WorldWideScience

Sample records for methyl-propylsiloxane paampa organometallic

  1. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  2. Organometallic compounds in the environment

    National Research Council Canada - National Science Library

    Craig, P. J

    2003-01-01

    ... of Organometallic Species in the Environment 20 1.10 Stability of Organometallic Compounds in Biological Systems 1.11 G eneral Comments on the Toxicities of Organometallic Compounds 22 1.12 General Considerations on Environmental R eactivity of Organometallic Compounds 24 1.13 Microbial Biotransformation of Metals and M etalloids 25 1.13.1 Introduction 25 1...

  3. Peroxide organometallic compounds and their transformations

    International Nuclear Information System (INIS)

    Razuvaev, G.A.; Brilkina, T.G.

    1976-01-01

    A survey is given experimental works on synthesis and reactions of peroxide organometallic compounds. Reactions have been considered of organometallic compounds with oxygen and organic peroxides which result in formation of both peroxide and non-peroxide products. Possible routes and mechanisms of chemical transformations of peroxide organometallic compounds have been discussed. Reactions of organometallic compounds with oxygen and peroxides have been considered

  4. Organometallics Roundtable 2011

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, John A.; Ball, Zachary T.; Bertrand, Guy; Blum, Suzanne A.; Dong, Vy M.; Dorta, Reto; Hahn, F. Ekkehardt; Humphrey, Mark; Jones, William D.; Klosin, Jerzy; Manners, Ian; Marks, Tobin J.; Mayer, James M.; Rieger, Bernhard; Ritter, Joachim C.; Sattelberger, Alfred P.; Schomaker, Jennifer M.; Wing-Wah Yam, Vivian

    2012-01-09

    We are living in an era of unprecedented change in academic, industrial, and government-based research worldwide, and navigating these rough waters requires "all hands on deck". Toward this end, Organometallics has assembled a panel of seventeen experts who share their thoughts on a variety of matters of importance to our field. In constituting this panel, an attempt was made to secure representation from a number of countries and career stages, as well as from industry. We were fortunate that so many busy experts could take the time to spend with us. The following pages constitute an edited transcript of the panel discussion held on August 29, 2011, which was structured around the 10 questions summarized in the side bar and repeated below.

  5. Organometallic Chemistry. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Wolczanski, Peter [Cornell Univ., Ithaca, NY (United States)

    2003-07-14

    The Gordon Research Conference (GRC) on Organometallic Chemistry was held at Salve Regina, Newport, Rhode Island, 7/21-26/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  6. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  7. Organometallic neptunium(III) complexes

    Science.gov (United States)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  8. Organometallic neptunium(III) complexes.

    Science.gov (United States)

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  9. Organometallic B12-DNA conjugate

    DEFF Research Database (Denmark)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander

    2014-01-01

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...

  10. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    Science.gov (United States)

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  11. Volatile organometallic and semiconductor materials

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1991-01-01

    This article reports on a project concerned with the metal organic chemical vapour deposition (MOCVD) of mercury-cadmium telluride (MCT) undertaken by a research consortium based in the Clayton area involving Monash University Chemistry Department, Telecom Research Laboratories, and CSIRO Division of Material Sciences and Technology. An M.R. Semicon 226 MOCVD reactor, operating near atmospheric presure with hydrogen carrier gas has been used. Most applications of MCT are direct consequence of its responsiveness to radiation in infrared region spectrum. The main aims of the project were to prepare and assess a range of volatile organometallics that might find use as a dopant sources for MCT, to prepare and study the properties of a range of different lanthanide complexes for MOCVD applications and to fully characterize the semiconductor wafers after growth. 19 refs., 3 figs

  12. New Route to Synthesize Surface Organometallic Complexes (SOMC): An Approach by Alkylating Halogenated Surface Organometallic Fragments

    KAUST Repository

    Hamieh, Ali Imad

    2017-02-01

    The aim of this thesis is to explore new simpler and efficient routes for the preparation of surface organometallic complexes (SOMC) for the transformation of small organic molecules to valuable products. The key element in this new route relies on surface alkylation of various halogenated surface coordination complexes or organometallic fragments (SOMF).

  13. New Route to Synthesize Surface Organometallic Complexes (SOMC): An Approach by Alkylating Halogenated Surface Organometallic Fragments

    KAUST Repository

    Hamieh, Ali Imad Ali

    2017-01-01

    The aim of this thesis is to explore new simpler and efficient routes for the preparation of surface organometallic complexes (SOMC) for the transformation of small organic molecules to valuable products. The key element in this new route relies on surface alkylation of various halogenated surface coordination complexes or organometallic fragments (SOMF).

  14. The organometallic chemistry of neptunium

    International Nuclear Information System (INIS)

    Bohlander, R.

    1986-09-01

    Organometallic compounds of neptunium with carbocyclic ligands (C 5 H 5 - =cp, C 8 H 8 2- =cot) have been prepared and investigated. Starting from tetrakis(cyclopentadienyle)neptunium(IV) (cp 4 Np) and tris(cyclopentadienyle)neptunium(IV) chloride (cp 3 NpCl) a lot of other Np(IV)-compounds can be obtained by ligand-exchange reactions. These have the general formula cp 3 NpL with either inorganic ionic (L=Br - , I - , 1/2SO 4 2- , NCS - , AlCl 4 - ) or organic ligands (L=NC 4 H 4 - , N 2 C 3 H 3 - , C=CH - , 1/2C= 2- , CH 3 - , C 2 H 5 - , C 6 H 5 - ). Produced by reduction, tris(cyclopentadienyle)neptunium(III), cp 3 Np) gives similar structured 1:1-adduct complexes, cp 3 Np * B, with Lewis-bases like THF, diethylether, acetonitrile. Physico-chemical properties and changes in the molecular structure of the complexes have been studied using IR-, FTIR- and optical spectroscopy (in the NIR, VIS and UV region) as well as by magnetic and EPR measurements and Moessbauer spectrometry. The results are discussed as to their classification within the actinide complex chemistry and to the comparison with lanthanide complexes. (orig./RB) [de

  15. Supramolecular Dendriphores: Anionic Organometallic Phosphors Embedded in Polycationic Dendritic Species

    NARCIS (Netherlands)

    McDonald, A.R.; Mores, D.; de Mello-Donega, C.; van Walree, C.A.; Klein Gebbink, R.J.M.; Lutz, M.; Spek, A.L.; Meijerink, A.; van Klink, G.P.M.; van Koten, G.

    2009-01-01

    Heteroleptic iridium(III) organometallic complexes have been functionalized with sulfate tethers. These systems have been thoroughly characterized spectroscopically. Subsequently these iridium(III) complexes were reacted with polyionic dendritic materials yielding iridium(III) organometallic

  16. Basic organometallic chemistry: containing comprehensive bibliography

    National Research Council Canada - National Science Library

    Haiduc, Ionel; Zuckerman, Jerry J

    1985-01-01

    .... Organometallic chemistry is the discipline dealing with compounds containing at least one direct metal-carbon bond. This bond can be simple covalent [as in lead tetraethyl, Pb(C H )J or π-dative [as in ferrocene, Fe(i/ 5 2 5 -C 5 H 5 ) 2 ] or even predominantly ionic [as in ethylsodium, N a + C 2 Hs ]. On this basis, compounds like metal alkoxides, [for example, alu...

  17. Enthalpies of vaporization of organometallic compounds

    International Nuclear Information System (INIS)

    Kuznetsov, N.T.; Sevast'yanov, V.G.; Mitin, V.A.; Krasnodubskaya, S.V.; Zakharov, L.N.; Domrachev, G.A.; AN SSSR, Gor'kij. Inst. Khimii)

    1987-01-01

    A possibility to use the method of additive schemes for the calculation of vaporizaton enthalpies of uranium organometallic compounds is discussed while comparing the values obtained using the method with experimental data. The possibility of apriori evaluation of evaporation enthalpy values of different uranium compounds using the method of additive schemes and structural characteristics of molecules, such as the sum of ligand solid angles, is shown

  18. A computational glance at organometallic cyclizations and coupling reactions

    OpenAIRE

    Fiser, Béla

    2016-01-01

    210 p. Organometallic chemistry is one of the main research topics in chemical science.Nowadays, organometallic reactions are the subject of intensive theoretical investigations.However, in many cases, only joint experimental and theoretical effortscould reveal the answers what we are looking for.The fruits of such experimental and theoretical co-operations will be presentedhere. In this work, we are going to deal with homogeneous organometallic catalysisusing computational chemical tools....

  19. 2012 Gordon Research Conference, Organometallic Chemistry, 8-13 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, Gregory [Univ. of Chicago, IL (United States)

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  20. Highvalent and organometallic technetium and rhenium compounds

    International Nuclear Information System (INIS)

    Oehlke, Elisabeth

    2010-01-01

    Diagnostic methods in nuclear medicine allow a detailed description of morphological organ structures and their function. The beta emitting isotope Tc-99 has optimal physical properties (140 keV gamma rays, half-life 6 h) and is therefore used for radiopharmaceuticals. The thesis is concerned with the search for new technetium complexes and their reproducible production. The (TcO3) core is of main interest. The second part of the thesis deals with organometallic technetium and rhenium complexes with carbonyl ligands and N-heterocyclic carbenes that show stability in aerobic aqueous solutions.

  1. Organometallics and related molecules for energy conversion

    CERN Document Server

    Wong, Wai-Yeung

    2015-01-01

    This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen

  2. Mechanisms of inorganic and organometallic reactions

    CERN Document Server

    The purpose of this series is to provide a continuing critical review of the literature concerned with mechanistic aspects of inorganic and organo­ metallic reactions in solution, with coverage being complete in each volume. The papers discussed are selected on the basis of relevance to the elucidation of reaction mechanisms and many include results of a nonkinetic nature when useful mechanistic information can be deduced. The period of literature covered by this volume is July 1982 through December 1983, and in some instances papers not available for inclusion in the previous volume are also included. Numerical results are usually reported in the units used by the original authors, except where data from different papers are com­ pared and conversion to common units is necessary. As in previous volumes material included covers the major areas of redox processes, reactions of the nonmetallic elements, reaction of inert and labile metal complexes and the reactions of organometallic compounds. While m...

  3. Advanced polymer chemistry of organometallic anions

    International Nuclear Information System (INIS)

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes

  4. A review of the inorganic and organometallic chemistry of zirconium

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1985-01-01

    The results of a literature review of the inorganic and organometallic chemistry of zirconium are presented. Compounds with physical and chemical properties compatible with the requirements of an ir laser zirconium isotope separation process have been identified

  5. Hydrodeoxygenation of coal using organometallic catalyst precursors

    Science.gov (United States)

    Kirby, Stephen R.

    2002-04-01

    The objective of this dissertation was to determine the desirability of organometallic compounds for the hydrodeoxygenation (HDO) of coal during liquefaction. The primary focus of this study was the removal of phenol-like compounds from coal liquids for the production of a thermally stable jet fuel. Investigation of the HDO ability of an organometallic compound containing both cobalt and molybdenum (CoMo-T2) was achieved using a combination of model compound and coal experiments. Model compounds were chosen representing four oxygen functional groups present in a range of coals. Electron density and bond order calculations were performed for anthrone, dinaphthyl ether, xanthene, di-t-butylmethylphenol, and some of their derivatives to ascertain a potential order of hydrogenolysis and hydrogenation reactivity for these compounds. The four model compounds were then reacted with CoMo-T2, as well as ammonium tetrathiomolybdate (ATTM). Products of reaction were grouped as compounds that had undergone deoxygenation, those that had aromatic rings reduced, those that were products of both reaction pathways, and those produced through other routes. ATTM had an affinity for both reaction types. Its reaction order for the four model compounds with respect to deoxygenated compounds was the same as that estimated from electron density calculations for hydrogenolysis reactivity. CoMo-T2 appeared to show a preference toward hydrogenation, although deoxygenated products were still achieved in similar, or greater, yields, for almost all the model compounds. The reactivity order achieved for the four compounds with CoMo-T2 was similar to that estimated from bond order calculations for hydrogenation reactivity. Three coals were selected representing a range of coal ranks and oxygen contents. DECS-26 (Wyodak), DECS-24 (Illinois #6), and DECS-23 (Pittsburgh #8) were analyzed by CPMAS 13C NMR and pyrolysis-GC-MS to determine the functional groups comprising the oxygen content of these

  6. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  7. Half-metallicity in 2D organometallic honeycomb frameworks

    International Nuclear Information System (INIS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-01-01

    Half-metallic materials with a high Curie temperature (T C ) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d – p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. (paper)

  8. Organic or organometallic template mediated clay synthesis

    Science.gov (United States)

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  9. Hydrotelluration of alkynes: a unique route to Z-vinyl organometallics

    Directory of Open Access Journals (Sweden)

    Vieira Maurício L.

    2001-01-01

    Full Text Available The hydrotelluration reaction of alkynes is reviewed. The transformation of vinylic tellurides into reactive vinyl organometallics and the coupling reactions of vinylic tellurides with alkynes and organometallics are presented.

  10. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Peng, Wei; Wang, Lingfei

    2017-01-01

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making

  11. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  12. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  13. Identification of isomers of organometallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Mbue, Sona Peter; Cho, Kwang Hwi [Dept. of Bioinformatics and Life Science, School of Systems Biomedical Science, Soongsil University,Seoul (Korea, Republic of)

    2015-06-15

    The yaChI is a newly suggested chemical naming system. However, yaChI is a derivative of the IUPAC InChI with a modified algorithm that includes additional layers of chemical structure information. Consequently, yaChI string contains more structure details while preserving the original structure file information and can distinctively identify very closely related compounds reducing the chances of ambiguity in chemical compound databases as opposed to the general SMILES, InChI, and InChIKey. This study examines the relative performances of yaChI, SMILES, InChI, and InChIKey in duplication check for isomers. For simplicity, a small data set of 28 organometallic compounds (structural isomers of Rh-containing compounds) subdivided into three major groups (A, B, and C) based on the number and the type of ligands attached to the center atom was used to study the performances of each encoding scheme in describing chemical structures. SMILES, InChI, and InChIKey were generated using Openbabel and RDkit, whereas yaChI strings were generated with in-house program. Strings generated from SMILES, InChI, and InChIKey though different, resulted to only three unique chemical identifiers, with each belonging to one group indicating the presence of only three unique compounds in the study data. However, yaChI results depicted that all structures in each group are indeed unique and differ among themselves as well as those from other groups, mapping each structure with a unique identifier given a total number of 28 unique structures in the study data. This high perception of yaChI probe justifies its accuracy and reliability in duplication check among closely related compounds especially structures exhibiting stereo properties.

  14. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  15. DNA-based asymmetric organometallic catalysis in water

    NARCIS (Netherlands)

    Oelerich, Jens; Roelfes, Gerard

    2013-01-01

    Here, the first examples of DNA-based organometallic catalysis in water that give rise to high enantioselectivities are described. Copper complexes of strongly intercalating ligands were found to enable the asymmetric intramolecular cyclopropanation of alpha-diazo-beta-keto sulfones in water. Up to

  16. Platinum-195 nuclear magnetic resonance of organometallic compounds

    OpenAIRE

    Ursini, Cleber Vinicius

    1997-01-01

    A brief review of 195Pt NMR is presented, focusing organometallic compounds. This article gives initially basic information of NMR processes involving 195Pt nucleus. It is followed by a discussion of the factors which affect the chemical shifts and coupling constants. Finally, some aspects of 195Pt NMR of solids are commented.

  17. Ligand Rearrangements of Organometallic Complexes inSolution

    Energy Technology Data Exchange (ETDEWEB)

    Shanoski, Jennifer E. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Many chemical reactions utilize organometallic complexes as catalysts. These complexes find use in reactions as varied as bond activation, polymerization, and isomerization. This thesis outlines the construction of a new ultrafast laser system with an emphasis on the generation of tunable mid-infrared pulses, data collection, and data analysis.

  18. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  19. Molecular orbital studies of the bonding in heavy element organometallics

    International Nuclear Information System (INIS)

    Bursten, B.E.

    1990-01-01

    This progress report contains highlights of research projects in actinide chemistry. Projects covered are bonding in Np, Pu, and transplutonium organometallic compounds, applications of the discrete variational Xα method to actinide chemistry, ab initio calculations on actinide molecules, and experimental comparisons of organoactinide and organotransition metal chemistry. Also included is brief discussions on budgets, funding, invited papers and invited presentations. (JL)

  20. Organometallic compounds of the lanthanides, actinides and early transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, D J [Trinity Coll., Dublin (Ireland); Cotton, S A [Stanground School, Peterborough (UK); Green, M [Bristol Univ. (UK); Labinger, J A [Atlantic Richfield Co., Los Angeles, CA (USA); eds.

    1985-01-01

    This book provides a reference compilation of physical and biographical data on over 1500 of the most important and useful organometallic compounds of the lanthanides, actinides and early transition metals representing 38 different elements. The compounds are listed in molecular formula order in a series of entries in dictionary format. Details of structure, physical and chemical properties, reactions and key references are clearly set out. All the data is fully indexed and a structural index is provided.

  1. An Organometallic Future in Green and Energy Chemistry?

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, Robert H

    2011-01-10

    The title topic is reviewed with selected examples taken from recent work, such as: the 'hydrogen borrowing' amine alkylation by alcohols; the dehydrogenative coupling of amine and alcohol to give amide; Ru complexes as solar cell photosensitizers; Ir organometallics as water oxidation catalyst precursors and as OLED emitters; as well as recent hydrogen storage strategies involving catalytic dehydrogenation of ammonia-borane and of organic heterocycles.

  2. Mew organometallic complexes of technetium in different oxidation states

    International Nuclear Information System (INIS)

    Joachim, J.E.

    1993-09-01

    New organometallic compounds of Tc(I), Tc(III) and Tc(VII) were synthesized and their properties examined. These compounds were correlated with their homologous compounds of manganese and rhenium, which were also synthesized by the same route. The molecular and crystal structures of most technetium complexes and of the homologous complexes of manganese and rhenium were determined by single crystal X-ray diffraction. (orig.) [de

  3. Organometallic and Bioorganometallic Chemistry - Ferrocene and Metal Carbonyls

    Directory of Open Access Journals (Sweden)

    Čakić Semenčić, M.

    2011-02-01

    Full Text Available Organometallic chemistry deals with compounds containing metal-carbon bonds. Basic organometallics derived from the s- and p-block metals (containing solely σ-bonds were understood earlier, while organometallic chemistry of the d- and f-block has developed much more recently. These compounds are characterized by three types of M-C bonds (σ, π and δand their structures are impossible to deduce by chemical means alone; fundamental advances had to await the development of X-ray diffraction, as well as IR- and NMR-spectroscopy. On the other hand, elucidation of the structure of e. g. vitamin B12 and ferrocene (discovered in 1951 contributed to progress in these instrumental analytical methods, influencing further phenomenal success of transition-metal organometallic chemistry in the second half of the twentieth century. The most thoroughly explored fields of application of organometallics were in the area of catalysis, asymmetric synthesis, olefin metathesis, as well as organic synthesis and access to new materials and polymers.The most usual ligands bound to d- and f-metals are carbon monoxide, phosphines, alkyls, carbenes and arenes, and in this review the bonding patterns in the metal carbonyls and ferrocene are elaborated. The common characteristics of these two classes are two-component bonds. The CO-M bonds include (i donation from ligand HOMO to vacant M d-orbitals (σ-bond, and (ii back-donation from the filled M d-orbitals in the ligand LUMO (π-bond. Similar (but much more complicated ferrocene contains delocalized bonds consisting of electron donation from Cp to Fe (σ-bonds- and π-bonding and δ-back-bonding from metal to Cp. In such a way ferrocene, i. e. (η5-Cp2Fe contains 18 bonding electrons giving to this compound "superaromatic" properties in the sense of stability and electrophilic substitution. In contrast to benzenoid aromatic compounds reactions in two Cp-rings can occur giving homo- and heteroannularly mono-, two-… per

  4. Organometallic chemistry of bimetallic compounds. Progress report, January 1992--July 1995

    International Nuclear Information System (INIS)

    Casey, C.P.

    1994-07-01

    Four main projects at the interface between organometallic chemistry and homogeneous catalysis were pursued. All were designed to give increased understanding of the mechanisms of organometallic reactions related to homogeneous and heterogeneous catalysis. In addition, a minor study involving η 5 -to η 1 -cyclopentadienyl ring slippage in catalysis was completed

  5. Organometallic chemistry of bimetallic compounds. Progress report, January 1992--July 1995

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.P.

    1994-07-01

    Four main projects at the interface between organometallic chemistry and homogeneous catalysis were pursued. All were designed to give increased understanding of the mechanisms of organometallic reactions related to homogeneous and heterogeneous catalysis. In addition, a minor study involving {eta}{sup 5}-to {eta}{sup 1}-cyclopentadienyl ring slippage in catalysis was completed.

  6. New twists and turns for actinide chemistry. Organometallic infinite coordination polymers of thorium diazide

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-03-07

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge.

  7. Theory of Hydrogen Storage: A New Strategy within Organometallic Chemistry

    Science.gov (United States)

    Zhao, Yufeng

    2006-03-01

    As one of the most vigorous fields in modern chemistry, organometallic chemistry has made vast contributions to a broad variety of technological fields including catalysis, light emitters, molecular devices, liquid crystals, and even superconductivity. Here we show that organometallic chemistry in nanoscale could be the frontier in hydrogen storage. Our study is based on the notion that the 3d transition metal (TM) atoms are superb absorbers for H storage, as their empty d orbital can bind dihydrogen ligands (elongated but non-dissociated H2) with high capacity at nearly ideal binding energy for reversible hydrogen storage. By embedding the TM atoms into a carbon-based nanostructures, high H capacity can be maintained. This presentation contains four parts. First, by comparing the conventional hydrogen storage media, e.g., metal hydrides and carbon-based materials, the general principles for designing hydrogen storage materials are outlined. Second, organometallic buckyballs are studied to demonstrate the novel strategy. The amount of H2 adsorbed on a Sc-coated fullerene, C48B12 [ScH]12, could approach 9 wt%, with binding energies of 30-40 kJ/mol. Third, the method is applied to the transition-metal carbide nanoparticles that have been synthesized experimentally. The similar non-dissociative H2 binding is revealed in our calculation, thereby demonstrating the resilience of the overall mechanism. Moreover, a novel self-catalysis process is identified. In the fourth part, transition-metal functionalization of highly porous carbon-based materials is discussed heuristically to foresee macroscopic media for hydrogen storage. Finally follows the summary and discussion of the remaining challenges to practical hydrogen storage. Work in collaboration with A. C. Dillon, Y.-H. Kim, M. Heben & S. B. Zhang and supported by the U.S. DOE/EERE under contract No. DE-AC36-99GO10337.

  8. Use of ionic liquids as coordination ligands for organometallic catalysts

    Science.gov (United States)

    Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  9. Synthesis, characterization and reactivity of some lanthanide organometallics

    International Nuclear Information System (INIS)

    Marchal, N.

    1991-12-01

    Organo lanthanides with reactive metal-carbon bonds are obtained by direct synthesis of the metal (powder) and a hydrocarbon in ether medium, like with alkali metals. Two types of synthesis are envisaged: formation of covalent bonds by opening cycles, only biphenylene is reactive enough in regard to ytterbium and samarium, these organometallic compounds can also be prepared by the classical way, i.e. reaction of 2.2'-dilithio biphenyl on rare earth halogenides and coupling of 6.6-dimethylfulvene leading to dicyclopentadienyl compounds with Sm and Yb. The reactivity of these complexes is studied by catalysis of ethylene polymerization

  10. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  11. Automated building of organometallic complexes from 3D fragments.

    Science.gov (United States)

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry.

  12. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  13. Fabrication of superconducting wire using organometallic precursors and infiltration

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1991-01-01

    Organometallic precursors from naphthenic acid and metal nitrates were used for the synthesis of YBCO oxide superconducting compounds. The characteristics of metal naphthenates as organometallic precursors were investigated by IR spectra, viscosity measurements, and infiltration. 123 superconducting compound obtained from 123 naphthenate showed a Tc of 90 degree K and a rather dense and elongated microstructure. Also, the melting behavior of Ba-cuprates which were used for 123 making was studied. A low-temperature melting process was developed to fabricate silver-sheathed superconducting wire with the powder-in-tube method; flowing argon gas is introduced to the system at 930-945 degree C to reduce the melting temperature of the 123 compound without silver sheath melting. It resulted in a 90 degree K Tc superconducting core with dense and locally aligned microstructure. SEM-EDS and XRD analysis, 4-probe resistance and Jc measurements, and carbon-content determinations were carried out to characterize the microstructure, grain alignment, and superconducting properties of the samples

  14. Synthesis and studies of some organometallic compounds of uranium IV

    International Nuclear Information System (INIS)

    Marquet-Ellis, Hubert; Folcher, Gerard.

    1975-06-01

    The organometallic compounds of uranium IV have been well known for a long-time but some difficulties in the synthese subsist. The procedures and the apparatus allowing to obtain these compounds with good yields are described. The cyclopenta dienyl compounds U(C 5 H 5 ) 3 Cl, U(C 5 H 5 ) 4 are prepared by reaction of UCl 4 with Na(C 5 H 5 ) in tetrahydrofurane. The cyclooctatetraene compound U(C 8 H 8 ) 2 ''Uranocene'' is obtained by reaction of K 2 (C 8 H 8 ) on UCl 4 in tetrahydrofurane. The NMR spectrum of the solution during the reaction shows the appearance of the product. These compounds have been identified by chemical analysis and X rays. The visible spectra of U(C 5 H 5 ) 2 Cl and U(C 8 H 8 ) 2 in gaseous phase have been obtained [fr

  15. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  16. Naturally Efficient Emitters: Luminescent Organometallic Complexes Derived from Natural Products

    Science.gov (United States)

    Zhang, Wen-Hua; Young, David J.

    2013-08-01

    Naturally occurring molecules offer intricate structures and functionality that are the basis of modern medicinal chemistry, but are under-represented in materials science. Herein, we review recent literature describing the use of abundant and relatively inexpensive, natural products for the synthesis of ligands for luminescent organometallic complexes used for organic light emitting diodes (OLEDs) and related technologies. These ligands are prepared from the renewable starting materials caffeine, camphor, pinene and cinchonine and, with the exception of caffeine, impart performance improvements to the emissive metal complexes and resulting OLED devices, with emission wavelengths that span the visible spectrum from blue to red. The advantages of these biologically-derived molecules include improved solution processibility and phase homogeneity, brighter luminescence, higher quantum efficiencies and lower turn-on voltages. While nature has evolved these carbon-skeletons for specific purposes, they also offer some intriguing benefits in materials science and technology.

  17. Writing nanopatterns with electrochemical oxidation on redox responsive organometallic multilayers by AFM

    NARCIS (Netherlands)

    Song, Jing; Hempenius, Mark A.; Chung, H.J.; Vancso, Gyula J.

    2015-01-01

    Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to

  18. New twists and turns for actinide chemistry: organometallic infinite coordination polymers of thorium diazide

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-03-07

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Structure of organometallic compounds obtained by plasma of titanium isopropoxide

    International Nuclear Information System (INIS)

    Arreola R, M. L.

    2012-01-01

    This work presents a study on the synthesis and characterization of organometallic compounds of titanium oxide obtained from glow discharges of titanium tetraisopropoxide (TTIP) and water on glass and polyethylene. The objective is the synthesis of titanium oxide particles which can be fixed on different supports for use in further studies of contaminants degradation in effluent streams. The synthesis was carried out by plasma in a glass tubular reactor of 750 cm 3 and 15 cm length at 10 -1 mbar with power between 100 and 150 W during 2, 3 and 4 h. The precursors were TTIP and water vapor. TTIP is an organometallic compound composed of a central atom of Ti surrounded by 4 O atoms, which in turn are connected with chains of 3 C (propane s). The objective is the use of plasma collisions to separate the organic and inorganic phases of TTIP, so that both structure independently in a single material. The result was the formation of white titanium oxide powder composed with agglomerates of spherical particles with average diameter between 160 and 452 nm adhered to small films. The agglomerates have a tendency to change from film to particles with the energy applied to the synthesis. The study of the chemical structure showed a great presence of O 2 -Ti-O 2 (Ti surrounded by O) which can be found in most titanium oxides. Other chemical groups belonging to the organic phase were C=C=C, C=C=O and C 2 -C-Ch appearing from the dehydrogenation of TTIP, which can be a possible precursor of this reactions kind. The structural superficial analyses showed that the atomic composition varies according to type of substrate used. The greatest content of Ti was obtained on glass substrates. However, the synthesis conditions had not evident effect in the participation of chemical states found in the inorganic phase. The crystalline studies indicated that the material is amorphous, although the de convoluted X-ray spectra showed that the synthesized titanium oxides on glass tend to

  20. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame.

    Science.gov (United States)

    Gray, Jennifer C; Habtemariam, Abraha; Winnig, Marcel; Meyerhof, Wolfgang; Sadler, Peter J

    2008-09-01

    The novel organometallic sandwich complexes [(eta(6)-p-cymene)Ru(eta(6)-aspartame)](OTf)(2) (1) (OTf = trifluoromethanesulfonate) and [(eta(6)-p-cymene)Os(eta(6)-aspartame)](OTf)(2) (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK(a) values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h(-1) for 1, and to 0.43 h(-1) for 2. Furthermore, the reduction potential of the ligand shifted from -1.133 to -0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at -0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

  1. Uncatalyzed hydroamination of electrophilic organometallic alkynes: fundamental, theoretical, and applied aspects.

    Science.gov (United States)

    Wang, Yanlan; Latouche, Camille; Rapakousiou, Amalia; Lopez, Colin; Ledoux-Rak, Isabelle; Ruiz, Jaime; Saillard, Jean-Yves; Astruc, Didier

    2014-06-23

    Simple reactions of the most used functional groups allowing two molecular fragments to link under mild, sustainable conditions are among the crucial tools of molecular chemistry with multiple applications in materials science, nanomedicine, and organic synthesis as already exemplified by peptide synthesis and "click" chemistry. We are concerned with redox organometallic compounds that can potentially be used as biosensors and redox catalysts and report an uncatalyzed reaction between primary and secondary amines with organometallic electrophilic alkynes that is free of side products and fully "green". A strategy is first proposed to synthesize alkynyl organometallic precursors upon addition of electrophilic aromatic ligands of cationic complexes followed by endo hydride abstraction. Electrophilic alkynylated cyclopentadienyl or arene ligands of Fe, Ru, and Co complexes subsequently react with amines to yield trans-enamines that are conjugated with the organometallic group. The difference in reactivities of the various complexes is rationalized from the two-step reaction mechanism that was elucidated through DFT calculations. Applications are illustrated by the facile reaction of ethynylcobalticenium hexafluorophosphate with aminated silica nanoparticles. Spectroscopic, nonlinear-optical and electrochemical data, as well as DFT and TDDFT calculations, indicate a strong push-pull conjugation in these cobalticenium- and Fe- and Ru-arene-enamine complexes due to planarity or near-planarity between the organometallic and trans-enamine groups involving fulvalene iminium and cyclohexadienylidene iminium mesomeric forms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Horizons of organic and organoelemental chemistry. 7. All-Russian conference on organometallic chemistry. Summaries of reports. V. 2

    International Nuclear Information System (INIS)

    1999-01-01

    Abstracts of the seventh All-Russian conference on organometallic chemistry are presented. The main part of reports are devoted to the synthesis of organometallic compounds with assigned properties of rare earths, transition elements and other metals. Data on molecular structure, chemical and electrochemical properties of these compounds are presented

  3. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  4. CORROSION RESISTANCE OF ORGANOMETALLIC COATING APLICATED IN FUEL TANKS USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY IN BIOFUEL – PART I

    Directory of Open Access Journals (Sweden)

    Milene Adriane Luciano

    2014-10-01

    Full Text Available Nowadays, the industry has opted for more sustainable production processes, and the planet has also opted for new energy sources. From this perspective, automotive tanks with organometallic coatings as well as a partial substitution of fossil fuels by biofuels have been developed. These organometallic coated tanks have a zinc layer, deposited by a galvanizing process, formed between the steel and the organometallic coating. This work aims to characterize the organometallic coating used in metal automotive tanks and evaluate their corrosion resistance in contact with hydrated ethyl alcohol fuel (AEHC. For this purpose, the resistance of all layers formed between Zinc and EEP steel and also the tin coated steel, which has been used for over thirty years, were evaluated. The technique chosen was the Electrochemical Impedance Spectroscopy. The results indicated an increase on the corrosion resistance when organometallic coatings are used in AEHC medium. In addition to that, these coatings allow an estimated 25% reduction in tanks production costs.

