leelamma, S

    1999-09-01

    The influence of dietary fiber from coconut kernel isolated by the neutral detergent fiber method on the antioxidant status in rats treated with the colon specific carcinogen 1,2-dimethylhydrazine (DMH) was studied in rats fed a high-fat diet for 15 weeks. The DMH-treated fiber group showed higher levels of lipid peroxides than the control group treated with DMH at the preneoplastic and neoplastic stages. Free fatty acid levels were found to decrease significantly in the DMH-treated control group, whereas it was near normal in the fiber groups. Superoxide dismutase and catalase activity also were found to be increased in the liver, intestine, proximal colon, and distal colon. Glutathione levels in all the tissues studied showed significant decreases in the fiber group. The results suggest that coconut kernel fiber can protect cells from loss of oxidative capacity with the administration of the procarcinogen DMH.

  14. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  15. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...

  16. The origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes

    Science.gov (United States)

    Wolff, George A.; Lamb, Neil A.; Maxwell, James R.

    1986-03-01

    Treatment of 4-methylcholest-4-ene under mild acid conditions at low temperatures gives chemical evidence for certain features seen in the distributions of sedimentary 4-methyl steroid hydrocarbons, and further indicates that many low temperature diagenetic reactions of steroids are explicable in terms of acid catalysed rearrangements. Specifically, the results provide: (i) Indirect evidence that the 4-ene skeleton is a key intermediate in the dehydration of 4-methyl stanols in sediments. (ii) An explanation for the distribution of 4-methyl sterenes and A-nor sterenes in the lacustrine Messel shale (Eocene). (iii) An explanation for the presence of 4β-methyl steranes in relatively immature sedimentary rocks, despite the precursor stanols having the 4α-methyl configuration. With increasing maturity in the Paris Basin shales (Lower Toarcian), the less stable 4β-methyl steranes decrease gradually in abundance relative to their 4α-methyl counterparts, at a rate fairly similar to the change in pristane stereochemistry.

  17. A genome-wide methylation study on obesity: differential variability and differential methylation.

    Science.gov (United States)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Hidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-05-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14-20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances.

  18. Detection and discrimination of maintenance and de novo CpG methylation events using MethylBreak.

    Science.gov (United States)

    Hsu, William; Mercado, Augustus T; Hsiao, George; Yeh, Jui-Ming; Chen, Chung-Yung

    2017-05-15

    Understanding the principles governing the establishment and maintenance activities of DNA methyltransferases (DNMTs) can help in the development of predictive biomarkers associated with genetic disorders and diseases. A detection system was developed that distinguishes and quantifies methylation events using methylation-sensitive endonucleases and molecular beacon technology. MethylBreak (MB) is a 22-mer oligonucleotide with one hemimethylated and two unmethylated CpG sites, which are also recognition sites for Sau96I and SacII, and is attached to a fluorophore and a quencher. Maintenance methylation was quantified by fluorescence emission due to the digestion of SacII when the hemimethylated CpG site is methylated, which inhibits Sau96I cleavage. The signal difference between SacII digestion of both MB substrate and maintenance methylated MB corresponds to de novo methylation event. Our technology successfully discriminated and measured both methylation activities at different concentrations of MB and achieved a high correlation coefficient of R 2 =0.997. Additionally, MB was effectively applied to normal and cancer cell lines and in the analysis of enzymatic kinetics and RNA inhibition of recombinant human DNMT1. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Activation of NF-κB: bridging the gap between inflammation and cancer in colitis-mediated colon carcinogenesis.

    Science.gov (United States)

    Setia, Shruti; Nehru, Bimla; Sanyal, Sankar Nath

    2014-02-01

    Several studies have shown the anti-neoplastic effects of non-steroidal anti-inflammatory drugs (NSAIDs) on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis, but how these drugs act in case of inflammation-augmented tumorigenesis is still not clear. The present study therefore designs an animal model of colitis-associated colon cancer where 3% Dextran sufate sodium (DSS) is used to develop ulcerative colitis and DMH treatment leads to colon carcinogenesis as early as in six weeks. Clinical symptoms for ulcerative colitis were studied using Disease Activity Index (DAI) while myeloperoxidase assay marked the neutrophil infiltration in DSS and DMH treated groups. The present results indicated the upregulation of the activity of inflammatory marker enzyme, cyclooxygenase-2 (cox-2) and pro-inflammatory cytokines such as TNF-α, IL-1β, IL-4 and IFN-γ with the treatment of DSS as well as DMH. The presence of cytokines in the inflammatory milieu might lead to the transformation of cytoplasmic inactive NF-κB (Nuclear Factor κB) to its active nuclear form, thereby leading to tumorigenesis. The administration of celecoxib along with DSS and DMH, revealed its chemopreventive efficacy in colitis as well as colon cancer. The effect of different doses of DMH on mouse colon was also investigated to obtain a minimum dose of DMH which can induce visible lesions in mice colons at a high incidence. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. ‘Norine’, a cinnamon-linalool hybrid cultivar of basil

    Directory of Open Access Journals (Sweden)

    Arie Fitzgerald Blank

    2015-12-01

    Full Text Available 'Norine’ is a hybrid cultivar of basil, adapted to the Northeastern Brazil, which is derived from the cultivars ‘Cinnamon’ and ‘Maria Bonita’. It has essential oil content of 2.91% and yield of 2.37 mL plant-1. The main chemical compounds of the essential oil are (E-methyl cinnamate (41.93 % and linalool (34.92 %. ‘Norine’ is characterized by presenting upright growth habit, rounded crown, mean height of 55 cm, mean crown diameter of 59 cm, mean leaf length of 8.4 cm, and mean leaf width of 4.5 cm.

  1. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    Science.gov (United States)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  2. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Thymoquinone, the Nigella sativa Bioactive Compound, Prevents Circulatory Oxidative Stress Caused by 1,2-Dimethylhydrazine in Erythrocyte during Colon Postinitiation Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Hanene Jrah Harzallah

    2012-01-01

    Rats exposed to DMH showed an increase of malondialdehyde and conjugated diene levels, and an augmentation of enzyme activities like catalase, glutathione peroxidase, and superoxide dismutase activities was also noted. The TQ pretreatment restored the parameters cited above to near-normal values. However, the posttreatment shows an activity similar as that presented by DMH. Therefore, our investigation revealed that TQ was a useful compound preventing DMH-induced erythrocyte damages.

  4. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry

    Directory of Open Access Journals (Sweden)

    Emma Louise Beckett

    2016-12-01

    Full Text Available Vitamin D is known for its role in the regulation of gene expression via the vitamin D receptor, a nuclear transcription factor. More recently, a role for vitamin D in regulating DNA methylation has been identified as an additional mechanism of modulation of gene expression. How methylation status influences vitamin D metabolism and response pathways is not yet clear. Therefore, we aimed to assess the relationship between plasma 25-hydroxycholecalciferol (25(OHD and the methylation status of vitamin D metabolism enzyme genes (CYP2R1, CYP27B1 and CYP24A1 and the vitamin D receptor gene (VDR. This analysis was conducted in the context of dietary vitamin D, and background methyl donor related biochemistry, with adjustment for several dietary and lifestyle variables. Percentage methylation at CpG sites was assessed in peripheral blood cells using methylation sensitive and dependent enzymes and qPCR. Standard analytical techniques were used to determine plasma 25(OHD and homocysteine, and serum folate and B12, with the relationship to methylation status assessed using multi-variable regression analysis. CYP2R1 and VDR methylation were found to be independent predictors of plasma 25(OHD, when adjusted for vitamin D intake and other lifestyle variables. CYP24A1 was related to plasma 25(OHD directly, but not in the context of vitamin D intake. Methyl-group donor biochemistry was associated with the methylation status of some genes, but did not alter the relationship between methylation and plasma 25(OHD. Modulation of methylation status of CYP2R1, CYP24A1 and VDR in response to plasma 25(OHD may be part of feedback loops involved in maintaining vitamin D homeostasis, and may explain a portion of the variance in plasma 25(OHD levels in response to intake and sun exposure. Methyl-group donor biochemistry, while a potential independent modulator, did not alter this effect.

  5. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    International Nuclear Information System (INIS)

    Shah, Jinesh N; Shao, Genze; Hei, Tom K; Zhao, Yongliang

    2008-01-01

    Hypermethylation of the TGFBI promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the TGFBI promoter in human lung and prostate cancer specimens. Methylation-specific primers were designed based on the methylation profiles of the TGFBI promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP. Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the TGFBI promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the TGFBI promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (p < 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the TGFBI promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (p < 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the TGFBI gene in human lung and prostate tumor cell lines. We successfully optimized a MSP method for the precise and efficient screening of TGFBI promoter methylation status. Dense methylation of the TGFBI promoter correlated with the extent of TGFBI gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, TGFBI promoter methylation can be used as a potential

  6. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    Science.gov (United States)

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  7. DNA methylation and memory formation.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2010-11-01

    Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.

  8. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  9. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  10. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Knothe, Gerhard

    2013-01-01

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1 H and 13 C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  11. Piroxicam and C-phycocyanin mediated apoptosis in 1,2-dimethylhydrazine dihydrochloride induced colon carcinogenesis: exploring the mitochondrial pathway.

    Science.gov (United States)

    Saini, Manpreet Kaur; Sanyal, Sankar Nath; Vaiphei, Kim

    2012-04-01

    Apoptosis is a synchronized procedure of cell death that is regulated by caspases and proapoptotic proteins. During apoptosis, translocation of cytochrome c, an electron carrier, from mitochondria into the cytosol is regulated by Bcl-2 family members. Cytochrome c in association with an apoptotic protease activating factor (Apaf), a proapoptotic protein essential for cell differentiation and procaspase-9 form the apoptosome complex, which consecutively activates effector caspase, caspase-3, and coordinate the implementation of apoptosis. In the current study, an attempt has been made to gain insight into piroxicam, a traditional nonsteroidal antiinflammatory drug and c-phycocyanin, a biliprotein from Spirulina platensis (cyanobacterium) mediated apoptosis in DMH-induced colon cancer. Male Sprague-Dawley rats were segregated into 5 groups: control, DMH, DMH + piroxicam, DMH + c-phycocyanin, and DMH + piroxicam + c-phycocyanin. Results illustrated that piroxicam and c-phycocyanin treatments stimulate cytochrome c release by downregulating the Bcl-2 (an antiapoptotic protein) expression significantly, while promoting the level of Bax (a proapoptotic protein), thereby activating caspases (caspases-9 and -3) and Apaf-1. The outcomes of the present study clearly signify that piroxicam and c-phycocyanin may mediate mitochondrial-dependent apoptosis in DMH-induced colon cancer. Moreover, apoptosis induction was more apparent in the combination regimen of piroxicam and c-phycocyanin than the individual drugs alone.

  12. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

    Science.gov (United States)

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh

    2017-03-09

    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  13. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars.

    Science.gov (United States)

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y

    2015-11-26

    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  14. DNA methylation in sugarcane somaclonal variants assessed through methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Francischini, J H M B; Kemper, E L; Costa, J B; Manechini, J R V; Pinto, L R

    2017-05-04

    Micropropagation is an important tool for large-scale multiplication of plant superior genotypes. However, somaclonal variation is one of the drawbacks of this process. Changes in DNA methylation have been widely reported as one of the main causes of somaclonal variations in plants. In order to investigate the occurrence of changes in the methylation pattern of sugarcane somaclonal variants, the MSAP (methylation-sensitive amplified polymorphism) technique was applied to micro-propagated plantlets sampled at the third subculture phase. The mother plant, in vitro normal plantlets, and in vitro abnormal plantlets (somaclonal variants) of four sugarcane clones were screened against 16 MSAP selective primers for EcoRI/MspI and EcoRI/HpaII restriction enzymes. A total of 1005 and 1200 MSAP-derived markers with polymorphism percentages of 28.36 and 40.67 were obtained for EcoRI/HpaII and EcoRI/MspI restriction enzyme combinations, respectively. The genetic similarity between the mother plant and the somaclonal variants ranged from 0.877 to 0.911 (EcoRI/MspI) and from 0.928 to 0.955 (EcoRI/HpaII). Most of the MASPs among mother plant and micro-propagated plantlets were derived from EcoRI/MspI restriction enzymes suggesting alteration due to gain or loss of internal cytosine methylation. A higher rate of loss of methylation (hypomethylation) than gain of methylation (hypermethylation) was observed in the abnormal in vitro sugarcane plantlets. Although changes in the methylation pattern were also observed in the in vitro normal plantlets, they were lower than those observed for the in vitro abnormal plantlets. The MASP technique proved to be a promising tool to early assessment of genetic fidelity of micro-propagated sugarcane plants.

  15. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats.

    Science.gov (United States)

    Wanner, Samuel P; Almeida, M Camila; Shimansky, Yury P; Oliveira, Daniela L; Eales, Justin R; Coimbra, Cândido C; Romanovsky, Andrej A

    2017-07-19

    In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking. SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest

  16. In vivo assessment of genotoxic, antigenotoxic and anticarcinogenic activities of Solanum lycocarpum fruits glycoalkaloidic extract.

    Directory of Open Access Journals (Sweden)

    Carla Carolina Munari

    Full Text Available The fruits of Solanum lycocarpum, known as wolf-fruit, are used in folk medicine, and because of that we have evaluated both the genotoxic potential of its glycoalkaloidic extract (SL and its influence on the genotoxicity induced by methyl methanesulfonate. Furthermore, the potential blocking effect of SL intake in the initial stage of colon carcinogenesis in Wistar rats was investigated in a short-term (4-week bioassay using aberrant crypt foci (ACF as biomarker. The genotoxic potential was evaluated using the Swiss mice peripheral blood micronucleus test. The animals were treated with different doses of SL (15, 30 and 60 mg/kg b.w. for 14 days, and the peripheral blood samples were collected at 48 h, 7 days and 14 days after starting the treatment. For antigenotoxicity assessment, MMS was administered on the 14th day, and after 24 h the harvesting of bone marrow and liver cells was performed, for the micronucleus and comet assays, respectively. In the ACF assay, male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg b.w., twice a week, during two weeks to induce ACF. The treatment with SL (15, 30 and 60 mg/kg b.w. was given for four weeks during and after carcinogen treatment to investigate the potential beneficial effects of SL on DMH-induced ACF. The results demonstrated that SL was not genotoxic in the mouse micronucleus test. In animals treated with SL and MMS, the frequencies of micronucleus and extensions of DNA damage were significantly reduced in comparison with the animals receiving only MMS. Regarding the ACF assay, SL significantly reduced the frequency of ACF induced by DMH.

  17. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood.

    Science.gov (United States)

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.

  18. Intrinsic mitochondrial membrane potential change and associated events mediate apoptosis in chemopreventive effect of diclofenac in colon cancer.

    Science.gov (United States)

    Kaur, Jasmeet; Sanyal, S N

    2010-01-01

    The present study explored the role of intrinsic mitochondrial membrane potential (delta psi M) in NSAID-induced apoptosis in the early stages of colon cancer. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used to induce colon cancer and its chemoprevention was studied by diclofenac in a rat model. After 6 weeks of treatment with DMH (early stage), morphological analysis revealed a marked occurrence of preneoplastic features [i.e., mucosal plaque lesions (MPLs) in the colonic tissue]. Coadministration of diclofenac with DMH resulted in a significant reduction of these lesions, thereby proving the chemopreventive efficacy of diclofenac at the chosen anti-inflammatory dose. DMH treatment also led to a significant increase in delta psi M in the isolated colonocytes as assessed by JC-1 fluorescent staining, measured both by fluorescence microscopy and spectrofluorometerically. Further, there was seen a reduction in the number of cells showing low delta psi M, and hence monomer intensity of JC-1 by DMH treatment. To study the mechanism of these alterations in delta psi M in the present work, we studied the protein expression of important proapoptotic proteins, cytochrome c and Bax, by Western blot analysis and immunohistochemistry. DMH treatment reduced the mitochondrial translocation of Bax whereas cytochrome c was found to be located prominently in the mitochondria. Protein expression of antiapoptotic Bcl-2 was also studied in the colonic mucosa, which was expectedly found to be overexpressed after DMH treatment. Diclofenac treatment ameliorated the elevated delta psi M and its associated events to exert its chemopreventive action against early stages of colon cancer.

  19. Gas chromatographic determination of 1,1-dimethylhydrazine in water samples by solid-phase microextraction with derivatization

    Directory of Open Access Journals (Sweden)

    Madi Abilev

    2014-10-01

    Full Text Available 1,1-Dimethylhydrazine (1,1-DMH used as a rocket fuel component is highly reactive and unstable compound. It greatly complicates its accurate and express determination in environmental samples. Goal of this work was to develop a method for its express determination in water samples based on solid-phase microextraction with preliminary derivatization. Acetone was selected as reagent for derivatization because during its reaction with 1,1-DMH, volatile and hydrophobic acetone dimethylhydrazone (ADMH was formed. It was established that fiber based on 100-micron polydimethylsiloxane provides the most efficient extraction of ADMH from water at extraction time 2 min. Optimal concentration of acetone was 30 mg/mL. The minimum time for reaction of 1,1-DMH with acetone is 10 minutes. Addition of acids and alkali reduced ADMH response that may be caused by degradation of 1,1-DMH and reduction of derivatization rate. Addition of salt allowed to increase the response of ADMH however made impossible the quantitative determination of 1,1-DMH. Dependence of ADMH response on the concentration of 1,1-DMH at optimized parameters is linear in the concentrations range of 0.1-100 mg/L and can be used for quantitative determination of 1,1-DMH in water. Detection limit of the developed method is 0.02 mg/L. Reproducibility index of the method in the whole range of concentrations did not exceed 7%, accuracy index - 15%. Developed method is simple, inexpensive, accurate, automated and can be recommended for implementation in laboratories conducting environmental monitoring in areas of rocket-carriers fall.

  20. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts.

    Science.gov (United States)

    Kobayashi, H; Ngernprasirtsiri, J; Akazawa, T

    1990-01-01

    During transitional conversion of chloroplasts to chromoplasts in ripening tomato (Lycopersicon esculentum) fruits, transcripts for several plastid genes for photosynthesis decreased to undetectable levels. Run-on transcription of plastids indicated that transcriptional regulation operated as a predominant factor. We found that most of the genes in chloroplasts were actively transcribed in vitro by Escherichia coli and soluble plastid RNA polymerases, but some genes in chromoplasts seemed to be silent when assayed by the in vitro systems. The regulatory step, therefore, was ascribed to DNA templates. The analysis of modified base composition revealed the presence of methylated bases in chromoplast DNA, in which 5-methylcytosine was most abundant. The presence of 5-methylcytosine detected by isoschizomeric endonucleases and Southern hybridization was correlated with the undetectable transcription activity of each gene in the run-on assay and in vitro transcription experiments. It is thus concluded that the suppression of transcription mediated by DNA methylation is one of the mechanisms governing gene expression in plastids converting from chloroplasts to chromoplasts. Images Fig. 1 Fig. 2 Fig. 3. Fig. 4. Fig. 5. PMID:2303026

  1. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome.

    Science.gov (United States)

    Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle

    2016-01-01

    Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested

  2. Facile green synthesis of graphene-Au nanorod nanoassembly for on-line extraction and sensitive stripping analysis of methyl parathion

    International Nuclear Information System (INIS)

    Zhu, Wenxin; Liu, Wei; Li, Tianbao; Yue, Xiaoyue; Liu, Tao; Zhang, Wentao; Yu, Shaoxuan; Zhang, Daohong; Wang, Jianlong

    2014-01-01

    Graphical abstract: Schematic illustration for the facile green fabrication of GN-AuNRs/GCE and its application for the extraction and electroanalysis of MP. - Highlights: • This paper described a facile green electrochemical approach to synthesize graphene-AuNRs nanocomposite. • The as-synthesized sensor shows low LOD and wide linear concentration range towards MP. • The sensor can be well used for the determination of MP in water and kiwi fruits samples. • This paper further enlarges the scope of facile green synthetic methods of GN-based hybrids. - Abstract: This paper described a facile green electrochemical approach to synthesize graphene-AuNRs nanocomposite (GN-AuNRs) onto glassy carbon electrode (GCE) for electrocatalytic analysis of methyl parathion (MP). This electrochemical synthesis of GN-AuNRs hybrid is environmentally friendly for not involving the chemical reduction of graphene oxide (GO) and facile for just on the basis of electrostatic interaction between GO and AuNRs, as well as electrochemical reduction of GO-AuNRs to GN-AuNRs. Combined the high conductivity, large surface area, good adsorption capacity towards aromatic rings and high catalytic ability of graphene with the excellent electronic properties and adsorption capacity of AuNRs, the high sensitive methyl parathion sensor was fabricated with the GN-AuNRs nanocomposite. The limit of detection (LOD) of the proposed sensor was calculated to be 0.82 ng/mL, which was lower than many previously reported enzyme or nonenzyme-based sensors. In the meantime, the linear detection range of this sensor was from 10 to 500 ng/mL and 750 to 4000 ng/mL, which was also wider than many other enzyme or enzymeless sensors. Furthermore, the facile and green electrochemical reduction strategy provided here could also be used to construct more GN-based hybrids. And the GN-based hybrid might be a new and highly efficient SPE factor, which opens new opportunities for green, facile and sensitive analysis of

  3. Changes in central sodium and not osmolarity or lactate induce panic-like responses in a model of panic disorder.

    Science.gov (United States)

    Molosh, Andre I; Johnson, Philip L; Fitz, Stephanie D; Dimicco, Joseph A; Herman, James P; Shekhar, Anantha

    2010-05-01

    Panic disorder is a severe anxiety disorder characterized by recurrent panic attacks that can be consistently provoked with intravenous (i.v.) infusions of hypertonic (0.5 M) sodium lactate (NaLac), yet the mechanism/CNS site by which this stimulus triggers panic attacks is unclear. Chronic inhibition of GABAergic synthesis in the dorsomedial hypothalamus/perifornical region (DMH/PeF) of rats induces a vulnerability to panic-like responses after i.v. infusion of 0.5 M NaLac, providing an animal model of panic disorder. Using this panic model, we previously showed that inhibiting the anterior third ventricle region (A3Vr; containing the organum vasculosum lamina terminalis, the median preoptic nucleus, and anteroventral periventricular nucleus) attenuates cardiorespiratory and behavioral responses elicited by i.v. infusions of NaLac. In this study, we show that i.v. infusions of 0.5 M NaLac or sodium chloride, but not iso-osmolar D-mannitol, increased 'anxiety' (decreased social interaction) behaviors, heart rate, and blood pressure responses. Using whole-cell patch-clamp preparations, we also show that bath applications of NaLac (positive control), but not lactic acid (lactate stimulus) or D-mannitol (osmolar stimulus), increases the firing rates of neurons in the A3Vr, which are retrogradely labeled from the DMH/PeF and which are most likely glutamatergic based on a separate study using retrograde tracing from the DMH/PeF in combination with in situ hybridization for vesicular glutamate transporter 2. These data show that hypertonic sodium, but not hyper-osmolarity or changes in lactate, is the key stimulus that provokes panic attacks in panic disorder, and is consistent with human studies.

  4. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes.

    Science.gov (United States)

    Proudhon, Charlotte; Duffié, Rachel; Ajjan, Sophie; Cowley, Michael; Iranzo, Julian; Carbajosa, Guillermo; Saadeh, Heba; Holland, Michelle L; Oakey, Rebecca J; Rakyan, Vardhman K; Schulz, Reiner; Bourc'his, Déborah

    2012-09-28

    Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Structure, function and carcinogenicity of metabolites of methylated and non-methylated polycyclic aromatic hydrocarbons: a comprehensive review.

    Science.gov (United States)

    Flesher, James W; Lehner, Andreas F

    2016-01-01

    The Unified Theory of PAH Carcinogenicity accommodates the activities of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) and states that substitution of methyl groups on meso-methyl substituted PAHs with hydroxy, acetoxy, chloride, bromide or sulfuric acid ester groups imparts potent cancer producing properties. It incorporates specific predictions from past researchers on the mechanism of carcinogenesis by methyl-substituted hydrocarbons, including (1) requirement for metabolism to an ArCH2X type structure where X is a good leaving group and (2) biological substitution of a meso-methyl group at the most reactive center in non-methylated hydrocarbons. The Theory incorporates strong inferences of Fieser: (1) The mechanism of carcinogenesis involves a specific metabolic substitution of a hydrocarbon at its most reactive center and (2) Metabolic elimination of a carcinogen is a detoxifying process competitive with that of carcinogenesis and occurring by a different mechanism. According to this outlook, chemical or biochemical substitution of a methyl group at the reactive meso-position of non-methylated hydrocarbons is the first step in the mechanism of carcinogenesis for most, if not all, PAHs and the most potent metabolites of PAHs are to be found among the meso methyl-substituted hydrocarbons. Some PAHs and their known or potential metabolites and closely related compounds have been tested in rats for production of sarcomas at the site of subcutaneous injection and the results strongly support the specific predictions of the Unified Theory.