  5. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    Science.gov (United States)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part

  6. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Shi, Dong

    2016-01-01

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu

  7. Beyond organometallic flow chemistry : the principles behind the use of continuous-flow reactors for synthesis

    NARCIS (Netherlands)

    Noel, T.; Su, Y.; Hessel, V.; Noël, T.

    2015-01-01

    Flow chemistry is typically used to enable challenging reactions which are difficult to carry out in conventional batch equipment. Consequently, the use of continuous-flow reactors for applications in organometallic and organic chemistry has witnessed a spectacular increase in interest from the

  8. Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication

    NARCIS (Netherlands)

    Song, Jing; Janczewski, D.J.; Guo, Y.Y.; Guo, Yuanyuan; Xu, Jianwei; Vancso, Gyula J.

    2013-01-01

    Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with

  9. A golden future in medicinal inorganic chemistry : The promise of anticancer gold organometallic compounds

    NARCIS (Netherlands)

    Bertrand, B.; Casini, A.

    2014-01-01

    From wedding rings on fingers to stained glass windows, by way of Olympic medals, gold has been highly prized for millennia. Nowadays, organometallic gold compounds occupy an important place in the field of medicinal inorganic chemistry due to their unique chemical properties with respect to gold

  10. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    Science.gov (United States)

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  11. Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory...

  12. Homogeneous photocatalytic reactions with organometallic and coordination compounds--perspectives for sustainable chemistry.

    Science.gov (United States)

    Hoffmann, Norbert

    2012-02-13

    Since the time of Giacomo Ciamician at the beginning of the 20th century, photochemical transformations have been recognized as contributing to sustainable chemistry. Electronic excitation significantly changes the reactivity of chemical compounds. Thus, the application of activation reagents is frequently avoided and transformations can be performed under mild conditions. Catalysis plays a central role in sustainable chemistry. Stoichiometric amounts of activation reagents are often avoided. This fact and the milder catalytic reaction conditions diminish the formation of byproducts. In the case of homogeneous catalysis, organometallic compounds are often applied. The combination of both techniques develops synergistic effects in the sense of "Green Chemistry". Herein, metal carbonyl-mediated reactions are reported. These transformations are of considerable interest for the synthesis of complex polyfunctionalized compounds. Copper(I)-catalyzed [2+2] photocycloaddition gives access to a large variety of cyclobutane derivatives. Currently, a large number of publications deal with photochemical electron-transfer-induced reactions with organometallic and coordination compounds, particularly with ruthenium complexes. Several photochemically induced oxidations can easily be performed with air or molecular oxygen when they are catalyzed with organometallic complexes. Photochemical reaction conditions also play a certain role in C-H activation with organometallic catalysts, for instance, with alkanes, although such transformations are conveniently performed with a variety of other photochemical reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet

    DEFF Research Database (Denmark)

    Maslyuk, V.; Bagrets, A.; Meded, V.

    2006-01-01

    Using density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker V-n(C6H6)(n+1) clusters which can be synthesized with established meth...

  14. ORGANOMETALLIC IRON(II) COMPLEXES CONTAINING P-SUBSTITUTED ACETOPHENONE-ARYLHYDRAZONE LIGANDS

    OpenAIRE

    Manzur, Carolina; Millán, Lorena; Figueroa, Walter; Hamon, Jean-René; Mata, Jose A.; Carrillo, David

    2002-01-01

    A series of twelve new organometallic acetophenone-hydrazone complexes of general formula [(h 5-Cp)Fe(h 6-o-RC6H4)-NHN=CMe-C6H4-p-R’]+PF6- (Cp= C5H5; R,R’=H,Me, [5]+PF6-; H,MeO, [6]+PF6-; H,NMe2, [7]+PF6-; Me,Me, [8]+PF6-; Me,MeO, [9]+PF6-; Me,NMe2, [10]+PF6-; MeO,Me, [11]+PF6-; MeO,MeO, [12]+PF6-; MeO,NMe2, [13]+PF6-; Cl,Me, [14]+PF6-; Cl,MeO, [15]+PF6-; Cl,NMe2, [16]+PF6-) has been prepared by reaction between their corresponding organometallic hydrazine precursors [(h 5-Cp)Fe(h 6-o-RC6H4)-...

  15. Energy and chemicals from the selective electrooxidation of renewable diols by organometallic fuel cells.

    Science.gov (United States)

    Bellini, Marco; Bevilacqua, Manuela; Filippi, Jonathan; Lavacchi, Alessandro; Marchionni, Andrea; Miller, Hamish A; Oberhauser, Werner; Vizza, Francesco; Annen, Samuel P; Grützmacher, H

    2014-09-01

    Organometallic fuel cells catalyze the selective electrooxidation of renewable diols, simultaneously providing high power densities and chemicals of industrial importance. It is shown that the unique organometallic complex [Rh(OTf)(trop2NH)(PPh3)] employed as molecular active site in an anode of an OMFC selectively oxidizes a number of renewable diols, such as ethylene glycol , 1,2-propanediol (1,2-P), 1,3-propanediol (1,3-P), and 1,4-butanediol (1,4-B) to their corresponding mono-carboxylates. The electrochemical performance of this molecular catalyst is discussed, with the aim to achieve cogeneration of electricity and valuable chemicals in a highly selective electrooxidation from diol precursors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Hevia, Eva; Capriati, Vito

    2018-06-19

    There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is surely stimulating in the perspective of the development of a sustainable organometallic chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  18. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  19. Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers

    Czech Academy of Sciences Publication Activity Database

    Chen, H.; Parkinson, J. A.; Nováková, Olga; Bella, J.; Wang, F.; Dawson, A.; Gould, R.; Parsons, S.; Brabec, Viktor; Sadler, P. J.

    2003-01-01

    Roč. 100, č. 25 (2003), s. 14623-14628 ISSN 0027-8424 R&D Projects: GA ČR GA305/02/1552; GA ČR GA305/01/0418; GA AV ČR IAA5004101 Institutional research plan: CEZ:AV0Z5004920 Keywords : organometallic complexes * platinum * DNA Subject RIV: BO - Biophysics Impact factor: 10.272, year: 2003

  20. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James Francis [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  1. Organometallic copper I, II or III species in an intramolecular dechlorination reaction

    KAUST Repository

    Poater, Albert

    2013-03-15

    The present paper gives insight into an intramolecular dechlorination reaction involving Copper (I) and an ArCH2Cl moiety. The discussion of the presence of a CuIII organometallic intermediate becomes a challenge, and because of the lack of clear experimental detection of this proposed intermediate, and due to the computational evidence that it is less stable than other isomeric species, it can be ruled out for the complex studied here. Our calculations are completely consistent with the key hypothesis of Karlin et al. that TMPA-CuI is the substrate of intramolecular dechlorination reactions as well as the source to generate organometallic species. However the organometallic character of some intermediates has been refused because computationally these species are less stable than other isomers. Thus this study constitutes an additional piece towards the full understanding of a class of reaction of biological relevance. Further, the lack of high energy barriers and deep energy wells along the reaction pathway explains the experimental difficulties to trap other intermediates. © Springer-Verlag Berlin Heidelberg 2013.

  2. Hydrodeoxygenation of O-containing polycyclic model compounds using a novel organometallic catalyst-precursor

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, S.R.; Song, C.S.; Schobert, H.H. [Pennsylvania State University, University Park, PA (United States). Dept. of Materials Science and Engineering

    1996-09-05

    Compounds containing oxygen functional groups, especially phenols, are undesirable components of coal-derived liquids. Removal of these compounds from the products of coal liquefaction is required. A beneficial alternative would be the removal of these compounds, or the prevention of their formation, during the liquefaction reaction itself, rather than as a separate processing step. A novel organometallic catalyst precursor containing Co and Mo has been studied as a potential hydrogenation catalyst for coal liquefaction. To ascertain the hydrodeoxygenation activity of this catalyst under liquefaction conditions, model compounds were investigated. Anthrone, 2,6-di-r-btuyl-4-methyl-phenol, dinaphthyl ether and xanthene were reacted in the presence of the Co-Mo catalyst precursor and a precursor containing only Mo over a range of temperatures, providing a comparison of conversions to deoxygenated products. These conversions give an indication of the hydrodeoxygenating abilities of organometallic catalyst precursors within a coal liquefaction system. For example, at 400{degree}C dinaphthyl ether was converted 100% (4.5% O-containing products) in the presence of the Co-Mo organometallic precursor, compared to 76.5% conversion (7.4% O-products) in the presence of the Mo catalyst.

  3. 2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Emilio Bunel

    2011-07-15

    Organometallic chemistry has played and will continue to play a significant role in helping us understand the way bonds are made or broken in the presence of a transition metal complex. Current challenges range from the efficient exploitation of energy resources to the creative use of natural and artificial enzymes. Most of the new advances in the area are due to our extended understanding of processes at a molecular level due to new mechanistic studies, techniques to detect reaction intermediates and theory. The conference will bring the most recent advances in the field including nanocatalysis, surface organometallic chemistry, characterization techniques, new chemical reactivity and theoretical approaches along with applications to organic synthesis and the discovery of new materials. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Six outstanding posters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. Graduate students and postdoctoral fellows should also consider participating in the Gordon Research Seminar on Organometallic Chemistry (July 9-10, same location) which is specially designed to promote interaction and discussion between junior scientists.

  4. Horizons of organic and organoelemental chemistry. 7. All-Russian conference on organometallic chemistry. Program and summaries of communications. V. 1

    International Nuclear Information System (INIS)

    1999-01-01

    Abstracts of the seventh All-Russian conference on organometallic chemistry are presented. The synthesis of organometallic compounds of rare earth, transition elements, the synthesis of organic boron compounds are played an important role in modern organic chemistry and the main part of reports are devoted to these problems. Methods of labelling by radioactive isotopes of organic compounds used in medicine are discussed

  5. A paradigm shift for radical SAM reactions: The organometallic intermediate Ω is central to catalysis.

    Science.gov (United States)

    Byer, Amanda S; Yang, Hao; McDaniel, Elizabeth C; Kathiresan, Venkatesan; Impano, Stella; Pagnier, Adrien; Watts, Hope; Denler, Carly; Vagstad, Anna; Piel, Jörn; Duschene, Kaitlin S; Shepard, Eric M; Shields, Thomas P; Scott, Lincoln G; Lilla, Edward A; Yokoyama, Kenichi; Broderick, William E; Hoffman, Brian M; Broderick, Joan B

    2018-06-28

    Radical S-adenosyl-L-methionine (SAM) en-zymes comprise a vast superfamily catalyzing diverse reactions essential to all life through ho-molytic SAM cleavage to liberate the highly-reactive 5-deoxyadenosyl radical (5-dAdo•). Our recent observation of a catalytically compe-tent organometallic intermediate Ω that forms dur-ing reaction of the radical SAM (RS) enzyme py-ruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an in-termediate under a variety of mixing order condi-tions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double reso-nance spectroscopy establish that Ω involves an Fe-C5 bond between 5-dAdo• and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (co-enzyme B12) cofactor used to initiate radical reac-tions via a 5'-dAdo• intermediate. Generation of a 5'-dAdo• intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However coenzyme B12 is involved in enzymes catalyzing of only a small number (~12) of distinct reactions, while the RS superfamily has more than 100,000 distinct se-quences and over 80 reaction types character-ized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.

  6. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    Science.gov (United States)

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  7. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Science.gov (United States)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  8. Understanding organometallic reaction mechanisms and catalysis experimental and computational tools computational and experimental tools

    CERN Document Server

    Ananikov, Valentin P

    2014-01-01

    Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper

  9. Toxicology of organic-inorganic hybrid molecules: bio-organometallics and its toxicology.

    Science.gov (United States)

    Fujie, Tomoya; Hara, Takato; Kaji, Toshiyuki

    2016-01-01

    Bio-organometallics is a research strategy of biology that uses organic-inorganic hybrid molecules. The molecules are expected to exhibit useful bioactivities based on the unique structure formed by interaction between the organic structure and intramolecular metal(s). However, studies on both biology and toxicology of organic-inorganic hybrid molecules have been incompletely performed. There can be two types of toxicological studies of bio-organometallics; one is evaluation of organic-inorganic hybrid molecules and the other is analysis of biological systems from the viewpoint of toxicology using organic-inorganic hybrid molecules. Our recent studies indicate that cytotoxicity of hybrid molecules containing a metal that is nontoxic in inorganic forms can be more toxic than that of hybrid molecules containing a metal that is toxic in inorganic forms when the structure of the ligand is the same. Additionally, it was revealed that organic-inorganic hybrid molecules are useful for analysis of biological systems important for understanding the toxicity of chemical compounds including heavy metals.

  10. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    Energy Technology Data Exchange (ETDEWEB)

    Özaydın, C. [Batman University, Engineering Faculty, Department of Computer Eng., Batman (Turkey); Güllü, Ö., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, Batman (Turkey); Pakma, O. [Batman University, Science and Art Faculty, Department of Physics, Batman (Turkey); Ilhan, S. [Siirt University, Science and Art Faculty, Department of Chemistry, Siirt (Turkey); Akkılıç, K. [Dicle University, Education Faculty, Department of Physics Education, Diyarbakır (Turkey)

    2016-05-15

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ{sub b}) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  11. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    International Nuclear Information System (INIS)

    Özaydın, C.; Güllü, Ö.; Pakma, O.; Ilhan, S.; Akkılıç, K.

    2016-01-01

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ_b) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  12. Interplay between experiments and calculations for organometallic clusters and caged clusters

    International Nuclear Information System (INIS)

    Nakajima, Atsushi

    2015-01-01

    Clusters consisting of 10-1000 atoms exhibit size-dependent electronic and geometric properties. In particular, composite clusters consisting of several elements and/or components provide a promising way for a bottom-up approach for designing functional advanced materials, because the functionality of the composite clusters can be optimized not only by the cluster size but also by their compositions. In the formation of composite clusters, their geometric symmetry and dimensionality are emphasized to control the physical and chemical properties, because selective and anisotropic enhancements for optical, chemical, and magnetic properties can be expected. Organometallic clusters and caged clusters are demonstrated as a representative example of designing the functionality of the composite clusters. Organometallic vanadium-benzene forms a one dimensional sandwich structure showing ferromagnetic behaviors and anomalously large HOMO-LUMO gap differences of two spin orbitals, which can be regarded as spin-filter components for cluster-based spintronic devices. Caged clusters of aluminum (Al) are well stabilized both geometrically and electronically at Al 12 X, behaving as a “superatom”

  13. Binding CO2 from Air by a Bulky Organometallic Cation Containing Primary Amines.

    Science.gov (United States)

    Luo, Yang-Hui; Chen, Chen; Hong, Dan-Li; He, Xiao-Tong; Wang, Jing-Wen; Ding, Ting; Wang, Bo-Jun; Sun, Bai-Wang

    2018-03-21

    The organometallic cation 1 (Fe(bipy-NH 2 ) 3 2+ , bipy-NH 2 = 4,4'-diamino-2,2'-bipyridine), which was constructed in situ in solution, can bind CO 2 from air effectively with a stoichiometric ratio of 1:4 (1/CO 2 ), through the formation of "H-bonded CO 2 " species: [CO 2 -OH-CO 2 ] - and [CO 2 -CO 2 -OH] - . These two species, along with the captured individual CO 2 molecules, connected 1 into a novel 3D (three-dimensional) architecture, that was crystal 1·2(OH - )·4(CO 2 ). The adsorption isotherms, recycling investigations, and the heat capacity of 1 have been investigated; the results revealed that the organometallic cation 1 can be recycled at least 10 times for the real-world CO 2 capture applications. The strategies presented here may provide new hints for the development of new alkanolamine-related absorbents or technologies for CO 2 capture and sequestration.

  14. Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.

    Science.gov (United States)

    Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.

    2016-05-01

    Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.

  15. Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)

    KAUST Repository

    Al-Shareef, Reem A.

    2017-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx

  16. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Eduardo J; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M; Monge, Miguel [Departamento de Quimica Grupo de SIntesis Quimica de La Rioja, UA-CSIC, Universidad de La Rioja, Complejo CientIfico-Tecnologico, E-26004 Logrono (Spain); Laguna, Antonio [Departamento de Quimica Inorganica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain); Torres, Carmen [Departamento de Agricultura y Alimentacion, Universidad de La Rioja, Complejo Cientifico-Tecnologico, E-26004 Logrono (Spain)], E-mail: eduardo.fernandez@unirioja.es

    2008-05-07

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu{sub 4}[Ag(C{sub 6}F{sub 5}){sub 2}] has been treated with AgClO{sub 4} in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C{sub 6}F{sub 5})] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 {mu}g ml{sup -1} of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness.

  17. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  18. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik

    2013-11-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  19. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes

    International Nuclear Information System (INIS)

    Barros, N.

    2007-06-01

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  20. Zigzag-shaped nickel nanowires via organometallic template-free route

    Energy Technology Data Exchange (ETDEWEB)

    Shviro, Meital; Paszternak, Andras [Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Department of Chemistry (Israel); Chelly, Avraham [Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Department of Engineering (Israel); Zitoun, David, E-mail: david.zitoun@biu.ac.il [Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Department of Chemistry (Israel)

    2013-08-15

    In this manuscript, the formation of nickel nanowires of 10-20 nm in diameter (average size: several tens to hundreds of {mu}m long and 1.0-1.5 {mu}m wide) at low temperature is found to be driven by dewetting of liquid organometallic precursors during spin-coating process and by self-assembly of Ni clusters. Elaboration of metallic thin films by low-temperature deposition technique makes the preparation process compatible with most of the substrates. The use of iron and cobalt precursor shows that the process could be extended to other metallic systems. In this work, AFM and SEM are used to follow the assembly of Ni clusters into straight or zigzag lines. The formation of zigzag structure is specific to the Ni precursor at appropriate preparation parameters. This template-free process allows a control of anisotropic structures with homogeneous sizes and angles on the standard Si/SiO{sub 2} surface.

  1. Organometallics and quaternary ammonium salts affect calcium ion desorption from lecithin liposome membranes

    International Nuclear Information System (INIS)

    Kral, T.E.; Kuczera, J.; Przestalski, S.

    2001-01-01

    The objective of the present work was to compare the effects of groups of tin and lead organometallic compounds and their mixtures with amphiphilic quaternary ammonium salts (QAS) on the process of calcium ion desorption from lecithin liposome membranes, as dependent on the properties of the hydrophilic and hydrophobic parts of QAS. In the investigations the method of radioactive labels was applied. Synergism and antagonism in the action of both groups of compounds were found. The effectiveness of the cooperation depended more on chain length of QAS compounds than on the size and polarity of their hydrophobic parts. The most effective of all compounds studied was a the mixture of benzyldimethylammonium chloride in a mixture with tripropyltin. Since the rate of calcium desorption proved to be a good measure of efficacy of biologically active surfactants, it seems that the conclusions reached in this paper may be useful for choosing compounds which are able to decontaminate the environment polluted with heavy metals. (orig.)

  2. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik; Marziale, Alexander N.; Reiner, Thomas; Kraus, Florian; Herdtweck, Eberhardt; Raba, Andreas; Eppinger, Jö rg

    2013-01-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  3. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  4. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    International Nuclear Information System (INIS)

    Fernandez, Eduardo J; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M; Monge, Miguel; Laguna, Antonio; Torres, Carmen

    2008-01-01

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu 4 [Ag(C 6 F 5 ) 2 ] has been treated with AgClO 4 in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C 6 F 5 )] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 μg ml -1 of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness

  5. NATO Advanced Research Workshop on the Mechanisms of Reactions of Organometallic Compounds with Surfaces

    CERN Document Server

    Williams, J

    1989-01-01

    A NATO Advanced Research Workshop on the "Mechanisms of Reactions of Organometallic Compounds with Surfaces" was held in St. Andrews, Scotland in June 1988. Many of the leading international researchers in this area were present at the workshop and all made oral presentations of their results. In addition, significant amounts of time were set aside for Round Table discussions, in which smaller groups considered the current status of mechanistic knowledge, identified areas of dispute or disagreement, and proposed experiments that need to be carried out to resolve such disputes so as to advance our understanding of this important research area. All the papers presented at the workshop are collected in this volume, together with summaries of the conclusions reached at the Round Table discussions. The workshop could not have taken place without financial support from NATO, and donations were also received from Associated Octel, Ltd., STC Ltd., and Epichem Ltd., for which the organisers are very grateful. The orga...

  6. Organometallic complexes of thiocarbanilides and substituted thiocarbanilides using manganese (II) chloride

    International Nuclear Information System (INIS)

    Babiker, Musa Elaballa Mohamed

    2000-01-01

    Organo-metallic complexes of substituted thiocarbanilide using manganese (II) chloride were prepared, these are: (VIII) 3:3'-Dichloro thiocarbanilide. Manganese (II) chloride. (IX) 3:3'-Dimethyl thiocarbanilide. Manganese (II) chloride. (X) 2:2'-dimethyl thiocarbanilide. Manganese (II) chloride. These compounds are coloured, soluble in most organic solvents, insoluble in water, decomposed by hot solvents. The physical properties of compounds (IX) and (X) were studied by UV and IR spectra, and the physical properties of compound (VIII) were studied by UV, IR, mass spectra and NMR. The molecular weight of the compound (VIII) was determined by three different methods; Rast's camphor method, mass spectra and the nitrogen contents. The stoichiometry of the reaction was found to be 2:1, and the coordination is from sulphur atom more than nitrogen.(Author)

  7. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-05-01

    Surface Organometallic Chemistry leads to the combination of the high activity and specificity of homogeneous catalysts with the recoverability and practicality of heterogeneous catalysts. Most metal complexes used in this chemistry are grafted on metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a special type of anatase-TiO2, bearing a high density of identical hydroxyl groups, through hydrothermal synthesis then post-treatment under high vacuum followed by oxygen flow, and characterized by several analytical techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and nuclear magnetic resonance. Finally, as a proof of concept, the grafting of vanadium oxychloride (VOCl3) was successfully attempted.

  8. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie

    2016-01-01

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  9. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  10. Nitrogen doping of ZnSe by OMVPE using a novel organometallic precursor

    International Nuclear Information System (INIS)

    Akram, S.; Bhat, I.B.; Melas, A.A.

    1994-01-01

    We have investigated phenylhydrazine (PhHz) as a potential nitrogen dopant source in organometallic vapor phase epitaxial growth of ZnSe. Dimethylzinc and dimethylselenide were the zinc and selenium precursors, respectively. Photoluminescence and secondary ion mass spectroscopy measurements indicate that high incorporation efficiency compared to ammonia can be achieved using this dopant source. For example, nitrogen incorporation in the 2.5 x 10 18 /cm -3 level was achieved at 350 degrees C under ultraviolet excitation when the PhHz partial pressure was 1 x 10 -8 atm. These layers had 1-2 x 10 15 /cm -3 electrically active acceptors. Films grown at higher partial pressures of PhHz were highly compensated. 9 refs., 5 figs

  11. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization

    Science.gov (United States)

    Kermagoret, Anthony; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2014-03-01

    The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials.

  12. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges.

    Science.gov (United States)

    Castoldi, Laura; Monticelli, Serena; Senatore, Raffaele; Ielo, Laura; Pace, Vittorio

    2018-05-31

    The transfer of a reactive nucleophilic CH2X unit into a preformed bond enables the introduction of a fragment featuring the exact and desired degree of functionalization through a single synthetic operation. The instability of metallated α-organometallic species often poses serious questions regarding the practicability of using this conceptually intuitive and simple approach for forming C-C or C-heteroatom bonds. A deep understanding of processes regulating the formation of these nucleophiles is a precious source of inspiration not only for successfully applying theoretically feasible transformations (i.e. determining how to employ a given reagent), but also for designing new reactions which ultimately lead to the introduction of molecular complexity via short experimental sequences.

  13. Organometallic compounds of the 2-6 group elements of periodic system as perspective substances for microelectrnics

    International Nuclear Information System (INIS)

    Fedorov, V.A.

    1986-01-01

    Results of investigating methods of preparation and analysis of organometallic compounds (OMC) of the 2B-6B group elements, behaviour of microimpurities in the process of their complete purification, physical-chemical properties for developing rational flowsheets of OMC purification are presented. Results of microimpurities quantitative transition from OMC to gallium arsenide epitaxial layers are presented. Prospects for OMC application in microelectronics are discussed

  14. Phosphane-Based Cyclodextrins as Mass Transfer Agents and Ligands for Aqueous Organometallic Catalysis

    Directory of Open Access Journals (Sweden)

    Eric Monflier

    2012-11-01

    Full Text Available The replacement of hazardous solvents and the utilization of catalytic processes are two key points of the green chemistry movement, so aqueous organometallic catalytic processes are of great interest in this context. Nevertheless, these processes require not only the use of water-soluble ligands such as phosphanes to solubilise the transition metals in water, but also the use of mass transfer agents to increase the solubility of organic substrates in water. In this context, phosphanes based on a cyclodextrin skeleton are an interesting alternative since these compounds can simultaneously act as mass transfer agents and as coordinating species towards transition metals. For twenty years, various cyclodextrin-functionalized phosphanes have been described in the literature. Nevertheless, while their coordinating properties towards transition metals and their catalytic properties were fully detailed, their mass transfer agent properties were much less discussed. As these mass transfer agent properties are directly linked to the availability of the cyclodextrin cavity, the aim of this review is to demonstrate that the nature of the reaction solvent and the nature of the linker between cyclodextrin and phosphorous moieties can deeply influence the recognition properties. In addition, the impact on the catalytic activity will be also discussed.

  15. CVD of SiC and AlN using cyclic organometallic precursors

    Science.gov (United States)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  16. Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment

    Science.gov (United States)

    Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.

    2008-02-01

    This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.

  17. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  18. High quality long-wavelength lasers grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine

    International Nuclear Information System (INIS)

    Miller, B.I.; Young, M.G.; Oron, M.; Koren, U.; Kisker, D.

    1990-01-01

    High quality long-wavelength InGaAsP/InP lasers were grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine (TBA) as a substitute for AsH 3 . Electrical and photoluminescence measurements on InGaAs and InGaAsP showed that TBA-grown material was at least as good as AsH 3 material in terms of suitability for lasers. From two wafers grown by TBA, current thresholds I th as low as 11 mA were obtained for a 2-μm-wide semi-insulating blocking planar buried heterostructure laser lasing near 1.3 μm wavelength. The differential quantum efficiencies η D were as high as 21%/facet with a low internal loss α=21 cm -1 . In addition I th as low as 18 mA and η D as high as 18% have been obtained for multiplequantum well lasers at 1.54 μm wavelength. These results show that TBA might be used to replace AsH 3 without compromising on laser performance

  19. Chromocene in porous polystyrene: an example of organometallic chemistry in confined spaces.

    Science.gov (United States)

    Estephane, Jane; Groppo, Elena; Vitillo, Jenny G; Damin, Alessandro; Lamberti, Carlo; Bordiga, Silvia; Zecchina, Adriano

    2009-04-07

    In this work, we present an innovative approach to investigate the structure and the reactivity of a molecularly dispersed organometallic compound. The poly(4-ethylstyrene-co-divinylbenzene) microporous system (PS) is used as "solid solvent" able to molecularly disperse CrCp2, allowing: (i) its full characterization by means of spectroscopic techniques; (ii) the pressure and temperature dependent study of its interaction towards simple molecules like CO freely diffusing through the pores; (iii) the accurate determination of the reaction enthalpies by both direct microcalorimetric measurements and by an indirect spectroscopic approach. The experimental results are compared with quantum-mechanical calculations adopting the DFT approximation with two different functionals (namely BP86 and B3-LYP), showing the limitations and the potentialities of DFT methods in predicting the properties of open shell systems. It is concluded that modern DFT methods are able to give a coherent view of the vibrational properties of the CrCp2 molecule (and of the complex formed upon CO adsorption) that well match the experimental results, while the energetic predictions should be taken with care as they are significantly dependent on the functionals used.

  20. New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Nunez, G., E-mail: galonso@cnyn.unam.mx; Garza, L. Morales de la; Rogel-Hernandez, E.; Reynoso, E. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia (Mexico); Licea-Claverie, A.; Felix-Navarro, R. M. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion (Mexico); Berhault, G. [UMR 5256 CNRS-Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon (France); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados S. C. (Mexico)

    2011-09-15

    New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl{sub 4}, (NH{sub 4}){sub 2}PtCl{sub 6}, (NH{sub 4}){sub 2}PdCl{sub 6}, or (NH{sub 4}){sub 3}RhCl{sub 6} with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA){sub n}Me{sub x}Cl{sub y} salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.