  6. PAX1 methylation analysis by MS-HRM is useful in triage of high-grade squamous intraepithelial lesions.

    Science.gov (United States)

    Wang, Zhen-Ming

    2014-01-01

    This study is aimed to investigate the role of paired boxed gene 1 (PAX1) methylation analysis by methylation- sensitive high-resolution melting (MS-HRM) in the detection of high grade lesions in atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion (ASC-H) and compared its performance with the Hybrid Capture 2 (HC2) human papillomavirus (HPV) test. In our study, 130 cases with a diagnosis of ASC-H from the cervical cytological screening by Thinprep cytologic test (TCT) technique were selected for triage. Their cervical scrapings were collected and evaluated by using PAX1 methylation analysis (MS-HRM) and high-risk HPV DNA test (HC2), followed by colposcopy and cervical biopsy. Chi-square test were used to test the differences of PAX1 methylation or HPV infection between groups. In the detection of CIN2+, the sensitivity, specificity, the PPV, NPV and the accuracy of PAX1 MS-HRM assay and high-risk HPV (HR-HPV) tests were respectively 80.6% vs 67.7%, 94.9% vs 54.5%, 83.3%, vs 31.8%, 94.0% vs 84.4%, and 91.5% vs 57.7%. The PAX1 MS-HRM assay proved superior to HR-HPV testing in the detection of high grade lesions (CIN2+) in ASC-H. This approach could screen out the majority of high grade lesion cases of ASC-H, and thus could reduce the referral rate to colposcopy.

  7. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  8. Are clinicopathological features of colorectal cancers with methylation in half of CpG island methylator phenotype panel markers different from those of CpG island methylator phenotype-high colorectal cancers?

    Science.gov (United States)

    Bae, Jeong Mo; Rhee, Ye-Young; Kim, Kyung Ju; Wen, Xianyu; Song, Young Seok; Cho, Nam-Yun; Kim, Jung Ho; Kang, Gyeong Hoon

    2016-01-01

    CpG island methylator phenotype (CIMP)-high (CIMP-H) colorectal cancer (CRC) is defined when a tumor shows methylation at greater than or equal to 60% of CIMP panel markers. Although CRCs with methylation at 50% of panel markers are classified as CIMP-low/CIMP-0 tumors, little is known regarding the clinicopathological and molecular features of CRCs with methylation at 4/8 panel markers (4/8 methylated markers) and whether they are akin to CIMP-H or CIMP-low/CIMP-0 CRCs in terms of their clinicopathological or molecular features. A total of 1164 cases of surgically resected CRC were analyzed for their methylation status in 8 CIMP panel markers, and the frequencies of various clinicopathological and molecular features were compared between CRCs with 0/8, 1/8 to 3/8, 4/8, and 5/8 to 8/8 methylated markers. CRCs with 4/8 methylated markers were closer to CRCs with 5/8 to 8/8 methylated markers in terms of sex distribution, mucin production, serration, nodal metastasis, CK7 expression, CK20 loss, and CDX2 loss frequencies and overall survival rate. CRCs with methylation at 4/8 markers were closer to CRCs with 1/8 to 3/8 methylated markers in terms of less frequent right colon location and poor differentiation. CRCs with 4/8 methylated markers showed the shortest overall survival time compared with CRCs with 0/8, 1/8 to 3/8, 4/8, or 5/8 to 8/8 methylated markers. In terms of clinicopathological and molecular features, CRCs with 4/8 methylated markers appeared to be closer to CIMP-H than to CIMP-low/CIMP-0 and would thus be better classified as CIMP-H if the CRCs require classification into either CIMP-H or CIMP-low/CIMP-0. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. INHIBISI AKTIVITAS PROLIFERASI SEL DAN PERUBAHAN HISTOPATOLOGIS MUKOSA WISTAR DENGAN PEMBERIAN PERASAN SELEDRI

    Directory of Open Access Journals (Sweden)

    Aswiyanti Asri

    2008-09-01

    Full Text Available AbstrakTelah dilakukan penelitian mengenai pengaruh pemberian perasan seledri pada tikus wistar yang diinduksi karsinogenesis kolon.Penelitian ini bertujuan untuk membuktikan bahwa seledri dapat mencegah karsinogenesis kolon pada tikus wistar yang diinduksi dengan 1,2 dimethylhydrazine (DMH dengan dan tanpa diet tinggi lemak dan tinggi protein.Penelitian ini adalah penelitian eksperimental dengan desain randomized post test control group. Subyek penelitian adalah 25 ekor tikus wistar jantan berusia 12 minggu yang dibagi menjadi 5 kelompok. Kelompok I mendapat injeksi 1,2 DMH subkutan; kelompok II mendapat injeksi 1,2 DMH dan seledri per oral ; kelompok III mendapat injeksi 1,2 DMH subkutan dan diet tinggi lemak dan protein sedangkan kelompok IV selain mendapat injeksi 1,2 DMH subkutan dan diet tinggi lemak dan protein, juga diberi seledri per oral. Perlakuan untuk kelompok I –IV diberikan selama 12 minggu. Sedangkan kelompok V mendapat 1,2 DMH dan seledri selama 16 minggu.Setelah masa perlakuan berakhir, semua tikus dimatikan dan usus besar diambil. Untuk menilai perubahan histopatologik salah satu potongan diproses dan diwarnai dengan HE. Potongan yang lain diwarnai dengan teknik argirofilik dari Ploton untuk analisis aktivitas proliferasi sel. Perubahan histopatologis dinilai secara mikroskopik sesuai kriteria WHO sedangkan aktivitas proliferasi sel dinilai dari jumlah titik AgNOR.Perubahan histopatologik menunjukkan bahwa tikus yang diinduksi dengan 1,2 DMH atau disertai diet tinggi lemak dan protein mengalami perubahan morfologik dan displasia yang lebih berat dibanding tikus yang diinduksi dan diberi seledri.Analisis statistik memakai uji Mann-Whitney didapatkan perbedaan bermakna aktivitas proliferasi sel antara kelompok yang diberi 1,2 DMH dan seledri dengan kelompok yang hanya diberi 1,2 DMH. Pemberian seledri mampu menghambat perubahan histopatologis dan aktivitas proliferasi argrophylic nucledar regions (AgNOR sel epitel mukosa pada

  10. Selective determination of dimenhydrinate in presence of six of its related substances and potential impurities using a direct GC/MS method

    Directory of Open Access Journals (Sweden)

    Tarek S. Belal

    2016-01-01

    Full Text Available A novel simple, direct and selective gas chromatography–mass spectrometry (GC/MS procedure was developed for the determination of the antihistamine drug dimenhydrinate (DMH in presence of six of its related substances and potential impurities, namely, diphenylmethane, diphenylmethanol, benzophenone, orphenadrine, caffeine and 8-chlorocaffeine. The method involved resolution of the underivatized compounds using a trifluoropropylmethyl polysiloxane (Rtx-200 capillary column and the mass spectrometric detection was carried out in the electron-impact (EI mode. Excellent baseline separation of DMH and the cited related substances was achieved in less than 15 min. Quantification of the parent drug DMH was based on measuring its peak area. The reliability and analytical performance of the proposed method were validated with respect to linearity, range, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curve of DMH was linear over the range 50–500 μg/mL with determination coefficient (R2 = 0.9982. The proposed method was successfully applied for the assay of DMH in tablets dosage form with recoveries >96.80%.

  11. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles?

    Science.gov (United States)

    Kossoski, F.; Varella, M. T. do N.

    2017-10-01

    The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.

  12. Dissociation dynamics of methylal

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The dissociation of methylal is investigated using mass spectrometry, combined with a pyrolytic radical source and femtosecond pump probe experiments. Based on preliminary results two reaction paths of methylal dissociation are proposed and discussed. (author) 4 fig., 3 refs.

  13. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress.

    Science.gov (United States)

    Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang

    2011-09-20

    DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.

  14. MTHFR methylation moderates the impact of smoking on DNA methylation at AHRR for African American young adults.

    Science.gov (United States)

    Beach, Steven R H; Lei, Man Kit; Ong, Mei Ling; Brody, Gene H; Dogan, Meeshanthini V; Philibert, Robert A

    2017-09-01

    Smoking has been shown to have a large, reliable, and rapid effect on demethylation of AHRR, particularly at cg05575921, suggesting that methylation may be used as an index of cigarette consumption. Because the availability of methyl donors may also influence the degree of demethylation in response to smoking, factors that affect the activity of methylene tetrahydrofolate reductase (MTHFR), a key regulator of methyl group availability, may be of interest. In the current investigation, we examined the extent to which individual differences in methylation of MTHFR moderated the association between smoking and demethylation at cg05575921 as well as at other loci on AHRR associated with a main effect of smoking. Using a discovery sample (AIM, N = 293), and a confirmatory sample (SHAPE, N = 368) of young adult African Americans, degree of methylation of loci in the first exon of MTHFR was associated with amplification of the association between smoking and AHRR demethylation at cg05575921. However, genetic variation at a commonly studied MTHFR variant, C677T, did not influence cg05575921 methylation. The significant interaction between MTHFR methylation and the smoking-induced response at cg05575921 suggests a role for individual differences in methyl cycle regulation in understanding the effects of cigarette consumption on genome wide DNA methylation. © 2017 Wiley Periodicals, Inc.

  15. Synthesis of [methyl-{sup 14}C]crotonobetaine from DL-[methyl-{sup 14}C]carnitine

    Energy Technology Data Exchange (ETDEWEB)

    Loester, H.; Seim, H. [Leipzig Univ. (Germany). Inst. of Clinical Chemistry and Pathobiochemistry

    1996-02-01

    The causes of carnitine deficiency syndromes are not completely understood, but decomposition of L-carnitine in vivo is likely to be involved. Carnitine is metabolized to {gamma}-butyrobetaine, and crotonobetaine is probably an intermediate in this pathway. To validate experimentally the precursor-product relationship between the three physiologically occuring {gamma}-betaines - L-carnitine, crotonobetaine, {gamma}-butyrobetaine - labelling with stable or radioactive isotopes became necessary. Methyl-labelled carnitine isomers (L(-)-, D(+)- or DL-) or {gamma}-butyrobetaine can be easily synthesized by methylation of 4-amino-3-hydroxybutyric acid isomers or 4-aminobutyric acid, respectively. Because of problems with the 4-aminocrotonic acid, we synthesized labelled crotonbetaine from labelled carnitine. Thus, DL-[methyl-{sup 14}C]carnitine was dehydrated by reaction with concentrated sulfuric acid. After removal of the latter the products were separated and purified by ion exchange chromatography on DOWEX 50 WX8 (200 - 400 mesh) and gradient elution with hydrochloric acid. In addition to the labelled main product [methyl-{sup 14}C]crotonobetaine (yield about 50 %), [methyl-{sup 14}C]glycine betaine and [methyl-{sup 14}C]acetonyl-trimethylammonium (ATMA) were formed. The end products were identified by combined thin layer chromatography/autoradiography and quantified by liquid scintillation counting. (Author).

  16. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno

    2015-01-01

    acid (LNA)/ 2' O-methyl RNA (2'OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization...... step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion......In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo...

  17. [Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E cytoplasm male sterility induced by environmental conditions].

    Science.gov (United States)

    Elkonin, L A; Gerashchenkov, G A; Domanina, I V; Rozhnova, N A

    2015-03-01

    Heritable phenotypic alterations occurring during plant ontogenesis under the influence of environmental factors are among the most intriguing genetic phenomena. It was found that male-sterile sorghum hybrids in the 9E cytoplasm from the F1 and F2 generations, which were obtained by crossing CMS lines with different fertile lines grown in field conditions, were transferred to greenhouse produce fertile tillers. Lines created by the self-pollination of revertant tillers exhibit complete male fertility upon cultivation under various environments (in the field, Tdry plot,(y) Tirrigated plot(y)). In a number of test-crosses of revertants to CMS lines in the 9E cytoplasm, restoration of male fertility in F1 hybrids was found, indicating that revertants possess functional fertility-restoring genes. A high positive correlation was found between the fertility level of the test-cross hybrids and the hydrothermal coefficient (the ratio of the sum of precipitation to the sum of temperatures) during the booting stage and pollen maturation (r = 0.75...0.91; Pmale fertility are due to up-regulation of fertility-restoring genes by a high level of water availability. Comparative MSAP-analysis of DNA of male-sterile and male-fertile test-cross hybrids using HpaII/MspI restrictases and primers to polygalacturonase gene ADPG2, which is required for cell separation during reproductive development, and gene MYB46, the transcription factor regulating secondary wall biosynthesis, revealed differences in the number and the length of amplified fragments. Changes in the methylation of these genes in conditions of drought stress are apparently the reason for male sterility of sorghum hybrids in the 9E cytoplasm. These data demonstrate that methylation of nuclear genes in sterility-inducing cytoplasm may be one of mechanisms causing the CMS phenomenon.

  18. Radioprotection of 1,2-dimethylhydrazine-initiated colon cancer in rats using low-dose γ rays by modulating multidrug resistance-1, cytokeratin 20, and β-catenin expression.

    Science.gov (United States)

    Nabil, H M; Hassan, B N; Tohamy, A A; Waaer, H F; Abdel Moneim, A E

    2016-03-01

    Ionizing radiation is a widely used therapy for solid tumors. However, high-dose ionizing radiation causes apoptosis, transforms normal cells into tumor cells, and impairs immune functions, leading to the defects in the removal of damaged or tumor cells. In contrast, low-dose radiation has been reported to exert various beneficial effects in cells. This experimental study investigated the effect of γ rays at low dose on the development of colorectal tumor in a 1,2-dimethylhydrazine (DMH)-induced colon cancer. Colorectal tumor model was induced in Wistar rats by subcutaneous injection of DMH (20 mg/kg) once a week for 15 weeks. Starting from zero day of DMH injection, a single low dose of whole-body γ irradiation of 0.5 Gy/week was applied to the rats. A significant reduction in lipid peroxidation, nitric oxide, and elevation in the glutathione content and antioxidant enzyme activity (superoxide dismutase and catalase) were observed after γ irradiation comparing with DMH group. Moreover, γ ray reduced the expressions of multidrug resistance 1 (MDR1), β-catenin, and cytokeratin 20 (CK20) those increased in DMH-treated rats. However, survivin did not change with γ ray treatment. A histopathological examination of the DMH-injected rats revealed ulcerative colitis, dysplasia, anaplasia, and hyperchromasia. An improvement in the histopathological picture was seen in the colon of rats exposed to γ rays. In conclusion, the present results showed that low-dose γ ray significantly inhibited DMH-induced colon carcinogenesis in rats by modulating CK20, MDR1, and β-catenin expression but not survivin expression. © The Author(s) 2015.

  19. Process for the production of methyl methacrylate

    NARCIS (Netherlands)

    Eastham, G.R.; Johnson, D.W.; Straathof, A.J.J.; Fraaije, Marco; Winter, Remko

    2015-01-01

    A process of producing methyl methacrylate or derivatives thereof is described. The process includes the steps of; (i) converting 2-butanone to methyl propionate using a Baeyer-Villiger monooxygenase, and (ii) treating the methyl propionate produced to obtain methyl methacrylate or derivatives

  20. Methylation patterns in marginal zone lymphoma.

    Science.gov (United States)

    Arribas, Alberto J; Bertoni, Francesco

    Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  2. Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene

    DEFF Research Database (Denmark)

    Candiloro, Ida Lm; Mikeska, Thomas; Hokland, Peter

    2008-01-01

    ABSTRACT: BACKGROUND: Methylation-sensitive high resolution melting (MS-HRM) methodology is able to recognise heterogeneously methylated sequences by their characteristic melting profiles. To further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM (dMS-HRM) t......ABSTRACT: BACKGROUND: Methylation-sensitive high resolution melting (MS-HRM) methodology is able to recognise heterogeneously methylated sequences by their characteristic melting profiles. To further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM (d......MS-HRM) that involves the amplification of single templates after limiting dilution to quantify and to determine the degree of methylation. We used this approach to study methylation of the CDKN2B (p15) cell cycle progression inhibitor gene which is inactivated by DNA methylation in haematological malignancies...... the methylated alleles and assess the degree of methylation. Direct sequencing of selected dMS-HRM products was used to determine the exact DNA methylation pattern and confirmed the degree of methylation estimated by dMS-HRM. CONCLUSION: dMS-HRM is a powerful technique for the analysis of methylation in CDKN2B...

  3. Inductive effect of methyl group in a series of methylated indoles: A ...

    Indian Academy of Sciences (India)

    Vol. 125, No. 4, July 2013, pp. 905–912. c Indian Academy of Sciences. Inductive effect of methyl group in a series of methylated indoles: A graph theoretical analysis in the light of density functional theory and correlation with experimental charge transfer transition energies. AMIT S TIWARYa,∗ and ASOK K MUKHERJEEb.

  4. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks

    2004-01-01

    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  5. Synthesis of 14C-labelled α-methyl tyrosine

    International Nuclear Information System (INIS)

    Rajagopal, S.; Venkatachalam, T.K.; Conway, T.; Diksic, M.

    1992-01-01

    A new route for the preparation of radioactively labelled α-methyl L-tyrosine is described. The labelling at the α position has been successfully achieved with 14 C-, 11 C- (very preliminary, unpublished), and 3 H-labelled methyl iodide. A detailed report on 14 C-labelling at the α position and the hydrolysis of 4-methoxy α-methyl phenylalanine is presented. The alkylation proceeds via the methylation of the carbanion of N-benzylidene 4-methoxy phenylalanine methyl ester 2. Hydrolysis of 4-O methyl tyrosine to tyrosine by HBr and HI were analysed and used in the optimization of the hydrolysis conditions of 4. Enantiomeric purity of the isolated L-isomer has been found to be 99% as judged by HPLC. Pseudo first-order rate constant for the hydrolysis of 14 C-labelled α-methyl 4-methoxy phenyl alanine methyl ester was determined. Preliminary findings of the 3 H- and 11 C-radiolabelled α-methyl tyrosine (methyl labelled) are also mentioned. For the first time it was shown that α-methyl D,L-tyrosine can be separated into enantiomerically pure α-methyl D- and L-tyrosine using a CHIRALPAK WH column. (author)

  6. Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M = Ni, Pd) with methylation agents

    KAUST Repository

    Lee, S. Y Tina; Ghani, Amylia Abdul; D'Elia, Valerio; Cokoja, Mirza; Herrmann, Wolfgang A.; Basset, Jean-Marie; Kü hn, Fritz

    2013-01-01

    Ring opening of various nickela- and palladalactones induced by the cleavage of the M-O bond by methyl trifluoromethanesulfonate (MeOTf) and methyl iodide (MeI) is examined. Experimental evidence supports the mechanism of ring opening by the alkylating agent followed by β-H elimination leading to methyl acrylate and a metal-hydride species. MeOTf shows by far higher efficiency in the lactone ring opening than any other methylating agent including the previously reported methyl iodide. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  7. Methylation pathways in schizophrenia

    International Nuclear Information System (INIS)

    Sargent, T.W. III.

    1982-01-01

    Research on the biochemical causes of human psychosis concentrates on investigating whether schizophremia is linked to abnormalities in the metabolism of methyl carbon groups in the body. The metabolism of C-14 labeled methyl groups in methionine is studied in animals, normal subjects and patient volunteers

  8. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC and its application for DNA methylation analysis

    Directory of Open Access Journals (Sweden)

    Ottaviani Diego

    2008-05-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. Methods To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP, methylated DNA immunoprecipitation (MeDIP, array comparative genomic hybridization (aCGH and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. Results Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs. Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. Conclusion A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.

  9. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    Directory of Open Access Journals (Sweden)

    Zhi-hong Huang

    2015-01-01

    Full Text Available Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA and graphitized carbon blacks (GCB, the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  10. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS.

    Science.gov (United States)

    Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  11. Synthesis of DL-adrenaline (methyl C{sup 14}) (1961); Synthese de la DL-adrenaline (methyle {sup 14}C) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Audinot, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The sodium derivative of 5-3-4 dibenzyl oxyphenyl 2-oxazolidinone reacted with methyl iodide {sup 14}C, in stoichiometric quantity, gives rise to the corresponding N-methyl {sup 14}C derivative. The oxazolidinone ring is opened by concentrated hydrochloric acid and the benzyl groups removed by catalytic hydrogenolysis. Adrenaline methyl {sup 14}C is then purified on Dowex 50 X-12 exchange resin. Overall-yield is 45 per cent based upon methyl iodide {sup 14}C. (author) [French] Le derive sode de la (dibenzyloxy-3-4-phenyl)-5 oxazolidinone-2 traite par l'iodure de methyle {sup 14}C, en proportion stoechiometrique, fournit le derive N-methyle {sup 14}C correspondant. Apres ouverture du cycle oxazolidinone par HCL concentre et debenzylation par hydrogenation catalytique, on purifie l'adrenaline (methyle {sup 14}C) par chromatographie sur resine echangeuse Dowex 50 X-12. Le rendement est de 45 pour cent par rapport a l'iodure de methyle {sup 14}C. (auteurs)

  12. Synthesis of DL-adrenaline (methyl C{sup 14}) (1961); Synthese de la DL-adrenaline (methyle {sup 14}C) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L.; Audinot, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The sodium derivative of 5-3-4 dibenzyl oxyphenyl 2-oxazolidinone reacted with methyl iodide {sup 14}C, in stoichiometric quantity, gives rise to the corresponding N-methyl {sup 14}C derivative. The oxazolidinone ring is opened by concentrated hydrochloric acid and the benzyl groups removed by catalytic hydrogenolysis. Adrenaline methyl {sup 14}C is then purified on Dowex 50 X-12 exchange resin. Overall-yield is 45 per cent based upon methyl iodide {sup 14}C. (author) [French] Le derive sode de la (dibenzyloxy-3-4-phenyl)-5 oxazolidinone-2 traite par l'iodure de methyle {sup 14}C, en proportion stoechiometrique, fournit le derive N-methyle {sup 14}C correspondant. Apres ouverture du cycle oxazolidinone par HCL concentre et debenzylation par hydrogenation catalytique, on purifie l'adrenaline (methyle {sup 14}C) par chromatographie sur resine echangeuse Dowex 50 X-12. Le rendement est de 45 pour cent par rapport a l'iodure de methyle {sup 14}C. (auteurs)

  13. Ethics and governance in digital mental health research – a joint academic and provider perspective

    Directory of Open Access Journals (Sweden)

    Aislinn Bergin

    2015-10-01

    In DMH research the use of “ethics-as-process” can enable adaptation to the ‘unknown unknowns’ but there will be an increasing need for protocols to be established and maintained. Significant in these protocols will be guidance from DMH services as to how research can be encouraged as well as their position of responsibility. DMH services would benefit from a ‘toolkit’ to support their decision-making on which research to participate in, and how best to involve their users in this process.

  14. Transgenerational epigenetics: Inheritance of global cytosine methylation and methylation-related epigenetic markers in the shrub Lavandula latifolia.

    Science.gov (United States)

    Herrera, Carlos M; Alonso, Conchita; Medrano, Mónica; Pérez, Ricardo; Bazaga, Pilar

    2018-04-01

    The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants. © 2018 Botanical Society of America.

  15. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique.

    Science.gov (United States)

    Tang, Xiao-Mei; Tao, Xiang; Wang, Yan; Ma, Dong-Wei; Li, Dan; Yang, Hong; Ma, Xin-Rong

    2014-12-01

    Perennial ryegrass (Lolium perenne), an excellent grass for forage and turf, is widespread in temperate regions. Drought is an important factor that limits its growth, distribution, and yield. DNA methylation affects gene expression and plays an important role in adaptation to adverse environments. In this study, the DNA methylation changes in perennial ryegrass under drought stress were assessed using methylation-sensitive amplified polymorphism (MSAP). After 15 days of drought stress treatment, the plant height was less than half of the control, and the leaves were smaller and darker. Genome-wide, a total of 652 CCGG sites were detected by MSAP. The total methylation level was 57.67 and 47.39 % in the control and drought treatment, respectively, indicating a decrease of 10.28 % due to drought exposure. Fifteen differentially displayed DNA fragments in MSAP profiles were cloned for sequencing analysis. The results showed that most of the genes involved in stress responses. The relative expression levels revealed that three demethylated fragments were up-regulated. The expression of a predicted retrotransposon increased significantly, changing from hypermethylation to non-methylation. Although the extent of methylation in two other genes decreased, the sites of methylation remained, and the expression increased only slightly. All of these results suggested that drought stress decreased the total DNA methylation level in perennial ryegrass and demethylation up-regulated related gene expressions and that the extent of methylation was negatively correlated with expression. Overall, the induced epigenetic changes in genome probably are an important regulatory mechanism for acclimating perennial ryegrass to drought and possibly other environmental stresses.