  1. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore

    KAUST Repository

    Goswami, Subhadip

    2014-12-18

    A pair of diketopyrrolopyrrole (DPP) chromophores that are end-functionalized with platinum containing "auxochromes" were subjected to electrochemical and photophysical study. The chromophores contain either platinum acetylide or ortho-metalated 2-thienylpyridinyl(platinum) end-groups (DPP-Pt(CC) and DPP-Pt(acac), respectively). The ground state redox potentials of the chromophores were determined by solution electrochemistry, and the HOMO and LUMO levels were estimated. The chromophores\\' photophysical properties were characterized by absorption, photoluminescence, and time-resolved absorption spectroscopy on time scales from sub-picoseconds to microseconds. Density functional theory (DFT) computations were performed to understand the molecular orbitals involved in both the singlet and triplet excited state photophysics. The results reveal that in both platinum DPP derivatives the organometallic auxochromes have a significant effect on the chromophores\\' photophysics. The most profound effect is a reduction in the fluorescence yields accompanied by enhanced triplet yields due to spin-orbit coupling induced by the metal centers. The effects are most pronounced in DPP-Pt(acac), indicating that the orthometalated platinum auxochrome is able to induce spin-orbital coupling to a greater extent compared to the platinum acetylide units. (Figure Presented).

  2. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore

    KAUST Repository

    Goswami, Subhadip; Winkel, Russell W.; Alarousu, Erkki; Ghiviriga, Ion; Mohammed, Omar F.; Schanze, Kirk S.

    2014-01-01

    A pair of diketopyrrolopyrrole (DPP) chromophores that are end-functionalized with platinum containing "auxochromes" were subjected to electrochemical and photophysical study. The chromophores contain either platinum acetylide or ortho-metalated 2-thienylpyridinyl(platinum) end-groups (DPP-Pt(CC) and DPP-Pt(acac), respectively). The ground state redox potentials of the chromophores were determined by solution electrochemistry, and the HOMO and LUMO levels were estimated. The chromophores' photophysical properties were characterized by absorption, photoluminescence, and time-resolved absorption spectroscopy on time scales from sub-picoseconds to microseconds. Density functional theory (DFT) computations were performed to understand the molecular orbitals involved in both the singlet and triplet excited state photophysics. The results reveal that in both platinum DPP derivatives the organometallic auxochromes have a significant effect on the chromophores' photophysics. The most profound effect is a reduction in the fluorescence yields accompanied by enhanced triplet yields due to spin-orbit coupling induced by the metal centers. The effects are most pronounced in DPP-Pt(acac), indicating that the orthometalated platinum auxochrome is able to induce spin-orbital coupling to a greater extent compared to the platinum acetylide units. (Figure Presented).

  3. Organometallic Routes into the Nanorealms of Binary Fe-Si Phases

    Directory of Open Access Journals (Sweden)

    Teddy M. Keller

    2010-02-01

    Full Text Available The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, a-FeSi2 and b-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR. The silicon-rich b-FeSi2 is a direct band gap material usable in light emitting diode (LED applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.

  4. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Charles P

    2012-11-14

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton from an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to

  5. New labeling methods via organometallic species: new synthesis of a chiral methyl group

    International Nuclear Information System (INIS)

    Faucher, Nicolas

    2000-01-01

    Chapter 1: New labeling methods via organometallic species. In the first part of this work, we have developed a new labeling strategy based on the hydrogenolysis of organolithium compounds with tritium gas or deuterium gas. This reaction is catalyzed with palladium on charcoal and leads to the labelled compounds with direct replacement of the proton by its isotopes ("2H or "3H) without further chemical modification of the target molecule. Using this strategy, tritium or deuterium atoms can be introduced in a region but also in a stereoselective fashion with more than 90% ee. The former result was obtained using (-)-sparteine during the lithiation step. Chapter II: New synthesis of a chiral methyl group. In the second part of this work, we have developed a new synthetic method to prepare chiral ditosyl-methylamine using 4,5-disubstituted oxazolidines. Dia-stereoselective substitution of the methoxy group of a 2-alkoxy-oxazolidine by a deuteride in the presence of a Lewis acid leads to the 2-deutero-oxazolidine in a highly stereoselective fashion (de = 100%). Still using a lewis acid, a tritiated hydride open the former 2-deutero-oxazolidine to afford chiral methyl group borne by the nitrogen. Further de-protection and re-protection steps lead to the ditosyl-methylamine with an ee of 65% (RIS= 83/17). Nowadays, this is the best known synthetic method, not only in terms of enantioselectivity but also in terms of chemical yield and number of radioactive steps. As NTs_2 is a fairly good leaving group, the ditosyl-methylamine offers the possibility of introducing chiral methyl group in many substrates using a S_N2 reaction with various nucleophiles. This last point leads to many potential applications in the field of biochemistry or for mechanical studies. (author) [fr

  6. Organometallic synthesis of ZnO nanoparticles for gas sensing: towards selectivity through nanoparticles morphology

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, Andrey; Jońca, Justyna; Kahn, Myrtil; Fajerwerg, Katia [Laboratoire de Chimie de Coordination (LCC), CNRS (France); Chaudret, Bruno [Laboratoire de Physique et de Chimie de Nano-objets (LPCNO), INSA, UPS, CNRS (France); Chapelle, Audrey [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Ménini, Philippe [Université Toulouse III, Paul Sabatier (France); Shim, Chang Hyun [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Gaudon, Alain [Alpha M.O.S. SA (France); Fau, Pierre, E-mail: pierre.fau@lcc-toulouse.fr [Laboratoire de Chimie de Coordination (LCC), CNRS (France)

    2015-07-15

    ZnO nanoparticles (NP) with different morphologies such as nanorods (NR), isotropic NP, and cloud-like (CL) structures have been synthesized by an organometallic route. The prepared ZnO nanostructures have been deposited on miniaturized silicon gas sensor substrates by an inkjet method, and their responses to CO, C{sub 3}H{sub 8}, and NH{sub 3} gases have been studied at different operating temperatures (340–500 °C) and relative humidity of 50 %. It is noteworthy that the morphology of the nanostructure of the sensitive layer is maintained after thermal treatment. The morphology of ZnO NP significantly influences the sensor response level and their selectivity properties to reducing gases. Among the three different ZnO types, sensors prepared with NR show the highest response to both CO and C{sub 3}H{sub 8}. Sensors made of isotropic NP and CL structures show a lower but similar response to CO. From all investigated nanostructures, sensors made of CL structures show the weakest response to C{sub 3}H{sub 8}. With NH{sub 3} gas, no effect of the morphology of the ZnO sensitive layer has been evidenced. These different responses highlight the important role of the nanostructure of the ZnO sensitive layer and the nature of the target gas on the detection properties of the sensors. Graphical Abstract: Three different ZnO nanoparticles morphologies (cloud-like, dots, rods) have been employed as sensitive layers in chemoresistive sensors for the selective detection of CO, C{sub 3}H{sub 8} and NH{sub 3}.

  7. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    Science.gov (United States)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  8. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Vaughn, Anthony E [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  9. Labeling of thymidine analog with an organometallic complex of technetium-99m for diagnostic of cancer: radiochemical and biological evaluation

    International Nuclear Information System (INIS)

    Santos, Rodrigo Luis Silva Ribeiro

    2007-01-01

    Thymidine analogs have been labeled with different radioisotopes due to their potential in monitoring the uncontrollable cell proliferation. Considering that the radioisotopes technetium-99m still keep a privileged position as a marker due to its chemical and nuclear properties, this dissertation was constituted by the developed of a new technique of labeling of thymidine analog with 99m Tc, by means of the organometallic complex. The aims of this research were: synthesis of the organometallic complex technetium-99m-carbonyl, thymidine labeling with this precursor, evaluation of stability, and radiochemical e biological evaluation with healthy and tumor-bearing animals. The preparation of the organometallic precursor, using the CO gas, was easily achieved, as well as the labeling of thymidine with this precursor, resulting itself a radiochemical pureness of ≥ 97% and ≥ 94%, respectively. Chromatography systems with good levels of trustworthiness were used, ensuring the qualification and quantification of the radiochemical samples. The result of in vitro testing of lipophilicity disclosed that the radiolabeled complex is hydrophilic, with a partition coefficient (log P) of -1.48. The precursor complex and the radiolabeled have good radiochemical stability up to 6 h in room temperature. The cysteine and histidine challenge indicated losses between 8 and 1 1 % for concentrations until 300 mM. The biodistribution assay in healthy mice revealed rapid blood clearance and low uptake by general organs with renal and hepatobiliary excretion. The tumor concentration was low with values of 0.28 and 0.18 %ID/g for lung and breast cancer, respectively. The results imply more studies in other tumor models or the modification of the structure of the organic molecule that act like ligand. (author)

  10. Organometallic Pt precursor on graphite substrate: deposition from SC CO2, reduction and morphology transformation as revealed by SFM

    International Nuclear Information System (INIS)

    Elmanovich, Igor V.; Naumkin, Alexander V.; Gallyamov, Marat O.; Khokhlov, Alexei R.

    2012-01-01

    Organometallic Pt precursor was deposited on model highly oriented pyrolytic graphite substrate from solutions in supercritical carbon dioxide. Morphology transformations during reduction process including real-time observations were studied by scanning force microscopy (SFM). We confirmed that SC CO 2 is a promising mediator in deposition process even for rather hydrophobic supports. SFM data show that thermal decomposition of the PtMe 2 (COD) precursor with subsequent hydrogen post-treatment allows one to obtain rather pure and well-defined Pt nanoparticles with average height above a substrate level of 4.5 ± 0.6 nm.

  11. Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Zhen; Feng, Li; Su, Xiaoru; Qin, Chenyang; Zhao, Kun; Hu, Fang; Zhou, Mingjiong; Xia, Yongyao

    2018-01-01

    An organometallic compound of ferrocene is first investigated as a promising anode for lithium-ion batteries. The electrochemical properties of ferrocene are conducted by galvanostatic charge and discharge. The ferrocene anode exhibits a high reversible capacity and great cycling stability, as well as superior rate capability. The electrochemical reaction of ferrocene is semi-reversible and some metallic Fe remains in the electrode even after delithiation. The metallic Fe formed in electrode and the stable solid electrolyte interphase should be responsible for its excellent electrochemical performance.

  12. Organometallic approach to polymer-protected antibacterial silver nanoparticles: optimal nanoparticle size-selection for bacteria interaction

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Julian; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M.; Monge, Miguel, E-mail: miguel.monge@unirioja.es; Olmos, M. Elena [Universidad de La Rioja, Centro de Investigacion en Sintesis Quimica (CISQ), Departamento de Quimica (Spain); Saenz, Yolanda; Torres, Carmen [Centro de Investigacion Biomedica de La Rioja, Area de Microbiologia Molecular (Spain)

    2012-12-15

    The optimal size-specific affinity of silver nanoparticles (Ag NPs) towards E. coli bacteria has been studied. For this purpose, Ag NPs coated with polyvinylpyrrolidone (PVP) and cellulose acetate (CA) have been prepared using an organometallic approach. The complex NBu{sub 4}[Ag(C{sub 6}F{sub 5}){sub 2}] has been treated with AgClO{sub 4} in a 1:1 molar ratio giving rise to the nanoparticle precursor [Ag(C{sub 6}F{sub 5})] in solution. Addition of an excess of PVP (1) or CA (2) and 5 h of reflux in tetrahydrofuran (THF) at 66 Degree-Sign C leads to Ag NPs of small size (4.8 {+-} 3.0 nm for PVP-Ag NPs and 3.0 {+-} 1.2 nm for CA-Ag NPs) that coexist in both cases with larger nanoparticles between 7 and 25 nm. Both nanomaterials display a high antibacterial effectiveness against E. coli. The TEM analysis of the nanoparticle-bacterial cell membrane interaction shows an optimal size-specific affinity for PVP-Ag NPs of 5.4 {+-} 0.7 nm in the presence of larger size silver nanoparticles.Graphical AbstractAn organometallic approach permits the synthesis of small size silver nanoparticles (ca 5 nm) as a main population in the presence of larger size nanoparticles. Optimal silver nanoparticle size-selection (5.4 nm) for the interaction with the bacterial membrane is achieved.

  13. Heteroepitaxy of zinc-blende SiC nano-dots on Si substrate by organometallic ion beam

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kiuchi, M.; Sugimoto, S.; Goto, S.

    2006-01-01

    The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH 3 + ) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 deg. C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 deg. C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam

  14. Distribution of PCDD/Fs and organometallic compounds in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Lu Mang; Wu Xuejiao; Zeng Decai; Liao Yong

    2012-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organotin and organolead compounds were measured in sewage sludge samples collected from 24 wastewater treatment plants from 18 cities of 13 provinces in China. Total international toxicity equivalent (I-TEQ) values were evaluated for PCDD/Fs. The total concentration of PCDD/Fs ranged from 104.0 to 1661 pg/g dry weight (d.w.) and 2.51–75.21 pg I-TEQ/g d.w., indicating that all I-TEQs were below Chinese legislation limit value regulated for land application. The concentrations ranged from 258 to 3886, 126 to 1129, and 84–2133 ng/g as Sn d.w., for tributyltin (TBT), dibutyltin (DBT), and diphenyltin (DPhT), respectively. On the other side, organolead concentrations ranged from 85 to 668 with an average of 279 ng/g as lead. High concentrations of organolead compounds in sewage sludge indicated that the environmental impact of organolead compounds remains in China. - Highlights: ► The first study on PCDD/F distribution in sewage sludge in China on a national scale. ► The first study on organometallic compounds distribution in sewage sludge on a national scale. ► The persistence of tetraethyllead deserves attention. - This is the first study on the survey of the distributions of POPs and organometallic compounds in sewage sludge in China on a national scale.

  15. Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices

    Science.gov (United States)

    Ciobotaru, Constantin Claudiu; Polosan, Silviu; Ciobotaru, Iulia Corina

    2018-02-01

    This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host-guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet-triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4'-bis( N-carbazolyl)-1,1'-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet-triplet exothermic charge transfer. The higher charge carrier mobility in the case of N, N'-bis(3-methylphenyl)- N, N'-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet-triplet harvesting in the host-guest system. The excitation is transferred to the guest molecules by triplet-triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.

  16. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    Science.gov (United States)

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  17. The synthesis and properties of some organometallic compounds containing group IV (Ge, Sn)-group II (Zn, Cd) metal---metal bonds

    NARCIS (Netherlands)

    Des Tombe, F.J.A.; Kerk, G.J.M. van der; Creemers, H.M.J.C.; Carey, N.A.D.; Noltes, J.G.

    1972-01-01

    The reactions of triphenylgermane and triphenyltin hydride with coordinatively saturated organozinc or organocadmium compounds give organometallic complexes containing Group IV (Ge, Sn)-Group II(Zn, Cd) metal---metal bonds. The 2,2′-bipyridine complexes show solvent-dependent charge-transfer

  18. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishihara

    2015-01-01

    Full Text Available Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury.

  19. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    International Nuclear Information System (INIS)

    D'Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O.

    2004-01-01

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  20. Integrated rotating-compensator polarimeter for real-time measurements and analysis of organometallic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Flock, K.; Kim, S.-J.; Asar, M.; Kim, I.K.; Aspnes, D.E

    2004-05-01

    We describe a single-beam rotating-compensator rotating-sample spectroscopic polarimeter (RCSSP) integrated with an organometallic chemical vapor deposition (OMCVD) reactor for in-situ diagnostics and control of epitaxial growth, and report representative results. The rotating compensator generates Fourier coefficients that provide information about layer thicknesses and compositions, while sample rotation provides information about optical anisotropy and therefore surface chemistry. We illustrate capabilities with various examples, including the simultaneous determination of <{epsilon}> and {alpha}{sub 10} during exposure of (001)GaAs to TMG, the heteroepitaxial growth of GaP on GaAs, and the growth of (001)GaSb with TMG and TMSb. Using a recently developed approach for quantitatively determining thickness and dielectric function of depositing layers, we find the presence of metallic Ga on TMG-exposed (001)GaAs. The (001)GaSb data show that Sb deposition is self-limiting, in contrast to expectations.

  1. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas; Le Qué mé ner, Fré dé ric; Bouhoute, Yassine; Szeto, Kai C.; De Mallmann, Aimery; Barman, Samir; Samantaray, Manoja; Delevoye, Laurent; Gauvin, Ré gis M.; Taoufik, Mostafa; Basset, Jean-Marie

    2016-01-01

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  2. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas

    2016-12-05

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  3. Investigation of Spectral Characteristics of Pulsed Xenon Lamps for Combined Photochemical Degradation of Organometallic Compounds in Liquid Radioactive Waste

    Directory of Open Access Journals (Sweden)

    M. A. Mishakov

    2017-01-01

    Full Text Available The paper considers the composition of liquid radioactive wastes from the nuclear plants. Using traditional ways to extract organometallic compounds formed, when using the deactivation solutions to clean the surfaces of nuclear plant rooms, are complicated. The paper studies the edge-cutting methods of solving this problem. Its proposal is to use a combined ultraviolet treatment for organometallic compounds degradation based on ethylenediaminetetraacetic acid (EDTA via pulsed xenon lamps. A potential use of the tubular and spherical geometry lamps is examined and advantages, disadvantages and features of these lamps are described. Instead of the pure EDTA the experiments used its disodium salt (Na2-EDTA. The hydrogen peroxide was used as an extra oxidizer. Absorption spectrums of solutions with various Na2-EDTA - hydrogen peroxide ratio were measured. It is found that the absorbance curve maximum is in the shortwave spectrum region (λ < 210 nm. The use of amalgam lamps of monochromatic radiation at wavelength λ = 254 nm will result only in formation of hydroxyl radicals but direct destruction processes of EDTA molecules due to radiation will be rare, and this decreases efficiency of their use.The spectral radiation characteristics of various continuum spectrum pulsed xenon lamps was measured. The experimental data expressed in relative units were compared with the emission spectrum of an absolutely black body. The paper shows that in spherical lamps high brightness temperature can be reached. Thus, in spherical lamps it is possible to obtain a spectrum, which is in maximum correlation with the absorption spectrum of the solutions under study, thereby making them a prospective radiation source for photo-degradation of EDTA compounds. For drawing a final conclusion it is necessary to conduct researches in order to compare Na2-EDTA degradation via tubular and spherical xenon lamps.

  4. DFT and time-resolved IR investigation of electron transfer between photogenerated 17- and 19-electron organometallic radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James B.; Kling, Matthias F.; Sawyer, Karma R.; Andersen, Lars K.; Harris, Charles B.

    2008-04-30

    The photochemical disproportionation mechanism of [CpW(CO){sub 3}]{sub 2} in the presence of Lewis bases PR{sub 3} was investigated on the nano- and microsecond time-scales with Step-Scan FTIR time-resolved infrared spectroscopy. 532 nm laser excitation was used to homolytically cleave the W-W bond, forming the 17-electron radicals CpW(CO){sub 3} and initiating the reaction. With the Lewis base PPh{sub 3}, disproportionation to form the ionic products CpW(CO){sub 3}PPh{sub 3}{sup +} and CpW(CO){sub 3}{sup -} was directly monitored on the microsecond time-scale. Detailed examination of the kinetics and concentration dependence of this reaction indicates that disproportionation proceeds by electron transfer from the 19-electron species CpW(CO){sub 3}PPh{sub 3} to the 17-electron species CpW(CO){sub 3}. This result is contrary to the currently accepted disproportionation mechanism which predicts electron transfer from the 19-electron species to the dimer [CpW(CO){sub 3}]{sub 2}. With the Lewis base P(OMe){sub 3} on the other hand, ligand substitution to form the product [CpW(CO){sub 2}P(OMe){sub 3}]{sub 2} is the primary reaction on the microsecond time-scale. Density Functional Theory (DFT) calculations support the experimental results and suggest that the differences in the reactivity between P(OMe){sub 3} and PPh{sub 3} are due to steric effects. The results indicate that radical-to-radical electron transfer is a previously unknown but important process for the formation of ionic products with the organometallic dimer [CpW(CO){sub 3}]{sub 2} and may also be applicable to the entire class of organometallic dimers containing a single metal-metal bond.

  5. Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110)

    Science.gov (United States)

    Madix, Robert J.

    The nature of compounds formed by the reaction of organic molecules with metal surfaces can be studied with a battery of analytical methods based on both physicals and chemical understanding. In this paper the application of UPS, XPS, LEED and EELS as well as temperature programmed reaction spectroscopy (TPRS) and chemical titration methods to the characterization of surface complexes is discussed. Particular emphasis is given to the reaction of acetylene with a single crystal surface of silver, Ag(110). Previous work has shown that this surface, when clean, is unreactive to hydrocarbons, alcohols and carboxylic acids under ultra high vacuum conditions. Preadsorption of oxygen, however, renders the surface reactive, and a wide variety of organometallic surface compounds can be formed. As expected then, no stable adsorption state and no reaction was observed with clean Ag(110) following room temperature exposure to acetylene. Following exposure at 150 K, however, a weekly bound chemisorption state was observed to desorb at 195 K, indicating a binding energy to the surface of approximately 12 kcal/gmole. Reaction with preadsorbed oxygen gave water formulation upon dosing and produced surface intermediates which yeilded two acetylene desorption states at 195 and 175 K. Heating above 300 K to completely desorb the higher temperature state produced new, well-defined LEED Features due to residual surface carbon which disappeared when the surface was heated above 550 K. Clearly, there were distinc changes in the nature of the absorbed layer at 195, 300 and 550 K. These changes were reflected in XPS. For the weakly chemisorbed acetylene a large C(ls) peak at 285.6 eV with a small, broad, indistinc shoulder at higher binding energy (288.2) was observed. The spectrum of the species following acetylene desorption at 275 K, however, showed the formulation of a large C(ls) peak at 283.6 eV in addition to peaks characteristics of the weakly chemisorbed state. This result

  6. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 - C10

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2016-09-01

    A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.

  7. Synthesis and X-ray crystal structure of a novel organometallic (µ(3)-oxido)(µ(3)-imido) trinuclear iridium complex

    DEFF Research Database (Denmark)

    Schau-Magnussen, Magnus; Malcho, Phillip; Herbst, Konrad

    2011-01-01

    Reaction of the organometallic aqua ion [Cp*Ir(H(2)O)(3)](2+) with tert-butyl(trimethylsilyl)amine in acetone yielded a novel trinuclear (µ(3)-oxido)(µ(3)-imido)pentamethylcyclopentadienyliridium(iii) complex, [(Cp*Ir)(3)(O)(N(t)Bu)](2+). Single crystal structure analyses show the complex can be ...... that a trinuclear (µ(3)-oxido)(µ(3)-imido) transition metal complex has been structurally characterized....

  8. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells.

    Science.gov (United States)

    Huang, Ke-Bin; Wang, Feng-Yang; Tang, Xiao-Ming; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, Yan-Cheng; Liu, You-Nian; Liang, Hong

    2018-04-26

    Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL 1 Cl 2 , L 1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL 2 Cl 2 , L 2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.

  9. Synthesis and thermal behavior of new organometallic poly ketones and co-poly ketones based on diferrocenylidene piperidone

    International Nuclear Information System (INIS)

    Aly, K.I.

    2005-01-01

    A new interesting category of organometallic poly ketones and copolyketones were synthesized via Friedel - Crafts reaction through the polymerization of 2,6-[Bis (2-ferrocenyl )methylene] N-methylpiperidone (II) with different diacid chlorides. The model compound was synthesized by reacting the monomer (II) with benzoyl chloride and characterized by HNMR, IR and elemental analyses. The poly ketones and copolyketones were insoluble in most organic solvents but soluble easily in protic solvents. The thermal properties of these poly ketones and copolyketones were evaluated and correlated to their structural units by TGA and DSC measurements, and had inherent viscosity 0.34-0.52 dl g-1. Moreover, the electrical conductivity of one of the poly ketones, as selected example, Va and copolyketone VI were investigated above the temperature range (300-500 K) and showed that it followed an Arrhenius equation with activation energy 2.09 eV, also the morphological properties of selected examples of poly-and copolyketones were detected by SEM

  10. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  11. Growth and physicochemical properties of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) single crystals

    Science.gov (United States)

    Sathyamoorthy, K.; Vinothkumar, P.; Irshad Ahamed, J.; Murali Manohar, P.; Priya, M.; Liu, Jinghe

    2018-04-01

    Single crystals of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) (TUDLC) have been grown from methanol solution by using the slow evaporation of solvent growth technique. The lattice structure and crystalline perfection have been determined by carrying out single crystal X-ray diffraction and high resolution X-ray diffraction measurements. The grown crystal was characterized thermally and mechanically by carrying out thermo-gravimetric and micro hardness measurements. The linear and nonlinear optical characterizations were made by carrying out optical transmittance, surface laser damage threshold, particle size-dependent second harmonic generation (SHG) efficiency and photo conductivity measurements. The grown crystal was electrically characterized by carrying out frequency-dependent dielectric measurements. Chemical etching study was also carried out and the dislocation density was estimated. Results obtained in the present study indicate that the grown TUDLC crystal is optically transparent with lower cut-off wavelength 304 nm, mechanically soft, thermally stable up to 101 °C and NLO active with SHG efficiency 2.13 (in KDP unit). The grown crystal is found to have considerably large size, good crystalline perfection, large specific heat capacity, higher surface laser damage threshold and negative photoconductivity.

  12. Application of imaging spectroscopic reflectometry for characterization of gold reduction from organometallic compound by means of plasma jet technology

    Energy Technology Data Exchange (ETDEWEB)

    Vodák, Jiří, E-mail: jiri.vodak@yahoo.com [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Nečas, David [RG Plasma Technologies, CEITEC Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Pavliňák, David [Department of Physical Electronics, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Macak, Jan M [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. Legií 565, 530 02 Pardubice (Czech Republic); Řičica, Tomáš; Jambor, Roman [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice (Czech Republic); Ohlídal, Miloslav [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Institute of Physics, Faculty of Mining and Geology, VŠB – Technical University of Ostrava (Czech Republic)

    2017-02-28

    Highlights: • Metallic gold is reduced from an organometallic compound layer using a plasma jet. • Imaging spectroscopic reflectometry is used to locate areas with metallic gold. • The results are completed with XPS and optical microscopy observations. - Abstract: This work presents a new application of imaging spectroscopic reflectometry to determine a distribution of metallic gold in a layer of an organogold precursor which was treated by a plasma jet. Gold layers were prepared by spin coating from a solution of the precursor containing a small amount of polyvinylpyrrolidone on a microscopy glass, then they were vacuum dried. A difference between reflectivity of metallic gold and the precursor was utilized by imaging spectroscopic reflectometry to create a map of metallic gold distribution using a newly developed model of the studied sample. The basic principle of the imaging spectroscopic reflectometry is also shown together with the data acquisition principles. XPS measurements and microscopy observations were made to complete the imaging spectroscopic reflectometry results. It is proved that the imaging spectroscopic reflectometry represents a new method for quantitative evaluation of local reduction of metallic components from metaloorganic compounds.

  13. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  14. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  15. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard [Johns Hopkins University, Department of Chemistry, Baltimore, MD (United States); Wu, Yung-Chien; McElwee-White, Lisa [University of Florida, Department of Chemistry, Gainesville, FL (United States)

    2014-12-15

    Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit's properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF{sub 3}, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures. (orig.)

  16. Generation of Well-Defined Pairs of Silylamine on Highly Dehydroxylated SBA-15: Application to the Surface Organometallic Chemistry of Zirconium

    KAUST Repository

    Azzi, Joachim

    2012-11-01

    Design of a new well-defined surface organometallic species [O-(=Si–NH)2Zr(IV)Np2] has been obtained by reaction of tetraneopentyl zirconium (ZrNp4) on SBA-15 surface displaying mainly silylamine pairs [O-(=Si–NH2)2]. These surface species have been achieved by an ammonia treatment of a highly dehydroxylated SBA-15 at 1000°C (SBA-151000). This support is known to contain mainly strained reactive siloxane bridges (≡Si-O-Si≡)[1] along with a small amount of isolated plus germinal silanols =Si(OH)2. Chemisorption of ammonia occurs primarily by opening these siloxane bridges[2] to generate silanol/silylamine pairs [O-(=Si–NH2)(=SiOH)] followed by substitution of the remaining silanol. Further treatment using hexamethyldisilazane (HMDS) results in the protection of the isolated remaining silanol groups by formation of ≡Si-O-SiMe3 and =Si(OSiMe3)2 but leaves ≡SiNH2 untouched. After reaction of this functionalized surface with ZrNp4, this latter displays mainly a bi-podal zirconium neopentyl organometallic complex [O-(=Si–NH)2Zr(IV)Np2] which has been fully characterized by diverse methods such as infrared transmission spectroscopy, magic angle spinning solid state nuclear magnetic resonance, surface elemental analysis, small angle X-ray powder diffraction (XRD), nitrogen adsorption and energy filtered transmission electron microscopy (EFTEM). These different characterization tools unambiguously prove that the zirconium organometallic complex reacts mostly with silylamine pairs to give a bi-podal zirconium bis-neopentyl complex, uniformly distributed into the channels of SBA-151000. Therefore this new material opens a new promising research area in Surface Organometallic Chemistry which, so far, was dealing mainly with O containing surface. It is expected that vicinal amine functions may play a very different role as compared with classical inorganic supports. Given the importance in the last decades of N containing ligands in catalysis, one may expect

  17. Synthesis and structure determination of a stable organometallic uranium(V) imine complex and its isolobal anionic U(IV)-ate complex

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.; Botoshanskii, M.; Eisen, M.S. [Schulich Faculty of Chemistry, and Institute of Catalysis Science and Technology, Technion Israel Institute of Technology, Haifa (Israel); Bannenberg, Th.; Tamm, M. [Institut fur Anorganische und Analytische Chemie, Technische Universitat Braunschweig (Germany)

    2010-06-15

    The reaction of one equivalent of Cp*{sub 2}UCl{sub 2} with 2-(trimethylsilyl-imino)-1,3-di-tert-butyl-imidazoline in boiling toluene afforded a one electron oxidation of the uranium metal and the opening of the N-heterocyclic ring, resulting in the formation of an organometallic uranium(V) imine complex. This complex crystallized with one molecule of toluene in the unit cell, and its solid-state structure was determined by X-ray diffraction analysis. When the same reaction was performed in perdeuterated toluene, a myriad of organometallic complexes were obtained, however, when equimolar amounts of water were used in toluene, the same complex was obtained, and its solid state characterization shows two independent molecules in the unit cell with an additional water molecule. For comparison of the geometric parameters, the corresponding isolobal anionic uranium(IV) complex [Cp*{sub 2}UCl{sub 3}]{sup -} was synthesized by the reaction of Cp*{sub 2}UCl{sub 2} with 1,3-di-tert-butyl-imidazolium chloride, and the resulting U(IV)-ate complex was characterized by X-ray diffraction analysis. (authors)

  18. Low-voltage organic field-effect transistors based on novel high-κ organometallic lanthanide complex for gate insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Li, Yi; Zhang, Yang; Song, You, E-mail: wangxzh@nju.edu.cn, E-mail: yli@nju.edu.cn, E-mail: yousong@nju.edu.cn; Wang, Xizhang, E-mail: wangxzh@nju.edu.cn, E-mail: yli@nju.edu.cn, E-mail: yousong@nju.edu.cn; Hu, Zheng [Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. High-Tech Research Institute of Nanjing University (Suzhou), Suzhou 215123 (China); Sun, Huabin; Li, Yun, E-mail: wangxzh@nju.edu.cn, E-mail: yli@nju.edu.cn, E-mail: yousong@nju.edu.cn; Shi, Yi [School of Electronic Science and Engineering and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, Nanjing University, Nanjing 210093 (China)

    2014-08-15

    A novel high-κ organometallic lanthanide complex, Eu(tta){sub 3}L (tta=2-thenoyltrifluoroacetonate, L = 4,5-pinene bipyridine), is used as gate insulating material to fabricate low-voltage pentacene field-effect transistors (FETs). The optimized gate insulator exhibits the excellent properties such as low leakage current density, low surface roughness, and high dielectric constant. When operated under a low voltage of −5 V, the pentacene FET devices show the attractive electrical performance, e.g. carrier mobility (μ{sub FET}) of 0.17 cm{sup 2} V{sup −1} s{sup −1}, threshold voltage (V{sub th}) of −0.9 V, on/off current ratio of 5 × 10{sup 3}, and subthreshold slope (SS) of 1.0 V dec{sup −1}, which is much better than that of devices obtained on conventional 300 nm SiO{sub 2} substrate (0.13 cm{sup 2} V{sup −1} s{sup −1}, −7.3 V and 3.1 V dec{sup −1} for μ{sub FET}, V{sub th} and SS value when operated at −30 V). These results indicate that this kind of high-κ organometallic lanthanide complex becomes a promising candidate as gate insulator for low-voltage organic FETs.

  19. Low-voltage organic field-effect transistors based on novel high-κ organometallic lanthanide complex for gate insulating materials

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2014-08-01

    Full Text Available A novel high-κ organometallic lanthanide complex, Eu(tta3L (tta=2-thenoyltrifluoroacetonate, L = 4,5-pinene bipyridine, is used as gate insulating material to fabricate low-voltage pentacene field-effect transistors (FETs. The optimized gate insulator exhibits the excellent properties such as low leakage current density, low surface roughness, and high dielectric constant. When operated under a low voltage of −5 V, the pentacene FET devices show the attractive electrical performance, e.g. carrier mobility (μFET of 0.17 cm2 V−1 s−1, threshold voltage (Vth of −0.9 V, on/off current ratio of 5 × 103, and subthreshold slope (SS of 1.0 V dec−1, which is much better than that of devices obtained on conventional 300 nm SiO2 substrate (0.13 cm2 V−1 s−1, −7.3 V and 3.1 V dec−1 for μFET, Vth and SS value when operated at −30 V. These results indicate that this kind of high-κ organometallic lanthanide complex becomes a promising candidate as gate insulator for low-voltage organic FETs.

  20. Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)

    KAUST Repository

    Al-Shareef, Reem A.

    2017-11-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx bimetallic catalysts is also prepared by ion-exchange (IE). According to the results of STEM, XAS and H2 chemisorption, all bimetallic nanoparticles, prepared using neither SOMC nor IE, produce discrete formation of monometallic species (either Pt or Pd). Most catalysts exhibit a narrow particle size distribution with an average diameter ranging from 1 to 3 nm for samples prepared by IE and from 2 to 5 nm for the ones synthesized by SOMC. For all catalysts investigated in the present work, iso-butane reaction with hydrogen under differential conditions (conversions below 5%) leads to the formation of methane and propane (hydrogenolysis), n-butane (isomerization), and traces of iso-butylene (dehydrogenation). The total rate of reaction decreases with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate (expressed as moles converted per total surface metal per second) of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the results suggest a selective coverage of Pt (100) surface by a Pd layer, followed by a buildup of Pd overcoat onto a Pd layer assuming that each metal keeps its intrinsic catalytic properties. There is no mutual electronic charge transfer between the two metals (DFT). For the PtPd catalysts prepared by IE, the catalytic behavior cannot simply be explained by a surface coverage of highly active Pt metal by less active Pd (not observed), suggesting there is formation of a surface alloy between Pt and Pd collaborated by EXAFS and DFT. The catalytic results are explained by a simple structure activity relationship based on the previously proposed mechanism of C-H bond and C-C Bond activation and cleavage for iso-butane hydrogenolysis

  1. Air-tolerant C–C bond formation via organometallic ruthenium catalysis: diverse catalytic pathways involving (C5Me5)Ru or (C5H5)Ru are robust to molecular oxygen

    Czech Academy of Sciences Publication Activity Database

    Severa, Lukáš; Vávra, Jan; Kohoutová, Anna; Čížková, Martina; Šálová, Tereza; Hývl, Jakub; Šaman, David; Pohl, Radek; Adriaenssens, Louis; Teplý, Filip

    2009-01-01

    Roč. 50, č. 31 (2009), s. 4526-4528 ISSN 0040-4039 Institutional research plan: CEZ:AV0Z40550506 Keywords : ruthenium * organometallic catalysis * [2+2+2] cycloaddition * terminal alkynes Subject RIV: CC - Organic Chemistry Impact factor: 2.660, year: 2009

  2. The use of a well-defined surface organometallic complex as a probe molecule: [(≡SiO)TaVCl2Me2] shows different isolated silanol sites on the silica surface

    KAUST Repository

    Chen, Yin

    2014-01-01

    TaVCl2Me3 reacts with silica(700) and produces two different [(≡SiO)TaVCl2Me2] surface organometallic species, suggesting a heterogeneity of the highly dehydroxylated silica surface, which was studied with a combined experimental and theoretical approach. This journal is © the Partner Organisations 2014.

  3. The use of a well-defined surface organometallic complex as a probe molecule: [(≡SiO)TaVCl2Me2] shows different isolated silanol sites on the silica surface

    KAUST Repository

    Chen, Yin; Zheng, Bin; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Hamzaoui, Bilel; Huang, Kuo-Wei; Basset, Jean-Marie

    2014-01-01

    TaVCl2Me3 reacts with silica(700) and produces two different [(≡SiO)TaVCl2Me2] surface organometallic species, suggesting a heterogeneity of the highly dehydroxylated silica surface, which was studied with a combined experimental and theoretical approach. This journal is © the Partner Organisations 2014.

  4. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for over 150 days in air at ambient temperature. The conductivity of the films dropped only half an order of magnitude in that time. Films aged under vacuum at ambient temperature diminished slightly in conductivity in the first day, but did not change thereafter. An experimental design approach will be applied to maximize the efficiency of the laboratory effort. The material properties (initial and long term) will also be monitored and assessed. The experimental results will add to the existing database for electrically conductive polymer materials. Attachments: 1) Synthesis Crystal Structure, and Polymerization of 1,2:5,6:9,10-Tribenzo-3,7,11,13-tetradehydro(14) annulene. 2) Reinvestigation of the Photocyclization of 1,4-Phenylene Bis(phenylmaleic anhydride): Preparation and Structure of (5)Helicene 5,6:9,10-Dianhydride. 3) Preparation and Structure Charecterization of a Platinum Catecholate Complex Containing Two 3-Ethynyltheophone Groups. and 4) Rigid-Rod Polymers Based on Noncoplanar 4,4'-Biphenyldiamines: A Review of Polymer Properties vs Configuration of Diamines.

  5. Tailored Organometallic Polymers

    Science.gov (United States)

    1993-01-31

    Webster, W. R. Herder, D. Y. Sogah, W. B. Farnham, T. V. ajan Babu, J. Am. Chem. soL • J105~. 5706-5708. [101 A. Boudin, (. Cerveau , C. Chuit, R.J. P...mngli,. 7., 237. [12] A. Boudin, G. Cerveau , C. Chuit, R. J. P. Corriu, C. Reyd, . o isj=, 7, 1165. [13] C. Brelire, R. J. P. Corriu, G. Royo, W. W. C...M.aa, J. Zwecker, Qrgg.omtaffic_ 9M 2, 2633-2635. [14] R. Tacke, J. Sperlich, C. Strohman, G. MatternU Ch 4 3.B=r 1 , 124., 1491-1496. [15] G. Cerveau

  6. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    Science.gov (United States)

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CHCD 3 , using [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] scrambles the D-label into all possible positions of the propene, as shown by isotopic perturbation of equilibrium measurements for the agostic interaction. Periodic DFT calculations show a low barrier to H/D exchange (10.9 kcal mol -1 , PBE-D3 level), and GIPAW chemical shift calculations guide the assignment of the experimental data. When synthesized using solution routes a bis-propene complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene) 2 ][BAr F 4 ] , is formed. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(butene)][BAr F 4 ] ( x = 1) is characterized as having 2-butene bound as the cis -isomer and a single Rh···H 3 C agostic interaction. In the solid-state two low-energy fluxional processes are proposed. The first is a simple libration of the 2-butene that exchanges the agostic interaction, and the second is a butene isomerization process that proceeds via an allyl-hydride intermediate with a low computed barrier of 14.5 kcal mol -1 . [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] and the polymorphs of [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ] are shown to be effective in solid-state molecular organometallic catalysis (SMOM-Cat) for the isomerization of 1-butene to a mixture of cis - and trans -2-butene at 298 K and 1 atm, and studies suggest that catalysis is likely dominated by surface-active species. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA

  7. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.; Alves, E.; Roqan, Iman S.; O’ Donnell, K. P.; Nishikawa, A.; Fujiwara, Y.; Boćkowski, M.

    2010-01-01

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  8. A silica-supported double-decker silsesquioxane provides a second skin for the selective generation of bipodal surface organometallic complexes

    KAUST Repository

    Espinas, Jeff

    2012-11-12

    A well-defined silica-based material with a homogeneous nanolayer presenting identical pairs of vicinal silanols has been prepared by reaction of the surface organometallic species [≡SiOZr(CH 2CMe 3) 3], obtained on a silica dehydroxylated at 900 °C, with the double-decker-shaped silsesquioxane (OH) 2DD(OH) 2. The surface structure has been established using extensive NMR characterization ( 1H, 13C, 29Si, HETCOR, double-quantum, triple-quantum). Treatment with Zr(CH 2CMe 3) 4 leads to the first well-defined single-site bipodal grafted bis-neopentyl zirconium complex. © 2012 American Chemical Society.

  9. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11-C192

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2017-03-01

    The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.

  10. A [4Fe-4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly

    Science.gov (United States)

    Rao, Guodong; Tao, Lizhi; Suess, Daniel L. M.; Britt, R. David

    2018-05-01

    Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate—the first organometallic precursor to the H-cluster—validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster.

  11. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.

    2010-09-16

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  12. A silica-supported double-decker silsesquioxane provides a second skin for the selective generation of bipodal surface organometallic complexes

    KAUST Repository

    Espinas, Jeff; Pelletier, Jeremie; Abou-Hamad, Edy; Emsley, Lyndon; Basset, Jean-Marie

    2012-01-01

    A well-defined silica-based material with a homogeneous nanolayer presenting identical pairs of vicinal silanols has been prepared by reaction of the surface organometallic species [≡SiOZr(CH 2CMe 3) 3], obtained on a silica dehydroxylated at 900 °C, with the double-decker-shaped silsesquioxane (OH) 2DD(OH) 2. The surface structure has been established using extensive NMR characterization ( 1H, 13C, 29Si, HETCOR, double-quantum, triple-quantum). Treatment with Zr(CH 2CMe 3) 4 leads to the first well-defined single-site bipodal grafted bis-neopentyl zirconium complex. © 2012 American Chemical Society.

  13. Development of novel strategy for the synthesis of organometallic compounds usable as protein ligands: application to the human cyclophilin hCyp-18

    International Nuclear Information System (INIS)

    Clavaud, C.

    2006-02-01

    This thesis describes a new strategy for the development of bioactive organometallic compounds, basing on the combinatorial assembly of sub-chemical libraries (A and B) independent but complementary and able to coordinate a metallic heart M to form A-M-B complex potential ligands of biomolecules. The coordination of metals, well adapted to the production of molecular variety is usually used in medicinal chemistry, in diagnostic and therapeutic nuclear medicine. Among the useful elements, the rhenium and the technetium are metals of choice for the development of the assembly strategy because of their chemical and radiochemical properties and of the structure analogy of their complexes. This strategy was validated in vitro. The protein chosen for this purpose was the cyclophilin hCyp-18. (N.C.)

  14. Synthesis of a sugar-organometallic compound 1,1 Prime -difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Shanyu, E-mail: syzhao65@gmail.com [School of Environmental and Safty Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Department of Chemistry, Brown University, Providence, RI 02912-9108 (United States); Cooper, Daniel C. [Department of Chemistry, Brown University, Providence, RI 02912-9108 (United States); Xu, Haixun [Institute of Building Materials, Dalian University of Technology, Dalian, Liaoning 116024 (China); Zhu Pinghua [School of Environmental and Safty Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Suggs, J. William, E-mail: j_suggs@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912-9108 (United States)

    2013-01-01

    Graphical abstract: In order to synthesize a carbon-metal or metal oxide combination sphere, carbonaceous resource furfural was introduced, which was nucleophilic treated with 1,1 Prime -dilithioferrocene to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1 Prime -difurfurylferrocene, which can be hydrothermally treated in a microwave reactor to give 300-500 nm microspheres with the {alpha}-Fe{sub 2}O{sub 3} or Fe{sub 3}O{sub 4} formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses. Highlights: Black-Right-Pointing-Pointer We synthesized 1,1 Prime -difurfurylferrocene by nucleophilic treating furfural with 1,1 Prime -dilithioferrocene. Black-Right-Pointing-Pointer 1,1 Prime -Difurfurylferrocene can be hydrothermally treated by microwave to give microspheres with iron oxides on the surface. Black-Right-Pointing-Pointer 1,1 Prime -Difurfurylferrocene has 2 reactive furanose units, which form carbonspheres and ferrocenyl can give iron oxides. Black-Right-Pointing-Pointer REDOX atmosphere influences the coating structures. - Abstract: In order to synthesize a carbon-metal or metal oxide combination sphere, carbonaceous resource furfural 1 was introduced, which was nucleophilic treated with 1,1 Prime -dilithioferrocene 2 to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1 Prime -difurfurylferrocene 3. 1,1 Prime -Difurfurylferrocene 3 can be hydrothermally treated in a microwave reactor to give 300-500 nm microspheres with the {alpha}-Fe{sub 2}O{sub 3} or Fe{sub 3}O{sub 4} nanocrystals formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses.

  15. Synthesis of a sugar-organometallic compound 1,1′-difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite

    International Nuclear Information System (INIS)

    Zhao Shanyu; Cooper, Daniel C.; Xu, Haixun; Zhu Pinghua; Suggs, J. William

    2013-01-01

    Graphical abstract: In order to synthesize a carbon–metal or metal oxide combination sphere, carbonaceous resource furfural was introduced, which was nucleophilic treated with 1,1′-dilithioferrocene to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1′-difurfurylferrocene, which can be hydrothermally treated in a microwave reactor to give 300–500 nm microspheres with the α-Fe 2 O 3 or Fe 3 O 4 formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses. Highlights: ► We synthesized 1,1′-difurfurylferrocene by nucleophilic treating furfural with 1,1′-dilithioferrocene. ► 1,1′-Difurfurylferrocene can be hydrothermally treated by microwave to give microspheres with iron oxides on the surface. ► 1,1′-Difurfurylferrocene has 2 reactive furanose units, which form carbonspheres and ferrocenyl can give iron oxides. ► REDOX atmosphere influences the coating structures. - Abstract: In order to synthesize a carbon–metal or metal oxide combination sphere, carbonaceous resource furfural 1 was introduced, which was nucleophilic treated with 1,1′-dilithioferrocene 2 to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1′-difurfurylferrocene 3. 1,1′-Difurfurylferrocene 3 can be hydrothermally treated in a microwave reactor to give 300–500 nm microspheres with the α-Fe 2 O 3 or Fe 3 O 4 nanocrystals formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses.

  16. Study of two examples of non linear interaction of a laser wave with matter: laser-induced damage of dielectrics and non linear optical properties of organometallic molecules in solution

    International Nuclear Information System (INIS)

    Gaudry, Jean-Baptiste

    2000-01-01

    This research thesis reports the study of two mechanisms of non linear interaction of a laser wave with matter. More particularly, it reports the experimental investigation of non linear optical properties of organometallic molecules in solution, as well as the damage of perfect silica under laser irradiation by using simulation codes. As far as optical properties are concerned, the author highlights the influence of the electronic configuration of the metal present in the organometallic compound, and the influence of the ligand on the second-order non-linear response. As far as the simulation is concerned, some experimental results have been reproduced. This work can be useful for the investigation of the extrinsic damage of imperfect materials, and for the design of experiments of transient measurements of excited silica [fr

  17. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2013-11-27

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  18. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Azzi, Joachim; Abou-Hamad, Edy; Anjum, Dalaver H.; Pasha, Fahran A.; Huang, Kuo-Wei; Emsley, Lyndon; Basset, Jean-Marie

    2013-01-01

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  19. Structure of organometallic compounds obtained by plasma of titanium isopropoxide; Estructura de compuestos organometalicos obtenidos por plasma de isopropoxido de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Arreola R, M. L.

    2012-07-01

    This work presents a study on the synthesis and characterization of organometallic compounds of titanium oxide obtained from glow discharges of titanium tetraisopropoxide (TTIP) and water on glass and polyethylene. The objective is the synthesis of titanium oxide particles which can be fixed on different supports for use in further studies of contaminants degradation in effluent streams. The synthesis was carried out by plasma in a glass tubular reactor of 750 cm{sup 3} and 15 cm length at 10{sup -1} mbar with power between 100 and 150 W during 2, 3 and 4 h. The precursors were TTIP and water vapor. TTIP is an organometallic compound composed of a central atom of Ti surrounded by 4 O atoms, which in turn are connected with chains of 3 C (propane s). The objective is the use of plasma collisions to separate the organic and inorganic phases of TTIP, so that both structure independently in a single material. The result was the formation of white titanium oxide powder composed with agglomerates of spherical particles with average diameter between 160 and 452 nm adhered to small films. The agglomerates have a tendency to change from film to particles with the energy applied to the synthesis. The study of the chemical structure showed a great presence of O{sub 2}-Ti-O{sub 2} (Ti surrounded by O) which can be found in most titanium oxides. Other chemical groups belonging to the organic phase were C=C=C, C=C=O and C{sub 2}-C-Ch appearing from the dehydrogenation of TTIP, which can be a possible precursor of this reactions kind. The structural superficial analyses showed that the atomic composition varies according to type of substrate used. The greatest content of Ti was obtained on glass substrates. However, the synthesis conditions had not evident effect in the participation of chemical states found in the inorganic phase. The crystalline studies indicated that the material is amorphous, although the de convoluted X-ray spectra showed that the synthesized titanium oxides

  20. Single-Site VO x Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane

    KAUST Repository

    Barman, Samir

    2016-07-26

    We report here an accurate surface organometallic chemistry (SOMC) approach to propane oxidative dehydrogenation (ODH) using a μ2-oxo-bridged, bimetallic [V2O4(acac)2] (1) (acac = acetylacetonate anion) complex as a precursor. The identity and the nuclearity of the product of grafting and of the subsequent oxidative treatment have been systematically studied by means of FT-IR, Raman, solid-state (SS) NMR, UV-vis DRS, EPR and EXAFS spectroscopies. We show that the grafting of 1 on the silica surface under a rigorous SOMC protocol and the subsequent oxidative thermal treatment lead exclusively to well-defined and isolated monovanadate species. The resulting material has been tested for the oxidative dehydrogenation of propane in a moderate temperature range (400-525 °C) and compared with that of silica-supported vanadium catalysts prepared by the standard impregnation technique. The experimental results show that the catalytic activity in propane ODH is strongly upgraded by the degree of isolation of the VOx species that can be achieved by employing the SOMC protocol. © 2016 American Chemical Society.

  1. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  2. Single-Site VO x Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane

    KAUST Repository

    Barman, Samir; Maity, Niladri; Bhatte, Kushal; Ould-Chikh, Samy; Dachwald, Oliver; Haeß ner, Carmen; Saih, Youssef; Abou-Hamad, Edy; Llorens, Isabelle; Hazemann, Jean-Louis; Kö hler, Klaus; D’ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    We report here an accurate surface organometallic chemistry (SOMC) approach to propane oxidative dehydrogenation (ODH) using a μ2-oxo-bridged, bimetallic [V2O4(acac)2] (1) (acac = acetylacetonate anion) complex as a precursor. The identity and the nuclearity of the product of grafting and of the subsequent oxidative treatment have been systematically studied by means of FT-IR, Raman, solid-state (SS) NMR, UV-vis DRS, EPR and EXAFS spectroscopies. We show that the grafting of 1 on the silica surface under a rigorous SOMC protocol and the subsequent oxidative thermal treatment lead exclusively to well-defined and isolated monovanadate species. The resulting material has been tested for the oxidative dehydrogenation of propane in a moderate temperature range (400-525 °C) and compared with that of silica-supported vanadium catalysts prepared by the standard impregnation technique. The experimental results show that the catalytic activity in propane ODH is strongly upgraded by the degree of isolation of the VOx species that can be achieved by employing the SOMC protocol. © 2016 American Chemical Society.

  3. Optimization of the quantitative direct solid total-reflection X-ray fluorescence analysis of glass microspheres functionalized with Zr organometallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, Ramon, E-mail: ramon.fernandez@uam.e [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Andres, Roman; Jesus, Ernesto de [Departamento de Quimica Inorganica, Universidad de Alcala, Campus Universitario, 28871, Alcala de Henares, Madrid (Spain); Terreros, Pilar [Instituto de Catalisis y Petroleo-Quimica, CSIC, Cantoblanco, 28049, Madrid (Spain)

    2010-06-15

    Quantitative determination of Zr in the system constituted by quartz microspheres functionalized with two kinds of organometallic compounds has been studied due to the importance of the correct quantization of the Zr from a catalytic point of view. Two parallel approximations were done, i.e. acid leaching and direct solid quantization. To validate the acid leaching TXRF measures, ICP-MS analysis were carried out. The results obtained by means of the optimization of the quantitative direct solid procedure show that, with a previous particle size distribution modification, TXRF obtain the same analytical results as ICP-MS and TXRF by acid leaching way but without previous chemical acid manipulation. This fact implies an important improvement for the analysis time, reagents costs and analysis facility and it proves again the versatility of TXRF to solve analytical problems in an easy, quick and accurate way. Additionally and for the direct solid TXRF measurements, a deeper study was done to evaluate the intrinsic analytical parameters of the Zr TXRF analysis of this material. So, the influence of the particle size distributions (modified by means of a high power ultrasound probe) with respect to uncertainty and detection limits for Zr were developed. The main analytical conclusion was the strong correlation between the average particle sizes and the TXRF analytical parameters of Zr measurements, i.e. concentration, accuracy, uncertainty and detection limits.

  4. Quantitative DFT modeling of product concentration in organometallic reactions: Cu-mediated pentafluoroethylation of benzoic acid chlorides as a case study.

    Science.gov (United States)

    Jover, Jesús

    2017-11-08

    DFT calculations are widely used for computing properties, reaction mechanisms and energy profiles in organometallic reactions. A qualitative agreement between the experimental and the calculated results seems to usually be enough to validate a computational methodology but recent advances in computation indicate that a nearly quantitative agreement should be possible if an appropriate DFT study is carried out. Final percent product concentrations, often reported as yields, are by far the most commonly reported properties in experimental metal-mediated synthesis studies but reported DFT studies have not focused on predicting absolute product amounts. The recently reported stoichiometric pentafluoroethylation of benzoic acid chlorides (R-C 6 H 4 COCl) with [(phen)Cu(PPh 3 )C 2 F 5 ] (phen = 1,10-phenanthroline, PPh 3 = triphenylphosphine) has been used as a case study to check whether the experimental product concentrations can be reproduced by any of the most popular DFT approaches with high enough accuracy. To this end, the Gibbs energy profile for the pentafluoroethylation of benzoic acid chloride has been computed using 14 different DFT methods. These computed Gibbs energy profiles have been employed to build kinetic models predicting the final product concentration in solution. The best results are obtained with the D3-dispersion corrected B3LYP functional, which has been successfully used afterwards to model the reaction outcomes of other simple (R = o-Me, p-Me, p-Cl, p-F, etc.) benzoic acid chlorides. The product concentrations of more complex reaction networks in which more than one position of the substrate may be activated by the copper catalyst (R = o-Br and p-I) are also predicted appropriately.

  5. Organometallic chemical vapor deposition and characterization of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates

    Science.gov (United States)

    Xing, G. C.; Bachmann, Klaus J.; Posthill, J. B.; Timmons, M. L.

    1993-01-01

    The epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube organometallic chemical vapor deposition (OMCVD) is reported. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology was achieved for x less than or equal to 0.05. Transmission electron microscopy (TEM) micrographs of these alloys show specular epitaxy and the absence of microstructural defects indicating a defect density of less than 10(exp 7) cm(sup -2). Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10(exp 18) to 2 x 10(exp 17) cm(sup -3). Absorption measurements indicate that the band tailing in the absorption spectra of the alloy was shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material. Diodes fabricated from the n(+)-GaP/p-ZnSiP2-ZnGeP2-Ge heterostructure at x = 0.05 have a reverse break-down voltage of -10.8 V and a reverse saturation current density of approximately 6 x 10(exp -8) A/sq cm.

  6. Effects of organometallic chelates and inulin in diets for laying hens on Mn and Fe absorption coefficients and their content in egg and tissue

    Directory of Open Access Journals (Sweden)

    Cornescu Gabriela Maria

    2015-01-01

    Full Text Available The aim of this study was to evaluate effects of organic sources of manganese (Mn and iron (Fe and inulin in diets for laying hens on absorption of these minerals and their deposition in egg and tissue. The study was conducted on 90 Lohmann Brown laying hens in the period from 46-52 weeks of age, assigned to 3 groups with 30 hens/group and 3 hens/cage. The hens from the control group (C received a diet based on corn, rice bran and soybean meal with 16% of crude protein, as well as 60 mg Fe/kg and 71.9 mg Mn/kg of diet in form of inorganic salts. The formulation of the experimental diets (E1 and E2 differed from C group diet by the replacement of inorganic Fe and Mn salts by organometallic chelates of these elements, at a level of 25% lower than in the premix for group C. As source of inulin, group E1 diet also included 0.5% of dry Jerusalem artichoke, while group E2 diet included 0.5% of a product based on chicory root extract. At the end of the experiment, 6 hens from each group were slaughtered and blood serum and liver samples were collected and assayed for concentration of Fe and Mn. In the final week of the experiment, 18 eggs/group were collected for determination of Fe and Mn concentration in egg yolk. Concentration of measured blood serum parameters (haemoglobin, haematocrit, Fe and Mn in experimental (E groups were lower than in group C, but no significant differences (P>0.05 were registered. Absorption coefficients of Mn had higher values in E groups than in group C, with significant increase (P0.05 between groups were observed for Mn and Fe concentration in egg yolk.

  7. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    Science.gov (United States)

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Iron(III-salophene: an organometallic compound with selective cytotoxic and anti-proliferative properties in platinum-resistant ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Thilo S Lange

    2008-05-01

    Full Text Available In this pioneer study to the biological activity of organometallic compound Iron(III-salophene (Fe-SP the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovarian cancer cell lines were investigated.Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma cell lines at concentrations between 100 nM and 1 microM, while the viability of HeLa cells (epithelial cervix adenocarcinoma or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8 and intrinsic (Caspase-9 pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC(50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model.The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in vivo.

  9. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  10. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  11. Inorganic, coordination and organometallic compounds

    International Nuclear Information System (INIS)

    Jursik, F.

    1978-01-01

    Separation of cations and anions of inorganic, coordination and metalloorganic compounds by the method of liquid column chromatography is considered. Common scheme of multicomponent cation mixture is suggesteed. Separation conditions, adsrbents, eluents, pH value solution concenstration, elution rate are also suggested. Separation of rare earth elements Cs, Be, Cd, Te, Th, U, Mo, Re, V, Ru, Zr, In compounds is considered as an example of liquid column chromatography application. Data on column chromatography application are summarized in a table

  12. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes; Etude theorique de la structure et de la reactivite de complexes organometalliques de lanthanides et d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N

    2007-06-15

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  13. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Al-Shareef, Reem A.; Harb, Moussab; Saih, Youssef; Ould-Chikh, Samy; Roldan, Manuel A.; Anjum, Dalaver H.; Guyonnet, Elodie Bile; Candy, Jean-Pierre; Jan, Deng-Yang; Abdo, Suheil F.; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Basset, Jean-Marie

    2018-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  14. Synthesis and characterization of a liquid Eu precursor (EuCp{sup pm}{sub 2}) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Brandon, E-mail: bmitchell@wcupa.edu [Department of Physics, West Chester University, West Chester, PA, 19383 (United States); Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru [Kojundo Chemical Laboratory Co., Ltd., 5-1-28 Chiyoda, Sakado, Saitama, 350-0284 (Japan); Ofuchi, Hironori; Honma, Tetsuo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (Japan); Fujiwara, Yasufumi, E-mail: fujiwara@mat.eng.osaka-u.ac.jp [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2017-06-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu{sup 2+} to Eu{sup 3+} could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  15. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Alshareef, Reem Abdul aziz Hamed

    2018-04-25

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  16. Study of the role of the ligands coordinated at the surface of pure Wuestite nanoparticles prepared following a room temperature organometallic method: Evidence of ferromagnetic - in shell- and antiferromagnetic - in core magnetic behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Glaria, Arnaud [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Universite de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Kahn, Myrtil L., E-mail: myrtil.kahn@lcc-toulouse.fr [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Universite de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Chaudret, Bruno [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Universite de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Lecante, Pierre; Casanove, Marie-Jose [CNRS, CEMES (Centre d' Elaboration des Materiaux et d' Etudes Structurales), 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse Cedex (France); Barbara, Bernard, E-mail: bernard.barbara@grenoble.cnrs.fr [Institut Louis Neel, CNRS, 25 Av. des martyrs, BP 166, 38042 Grenoble Cedex 09 (France)

    2011-09-15

    Highlights: {yields} Pure Wuestite (Fe{sub 1-y}O) nanoparticles synthesized by organometallic chemistry. {yields} The influence of the surface ligands on the magnetic properties. {yields} Ferromagnetic core-antiferromagnetic shell magnetic nanoparticles. - Abstract: Wuestite particles (Fe{sub 1-y}O) are synthesized using controlled hydrolysis at room temperature of [Fe(N(SiMe{sub 3}){sub 2}){sub 2}] and stabilized by amine ligands. This method leads to 5 nm pure wuestite particles. This phase is clearly identified by transmission electron microscopy and wide angle X-ray scattering. Distortion in the crystallographic structure has been demonstrated. Particular attention is paid on the Fe(III) formation. Moreover, a combination of Moessbauer spectroscopy and SQuID measurements, revealed that the particles are composed of an antiferromagnetic core surrounded by a ferromagnetic shell. According to the Neel theory, the Fe(III) and Fe(II) ions present in the particles are ferromagnetically coupled and the proportion of Fe(III) ions varies from 3.9 to 7.1% as a function of the amine ligand.