  16. Aberrant Methylation and Reduced Expression of LHX9 in Malignant Gliomas of Childhood

    Directory of Open Access Journals (Sweden)

    Valentina Vladimirova

    2009-07-01

    Full Text Available High-grade gliomas (HGGs of childhood represent approximately 7% of pediatric brain tumors. They are highly invasive tumors and respond poorly to conventional treatments in contrast to pilocytic astrocytomas, which usually are well demarcated and frequently can be cured by surgery. The molecular events for this clinical relevant finding are only partially understood. In the current study, to identify aberrantly methylated genes that may be involved in the tumorigenesis of pediatric HGGs, we performed a microarray-based differential methylation hybridization approach and found frequent hypermethylation of the LHX9 (human Lim-homebox 9 gene encoding a transcription factor involved in brain development. Bisulfite genomic sequencing and combined bisulfite restriction analysis showed that HGGs were frequently methylated at two CpG-rich LHX9 regions in comparison to benign, nondiffuse pilocytic astrocytomas and normal brain tissues. The LHX9 hypermethylation was associated with reduced messenger RNA expression in pediatric HGG samples and corresponding cell lines. This epigenetic modification was reversible by pharmacological inhibition (5-aza-2′-deoxycytidine, and reexpression of LHX9 transcript was induced in pediatric glioma cell lines. Exogenous expression of LHX9 in glioma cell lines did not directly affect cell proliferation and apoptosis but specifically inhibited glioma cell migration and invasion in vitro, suggesting a possible implication of LHX9 in the migratory phenotype of HGGs. Our results demonstrate that the LHX9 gene is frequently silenced in pediatric malignant astrocytomas by hypermethylation and that this epigenetic alteration is involved in glioma cell migration and invasiveness.

  17. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME).

    Science.gov (United States)

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing

    2015-06-01

    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors

    International Nuclear Information System (INIS)

    Klajic, Jovana; Tost, Jörg; Kristensen, Vessela N; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise

    2013-01-01

    Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above

  19. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    Science.gov (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  20. Hybrid mimics and hybrid vigor in Arabidopsis

    Science.gov (United States)

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  1. Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway

    International Nuclear Information System (INIS)

    Patel, Rachana; Ingle, Arvind; Maru, Girish B.

    2008-01-01

    Tea polyphenols like epigallocatechin gallate and theaflavins are established chemopreventive agents for colorectal carcinogenesis. However, studies on evaluating similar chemopreventive properties of thearubigins or polymeric black tea polyphenols (PBPs), the most abundant polyphenols in black tea, are limited. Hence, in the present study we aim to investigate chemopreventive effects along with probable mechanisms of action of PBP extract employing 1,2-dimethylhydrazine (DMH)-induced colorectal carcinogenesis in Sprague-Dawley rats as experimental model. The present study suggests that PBPs, like other tea polyphenols, also inhibit DMH-induced colorectal tumorigenesis by decreasing tumor volume and multiplicity. This study also shows that although the pretreatment with PBP extract could induce detoxifying enzymes in hepatic and colorectal tissue, it did not show any additional chemopreventive effects when compared to treatments with PBP extract after initiation with DMH. Mechanistically, PBP extract may inhibit colorectal carcinogenesis by decreasing DMH-induced cell proliferation via Wnt/β-catenin pathway. Treatments with PBP extract showed decreased levels of COX-2, c-MYC and cyclin D1 proteins which aid cell proliferation probably by regulating β-catenin by maintaining expression of APC and decreasing inactivation of GSK3β. DMH-induced activation of MAP kinases such as ERK and JNK was also found to be inhibited by treatments with PBP extract. In conclusion, the protective effects of PBP extract could be attributed to inhibition of DMH-induced cellular proliferation probably through β-catenin regulation

  2. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

    Science.gov (United States)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2017-01-01

    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  3. Cytosine methylation at CpCpG sites triggers accumulation of non-CpG methylation in gene bodies

    OpenAIRE

    Zabet, NR; Catoni, Marco; Prischi, F; Paszkowski, Jerzy Waclaw

    2017-01-01

    Methylation of cytosine is an epigenetic mark involved in the regulation of transcription, usually associated with transcriptional repression. In mammals, methylated cytosines are found predominantly in CpGs but in plants non-CpG methylation (in the CpHpG or CpHpH contexts, where H is A, C or T) is also present and is associated with the transcriptional silencing of transposable elements. In addition, CpG methylation is found in coding regions of active genes. In the absence of the demethylas...

  4. Towards successful Dissemination of Psychological First Aid: a study of provider training preferences.

    Science.gov (United States)

    Hambrick, Erin P; Rubens, Sonia L; Vernberg, Eric M; Jacobs, Anne K; Kanine, Rebecca M

    2014-04-01

    Dissemination of Psychological First Aid (PFA) is challenging considering the complex nature of disaster response and the various disaster mental health (DMH) trainings available. To understand challenges to dissemination in community mental health centers (CMHCs), interviews were conducted with nine DMH providers associated with CMHCs. Consensual qualitative analysis was used to analyze data. Interviews were targeted toward understanding organizational infrastructure, DMH training requirements, and training needs. Results clarified challenges to DMH training in CMHCs and factors that may promote buy-in for trainings. For example, resources are limited and thus allocated for state and federal training requirements. Therefore, including PFA in these requirements could promote adoption. Additionally, a variety of training approaches that differ in content, style, and length would be useful. To conclude, a conceptual model for ways to promote buy-in for the PFA Guide is proposed.

  5. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its ...

  6. Analysis of DNA Methylation of Gracilariopsis lemaneiformis Under Temperature Stress Using the Methylation Sensitive Amplification Polymorphism (MSAP) Technique

    Science.gov (United States)

    Peng, Chong; Sui, Zhenghong; Zhou, Wei; Hu, Yiyi; Mi, Ping; Jiang, Minjie; Li, Xiaodong; Ruan, Xudong

    2018-06-01

    Gracilariopsis lemaneiformis is an economically important agarophyte, which contains high quality gel and shows a high growth rate. Wild population of G. lemaneiformis displayed resident divergence, though with a low genetic diversity as was revealed by amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. In addition, different strains of G. lemaneiformis are diverse in morphology. The highly inconsistence between genetic background and physiological characteristics recommends strongly to the regulation at epigenetic level. In this study, the DNA methylation change in G. lemaneiformis among different generation branches and under different temperature stresses was assessed using methylation sensitive amplified polymorphism (MSAP) technique. It was shown that DNA methylation level among different generation branches was diverse. The full and total methylated DNA level was the lowest in the second generation branch and the highest in the third generation. The total methylation level was 61.11%, 60.88% and 64.12% at 15°C, 22°C and 26°C, respectively. Compared with the control group (22°C), the fully methylated and totally methylated ratios were increased in both experiment groups (15°C and 26°C). All of the cytosine methylation/demethylation transform (CMDT) was further analyzed. High temperature treatment could induce more CMDT than low temperature treatment did.

  7. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    Science.gov (United States)

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Hybrid photodetector based on CsPbBr3 perovskite nanocrystals and PC71BM fullerene derivative

    Science.gov (United States)

    Li, Tengteng; Liu, Meihong; Li, Qingyan; Chen, Run; Liu, Xin

    2018-05-01

    Here, a hybrid perovskite-organic photodetector was fabricated by integrating CsPbBr3 nanocrystals (NCs) with [6,6]-phenyl C71 butyric acid methyl ester (PC71BM), exhibiting remarkable optoelectronic properties in terms of photoresponsivity (1.72 A/W), detectivity (1.76 × 107 Jones), external quantum efficiency (EQE) (530%) under the illumination of 405 nm laser, and photoresponse time is shorter than 0.1 ms due to the assistance of heterojunction on the separation of photoexcitons.

  9. Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Ghosh, Amrita; Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata 700032, West Bengal (India); Ganguly, Saibal [Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17 B Bypass Road, Zuarinagar, Sancoale, Goa 403726 (India); Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-30

    Graphical abstract: The present work focuses on the synergistic effect of a novel hybrid hetero structure (n-type aluminum doped zinc oxide and p-type polyaniline), combining both sol-gel and in-situ oxidative polymerization method and studying its photoluminescence (PL), photocatalytic, electrochemical impedance spectroscopy (EIS), linear scan voltammetry (LSV) and photocurrent properties. - Highlights: • Aluminium doped zinc oxide-polyaniline (PAZ) hybrids were prepared by polymerization of aniline using aluminium doped zinc oxide nanorod templates. • The hybrids were used as visible light photocatalysts for methyl orange (MO) and rose bengal (RB) dye degradation. • First order rate constants of the photocatalytic process were evaluated as 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes respectively. • Photoluminescence and electrochemical properties were in accord with the photocatalytic performance of the hybrid. - Abstract: The emergence of organic-inorganic photoactive materials has led to marked progress in the field of heterogeneous visible-light photocatalysis. Visible-light active aluminium doped zinc oxide-polyaniline (PAZ) hybrid was prepared employing in-situ oxidative polymerization of polyaniline (PANI) in the presence of aluminium doped zinc oxide (AlZnO) nanorods, synthesized via sol-gel route. The compositions, structural and optical properties of the synthesized hybrids were characterized. Among various samples, the 22 wt% aluminium doped zinc oxide-polyaniline (PAZ 3) hybrid show the best photocatalytic action for the degradation of methyl orange (MO) and rose bengal (RB) dyes under visible-light illumination, even after repeated use. The performance of the photocatalytic process was determined by the first order rate constant, 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes, respectively. Scavenger test was used to determine the role of active

  10. Colorectal Cancer "Methylator Phenotype": Fact or Artifact?

    Directory of Open Access Journals (Sweden)

    Charles Anacleto

    2005-04-01

    Full Text Available It has been proposed that human colorectal tumors can be classified into two groups: one in which methylation is rare, and another with methylation of several loci associated with a "CpG island methylated phenotype (CIMP," characterized by preferential proximal location in the colon, but otherwise poorly defined. There is considerable overlap between this putative methylator phenotype and the well-known mutator phenotype associated with microsatellite instability (MSI. We have examined hypermethylation of the promoter region of five genes (DAPK, MGMT, hMLH1, p16INK4a, and p14ARF in 106 primary colorectal cancers. A graph depicting the frequency of methylated loci in the series of tumors showed a continuous, monotonically decreasing distribution quite different from the previously claimed discontinuity. We observed a significant association between the presence of three or more methylated loci and the proximal location of the tumors. However, if we remove from analysis the tumors with hMLH1 methylation or those with MSI, the significance vanishes, suggesting that the association between multiple methylations and proximal location was indirect due to the correlation with MSI. Thus, our data do not support the independent existence of the so-called methylator phenotype and suggest that it rather may represent a statistical artifact caused by confounding of associations.

  11. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    Science.gov (United States)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile-co-methyl

  12. Synthesis of N-methyl and N-11C-methyl spiperone by phase transfer catalysis in anhydrous solvent

    International Nuclear Information System (INIS)

    Omokawa, Hiroyoshi; Tanaka, Akira; Iio, Mayumi; Nishihara, Yoshiaki; Inoue, Osamu; Yamazaki, Toshio.

    1985-01-01

    Spiperone, a butyrophenone neuroleptic drug, has been used in binding studies of dopamine receptors. Langstrom et al. developed N- 11 C-methyl spiperone, and, in cooperate with Wagner et al., made it possible to visualize the distribution of dopamine receptors in the human brain in vivo. In this paper, we independently developed another synthetic method of N- 11 C-methyl spiperone using the phase transfer catalyst in an anhydrous solvent. Separation of the product is feasible only by passing the reactant solution through a Millipore filter and injecting it onto high pressure liquid chromatography (HPLC). The time required for the synthesis and purification of N- 11 C-methyl spiperone from 11 C-methyl iodide and spiperone was 20 min. Radiochemical yield exceeded 35 % against 11 C-methyl iodide without correcting decay of the radioactivity. (author)

  13. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer.

    Science.gov (United States)

    Wu, Yu; Davison, Jerry; Qu, Xiaoyu; Morrissey, Colm; Storer, Barry; Brown, Lisha; Vessella, Robert; Nelson, Peter; Fang, Min

    2016-04-02

    To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.

  14. [Specific features of 2-methyl hydroxybenzene and 3-methyl hydroxybenzene distribution in the organism of warm-blooded animals].

    Science.gov (United States)

    Shormanov, B K; Grishenko, V K; Astashkina, A P; Elizarova, M K

    2013-01-01

    The present work was designed to study the specific features of 2-methyl hydroxybezene and 3-methyl hydroxybenzene distribution after intragastric administration of these toxicants to warm-blooded animals (rats). They were detected in the unmetabolized form in the internal organs and blood of the animals. The levels of 2-methyl hydroxybezene were especially high in the stomach and blood whereas the maximum content of 3-methyl hydroxybenzene was found in brain, blood, small intestines of the poisoned rats.

  15. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  16. Application of locked nucleic acid-based probes in fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Carvalho, Daniel R; Guimarães, Nuno

    2016-01-01

    of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2′-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall......Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have...

  17. Modeling spatiotemporal dynamics of DNA methylation

    DEFF Research Database (Denmark)

    Lövkvist, Cecilia Elisabet

    into how epigenetic marks are distributed in the human genome. In the first part of the thesis, we investigate DNA methylation and maintenance of methylation patterns throughout cell division. We argue that collaborative models, those where the methylation of CpG sites depends on the methylation status...... into the game more explicitly in another type of model that speaks out the duality of the two aspects. Using statistical analysis of experimental data, this thesis further explores a link between DNA methylation and nucleosome occupancy. By comparing the patterns on promoters to regions with similar Cp...... division. The patterns of epigentic marks depend on enzymes that ensure their maintenance and introduction. Using theoretical models, this thesis proposes new mechanisms for how enzymes operate to maintain patterns of epigenetic marks. Through analysis of experimental data this work gives new insight...

  18. Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Gail, S.; Sarathy, S.M.; Thomson, M.J. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 (Canada); Dievart, P.; Dagaut, P. [CNRS, 1C, Ave de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2008-12-15

    This study examines the effect of unsaturation on the combustion of fatty acid methyl esters (FAME). New experimental results were obtained for the oxidation of methyl (E)-2-butenoate (MC, unsaturated C{sub 4} FAME) and methyl butanoate (MB, saturated C{sub 4} FAME) in a jet-stirred reactor (JSR) at atmospheric pressure under dilute conditions over the temperature range 850-1400 K, and two equivalence ratios ({phi}=0.375,0.75) with a residence time of 0.07 s. The results consist of concentration profiles of the reactants, stable intermediates, and final products, measured by probe sampling followed by on-line and off-line gas chromatography analyses. The oxidation of MC and MB in the JSR and under counterflow diffusion flame conditions was modeled using a new detailed chemical kinetic reaction mechanism (301 species and 1516 reactions) derived from previous schemes proposed in the literature. The laminar counterflow flame and JSR (for {phi}=1.13) experimental results used were from a previous study on the comparison of the combustion of both compounds. Sensitivity analyses and reaction path analyses, based on rates of reaction, were used to interpret the results. The data and the model show that MC has reaction pathways analogous to that of MB under the present conditions. The model of MC oxidation provides a better understanding of the effect of the ester function on combustion, and the effect of unsaturation on the combustion of fatty acid methyl ester compounds typically found in biodiesel. (author)

  19. Structural, optical, and improved photocatalytic properties of CdS/SnO_2 hybrid photocatalyst nanostructure

    International Nuclear Information System (INIS)

    Venkata Reddy, Ch.; Ravikumar, R.V.S.S.N.; Srinivas, Ganganagunta; Shim, Jaesool; Cho, Migyung

    2017-01-01

    Highlights: • CdS, SnO_2, and a CdS/SnO_2 hybrid photocatalyst were synthesized using a two-step technique. • The dislocation density, strain values are higher for CdS/SnO_2 hybrid photocatalyst. • The CdS/SnO_2 has a higher surface area and smaller crystallite size compared to pristine CdS. • The CdS/SnO_2 catalyst greatly reduced recombination of electron and hole pairs. - Abstract: CdS, SnO_2 and CdS/SnO_2 hybrid photocatalyst nanostructure were synthesized using a two-step (co-precipitation/hydrothermal) method. The as-prepared materials were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), surface analysis (BET), photoluminescence spectra (PL), UV–Vis diffusion reflectance spectroscopy (DRS), fourier transform infrared spectroscopy (FT-IR), and photocatalytic activity. The band gap energies calculated from the DRS results are 3.30, 2.15, and 2.99 eV for pristine SnO_2, CdS, and the CdS/SnO_2 hybrid photocatalyst, respectively. The CdS/SnO_2 hybrid photocatalyst showed more efficient charge carrier separation and improved photocatalytic degradation of methyl orange (MO). The highest degradation rate constant was achieved for the CdS/SnO_2 hybrid photocatalyst (0.02434 min"−"1) compared to CdS (0.01381 min"−"1) and SnO_2 (0.00878 min"−"1). The present study provides insights for improving the photocatalytic activity and photo-stability of CdS/SnO_2 hybrid photocatalyst.

  20. Naturally occurring methyl salicylate glycosides.

    Science.gov (United States)

    Mao, Ping; Liu, Zizhen; Xie, Meng; Jiang, Rui; Liu, Weirui; Wang, Xiaohong; Meng, Shen; She, Gaimei

    2014-01-01

    As an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates' without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.

  1. Effect of ethyl-, methyl- and hydroxyethyl-nitrosourea on the mouse testis

    Energy Technology Data Exchange (ETDEWEB)

    Oakberg, E.F.; Crosthwait, C.D.

    1983-01-01

    Hybrid male 101 x C3HF/sub 1/ mice were given intraperitoneal injections of methyl-, ethyl- and hydroxyethyl-nitrosourea and killed 3-16 days later. All compounds were similar in that all differentiating spermatogonia from type A/sub 1/ to early type B were killed by 50 mg/kg and higher doses of ENU and by 75 mg/kg MNU. Cells exposed to leptotene to 100 and 250 mg/kg ENU and 455 mg/kg HENU showed a delayed response with degeneration in pachytene 5 days later. Labeling prior to exposure to ENU indicated that the effect of stage of the mitotic cycle on sensitivity to cell killing is less marked than for radiation. This may be the explanation for the s-shaped mutation induction curve obtained with ENU in contrast to the humped dose-response curve observed for radiation.

  2. Protein methylation reactions in intact pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.

    1989-01-01

    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ( 3 H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented

  3. [Glucagon-like peptide 2, a neurotransmitter with a newly discovered role in the regulation of food ingestion].

    Science.gov (United States)

    Tang-Christensen, M; Larsen, P J; Thulesen, J; Nielsen, J R; Vrang, N

    2001-01-15

    We report here that glucagon-like peptide 2(GLP-2) and its receptor constitute a distinct projection system connecting the nucleus of the solitary tract with the dorsomedial hypothalamic nucleus (DMH). The DMH contains a dense plexus of GLP-2 immunoreactive fibres and is the only hypothalamic nucleus expressing GLP-2 receptor mRNA. Consistent with this, central application of GLP-2 activates the expression of neurones solely in the DMH. Furthermore, central administration of GLP-2 causes a dose-related, a pharmacologically and behaviourally specific inhibition of food intake in rats. Surprisingly, the alleged GLP-1 receptor antagonist, Exending (9-39), proved a functional antagonist of centrally applied GLP-2. These data implicate GLP-2 as an important neurotransmitter in the regulation of food intake and likely bodyweight. Our data therefore point to the DMH as a crossroad for endocrine and visceral information affecting feeding behaviour.

  4. Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer.

    Science.gov (United States)

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Suemoto, Yuko; Meyerhardt, Jeffrey A; Fuchs, Charles S

    2007-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer. In contrast, a phenotype with less widespread promoter methylation (CIMP-low) has not been well characterised. O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and silencing have been associated with G>A mutations and microsatellite instability-low (MSI-low). To examine molecular correlates with MGMT methylation/silencing in colorectal cancer. Utilising MethyLight technology, we quantified DNA methylation in MGMT and eight other markers (a CIMP-diagnostic panel; CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) in 920 population-based colorectal cancers. Tumours with both MGMT methylation and loss were correlated positively with MSI-low (p = 0.02), CIMP-high (>or=6/8 methylated CIMP markers, p = 0.005), CIMP-low (1/8-5/8 methylated CIMP markers, p = 0.002, compared to CIMP-0 with 0/8 methylated markers), KRAS G>A mutation (p = 0.02), and inversely with 18q loss of heterozygosity (p = 0.0002). Tumours were classified into nine MSI/CIMP subtypes. Among the CIMP-low group, tumours with both MGMT methylation and loss were far more frequent in MSI-low tumours (67%, 12/18) than MSI-high tumours (5.6%, 1/18; p = 0.0003) and microsatellite stable (MSS) tumours (33%, 52/160; p = 0.008). However, no such relationship was observed among the CIMP-high or CIMP-0 groups. The relationship between MGMT methylation/silencing and MSI-low is limited to only CIMP-low tumours, supporting the suggestion that CIMP-low in colorectal cancer may be a different molecular phenotype from CIMP-high and CIMP-0. Our data support a molecular difference between MSI-low and MSS in colorectal cancer, and a possible link between CIMP-low, MSI-low, MGMT methylation/loss and KRAS mutation.

  5. Evaluation of Methyl-Binding Domain Based Enrichment Approaches Revisited.

    Directory of Open Access Journals (Sweden)

    Karolina A Aberg

    Full Text Available Methyl-binding domain (MBD enrichment followed by deep sequencing (MBD-seq, is a robust and cost efficient approach for methylome-wide association studies (MWAS. MBD-seq has been demonstrated to be capable of identifying differentially methylated regions, detecting previously reported robust associations and producing findings that replicate with other technologies such as targeted pyrosequencing of bisulfite converted DNA. There are several kits commercially available that can be used for MBD enrichment. Our previous work has involved MethylMiner (Life Technologies, Foster City, CA, USA that we chose after careful investigation of its properties. However, in a recent evaluation of five commercially available MBD-enrichment kits the performance of the MethylMiner was deemed poor. Given our positive experience with MethylMiner, we were surprised by this report. In an attempt to reproduce these findings we here have performed a direct comparison of MethylMiner with MethylCap (Diagenode Inc, Denville, NJ, USA, the best performing kit in that study. We find that both MethylMiner and MethylCap are two well performing MBD-enrichment kits. However, MethylMiner shows somewhat better enrichment efficiency and lower levels of background "noise". In addition, for the purpose of MWAS where we want to investigate the majority of CpGs, we find MethylMiner to be superior as it allows tailoring the enrichment to the regions where most CpGs are located. Using targeted bisulfite sequencing we confirmed that sites where methylation was detected by either MethylMiner or by MethylCap indeed were methylated.

  6. IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, p53

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-12-01

    Full Text Available Insulin-like growth factor binding protein 3 (IGFBP3, which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP, which is associated with microsatellite instability (MSI and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight, we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41 than in MSI-high CIMPhigh (49% = 44/90, P < .0001, MSI-high non-CIMP-high (17% = 6/36, P < .0001, non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001. Among CIMPhigh tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001, but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02. In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/ CIMP, single molecular events (e.g., IGFBP3 methylation, TP53 mutation, TGFBR2 mutation, the related pathways.

  7. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  8. Developmental differences in posttranslational calmodulin methylation in pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.

    1990-01-01

    A calmodulin-N-methyltransferase was used to analyze the degree of lysine-115 methylation of pea calmodulin. Calmodulin was isolated from segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by the calmodulin methyltransferase in the presence of 3 H-methyl-S-adenosylmethionine. Calmodulin methylation levels were lower in apical root segments and in the young lateral roots compared with the mature, differentiated root tissues. The methylation of these calmodulin samples occurs specifically at lysine 115 since site-directed mutants of calmodulin with substitutions at this position were not methylated and competitively inhibited methylation. The present findings, combined with previous data showing differences in NAD kinase activation by methylated and unmethylated calmodulins, raise the possibility that posttranslational methylation could affect calmodulin action

  9. Effects of Lactobacillus salivarius Ren on cancer prevention and intestinal microbiota in 1, 2-dimethylhydrazine-induced rat model.

    Science.gov (United States)

    Zhang, Ming; Fan, Xing; Fang, Bing; Zhu, Chengzhen; Zhu, Jun; Ren, Fazheng

    2015-06-01

    Probiotics have been suggested as a prophylactic measure in colon cancer. The aim of this study was to investigate the impact of Lactobacillus salivarius Ren (Ren) in modulating colonic microbiota structure and colon cancer incidence in a rat model after injection with 1,2-dimethyl hydrazine (DMH). The results indicated that oral administration of Ren could effectively suppress DMH-induced colonic carcinogenesis. A significant decrease in cancer incidence (87.5% to 25%) was detected in rats fed with a dose of 5 × 10(10) CFU/kg bodyweight per day. Using denaturing gradient gel electrophoresis and Real-time PCR combined with multivariate statistical methods, we demonstrated that injection with DMH significantly altered the rat gut microbiota, while Ren counteracted these DMH-induced adverse effects and promoted reversion of the gut microbiota close to the healthy state. Tvalue biplots followed by band sequencing identified 21 bacterial strains as critical variables affected by DMH and Ren. Injection of DMH significantly increased the amount of Ruminococcus species (sp.) and Clostridiales bacteria, as well as decreasing the Prevotella sp. Administration of Ren reduced the amount of Ruminococcus sp., Clostridiales bacteria, and Bacteroides dorei, and increased the amount of Prevotella. Real-time PCR results were consistent with the results derived by t-value biplots. These findings suggested that Ren is a potential agent for colon cancer prevention. In conclusion, the results in the present study suggest a potential therapeutic approach based on the modulation of intestinal microflora by probiotics may be beneficial in the prevention of colorectal carcinogenesis.

  10. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment.