  17. Synthesis and characterization of a liquid Eu precursor (EuCppm2) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Mitchell, Brandon; Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf; Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru; Ofuchi, Hironori; Honma, Tetsuo; Fujiwara, Yasufumi

    2017-01-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu 2+ to Eu 3+ could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  18. Expedient multi-step synthesis of organometallic complexes of Tc and Re in high effective specific activity. A new platform for the production of molecular imaging and therapy agents.

    Science.gov (United States)

    Causey, Patrick W; Besanger, Travis R; Schaffer, Paul; Valliant, John F

    2008-09-15

    For over thirty years, instant labeling kits which involve no purification steps have been the only method used to prepare (99m)Tc radiopharmaceuticals for clinical studies. To address the limitations imposed by instant kits, which is hindering the development of molecularly targeted Tc- and Re-based imaging and therapy agents, a new strategy for the rapid multistep synthesis and purification of organometallic technetium-based molecular probes and corresponding rhenium-based therapeutic analogues was developed. Beginning with MO4(-) (M = (99m)Tc, (186/188)Re), the carbonyl precursor [M(CO)3(H2O)3](+) was synthesized in 3 min in quantitative yield in a microwave reactor. A dipicolyl ligand was added and the chelate complex was formed in high yield in 2 min using microwave heating at 150 degrees C. This was followed by a new purification strategy to remove unlabeled ligand which entailed using a copper resin/C18 solid phase extraction protocol giving the desired product in greater than 78% decay corrected yield (dcy). Conversion to the corresponding succinimidyl active ester was achieved following a 5 min microwave irradiation at 120 degrees C and C18 solid phase extraction purification in 60% dcy. A series of amides were prepared subsequently by microwave heating at 120 degrees C for 5 min producing the desired targets in greater than 86% dcy. The reported method represents a move away from traditional instant kits toward more versatile platform synthesis and purification technologies that are better suited for producing modern molecular imaging and therapy agents.

  19. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking

    Science.gov (United States)

    Karami, Kazem; Rafiee, Mina; Lighvan, Zohreh Mehri; Zakariazadeh, Mostafa; Faal, Ali Yeganeh; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas

    2018-02-01

    [Pd{(C,N)sbnd C6H4CH (CH3)NH}(CUR)] (3) and [Pd2{(C,N)sbnd C6H4CH(CH3)NH2}2(μ-N3CS2)] (4) [cur = 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dion] novel organometallic complexes with biologically active ligands have been prepared and characterized via elemental analysis, multinuclear spectroscopic techniques (1H, and 13C NMR and IR) and their biological activities, including antitumoral activity and DNA-protein interactions have been investigated. Fluorescence spectroscopy used to study the interaction of the complexes with BSA have shown the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary structure of BSA in the presence of the complexes. In the meantime, spectroscopy and competitive titration have been applied to investigate the interaction of complexes with Warfarin and Ibuprofen site markers for sites I and II, respectively, with BSA. The results have suggested that the locations of complexes 3 and 4 are sites II and I, respectively. UV-Vis spectroscopy, emission titration and helix melting methods have been used to study the interaction of these complexes with CT-DNA, indicating that complexes are bound to CT-DNA by intercalation binding mode. In addition, good cytotoxic activity against MCF-7 (human breast cancer) and JURKAT (human leukemia) cell line has been shown by both complexes whereas low cytotoxicity was exerted on normal peripheral blood mononuclear cells.

  20. Thermodynamic analysis of volatile organometallic fission products

    International Nuclear Information System (INIS)

    Auxier II, J.D.; Hall, H.L.; Cressy, Derek

    2016-01-01

    The ability to perform rapid separations in a post nuclear weapon detonation scenario is an important aspect of national security. In the past, separations of fission products have been performed using solvent extraction, precipitation, etc. The focus of this work is to explore the feasibility of using thermochromatography, a technique largely employed in superheavy element chemistry, to expedite the separation of fission products from fuel components. A series of fission product complexes were synthesized and the thermodynamic parameters were measured using TGA/DSC methods. Once measured, these parameters were used to predict their retention times using thermochromatography. (author)

  1. Physical organic studies of organometallic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Robert G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1981-01-01

    The mechanisms of reactions of organotransition metal complexes have only begun to be understood in detail during the last ten years. The complementary interaction of techniques and concepts developed earlier in studies of organic reaction mechanisms, with those commonly used in inorganic chetnistry, has played a crucial role in helping to elucidate organor.1etall.ic reaction mechanisms. A few systems in which this interaction has proved especially fruitful are discussed in this article.

  2. Advances in organometallic and protein chemistry

    OpenAIRE

    Ryan, C. P.

    2010-01-01

    This thesis describes two areas of scientific investigation. The first contains a description of a study on the synthesis of biotinylated and fluoresceinylated bromomaleimide based reagents. Upon synthesis, the ability of these reagents to add reversibly to cysteine containing proteins is investigated by a series of LCMS experiments. A single point mutant (L111C) of the SH2 domain of the Grb2 adaptor protein, containing a single cysteine residue, is chosen as an ideal protein for study. Thus ...

  3. Highly Potent Antibacterial Organometallic Peptide Conjugates

    NARCIS (Netherlands)

    Albada, Bauke; Metzler-Nolte, Nils

    2017-01-01

    ConspectusResistance of pathogenic bacteria against currently marketed antibiotics is again increasing. To meet the societal need for effective cures, scientists are faced with the challenge of developing more potent but equally bacteria-specific drugs. Currently, most efforts are directed toward

  4. Organo-metallic structures for spintronic applications

    NARCIS (Netherlands)

    Tiba, M.V.

    2005-01-01

    The revolution in (semi)conducting organic materials has been one of the highlights in physics over the past decade. Molecular and polymeric thin films are projected to be used as active elements in a wide range of electronic and optoelectronic applications. Among the main driving forces for such

  5. Novel organometallic aromatic polyester based on ferrocene

    Institute of Scientific and Technical Information of China (English)

    Wei

    2010-01-01

    A novel polyester containing ferrocenyl was prepared by low-temperature interface polycondensation of 1,1'-ferrocenedi-carboxylic acid chloride with 4-(4-hydroxyphenyl)-2,3-phthalazin-l-one(DHPZ), which is a twisted non-coplanar heterocyclic bisphenol-like monomer. The newly generated polymer was evaluated based on characterization of its solubility, viscosity measurements, elemental analysis, FTIR spectroscopy, differential scanning calorimetric and thermogravimetric studies.

  6. Organometallic Half-Sandwich Iridium Anticancer Complexes

    Czech Academy of Sciences Publication Activity Database

    Liu, Z.; Habtemariam, A.; Pizarro, A.M.; Fletcher, S.A.; Kisová, Anna; Vrána, Oldřich; Salassa, L.; Bruijnincx, P.C.A.; Clarkson, G.J.; Brabec, Viktor; Sadler, P. J.

    2011-01-01

    Roč. 54, č. 8 (2011), 3011-3026 ISSN 0022-2623 R&D Projects: GA ČR(CZ) GPP303/11/P047; GA ČR(CZ) GAP301/10/0598 Keywords : RUTHENIUM(II) ARENE COMPLEXES * CANCER-CELL CYTOTOXICITY * DNA-BINDING PROPERTIES Subject RIV: BO - Biophysics Impact factor: 5.248, year: 2011

  7. Stereochemistry of organometallic and inorganic compounds

    CERN Document Server

    2012-01-01

    The authors of this fourth volume in the series have reviewed the making and breaking of chemical bonds in a sophisticated manner. In particular, new pressures brought about by environmental concerns, larger demands for the medical and pharmaceutical sectors and economics of the market place are forcing us into demanding greater stereochemical control and better product yields for chemical reactions capable of producing useful products. The chapters are written by leading experts in this area and give excellent overviews of the strengths and weaknesses of the various methodologies.In C

  8. Development of novel strategy for the synthesis of organometallic compounds usable as protein ligands: application to the human cyclophilin hCyp-18; Developpement de ligands de proteines par assemblage combinatoire autour d'un coeur de rhenium{sup V}: application a la cyclophiline hCyp-18

    Energy Technology Data Exchange (ETDEWEB)

    Clavaud, C

    2006-02-15

    This thesis describes a new strategy for the development of bioactive organometallic compounds, basing on the combinatorial assembly of sub-chemical libraries (A and B) independent but complementary and able to coordinate a metallic heart M to form A-M-B complex potential ligands of biomolecules. The coordination of metals, well adapted to the production of molecular variety is usually used in medicinal chemistry, in diagnostic and therapeutic nuclear medicine. Among the useful elements, the rhenium and the technetium are metals of choice for the development of the assembly strategy because of their chemical and radiochemical properties and of the structure analogy of their complexes. This strategy was validated in vitro. The protein chosen for this purpose was the cyclophilin hCyp-18. (N.C.)

  9. Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments

    KAUST Repository

    Hamzaoui, Bilel

    2016-06-14

    The aim of this thesis is to explore the chemistry of well-defined silica-supported group 4 and group 5 complexes that contain one or more multiply-bonded nitrogen atoms. Such species have been recognized as crucial intermediates in many catalytic reactions (e.g. hydroaminoalkylation, olefin hydrogenation, imine metathesis…). The first chapter provided a bibliographic overview of the preparation and the reactivity of group 4 and 5 complexes towards hydroaminoalkylation and imine metathesis catalysis. The second chapter deals with the isolation and the characterization of a series of well-defined group 4 ƞ2-imine complexes surfaces species. 2D solid-state NMR (1H–13C HETCOR, Multiple Quantum) experiments have revealed consistently a unique structural rearrangement, viz azametallacycle occurring on the immobilized metal-amido ligands. Hydrogenolysis of the sole Zr-C bond in such species gives selectively a silica-supported zirconium monohydride that can perform the catalytic hydrogenation of olefins. The third chapter examines the mechanistic studies of the intermolecular hydroaminoalkylation using SOMC to identify the key metallacyclic surface intermediates (silica-supported three-membred and five-membered). The catalyst was regenerated by protonolysis and afforded pure amine. Catalytic testing of a selection of amine compounds with variable electronic properties was carried out. The fourth chapter deals with the generation and the characterization of well-defined silica-supported zirconium-imido complexes. The resulting species effectively catalyzes imine/imine cross-metathesis and thus considered as the first heterogeneous catalysts active for imine metathesis reaction. The fifth chapter studies the reaction of SBA15.1100 ºC with dry aniline and derivatives leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. The efficiency of this methodology is strongly supported and unambiguously highlighted by strong solid state characterizations: FT-IR, 1D and 2D solid state NMR spectroscopy and even dynamic nuclear polarization enhanced 29Si and 15N, XRD and TEM… Importantly, a plethora of well-organized bifunctional catalysts with different electronic properties were successfully synthesied and tested in the Knoevenagel condensation.

  10. Organometallic complex chemistry of plutonium and selected lanthanides

    International Nuclear Information System (INIS)

    Seemann, U.

    1987-01-01

    This study deals with the metallo-organic chemistry of plutonium and also with that of some lanthanides. For plutonium, the conversion of Cs 2 PuCl 6 with four equivalents KCp is investigated. In the series Sm, Gd, Dy and Er, compounds of the type Cp 2 LnX and the base adducts with acetonitrile are analysed. The ligand X passes the series Cl, N 3 , NCS and NCO. Both, the thermal and the vibrational spectroscopic behaviour is investigated. In addition, the effect of a changed ligand sphere on the optical spectrum is discussed. The adduct-free compounds are described by a ternary reaction not yet known from literature. For the first time, force constant calculations are carried out on metallo-organic compounds of lanthanides. With the exception of Cp 2 LnCl compounds, all compouds are presented for the first time in the framework of this study. (orig.) [de

  11. Organometallic Vapor-Phase Epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1999-01-01

    This book describes the operation of a particular technique for the production of compound semiconductor materials. It describes how the technique works, how it can be used for the growth of particular materials and structures, and the application of these materials for specific devices. It contains not only a fundamental description of the operation of the technique but also contains lists of data useful for the everyday operation of OMVPE reactors. It also offers specific recipes that can be used to produce a wide range of specific materials, structures, and devices.Key Features* Updated wit

  12. Organometallic Reactions Development, Mechanistic Studies and Synthetic Applications

    DEFF Research Database (Denmark)

    Dam, Johan Hygum

    of the successful total synthesis of the cyclophane cavicularin, which contains a bent aromatic moiety. The pivotal step in the synthesis embodied a pyrone-alkyne Diels-Alder cycloaddition with CO2-extrusion to deliver the bent aromatic residue. The fourth project involved further development of the conditions...... previously discovered in the Madsen group for the direct coupling of alcohols and amines to amides under dihydrogen liberation. The goal was to synthesize isolatable ruthenium catalysts and two 18-electron complexes capable of performing the reaction in excellent yields were prepared and characterized...

  13. Synthesis and purification of some main group organometallic ...

    Indian Academy of Sciences (India)

    Unknown

    Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Abstract. Metal–organic ... of AsH3 in GaAs synthesis; ~ 4 h half life of SbH3 at room temperature) has been a driving force to develop new molecular ... pound). Thermal dissociation of these adducts at an appro-.

  14. Organometallic Methods for Forming and Cleaving Carbon-Carbon Bonds

    DEFF Research Database (Denmark)

    Christensen, Stig Holden

    with concomitant C-C bond formation was studied with a number of Grignard reagents. The transformation was performed in a sealed vial by heating to about 160 °C in an aluminum block or at 180 °C in a microwave oven. Good yields of the product alcohols were obtained with allyl- and benzylmagnesium halides when...

  15. Unique advantages of organometallic supporting ligands for uranium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Paula L. [Univ. of California, Los Angeles, CA (United States); Garcia, Evan [Univ. of California, Los Angeles, CA (United States)

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  16. Unique advantages of organometallic supporting ligands for uranium complexes

    International Nuclear Information System (INIS)

    Diaconescu, Paula L.; Garcia, Evan

    2014-01-01

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  17. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  18. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  19. Spin-Crossing in an Organometallic Pt-Benzene Complex

    Czech Academy of Sciences Publication Activity Database

    Granatier, Jaroslav; Dubecký, M.; Lazar, P.; Otyepka, M.; Hobza, Pavel

    2013-01-01

    Roč. 9, č. 3 (2013), s. 1461-1468 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA ČR(CZ) GAP208/10/1742 Program:GA Institutional support: RVO:61388963 Keywords : quantum Monte Carlo * 2nd-order perturbation-theory * density-functional theory * augmented-wave method Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  20. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.

    Science.gov (United States)

    Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji

    2018-07-04

    Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.

  1. A structurally characterized organometallic plutonium(IV) complex

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Christos; Walter, Olaf [European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Karlsruhe (Germany); Vogt, Jochen; Liebing, Phil; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Maron, Laurent [Laboratoire de Physique et Chimie des Nanoobjets (LPCNO), Universite de Toulouse/INSA/CNRS (UMR5215), Toulouse (France)

    2017-04-24

    The blood-red plutonocene complex Pu(1,3-COT'')(1,4-COT'') (4; COT''=η{sup 8}-bis(trimethylsilyl)cyclooctatetraenyl) has been synthesized by oxidation of the anionic sandwich complex Li[Pu(1,4-COT''){sub 2}] (3) with anhydrous cobalt(II) chloride. The first crystal structure determination of an organoplutonium(IV) complex revealed an asymmetric sandwich structure for 4 where one COT'' ring is 1,3-substituted while the other retains the original 1,4-substitution pattern. The electronic structure of 4 has been elucidated by a computational study, revealing a probable cause for the unexpected silyl group migration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Ferrocenyl helquats: unusual chiral organometallic nonlinear optical chromophores

    Czech Academy of Sciences Publication Activity Database

    Buckley, L. E. R.; Coe, B. J.; Rusanova, D.; Sánchez, S.; Jirásek, Michael; Joshi, Vishwas; Vávra, Jan; Khobragade, Dushant; Pospíšil, Lubomír; Ramešová, Šárka; Císařová, I.; Šaman, David; Pohl, Radek; Clays, K.; Van Steerteghem, N.; Brunschwig, B. S.; Teplý, Filip

    2017-01-01

    Roč. 46, č. 4 (2017), s. 1052-1064 ISSN 1477-9226 R&D Projects: GA ČR GA13-19213S; GA ČR(CZ) GA16-03085S Grant - others:AV ČR(CZ) M200551208 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : hyper-Rayleigh scattering * structure-property relationship * transition metal complexes Subject RIV: CC - Organic Chemistry; CC - Organic Chemistry (UFCH-W) OBOR OECD: Organic chemistry; Organic chemistry (UFCH-W) Impact factor: 4.029, year: 2016

  3. Study of the dosimetric properties using organometallic polymers in solution

    International Nuclear Information System (INIS)

    Fernandes, David Moreira

    2012-01-01

    This work aimed to study the dosimetric characteristics of the polymer of the polymer ''poly-[ 1, l-bis (ethynyl) -4,4-biphenyl (bis-tributylphosphine) Pt (11)]'' (Pt-DEBP) compared to radiation gamma. The Pt-DEBP polymer, containing ten monomer units, was then dissolved in organic solvents as chloroform and toluene. The samples were irradiated at four concentrations (0.0500, 0.0375, 0.0250, 0.0113 mg / mL) in duplicate, with radiation doses ranging from 1 to 90 Gy. The results were evaluated based on spectroscopic techniques such as optical absorption spectroscopy (UV -Vis), fluorescence (emission), time resolved fluorescence (FRT) and Fourier transform infrared (FTIR). For DEBP-Pt solutions in chloroform, there is a shift in the position of the main optical absorption band (πt - π*) to lower wavelength (blue-shift), allied to a decreasing absorption intensity with increasing radiation dose. In fluorescence spectroscopy, there was a shift to longer wavelengths (redshift) allied to an increasing emission intensity with increasing radiation dose. FRT experiments on irradiated samples dissolved in chloroform indicated the presence of a new emitter center. FTIR spectra show the incorporation of chlorine in the polymer chain, justifying the blue-shift observed in the absorption spectra and the new emission center. In addition, the behavior of linear results in the absorption and fluorescence studies was investigated based on the relationship between the wavelength of maximum absorption/emission and the radiation dose. For both cases, a linear behavior was observed in relation to the sample concentration. Repeatability and stability tests were also performed. For the samples dissolved in toluene, there was no significant shift of the spectrum of absorption or fluorescence for all doses. The results show that the Pt-DEBP polymer dissolved in chloroform can be used as a dosimeter for x-ray doses between 1 - 30 Gy based on the changes in absorption and/or emission spectra. Based on this results the polymer has been identified as a potential dosimeter for low radiation doses - less than 1 Gy (personal dosimetry). (author)

  4. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  5. Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments

    KAUST Repository

    Hamzaoui, Bilel

    2016-01-01

    leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. The efficiency

  6. Part I. An investigation into the mechanism of the samarium (II)-promoted Barbier reaction: Sequential radical cyclization/organometallic addition. Part II. Conjugate addition reactions of organosamarium reagents by in situ transmetalation to cuprates. Part III. Approximate absolute rate constants for the reaction of tributyltin radicals with aryl and vinyl halides. Part IV. An investigation into the synthetic utility of tri-n-butylgermanium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Totleben, M.J.

    1992-01-01

    An investigation of the mechanism of the samarium diiodide mediated Barbier reaction was conducted. Through a series of alkyl halide-carbonyl coupling and deuterium labelling experiments, evidence supportive of an organometallic addition mechanism was collected. Further probing led to an expansion of the utility of SmI[sub 2] in synthesis. The author has shown that radical cyclization of aryl and alkyl radicals to olefins, followed by reduction to primary and secondary organosamarium species is feasible. Organosamarium (III) reagents, produced by the reduction of alkyl and select aryl halides with 2 equiv of SmI[sub 2] in THF/HMPA, were treated with copper (I) salts and complexes to effect in situ transmetalation to cuprates. This allowed the 1,4-addition to [alpha],[beta]-unsaturated ketones. This new methodology allows for the sequential formation of carbon-carbon bonds through a combination of free radical and cuprate chemistry. Absolute rate constants for the abstraction of bromine atoms (k[sub Br]) by tri-n-butyltin radicals from a series of vinyl and aryl bromides have been determined. Atom abstraction was modestly enhanced by proximity of the halogen to a substituent in the following order: para < meta < ortho. Tri-n-butyl germanium hydride is known to be a poorer hydrogen atom donor than its tin analog. This feature makes it attractive for use in slow radical cyclizations where tin hydride would provide mainly for reduction. A brief study was executed to improve on the utility of the reagent as current conditions do not yield desired products in high amounts. Initial investigations examined the effect of initiator on reduction by germanium hydride, and subsequent experiments probed solvent effects. t-Butyl alcohol was determined to be superior to benzene or acetonitrile, giving consistently higher yields of reduction products.

  7. Iodine (I 2 ) as a Janus-Faced Ligand in Organometallics

    KAUST Repository

    Rogachev, Andrey Yu.

    2013-02-27

    The four known diiodine complexes have distinct geometries. These turn out, as we demonstrate by a bonding analysis, to be a direct consequence of diiodine acting as an acceptor in one set, the van Koten complexes, and as a donor in the Cotton, Dikarev, and Petrukhina extended structure. The primary analytical tool utilized is perturbation theory within the natural bond orbital (NBO) framework, supported by an energy decomposition analysis. The study begins by delineating the difference between canonical molecular orbitals (MOs) and NBOs. When iodine acts as an acceptor, bonding collinearly in the axial position of a square-planar d8 Pt(II) complex, the dominant contributor to the bonding is a σ*(I-I) orbital as the acceptor orbital, while a mainly dz 2 orbital centered on the metal center is the corresponding donor. That this kind of bonding is characteristic of axial bonding in d8 complexes was supported by model calculations with incoming donors and acceptors, NH3 and BH3. In contrast, the distinct "bent" coordination of the I2 bound at the axial position of the [Rh2(O2CCF3)4] paddle-wheel complex is associated with a dominant donation from a p-type lone pair localized on one of two iodine atoms, the σ*(Rh-Rh) antibonding orbital of the metal complex acting as an acceptor orbital. We check the donor capabilities of I2 in some hypothetical complexes with Lewis acids, H+, AlCl3, B(CF3)3. Also, we look at the weakly bound donor-acceptor couple [(I2)·(I2)]. We explore the reasons for the paucity of I2 complexes and propose candidates for synthesis. © 2013 American Chemical Society.

  8. Incorporation of radiohalogens via versatile organometallic reactions: applications in radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P.C.; Goodman, M.M.; Knapp, F.F. Jr.

    1985-01-01

    Factors that must be considered for the design of radiohalogenated radio-pharmaceuticals include the stability and availability of the substrate, the physical half-life of the radiohalogen and the in vivo stability of the radiolabel. Vinyl and phenyl radiohalogen bonds show more in vivo stability than the alkyl radiohalogen bonds. Consequently, a variety of methods suitable for the synthesis of tissue specific radiopharmaceuticals bearing a vinyl or phenyl radiohalogen have been developed involving the synthesis and halogenation of metallovinyl and phenyl intermediates. The halogens and metallation reactions include iodine and bromine and alanation, boronation, mercuration, stannylation, and thallation, respectively. 19 refs., 1 fig., 1 tab.

  9. The processing of CdSe/Polymer nanocomposites via solution organometallic chemistry

    International Nuclear Information System (INIS)

    Khanna, P.K.; Singh, Narendra; Charan, Shobhit; Lonkar, Sunil P.; Reddy, A. Satyanarayana; Patil, Yogesh; Viswanath, A. Kasi

    2006-01-01

    This paper presents in situ preparation of CdSe nanoparticles using poly(vinyl alcohol) [PVA] and polymethylmethacrylate [PMMA] as matrices by use of organoselenium compound. Reaction of cadmium metal salt and 1,2,3-selenadiazole (the source of selenium) enabled formation of CdSe nanoparticles. Use of selenadiazole in the present work with polymer is first of its kind. The radical polymerization of methycrylate monomer with benzoyl peroxide followed by reaction of respective reagents have been successfully employed to synthesize CdSe/PMMA nanocomposite. Similarly, reaction between selenadiazole and cadmium metal salt in aq. PVA yielded polymer coated or mixed CdSe nanoparticles. The UV-vis absorption spectra showed blue shift of about 200 nm with respect to band-gap energy of bulk CdSe, due to size quantization effect in CdSe particles. An emission band was observed at 530 nm in photoluminescence spectrum (PL) of CdSe/PMMA. IR spectra indicated shifts in the values of the polymer functional group due to nanoparticles. X-ray measurement of CdSe/Polymer nano-composites showed broad pattern for cubic CdSe and particle size of CdSe was estimated to be <10 nm. TGA revealed gradual weight loss between 200 and 400 deg. C indicating increased thermal stability of the polymer

  10. Mechanistic studies on reactivities of organometallic macrocyclic complexes of chromium and cobalt

    International Nuclear Information System (INIS)

    Shi, Shu.

    1990-01-01

    Reaction pathways leading to the formation and cleavage of a transition metal-carbon bond at various oxidation states of the metal occupy a central position in understanding many enzymatic reactions and designing catalysts. The report is divided into six parts that (1) focus on the homolysis vs heterolysis of a C-Cr(III) bond, (2) describes a unique chain reaction and a S E 2 reaction I 2 and RCrL 2+ , (3) concerns the oxidation of organochromium(III) complexes by dihalide and pseudo-dihalide radical anions generated by pulse radiolysis, (4) concentrates on the oxidation mechanism of RCr(H 2 O) 2+ and the fate of RCr(H 2 O) 3+ as well as the corresponding reduction potentials, (5) extends study of organocobalt complexes with attention to reduction induced cleavages of a transition metal-carbon bond, and (6) describes the crystallization of [(CH 3 ) 4 N][Co(dmgBF 2 ) 2 py] and reports its molecular structure as determined by x-ray diffraction. 182 refs., 25 figs., 16 tabs. (BM)

  11. Magnetic and orbital instabilities in a lattice of SU(4) organometallic Kondo complexes

    International Nuclear Information System (INIS)

    Lobos, A M; Aligia, A A

    2014-01-01

    Motivated by experiments of scanning tunneling spectroscopy (STS) on self- assembled networks of iron(II)-phtalocyanine (FePc) molecules deposited on a clean Au(111) surface [FePc/Au(111)] and its explanation in terms of the extension of the impurity SU(4) Anderson model to the lattice in the Kondo regime, we study the competition between the Kondo effect and the magneto-orbital interactions occurring in FePc/Au(111). We explore the quantum phases and critical points of the model using a large-N slave-boson method in the mean-field approximation. The SU(4) symmetry in the impurity appears as a combination of the usual spin and an orbital pseudospin arising from the degenerate 3d xz and 3d yz orbitals in the Fe atom. In the case of the lattice, our results show that the additional orbital degrees of freedom crucially modify the low-temperature phase diagram, and induce new types of orbital interactions among the Fe atoms, which can potentially stabilize exotic quantum phases with magnetic and orbital order. The dominant instability corresponds to spin ferromagnetic and orbital antiferromagnetic order

  12. A molecular hybrid polyoxometalate-organometallic moieties and its relevance to supercapacitors in physiological electrolytes

    Science.gov (United States)

    Chinnathambi, Selvaraj; Ammam, Malika

    2015-06-01

    Supercapacitors operating in physiological electrolytes are of great relevance for both their environmentally friendly aspect as well as the possibility to be employed for powering implantable microelectronic devices using directly biological fluids as electrolytes. Polyoxometalate (POMs) have been proven to be useful for supercapacitors in acidic media. However, in neutral pH, POMs are usually not stable. One relevant alternative is to stabilize POMs by pairing them with organic moieties to form hybrids. In this study, we combined K6P2Mo18O62·12H2O (P2Mo18) with Ru(bpy)3Cl2.6H2O (Ru(bpy)). The synthesis was carried out with and without the mild reducing agent KI. The hybrids were characterized by CHN analysis, TEM, FT-IR, XRD, TGA and cyclic voltammetry. CHN elemental analysis revealed that one mole [P2Mo18O62]6- is paired with 3 mol [Ru(bpy)3]2+ to form [Ru(bpy)3]3PMo18O62·nH2O. With KI present, [P2Mo18O62]6- is linked to 3.33 mol to yield [Ru(bpy)3]3.33PMo18O62·mH2O. Excess of Ru(bpy) in [Ru(bpy)3]3.33PMo18O62·mH2O was further confirmed by TEM, FT-IR, XRD, TGA and cyclic voltammetry. In turn, hybrid composition is found to strongly influence the supercapacitor behavior. The hybrid rich in Ru(bpy) is found to perform better for supercapacitors in physiological electrolytes. 125 F g-1 and 68 F g-1 are the capacitance values obtained with [Ru(bpy)3]3.33PMo18O62·mH2O and [Ru(bpy)3]3PMo18O62·nH2O, respectively. In terms of specific energy densities, 3.5 Wh kg-1 and 2 Wh kg-1 were obtained for both hybrid simultaneously. The difference in supercapacitor performance between both hybrids is also noticed in impedance spectroscopy which showed that [Ru(bpy)3]3.33PMo18O62·mH2O has lower electron transfer resistance if compared to [Ru(bpy)3]3PMo18O62·nH2O. Finally, if compared of parent K6P2Mo18O62·12H2O, the stability of both hybrids is found to be highly improved.

  13. Using the Cambridge structure database of organic and organometalic compounds in structure biology

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2010-01-01

    Roč. 17, 1a (2010), b24-b26 ISSN 1211-5894. [Discussions in Structural Molecular Biology /8./. Nové Hrady, 18.03.2010-20.03.2010] R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic chemistry * Cambridge Structure Data base * molecular structure Subject RIV: CD - Macromolecular Chemistry http://xray.cz/ms/bul2010-1a/friday2.pdf

  14. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance

    Czech Academy of Sciences Publication Activity Database

    De Wolf, S.; Holovský, Jakub; Moon, S.J.; Löper, P.; Niesen, B.; Ledinský, Martin; Haug, F.J.; Yum, J. H.; Ballif, C.