    Science.gov (United States)

    Zaretsky, Dmitry V; Kline, Hannah; Zaretskaia, Maria V; Brown, Mary Beth; Durant, Pamela J; Alves, Nathan J; Rusyniak, Daniel E

    2018-06-15

    Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Methylation sensitive amplified polymorphism (MSAP) reveals that ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... Key words: Salt stress, alkali stress, Gossypium hirsutum L., DNA methylation, methylation sensitive amplified polymorphism (MSAP). INTRODUCTION. DNA methylation is one of the key epigenetic mecha- nisms among eukaryotes that can modulate gene expression without the changes of DNA sequence.

  12. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, G. Barney

    2017-06-09

    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures of 300 – 1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K and the initial products are (CH2=C=O and CH3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH2=C=O and CH3OH, CH3, CH2=O, H, CO, CO2) appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of (CH3CH2CH=C=O, CH3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH3CH2CH=C=O, CH3OH, CH3, CH2=O, CO, CO2, CH3CH=CH2, CH2CHCH2, CH2=C=CH2, HCCCH2, CH2=C=C=O, CH2=CH2, HCΞCH, CH2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH2-COOCH3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted

  13. Electronic transport in methylated fragments of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L., E-mail: umbertofulco@gmail.com; Albuquerque, E. L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, CE (Brazil); Caetano, E. W. S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Moura, F. A. B. F. de; Lyra, M. L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  14. Electronic transport in methylated fragments of DNA

    International Nuclear Information System (INIS)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-01-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics

  15. A novel polymer of Al2(SO43-poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonate ionic hybrid prepared by dispersion polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available A novel polymer Al2(SO43-poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonate (Al2(SO43-P(AM/AMPS had been synthesized by dispersion polymerization in an aqueous solution of ammonium sulfate and aluminum sulfate, using poly(2-acrylamido-2-methyl-1-propanesulfonate P(AMPS as stabilizer, acrylamide (AM and 2-acrylamido-2-methyl-1-propanesulfonate (AMPS as monomers, poly(2-acrylamido-2-methyl-1-propanesulfonate (PAMPS as stabilizer and [2-(2-imidazdino-2-ylpropane]dihydrochloride (VA-044 as initiator. The average particle size of polymer dispersion ranged from 0.2 to 0.3 µm, the molecular weight was from 4.3•106 to 5.7•106 g•mol-1. The polymer was characterized by infrared (IR spectroscopy, thermogravimetry (TGA and transmission electron microscopy (TEM. The swelling property of the dispersion polymer was studied by particle size distribution. When the polymer dispersion was diluted with deionized water, particle sizes decreased several times. When the polymer dispersion was diluted with salt water, the particle size increased with increasing concentration of salt. The effects of Al2(SO43 and stabilizer on the particle size and the relative molecular weight of the polymer were investigated, respectively. The optimum conditions for the stable Al2(SO43-P(AM/AMPS dispersion were that the concentration of Al2(SO43 was 1.12 wt%, the concentration of PAMPS stabilizer was 3 wt% and the concentration of initiator was 0.2 mol•l-1 and the monomers concentration was 14 wt%.

  16. Waterborne polyurethane-acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives.

    Science.gov (United States)

    Lopez, Aitziber; Degrandi-Contraires, Elise; Canetta, Elisabetta; Creton, Costantino; Keddie, Joseph L; Asua, José M

    2011-04-05

    Waterborne polyurethane-acrylic hybrid nanoparticles for application as pressure-sensitive adhesives (PSAs) were prepared by one-step miniemulsion polymerization. The addition of polyurethane to a standard waterborne acrylic formulation results in a large increase in the cohesive strength and hence a much higher shear holding time (greater than seven weeks at room temperature), which is a very desirable characteristic for PSAs. However, with the increase in cohesion, there is a decrease in the relative viscous component, and hence there is a decrease in the tack energy. The presence of a small concentration of methyl methacrylate (MMA) in the acrylic copolymer led to phase separation within the particles and created a hemispherical morphology. The tack energy was particularly low in the hybrid containing MMA because of the effects of lower energy dissipation and greater cross-linking. These results highlight the great sensitivity of the viscoelastic and adhesive properties to the details of the polymer network architecture and hence to the precise composition and synthesis conditions.

  17. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  18. Methylation analysis of polysaccharides: Technical advice.

    Science.gov (United States)

    Sims, Ian M; Carnachan, Susan M; Bell, Tracey J; Hinkley, Simon F R

    2018-05-15

    Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. User’s Manual for Strategic Satellite System Terminal Segment Life Cycle Cost Model. Volume 1

    Science.gov (United States)

    1981-03-01

    the depot pipeline, given by: NFD(I) = EFAIL (I,NS)*TNB(NS) NS *1 [LRU(I) + RTS(NHI(1))]*NRTS(I)*DRCT(LO(NS)) + NRTS(NHI(i))*(l - COND(I))*DADI where... EFAIL (I,NS)*TNB(NS)* [(LRU(I) + RTS(NHI(I)))*NRTS(I) NS + NRTS(NHI(I))*(l-COND(I))] *DMH(I)*DMF where DMH(I) = averaRP marnours to perform depot...XJC - RSCA(I) + 12*PIUP* EFAIL (I,NS)*TNB(NS)* NS {(LRUCI)+RTS(NHI(I)))* (CR(I)*BIIH(I)*BMF*BLR + CN(I)*(DMH(I)*DMF*DLR + 2*CPPD(LOCNS))*WT(I)) + CC

  20. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies.

    Science.gov (United States)

    Ogino, S; Cantor, M; Kawasaki, T; Brahmandam, M; Kirkner, G J; Weisenberger, D J; Campan, M; Laird, P W; Loda, M; Fuchs, C S

    2006-07-01

    The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation. To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation. We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts. There was a clear bimodal distribution of 80 microsatellite instability-high (MSI-H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having >or=4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild-type KRAS. Both CIMP MSI-H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non-CIMP counterparts (non-CIMP MSI-H (0%, pCIMP MSS tumours (6.6%, pCIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.

  1. Inhibitory effects of Baccharis dracunculifolia on 1,2-dimethylhidrazine-induced genotoxicity and preneoplastic lesions in rat colon.

    Science.gov (United States)

    Munari, Carla C; Furtado, Ricardo A; Santiago, Mirian L; Manhas, Simony S; Bastos, Jairo K; Tavares, Denise C

    2014-07-01

    Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, also known as 'alecrim-do-campo' and 'vassourinha', is a shrub of the Brazilian 'cerrado' and is native to the South and Southeast of Brazil. The effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) were evaluated on the 1,2-dimethylhydrazine (DMH)-induced DNA damage and aberrant crypt foci (ACF) in the colon of male Wistar rats by the comet and ACF assays, respectively. The animals were treated by gavage with doses of 6, 12, and 24 mg/kg body weight/day. Animals were also administered a single subcutaneous injection of 40 mg/kg DMH and were killed after 4 h for evaluation of DNA damage. Also, two doses of 40 mg/kg of DMH were administered weekly for 2 weeks, and animals were killed 2 weeks after the last injection for evaluation of ACF development in the colon. The results showed a significant reduction in the frequency of DNA damage and ACF in the group treated with the Bd-EAE plus DMH in comparison with those treated with DMH alone, suggesting that Bd-EAE reduced DNA damage and suppressed the formation of ACF and also exerted a protective affect against colon carcinogenesis.

  2. Chemopreventive effect of artesunate in 1,2-dimethylhydrazine-induced rat colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sazal Patyar

    2017-01-01

    Full Text Available Artesunate (ART is a semisynthetic derivative of artemisinin. Artemisinin and its derivatives have shown profound cytotoxicity and antitumor activity in addition to antimalarial activity in various studies. As the in vivo chemopreventive efficacy of ART in colon carcinogenesis has not been investigated so far, the aim of the current study was to study the chemopreventive effect of ART in 1,2-dimethylhydrazine (DMH-induced rat colon carcinogenesis. Animals were divided into four groups (n = 6: Group I - vehicle (1 mM ethylenediaminetetraacetic acid, Group II - DMH (20 mg/kg, Group III - DMH + 5-fluorouracil (81 mg/kg, Group IV - DMH + ART (6.7 mg/kg. After completion of 15 weeks of treatment, rats were sacrificed under ether anesthesia by cervical dislocation for assessment of lipid peroxidation (LPO, antioxidant status, average number of aberrant crypt foci (ACF, and cytokine levels. ART administration significantly decreased the average number of ACF/microscopic field. Similarly, LPO level was decreased and antioxidant activities were enhanced after ART treatment. ART decreased the levels of proinflammatory cytokines and induced apoptosis in the colons of DMH-treated rats. The results of this study suggest that ART has a beneficial effect against chemically induced colonic preneoplastic progression in rats.

  3. Hybrid Magnetic Core-Shell Nanophotocatalysts for Environmental Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaulden, Patrick [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States). Dept. of Physics and Astronomy

    2016-07-29

    This research study describes a facile sol-gel method to creating hybrid iron (III) oxide/silica/titania nanomaterials decorated with gold nanoparticles for use in environmental applications. The multi-functional composition of the nanomaterials allows for photocatalyzed reactions to occur in both the visible and the UV range. The morphologies, elemental composition, and surface charge of the nanoparticles were determined by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Phase Analysis Light Scattering (PALS), respectively. The photocatalytic activity of the synthesized hybrid nanoparticles for breaking down a model analyte, methyl orange (MO), was then evaluated using UV-Vis Spectroscopy. The efficiency of the photocatalyst under UV light irradiation was measured and compared to other well-studied nanophotocatalysts, namely titanium oxide and iron oxide nanoparticles. The concentration dependence of both the photocatalyst and the analyte was also investigated. By utilizing the known UV-active properties of TiO2, the magnetic properties of Fe2O3, the optical properties of gold in the visible range of the spectrum, and the high stability of silica, a novel, highly efficient photocatalyst that is active on a broad range of the spectrum (UV-Vis) can be created to destroy organic pollutants in wastewater streams.

  4. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  5. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures.

    Science.gov (United States)

    Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C

    2017-10-18

    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.

  6. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity

    Science.gov (United States)

    Wang, Huan; Qiu, Xueqing; Liu, Weifeng; Yang, Dongjie

    2017-12-01

    In this work, a novel lignin-based carbon/ZnO (LC/ZnO) hybrid composite with excellent photocatalytic performance was prepared through a convenient and environment friendly method using alkali lignin (AL) as carbon source. The morphological, microstructure and optical properties of the as-prepared LC/ZnO hybrid composite was characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and UV-vis. The resulting LC/ZnO hybrid is composed of highly dispersed ZnO nanoparticles embedded on a lignin-based carbon nanosheet, showing excellent photogenerated electrons and holes separation and migration efficiency. The photocatalytic activity of LC/ZnO was much higher than the pure ZnO. The LC/ZnO hybrid composite showed different photocatalytic mechanism for degradation of negative methyl orange (MO) and positive Rhodamine B (RhB). It showed that h+ was the main photocatalytic active group during the degradation of MO, ·O2- and ·OH were the photocatalytic active groups during degradation of RhB. This reported photocatalyst with selective degradation of positive and negative organic dyes may have a great application prospect for photoelectric conversion and catalytic materials. Results of this work were of practical importance for high-valued utilization of lignin for carbon materials.

  7. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  8. Wp specific methylation of highly proliferated LCLs

    International Nuclear Information System (INIS)

    Park, Jung-Hoon; Jeon, Jae-Pil; Shim, Sung-Mi; Nam, Hye-Young; Kim, Joon-Woo; Han, Bok-Ghee; Lee, Suman

    2007-01-01

    The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes

  9. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  10. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status.

    Science.gov (United States)

    Kim, Jung H; Rhee, Ye-Y; Bae, Jeong-M; Kwon, Hyeong-J; Cho, Nam-Y; Kim, Mi J; Kang, Gyeong H

    2013-07-01

    Although the presence of MLH1 methylation in microsatellite-unstable colorectal cancer generally indicates involvement of the CpG island methylator phenotype (CIMP) in the development of the tumor, these two conditions do not always correlate. A minority of microsatellite-unstable colorectal cancers exhibit discordance between CIMP and MLH1 methylation statuses. However, the clinicopathological features of such microsatellite-unstable colorectal cancers with discrepant MLH1 methylation and CIMP statuses remain poorly studied. Microsatellite-unstable colorectal cancers (n=220) were analyzed for CIMP and MLH1 methylation statuses using the MethyLight assay. Based on the combinatorial CIMP and MLH1 methylation statuses, the microsatellite-unstable colorectal cancers were grouped into four subtypes (CIMP-high (CIMP-H) MLH1 methylation-positive (MLH1m+), CIMP-H MLH1 methylation-negative, CIMP-low/0 (CIMP-L/0) MLH1m+, and CIMP-L/0 MLH1 methylation-negative), which were compared in terms of their associations with clinicopathological and molecular features. The CIMP-L/0 MLH1 methylation-negative and CIMP-H MLH1m+ subtypes were predominant, comprising 63.6 and 24.1% of total microsatellite-unstable colorectal cancers, respectively. The discordant subtypes, CIMP-H MLH1 methylation-negative and CIMP-L/0 MLH1m+, were found in 5 and 7% of microsatellite-unstable colorectal cancers, respectively. The CIMP-H MLH1 methylation-negative subtype exhibited elevated incidence rates in male patients and was associated with larger tumor size, more frequent loss of MSH2 expression, increased frequency of KRAS mutation, and advanced cancer stage. The CIMP-L/0 MLH1m+ subtype was associated with onset at an earlier age, a predominance of MLH1 loss, and earlier cancer stage. None of the CIMP-L/0 MLH1m+ subtype patients succumbed to death during the follow-up. Our findings suggest that the discordant subtypes of colorectal cancers exhibit distinct clinicopathological and molecular features

  11. Production of Methyl Laurate from Coconut Cream through Fractionation of Methyl Ester

    Directory of Open Access Journals (Sweden)

    Johnner P. Sitompul

    2015-10-01

    Full Text Available This paper concerns the production of methyl laurate from coconut cream through fractionation of methyl esters. Coconut oil was produced by wet processing of coconut cream. The esters were prepared by reacting coconut oil and methanol using homogeneous catalyst KOH in a batch reactor, followed by fractionation of fatty acid methyl esters (FAME at various reduced pressures applying differential batch vacuum distillation. Experimental data were compared with simulation of a batch distillation employing the simple Raoult’s model and modified Raoult’s model of phase equilibria. Activity coefficients (γi were determined by optimization to refine the models. The modified Rault’s model with activity coefficients gave better agreement with the experimental data, giving the value of γi between 0,56-0,73. For a given boiling temperature, lower operating pressure produced higher purity of C10 and C12 FAME for respective distillates.

  12. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.

    1992-01-01

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  13. Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine. Comparisons of chemical analyses at the nucleoside and base levels

    Science.gov (United States)

    Lawley, P. D.; Shah, S. A.

    1972-01-01

    1. The following methods for hydrolysis of methyl-14C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH4+ form) at pH6 or 8.9, or on Dowex 50 (H+ form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O6-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose–phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson–Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson–Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly

  14. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Casper, J.M.; Ordal, G.W.

    1990-01-01

    The addition of attractant to Bacillus subtilis briefly exposed to radioactive methionine causes an increase of labeling of the methyl-accepting chemotaxis proteins. The addition of attractant to cells radiolabeled for longer times shows no change in the extent of methylation. Therefore, the increase in labeling for the briefly labeled cells is due to an increased turnover of methyl groups caused by attractant. All amino acids gave enhanced turnover. This turnover lasted for a prolonged time, probably spanning the period of smooth swimming caused by the attractant addition. Repellent did not affect the turnover when added alone or simultaneously with attractant. Thus, for amino acid attractants, the turnover is probably the excitatory signal, which is seen to extend long into or throughout the adaptation period, not just at the start of it

  15. Transcription factors as readers and effectors of DNA methylation.

    Science.gov (United States)

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2016-08-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

  16. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility.

    Science.gov (United States)

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-10-15

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmA(II) enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmA(II), rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmA(II) in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmA(II) activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmA(II), thereby facilitating TEL binding to the ribosome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Dynamic Alu Methylation during Normal Development, Aging, and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yanting Luo

    2014-01-01

    Full Text Available DNA methylation primarily occurs on CpG dinucleotides and plays an important role in transcriptional regulations during tissue development and cell differentiation. Over 25% of CpG dinucleotides in the human genome reside within Alu elements, the most abundant human repeats. The methylation of Alu elements is an important mechanism to suppress Alu transcription and subsequent retrotransposition. Decades of studies revealed that Alu methylation is highly dynamic during early development and aging. Recently, many environmental factors were shown to have a great impact on Alu methylation. In addition, aberrant Alu methylation has been documented to be an early event in many tumors and Alu methylation levels have been associated with tumor aggressiveness. The assessment of the Alu methylation has become an important approach for early diagnosis and/or prognosis of cancer. This review focuses on the dynamic Alu methylation during development, aging, and tumor genesis. The cause and consequence of Alu methylation changes will be discussed.

  18. Renal hyperfiltration and systemic blood pressure in patients with uncomplicated type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Gary K Yang

    Full Text Available Patients with type 1 diabetes mellitus (DM and renal hyperfiltration also exhibit systemic microvascular abnormalities, including endothelial dysfunction. The effect of renal hyperfiltration on systemic blood pressure (BP is less clear. We therefore measured BP, renal hemodynamic function and circulating renin angiotensin aldosterone system (RAAS mediators in type 1 DM patients with hyperfiltration (n = 36, DM-H, GFR≥135 ml/min/1.73 m(2 or normofiltration (n = 40, DM-N, and 56 healthy controls (HC. Since renal hyperfiltration represents a state of intrarenal RAAS activation, we hypothesized that hyperfiltration would be associated with higher BP and elevated levels of circulating RAAS mediators.BP, glomerular filtration rate (GFR - inulin, effective renal plasma flow (paraaminohippurate and circulating RAAS components were measured in DM-H, DM-N and HC during clamped euglycemia (4-6 mmol/L. Studies were repeated in DM-H and DM-N during clamped hyperglycemia (9-11 mmol/L.Baseline GFR was elevated in DM-H vs. DM-N and HC (167±6 vs. 115±2 and 115±2 ml/min/1.73 m(2, p<0.0001. Baseline systolic BP (SBP, 117±2 vs. 111±2 vs. 109±1, p = 0.004 and heart rate (76±1 vs. 67±1 vs. 61±1, p<0.0001 were higher in DM-H vs. DM-N and HC. Despite higher SBP in DM-H, plasma aldosterone was lower in DM-H vs. DM-N and HC (42±5 vs. 86±14 vs. 276±41 ng/dl, p = 0.01. GFR (p<0.0001 and SBP (p<0.0001 increased during hyperglycemia in DM-N but not in DM-H.DM-H was associated with higher heart rate and SBP values and an exaggerated suppression of systemic aldosterone. Future work should focus on the mechanisms that explain this paradox in diabetes of renal hyperfiltration coupled with systemic RAAS suppression.

  19. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions.

    Science.gov (United States)

    Nakamura, Y; Nakamura, K; Morrison, S F

    2009-06-30

    The central mechanism of fever induction is triggered by an action of prostaglandin E(2) (PGE(2)) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE(2) pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT

  20. Annotating the genome by DNA methylation.

    Science.gov (United States)

    Cedar, Howard; Razin, Aharon

    2017-01-01

    DNA methylation plays a prominent role in setting up and stabilizing the molecular design of gene regulation and by understanding this process one gains profound insight into the underlying biology of mammals. In this article, we trace the discoveries that provided the foundations of this field, starting with the mapping of methyl groups in the genome and the experiments that helped clarify how methylation patterns are maintained through cell division. We then address the basic relationship between methyl groups and gene repression, as well as the molecular rules involved in controlling this process during development in vivo. Finally, we describe ongoing work aimed at defining the role of this modification in disease and deciphering how it may serve as a mechanism for sensing the environment.

  1. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  2. DNA methylation in obesity

    Directory of Open Access Journals (Sweden)

    Małgorzata Pokrywka

    2014-11-01

    Full Text Available The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes, have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.

  3. Methylation-Sensitive High Resolution Melting (MS-HRM).

    Science.gov (United States)

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  4. Role of a Cyclooxygenase Inhibitor and Luteolin in the Regression of Colon Tumors in Irradiated Rats

    International Nuclear Information System (INIS)

    Ahmed, E.S.A.

    2015-01-01

    Colon carcinogenesis is a devastating problem leading to morbidity and mortality in developed countries. Colon cancer is a complex multi-step process involving progressive disruption of homeostatic mechanisms controlling intestinal epithelial proliferation/inflammation, differentiation and programmed cell death. Colon cancer is the third most common malignant neoplasm worldwide. Its incidence strongly varies globally and is closely linked to elements of a so-called western lifestyle. In Egypt reports showed that colon cancer was detected in 11–15% of patients who underwent colonoscopy and diagnosed in 29–31% of patients aged 40 years or younger. The present study was planned to evaluate the effect of a cyclooxygenase inhibitor (aspirin) and a natural product (luteolin) and on colon cancer induced by 1, 2 dimethylhydrazine (DMH), beside studying the effects of luteolin and aspirin either alone or combined with fractionated low doses of γ- irradiation as a route of cancer therapy. Seventy adult male Wistar rats were divided into seven groups 10 animals each and treated as follows: 1. Control group (G1): rats of this group received distilled water via gavages for 15 weeks. 2. Colon tumor induction group (G2): rats of this group were injected subcutaneously with DMH (20 mg/kg body weight) once a week for 15 weeks. 3. Colon tumor + irradiation group (G3): these rats were injected subcutaneously with DMH (20 mg/kg body weight) once a week for 15 weeks then at the beginning of the 8th week they were exposed to γ-radiation at a dose level of 0.5 Gy/week x 8 and continued during DMH treatment. 4. Colon tumor + aspirin treatment group (G4): rats of this group gavaged aspirin (50 mg/kg/ week) and injected subcutaneously with DMH for 15 weeks. 5. Colon tumor + luteolin treatment group (G5): these rats were treated orally with LUT (0.2 mg/kg body weight/ day) and injected subcutaneously with DMH (20 mg/kg body weight/ week) for 15 weeks. 6. Colon tumor + aspirin

  5. Heterogeneity of DNA methylation in multifocal prostate cancer.

    Science.gov (United States)

    Serenaite, Inga; Daniunaite, Kristina; Jankevicius, Feliksas; Laurinavicius, Arvydas; Petroska, Donatas; Lazutka, Juozas R; Jarmalaite, Sonata

    2015-01-01

    Most prostate cancer (PCa) cases are multifocal, and separate foci display histological and molecular heterogeneity. DNA hypermethylation is a frequent alteration in PCa, but interfocal heterogeneity of these changes has not been extensively investigated. Ten pairs of foci from multifocal PCa and 15 benign prostatic hyperplasia (BPH) samples were obtained from prostatectomy specimens, resulting altogether in 35 samples. Methylation-specific PCR (MSP) was used to evaluate methylation status of nine tumor suppressor genes (TSGs), and a set of selected TSGs was quantitatively analyzed for methylation intensity by pyrosequencing. Promoter sequences of the RASSF1 and ESR1 genes were methylated in all paired PCa foci, and frequent (≥75 %) DNA methylation was detected in RARB, GSTP1, and ABCB1 genes. MSP revealed different methylation status of at least one gene in separate foci in 8 out of 10 multifocal tumors. The mean methylation level of ESR1, GSTP1, RASSF1, and RARB differed between the paired foci of all PCa cases. The intensity of DNA methylation in these TSGs was significantly higher in PCa cases than in BPH (p epigenetic profile of recurrent tumors can be inferred from our data.

  6. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.

    2009-01-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  7. Methylated spirit burns: an ongoing problem.

    Science.gov (United States)

    Jansbeken, J R H; Vloemans, A F P M; Tempelman, F R H; Breederveld, R S

    2012-09-01

    Despite many educational campaigns we still see burns caused by methylated spirit every year. We undertook a retrospective study to analyse the impact of this problem. We retrospectively collected data of all patients with burns caused by methylated spirit over twelve years from 1996 to 2008. Our main endpoints were: incidence, age, mechanism of injury, total body surface area (TBSA) burned, burn depth, need for surgery and length of hospital stay. Ninety-seven patients with methylated spirit burns were included. During the study period there was no decrease in the number of patients annually admitted to the burn unit with methylated spirit burns. 28% of the patients (n=27) were younger than eighteen years old, 15% (n=15) were ten years old or younger. The most common cause of burns was carelessness in activities involving barbecues, campfires and fondues. Mean TBSA burned was 16% (SD 12.4). 70% (n=68) had full thickness burns. 66% (n=64) needed grafting. Mean length of hospital stay was 23 days (SD 24.7). The use of methylated spirit is an ongoing problem, which continues to cause severe burns in adults and children. Therefore methylated spirit should be banned in households. We suggest sale only in specialised shops, clear labelling and mandatory warnings. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  8. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  9. GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. II. Physiological measures.