    2014-01-01

    Roč. 5, č. 6 (2014), s. 1035-1039 ISSN 1948-7185 Institutional support: RVO:68378271 Keywords : energy conversion and storage * energy and charge transport * perovskite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.458, year: 2014

  15. Physico-Chemical and In-vitro Microbial Studies of Newly Synthesis Organometallic Complexes

    Directory of Open Access Journals (Sweden)

    Isam Hussain Al-Karkhi

    2014-05-01

    Full Text Available Drugs normally synthesized to use as medication to treat diseases like cancer and microbial infections, these synthesized drugs were interested more than naturally-derived drugs which have been shows low activity or not as efficient against diseases. A new ligand 3-methylbenzyl (2Z-2-[1-(pyridin-4-ylethylidene]hydrazine carbodithioate (PE3MBC and its Cd(II, Cu(II, Co(II and Zn(II metal complexes. The new ligand and metal complexes were characterized via various physico-chemical and spectroscopic techniques. Cd(II complex show more activity against microbes and against cancer cell line MCF-7, while other complexes does not shows activity like cadmium complex, all the complexes does not shows any activity against MDAMB-231 cell line. The fatal of the cancer and the microbes cell was due to inhibition of DNA synthesis which was probably due to chelating with metals complexes, or could be referred to lipophilicity, presence of hydrophobic moiety in the complex molecule, also could be due to steric effects and electronic effects.

  16. Work function reduction by a redox-active organometallic sandwich complex

    KAUST Repository

    Hyla, Alexander; Winget, Paul; Li, Hong; Risko, Chad; Bredas, Jean-Luc

    2016-01-01

    We have investigated, at the density functional theory level, the geometric and electronic structures of the pentamethyliridocene (IrCpCp*) monomer and dimer adsorbed on the Au(111) and indium tin oxide (ITO) (222) surfaces, as well as their impact on the work functions. Our calculations show that the adsorption of a monomer lowers the work function of ITO(222) by 1.2 eV and Au(111) by 1.2–1.3 eV. The main origin for this reduction is the formation of an interface dipole between the monomer and the substrate via charge transfer. Dimer adsorption as well as adsorption of possible byproducts formed from dimer bond-cleavage in solution, show a lesser ability to lower the work function. © 2016 Elsevier B.V.

  17. A Self-Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity

    KAUST Repository

    Leung, Siu; Ho, Kang-Ting; Kung, Po-Kai; Hsiao, Vincent K. S.; Alshareef, Husam N.; Wang, Zhong Lin; He, Jr-Hau

    2018-01-01

    Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH3 NH3 PBI3

  18. WATER-SOLUBLE ORGANOMETALLIC CATALYSTS FROM CARBOHYDRATES. 1. DIARYLPHOSPHINITE-RH COMPLEXES. (R826120)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Mechanistic studies on reactivities of organometallic macrocyclic complexes of chromium and cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Shu.

    1990-12-10

    Reaction pathways leading to the formation and cleavage of a transition metal-carbon bond at various oxidation states of the metal occupy a central position in understanding many enzymatic reactions and designing catalysts. The report is divided into six parts that (1) focus on the homolysis vs heterolysis of a C-Cr(III) bond, (2) describes a unique chain reaction and a S{sub E}2 reaction I{sub 2} and RCrL{sup 2+}, (3) concerns the oxidation of organochromium(III) complexes by dihalide and pseudo-dihalide radical anions generated by pulse radiolysis, (4) concentrates on the oxidation mechanism of RCr(H{sub 2}O){sup 2+} and the fate of RCr(H{sub 2}O){sup 3+} as well as the corresponding reduction potentials, (5) extends study of organocobalt complexes with attention to reduction induced cleavages of a transition metal-carbon bond, and (6) describes the crystallization of ((CH{sub 3}){sub 4}N)(Co(dmgBF{sub 2}){sub 2}py) and reports its molecular structure as determined by x-ray diffraction. 182 refs., 25 figs., 16 tabs. (BM)

  20. Kinetics of evaporation of barium THD precursors used for organometallic chemical vapor deposition (OMCVD) thin films

    Science.gov (United States)

    Burtman, V.; Schieber, M.; Yitzchaik, S.; Yaroslavsky, Y.

    1997-04-01

    Various methods have been used to synthesize Ba(THD) 2 and its molecular structure has been studied using nuclear magnetic resonance. Compared with Raman and infrared spectroscopy it was found that NMR is very useful to determine quantitatively the decomposition through aging of Ba(THD) 2. The transport kinetics of Ba(THD) 2 has been studied under experimental conditions of a OMCVD reactor. It has been found that the freshly prepared Ba(THD) 2 by the reaction of Ba metal with THD ligand in anhydrous conditions with subsequent crystallization from methanol transported quantitatively without decomposition. A simple model shows that the transport kinetics corresponds to a diffusion controlled process.

  1. New Therapeutic Agent against Arterial Thrombosis: An Iridium(III-Derived Organometallic Compound

    Directory of Open Access Journals (Sweden)

    Chih-Wei Hsia

    2017-12-01

    Full Text Available Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt compounds have been used for treating cancer. Hence, replacing Pt with iridium (Ir is considered a potential alternative. We recently developed an Ir(III-derived complex, [Ir(Cp*1-(2-pyridyl-3-(2-hydroxyphenylimidazo[1,5-a]pyridine Cl]BF4 (Ir-11, which exhibited strong antiplatelet activity; hence, we assessed the therapeutic potential of Ir-11 against arterial thrombosis. In collagen-activated platelets, Ir-11 inhibited platelet aggregation, adenosine triphosphate (ATP release, intracellular Ca2+ mobilization, P-selectin expression, and OH· formation, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2, protein kinase C (PKC, mitogen-activated protein kinases (MAPKs, and Akt. Neither the adenylate cyclase inhibitor nor the guanylate cyclase inhibitor reversed the Ir-11-mediated antiplatelet effects. In experimental mice, Ir-11 prolonged the bleeding time and reduced mortality associated with acute pulmonary thromboembolism. Ir-11 plays a crucial role by inhibiting platelet activation through the inhibition of the PLCγ2–PKC cascade, and the subsequent suppression of Akt and MAPK activation, ultimately inhibiting platelet aggregation. Therefore, Ir-11 can be considered a new therapeutic agent against either arterial thrombosis or the bidirectional cross talk between platelets and tumor cells.

  2. A Self-Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity

    KAUST Repository

    Leung, Siu

    2018-01-10

    Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH3 NH3 PBI3 ) perovskite is demonstrated. Such a self-powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high-quality CH3 NH3 PBI3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 1013 Jones. In the self-powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW-1 cm-2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications.

  3. ZnO THIN FILMS PREPARED BY SPRAY-PYROLYSIS TECHNIQUE FROM ORGANO-METALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    Martin Mikulics

    2012-07-01

    Full Text Available Presented experiments utilize methanolic solution of zinc acetyl-acetonate as a precursor and sapphire (001 as a substrate for deposition of thin films of ZnO. The X-ray diffraction analysis revealed polycrystalline character of prepared films with preferential growth orientation along c-axis. The roughness of prepared films was assessed by AFM microscopy and represented by roughness root mean square (RMS value in range of 1.8 - 433 nm. The surface morphology was mapped by scanning electron microscopy showing periodical structure with several local defects. The optical transmittance spectrum of ZnO films was measured in wavelength range of 200-1000 nm. Prepared films are transparent in visible range with sharp ultra-violet cut-off at approximately 370 nm. Raman spectroscopy confirmed wurtzite structure and the presence of compressive stress within its structure as well as the occurrence of oxygen vacancies. The four-point Van der Pauw method was used to study the transport prosperities. The resistivity of presented ZnO films was found 8 × 10–2 Ω cm with carrier density of 1.3 × 1018 cm–3 and electron mobility of 40 cm2 V–1 s–1.

  4. Gordon Research Conference in Organometallic Chemistry, held August 16-20, 1982 Andover, New Hampshire.

    Science.gov (United States)

    1983-03-01

    A. Gentile, Gerald B. Ansell , Michelle A. Modrik ad "S-usan Zentz, Exxon Research and Engineering Co., "Bimetallic Titanium/Molybdenum Complexes...Fluxional M. Moskovits molecules with Multiple Bonding" University of Toronto "Clusters in Catalysis" Basic Steps as Revealed R. Adam by Triosmium...Andover, N.H. August 16-20, 1982 REGISTRATION LIST Adams , Richard D. Farm 1 Bleeke, John John Yale University Washington University 225 Prospect St

  5. DNA interactions of monofuntional organometallic ruthenium(II) antitumor complexes in cell-free media

    Czech Academy of Sciences Publication Activity Database

    Nováková, Olga; Chen, H.; Vrána, Oldřich; Rodger, A.; Sadler, P. J.; Brabec, Viktor

    2003-01-01

    Roč. 42, č. 39 (2003), s. 11544-11554 ISSN 0006-2960 R&D Projects: GA ČR GA305/02/1552; GA ČR GA305/01/0418; GA AV ČR IAA5004101; GA MŠk OC D20.002; GA MŠk OC D20.005 Institutional research plan: CEZ:AV0Z5004920 Keywords : double-helical DNA * interstrand cross-links * biophysical analysis Subject RIV: BO - Biophysics Impact factor: 3.922, year: 2003

  6. A Self-Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity.

    Science.gov (United States)

    Leung, Siu-Fung; Ho, Kang-Ting; Kung, Po-Kai; Hsiao, Vincent K S; Alshareef, Husam N; Wang, Zhong Lin; He, Jr-Hau

    2018-02-01

    Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH 3 NH 3 PBI 3 ) perovskite is demonstrated. Such a self-powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high-quality CH 3 NH 3 PBI 3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 10 13 Jones. In the self-powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW -1 cm -2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Interplay between Organic-Organometallic Electrophores within Bis(cyclopentadienyl)Molybdenum Dithiolene Tetrathiafulvalene Complexes.

    Science.gov (United States)

    Bellec, Nathalie; Vacher, Antoine; Barrière, Frédéric; Xu, Zijun; Roisnel, Thierry; Lorcy, Dominique

    2015-05-18

    Tetrathiafulvalenes (TTF) and bis(cyclopentadienyl) molybdenum dithiolene complexes, Cp2Mo(dithiolene) complexes, are known separately to act as good electron donor molecules. For an investigation of the interaction between both electrophores, two types of complexes were synthesized and characterized. The first type has one Cp2Mo fragment coordinated to one TTF dithiolate ligand, and the second type has one TTF bis(dithiolate) bridging two Cp2Mo fragments. Comparisons of the electrochemical properties of these complexes with those of models of each separate electrophore provide evidence for their mutual influence. All of these complexes act as very good electron donors with a first oxidation potential 430 mV lower than the tetrakis(methylthio)TTF. DFT calculations suggest that the HOMO of the neutral complex and the SOMO of the cation are delocalized across the whole TTF dithiolate ligand. The X-ray crystal structure analyses of the neutral and the mono-oxidized Cp2Mo(dithiolene)(bismethylthio)TTF complexes are consistent with the delocalized assignment of the highest occupied frontier molecular orbitals. UV-vis-NIR spectroelectrochemical investigations confirm this electronic delocalization within the TTF dithiolate ligand.

  8. The influence of synthesis conditions on the stability of tris(8-hydroxyquinoline) aluminum organometallic luminophore

    Science.gov (United States)

    Akkuzina, A. A.; Khomyakov, A. V.; Avetisov, R. I.; Avetissov, I. Ch.

    2017-04-01

    Single-phase crystalline luminophore tris(8-hydroxyquinoline) aluminum (Alq3) has been synthesized at T = 483 K and a partial pressure of 8-hydroxyquinoline vapor from 0.15 to 6.12 Torr. The influence of P 8-Hq on the luminescent characteristics of crystalline Alq3 samples has been studied. It has been found that an increase in P 8-Hq led to a shift of the photoluminescence-band maximum and to a change in the photoluminescence-decay kinetics. It has been shown that Alq3 synthesized at T = 483 K and P 8-Hq = 6.12 Torr had the most stable spectral-luminescent characteristics. The results obtained are discussed taking into account defect formation in crystalline Alq3.

  9. Atom economy, molecular engeneering and biphasic organometallic catalysis: molecular concepts for the generation of "green" technologies

    OpenAIRE

    Dupont, Jairton

    2000-01-01

    For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry. The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process. In this highlight the concepts of atom ec...

  10. Mechanism of Doping Gallium Arsenide with Carbon Tetrachloride During Organometallic Vapor-Phase Epitaxy

    National Research Council Canada - National Science Library

    Warddrip, Michael

    1997-01-01

    .... In addition, the reaction of CC14 with the GaAs(001) surface was monitored in ultrahigh vacuum using infrared spectroscopy, temperature programmed desorption, and scanning tunneling microscopy...

  11. Synthesis and characterization of tantalum organometallic complexes. Catalytic activity for olefins

    International Nuclear Information System (INIS)

    Baley, A.S.

    1990-11-01

    Synthesis of monoaryloxy (alcoxy) neopentyl compounds is investigated. The tantalum-oxygen bond is formed by two parallel ways from TaCl 5 or TaR 2 Cl 3 with R = neopentyl and the tantalum carbon bond from a neopentyl derivative of the main series. Some compounds were isolated and characterized by NMR, elemental analysis and sometimes X-ray structure, some others are characterized in solution only. Catalytic effect is tested by ethylene dimerization and olefin polymerization. Reactivity of tantalum aryloxy neopentyl in respect to complexing and chelating ligands is studied for preparation of neopentylidene complexes

  12. New Gold(I) Organometallic Compounds with Biological Activity in Cancer Cells

    NARCIS (Netherlands)

    Bertrand, Benoit; de Almeida, Andreia; van der Burgt, Evelien P. M.; Picquet, Michel; Citta, Anna; Folda, Alessandra; Rigobello, Maria Pia; Le Gendre, Pierre; Bodio, Ewen; Casini, Angela

    N-Heterocyclic carbene gold(I) complexes bearing a fluorescent coumarin ligand were synthesized and characterized by various techniques. The compounds were examined for their antiproliferative effects in normal and tumor cells in vitro; they demonstrated moderate activity and a certain degree of

  13. Combining Organometallic Catalysis and Organocatalysis for the Synthesis of Heterocyclic Scaffolds

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke

    The main work presented in this thesis describes the development of efficient and novel methodologies for the synthesis of pharmaceutically interesting indolecontaining alkaloids, i.e., the 1,2,3,4-tetrahydro-β-carboline and the 1,2,3,4-tetrahydrocarbazole scaffolds. The synthesis of 1...... to the nitrogen in the allylic system proved to be highly important for the enantioselectivity. Enantiomeric excesses up to 57% was obtained. The synthesis of 1,2,3,4-tetrahydrocarbazole relied on novel Brønsted acidcatalyzed Friedel-Crafts-type reactions. Three different kinds of 1,2,3,4-tetrahydrocarbazole...

  14. Catalysts prepared by interaction of transition metal organometallic compounds with the surface of supporters

    International Nuclear Information System (INIS)

    Ryndin, Yu.A.; Kuznetsov, B.N.; Moroz, Eh.M.; Tripol'skij, A.A.; Ermakov, Yu.I.

    1977-01-01

    The phase composition and dispersion of the catalyst (W + Pt)/SiO 2 , subjected to oxidation and reduction at an elevated temperature was investigated by roentgenographic methods (radial distribution of atoms and broadening of X-ray lines). The X-ray data are compared with the results of chemisorption measurements of platinum dispersion in the specimens and their activity in reactions of benzene hydration and ethane hydrogenolysis. It has been established that catalysts reduced at 600 deg C and not subjected to oxidation, as well as catalysts oxidized at 200 deg C and then reduced at 600 deg C are characterized by a high platinum dispersion. The dispersion catalysts are noted for their activity in the reaction of benzene hydration and ethane hydrogenolysis. On the other hand, the activity of catalysts oxidized and reduced in rigid conditions (600 deg C, air) is much lower and is close to the activity of the coarsely dispersed PtSiO 2 catalyst

  15. Development of new organometallic species for the labelling of radiotracers with short half-lives radioisotopes

    International Nuclear Information System (INIS)

    Huet-Dales, A.

    2003-11-01

    The reactivity of clean organotins have been studied in the Stille coupling reaction in fast conditions, witch can be used with short half-life radioisotope. In a first part, development of the reaction conditions have been studied for the transfer of a methyl group by the Stille coupling reaction, via the synthesis of the correspond mono-organotin. The reaction time was optimized onto model compounds in 12-carbon and 11-carbon chemistry. In a second part, this methodology was applied to the synthesis of NK3 receptors radioligands, in 12-carbon and 11-carbon chemistry. Biological studies showed that these ligands have a good affinity with NK3 receptors, and are potential positron emission tomography tracers. (author)

  16. Somatostatin receptor-targeted organometallic iridium(III) complexes as novel theranostic agents

    Czech Academy of Sciences Publication Activity Database

    Novohradský, Vojtěch; Zamora, A.; Gandioso, A.; Brabec, Viktor; Ruiz, J.; Marchan, V.

    2017-01-01

    Roč. 53, č. 40 (2017), s. 5523-5526 ISSN 1359-7345 Institutional support: RVO:68081707 Keywords : anticancer activity * peptide- hormones * cancer-therapy Subject RIV: BO - Biophysics OBOR OECD: Biochemistry and molecular biology Impact factor: 6.319, year: 2016

  17. Immobilised Homogeneous Catalysts for Sequential Fine Chemical Synthesis : Functionalised Organometallics for Nanotechnology

    NARCIS (Netherlands)

    McDonald, A.R.

    2008-01-01

    The work described in this thesis has demonstrated the application of heterogenised homogeneous catalysts. We have shown that by coupling a homogeneous catalyst to a heterogeneous support we could combine the benefits of two major fields of catalysis: retain the high selectivity of homogeneous

  18. Observation and Characterization of Fragile Organometallic Molecules Encapsulated in Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2014-01-01

    Full Text Available Thermally fragile tris(η5-cyclopentadienylerbium (ErCp3 molecules are encapsulated in single-wall carbon nanotubes (SWCNTs with high yield. We realized the encapsulation of ErCp3 with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3 molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+ is confirmed by X-ray absorption spectrum.

  19. Accessing 2-substituted piperidine iminosugars by organometallic addition/intramolecular reductive amination: aldehyde vs. nitrone route.

    Science.gov (United States)

    Mirabella, S; Fibbi, G; Matassini, C; Faggi, C; Goti, A; Cardona, F

    2017-11-07

    A dual synthetic strategy to afford 2-substituted trihydroxypiperidines is disclosed. The procedure involved Grignard addition either to a carbohydrate-derived aldehyde or to a nitrone derived thereof, and took advantage of an efficient ring-closure reductive amination strategy in the final cyclization step. An opposite diastereofacial preference was demonstrated in the nucleophilic attack to the two electrophiles, which would finally produce the same piperidine diastereoisomer as the major product. However, use of a suitable Lewis acid in the Grignard addition to the nitrone allowed reversing the selectivity, giving access to 2-substituted piperidines with the opposite configuration at C-2.

  20. Printable organometallic perovskite enables large-area, low-dose X-ray imaging

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-01

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  1. Organometallic chemistry of the f-elements: toward new development: cyanide ligand of f-elements

    International Nuclear Information System (INIS)

    Herve, Alexandre

    2014-01-01

    The cyanide ligand is one of the most widely used ligands in coordination chemistry of d-transition metals. The low number of cyanide complexes of lanthanides and actinides incited us to develop this field for reactivity and theoretical aspects, and also for their potentially interesting physicochemical properties. In this Ph.D., we investigated the reactivity of [An(Cot) 2 ] (An = Th, U ; Cot = C 8 H 8 2- ) and [M f (N*) 3 ] q+ (q = 0, 1; M f = Ce, U ; N* = -N(SiMe 3 ) 2 ) precursors toward the cyanide ion. The first chapter is dedicated to the synthesis and characterization of trivalent f-elements cyanide complexes [M f (N*) 3 (CN)][M], [M f (N*) 3 (CN) 2 ][M] 2 et [M f (N*) 2 (CN) 3 ][M] 2 and the cyanido-bridged binuclear compounds [{M f (N*) 3 } 2 (μ-CN)][M] (M = NR 4 , K(18-C-6)). Crystals of the bis(cyanido) uranium and cerium complexes are not isostructural since the data revealed distinct coordination modes of the CN group, through the C or N atom to the U 3+ or Ce 3+ metal center, respectively. In chapter 2, the novel silyl-amide uranium(IV) precursor [U(N*) 3 ][BPh 4 ] has been isolated, and proved to be useful for the synthesis of the cationic species [{U(N*) 3 } 2 (μ-CN)][BPh 4 ] and the neutral monocyanide [M f (N*) 3 (CN)] and anionic bis(cyanide) [M f (N*) 3 (CN) 2 ][M] derivatives. Here again, the X-ray data reveal the uncommon N coordination mode of the CN group to the U(IV) center. This global differentiation has been analyzed using density functional theory calculations. The observed preferential coordination of the cyanide ion in Ce(III)-NC, U(III)-CN and U(IV)-NC is corroborated by energetic considerations and by the comparison of DFT optimized geometries with the true crystal structures. Finally, the recent discovery of the first bent 'uranocene' species, eg [U(Cot) 2 (CN)] - , led us to compare the reactivity of the actinocenes [An(Cot) 2 ] (Th, U) in order to understand the effect of the metal electron configuration (respectively 5f 2 for U 4+ and 5f 0 for Th 4+ ). [Th(Cot) 2 ] reacted with the cyanide, azide and hydride anion and distinct products, eg anionic, di-anionic and binuclear complexes [Th(Cot) 2 (X)][M] (X = CN - , N 3 - et M = Na(18-C-6), NBu 4 ), [Th(Cot) 2 (CN) 2 ][NBu 4 ] 2 and [{Th(Cot) 2 } 2 (μ-X)][M] (X = CN - , H - et M = Na(18-C-6) et NBu 4 ] were isolated depending on the nature of counter ion (Na + vs. R 4 N + ). This study which is presented in chapter 3 clearly illustrates the distinct chemical behavior of thorocene versus uranocene. All these mononuclear mono and poly-cyanides compounds of the f-elements might serve as valuable building blocks for the synthesis of novel clusters and coordination polymers with interesting magnetism and/or luminescence properties. (author) [fr

  2. Organometallic copper I, II or III species in an intramolecular dechlorination reaction

    KAUST Repository

    Poater, Albert; Cavallo, Luigi

    2013-01-01

    these species are less stable than other isomers. Thus this study constitutes an additional piece towards the full understanding of a class of reaction of biological relevance. Further, the lack of high energy barriers and deep energy wells along the reaction

  3. Effect of Halogen Substitution on the Absorption and Emission Profile of Organometallic Perovskites

    Directory of Open Access Journals (Sweden)

    Jin Kiong Ling

    2017-01-01

    Full Text Available Comparative study on the optical properties of methylamide lead mono- and hybrid-halide perovskite samples, from the perspective of its crystal structure, which were synthesized in ambient condition (temperature ∼26.6 °C, humidity ∼65%, a step toward industrial commercialization, were carried out. In this study, in-depth information on both crystal structure and optical properties of the methylamide lead halide perovskite was the main focus, including study of relationship between these two factors via real world experimentation. Increment in lattice stain can be observed when the bromide or chloride ions were substituted, resulting in higher lattice strain in hybrid-halide samples. The lattice strain provides kinetic energy to the electrons, facilitating the promotion of exciton which increased the number of photon emitted during recombination. However, increasing lattice strain results in the widening of the energy gap of the samples by shifting the energy level to a higher or lower level. The results provide some insight on the relationship between crystal structure and optical properties of perovskite which paces a route for future cross-factor experimentation under uncontrolled ambient environment, in an effort to unravel more underlying working mechanism of perovskite solar cells.

  4. DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media

    Czech Academy of Sciences Publication Activity Database

    Kostrhunová, Hana; Florian, Jakub; Nováková, Olga; Peacock, A.F.A.; Sadler, P.J.; Brabec, Viktor

    2008-01-01

    Roč. 51, č. 12 (2008), s. 3635-3643 ISSN 0022-2623 R&D Projects: GA MZd(CZ) NR8562; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/06/1239 Grant - others:GA AV ČR(CZ) IAA400040803; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003 Program:IA; ME; OC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * osmium * cancer Subject RIV: BO - Biophysics Impact factor: 4.898, year: 2008

  5. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-01-01

    metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a

  6. Catalytic enantioselective addition of organometallic reagents to N-formylimines using monodentate phosphoramidite ligands

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriella; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    [GRAPHICS] The asymmetric synthesis of protected amines via the copper/phosphoramidite-catalyzed addition of organozine and organoaluminum reagents to N-acylimines, generated in situ from aromatic and aliphatic alpha-amidosulfones, is reported. High yields of optically active N-formyl-protected

  7. Preparation of Conductive Organometallic Complexes and Their Pastes or Inks Using the Electron Beam Apparatus

    International Nuclear Information System (INIS)

    Gu, Ja Min; Lee, Hyosun; Lee, Byung Cheol; Park, Ji Hyun

    2011-01-01

    We have synthesized the silver and copper complexes using the ligands, amine derivatives Ν-methylhydantoin amine, Ν-triethanol amine, the copper complexes are prepared depending on the equivalents of starting materials, however the silver complexes failed. In case of terephthalic acid, glutaric acid, we have synthesized silver and copper complexes successfully. We have measured conductivity of silver and copper complexes paste and ink themselves by thermal reduction using PULSE UV method. A couple of synthesized copper complex's paste have shown some resistance which is not enough for the conductive materials. Commercially silver pastes composed of silver oxide and silver salt of carboxylic acid, applied to the printed transistor circuits with suitable process, i. e. thermal reduction. This process substituted for electron beam brings a simplification of process, economical, environmental friendly process and a development of in the application of flexible substrate

  8. Catalytic Enantioselective Addition of Organometallic Reagents to N-Formylimines Using Monodentate Phosphoramidite Ligands

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriella; Minnaard, Adriaan J.; Feringa, Bernard

    2008-01-01

    The asymmetric synthesis of protected amines via the copper/phosphoramidite-catalyzed addition of organozinc and organoaluminum reagents to N-acylimines, generated in situ from aromatic and aliphatic α-amidosulfones, is reported. High yields of optically active N-formyl-protected amines and

  9. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    Science.gov (United States)

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  10. Work function reduction by a redox-active organometallic sandwich complex

    KAUST Repository

    Hyla, Alexander

    2016-07-14

    We have investigated, at the density functional theory level, the geometric and electronic structures of the pentamethyliridocene (IrCpCp*) monomer and dimer adsorbed on the Au(111) and indium tin oxide (ITO) (222) surfaces, as well as their impact on the work functions. Our calculations show that the adsorption of a monomer lowers the work function of ITO(222) by 1.2 eV and Au(111) by 1.2–1.3 eV. The main origin for this reduction is the formation of an interface dipole between the monomer and the substrate via charge transfer. Dimer adsorption as well as adsorption of possible byproducts formed from dimer bond-cleavage in solution, show a lesser ability to lower the work function. © 2016 Elsevier B.V.

  11. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    Science.gov (United States)

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  12. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    Science.gov (United States)

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.

  13. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-04

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  14. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja; Dey, Raju; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2015-01-01

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C

  15. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    Science.gov (United States)

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-05

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution.

  16. GaAs FETs and novel heteroepitaxial quaternary lasers grown on InP substrates by organometallic chemical vapor deposition

    International Nuclear Information System (INIS)

    Lo, Y.H.; Bhat, R.; Chang-Hasnain, C.; Caneau, C.; Zah, C.E.; Lee, T.P.

    1988-01-01

    This paper reports the GaAs MESFETs and 1.3μm buried hetero-structure lasers with AlGaAs/GaAs lateral confinement layers simultaneously grown by OMCVD and fabricated on InP structures. The 1μm recessed gate MESFET has a transconductance of 220 mS/mm and the novel structured laser has a CW threshold current of 45 mA. The heteroepitaxy technology and devices show great promises for long wavelength opto-electronic integrated circuits

  17. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika; Baudouin, David; Basset, Jean-Marie; Bayard, Franç ois; Candy, Jean Pierre; Jumas, Jean Claude; Veyre, Laurent; Thieuleux, Chloé

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained

  18. Reactions of 5-[1-(2-phenylmethylidene]-3-phenylimidazolidine-2,4-diones with some organometallic reagents

    Directory of Open Access Journals (Sweden)

    Teresa A. R. Akeng'a

    2005-06-01

    Full Text Available The reaction of Grignard reagents with 5-[1-(2-chlorophenylmethylidene]-3-phenylimidazolidine-2,4-dione, 4, and 5-[1-(2-bromophenylmethylidene]-3-phenylimidazolidine-2,4-dione, 5, gave exclusively 1,2-addition products, 6-8, in 70-80% yields. Lithium dibutylcuprate reacted with 4 to yield exclusively 1,2-addition product 9 (92%. No conjugate or 1,4-addition products were obtained. These results indicate that 5-[1-(2-phenylmethylidene]-3-phenylimidazolidine-2,4-diones do not react like normal unsaturated carbonyl compounds.

  19. Studies in group IV organometallic chemistry XXX. Synthesis of compounds containing tin---titanium and tin---zirconium bonds

    NARCIS (Netherlands)

    Creemers, H.M.J.C.; Verbeek, F.; Noltes, J.G.

    1968-01-01

    Starting from the tetrakis(diethylamino) derivatives of titanium and zirconium and pheyltin hydrides six intermetalic compounds contianing up to nine tin and titanium(or zirconium) atoms have been obtained by hydrostannolysis type reactions.

  20. Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes – a new strategy for OLED materials

    Directory of Open Access Journals (Sweden)

    Pascal R. Ewen

    2014-11-01

    Full Text Available The improvement of molecular electronic devices such as organic light-emitting diodes requires fundamental knowledge about the structural and electronic properties of the employed molecules as well as their interactions with neighboring molecules or interfaces. We show that highly resolved scanning tunneling microscopy (STM and spectroscopy (STS are powerful tools to correlate the electronic properties of phosphorescent complexes (i.e., triplet emitters with their molecular structure as well as the local environment around a single molecule. We used spectroscopic mapping to visualize several occupied and unoccupied molecular frontier orbitals of Pt(II complexes adsorbed on Au(111. The analysis showed that the molecules exhibit a peculiar localized strong hybridization that leads to partial depopulation of a dz² orbital, while the ligand orbitals are almost unchanged. We further found that substitution of functional groups at well-defined positions can alter specific molecular orbitals without influencing the others. The results open a path toward the tailored design of electronic and optical properties of triplet emitters by smart ligand substitution, which may improve the performance of future OLED devices.

  1. Synthesis and labelling of organo-metallic prosthetic groups used for indirect radioiodination of peptides and proteins

    International Nuclear Information System (INIS)

    Pozzi, Oscar R.; Castiglia, Silvia G.

    1999-01-01

    In the framework of an IAEA co-ordinated research programme the prosthetic compound ATE [N-succidinimil 3-(tri-n-butylstannyl) benzoate] has been synthesized and it has been labelled with 131 I and 125 I. Its structure has been confirmed by NMR and mass spectrometry. The labelled ATE has been conjugated with human immunoglobulin G with a yield of 41%-57%. Indirect radioiodination of peptides is currently prepared. (author)

  2. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Propargyl organometallic compounds. II. Alkylation of sodium derivatives of 1-alkyl-1-aryl-2-alkynes in liquid ammonia

    International Nuclear Information System (INIS)

    Libman, N.M.; Sevryukov, Yu.P.