    Science.gov (United States)

    Shekhar, A; Sims, L S; Bowsher, R R

    1993-11-05

    In the previous report, we had shown that blockade and enhancement of GABAA receptors in the DMH of rats increased or decreased the level of anxiety, respectively, as measured by the elevated plus-maze test. The present study was conducted to assess the effects of enhancing GABAA neurotransmission in the DMH of rats on the physiological concomitants of anxiety such as increases in heart rate (HR), blood pressure (BP) and plasma norepinephrine (NE) levels while the animals were placed on the elevated plus-maze. Male Sprague-Dawley rats were equipped with arterial and venous catheters and stereotaxically implanted with microinjection cannulae in the cardiostimulatory region of the DMH where injection of bicuculline methiodide (BMI) elicited increases in heart rate under anesthesia. After recovery, rats were injected with either saline or the GABAA agonist muscimol and their HR, BP and plasma NE responses were measured when confined in the open or the closed arm of the elevated plus-maze. Injection of muscimol into the DMH reduced the increases seen in HR, BP and plasma NE when the rats were confined to either the closed or the open arms in addition to decreasing 'anxiety' in the plus-maze. Injection of muscimol into the areas of the hypothalamus surrounding the DMH did not significantly affect the changes in HR, BP and plasma NE in the plus-maze. Blocking the changes in HR and BP elicited by microinjecting GABAergic drugs into the DMH of rats, with systemic injections of a combination of atropine and the beta-blocker atenolol, did not block the behavioral effects of the GABAergic drugs in the plus-maze test.

  10. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction.

    Science.gov (United States)

    Rathner, Joseph A; Madden, Christopher J; Morrison, Shaun F

    2008-07-01

    A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.

  11. Methyl Iodide Decomposition at BWR Conditions

    International Nuclear Information System (INIS)

    Pop, Mike; Bell, Merl

    2012-09-01

    Based on favourable results from short-term testing of methanol addition to an operating BWR plant, AREVA has performed numerous studies in support of necessary Engineering and Plant Safety Evaluations prior to extended injection of methanol. The current paper presents data from a study intended to provide further understanding of the decomposition of methyl iodide as it affects the assessment of methyl iodide formation with the application of methanol at BWR Plants. This paper describes the results of the decomposition testing under UV-C light at laboratory conditions and its effect on the subject methyl iodide production evaluation. The study as to the formation and decomposition of methyl iodide as it is effected by methanol addition is one phase of a larger AREVA effort to provide a generic plant Safety Evaluation prior to long-term methanol injection to an operating BWR. Other testing phases have investigated the compatibility of methanol with fuel construction materials, plant structural materials, plant consumable materials (i.e. elastomers and coatings), and ion exchange resins. Methyl iodide is known to be very unstable, typically preserved with copper metal or other stabilizing materials when produced and stored. It is even more unstable when exposed to light, heat, radiation, and water. Additionally, it is known that methyl iodide will decompose radiolytically, and that this effect may be simulated using ultra-violet radiation (UV-C) [2]. In the tests described in this paper, the use of a UV-C light source provides activation energy for the formation of methyl iodide. Thus is similar to the effect expected from Cherenkov radiation present in a reactor core after shutdown. Based on the testing described in this paper, it is concluded that injection of methanol at concentrations below 2.5 ppm in BWR applications to mitigate IGSCC of internals is inconsequential to the accident conditions postulated in the FSAR as they are related to methyl iodide formation

  12. Homogalacturonan methyl-esterification and plant development.

    Science.gov (United States)

    Wolf, Sebastian; Mouille, Grégory; Pelloux, Jérome

    2009-09-01

    The ability of a plant cell to expand is largely defined by the physical constraints imposed by its cell wall. Accordingly, cell wall properties have to be regulated during development. The pectic polysaccharide homogalacturonan is a major component of the plant primary walls. Biosynthesis and in muro modification of homogalacturonan have recently emerged as key determinants of plant development, controlling cell adhesion, organ development, and phyllotactic patterning. This review will focus on recent findings regarding impact of homogalacturonan content and methyl-esterification status of this polymer on plant life. De-methyl-esterification of homogalacturonan occurs through the action of the ubiquitous enzyme 'pectin methyl-esterase'. We here describe various strategies developed by the plant to finely tune the methyl-esterification status of homogalacturonan along key events of the plant lifecycle.

  13. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis.

    Science.gov (United States)

    Sha, A H; Lin, X H; Huang, J B; Zhang, D P

    2005-07-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.

  14. Search for methylation-sensitive amplification polymorphisms in mutant figs.

    Science.gov (United States)

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S

    2013-07-08

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  15. Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp.

    Science.gov (United States)

    Wang, Tao; Huang, Dongya; Chen, Baoyu; Mao, Nini; Qiao, Yushan; Ji, Muxiang

    2018-03-01

    Polyploidization always induces a series of changes in genome, transcriptome and epigenetics, of which changes in gene expression are the immediate causes of genotype alterations of polyploid plants. In our previous study on strawberry polyploidization, genes related to photosynthesis were found to undergo changes in gene expression and DNA methylation. Therefore, we chose 11 genes that were closely related to plant photosynthesis and analysed their expression during strawberry hybridization and chromosome doubling. Most genes of pentaploids showed expression levels between parents and were more similar to F. × ananassa. Gene expression levels of decaploids were higher than those of pentaploids and F. × ananassa. Different types of photosynthesis-related genes responded differently to hybridization and chromosome doubling. Chloroplast genes and regulatory genes showed complex responses. Structural genes of the photosynthetic system were expressed at a constant level and displayed a clear dosage effect. The methylation levels of one CG site on SIGE, which regulates expression of chloroplast genes, were negatively correlated with gene expression. In pentaploids and decaploids, more transcripts were from F. × ananassa than from F. viridis. The ratio of transcripts from from F. × ananassa to those from F. viridis was close to the ratio (4:1) of the genome of F. × ananassa to that of F. viridis in pentaploids and decaploids, but there were also some exceptions with obvious deviation.

  16. Photocatalytic activity of attapulgite–BiOCl–TiO2 toward degradation of methyl orange under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Lili; Zhang, Jiahui; Zhang, Weiguang; Liu, Jianquan; Zhong, Hui; Zhao, Yijiang

    2015-01-01

    Highlights: • Excellent photocatalyst was obtained by introducing BiOCl–TiO 2 onto attapulgite. • 100 mg L −1 methyl orange (MO) was totally decomposed under UV light within 70 min. • 92.6% of 10 mg L −1 MO was decomposed within 120 min under visible light. • ATT–BiOCl–TiO 2 show better activity than P 25 especially under visible light. • Mechanism of photocatalytic activity enhancement was identified. - Abstract: An environmental friendly composite photocatalyst with efficient UV and visible light activity has been synthesized by introducing BiOCl–TiO 2 hybrid oxide onto the surface of attapulgite (ATT) (denoted as ATT–BiOCl–TiO 2 ), using a simple in situ depositing technique. The obtained products were characterized by XRD, TEM, BET and UV–vis diffuse reflectance spectra measurements. Results showed that BiOCl–TiO 2 composite particles were successfully loaded onto attapulgite fibers' surface without obvious aggregation. The photocatalytic activity of ATT–BiOCl–TiO 2 was investigated by degradation of methyl orange under UV and visible light irradiation. It was found that 100 mg L −1 methyl orange was totally decomposed under UV light within 70 min and 92.57% of 10 mg L −1 methyl orange was decomposed under visible light within 120 min using ATT–BiOCl–TiO 2 as photocatalyst. These results were quite better than that of P 25 , especially under visible light irradiation. Possible mechanism for the enhancement was proposed

  17. Order-disorder phase transitions and their influence on the structure and vibrational properties of new hybrid material: 2-Amino-4-methyl-3-nitropyridinium trifluoroacetate

    International Nuclear Information System (INIS)

    Lorenc, J.; Bryndal, I.; Syska, W.; Wandas, M.; Marchewka, M.; Pietraszko, A.; Lis, T.; Maczka, M.; Hermanowicz, K.; Hanuza, J.

    2010-01-01

    Graphical abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ∼162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed. - Abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ∼162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.

  18. Order-disorder phase transitions and their influence on the structure and vibrational properties of new hybrid material: 2-Amino-4-methyl-3-nitropyridinium trifluoroacetate

    Energy Technology Data Exchange (ETDEWEB)

    Lorenc, J., E-mail: jadwiga.lorenc@ue.wroc.pl [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Bryndal, I. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Faculty of Chemistry, University of Wroclaw (Poland); Syska, W.; Wandas, M. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Marchewka, M.; Pietraszko, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Lis, T. [Faculty of Chemistry, University of Wroclaw (Poland); Maczka, M.; Hermanowicz, K. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Hanuza, J. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economy, University of Economic, Wroclaw (Poland); Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)

    2010-08-23

    Graphical abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at {approx}162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed. - Abstract: New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at {approx}162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.

  19. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl–methyl nuclear overhauser enhancement spectroscopy

    International Nuclear Information System (INIS)

    Venditti, Vincenzo; Fawzi, Nicolas L.; Clore, G. Marius

    2011-01-01

    Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ∼1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the protein, nor experiments that transfer magnetization between methyl groups and the protein backbone, are required. PRE-derived assignments are refined by 4D methyl–methyl nuclear Overhauser enhancement data, eliminating ambiguities and errors that may arise due to the high sensitivity of PREs to the potential presence of sparsely-populated transient states.

  20. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    International Nuclear Information System (INIS)

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-01-01

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH 3 -S-CHO (MSCHO) and O-methyl thioformate CH 3 -O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH 3 -S-CHO represents the most stable structure lying 4372.2 cm −1 below cis-CH 3 -O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm −1 ) than for MOCHS (1963.6 cm −1 ). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V 3 (cis) are determined to be 139.7 cm −1 (CH 3 -S-CHO) and 670.4 cm −1 (CH 3 -O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm −1 for CH 3 -S-CHO and negligible for CH 3 -O-CHS

  1. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    miRNAting control of DNA methylation. ASHWANI ... function and biological process ... Enrichment analysis of the genes methylated by DRM2 for molecular function and biological ... 39(3), June 2014, 365–380, © Indian Academy of Sciences.

  2. Allele-Specific DNA Methylation Detection by Pyrosequencing®

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide......-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon....

  3. Unique honey bee (Apis mellifera hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Directory of Open Access Journals (Sweden)

    Kirk J Grubbs

    Full Text Available Microbial communities (microbiomes are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME and phospholipid-derived fatty acid (PLFA analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  4. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Science.gov (United States)

    Grubbs, Kirk J; Scott, Jarrod J; Budsberg, Kevin J; Read, Harry; Balser, Teri C; Currie, Cameron R

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  5. Methods for measuring specific rates of mercury methylation and degradation and their use in determining factors controlling net rates of mercury methylation

    International Nuclear Information System (INIS)

    Ramlal, P.S.; Rudd, J.W.M.; Hecky, R.E.

    1986-01-01

    A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14 C end products of 14 CH 3 HgI demethylation. This method was used in conjuction with a 203 Hg 2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding

  6. Normal Bone Mineral Density Associates with Duodenal Mucosa Healing in Adult Patients with Celiac Disease on a Gluten-Free Diet.

    Science.gov (United States)

    Larussa, Tiziana; Suraci, Evelina; Imeneo, Maria; Marasco, Raffaella; Luzza, Francesco

    2017-01-31

    Impairment of bone mineral density (BMD) is frequent in celiac disease (CD) patients on a gluten-free diet (GFD). The normalization of intestinal mucosa is still difficult to predict. We aim to investigate the relationship between BMD and duodenal mucosa healing (DMH) in CD patients on a GFD. Sixty-four consecutive CD patients on a GFD were recruited. After a median period of a 6-year GFD (range 2-33 years), patients underwent repeat duodenal biopsy and dual-energy X-ray absorptiometry (DXA) scan. Twenty-four patients (38%) displayed normal and 40 (62%) low BMD, 47 (73%) DMH, and 17 (27%) duodenal mucosa lesions. All patients but one with normal BMD (23 of 24, 96%) showed DMH, while, among those with low BMD, 24 (60%) did and 16 (40%) did not. At multivariate analysis, being older (odds ratio (OR) 1.1, 95% confidence interval (CI) 1.03-1.18) and having diagnosis at an older age (OR 1.09, 95% CI 1.03-1.16) were associated with low BMD; in turn, having normal BMD was the only variable independently associated with DMH (OR 17.5, 95% CI 1.6-192). In older CD patients and with late onset disease, BMD recovery is not guaranteed, despite a GFD. A normal DXA scan identified CD patients with DMH; thus, it is a potential tool in planning endoscopic resampling.

  7. Structural, optical, and improved photocatalytic properties of CdS/SnO{sub 2} hybrid photocatalyst nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Reddy, Ch., E-mail: cvrphy@gmail.com [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ravikumar, R.V.S.S.N. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510 (India); Srinivas, Ganganagunta [Engineering Department, lbra College of Technology, lbra 400 (Oman); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Cho, Migyung, E-mail: mgcho@tu.ac.kr [Department of Game Engineering, Tongmyong University, Busan 608-711 (Korea, Republic of)

    2017-07-15

    Highlights: • CdS, SnO{sub 2}, and a CdS/SnO{sub 2} hybrid photocatalyst were synthesized using a two-step technique. • The dislocation density, strain values are higher for CdS/SnO{sub 2} hybrid photocatalyst. • The CdS/SnO{sub 2} has a higher surface area and smaller crystallite size compared to pristine CdS. • The CdS/SnO{sub 2} catalyst greatly reduced recombination of electron and hole pairs. - Abstract: CdS, SnO{sub 2} and CdS/SnO{sub 2} hybrid photocatalyst nanostructure were synthesized using a two-step (co-precipitation/hydrothermal) method. The as-prepared materials were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), surface analysis (BET), photoluminescence spectra (PL), UV–Vis diffusion reflectance spectroscopy (DRS), fourier transform infrared spectroscopy (FT-IR), and photocatalytic activity. The band gap energies calculated from the DRS results are 3.30, 2.15, and 2.99 eV for pristine SnO{sub 2}, CdS, and the CdS/SnO{sub 2} hybrid photocatalyst, respectively. The CdS/SnO{sub 2} hybrid photocatalyst showed more efficient charge carrier separation and improved photocatalytic degradation of methyl orange (MO). The highest degradation rate constant was achieved for the CdS/SnO{sub 2} hybrid photocatalyst (0.02434 min{sup −1}) compared to CdS (0.01381 min{sup −1}) and SnO{sub 2} (0.00878 min{sup −1}). The present study provides insights for improving the photocatalytic activity and photo-stability of CdS/SnO{sub 2} hybrid photocatalyst.

  8. Structure, bioactivity, and synthesis of methylated flavonoids.

    Science.gov (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  9. Evidence for non-CpG methylation in mammals

    DEFF Research Database (Denmark)

    Yan, Jie; Zierath, Juleen R; Barres, Romain

    2011-01-01

    In mammals, the existence of cytosine methylation on non-CpG sequences is controversial. Here, we adapted a LuminoMetric-based Assay (LUMA) to determine global non-CpG methylation levels in rodent and human tissues. We observed that......In mammals, the existence of cytosine methylation on non-CpG sequences is controversial. Here, we adapted a LuminoMetric-based Assay (LUMA) to determine global non-CpG methylation levels in rodent and human tissues. We observed that...

  10. DNA methylation in states of cell physiology and pathology.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2007-10-01

    Full Text Available DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation. The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences five new genes which are potential biomarkers of lung cancer have been presented.

  11. 21 CFR 172.872 - Methyl ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number...

  12. Analysis of DNA methylation in various swine tissues.

    Directory of Open Access Journals (Sweden)

    Chun Yang

    Full Text Available DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively.In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.

  13. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    Science.gov (United States)

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  14. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    Science.gov (United States)

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  15. Genetic and DNA methylation changes in cotton (Gossypium genotypes and tissues.

    Directory of Open Access Journals (Sweden)

    Kenji Osabe

    Full Text Available In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP assays including a methylation insensitive enzyme (BsiSI, and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC. DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  16. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues.

    Science.gov (United States)

    Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W

    2014-01-01

    In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  17. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters

    Science.gov (United States)

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  18. Bridging the Gap Between Protein Carboxyl Methylation and Phospholipid Methylation to Understand Glucose-Stimulated Insulin Secretion From the Pancreatic β Cell

    OpenAIRE

    Kowluru, Anjaneyulu

    2007-01-01

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also be...

  19. Biological meaning of the methyl eugenol to fruit flies

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, S.; Subahar, S

    1998-12-16

    The objective of this research is to test a hypothesis whether methyl eugenol has a benefit in sexual selection of fruit flies and to find at what age the male flies respond to methyl eugenol. This test was conducted using carambola fruit fly (Bractocera carambolae) at Inter University Center for Life Science of ITB. The results of the tests are summarized as follows ; 1. Males started to respond to methyl eugenol at the age of 11 days old and the maximum number of males were recorded on 14 and 15 days old. 2. Most of the carambola fruit fly start to respond to methyl eugenol before they become sexually mature. 3. A very small percentage of newly emerged males (less than 1%) survive to mate with females during treatment with methyl eugenol. Methyl eugenol has benefit in sexual selection of carabola fruit fly, i.e., males responded to methyl eugenol before they engage in sexual activities, while females responded to methyl eugenol only when males started their mating activities. (author)

  20. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    Science.gov (United States)

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  1. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  2. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  3. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L., E-mail: senent@iem.cfmac.csic.es [Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid 28006 (Spain); Puzzarini, C., E-mail: cristina.puzzarini@unibo.it [Dipartimento di Chimica G. Ciamician, Università di Bologna, Via F. Selmi 2, I-40126 Bologna (Italy); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée (France); Domínguez-Gómez, R., E-mail: rosa.dominguez@upm.es [Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid, Madrid (Spain); Carvajal, M., E-mail: miguel.carvajal@dfa.uhu.es [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Unidad Asociada IEM-CSIC-U.Huelva, Universidad de Huelva, 21071 Huelva (Spain)

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  4. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    Science.gov (United States)

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  5. Acute effect of methyl bromide on sleep-wakefulness and its

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Arito, H; Abuku, S; Imamiya, S

    1986-01-01

    In an attempt to clarify the acute effects of methyl bromide on the central nervous system, abnormal electrocorticographic activity and changes in sleep-wakefulness and its circadian rhythms were investigated after a single injection of methyl bromide. The effects of possible hydrolyzed products of methyl bromide, methanol and bromine ions on sleep and its rhythms were also examined. It was found that the hydrolyzed products of methyl bromide, bromine ions and methanol exerted little effect on the amounts of wakefulness (W), non-REM sleep (NREMS) and REM sleep (REMS) at the same molar dose as 45 mg methyl bromide/kg. Thus, it can be concluded that the methyl bromide-induced changes in sleep-wakefulness and its circadian rhythms are due to methyl bromide and not to the hydrolyzed products. It was also found that amounts of W, NREMS and REMS were changed dose-dependently after a single injection of methyl bromide and that methyl bromide significantly disrupted the circadian REMS rhythm. 17 references, 1 figure, 1 table.

  6. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    Science.gov (United States)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  7. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice

    International Nuclear Information System (INIS)

    Bounaama, Abdelkader; Djerdjouri, Bahia; Laroche-Clary, Audrey; Le Morvan, Valérie; Robert, Jacques

    2012-01-01

    Highlights: ► 1,2-Dimethylhydrazine (DMH) toxicity was driven by oxidative stress. ► Arginase activity correlated to aberrant crypt foci (ACF). ► Curcumin diet restored redox status and induced apoptosis of dysplastic ACF. ► Curcumin reduced arginase activity and up regulated TGF-β1 and HES-1 transcripts. -- Abstract: This study investigated the effect of short curcumin treatment, a natural antioxidant on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in mice. The incidence of aberrant crypt foci (ACF) was 100%, with 54 ± 6 per colon, 10 weeks after the first DMH injection and reached 67 ± 12 per colon after 12 weeks. A high level of undifferentiated goblet cells and a weak apoptotic activity were shown in dysplastic ACF. The morphological alterations of colonic mucosa were associated to severe oxidative stress ratio with 43% increase in malondialdehyde vs. 36% decrease in GSH. DMH also increased inducible nitric synthase (iNOS) mRNA transcripts (250%), nitrites level (240%) and arginase activity (296%), leading to nitrosative stress and cell proliferation. Curcumin treatment, starting at week 10 post-DMH injection for 14 days, reduced the number of ACF (40%), iNOS expression (25%) and arginase activity (73%), and improved redox status by approximately 46%, compared to DMH-treated mice. Moreover, curcumin induced apoptosis of dysplastic ACF cells without restoring goblet cells differentiation. Interestingly, curcumin induced a parallel increase in TGF-β1 and HES-1 transcripts (42% and 26%, respectively). In conclusion, the protective effect of curcumin was driven by the reduction of arginase activity and nitrosative stress. The up regulation of TGF-β1 and HES-1 expression by curcumin suggests for the first time, a potential interplay between these signalling pathways in the chemoprotective mechanism of curcumin.

  8. Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats.

    Science.gov (United States)

    Zahran, Walid E; Elsonbaty, Sawsan M; Moawed, Fatma S M

    2017-08-01

    Combination therapy that targets cellular signaling pathway represents an alternative therapy for the treatment of colon cancer (CRC). The present study was therefore aimed to investigate the probable interaction of Lactobacillus rhamnosus ATCC 7469 exopolysaccharides (EPS) with low level ionizing γ radiation (γ-R) exposure against dimethylhydrazine (DMH)- induced colorectal carcinogenesis in rats. Colon cancer was induced with 20mg DMH/kg BW. Rats received daily by gastric gavage 100mg EPS/Kg BW concomitant with 1Gy γ-R over two months. Colonic oxidative and inflammatory stresses were assessed. The change in the expression of p-p38 MAPK, p-STAT3, β-catenin, NF-kB, COX-2 and iNOS was evaluated by western blotting and q-PCR. It was found that DMH treatment significantly induced colon oxidative injury accompanied by inflammatory disturbance along with increased protein expression of the targeted signaling factors p-p38 MAPK, p-STAT3 and β-catenin. The mRNA gene expression of NF-kB, COX-2 and iNOS was significantly higher in DMH-treated animals. It's worthy to note that colon tissues with DMH treatment showed significant dysplasia and anaplasia of the glandular mucosal lining epithelium with loses of goblet cells formation, pleomorphism in the cells and hyperchromachia in nuclei. Interestingly, EPS treatment with γ-R exposure showed statistically significant amelioration of the oxidative and inflammatory biomarkers with modulated signaling molecular factors accompanied by improved histological structure against DMH-induced CRC. In conclusion, our findings showed that Lactobacillus rhamnosus ATCC 7469 EPS with low level γ-R in synergistic interaction are efficacious control against CRC progression throughout the modulation of key signaling growth factors associated with inflammation via antioxidant mediated anti-inflammatory and anti-proliferative activities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.

    Science.gov (United States)

    Wang, Ding; Zhang, Zongbo; Li, Yongming; Xu, Caihong

    2014-07-09

    Highly transparent and durable superhydrophobic hybrid nanoporous coatings with different surface roughnesses were fabricated via a simple solidification-induced phase-separation method using a liquid polysiloxane (PSO) containing SiH and SiCH═CH2 groups as precursors and methyl-terminated poly(dimethylsiloxane)s (PDMS) as porogens. Owing to the existence of SiCHn units, the hybrid material is intrinsically hydrophobic without modification with expensive fluorinated reagents. The roughness of the coating can be easily controlled at the nanometer scale by changing the viscosity of PDMS to achieve both superhydrophobicity and high transparency. The influence of surface roughness on the transparency and hydrophobicity of the coatings was investigated. The enhancement from hydrophobic to superhydrophobic with increasing surface roughness can be explained by the transition from the Wenzel state to the Cassie state. The optimum performance coating has an average transmittance higher than 85% in the visible-light range (400-780 nm), a water contact angle of 155°, and a slide angle lower than 1°. The coatings also exhibit good thermal and mechanical stability and durable superhydrophobicity, which paves the way for real applications of highly transparent superhydrophobic coatings.

  10. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Elvira eCarrio

    2015-03-01

    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  11. Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: Diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer

    NARCIS (Netherlands)

    Vogel, S. de; Wouters, K.A.D.; Gottschalk, R.W.H.; Schooten, F.J. van; Goeij, A.F.P.M. de; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den; Engeland, M. van; Weijenberg, M.P.

    2011-01-01

    Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). Among 609 CRC cases and 1,663 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852), we estimated CRC risk according to methyl donor intake across genotypes of folate

  12. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls

    OpenAIRE

    Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol

    2010-01-01

    Abstract Background The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Methods Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic ...

  13. Novel methyl transfer during chemotaxis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Kirby, J.R.; Ordal, G.W.

    1989-01-01

    If Bacillus subtilis is incubated in radioactive methionine in the absence of protein synthesis, the methyl-accepting chemotaxis proteins (MCPs) become radioactively methylated. If the bacteria are further incubated in excess nonradioactive methionine (cold-chased) and then given the attractant aspartate, the MCPs lose about half of their radioactivity due to turnover, in which lower specific activity methyl groups from S-adenosylmethionine (AdoMet) replace higher specific activity ones. Due to the cold-chase, the specific activity of the AdoMet pool is reduced at least 2-fold. If, later, the attractant is removed, higher specific activity methyl groups return to the MCPs. Thus, there must exist an unidentified methyl carrier than can reversibly receive methyl groups from the MCPs. In a similar experiment, labeled cells were transferred to a flow cell and exposed to addition and removal of attractant and of repellent. All four kinds of stimuli were found to cause methanol production. Bacterial with maximally labeled MCPs were exposed to many cycles of addition and removal of attractant; the maximum amount of radioactive methanol was evolved on the third, not the first, cycle. This result suggests that there is a precursor-product relationship between methyl groups on the MCPs and on the unidentified carrier, which might be the direct source of methanol. However, since no methanol was produced when a methyltransferase mutant, whose MCPs were unmethylated, was exposed to addition and removal of attractant or repellent, the methanol must ultimately derive from methylated MCPs

  14. Dynamic instability of genomic methylation patterns in pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ooi Steen KT

    2010-09-01

    Full Text Available Abstract Background Genomic methylation patterns are established during gametogenesis, and perpetuated in somatic cells by faithful maintenance methylation. There have been previous indications that genomic methylation patterns may be less stable in embryonic stem (ES cells than in differentiated somatic cells, but it is not known whether different mechanisms of de novo and maintenance methylation operate in pluripotent stem cells compared with differentiating somatic cells. Results In this paper, we show that ablation of the DNA methyltransferase regulator DNMT3L (DNA methyltransferase 3-like in mouse ES cells renders them essentially incapable of de novo methylation of newly integrated retroviral DNA. We also show that ES cells lacking DNMT3L lose DNA methylation over time in culture, suggesting that DNA methylation in ES cells is the result of dynamic loss and gain of DNA methylation. We found that wild-type female ES cells lose DNA methylation at a much faster rate than do male ES cells; this defect could not be attributed to sex-specific differences in expression of DNMT3L or of any DNA methyltransferase. We also found that human ES and induced pluripotent stem cell lines showed marked but variable loss of methylation that could not be attributed to sex chromosome constitution or time in culture. Conclusions These data indicate that DNA methylation in pluripotent stem cells is much more dynamic and error-prone than is maintenance methylation in differentiated cells. DNA methylation requires DNMT3L in stem cells, but DNMT3L is not expressed in differentiating somatic cells. Error-prone maintenance methylation will introduce unpredictable phenotypic variation into clonal populations of pluripotent stem cells, and this variation is likely to be much more pronounced in cultured female cells. This epigenetic variability has obvious negative implications for the clinical applications of stem cells.

  15. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  16. Global DNA methylation of ischemic stroke subtypes.

    Directory of Open Access Journals (Sweden)

    Carolina Soriano-Tárraga

    Full Text Available Ischemic stroke (IS, a heterogeneous multifactorial disorder, is among the leading causes of mortality and long-term disability in the western world. Epidemiological data provides evidence for a genetic component to the disease, but its epigenetic involvement is still largely unknown. Epigenetic mechanisms, such as DNA methylation, change over time and may be associated with aging processes and with modulation of the risk of various pathologies, such as cardiovascular disease and stroke. We analyzed 2 independent cohorts of IS patients. Global DNA methylation was measured by luminometric methylation assay (LUMA of DNA blood samples. Univariate and multivariate regression analyses were used to assess the methylation differences between the 3 most common IS subtypes, large-artery atherosclerosis (LAA, small-artery disease (SAD, and cardio-aortic embolism (CE. A total of 485 IS patients from 2 independent hospital cohorts (n = 281 and n = 204 were included, distributed across 3 IS subtypes: LAA (78/281, 59/204, SAD (97/281, 53/204, and CE (106/281, 89/204. In univariate analyses, no statistical differences in LUMA levels were observed between the 3 etiologies in either cohort. Multivariate analysis, adjusted by age, sex, hyperlipidemia, and smoking habit, confirmed the lack of differences in methylation levels between the analyzed IS subtypes in both cohorts. Despite differences in pathogenesis, our results showed no global methylation differences between LAA, SAD, and CE subtypes of IS. Further work is required to establish whether the epigenetic mechanism of methylation might play a role in this complex disease.

  17. Assessment of DNA methylation profiling and copy number variation as indications of clonal relationship in ipsilateral and contralateral breast cancers to distinguish recurrent breast cancer from a second primary tumour

    International Nuclear Information System (INIS)

    Huang, Katie T.; Mikeska, Thomas; Li, Jason; Takano, Elena A.; Millar, Ewan K A; Graham, Peter H.; Boyle, Samantha E.; Campbell, Ian G.; Speed, Terence P.; Dobrovic, Alexander; Fox, Stephen B.

    2015-01-01

    Patients with breast cancer have an increased risk of developing subsequent breast cancers. It is important to distinguish whether these tumours are de novo or recurrences of the primary tumour in order to guide the appropriate therapy. Our aim was to investigate the use of DNA methylation profiling and array comparative genomic hybridization (aCGH) to determine whether the second tumour is clonally related to the first tumour. Methylation-sensitive high-resolution melting was used to screen promoter methylation in a panel of 13 genes reported as methylated in breast cancer (RASSF1A, TWIST1, APC, WIF1, MGMT, MAL, CDH13, RARβ, BRCA1, CDH1, CDKN2A, TP73, and GSTP1) in 29 tumour pairs (16 ipsilateral and 13 contralateral). Using the methylation profile of these genes, we employed a Bayesian and an empirical statistical approach to estimate clonal relationship. Copy number alterations were analysed using aCGH on the same set of tumour pairs. There is a higher probability of the second tumour being recurrent in ipsilateral tumours compared with contralateral tumours (38 % versus 8 %; p <0.05) based on the methylation profile. Using previously reported recurrence rates as Bayesian prior probabilities, we classified 69 % of ipsilateral and 15 % of contralateral tumours as recurrent. The inferred clonal relationship results of the tumour pairs were generally concordant between methylation profiling and aCGH. Our results show that DNA methylation profiling as well as aCGH have potential as diagnostic tools in improving the clinical decisions to differentiate recurrences from a second de novo tumour. The online version of this article (doi:10.1186/s12885-015-1676-0) contains supplementary material, which is available to authorized users

  18. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Keyte, Anna L; Percifield, Ryan; Liu, Bao; Wendel, Jonathan F

    2006-01-01

    Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.

  19. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    Science.gov (United States)

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  20. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    Science.gov (United States)

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) during aestivation.

    Science.gov (United States)

    Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng

    2015-03-01

    DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Regulation and function of DNA methylation in plants and animals

    KAUST Repository

    He, Xinjian

    2011-02-15

    DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. © 2011 IBCB, SIBS, CAS All rights reserved.

  3. Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta.

    Directory of Open Access Journals (Sweden)

    Tianjiao Chu

    Full Text Available A small number of recent reports have suggested that altered placental DNA methylation may be associated with early onset preeclampsia. It is important that further studies be undertaken to confirm and develop these findings. We therefore undertook a systematic analysis of DNA methylation patterns in placental tissue from 24 women with preeclampsia and 24 with uncomplicated pregnancy outcome.We analyzed the DNA methylation status of approximately 27,000 CpG sites in placental tissues in a massively parallel fashion using an oligonucleotide microarray. Follow up analysis of DNA methylation at specific CpG loci was performed using the Epityper MassArray approach and high-throughput bisulfite sequencing.Preeclampsia-specific DNA methylation changes were identified in placental tissue samples irrespective of gestational age of delivery. In addition, we identified a group of CpG sites within specific gene sequences that were only altered in early onset-preeclampsia (EOPET although these DNA methylation changes did not correlate with altered mRNA transcription. We found evidence that fetal gender influences DNA methylation at autosomal loci but could find no clear association between DNA methylation and gestational age.Preeclampsia is associated with altered placental DNA methylation. Fetal gender should be carefully considered during the design of future studies in which placental DNA is analyzed at the level of DNA methylation. Further large-scale analyses of preeclampsia-associated DNA methylation are necessary.

  4. The Protective Effect of Cell Wall and Cytoplasmic Fraction of Selenium Enriched Yeast on 1, 2-Dimethylhydrazine-induced Damage in Liver

    Directory of Open Access Journals (Sweden)

    Mitra Dadrass

    2014-02-01

    Full Text Available Background: 1, 2-Dimethylhydrazine (DMH enhances lipid peroxidation rate by tumor mitochondria than normal tissue counterpart and causes many disorders in antioxidant system in liver. It also increases the level of enzymes that metabolize toxin in liver and colon. The aim of this study was to evaluate the alteration of liver and its enzymes after DMH injection and evaluate protective effect of cell wall and cytoplasmic fractions of Saccharomyces cereviseae enriched with selenium (Se on these tissues. Materials and Methods: Forty eight female rats were prepared and acclimatized to the laboratory conditions for two weeks, and all animals received 1, 2- dimethyl hydrazine chloride (40 mg/kg body weight twice a week for 4 weeks except healthy control. At first colon carcinoma (aberrant crypt foci confirmed by light microscope. Then the changes resulting from injection of DMH on liver of animals in initial and advanced stages of colon cancer were examined. In addition, the protective effect of cell wall and cytoplasmic fractions of Selenium-enriched S. cerevisiae were investigated in two phases. First phase in initial stage and second phase in advanced stage of colon cancer were performed respectively. Forty weeks following the first DMH injection, all survived animals were sacrificed. Then, colon and liver removed and exsanguinated by heart puncture. For measuring the levels of enzymes (AST, ALT, and ALP, a commercial kit (Parsazmoon, Iran and an autoanalyzer (BT 3000 Pluse, Italy were used. Results: The results showed that subcutaneous injection of DMH increased the ALT, AST, and ALP levels up to 78.5, 161.38, and 275.88 U/L compared to the control, respectively. Moreover, statistical analysis in both phases of experiment revealed that the enzyme levels were decreased in the treated groups in comparison with the DMH-injected group, while the levels of these enzymes were lower in the control group. Conclusion: It should be concluded that

  5. Faster gastric emptying of a liquid meal in rats after hypothalamic dorsomedial nucleus lesion

    Directory of Open Access Journals (Sweden)

    Denofre-Carvalho S.

    1997-01-01

    Full Text Available The effects of dorsomedial hypothalamic (DMH nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g. DMH lesions were produced stereotaxically by delivering a 2.0-mA current for 20 s through nichrome electrodes (0.3-mm tip exposure. In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure. The medial hypothalamus (MH was also lesioned separately using a nichrome electrode (0.3-mm tip exposure with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9% NaCl, w/v plus phenol red dye (6 mg/dl as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05 gastric emptying (24.7% gastric retention, N = 11 than control (33.0% gastric retention, N = 8 and sham-lesioned (33.5% gastric retention, N = 12 rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DMH-lesioned rats had a faster gastric emptying (25.1% gastric retention, N = 7 than control (33.4% gastric retention, N = 17 and VMH-lesioned (34.6% gastric retention, N = 7 rats. MH lesions resulted in an even slower gastric emptying (43.7% gastric retention, N = 7 than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for

  6. Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates

    Directory of Open Access Journals (Sweden)

    Wang Jinkai

    2012-08-01

    Full Text Available Abstract Background The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. Results To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4 DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. Conclusions Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and non-human primates, and only a few DMRs were identified.

  7. Methylation pattern of IFNG in periapical granulomas and radicular cysts.

    Science.gov (United States)

    Campos, Kelma; Gomes, Carolina Cavaliéri; de Fátima Correia-Silva, Jeane; Farias, Lucyana Conceição; Fonseca-Silva, Thiago; Bernardes, Vanessa Fátima; Pereira, Cláudia Maria; Gomez, Ricardo Santiago

    2013-04-01

    Interferon-γ plays an important role in the pathogenesis of periapical lesions, and the methylation of IFNG has been associated with transcriptional inactivation. The purpose of the present study was to investigate IFNG promoter methylation in association with gene transcription and protein levels in periapical granulomas and radicular cysts. Methylation-specific polymerase chain reaction was used to assess the DNA methylation pattern of the IFNG gene in 16 periapical granulomas and 13 radicular cyst samples. The transcription levels of IFNG mRNA were verified by quantitative real-time polymerase chain reaction, and protein expression was evaluated by immunohistochemistry. All the periapical lesion samples exhibited partial or total methylation of the IFNG gene. In addition, an increased methylation profile was found in radicular cysts compared with periapical granulomas. Increased IFNG mRNA expression was observed in the partially methylated periapical lesion samples relative to the samples that were completely methylated. The present study provides the first evidence of the possible impact of IFNG methylation on IFNG transcription in periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  9. 78 FR 32157 - Methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2013-05-29

    ... study showed no treatment- related effects on mating or fertility. There were no treatment-related... a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting establishment... received and the nature of the adverse effects caused by methyl 5-(dimethylamino)-2-methyl-5- oxopentanoate...

  10. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    Science.gov (United States)

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. DNA methylation and healthy human aging.

    Science.gov (United States)

    Jones, Meaghan J; Goodman, Sarah J; Kobor, Michael S

    2015-12-01

    The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Nutrient-dependent methylation of a membrane-associated protein of Escherichia coli

    International Nuclear Information System (INIS)

    Young, C.C.; Alvarez, J.D.; Bernlohr, R.W.

    1990-01-01

    Starvation of a mid-log-phase culture of Escherichia coli B/r for nitrogen, phosphate, or carbon resulted in methylation of a membrane-associated protein of about 43,000 daltons (P-43) in the presence of chloramphenicol and [methyl-3H]methionine. The in vivo methylation reaction occurred with a doubling time of 2 to 5 min and was followed by a slower demethylation process. Addition of the missing nutrient to a starving culture immediately prevented further methylation of P-43. P-43 methylation is not related to the methylated chemotaxis proteins because P-43 is methylated in response to a different spectrum of nutrients and because P-43 is methylated on lysine residues. The characteristics of P-43 are similar to those of a methylated protein previously described in Bacillus subtilis and B. licheniformis and are consistent with the proposal that methylation of this protein functions in nutrient sensing

  13. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  14. Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation.

    Science.gov (United States)

    Ferry, Laure; Fournier, Alexandra; Tsusaka, Takeshi; Adelmant, Guillaume; Shimazu, Tadahiro; Matano, Shohei; Kirsh, Olivier; Amouroux, Rachel; Dohmae, Naoshi; Suzuki, Takehiro; Filion, Guillaume J; Deng, Wen; de Dieuleveult, Maud; Fritsch, Lauriane; Kudithipudi, Srikanth; Jeltsch, Albert; Leonhardt, Heinrich; Hajkova, Petra; Marto, Jarrod A; Arita, Kyohei; Shinkai, Yoichi; Defossez, Pierre-Antoine

    2017-08-17

    DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss.

    Science.gov (United States)

    Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman

    2017-04-26

    This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO 2 NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO 2 NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO 2 NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO 2 NW, (iii) positioning of ferroelectric MnO 2 NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO 2 NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.

  16. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany); Miehler, Dominik [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Zaumseil, Jana, E-mail: zaumseil@uni-heidelberg.de [Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany)

    2015-08-24

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.

  17. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots.

    Science.gov (United States)

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin

    2015-06-15

    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The dynamics of smoking-related disturbed methylation: a two time-point study of methylation change in smokers, non-smokers and former smokers.

    Science.gov (United States)

    Wilson, Rory; Wahl, Simone; Pfeiffer, Liliane; Ward-Caviness, Cavin K; Kunze, Sonja; Kretschmer, Anja; Reischl, Eva; Peters, Annette; Gieger, Christian; Waldenberger, Melanie

    2017-10-18

    The evidence for epigenome-wide associations between smoking and DNA methylation continues to grow through cross-sectional studies. However, few large-scale investigations have explored the associations using observations for individuals at multiple time-points. Here, through the use of the Illumina 450K BeadChip and data collected at two time-points separated by approximately 7 years, we investigate changes in methylation over time associated with quitting smoking or remaining a former smoker, and those associated with continued smoking. Our results indicate that after quitting smoking the most rapid reversion of altered methylation occurs within the first two decades, with reversion rates related to the initial differences in methylation. For 52 CpG sites, the change in methylation from baseline to follow-up is significantly different for former smokers relative to the change for never smokers (lowest p-value 3.61 x 10 -39 for cg26703534, gene AHRR). Most of these sites' respective regions have been previously implicated in smoking-associated diseases. Despite the early rapid change, dynamism of methylation appears greater in former smokers vs never smokers even four decades after cessation. Furthermore, our study reveals the heterogeneous effect of continued smoking: the methylation levels of some loci further diverge between smokers and non-smokers, while others re-approach. Though intensity of smoking habit appears more significant than duration, results remain inconclusive. This study improves the understanding of the dynamic link between cigarette smoking and methylation, revealing the continued fluctuation of methylation levels decades after smoking cessation and demonstrating that continuing smoking can have an array of effects. The results can facilitate insights into the molecular mechanisms behind smoking-induced disturbed methylation, improving the possibility for development of biomarkers of past smoking behavior and increasing the understanding of

  19. Polymer-Based Black Phosphorus (bP) Hybrid Materials by in Situ Radical Polymerization: An Effective Tool To Exfoliate bP and Stabilize bP Nanoflakes

    Science.gov (United States)

    2018-01-01

    Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn–MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.

  20. Implications of DNA Methylation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ernesto Miranda-Morales

    2017-07-01

    Full Text Available It has been 200 years since Parkinson’s disease (PD was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.

  1. Normal Bone Mineral Density Associates with Duodenal Mucosa Healing in Adult Patients with Celiac Disease on a Gluten-Free Diet

    Directory of Open Access Journals (Sweden)

    Tiziana Larussa

    2017-01-01

    Full Text Available Impairment of bone mineral density (BMD is frequent in celiac disease (CD patients on a gluten-free diet (GFD. The normalization of intestinal mucosa is still difficult to predict. We aim to investigate the relationship between BMD and duodenal mucosa healing (DMH in CD patients on a GFD. Sixty-four consecutive CD patients on a GFD were recruited. After a median period of a 6-year GFD (range 2–33 years, patients underwent repeat duodenal biopsy and dual-energy X-ray absorptiometry (DXA scan. Twenty-four patients (38% displayed normal and 40 (62% low BMD, 47 (73% DMH, and 17 (27% duodenal mucosa lesions. All patients but one with normal BMD (23 of 24, 96% showed DMH, while, among those with low BMD, 24 (60% did and 16 (40% did not. At multivariate analysis, being older (odds ratio (OR 1.1, 95% confidence interval (CI 1.03–1.18 and having diagnosis at an older age (OR 1.09, 95% CI 1.03–1.16 were associated with low BMD; in turn, having normal BMD was the only variable independently associated with DMH (OR 17.5, 95% CI 1.6–192. In older CD patients and with late onset disease, BMD recovery is not guaranteed, despite a GFD. A normal DXA scan identified CD patients with DMH; thus, it is a potential tool in planning endoscopic resampling.

  2. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  3. Allele specific expression and methylation in the bumblebee, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Zoë Lonsdale

    2017-09-01

    Full Text Available The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.

  4. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun

    2014-01-01

    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  5. Hybride textuelle Strukturen und hybride textuelle Einheiten. Ein ...

    African Journals Online (AJOL)

    carrying set of all hybrid hierarchical structures are element-heterogeneous whilst the structure- carrying set of all ... grams of hierarchical hybrid article structures, the nodes for those text segments that establish the hybrid status of .... der; d ∈ ArtA ⊣ G|WAr (= Artikelangabe, anhand derer das Genus (= G) und zugleich die ...

  6. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A; Khamis, Abdullah M.; Kulakovskiy, Ivan V; Ba Alawi, Wail; Bhuyan, Md Shariful I; Kawaji, Hideya; Lassmann, Timo; Harbers, Matthias; Forrest, Alistair RR; Bajic, Vladimir B.

    2014-01-01

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect

  7. Synthesis of two S-(methyl-3H)-labelled enkephalins and S-(methyl-14C) substance P

    International Nuclear Information System (INIS)

    Naegren, K.; Laangstroem, B.; Franzen, H.M.; Ragnarsson, U.

    1988-01-01

    The synthesis of 3 H-labelled Met-enkephalin and Tyr-D-Ala-Gly-Phe-Met-NH 2 (DALA) and 14 C-labelled Substance P (SP) from previously described, fully protected intermediates is reported. The labelled peptides were prepared by methylation with ( 3 H)- or ( 14 C)methyl iodide of the sulphide anions formed on deprotection of the corresponding S-benzyl-homocysteine precursors with sodium in liquid ammonia. After purification by LC, the labelled peptides were obtained in radiochemical yields in the range of 9 to 24% with a radiochemical purity higher than 97%. The specific radioactivities of the 3 H- and 14 C- labelled products, corresponding to the labelled methyl iodides used, were 80 mCi/μmol and 60 μCi/μmol, respectively. (author)

  8. Synthesis of 1-Methyl-3-oxo-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gil Valdo José da Silva

    2005-11-01

    Full Text Available A simple and efficient method for the preparation of 1-methyl-3-oxo-7- oxabicyclo[2.2.1]hept-5-en-2-carboxylic acid methyl ester (1 is described. The first step is a highly regioselective Diels-Alder reaction between 2-methylfuran and methyl-3-bromo- propiolate. A remarkably difficult ketal hydrolysis reaction was effected by treatment with HCl, a simple reagent that was shown to be more efficient, in this case, than commonly used more elaborate methods.

  9. Techno-economic and carbon footprint assessment of methyl crotonate and methyl acrylate production from wastewater-based polyhydroxybutyrate (PHB)

    NARCIS (Netherlands)

    Fernandez Dacosta, C.; Posada, John A.; Ramirez, C.A.

    2016-01-01

    This paper assesses whether a cleaner and more sustainable production of the chemical building blocks methyl crotonate (MC) and methyl acrylate (MA) can be obtained in an innovative process in which resource consumption, waste generation and environmental impacts are minimized by using

  10. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes.

    Science.gov (United States)

    Gahurova, Lenka; Tomizawa, Shin-Ichi; Smallwood, Sébastien A; Stewart-Morgan, Kathleen R; Saadeh, Heba; Kim, Jeesun; Andrews, Simon R; Chen, Taiping; Kelsey, Gavin

    2017-01-01

    Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci. Given the predominant role of transcription, we sought to investigate whether transcription timing is rate limiting for de novo methylation and determines the asynchrony of methylation events. Therefore, we generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that most sequence elements, including most classes of transposable elements, acquire methylation at similar rates overall. However, methylation of CpG islands (CGIs) is delayed compared with the genome average and there are reproducible differences amongst CGIs in onset of methylation. Although more highly transcribed genes acquire methylation earlier, the major transitions in the oocyte transcriptome occur well before the de novo methylation phase, indicating that transcription is generally not rate limiting in conferring permissiveness to DNA methylation. Instead, CGI methylation timing negatively correlates with enrichment for histone 3 lysine 4 (H3K4) methylation and dependence on the H3K4 demethylases KDM1A and KDM1B, implicating chromatin remodelling as a major determinant of methylation timing. We also identified differential enrichment of transcription factor binding motifs in CGIs acquiring methylation early or late in oocyte growth. By combining these parameters into multiple regression models, we were able to account for about a fifth of the variation in methylation timing of CGIs. Finally

  11. Information Thermodynamics of Cytosine DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Robersy Sanchez

    Full Text Available Cytosine DNA methylation (CDM is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise" induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1 the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2 whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic

  12. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Da, M.X. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Zhang, Y.B. [Department of Surgery, Ningxia Medical University, Yinchuan (China); Yao, J.B. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Duan, Y.X. [Department of Surgery, Ningxia Medical University, Yinchuan (China)

    2014-09-30

    DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growth in vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.

  13. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  14. Kismeth: Analyzer of plant methylation states through bisulfite sequencing

    Directory of Open Access Journals (Sweden)

    Martienssen Robert A

    2008-09-01

    Full Text Available Abstract Background There is great interest in probing the temporal and spatial patterns of cytosine methylation states in genomes of a variety of organisms. It is hoped that this will shed light on the biological roles of DNA methylation in the epigenetic control of gene expression. Bisulfite sequencing refers to the treatment of isolated DNA with sodium bisulfite to convert unmethylated cytosine to uracil, with PCR converting the uracil to thymidine followed by sequencing of the resultant DNA to detect DNA methylation. For the study of DNA methylation, plants provide an excellent model system, since they can tolerate major changes in their DNA methylation patterns and have long been studied for the effects of DNA methylation on transposons and epimutations. However, in contrast to the situation in animals, there aren't many tools that analyze bisulfite data in plants, which can exhibit methylation of cytosines in a variety of sequence contexts (CG, CHG, and CHH. Results Kismeth http://katahdin.mssm.edu/kismeth is a web-based tool for bisulfite sequencing analysis. Kismeth was designed to be used with plants, since it considers potential cytosine methylation in any sequence context (CG, CHG, and CHH. It provides a tool for the design of bisulfite primers as well as several tools for the analysis of the bisulfite sequencing results. Kismeth is not limited to data from plants, as it can be used with data from any species. Conclusion Kismeth simplifies bisulfite sequencing analysis. It is the only publicly available tool for the design of bisulfite primers for plants, and one of the few tools for the analysis of methylation patterns in plants. It facilitates analysis at both global and local scales, demonstrated in the examples cited in the text, allowing dissection of the genetic pathways involved in DNA methylation. Kismeth can also be used to study methylation states in different tissues and disease cells compared to a reference sequence.