    1987-01-01

    In most cases the alkylation of the sodium derivatives of 1-phenyl-1-alkyl-2-alkynes by methyl, ethyl, isopropyl, and tert-butyl bromides in liquid ammonia takes place preferentially at the sp 2 -hybridized carbon atom, and this leads to the formation of the corresponding acetylenes, The regioselectivity of the reaction is explained by the greater softness of the trigonal atom of the ambient propargyl anion and its smaller screening by the solvate shell compared with the diagonal atom

  4. Spectroelectrochemistry: A valuable tool for the study of organometallic-alkyne, -vinylidene, -cumulene, -alkynyl and related complexes

    International Nuclear Information System (INIS)

    Low, Paul J.; Bock, Sören

    2013-01-01

    This review presents a highly selective summary of spectroelectrochemical methods used in the study of metal alkyne, acetylide, vinylidene and allenylidene complexes. The review is illustrated predominantly by the selected examples from the authors’ group that formed the basis of a lecture at the recent ISE Annual Meeting. Emphasis is placed on the use of spectroelectrochemical methods to study redox-induced ligand isomerisation reactions, and determination of molecular electronic structure, which complement the conventional tools available to the synthetic chemist for characterisation of molecular compounds. The role of computational studies in supporting the interpretation of spectroscopic data is also briefly discussed

  5. International Conference on Organometallic Chemistry (13th) Held in Torino, Europe on 4-9 September 1988. Abstracts

    Science.gov (United States)

    1988-09-09

    190, 8057 ZUrich, Switzerland Joseph Edwin and William E.Geiger, Department of Chemistry, University of Vermont, Burlington, Vermont, 05405 Arnold L...On Synthesis Of Dialkyl d-Trimethylsilyloxyalkylphosphonates Zhao Yong-Zhen and Li Zhong- Rua Dpartment o chemistry, Hua Zhong Normal University, Wuhan...Jose Vicente. Jose-AntelC hAd. Na-Yeij~xa Qhicote. Ju~an-Francisco Gutliez-Jugo. Carmen Ramirez do Arel lano. Departamento do Oulmica InordanIca

  6. Rhenium and technetium: application of organometallic rhenium and technetium complexes in radiopharmacy. Evaluation of optimal anchor groups

    International Nuclear Information System (INIS)

    Alberto, R.; Schibli, R.; Egli, A.; Schaffland, A.; Rattat, D.; Mueller, J.; Iftimia, M.; Berke, H.; Kaden, T.A.; Abram, U.

    1997-01-01

    The coordinative properties of the '[fac-M(CO) 3 ] + ' moiety (M= 188 Re, Re, 99 Tc and 99m Tc) have been investigated in water and organic solvents in order to evaluate the anchor group attached to antibodies, small peptides and biologically active molecules. The preparation of [M(OH 2 ) 3 (CO) 3 ] + has been improved in a way that this complex can be prepared from a Kit formulation. The '[fac-M(CO) 3 ] + ' has been transformed to the '[fac-M(NO)(CO) 2 ] 2+ ' moiety to achieve higher direct labelling yields and faster incorporation kinetics. (author) 5 figs

  7. Alternatives to Arsine: The Atmospheric Pressure Organometallic Chemical Vapor Deposition Growth of GaAs Using Triethylarsenic.

    Science.gov (United States)

    1987-08-15

    also found to affect residual doping type at a low V/Ill ratio and had a significant effect upon epilayer 6 650 - A~ N-TYPE (3 sipm) A N-TYPE (2 stpm ...editor, "CRC Handbook of Chemistry and Physics ," 64th ed., F-177,179 (CRC Press, Inc., Boca Raton, Florida, 1983). 7. P.D. Dapkus, H.M. Manasevit, K.L

  8. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni

    International Nuclear Information System (INIS)

    Dorantes, G.; Urena, F.; Lopez, R.; Lopez, R.

    1997-01-01

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  9. RF plasma deposition of thin SixGeyCz:H films using a combination of organometallic source materials

    International Nuclear Information System (INIS)

    Rapiejko, C.; Gazicki-Lipman, M.; Klimek, L.; Szymanowski, H.; Strojek, M.

    2004-01-01

    Elements of the IV group of periodic table have been strongly present in the fast development of PECVD techniques for the last two decades at least. As a result, deposition technologies of such materials as a-Si:H, a-C:H, mμ-C:H or DLC have been successfully established. What has followed is an ever growing interest in binary systems of the A x (IV)B y (IV):H kind. One possible way to deposit such systems is to use organosilicon compounds (to deposit Si x C y :H films) or organogermanium compounds (to deposit Ge x C y :H films), as source substances. The present paper reports on a RF plasma deposition of a Si x Ge y C z :H ternary system, using a combination of organosilicon and organogermanium compounds. Thin Si/Ge/C films have been fabricated in a small volume (ca. 2 dm 3 ) parallel plate RF plasma reactor using, as a source material, a combination of tetramethylsilane (TMS) and tetramethylgermanium (TMG) vapours carried by argon. SEM investigations reveal a continuous compact character of the coatings and their uniform thickness. The elemental composition of the films has been studied using EDX analysis. The results of the analysis show that the elemental composition of the films can be controlled by both the TMG/TMS ratio of the initial mixture and the RF power input. Ellipsometric measurements show good homogeneity of these materials. Chemical bonding in the films has been studied using the FTIR technique. Bandgap calculations have been carried out using ellipsometric data and by applying both the Tauc law and the Moss approach

  10. Synthesis and Properties of Chelating N-Heterocyclic Carbene Rhodium(I) Complexes: Synthetic Experiments in Current Organometallic Chemistry

    Science.gov (United States)

    Mata, Jose A.; Poyatos, Macarena; Mas-Marza, Elena

    2011-01-01

    The preparation and characterization of two air-stable Rh(I) complexes bearing a chelating N-heterocyclic carbene (NHC) ligand is described. The synthesis involves the preparation of a Ag(I)-NHC complex and its use as carbene transfer agent to a Rh(I) precursor. The so obtained complex can be further reacted with carbon monoxide to give the…

  11. Organometallic rhodium(III) and iridium(III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands.

    Science.gov (United States)

    Pettinari, Riccardo; Marchetti, Fabio; Pettinari, Claudio; Condello, Francesca; Petrini, Agnese; Scopelliti, Rosario; Riedel, Tina; Dyson, Paul J

    2015-12-21

    A series of half-sandwich cyclopentadienyl rhodium(III) and iridium(III) complexes of the type [Cp*M(curc/bdcurc)Cl] and [Cp*M(curc/bdcurc)(PTA)][SO3CF3], in which Cp* = pentamethylcyclopentadienyl, curcH = curcumin and bdcurcH = bisdemethoxycurcumin as O^O-chelating ligands, and PTA = 1,3,5-triaza-7-phosphaadamantane, is described. The X-ray crystal structures of three of the complexes, i.e. [Cp*Rh(curc)(PTA)][SO3CF3] (5), [Cp*Rh(bdcurc)(PTA)][SO3CF3] (6) and [Cp*Ir(bdcurc)(PTA)][SO3CF3] (8), confirm the expected "piano-stool" geometry. With the exception of 5, the complexes are stable under pseudo-physiological conditions and are moderately cytotoxic to human ovarian carcinoma (A2780 and A2780cisR) cells and also to non-tumorigenic human embryonic kidney (HEK293) cells, but lack the cancer cell selectivity observed for related arene ruthenium(II) complexes.

  12. Bridging ligands in organometallic chemistry. II. Synthesis and reactivity of the green dimer of molybdenocene containing a bridging fulvalene ligand

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J.C.; Curtis, C.J.

    1978-11-01

    Synthesis, precipitation, and isolation of dicyclopentadienyl(fulvalene)dihydridomolybdenum are described. The compound was used in reaction studies involving the addition of carbon monoxide and deprotonation with n-butyllithium. Data for elemental analysis, ir spectral and NMR(in toluene-d) spectral analysis are reported for the title compound and its reaction products.

  13. Organometallic tris(8-hydroxyquinoline)aluminum complexes as buffer layers and dopants in inverted organic solar cells

    International Nuclear Information System (INIS)

    Tolkki, Antti; Kaunisto, Kimmo; Heiskanen, Juha P.; Omar, Walaa A.E.; Huttunen, Kirsi; Lehtimäki, Suvi; Hormi, Osmo E.O.; Lemmetyinen, Helge

    2012-01-01

    Tris(8-hydroxyquinoline)aluminum (Alq 3 ) is a frequently used material for organic light emitting diodes. The electronic properties and solubility can be tuned by chemical tailoring of the quinoline part, which makes it an interesting candidate for organic solar cells. Steady-state absorption and fluorescence, as well as time-resolved fluorescence properties of the parent Alq 3 and a series of complexes consisting of derivatives, such as 4-substituted pyrazol, methylpyrazol, arylvinyl, and pyridinoanthrene moieties, of the quinoline ligand, were studied in solutions and in thin films. Suitability of the complexes as anodic buffer layers or dopants in inverted organic solar cells based on the well known bulk heterojunction of poly(3-hexylthiophene) (P3HT) and phenyl-C 61 -butyric acid methyl ester (PCBM) was tested. The devices equipped with the derivatives showed higher power conversion efficiency (η) compared to the photocells containing the parent Alq 3 . Open circuit voltage (V oc ) was increased when the derivatives were utilized as the anodic buffer layer. Doping of the P3HT:PCBM with a small amount of Alq 3 or its derivative improved short circuit current density, V oc , fill factor, and η, while the series resistance decreased. In addition, the devices were stable in air over several weeks without encapsulation. Possible mechanisms leading to the improvements in the photovoltaic performance by using the parent Alq 3 or its derivative as buffer layer or dopant are discussed. - Highlights: ► Tris(8-hydroxyquinoline)aluminum (Alq 3 ) complexes in inverted organic solar cells. ► The Alq 3 complexes were used as an anodic buffer layer and as a dopant. ► Efficiency increased and the derivatives revealed varying open circuit voltage. ► Photovoltaic performance was stable after storage in a dark ambient atmosphere.

  14. Antiplasmodial activity of iron(II and ruthenium(II organometallic complexes against Plasmodium falciparum blood parasites

    Directory of Open Access Journals (Sweden)

    Nicolli Bellotti de Souza

    2015-01-01

    Full Text Available This work reports the in vitro activity against Plasmodium falciparumblood forms (W2 clone, chloroquine-resistant of tamoxifen-based compounds and their ferrocenyl (ferrocifens and ruthenocenyl (ruthenocifens derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.

  15. Organometallic tris(8-hydroxyquinoline)aluminum complexes as buffer layers and dopants in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tolkki, Antti, E-mail: antti.tolkki@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Kaunisto, Kimmo [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Heiskanen, Juha P. [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Omar, Walaa A.E. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Chemistry Branch, Department of Science and Mathematics, Suez Canal University, Suez 43721 (Egypt); Huttunen, Kirsi; Lehtimaeki, Suvi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Hormi, Osmo E.O. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland)

    2012-04-30

    Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) is a frequently used material for organic light emitting diodes. The electronic properties and solubility can be tuned by chemical tailoring of the quinoline part, which makes it an interesting candidate for organic solar cells. Steady-state absorption and fluorescence, as well as time-resolved fluorescence properties of the parent Alq{sub 3} and a series of complexes consisting of derivatives, such as 4-substituted pyrazol, methylpyrazol, arylvinyl, and pyridinoanthrene moieties, of the quinoline ligand, were studied in solutions and in thin films. Suitability of the complexes as anodic buffer layers or dopants in inverted organic solar cells based on the well known bulk heterojunction of poly(3-hexylthiophene) (P3HT) and phenyl-C{sub 61}-butyric acid methyl ester (PCBM) was tested. The devices equipped with the derivatives showed higher power conversion efficiency ({eta}) compared to the photocells containing the parent Alq{sub 3}. Open circuit voltage (V{sub oc}) was increased when the derivatives were utilized as the anodic buffer layer. Doping of the P3HT:PCBM with a small amount of Alq{sub 3} or its derivative improved short circuit current density, V{sub oc}, fill factor, and {eta}, while the series resistance decreased. In addition, the devices were stable in air over several weeks without encapsulation. Possible mechanisms leading to the improvements in the photovoltaic performance by using the parent Alq{sub 3} or its derivative as buffer layer or dopant are discussed. - Highlights: Black-Right-Pointing-Pointer Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) complexes in inverted organic solar cells. Black-Right-Pointing-Pointer The Alq{sub 3} complexes were used as an anodic buffer layer and as a dopant. Black-Right-Pointing-Pointer Efficiency increased and the derivatives revealed varying open circuit voltage. Black-Right-Pointing-Pointer Photovoltaic performance was stable after storage in a dark ambient atmosphere.

  16. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained spontaneously as the unique phase regardless of the number of tin equivalents introduced. © 2010 The Royal Society of Chemistry.

  17. Organometallic Polyelectrolytes: Synthesis, Characterization and Layer-By-Layer Deposition of Cationic Poly (ferrocenyl (3-ammoniumpropyl)-methylsilane)

    NARCIS (Netherlands)

    Hempenius, Mark A.; Robins, Neil S.; Lammertink, Rob G.H.; Vancso, Gyula J.

    2001-01-01

    The water soluble poly(ferrocenylsilane) polycation, poly(ferrocenyl(3-ammoniumpropyl)methylsilane), was synthesized by transition metal-catalyzed ring-opening polymerization of the novel [1]ferrocenophane Fe(-C5H4)2SiCH3(CH2)3Cl and by subsequent side group modification. Amination of the

  18. Synthesis of organometallic hydroxides of titanium, vanadium, cobalt and chromium as precursors of thin films type MaOb

    International Nuclear Information System (INIS)

    Montero Villalobos, Mavis

    2001-01-01

    This study shows the results obtained from a general objective that was the synthesis and characterization of precursors of thin films of metallic oxides, two different routes of synthesis have been practiced: route molecular precursors and route Sol-Gel technic. In the first route one of the objectives of the investigation is to obtain a molecular precursor of material type M a O b a route of synthesis have been tried proved that involves anhydrous chlorides of the transition metals and linked R that are alcoxides of metal such as silicon, titanium and zirconium. In the second route the general objective to create thin films of metallic oxide has been maintained but the way to resolve the problem has changed, not giving so much emphasis to the molecular precursors as it was originally presented (this due mainly to its instability and difficulty of synthesis), but being supported in the sun-gel chemistry. It was started a new synthesis line through the sun-gel chemistry that is more versatile and simplifies the process in the film formation [es

  19. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II carbohydrate organometallic complexes

    Directory of Open Access Journals (Sweden)

    Muhammad eHanif

    2013-10-01

    Full Text Available The synthesis and in vitro cytotoxicity of a series of RuII(arene complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA indicating that other biological targets are responsible for its cytotoxic effect.

  20. Synthesis and characterization of organometallic copolymers of acrylic acid g-polyethylene, with Mo, Fe, Co, Zn and Ni

    International Nuclear Information System (INIS)

    Dorantes R, G.L.

    1997-01-01

    In this study, the preparation of a series of low density polyethylenes grafted with acrylic acid is presented. The grafting reactions were initiated by different doses of γ radiation; it was observed that grafting increased with the doses of radiation. The prepared copolymers were coordinated with different metals, as Mo, Fe, Co, Zn and Ni. The amount of metal supported on the polymer was determined by atomic absorption. Infrared spectroscopy and thermogravimetric analysis confirmed the metal chelation on the graft copolymer. The film surfaces were observed by scanning electron microscopy. positron annihilation spectroscopy revealed a decrease on the free volume in the low density polyethylene after the grafting with acrylic acid. (Author)

  1. Synthesis of zinc sulfide by chemical vapor deposition using an organometallic precursor: Di-tertiary-butyl-disulfide

    International Nuclear Information System (INIS)

    Vasekar, Parag; Dhakal, Tara; Ganta, Lakshmikanth; Vanhart, Daniel; Desu, Seshu

    2012-01-01

    Zinc sulfide has gained popularity in the last few years as a cadmium-free heterojunction partner for thin film solar cells and is seen as a good replacement for cadmium sulfide due to better blue photon response and non-toxicity. In this work, zinc sulfide films are prepared using an organic sulfur source. We report a simple and repeatable process for development of zinc sulfide using a cost-effective and less hazardous organic sulfur source. The development of zinc sulfide has been studied on zinc oxide-coated glass where the zinc oxide is converted into zinc sulfide. Zinc oxide grown by atomic layer deposition as well as commercially available zinc oxide-coated glass was used. The zinc sulfide synthesis has been studied and the films are characterized using scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a UV–VIS spectrophotometer. XRD, XPS and optical characterization confirm the zinc sulfide phase formation. - Highlights: ► Synthesis of ZnS using a less-hazardous precursor, di-tertiary-butyl-disulfide. ► ZnS process optimized for two types of ZnO films. ► Preliminary results for a solar cell show an efficiency of 1.09%.

  2. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  3. Synthesis and properties of bis(pentamethylcyclopentadienyl) actinide hydrocarbyls and hydrides. A new class of highly reactive f-element organometallic compounds

    International Nuclear Information System (INIS)

    Fagan, P.J.; Manriquez, J.M.; Maatta, E.A.; Seyam, A.M.; Marks, T.J.

    1981-01-01

    The synthesis and chemical and physcochemical properties of Th and U bis(pentamethylcyclopentadienyl) chlorides, hydrocarbyls, chlorohydrocarbyls, and hydrides are reported. The reaction of the precursor compounds M[eta 5 -(CH 3 ) 5 C 5 ] 2 Cl 2 with 2 equiv of lithium reagent RLi produces M[eta 5 -(CH 3 ) 5 ] 2 R 2 compounds where R = CH 3 , CH 2 Si(CH 3 ) 3 , CH 2 C(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = Th) and R = CH 3 , CH 2 Si(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = U) in good yield. With 1 equiv of lithium reagent, M[eta 5 -(CH 3 ) 5 C 5 ] 2 (R)Cl compounds where R = CH 2 C(CH 3 ) 3 , CH 2 Si(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = Th) and R = CH 2 C(CH 3 ) 3 CH 2 Si(C 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 , and C 6 H 5 (M = U) are formed in high yield. The M[eta 5 -(CH 3 ) 5 C 52 (C 3 )Cl compounds can be synthesized by redistribution between the corresponding dimethyl and dichloro complexes. The new organoactinides were thoroughly characterized by elemental analysis, 1 H NMR and vibrational spectroscopy, and in many cases cryoscopic molecular weight measurements. The hydrocarbyls and chlorohydrocarbyls generally exhibit high thermal stability. However, the diphenyl compounds react readily with C 6 D 6 to yield, via a benzyne complex, the corresponding M(C 6 D 5 ) 2 compounds. The Th bis(neopentyl) complex reacts with benzene to produce the corresponding diphenyl complex. Competition experiments at -78 0 C indicate that the Th complexes are more reactive than those of U. The M[eta 5 -(CH 3 ) 5

  4. Generation of Well-Defined Pairs of Silylamine on Highly Dehydroxylated SBA-15: Application to the Surface Organometallic Chemistry of Zirconium

    KAUST Repository

    Azzi, Joachim

    2012-01-01

    achieved by an ammonia treatment of a highly dehydroxylated SBA-15 at 1000°C (SBA-151000). This support is known to contain mainly strained reactive siloxane bridges (≡Si-O-Si≡)[1] along with a small amount of isolated plus germinal silanols =Si(OH)2

  5. Effective charge model in the theory of infrared intensities and its application for study of charge di.stribution in the molecules of organometallic compounds

    International Nuclear Information System (INIS)

    Aleksanyan, V.T.; Samvelyan, S.Kh.

    1984-01-01

    General principles of plotting the parametric theory of IR spectrum intensities of polyatomic molecules are outlined. The development of the effective charges model in this theory is considered and the mathematical formalism of the first approximation of the method of effective atom charges is described in detail. The results of calculations of charges distribution in the Mo(CO) 6 , W(CO) 6 , Cp 2 V, Cp 2 Ru and others (Cp-cyclopentadiene), performed in the frame work of the outlined scheme are presented. It is shown that in the investigated carbonyles the effective charge on oxygen and metal atoms is negative, on carbon atom - positive. In dicyclopentavienyl complexes the effective charge on the metal atom is positive and is not over 0.6e; charge values on hydrogen and carbon atoms do not exceed, 0.10-0.15e. The notions of ''electrovalence'' of coordination bond and charge distribution in the case of metallocenes are not correlated

  6. Site-Specific Bioconjugation of an Organometallic Electron Mediator to an Enzyme with Retained Photocatalytic Cofactor Regenerating Capacity and Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    2015-04-01

    Full Text Available Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(PH being readily available to a redox enzyme, when the local NAD(PH concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH. A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activity.

  7. Studies on unusually reactive metal powders. Preparation of new organometallic and organic compounds including potential new catalysts. Final report, July 1, 1980-December 31, 1984

    International Nuclear Information System (INIS)

    Rieke, R.D.

    1985-06-01

    This research project was involved with the preparation and study of highly reactive metal powders prepared by the reduction of metal salts with alkali metals. Studies concentrated on nickel, copper, cadmium, uranium, iron, and magnesium. The nickel powders have been found to react rapidly with benzylic halides, and the resulting organonickel complexes yield dibenzyl. Aryl halides react rapidly with the nickel powders to produce biaryl compounds in high yields. Benzylic halides react with the nickel powders in the presence of acylhalides to produce benzyl ketones in high yields. Reactions of ROCOCOC1 and benzylic halides with nickel powders yield benzyl ketones. These reactions proceed with a wide variety of substituents on the phenyl ring of the benzylic halides. Highly reactive uranium has been prepared, and found to react with a variety of oxygen containing substrates, such as nitrobenzene to yield azo benzene. Highly reactive magnesium has opened up a totally new area of low temperature Grignard chemistry. The preparation of highly reactive copper has allowed the direct preparation of organocopper species directly from organic halides. 16 refs., 6 tabs

  8. Electronic transport in organometallic perovskite CH{sub 3}NH{sub 3}PbI{sub 3}: The role of organic cation orientations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G. R., E-mail: gberdiyorov@qf.org.qa; El-Mellouhi, F.; Madjet, M. E.; Rashkeev, S. N. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar); Alharbi, F. H. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar)

    2016-02-01

    Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.

  9. Group IB Organometallic Chemistry XIX.Synthesis and characterization of mixed-organocopper cluster compounds R4R'2Cu6 containing aryl and acetylide ligands.

    NARCIS (Netherlands)

    Koten, G. van; Hoedt, R.W.M. ten; Noltes, J.G.

    1977-01-01

    Mixed-organocopper cluster compounds Ar4Cu6(CCR)2 (Ar = 2-Me2NC6H4, R = phenyl, 4-tolyl, 2,4-xylyl or mesityl) have been prepared in high yield by the ligand-substitution reaction of Ar4Cu6Br2 with two equivalents of LiCCR. Ar4Cu6(CCC6H4CH3-4)2 has also been prepared via the aryl¡ªarylacetylide

  10. Nature and electronic properties of Y-junctions in CNTs and N-doped CNTs obtained by the pyrolysis of organometallic precursors

    Science.gov (United States)

    Deepak, F. L.; John, Neena Susan; Govindaraj, A.; Kulkarni, G. U.; Rao, C. N. R.

    2005-08-01

    Carbon nanotubes (CNTs) and N-doped CNTs with Y-junctions have been prepared by the pyrolysis of nickelocene-thiophene and nickel phthalocyanine-thiophene mixtures, respectively, the latter being reported for the first time. The junctions are free from the presence of sulfur and contain only carbon or carbon and nitrogen. The electronic properties of the junction nanotubes have been investigated by scanning tunneling microscopy. Tunneling conductance measurements reveal rectifying behavior with regions of coulomb blockade, the effect being much larger in the N-doped junction nanotubes.

  11. RF plasma deposition of thin Si{sub x}Ge{sub y}C{sub z}:H films using a combination of organometallic source materials

    Energy Technology Data Exchange (ETDEWEB)

    Rapiejko, C. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland); Gazicki-Lipman, M. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland)]. E-mail: gazickim@p.lodz.pl; Klimek, L. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland); Szymanowski, H. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland); Strojek, M. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland)

    2004-12-22

    Elements of the IV group of periodic table have been strongly present in the fast development of PECVD techniques for the last two decades at least. As a result, deposition technologies of such materials as a-Si:H, a-C:H, m{mu}-C:H or DLC have been successfully established. What has followed is an ever growing interest in binary systems of the A{sub x}(IV)B{sub y}(IV):H kind. One possible way to deposit such systems is to use organosilicon compounds (to deposit Si{sub x}C{sub y}:H films) or organogermanium compounds (to deposit Ge{sub x}C{sub y}:H films), as source substances. The present paper reports on a RF plasma deposition of a Si{sub x}Ge{sub y}C{sub z}:H ternary system, using a combination of organosilicon and organogermanium compounds. Thin Si/Ge/C films have been fabricated in a small volume (ca. 2 dm{sup 3}) parallel plate RF plasma reactor using, as a source material, a combination of tetramethylsilane (TMS) and tetramethylgermanium (TMG) vapours carried by argon. SEM investigations reveal a continuous compact character of the coatings and their uniform thickness. The elemental composition of the films has been studied using EDX analysis. The results of the analysis show that the elemental composition of the films can be controlled by both the TMG/TMS ratio of the initial mixture and the RF power input. Ellipsometric measurements show good homogeneity of these materials. Chemical bonding in the films has been studied using the FTIR technique. Bandgap calculations have been carried out using ellipsometric data and by applying both the Tauc law and the Moss approach.

  12. H2S Sensing by Hybrids Based on Nanocrystalline SnO2 Functionalized with Cu(II Organometallic Complexes: The Role of the Ligand Platform

    Directory of Open Access Journals (Sweden)

    Marina Rumyantseva

    2017-11-01

    Full Text Available This paper deals with the functionalization of nanocrystalline SnO2 with Cu(II complexes with organic ligands, aimed at the improvement of sensor selectivity towards gas molecules. For the synthesis of metalorganic/SnO2 hybrid material complexes of Cu(II with phthalocyanine, porphyrinines, bipyridine and azadithiacrown etherwere used. The analysis of gas sensor properties showed the possibility of increasing the sensitivity and selectivity of hybrid materials in H2S detection due to the electron transfer from SnO2 to an adsorbed organic molecule, which changes during the interaction between H2S and Cu(II ions.

  13. International Conference on the Organometallic and Coordination Chemistry of Germanium, Tin and Lead (6th) Held in Brussels, Belgium on July 23-28, 1989

    Science.gov (United States)

    1989-07-28

    Molybdenumý-Tn and Molybdenum-M~ercury Bonds P08 Tudela. David Departamento de Quimica (C-VIII), Universidad Aut6noma de Madrid, 28049 Madrid, Spain The...Departamento de Quimica Inorgfnica. Facultad de QuImicas . Universidad Complutense de Madrid. Madrid, 28040. SPAIN. Previously it has been shown that...University ot New York at Albany Albany, NY 12222, USA Camipo Santillana, Jose Antonio, Mr. Dpto Quimica Inorganica, Pac. CC. Quimicas Universidad

  14. Highly Functionalized and Potent Antiviral Cyclopentane Derivatives Formed by a Tandem Process Consisting of Organometallic, Transition-Metal-Catalyzed, and Radical Reaction Steps

    Czech Academy of Sciences Publication Activity Database

    Jagtap, Pratap; Ford, Leigh Robert; Deister, E.; Pohl, Radek; Císařová, I.; Hodek, Jan; Weber, Jan; Mackman, R.; Bahador, G.; Jahn, Ullrich

    2014-01-01

    Roč. 20, č. 33 (2014), s. 10298-10304 ISSN 0947-6539 R&D Projects: GA ČR GA203/09/1936 Institutional support: RVO:61388963 Keywords : antiviral activity * cyclopentanes * isomerization * organic synthesis * radicals Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  15. Organometallic derivatives of furan. LII. Synthesis of carbofunctional furylsilanes and their 1H, 13C, and 29Si NMR spectroscopic and quantum-chemical investigation

    International Nuclear Information System (INIS)

    Lukevits, E.; Erchak, N.P.; Castro, I.; Popelis, Yu.Yu.; Kozyrev, A.K.; Anoshkin, V.I.; Kovalev, I.F.

    1986-01-01

    Under the standard conditions for the synthesis of furan compounds it is possible to obtain the carbofunctional derivatives of silylated furfural with retention of the trimethylsilyl group in the ring. By NMR and CNDO/2 LCAO MO methods and also as a result of the investigation of the chemical characteristics of silylated furfural and its carbofunctional derivatives it was established that the introduction of a trimethylsilyl group at position 5 of the furan ring does not change the reactivity of the carbofunctional substituents at position 2. The electronic effects of the substituents are hardly transmitted through the furan ring at all. The effect of substituents in the carbofunctional furylsilanes on the electronic structure of the ring is additive

  16. Coordination-organometallic hybrid materials based on the trinuclear M(II)-Ru(II) (M=Ni and Zn) complexes: Synthesis, structural characterization, luminescence and electrochemical properties

    Science.gov (United States)

    Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2018-02-01

    A new series of trinuclear complexes of the type Ni[R-C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (1a-c) and Zn[Rsbnd C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (2a-c) have been prepared from the reaction of trans-[RuCl(dppe)2Ctbnd Csbnd C6H3(OH)(CHO)] (1) with aniline, 4-nitroaniline and 4-methoxyaniline (R1-3) in presence of nickel acetate and zinc acetate in CH2Cl2/MeOH (1:1) mixture. The structural properties of the complexes have been characterized by elemental analyses and spectroscopic techniques viz. FTIR, UV-Visible, 1H NMR and 31P NMR spectral studies. The crystal structure and morphology of the hybrid complexes was investigated with the help of X-ray powder diffraction (XRPD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of 1a-c and 2a-c were studied by thermogravimetric (TG) analysis. The electrochemical behaviour of the complexes reveals that all complexes displayed a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) and Ni(II)/Ni(III) couples for 1a-c and only Ru(II)/Ru(III) couple for 2a-c. All complexes are emissive in solution at room temperature revealing the influence of substituents and solvent polarity on emission properties of the complexes.