  15. Links between DNA methylation and nucleosome occupancy in the human genome.

    Science.gov (United States)

    Collings, Clayton K; Anderson, John N

    2017-01-01

    DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin.

  16. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  17. Mercury methylation and bacterial activity associated to tropical phytoplankton

    International Nuclear Information System (INIS)

    Coelho-Souza, Sergio A.; Guimaraes, Jean R.D.; Mauro, Jane B.N.; Miranda, Marcio R.; Azevedo, Sandra M.F.O.

    2006-01-01

    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl- 203 Hg formation from added inorganic 203 Hg and 3 H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H 2 35 S produced from added Na 2 35 SO 4 . There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw -1 h -1 for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10 3 nmol gdw -1 h -1 at a concentration of 1000 nM leucine) and sulfate-reduction (∼21% H 2 35 S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected

  18. Mercury methylation and bacterial activity associated to tropical phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Souza, Sergio A. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Guimaraes, Jean R.D. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil)]. E-mail: jeanrdg@biof.ufrj.br; Mauro, Jane B.N. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Miranda, Marcio R. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Azevedo, Sandra M.F.O. [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, IBCCF/UFRJ, RJ (Brazil)

    2006-07-01

    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl-{sup 203}Hg formation from added inorganic {sup 203}Hg and {sup 3}H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H{sub 2} {sup 35}S produced from added Na{sub 2} {sup 35}SO{sub 4}. There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw{sup -1} h{sup -1} for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10{sup 3} nmol gdw{sup -1} h{sup -1} at a concentration of 1000 nM leucine) and sulfate-reduction ({approx}21% H{sub 2} {sup 35}S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected.

  19. Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: a novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay

    International Nuclear Information System (INIS)

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Zhang, Fuyuan; Liu, Jingmin; Zheng, Wenjie; Wang, Shuo

    2017-01-01

    Highlights: • Electrochemiluminescent MoS 2 -GQDs nanocomposite was fabricated for the first time. • MoS 2 -GQDs hybrid nanocomposite was used as ECL sensing platform. • Molecularly imprinted ECL sensor was fabricated for the determination of MCPA. • MoS 2 -GQDs nanocomposite may advance the developments of ECL sensor. - Abstract: The ECL properties and application of a novel luminescent material molybdenum disulfide-graphene quantum dots (MoS 2 -GQDs) hybrid nanocomposite was reported for the first time. The hybridization of MoS 2 and GQDs endowed nanocomposite with structural and compositional advantages for boosting the ECL performance of GQDs. Impressively, the ECL could be remarkable enhanced using MoS 2 -GQDs hybrid nanocomposite, which was ∼13, ∼185 and ∼596-folds larger than the ECL intensity of GQDs, MoS 2 modified electrodes and bare electrode, respectively. Subsequently, as a sensing platform, the MoS 2 -GQDs hybrid nanocomposite was applied to fabricate molecularly imprinted electrochemiluminescence sensor for the ultrasensitive and selective determination of 2-methyl-4-chlorophenoxyacetic acid. Under optimal conditions, the detection limit of the prepared sensor was 5.5 pmol L −1 (S/N = 3) within a linear concentration range of 10 pmol L −1 –0.1 μmol L −1 . The developped sensor exhibited high sensitivity, good selectivity, reproducibility and stability, suggesting the potential for detecting pesticides and veterinary drugs at trace levels in food safety and environmental control.

  20. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  1. MECP2 promoter methylation and X chromosome inactivation in autism.

    Science.gov (United States)

    Nagarajan, Raman P; Patzel, Katherine A; Martin, Michelle; Yasui, Dag H; Swanberg, Susan E; Hertz-Picciotto, Irva; Hansen, Robin L; Van de Water, Judy; Pessah, Isaac N; Jiang, Ruby; Robinson, Wendy P; LaSalle, Janine M

    2008-06-01

    Epigenetic mechanisms have been proposed to play a role in the etiology of autism. This hypothesis is supported by the discovery of increased MECP2 promoter methylation associated with decreased MeCP2 protein expression in autism male brain. To further understand the influence of female X chromosome inactivation (XCI) and neighboring methylation patterns on aberrant MECP2 promoter methylation in autism, multiple methylation analyses were peformed on brain and blood samples from individuals with autism. Bisulfite sequencing analyses of a region 0.6 kb upstream of MECP2 in brain DNA samples revealed an abrupt transition from a highly methylated region in both sexes to a region unmethylated in males and subject to XCI in females. Chromatin immunoprecipitation analysis demonstrated that the CCTC-binding factor (CTCF) bound to this transition region in neuronal cells, consistent with a chromatin boundary at the methylation transition. Male autism brain DNA samples displayed a slight increase in methylation in this transition region, suggesting a possible aberrant spreading of methylation into the MECP2 promoter in autism males across this boundary element. In addition, autistic female brain DNA samples showed evidence for aberrant MECP2 promoter methylation as an increase in the number of bisulfite sequenced clones with undefined XCI status for MECP2 but not androgen receptor (AR). To further investigate the specificity of MECP2 methylation alterations in autism, blood DNA samples from females and mothers of males with autism were also examined for XCI skewing at AR, but no significant increase in XCI skewing was observed compared to controls. These results suggest that the aberrant MECP2 methylation in autism brain DNA samples is due to locus-specific rather than global X chromosome methylation changes.

  2. DNMT1-interacting RNAs block gene specific DNA methylation

    Science.gov (United States)

    Di Ruscio, Annalisa; Ebralidze, Alexander K.; Benoukraf, Touati; Amabile, Giovanni; Goff, Loyal A.; Terragni, Joylon; Figueroa, Maria Eugenia; De Figureido Pontes, Lorena Lobo; Alberich-Jorda, Meritxell; Zhang, Pu; Wu, Mengchu; D’Alò, Francesco; Melnick, Ari; Leone, Giuseppe; Ebralidze, Konstantin K.; Pradhan, Sriharsa; Rinn, John L.; Tenen, Daniel G.

    2013-01-01

    Summary DNA methylation was described almost a century ago. However, the rules governing its establishment and maintenance remain elusive. Here, we present data demonstrating that active transcription regulates levels of genomic methylation. We identified a novel RNA arising from the CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extended the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic targets in disease. PMID:24107992

  3. Folate, colorectal cancer and the involvement of DNA methylation.

    Science.gov (United States)

    Williams, Elizabeth A

    2012-11-01

    Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.

  4. Hybrid platform. Economical hybrid drive for commercial vehicles; Hybrid Plattform. Wirtschaftlicher Hybridantrieb fuer Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, S.; Lamke, M.; Mohr, M.; Sedlacek, M.; Speck, F.D. [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2011-07-01

    Up to now, hybrid systems have been adapted to their specific requirements in the various applications for trucks, buses as well as mobile and building machines. From a technical point of view, this does indeed result in optimized hybrid drives for each single vehicle application, but due to small volumes, such single developments are critical from a business point of view. ZF Friedrichshafen AG is providing a solution to the technical and economical requirements of the cost-sensitive CV segment in the form of a modular CV parallel hybrid platform composed of a hybrid module system, an inverter, a battery system, and a hybrid software integrated into the overall vehicle. Thanks to the intelligent combination of assemblies and the use of as many identical parts as possible, platforms are realized which cover power ranges between 60 and 120 kW, voltage ranges between 350 and 650 V, and battery capacities between 2 and 4 kWh. The dimensions of the platform elements are such that integration into the diverse commercial vehicle applications is made easy. The hybrid software required for the vehicle-specific functions is also configurable for the mentioned CV applications. (orig.)

  5. Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors

    International Nuclear Information System (INIS)

    Lombaerts, Marcel; Middeldorp, Janneke W.; Weide, Esther van der; Philippo, Katja; Wezel, Tom van; Smit, Vincent T.H.B.M.; Cornelisse, Cees J.; Cleton-Jansen, Anne-Marie

    2004-01-01

    Promoter hypermethylation is known to result in transcriptional downregulation of many genes including the CDH1 gene. In this study we set out to determine CDH1 promoter methylation in breast tumors with decreased or absent E-cadherin protein expression and without CDH1 gene mutations by methylation-specific PCR (MSP). Interestingly, some tumor samples with normal E-cadherin expression yielded a methylation-specific PCR product. We hypothesized that other cells than tumor cells contribute to these products. Since in normal breast tissue no CDH1 promoter methylation is detected, infiltrating leukocytes, often present in tumors, might account for these methylation-specific fragments. Indeed, a methylation-specific fragment is found in all twelve leukocyte samples tested. Furthermore, activated T-cells also yielded a methylation-specific fragment. Sequencing of these fragments reveals two distinct methylation profiles. Leukocytes have only partial methylation of some CpGs, while the tumor-associated methylation profile shows complete methylation of most CpGs. Therefore, to assess whether CDH1 methylation is tumor associated, sequencing of MSP products is a prerequisite. Here we show that out of six lobular tumors lacking E-cadherin protein expression, three have tumor-associated CDH1 promoter methylation while in three other tumors no methylation is detected

  6. Analysis of DNA methylation level by methylation-sensitive amplification polymorphism in half smooth tongue sole ( Cynoglossus semilaevis) subjected to salinity stress

    Science.gov (United States)

    Li, Siping; He, Feng; Wen, Haishen; Li, Jifang; Si, Yufeng; Liu, Mingyuan; He, Huiwen; Huang, Zhengju

    2017-04-01

    Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.

  7. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    OpenAIRE

    Karolina Chwialkowska; Urszula Korotko; Joanna Kosinska; Iwona Szarejko; Miroslaw Kwasniewski

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing ...

  8. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    Science.gov (United States)

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-09-06

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

  9. Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences

    Directory of Open Access Journals (Sweden)

    De Marzo Angelo M

    2011-06-01

    Full Text Available Abstract Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease.

  10. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  11. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Directory of Open Access Journals (Sweden)

    Karolina Chwialkowska

    2017-11-01

    Full Text Available Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq. We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation

  12. Quantification of 5-methyl-2'-deoxycytidine in the DNA.

    Science.gov (United States)

    Giel-Pietraszuk, Małgorzata; Insińska-Rak, Małgorzata; Golczak, Anna; Sikorski, Marek; Barciszewska, Mirosława; Barciszewski, Jan

    2015-01-01

    Methylation at position 5 of cytosine (Cyt) at the CpG sequences leading to formation of 5-methyl-cytosine (m(5)Cyt) is an important element of epigenetic regulation of gene expression. Modification of the normal methylation pattern, unique to each organism, leads to the development of pathological processes and diseases, including cancer. Therefore, quantification of the DNA methylation and analysis of changes in the methylation pattern is very important from a practical point of view and can be used for diagnostic purposes, as well as monitoring of the treatment progress. In this paper we present a new method for quantification of 5-methyl-2'deoxycytidine (m(5)C) in the DNA. The technique is based on conversion of m(5)C into fluorescent 3,N(4)-etheno-5-methyl-2'deoxycytidine (εm(5)C) and its identification by reversed-phase high-performance liquid chromatography (RP-HPLC). The assay was used to evaluate m(5)C concentration in DNA of calf thymus and peripheral blood of cows bred under different conditions. This approach can be applied for measuring of 5-methylcytosine in cellular DNA from different cells and tissues.

  13. Genome-Wide DNA Methylation Profiles of Phlegm-Dampness Constitution

    Directory of Open Access Journals (Sweden)

    Haiqiang Yao

    2018-03-01

    Full Text Available Background/Aims: Metabolic diseases are leading health concerns in today’s global society. In traditional Chinese medicine (TCM, one body type studied is the phlegm-dampness constitution (PC, which predisposes individuals to complex metabolic disorders. Genomic studies have revealed the potential metabolic disorders and the molecular features of PC. The role of epigenetics in the regulation of PC, however, is unknown. Methods: We analyzed a genome-wide DNA methylation in 12 volunteers using Illumina Infinium Human Methylation450 BeadChip on peripheral blood mononuclear cells (PBMCs. Eight volunteers had PC and 4 had balanced constitutions. Results: Methylation data indicated a genome-scale hyper-methylation pattern in PC. We located 288 differentially methylated probes (DMPs. A total of 256 genes were mapped, and some of these were metabolic-related. SQSTM1, DLGAP2 and DAB1 indicated diabetes mellitus; HOXC4 and SMPD3, obesity; and GRWD1 and ATP10A, insulin resistance. According to Ingenuity Pathway Analysis (IPA, differentially methylated genes were abundant in multiple metabolic pathways. Conclusion: Our results suggest the potential risk for metabolic disorders in individuals with PC. We also explain the clinical characteristics of PC with DNA methylation features.

  14. Histone methylation and aging: Lessons learned from model systems

    Science.gov (United States)

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  15. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  16. Dopamine transporter binding in rat striatum: a comparison of [O-methyl-{sup 11}C]{beta}-CFT and [N-methyl-{sup 11}C]{beta}-CFT

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Karmen K.; Hutchins, Gary D.; Mock, Bruce H.; Fei, Xiangshu; Winkle, Wendy L. [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States); Gitter, Bruce D.; Territo, Paul R. [Lilly Center for Anatomical and Molecular Imaging, Integrative Biology Division, Lilly Research Laboratories, Greenfield, IN 46140 (United States); Zheng Qihuang [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States)], E-mail: qzheng@iupui.edu

    2009-01-15

    Introduction: Positron emission tomography scanning with radiolabeled phenyltropane cocaine analogs is important for quantifying the in vivo density of monoamine transporters, including the dopamine transporter (DAT). [{sup 11}C]{beta}-CFT is useful for studying DAT as a marker of dopaminergic innervation in animal models of psychiatric and neurological disorders. [{sup 11}C]{beta}-CFT is commonly labeled at the N-methyl position. However, labeling of [{sup 11}C]{beta}-CFT at the O-methyl position is a simpler procedure and results in a shorter synthesis time [desirable in small-animal studies, where specific activity (SA) is crucial]. In this study, we sought to validate that the O-methylated form of [{sup 11}C]{beta}-CFT provides equivalent quantitative results to that of the more commonly reported N-methyl form. Methods: Four female Sprague-Dawley rats were scanned twice on the IndyPET II small-animal scanner, once with [N-methyl-{sup 11}C]{beta}-CFT and once with [O-methyl-{sup 11}C]{beta}-CFT. DAT binding potentials (BP{identical_to}B'{sub avail}/K{sub d}) were estimated for right and left striata with a nonlinear least-squares algorithm, using a reference region (cerebellum) as the input function. Results: [N-Methyl-{sup 11}C]{beta}-CFT and [O-methyl-{sup 11}C]{beta}-CFT were synthesized with 40-50% radiochemical yields (HPLC purification). Radiochemical purity was >99%. SA at end of bombardment was 258{+-}30 GBq/{mu}mol. Average BP values for right and left striata with [N-methyl-{sup 11}C]{beta}-CFT were 1.16{+-}0.08 and 1.23{+-}0.14, respectively. BP values for [O-methyl-{sup 11}C]{beta}-CFT were 1.18{+-}0.08 (right) and 1.22{+-}0.16 (left). Paired t tests demonstrated that labeling position did not affect striatal DAT BP. Conclusions: These results suggest that [O-methyl-{sup 11}C]{beta}-CFT is quantitatively equivalent to [N-methyl-{sup 11}C]{beta}-CFT in the rat striatum.

  17. CpG Island Methylator Phenotype in Primary Gastric Carcinoma

    OpenAIRE

    TOJO Masayuki:筆頭著者; KONISHI Kazuo; YANO Yuichiro; KATAGIRI Atsushi; NOZAWA Hisako; KUBOTA Yutaro; MURAMOTO Takashi; KONDA Kenichi; SHINMURA Kensuke; TAKIMOTO Masafumi; IMAWARI Michio; YOSHIDA Hitoshi

    2013-01-01

    Gastric cancers (GC) with methylation of multiple CpG islands have a CpG island methylator phenotype (CIMP) and they can have different biological features. The aim of this study was to investigate the DNA methylation status of GCs and its association with their clinicopathological features. We evaluated the methylation status of four genes (MINT1, MINT2, MINT25 and MINT31) in 105 primary GCs using bisulfite-pyrosequencing analysis. We classified tumors as CIMP-high (CIMP-H), CIMP-low (CIMP-L...

  18. Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation.

    Directory of Open Access Journals (Sweden)

    Andrea Fuso

    Full Text Available Discordant results obtained in bisulfite assays using MethPrimers (PCR primers designed using MethPrimer software or assuming that non-CpGs cytosines are non methylated versus primers insensitive to cytosine methylation lead us to hypothesize a technical bias. We therefore used the two kinds of primers to study different experimental models and methylation statuses. We demonstrated that MethPrimers negatively select hypermethylated DNA sequences in the PCR step of the bisulfite assay, resulting in CpG methylation underestimation and non-CpG methylation masking, failing to evidence differential methylation statuses. We also describe the characteristics of "Methylation-Insensitive Primers" (MIPs, having degenerated bases (G/A to cope with the uncertain C/U conversion. As CpG and non-CpG DNA methylation patterns are largely variable depending on the species, developmental stage, tissue and cell type, a variable extent of the bias is expected. The more the methylome is methylated, the greater is the extent of the bias, with a prevalent effect of non-CpG methylation. These findings suggest a revision of several DNA methylation patterns so far documented and also point out the necessity of applying unbiased analyses to the increasing number of epigenomic studies.

  19. Correlation between the methylation of APC gene promoter and colon cancer.

    Science.gov (United States)

    Li, Bing-Qiang; Liu, Peng-Peng; Zhang, Cai-Hua

    2017-08-01

    The present study was planned to explore the correlation between the methylation of APC (adenomatous polyposis coli) and colon carcinogenesis. Colon cancer tissues and tumor-adjacent normal tissues of 60 colon cancer patients (who received surgical operation in our hospital from January 2012 to December 2014) were collected. SW1116 cells in human colon cancer tissues were selected for culturing. 5-aza-2c-deoxycytidine (5-aza-dC) was utilized as an inhibitor of the methylation for APC gene. Methylation specific PCR (MSP) was utilized for detection of APC methylation in SW1116 cells. The MTT and Transwell assays were performed to detect the effect of the methylation of APC gene on the proliferation and invasive abilities of SW1116 cells. The correlation between the methylation of APC gene and pathological parameters of colon cancer patients was analyzed. MSP results revealed that 41 cases (68.33%) showed methylation of APC gene in colon cancer tissues. No methylation of APC gene was found in tumor-adjacent normal tissues. 5-aza-dC was able to inhibit the methylation of APC gene in SW1116 cells. APC gene methylation was correlated with tumor size, differentiation degree, lymph node metastasis and Dukes staging. In conclusion, the levels of the methylation of APC in colon cancer tissues and SW1116 cells are relatively high. The methylation of APC promoted the proliferation and invasion abilities of SW1116 cells. Furthermore, methylation is correlated with a variety of clinicopathological features of colon cancer patients.

  20. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma.

    Science.gov (United States)

    Ogino, Shuji; Odze, Robert D; Kawasaki, Takako; Brahmandam, Mohan; Kirkner, Gregory J; Laird, Peter W; Loda, Massimo; Fuchs, Charles S

    2006-09-01

    Extensive gene promoter methylation in colorectal carcinoma has been termed the CpG island methylator phenotype (CIMP). Previous studies on CIMP used primarily methylation-specific polymerase chain reaction (PCR), which, unfortunately, may detect low levels of methylation that has little or no biological significance. Utilizing quantitative real-time PCR (MethyLight), we measured DNA methylation in a panel of 5 CIMP-specific gene promoters (CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 459 colorectal carcinomas obtained from 2 large prospective cohort studies. CIMP was defined as tumors that showed methylation in >or=4/5 promoters. CIMP was significantly associated with the presence of mucinous or signet ring cell morphology, marked Crohn's-like lymphoid reaction, tumor infiltrating lymphocytes, marked peritumoral lymphocytic reaction, tumor necrosis, tumor cell sheeting, and poor differentiation. All these features have previously been associated with microsatellite instability (MSI). Therefore, we divided the 459 colorectal carcinomas into 6 subtypes, namely, MSI-high (MSI-H)/CIMP, MSI-H/non-CIMP, MSI-low (MSI-L)/CIMP, MSI-L/non-CIMP, microsatellite stable/CIMP, and micro satellite sstable/non-CIMP. Compared with MSI-H/non-CIMP, MSI-H/CIMP was associated with marked tumor infiltrating lymphocytes, tumor necrosis, sheeting, and poor differentiation (all PCIMP, MSI-L/CIMP was associated with tumors that had CIMP. Both MSI and CIMP appear to play a role in the pathogenesis of specific morphologic patterns of colorectal carcinoma.

  1. The application of methylation specific electrophoresis (MSE to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    Directory of Open Access Journals (Sweden)

    Yokoyama Seiya

    2012-02-01

    Full Text Available Abstract Background Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity. Methods Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE. The MSE method is comprised of the following steps: (a bisulfite treatment of genomic DNA, (b amplification of the target DNA by a nested PCR approach and (c applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices. Result The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is Conclusions The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical samples, and this may facilitate identification of new risk markers.

  2. Prediction of methyl-side Chain Dynamics in Proteins

    International Nuclear Information System (INIS)

    Ming Dengming; Brueschweiler, Rafael

    2004-01-01

    A simple analytical model is presented for the prediction of methyl-side chain dynamics in comparison with S 2 order parameters obtained by NMR relaxation spectroscopy. The model, which is an extension of the local contact model for backbone order parameter prediction, uses a static 3D protein structure as input. It expresses the methyl-group S 2 order parameters as a function of local contacts of the methyl carbon with respect to the neighboring atoms in combination with the number of consecutive mobile dihedral angles between the methyl group and the protein backbone. For six out of seven proteins the prediction results are good when compared with experimentally determined methyl-group S 2 values with an average correlation coefficient r-bar=0.65±0.14. For the unusually rigid cytochrome c 2 no significant correlation between prediction and experiment is found. The presented model provides independent support for the reliability of current side-chain relaxation methods along with their interpretation by the model-free formalism

  3. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  4. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  5. Methylated spirit burns following traditional hair dressing practice.

    Science.gov (United States)

    Michael, Afieharo I; Iyun, Ayodele O

    2018-02-01

    Methylated spirit burns have been reported following domestic uses such as igniting fondues. It has also been used as an accelerant for self-immolation. We report the first documented case of severe methylated spirit burns sustained during traditional hair dressing. Increased awareness on the dangers of methylated spirit as well as making it less readily available for domestic use is warranted. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. Methylation profiling in individuals with Russell-Silver syndrome.

    Science.gov (United States)

    Peñaherrera, Maria S; Weindler, Susanne; Van Allen, Margot I; Yong, Siu-Li; Metzger, Daniel L; McGillivray, Barbara; Boerkoel, Cornelius; Langlois, Sylvie; Robinson, Wendy P

    2010-02-01

    Russell-Silver syndrome (RSS) is a heterogeneous disorder associated with pre- and post-natal growth restriction and relative macrocephaly. Involvement of imprinted genes on both chromosome 7 and 11p15.5 has been reported. To further characterize the role of epimutations in RSS we evaluated the methylation status at both 11p15.5 imprinting control regions (ICRs): ICR1 associated with H19/IGF2 expression and ICR2 (KvDMR1) associated with CDKN1C expression in a series of 35 patients with RSS. We also evaluated methylation at the promoter regions of other imprinted genes involved in growth such as PLAGL1 (6q24), GCE (7q21), and PEG10 (7q21) in this series of 35 patients with RSS. Thirteen of the 35 patient samples, but none of 22 controls, showed methylation levels at ICR1 that were more than 2 SD below the mean for controls. Three RSS patients were highly methylated at the SCGE promoter, all of which were diagnosed with upd(7)mat. To identify further potential global methylation changes in RSS patients, a subset of 22 patients were evaluated at 1505 CpG sites by the Illumina GoldenGate methylation array. Among the few CpG sites displaying a significant difference between RSS patients and controls, was a CpG associated with the H19 promoter. No other sites associated with known imprinted genes were identified as abnormally methylated in RSS patients by this approach. While the association of hypomethylation of the H19/IGF2 ICR1 is clear, the continuous distribution of methylation values among the patients and controls complicates the establishment of clear cut-offs for clinical diagnosis. Copyright 2010 Wiley-Liss, Inc.

  7. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a Grignard reagent to methyl iodide, and for reduction of methyl iodide with tributyltin hydride or with gaseous hydrogen iodide. Very small KIE's were found for electron transfer to methyl iodide from magnesium in ether or from sodium in ammonia. The reason may be that these reactions are transport...

  8. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus.

    Science.gov (United States)

    Siedlecka, Anna; Wiklund, Susanne; Péronne, Marie-Amélie; Micheli, Fabienne; Lesniewska, Joanna; Sethson, Ingmar; Edlund, Ulf; Richard, Luc; Sundberg, Björn; Mellerowicz, Ewa J

    2008-02-01

    Wood cells, unlike most other cells in plants, grow by a unique combination of intrusive and symplastic growth. Fibers grow in diameter by diffuse symplastic growth, but they elongate solely by intrusive apical growth penetrating the pectin-rich middle lamella that cements neighboring cells together. In contrast, vessel elements grow in diameter by a combination of intrusive and symplastic growth. We demonstrate that an abundant pectin methyl esterase (PME; EC 3.1.1.11) from wood-forming tissues of hybrid aspen (Populus tremula x tremuloides) acts as a negative regulator of both symplastic and intrusive growth of developing wood cells. When PttPME1 expression was up- and down-regulated in transgenic aspen trees, the PME activity in wood-forming tissues was correspondingly altered. PME removes methyl ester groups from homogalacturonan (HG) and transgenic trees had modified HG methylesterification patterns, as demonstrated by two-dimensional nuclear magnetic resonance and immunostaining using PAM1 and LM7 antibodies. In situ distributions of PAM1 and LM7 epitopes revealed changes in pectin methylesterification in transgenic trees that were specifically localized in expanding wood cells. The results show that en block deesterification of HG by PttPME1 inhibits both symplastic growth and intrusive growth. PttPME1 is therefore involved in mechanisms determining fiber width and length in the wood of aspen trees.

  9. DNA methylation regulates neurophysiological spatial representation in memory formation

    Directory of Open Access Journals (Sweden)

    Eric D. Roth

    2015-04-01

    Full Text Available Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here, we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single-unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together, our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  10. DNA methylation regulates neurophysiological spatial representation in memory formation.

    Science.gov (United States)

    Roth, Eric D; Roth, Tania L; Money, Kelli M; SenGupta, Sonda; Eason, Dawn E; Sweatt, J David

    2015-04-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  11. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  12. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    International Nuclear Information System (INIS)

    Hemendinger, Richelle A.; Armstrong, Edward J.; Brooks, Benjamin Rix

    2011-01-01

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC 50 (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC 50 (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  13. Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer

    Science.gov (United States)

    Shigeyasu, Kunitoshi; Nagasaka, Takeshi; Mori, Yoshiko; Yokomichi, Naosuke; Kawai, Takashi; Fuji, Tomokazu; Kimura, Keisuke; Umeda, Yuzo; Kagawa, Shunsuke; Goel, Ajay; Fujiwara, Toshiyoshi

    2015-01-01

    Background To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown. Methods This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox’s proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS). Results By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis. Conclusions CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer. PMID:26121593

  14. Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Kunitoshi Shigeyasu

    Full Text Available To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP and microsatellite instability (MSI have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown.This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox's proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS.By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088, better tumor differentiation (P = 0.0267 and CIMP-high and MLH1 3' methylated status (P = 0.0312. Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis.CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer.

  15. Effect of temperature stress on protein methyl esters

    International Nuclear Information System (INIS)

    Welch, W.; Kracaw, K.

    1986-01-01

    Protein methyl esters have been implicated in a number of physiological processes. They have measured the effect of temperature stress on the levels of protein methyl esters in the mesophilic fungus Penicillium chrysogenum (PCPS) and the thermophilic fungus P. duponti (PD). PD and PCPS were incubated with [methyl- 3 H]methionine. The mycelia were collected by filtration, frozen in liquid nitrogen and ground to a fine powder. The nitrogen powder was extracted with either phosphate buffer or with SDS, glycerol, phosphate, 2-mercaptoethanol. Insoluble material was removed by centrifugation. The supernatants were assayed for protein methyl esters. The released [ 3 H]methanol was extracted into toluene:isoamyl alcohol (3:2) and quantitated by liquid scintillation. The production of volatile methanol was confirmed by use of Conway diffusion cells. Soluble proteins accounted for about one-fourth of the total protein methyl ester extracted by SDS. In PCPS, the SDS extracted proteins have about three times the level of esterification of the soluble proteins whereas in PD there is little difference between soluble and SDS extracted protein. The level of protein esterification in PD is about one-tenth that observed in PCPS. Temperature stress caused large changes in the level of protein esterification. The data suggest protein methyl esters may contribute to the adaptation to environmental stress

  16. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...

  17. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil...

  18. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  19. DNA methylation abnormalities in congenital heart disease.

    Science.gov (United States)

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A

    2015-01-01

    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  20. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside

    Directory of Open Access Journals (Sweden)

    Roman Sommer

    2016-12-01

    Full Text Available Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  1. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

    Science.gov (United States)

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O -methylated selenoglycoside, specifically methyl 2- O -methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor . The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2- O -methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  2. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  3. Synthesis and characterization of calcium hydroxy and fluoroapatite functionalized with methyl phosphonic dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Agougui, Hassen; Aissa, Abdallah [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia); Debbabi, Mongi, E-mail: m.debbabi@yahoo.fr [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Surface reactivity of apatites toward methyl phosphonic dichloride is tested. Black-Right-Pointing-Pointer Chemical analysis shows that hydroxyapatite is more reactive. Black-Right-Pointing-Pointer NMR spectra show the formation of Ca-O-P{sub org} and P{sub inorg}-O-P{sub org} bonds. Black-Right-Pointing-Pointer AFM indicated that the texture surface was changed by grafting. - Abstract: The nature of apatite-organic molecule interaction was the subject of many investigations. Grafting the organic molecule onto the inorganic support may precede through either formation of covalent bonds or ionic interaction between superficial hydroxyl on the apatite surface and organic functions. The hybrid materials obtained by functionalization of apatite surfaces with phosphonate moieties are of interest for their potential applications such in catalysis, chromatography and biomedical domain. In this scope, calcium hydroxyl and fluoroapatite (CaHAp and CaFAp) were prepared in the presence of the methyl phosphonic dichloride (MPO), by contact method in organic solvent at 25 Degree-Sign C for 2 days. The products are rigorously characterized by chemical analysis, infrared (IR), MAS-NMR spectroscopies, powder X-ray diffraction (XRD), atomic force microscopy (AFM) and specific surface area (SSA). The X-ray powder analysis showed that the crystallinity was sensibly affected by the presence of organic moieties. The IR spectroscopy showed new vibration modes appearing related to phosphonate groups essentially at 2930, 1315, 945, 764 and 514 cm{sup -1}. The {sup 31}P MAS NMR spectrum for hydroxy and fluoroapatite exhibits a single signal at 2.8 ppm. After reaction with (MPO) the spectra show the presence of new signals, assigned to the formation of organic-inorganic bond between the superficial hydroxyl groups of the apatite ({identical_to}CaOH) and ({identical_to}POH) and methyl phosphonic dichloride. The SSA decreases with increasing

  4. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  5. Disinfectant effect of Methylated Ethanol against Listeria species

    OpenAIRE

    Y Yakubu; M D Salihu; O O Faleke; M B Abubakar; A A Magaji,A U Junaidu

    2012-01-01

    This study was carried out in order to determine the disinfectant effect of Methylated spirit® (95% methanol and 5% ethanol) as a teat dip against Listeria species. Hand milking was employed to collect 576 (288 x 2) raw milk samples from different lactating cows within Sokoto metropolis (Nigeria). 288 samples were collected before disinfecting the udder teats with Methylated spirit®, while the other 288 were collected after disinfection with Methylated spirit®. The ...

  6. The Synthesis of Methyl Salicylate: Amine Diazotization.

    Science.gov (United States)

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  7. Adenine N6-methylation in diverse fungi

    NARCIS (Netherlands)

    Seidl, Michael F.

    2017-01-01

    A DNA modification - methylation of cytosines and adenines - has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant

  8. Corporate Hybrid Bonds

    OpenAIRE

    Ahlberg, Johan; Jansson, Anton

    2016-01-01

    Hybrid securities do not constitute a new phenomenon in the Swedish capital markets. Most commonly, hybrids issued by Swedish real estate companies in recent years are preference shares. Corporate hybrid bonds on the other hand may be considered as somewhat of a new-born child in the family of hybrid instruments. These do, as all other hybrid securities, share some equity-like and some debt-like characteristics. Nevertheless, since 2013 the interest for the instrument has grown rapidly and ha...

  9. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    Science.gov (United States)

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (pDNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (pDNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.

  10. High-resolution analysis of cytosine methylation in ancient DNA.

    Directory of Open Access Journals (Sweden)

    Bastien Llamas

    Full Text Available Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution.

  11. Compound list: N-methyl-N-nitrosourea [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available N-methyl-N-nitrosourea MNU 00164 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LA...TEST/Human/in_vitro/N-methyl-N-nitrosourea.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-...tggates/LATEST/Rat/in_vivo/Liver/Single/N-methyl-N-nitrosourea.Rat.in_vivo.Liver.Single.zip ...

  12. Clinical Utility of promoter methylation of the tumor suppressor ...

    African Journals Online (AJOL)

    Aim: Aim is to examine the potential usefulness of blood based methylation specific polymerase chain reaction (MSP) of methylated DKK3 and RASSF1A genes in early detection of breast cancer. Method: Methylation status of DKK3 and RASSF1 was investigated in forty breast cancer patients, twenty fibroadenoma patients ...

  13. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  14. Radioautographic test for genetic cotton transformation by pCaVItoxneo hybrid plasmid

    International Nuclear Information System (INIS)

    Imamkhodjaeva, A.S.

    2006-01-01

    BSA, 1mM methyl ester, 0.5mM of GTF and TTF, 10-20 mkCu of dATF and dCTF labeled with 32 P, 2.5 Units of activity of Klyonov's fragment (DNA polymerase I). Radioactive phosphorous inclusion percent was determined by means of following successive washing of filters from the labeled mixture with phosphate buffer and ethanol. As the result of 20 G.Hirsutum L. and 44 G. Barbadense L plants grown from the experimental seeds 12 and 25 versions of positive dot-hybridization signals were respectively obtained. This is to be the evidence for integration of hybrid plasmid into the genome of experimental plants. The subsequent generation DNA was treated with the Hind III and BamH I restriction fragments to perform blot-hybridization. Thus, radioautography has been found important for analysis of genome of experimental plants without signs morphologically manifested. (author)

  15. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes

    International Nuclear Information System (INIS)

    Lou, L.L.; Clarke, S.

    1987-01-01

    Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77). The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3 H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl- 3 H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl- 3 H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[ 3 H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [ 3 H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[ 3 H]methyl ester or glutamyl gamma-[ 3 H]methyl ester was detected. The formation of D-aspartic acid beta-[ 3 H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl- 3 H]methionine

  16. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH).

    Science.gov (United States)

    Kubota, Kengo; Ohashi, Akiyoshi; Imachi, Hiroyuki; Harada, Hideki

    2006-09-01

    Two-pass tyramide signal amplification-fluorescence in situ hybridization (two-pass TSA-FISH) with a horseradish peroxidase (HRP)-labeled oligonucleotide probe was applied to detect prokaryotic mRNA. In this study, mRNA of a key enzyme for methanogenesis, methyl coenzyme M reductase (mcr), in Methanococcus vannielii was targeted. Applicability of mRNA-targeted probes to in situ hybridization was verified by Clone-FISH. It was observed that sensitivity of two-pass TSA-FISH was significantly higher than that of TSA-FISH, which was further increased by the addition of dextran sulphate in TSA working solution. Signals from two-pass TSA-FISH were more reliable compared to the weak, spotty signals yielded by TSA-FISH.

  17. Order-disorder phase transitions and their influence on the structure and vibrational properties of new hybrid material: 2-Amino-4-methyl-3-nitropyridinium trifluoroacetate

    Science.gov (United States)

    Lorenc, J.; Bryndal, I.; Syska, W.; Wandas, M.; Marchewka, M.; Pietraszko, A.; Lis, T.; Mączka, M.; Hermanowicz, K.; Hanuza, J.

    2010-08-01

    New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ˜162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.

  18. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  19. Synthesis of [methyl-[sup 14]C]-N-methylputrescine

    Energy Technology Data Exchange (ETDEWEB)

    Secor, H.V.; Izac, R.R.; Hassam, S.B.; Frisch, A.F. (Philip Morris Research Center, Richmond, VA (United States))

    1994-05-01

    [Methyl-[sup 14]C]-N-methylputrescine was prepared from [[sup 14]C]methylamine hydrochloride in five steps. Reaction of benzaldehyde and [[sup 14]C]methylamine (10 mCi) followed by catalytic hydrogenation yielded [methyl-[sup 14]C]-N-methylbenzylamine. The key step in this process is the alkylation of [methyl-[sup 14]C]-N-methylbenzylamine in aqueous medium with 4-bromobutyronitrile. The radiochemical purity of the final product after two successive catalytic hydrogenations was in excess of 97%. The radiochemical yields in two successive runs were 26 and 38%, based on starting [[sup 14]C]methylamine, with specific activities of 22 and 23 mCi/mmol, respectively. This sequence provides a convenient and efficient regioselective radiosynthesis of [methyl-[sup 14]C]-N-methylputrescine. (author).

  20. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  1. DMPD: TLR ignores methylated RNA? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16111629 TLR ignores methylated RNA? Ishii KJ, Akira S. Immunity. 2005 Aug;23(2):11...1-3. (.png) (.svg) (.html) (.csml) Show TLR ignores methylated RNA? PubmedID 16111629 Title TLR ignores methylated

  2. Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of "speciation genes".

    Science.gov (United States)

    Araripe, Luciana O; Montenegro, Horácio; Lemos, Bernardo; Hartl, Daniel L

    2010-12-14

    Hybrid male sterility (HMS) is a usual outcome of hybridization between closely related animal species. It arises because interactions between alleles that are functional within one species may be disrupted in hybrids. The identification of genes leading to hybrid sterility is of great interest for understanding the evolutionary process of speciation. In the current work we used marked P-element insertions as dominant markers to efficiently locate one genetic factor causing a severe reduction in fertility in hybrid males of Drosophila simulans and D. mauritiana. Our mapping effort identified a region of 9 kb on chromosome 3, containing three complete and one partial coding sequences. Within this region, two annotated genes are suggested as candidates for the HMS factor, based on the comparative molecular characterization and public-source information. Gene Taf1 is partially contained in the region, but yet shows high polymorphism with four fixed non-synonymous substitutions between the two species. Its molecular functions involve sequence-specific DNA binding and transcription factor activity. Gene agt is a small, intronless gene, whose molecular function is annotated as methylated-DNA-protein-cysteine S-methyltransferase activity. High polymorphism and one fixed non-synonymous substitution suggest this is a fast evolving gene. The gene trees of both genes perfectly separate D. simulans and D. mauritiana into monophyletic groups. Analysis of gene expression using microarray revealed trends that were similar to those previously found in comparisons between whole-genome hybrids and parental species. The identification following confirmation of the HMS candidate gene will add another case study leading to understanding the evolutionary process of hybrid incompatibility.

  3. MethPrimer: designing primers for methylation PCRs.

    Science.gov (United States)

    Li, Long-Cheng; Dahiya, Rajvir

    2002-11-01

    DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.

  4. Methylation in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Regina M. Santella

    2007-02-01

    Full Text Available

    The development of HCC is a complex, multistep, multistage process. The molecular pathogenesis of HCC appears to involve multiple genetic aberrations in the molecular control of hepatocyte proliferation, differentiation and death and the maintenance of genomic integrity. This process is influenced by the cumulative activation and inactivation of oncogenes, tumor suppressor genes and other genes. p53, a tumor suppressor gene, is the most frequently mutated gene in human cancers. There is also a striking sequence specific binding and induction of mutations by AFB1 at codon 249 of p53 in HCC.

    Epigenetic alterations are also involved in cancer development and progression. Methylation of promoter CpG islands is associated with inhibition of transcriptional initiation and permanent silencing of downstream genes.

    It is now known that most important tumor suppressor genes are inactivated, not only by mutations and deletions but also by promoter methylation. Several studies indicated that p16, p15, RASSF1A, MGMT, and GSTP1 promoter hypermethylation are prevalent in HCC. In addition, geographic variation in the methylation status of tumor DNA indicates that environmental factors may influence the frequent and concordant degree of hypermethylation in multiple genes in HCC and that epigeneticenvironmental interactions may be involved in hepatocarcinogenesis. We have found significant relationships between promoter methylation and AFB1-DNA adducts confirming the impact of environmental exposures on gene methylation.

    DNA isolated from serum or plasma of cancer patients frequently contains the same genetic and

  5. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms.

    Science.gov (United States)

    Xiao, Zhujun; Li, Bingsheng; Wang, Guozhen; Zhu, Weisi; Wang, Zhongqiu; Lin, Jinfeng; Xu, Angao; Wang, Xinying

    2014-04-20

    Methylation-sensitive high-resolution melting (MS-HRM) is a new technique for assaying DNA methylation, but its feasibility for assaying stool in patients with colorectal cancer (CRC) is unknown. First, the MS-HRM and methylation-specific PCR (MSP) detection limits were tested. Second, the methylation statuses of SFRP2 and VIM were analyzed in stool samples by MS-HRM, and in matching tumor and normal colon tissues via bisulfite sequencing PCR (BSP). Third, a case-control study evaluated the diagnostic sensitivity and specificity of MS-HRM relative to results obtained with MSP and the fecal immunochemical test (FIT). Finally, the linearity and reproducibility of MS-HRM were assessed. The detection limits of MS-HRM and MSP were 1% and 5%, respectively. The diagnostic sensitivities of MS-HRM (87.3%, 55/63) in stool and BSP in matching tumor tissue (92.1%, 58/63) were highly consistent (κ=0.744). The MS-HRM assay detected 92.5% (37/40) methylation in CRCs, 94.4% (34/36) in advanced adenomas, and 8.8% (5/57) in normal controls. The results of MS-HRM analysis were stable and reliable and showed fairly good linearity for both SFRP2 (PHRM shows potential for CRC screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata.

    Science.gov (United States)

    Fraga, Mario F; Rodríguez, Roberto; Cañal, Maria Jesús

    2002-08-01

    In animals, DNA methylation is related to gene silencing during ontogenic development. Little is known about DNA methylation in plants, although occasional changes in the DNA methylation state of specific gene promoters have been reported in angiosperms during some developmental processes. We found large differences in the extent of DNA methylation between meristematic areas of juvenile and mature Pinus radiata D. Don. trees, whereas differences in the extent of DNA methylation between differentiated tissues of juvenile and mature trees were small. In meristematic areas, there was a gradual decrease in extent of DNA methylation as the degree of reinvigoration increased. The observed changes in extent of DNA methylation during aging and reinvigoration indicate that reinvigoration could be a consequence of epigenetic modifications opposite in direction to those that occur during aging.

  7. The Fine LINE: Methylation Drawing the Cancer Landscape

    Directory of Open Access Journals (Sweden)

    Isabelle R. Miousse

    2015-01-01

    Full Text Available LINE-1 (L1 is the most abundant mammalian transposable element that comprises nearly 20% of the genome, and nearly half of the mammalian genome has stemmed from L1-mediated mobilization. Expression and retrotransposition of L1 are suppressed by complex mechanisms, where the key role belongs to DNA methylation. Alterations in L1 methylation may lead to aberrant expression of L1 and have been described in numerous diseases. Accumulating evidence clearly indicates that loss of global DNA methylation observed in cancer development and progression is tightly associated with hypomethylation of L1 elements. Significant progress achieved in the last several years suggests that such parameters as L1 methylation status can be potentially utilized as clinical biomarkers for determination of the disease stage and in predicting the disease-free survival in cancer patients. In this paper, we summarize the current knowledge on L1 methylation, with specific emphasis given to success and challenges on the way of introduction of L1 into clinical practice.

  8. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2009-01-01

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  9. Microarray-based DNA methylation study of Ewing's sarcoma of the bone.

    Science.gov (United States)

    Park, Hye-Rim; Jung, Woon-Won; Kim, Hyun-Sook; Park, Yong-Koo

    2014-10-01

    Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing's sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing's sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing's sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing's sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10 , OSM , APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing's sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing's sarcoma.

  10. Evidence Suggesting Absence of Mitochondrial DNA Methylation

    DEFF Research Database (Denmark)

    Mechta, Mie; Ingerslev, Lars R; Fabre, Odile

    2017-01-01

    , 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent...

  11. Global DNA Methylation in the Chestnut Blight Fungus Cryphonectria parasitica and Genome-Wide Changes in DNA Methylation Accompanied with Sectorization

    Directory of Open Access Journals (Sweden)

    Kum-Kang So

    2018-02-01

    Full Text Available Mutation in CpBck1, an ortholog of the cell wall integrity mitogen-activated protein kinase kinase kinase (MAPKKK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica resulted in a sporadic sectorization as culture proceeded. The progeny from the sectored area maintained the characteristics of the sector, showing a massive morphogenetic change, including robust mycelial growth without differentiation. Epigenetic changes were investigated as the genetic mechanism underlying this sectorization. Quantification of DNA methylation and whole-genome bisulfite sequencing revealed genome-wide DNA methylation of the wild-type at each nucleotide level and changes in DNA methylation of the sectored progeny. Compared to the wild-type, the sectored progeny exhibited marked genome-wide DNA hypomethylation but increased methylation sites. Expression analysis of two DNA methyltransferases, including two representative types of DNA methyltransferase (DNMTase, demonstrated that both were significantly down-regulated in the sectored progeny. However, functional analysis using mutant phenotypes of corresponding DNMTases demonstrated that a mutant of CpDmt1, an ortholog of RID of Neurospora crassa, resulted in the sectored phenotype but the CpDmt2 mutant did not, suggesting that the genetic basis of fungal sectorization is more complex. The present study revealed that a mutation in a signaling pathway component resulted in sectorization accompanied with changes in genome-wide DNA methylation, which suggests that this signal transduction pathway is important for epigenetic control of sectorization via regulation of genes involved in DNA methylation.

  12. Whole Genome DNA Methylation Analysis of Obstructive Sleep Apnea: IL1R2, NPR2, AR, SP140 Methylation and Clinical Phenotype.

    Science.gov (United States)

    Chen, Yung-Che; Chen, Ting-Wen; Su, Mao-Chang; Chen, Chung-Jen; Chen, Kuang-Den; Liou, Chia-Wei; Tang, Petrus; Wang, Ting-Ya; Chang, Jen-Chieh; Wang, Chin-Chou; Lin, Hsin-Ching; Chin, Chien-Hung; Huang, Kuo-Tung; Lin, Meng-Chih; Hsiao, Chang-Chun

    2016-04-01

    We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. A commentary on this article appears in this issue on page 723. © 2016

  13. A panel of genes methylated with high frequency in colorectal cancer

    International Nuclear Information System (INIS)

    Mitchell, Susan M; Beetson, Iain; Rand, Keith N; McEvoy, Aidan; Thomas, Melissa L; Baker, Rohan T; Wattchow, David A; Young, Graeme P; Lockett, Trevor J; Pedersen, Susanne K; LaPointe, Lawrence C; Ross, Jason P; Molloy, Peter L; Drew, Horace R; Ho, Thu; Brown, Glenn S; Saunders, Neil FW; Duesing, Konsta R; Buckley, Michael J; Dunne, Rob

    2014-01-01

    The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests. Combined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP). Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas. This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes

  14. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids

    Science.gov (United States)

    Dinari, Mohammad; Gharahi, Fateme; Asadi, Parvin

    2018-03-01

    A new series of 1,3,5-triazine incorporating aromatic quinazolinone moieties as a potential antimicrobial agents is reported. The first chlorine group of the cyanuric chloride (1) was replaced by aniline and the second one was replaced by various aromatic amines. The prepared monochlorotriazine was allowed to react with hydrazine and subsequently it was reacted with 2-methyl-4H-benzo[1,3]oxazin-4-one to obtain novel triazine-quinazolinone based hybrids (9a-f). The chemical structure and purity of the hybrid compounds were evaluated by different techniques such as thin layer chromatography, melting point, Fourier-transform infrared (FTIR), 1H and 13C NMR spectra and elemental analysis. Antimicrobial activity of the hybrid compounds were study by three Gram-negative bacteria (Salmonella entritidis, Escherichia coli, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Listeria monocitogenes, Bacillus subtilis) as well as Candida albicansas a yeast-like fungus using the serial broth dilution method. Among them, compound 9d with benzenesulfonamide group showed higher antimicrobial activity with a minimum inhibitory concentration (MIC) value of 16 μg/mL. Furthermore, compounds 5d, 9a and 9b showed good activity against several tested strains. In addition, docking simulation was perform to position best antibacterial compounds in to the S. aureus dihydrofolate reductase (DHFR) active site to determine the probable binding conformations.

  15. Hybridization-Based Detection of Helicobacter pylori at Human Body Temperature Using Advanced Locked Nucleic Acid (LNA) Probes

    Science.gov (United States)

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina; Figueiredo, Céu; Wengel, Jesper; Filipe Azevedo, Nuno

    2013-01-01

    The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2’-O-methyl RNAs (2’OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others. PMID:24278398

  16. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.

    Science.gov (United States)

    Kim, Jung H; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Robinson, Daniel; Kalyana-Sundaram, Shanker; Huang, Christina; Shankar, Sunita; Jing, Xiaojun; Iyer, Matthew; Hu, Ming; Sam, Lee; Grasso, Catherine; Maher, Christopher A; Palanisamy, Nallasivam; Mehra, Rohit; Kominsky, Hal D; Siddiqui, Javed; Yu, Jindan; Qin, Zhaohui S; Chinnaiyan, Arul M

    2011-07-01

    Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.

  17. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  18. 21 CFR 173.250 - Methyl alcohol residues.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl alcohol residues. 173.250 Section 173.250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD.... Methyl alcohol may be present in the following foods under the conditions specified: (a) In spice...

  19. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  20. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.