  17. Synthesis and evaluation of germanic organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials that have applications in areas such as electronics or biomarkers has affected the synthesis of new compounds based on germanium. This element has two states of common oxidation, +4 and +2, of them, the +2 oxidation state is the least studied and more reactive. Additionally, compounds of germanium (II) have similarities to carbenes in terms Lewis'acid base chemistry. The preparation of compounds of germanium (II) with ligands β-diketiminates has made possible the stabilization of new chemical functionalities and, simultaneously, it has provided interesting thermal properties to develop new methods of preparation of materials with novel properties. The preparation of amides germanium (II) L'Ge (NHPh) [1, L'= {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 } - ], L'Ge (4-NHPy) [2], L'Ge (2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC (CMeN-2,6- i Pr 2 C 6 H 3 ) 2 ] - ] are presented, the chemical and structural composition was determined by using techniques such as nuclear magnetic resonance ( 1 H, 13 C), elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermogravimetric analysis (TGA). The TGA has demonstrated that 1-4 experience a thermal decomposition, therefore, these compounds could be considered as potential starting materials for the obtaining of germanium nitride (GeN x ). Certainly, the availability of coordinating nitrogen atoms in the chemical composition in 2-4 have been interesting given that it could act as ligands in reactions with transition metal complexes. Thus, relevant information to molecular level could be obtained for some reactions and interactions that have used similar link sites in surface chemistry, for example, the chemical functionalization of silicon and germanium substrate. Additionally, the synthesis and structural characterization of germanium chloride compound (II) L G eCl [5, L' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 - ] is reported, which subsequently could be used to obtain germanium hydride(II) L G eH, the latter has been of great interest as a potential precursor of germanium nanoparticles. (author) [es

  18. Synthesis and evaluation of germanium organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials having applications such as electronics areas or biomarkers has affected the synthesis of new compounds based on germanium. This element has had two common oxidation states, +4 and +2, of them, +2 oxidation state has been the least studied and more reactive. Additionally, compounds of germanium (II) have had similarities with carbenes regarding the chemical acid-base Lewis. The preparation of compounds of germanium (II) with ligands β-decimations has enabled stabilization of new chemical functionalities and, simultaneously, provided interesting thermal properties to develop new preparation methodologies of materials with novel properties. The preparation of amides germanium(II) L'Ge(NHPh) [1, L' = {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 }], L'Ge(4-NHPy) [2] L'Ge(2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC(CMeN-2,6- i Pr 2 C 6 H 3 ) 2 }]; the structural chemical composition were determined using techniques such as nuclear magnetic resonance ( 1 H, 13 C), other techniques are treated: elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermal gravimetric analysis (TGA). The TGA has showed that 4-1 have experimented a thermal decomposition; therefore, these compounds could be considered as potential starting materials for obtaining germanium nitride (GeN x ). Certainly, the availability of nitrogen coordinating atoms in the chemical composition in 2-4 have been interesting because it could act as ligands in reactions with transition metal complexes. That way, information could be obtained at the molecular level for some reactions and interactions that in surface chemistry have used similar link sites, for example, chemical functionalization of silicon and germanium substrates. The synthesis and structural characterization of germanium chloride compound(II) L''GeCl [5, L'' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 ], which could be used later for the germanium hydride(II) L''GeH. The latter has been of great interest as a potential precursor of germanium nanoparticles. (author) [es

  19. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn–Sham level of theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Jensen, Hans Jørgen Aagaard

    2012-01-01

    A theoretical characterization of the phosphorescence decay traces of a prototypical platinum (II) organic chromophore has been conducted. The phosphorescence wavelength and radiative lifetime are predicted to equal 544 nm and 160 μs, respectively. The third triplet state is assigned as participa...

  20. Regioselectively nucleus and/or side-chain fluorinated 2-(Phenanthryl)propionic acids by an effective combination of radical and organometallic chemistry.

    Science.gov (United States)

    Ricci, Giacomo; Ruzziconi, Renzo

    2005-01-21

    Regioselectively nucleus and/or side-chain fluorinated 2-(phenanthr-1-yl)- and 2-(phenanthr-2-yl)propionic acids 1-5 were prepared using phenanthren-1(2H)-ones 6a-c as key intermediates. Thus, ethyl 2-(fluorophenanthryl)propionates 11 were obtained in good yields by Reformatsky reaction of 6a-c with ethyl 2-bromopropionate followed by dehydratation and DDQ-promoted aromatization of the resulting beta-hydroxyesters. Side-chain alkyl 2-hydroxy-2-(phenanthr-1-yl)propionates 14 were obtained by bromine/lithium permutation of dihydrophenanthryl bromides 12a-c with butyllithium followed by quenching of the lithiated intermediates with methyl pyruvate or ethyl 3,3,3-trifluoropyruvate and subsequent DDQ-promoted aromatization. The alkyl 2-hydroxy-2-(phenanthr-1-yl)propionates 25 were prepared by reacting 8-bromo-1,3-difluorophenanthrene 24 with butyllithium for 10 seconds at -110 degrees C and subsequent addition of the suitable pyruvate to the lithiated intermediates. Alkyl 2-hydroxy-2-(phenanthr-2-yl)propionates 26 and 29 were suitably obtained by site-selective metalation of 1,3-difluorophenanthrene 28 and the bromophenanthrene 24, respectively, with LDA followed by quenching of the metalated intermediates with the suitable alkyl pyruvate. Fluorination of the above alpha-hydroxypropionates with DAST, followed by the alkaline hydrolysis, allowed the expected 2-(phenanthryl)propionic acids 1-5 to be obtained in satisfactory overall yields.

  1. Structural TEM study of nonpolar a-plane gallium nitride grown on(112_0) 4H-SiC by organometallic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Dmitri N.; Liliental-Weber, Zuzanna; Wagner, Brian; Reitmeier,Zachary J.; Preble, Edward A.; Davis, Robert F.

    2005-04-05

    Conventional and high resolution electron microscopy havebeen applied for studying lattice defects in nonpolar a-plane GaN grownon a 4H-SiC substrate with an AlN buffer layer. Samples in plan-view andcross-section configurations have been investigated. Basal and prismaticstacking faults together with Frank and Shockley partial dislocationswere found to be the main defects in the GaN layers. High resolutionelectron microscopy in combination with image simulation supported Drum smodel for the prismatic stacking faults. The density of basal stackingfaults was measured to be ~;1.6_106cm-1. The densities of partialdislocations terminating I1 and I2 types of intrinsic basal stackingfaults were ~;4.0_1010cm-2 and ~;0.4_1010cm-2, respectively. The energyof the I2 stacking fault in GaN was estimated to be (40+-4) erg/cm2 basedon the separation of Shockley partial dislocations. To the best of ourknowledge, the theoretically predicted I3 basal stacking fault in GaN wasobserved experimentally for the first time.

  2. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts

    KAUST Repository

    Pelletier, Jeremie; Basset, Jean-Marie

    2016-01-01

    concepts and tools of surface organometallic chemistry (SOMC). This approach operates by reacting organometallic compounds with surfaces of highly divided oxides (or of metal nanoparticles). This strategy has a solid track record to reveal structure

  3. High-Permeability Magnetic Polymer Additives for Lightweight Electromagnetic Shielding

    Science.gov (United States)

    2015-08-01

    incorporation) or chemical incorporation as part of the polymer chain backbone or linked as pendant groups.13 Many transition-metal organometallic...10.1002/9781119951438. 15. Poli R. Open-shell organometallics as a bridge between Werner-type and low-valent organometallic complexes: the effect

  4. Group IB Organometallic Chemistry XXXIV: Thermal behavior and chemical reactivity of tetranuclear Me2N-substituted diarylpropenylcopper-copper anion (Vi2Cu4X2) and mixed diarylpropenyl/organocopper (Vi2Cu4R2) compounds

    NARCIS (Netherlands)

    Koten, G. van; Hoedt, R.W.M. ten; Noltes, J.G.

    1980-01-01

    Thermal decomposition of configurationally pure 1, 2-diarylpropenylcopper compounds Z-Vi{2}CU{4}Br{2} and Z-Vi{2}Cu{4}R{2} [Vi @? (2-Me{2}NC{6}H{4})C@?C(Me)-(C{6}H{4}Me-4), R @? 2-Me{2}NC{6}H{4} or 4-MeC{6}H{4}C@?C] predominantly results in the formation of ViH. In contrast, only dimers (ViVi) were

  5. Group ib organometallic chemistry. XXXIV. Thermal behaviour and chemical reactivity of tetranuclear Me2N-substituted diarypropenylcopper-copper anion (Vi2Cu4X2) and mixed diarylpropenyl/organocopper (Vi2Cu4R2) compounds

    NARCIS (Netherlands)

    Hoedt, R.W.M. ten; Koten, G. van; Noltes, J.G.

    1980-01-01

    Thermal decomposition of configurationally pure 1,2-diarylpropenylcopper compounds Z-Vi2CU4Br2 and Z-Vi2Cu4R2 [Vi = (2-Me2NC6H4)C=C(Me)-(C6H4Me-4), R = 2-Me2NC6H4 or 4-MeC6H4CC] predominantly results in the formation of ViH. In contrast, only dimers (ViVi) were formed on thermolysis of (Z-ViCu2OTf)η

  6. Atmospheric pressure organometallic vapor-phase epitaxial growth of (Al/x/Ga/1-x/)0.51In0.49P (x from 0 to 1) using trimethylalkyls

    Science.gov (United States)

    Cao, D. S.; Kimball, A. W.; Stringfellow, G. B.

    1990-01-01

    This paper describes growth of (Al/x/Ga/1-x)0.51In0.49P layers (with x from 0 to 1) lattice-matched to (001)-oriented GaAs substrates by atmospheric-pressure OMVPE, using trimethylindium, trimethylaluminum, and trimethylgallium and PH3 as source materials in a horizontal reactor. Excellent surface morphologies were obtained over the entire range of Al compositions at a growth temperature of 680 C. Photoluminescence (PL) was observed for all samples with x values not below 0.52, with PL peak energies as high as 2.212 eV. The PL FWHM for Ga(0.51)In(0.49)P was 7.2 meV at 10 K and 35 meV at 300 K. At 10 K, the PL intensity was nearly a constant over the composition range from x = 0 to 0.52.

  7. Organometallic Trinuclear Niobium Cluster Complex in Aqueous Solution: Synthesis and Characterization of Niobium Complexes Containing Nb-3(mu-eta(2):eta(2) (perpendicular to)-NCCH3)(mu(2)-O)(3)(6+) Cluster Core

    DEFF Research Database (Denmark)

    Joensen, H.A.N.; Hansson, G. K.; Kozlova, S.G.

    2010-01-01

    ) and a broad peak at 565 nm (epsilon similar to 335 M-1 cm(-1)) in the UV-visible region. It is electron paramagnetic resonance (EPR)-active (g = 1.98), but no hyperfine interaction with the Nb-93 nuclear spin (I = 9/2) was observed. The cyclic voltammogram of [Nb-3(mu-eta(2):eta(2)-NCCH3)O-3(H2O)(9)](6+) in 4...

  8. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni; Obtencion y caracterizacion de copolimeros organometalicos de acido acrilico-i-polietileno, con Mo, Fe, Co, Zn y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes, G.; Urena, F.; Lopez, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Lopez, R. [Universidad Autonoma del Estado de Mexico (Mexico)

    1997-07-01

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  9. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Hamzaoui, Bilel; Emsley, Lyndon; Basset, Jean-Marie

    2015-01-01

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  10. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin

    2015-01-21

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  11. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  12. Recent progress of ordered mesoporous silica-supported chiral metallic catalysts

    Directory of Open Access Journals (Sweden)

    LIU Rui

    2013-02-01

    Full Text Available Recently,ordered silica-based mesoporous chiral organometallics-functionalized heterogeneous catalysts have attracted extensive research interest due to their excellent properties,such as easy preparation,high activity and convenient recycle.This review mainly summarizesthe generally prepared strategy and the silica-based organometallics-functionalized heterogeneous catalysts reported in the literatures.

  13. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro; Psaro, Rinaldo; Guidotti, Matteo; Dal Santo, Vladimiro; Pergola, Roberto Della; Masih, Dilshad; Izumi, Yasuo

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre

  14. Improved synthesis of carbon nanotubes with junctions and of single ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y- junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic- thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures.

  15. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Unknown

    chelated ruthenium organometallics. BIKASH KUMAR PANDA. Department of Inorganic ... Ruthenium organometallics; quinolin-8-olato chelation; emission properties; trivalent ruthenium. 1. Introduction. There is continuing ... chem.istry of orthometallated ruthenium compounds is of current interest in the context of synthesis ...

  16. Fulltext PDF

    Indian Academy of Sciences (India)

    Aparna K, Kamalesh Babu R P, McDonald R and Cavell. R G 2001 Angew. Chem. Int. Ed. 40 4400. 26. Kasani A, Kamalesh Babu R P, McDonald R and Cavell. R G 1999 Organometallics 18 3775. 27. Aparna K, McDonald R, Fuerguson M and Cavell R G. 1999 Organometallics 18 4241. 28. Edelmann F T 1996 Top. Curr.

  17. OXIDATIVE ALKYLATION OF (ETA-5-C5ME5)2TIR (R=CL, ME, ET, CH=CH2, PH, OME, N=C(H)TERT-BU) TO (ETA-5-C5ME5)2TI(ME)R BY GROUP-12 ORGANOMETALLIC COMPOUNDS MME2

    NARCIS (Netherlands)

    LUINSTRA, GA; TEUBEN, JH

    1991-01-01

    Oxidative alkylation of Cp*2TiX (Cp*: eta-5-C5Me5; X = OMe, Cl, N = C(H)tBu) and Cp*2TiMe by CdMe2 or ZnMe2 gives diamagnetic Cp*2Ti(Me)X and Cp*2TiMe2 respectively, and cadmium or zinc. The reactions of Cp*2TiR (R = Et, CH = CH2, Ph) with MMe2 (M = Cd, Zn) give statistical mixtures of Cp*2Ti(Me)R,

  18. Group 1B organometallic chemistry XXIX. Synthetic and structural aspects of polynuclear arylcopperlithium compounds Ar4Cu2Li2 ('arylcuprates') and interaggregate exchange phenomena in Ar4Cu4/Ar4Li4/Ar4Cu2Li2 systems

    NARCIS (Netherlands)

    Koten, G. van; Noltes, J.G.

    1979-01-01

    The thermally stable arylmetal-IB-lithium compounds (2-Me{2}NCHZC{6}H{4}){4}M{2}Li{2} (M = Cu, Ag or Au; Z = H or Me) and (2-Me{2}NC{6}H{4}){4}M{2}Li{2} have been prepared by a 21 molar reaction of the aryllithium compounds with the corresponding metal-IB halide (Cu or Ag) or metal-lB halide

  19. New building block for organometallic-inorganic hybrid polymers: the mixed group 15/16 element ligand complex [Cp*.sub.2./sub.Mo.sub.2./sub.(μ,η.sup.2:2./sup.-PSe).sub.2./sub.(μ-Se)](Cp* = C.sub.5./sub.Me.sub.5./sub.)

    Czech Academy of Sciences Publication Activity Database

    Bodensteiner, M.; Dušek, Michal; Kubicki, M. M.; Pronold, M.; Scheer, M.; Wachter, J.; Zabel, M.

    2010-01-01

    Roč. 2010, č. 33 (2010), s. 5298-5303 ISSN 1434-1948 Institutional research plan: CEZ:AV0Z10100521 Keywords : phosphorus * selenium * copper * coordination modes * polymers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.909, year: 2010

  20. Group IB Organometallic Chemistry XXXIII: ArAuPPh3, ArAu(CNR), (ArAu)n and Ar4Cu2Au2 compounds in which the aryl group contains 2-MeO, 2,6-(MeO)2, 2-Me2N, 2-Me2NCH2 and (S)- or (R)-2-Me2NCHMe substituents as potential ligands

    NARCIS (Netherlands)

    Koten, G. van; Schaap, C.A.; Jastrzebski, J.T.B.H.; Noltes, J.G.

    1980-01-01

    The synthesis and structural characterization by }1{H NMR and }1{}9{}7{Au Mossbauer spectroscopy as well as by chiral labelling of the built-in ligands of three different types of arylgold(I) compounds is described.}1{}9{}7{Au Mossbauer data revealed that the benzyl- and arylgold(I)

  1. Group IB organometallic Chemistry XXIII. Reaction of Ar4Cu2Li2 with RhI complexes; Synthesis of 2-[(dimethylamino)methyl] phenylrhodium dicarbon monoxide and electron-transfer induced selective formation of diarylketones ArC(O)Ar

    NARCIS (Netherlands)

    Koten, G. van; Jastrzebski, J.T.B.H.; Noltes, J.G.

    1978-01-01

    The 1/1 reaction of (2-Me{2}NCH{2}C{6}H{4}){4}M{2}Li{2} (M = Cu or Au) with (CO){2}ClRh-dimer affords (2-Me{2}NCH{2}C{6}H{4}M){n} and the novel 2-Me{2}NCH{2}C{6}H{4}Rh(CO){2}. In contrast, the reaction of (x-tolyl){4}M{2}Li{2} (x = 2, M = Cu or Au) under a CO atmosphere results in the formation of

  2. Oxidative degradation of the organometallic iron(II) complex [Fe{bis[3-(pyridin-2-yl)-1H-imidazol-1-yl]methane}(MeCN)(PMe3)](PF6)2: structure of the ligand decomposition product trapped via coordination to iron(II).

    Science.gov (United States)

    Haslinger, Stefan; Pöthig, Alexander; Cokoja, Mirza; Kühn, Fritz E

    2015-12-01

    Iron is of interest as a catalyst because of its established use in the Haber-Bosch process and because of its high abundance and low toxicity. Nitrogen-heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron-NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1'-bis(pyridin-2-yl)-2,2-bi(1H-imidazole)-κN(3)][3,3'-bis(pyridin-2-yl-κN)-1,1'-methanediylbi(1H-imidazol-2-yl-κC(2))](trimethylphosphane-κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C-C-coupled biimidazole, is trapped by coordination to still-intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.

  3. Vapor pressures of (3-(Dimethylamino)propyl)dimethylindium, (tert-Butylimino)bis(diethylamino)cyclopentadienyltantalum, and (tert-Butylimino)tris(ethylmethylamino)tantalum

    Czech Academy of Sciences Publication Activity Database

    Morávek, Pavel; Pangrác, Jiří; Fulem, Michal; Hulicius, Eduard; Růžička, K.

    2014-01-01

    Roč. 59, č. 12 (2014), s. 4179-4183 ISSN 0021-9568 Institutional support: RVO:68378271 Keywords : vapor pressure * static method * organometallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.037, year: 2014

  4. Periasamy, Prof. Mariappan

    Indian Academy of Sciences (India)

    D. (IISc), FNA. Date of birth: 6 October 1952. Specialization: Organometallics, Chiral Reagents, Organic Molecules, Solar Energy Harvesting Address: Emeritus Professor, School of Chemistry, University of Hyderabad, Hyderabad 500 046, A.P.

  5. Surface functionalization of mesoporous antimony doped tin oxide by metalorganic reaction

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Haase, F.; Rathouský, Jiří; Fattakhova-Rohlfing, D.

    2012-01-01

    Roč. 137, č. 1 (2012), s. 207-212 ISSN 0254-0584 Institutional support: RVO:61388955 Keywords : oxides * organometallic compounds * chemical synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.072, year: 2012

  6. Ir/Sn dual-reagent catalysis towards highly selective alkylation of ...

    Indian Academy of Sciences (India)

    Wintec

    Organometallic; bimetallic; catalysis; alkylation; benzyl alcohol; iridium, tin. 1. Introduction ... cording to our proposal, the oxidative addition of tin(IV) halides across a ..... 33. 4. Conclusion. In summary, we have demonstrated here an Ir/Sn.

  7. Insights into the deactivation mechanism of supported tungsten hydride on alumina (W-H/Al2O3) catalyst for the direct conversion of ethylene to propylene

    KAUST Repository

    Mazoyer, Etienne; Szeto, Kaï Chung; Merle, Nicolas; Thivolle-Cazat, Jean; Boyron, Olivier; Basset, Jean-Marie; Nicholas, Christopher P.; Taoufik, Mostafa

    2014-01-01

    Tungsten hydride supported on alumina prepared by the surface organometallic chemistry method is an active precursor for the direct conversion of ethylene to propylene at low temperature and pressure. An extensive contact time study revealed

  8. Emerging Contaminants in the Environment

    Science.gov (United States)

    This chapter explores the use of mass spectrometry and its application to emerging contaminants (ECs) in the environment; such classes of compounds as organometallics, pharmaceuticals/drugs, nanomaterials, and dispersants (surfactants). Table 1 shows the variety of ECs that are...

  9. Trace Metals and Volatile Aromatic Hydrocarbon Content of ...

    African Journals Online (AJOL)

    Michael Horsfall

    two months and five months were studied in an oil impacted soil at Ukpeliede in the Niger Delta area, Nigeria. This was ... disintegration of natural organometalic plant metabolites ... into mainly oxygen products (e.g. organic acids and phenol.

  10. Bhattacharya, Prof. Samaresh

    Indian Academy of Sciences (India)

    ordination Chemistry and Organometallic Chemistry Address: Professor, Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, W.B.. Contact: Office: (033) 2414 6223. Residence: (033) 2431 0998. Mobile: ...

  11. Versatile cell for in-situ spectroelectrochemical and ex-situ nanomorphological characterization of both water soluble and insoluble phthalocyanine compounds

    Czech Academy of Sciences Publication Activity Database

    Mansfeldová, Věra; Klusáčková, Monika; Tarábková, Hana; Janda, Pavel; Nesměrák, K.

    2016-01-01

    Roč. 147, č. 8 (2016), s. 1393-1400 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : organometallic compounds * electrochemistry * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 1.282, year: 2016

  12. Catalyst retention in continuous flow with supercritical carbon dioxide

    NARCIS (Netherlands)

    Stouten, S.C.; Noel, T.; Wang, Q.; Hessel, V.

    2014-01-01

    This review discusses the retention of organometallic catalysts in continuous flow processes utilizing supercritical carbon dioxide. Due to its innovative properties, supercritical carbon dioxide offers interesting possibilities for process intensification. As a result of safety and cost

  13. Dosimetric properties of new formulation of PRESAGE® with tin organometal catalyst: Development of sensitivity and stability to megavoltage energy

    Directory of Open Access Journals (Sweden)

    Davood Khezerloo

    2018-01-01

    Conclusions: Tin organometallic catalyst in very low concentration can be used in fabrication of radiochromic polymer gel to achieve high sensitivity and stability as well as good radiological properties in the megavoltage photon beam.

  14. REACTIONS OF 5-[1-(2-PHENYL)METHYLIDENE

    African Journals Online (AJOL)

    4-DIONES WITH SOME ORGANOMETALLIC REAGENTS. ... KEY WORDS: Imidazolidine-2,4-diones, a,b-Unsaturated carbonyl compounds, 1,2-Addition, conjugate addition, Grignard reagents, Lithium dibutylcuprate. Bull. Chem. Soc. Ethiop.

  15. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 28 June 1947. Specialization: Medicinal Chemistry, Drug Design & Discovery, Organometallic Chemistry and Catalysis Address: Chairman, Cosmic Therapeutics, 48, Villa Greens, Gandipet, Hyderabad 500 075, A.P.. Contact: Residence: (040) 2419 3132. Mobile: 98497 99444

  16. The Influence of Marine Microfouling on the Corrosion Behaviour of Passive Materials and Copper Alloys

    National Research Council Canada - National Science Library

    Little, Brenda J; Lee, Jason S; Ray, Richard I

    2008-01-01

    ...) of passive alloys exposed in marine environments. Ennoblement in marine waters has been ascribed to depolarization of the oxygen reduction reaction due to organometallic catalysis, acidification of the electrode surface, the combined effects...

  17. Presidential Green Chemistry Challenge: 2007 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2007 award winner, Professor Michael J. Krische, developed selective C-C bond-forming hydrogenation without organometallic reagents, eliminating hazardous reagents and hazardous waste.

  18. Particulate Sol-Gel Synthesis and Characterization of LiMO2 (M=Ni, Ni(0.75)Co(0.25) Using the Thermal and Mass Spectrometry Analyses Work-Station

    National Research Council Canada - National Science Library

    Chang, Chun-Chieh

    2000-01-01

    .... Four different processes: (a)rotary evaporation (b)gelation (c)spray drying and (d)spray decomposition have been developed and studied using inorganic and organometallic precursors other than metal alkoxides...

  19. Quantum catalysis : the modelling of catalytic transition states

    NARCIS (Netherlands)

    Hall, M.B.; Margl, P.; Naray-Szabo, G.; Schramm, Vern; Truhlar, D.G.; Santen, van R.A.; Warshel, A.; Whitten, J.L.; Truhlar, D.G.; Morokuma, K.

    1999-01-01

    A review with 101 refs.; we present an introduction to the computational modeling of transition states for catalytic reactions. We consider both homogeneous catalysis and heterogeneous catalysis, including organometallic catalysts, enzymes, zeolites and metal oxides, and metal surfaces. We summarize

  20. Convergent synthesis of 6-substituted phenanthridines via anionic ring closure

    DEFF Research Database (Denmark)

    Lysén, M.; Kristensen, Jesper Langgaard; Vedsø, P.

    2002-01-01

    Chemical equation presented The addition of organometallic derivatives to the cyano group of 2-(2-fluorophenyl)benzonitrile followed by intramolecular nucleophilic substitution produces 6-substituted phenanthridines. Alkyllithiums, aryllithiums, and sterically nondemanding lithium amides reacted ...

  1. Potential for biodegradation of polycyclic aromatic hydrocarbons by ...

    African Journals Online (AJOL)

    WiTT

    2012-05-08

    May 8, 2012 ... Full Length Research Paper. Biodegradation of ... organic compounds, including some organometallic ... is a major source of toxic PAHs that contributes signi- ficantly to ... microorganisms for bioremediation of hydrocarbon-.

  2. EFFECTS OF DIETARY COPPER, ZINC, LEAD, CADMIUM, AND ARSENIC ON GROWTH AND SURVIVAL OF JUVENILE FISH USING LIVE FOOD ORGANISMS

    Science.gov (United States)

    Except for certain organometallic compounds, dietary exposures of aquatic organisms to metal/metalloids have received little regulatory attention. However, various studies have suggested that dietary exposure could be important, especially in areas where current water column conc...

  3. Comparison and systematic optimization of synthetic protocols for DOTA-hydrazide generation

    NARCIS (Netherlands)

    Fuge, F.; Weiler, M.; Gaetjens, J.; Lammers, Twan Gerardus Gertudis Maria

    2013-01-01

    DOTA-based organometallic complexes are extensively used in functional and molecular imaging studies, as well as in radioimmunotherapy. DOTA forms thermodynamically stable and kinetically inert complexes with various different diagnostic and therapeutic metals, such as gadolinium, gallium, yttrium

  4. Chandrasekaran, Prof. Srinivasan

    Indian Academy of Sciences (India)

    Specialization: Synthetic Organic Chemistry, Natural Products and Organometallic Chemistry Address: INSA Senior Scientist, Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact: Office: (080) 2360 2423, (080) 2293 2404. Residence: (080) 2351 2748. Mobile: 98860 88344

  5. Sc, Y, the lanthanoids and the actinoids

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    Highlights of work published in 1984 are given. Solid state, studies in solution, coordination chemistry and organometallic chemistry aspects of scandium, yttrium, the rare earths and actinide compounds are covered. (U.K.)

  6. [(≢SiO)TaVCl2Me2]: A well-defined silica-supported tantalum(V) surface complex as catalyst precursor for the selective cocatalyst-free trimerization of ethylene

    KAUST Repository

    Chen, Yin; Callens, Emmanuel; Abou-Hamad, Edy; Merle, Nicolas; White, Andrew J P; Taoufik, Mostafa; Copé ret, Christophe; Le Roux, Erwan; Basset, Jean-Marie

    2012-01-01

    On the surface of it: In the absence of co-catalyst, a well-defined silica-supported surface organometallic complex [(≢SiO)Ta VCl2Me2] selectively catalyzes the oligomerization of ethylene. The use of surface organometallic species allows three different pathways to be determined for the reduction of TaV to TaIII species under pressure of ethylene. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Air-stable compact of cobalt-rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable magnetic products. An organometallic compound which decomposes at a temperature below 500 0 C is mixed with particles of a transition metal-rare earth alloy. The resulting mixture is pressed to form a green body, which is then heated to decompose the organometallic compound to produce a metal vapor that deposits an interconnecting metal coating on the exposed surfaces of the pressed particles. (U.S.)

  8. [(≢SiO)TaVCl2Me2]: A well-defined silica-supported tantalum(V) surface complex as catalyst precursor for the selective cocatalyst-free trimerization of ethylene

    KAUST Repository

    Chen, Yin

    2012-10-22

    On the surface of it: In the absence of co-catalyst, a well-defined silica-supported surface organometallic complex [(≢SiO)Ta VCl2Me2] selectively catalyzes the oligomerization of ethylene. The use of surface organometallic species allows three different pathways to be determined for the reduction of TaV to TaIII species under pressure of ethylene. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conception, characterization and evaluation of new radiotracers for diagnosis and treatment of breast and prostate cancers

    International Nuclear Information System (INIS)

    Dallagi, T.

    2010-01-01

    The medicinal and organometallic chemistry group of the Charles Friedel Laboratory has been developing therapeutic approaches based on organometallic compounds for many years. It has been found that these compounds may be used as cytotoxic agents or as radiopharmaceuticals for the treatment or diagnosis of diseases. The goal of the present work is the synthesis of organometallic analogs of biological substances (such as drugs) bearing a ferrocenyl, cymantrenyl, cerhetrenyl, or cyclo-pentadienyl-tricarbonyl-technetium group. We have especially focused our research on the preparation of Tc-99m derivatives and their purification. We have found suitable methods which are easy to handle and give high yields and high specific activities. These technetium compounds have been used for the study of in vivo biodistribution in animals. (author)

  10. Influence of the growth parameters on TiO2 thin films deposited using the MOCVD method

    Directory of Open Access Journals (Sweden)

    Bernardi M. I. B.

    2002-01-01

    Full Text Available In this work we report the synthesis of TiO2 thin films by the Organometallic Chemical Vapor Deposition (MOCVD method. The influence of deposition parameters used during the growth in the obtained structural characteristics was studied. Different temperatures of the organometallic bath, deposition time, temperature and type of the substrate were combined. Using Scanning Electron Microscopy associated to Electron Dispersive X-Ray Spectroscopy, Atomic Force Microscopy and X-ray Diffraction, the strong influence of these parameters in the thin films final microstructure was verified.

  11. Catalytic Hydration of Alkenes and Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Jim, D.

    2003-03-18

    The fifteen years of DOE support have encompassed two different projects, electron-transfer reactions of metal carbonyl anions and water-soluble organometallic complexes. Each of these is related to homogeneous catalysis and will be described in separate sections. Electron Transfer--Twenty-one manuscripts resulted from our studies of electron-transfer reactions of metal carbonyl anions and acknowledge DOE support. Construction of an infrared stopped-flow system allowed us to measure rates of reactions for the extremely air-sensitive metal carbonyl anions. As for carbanions, both one-electron and two-electron processes occur for metal carbonyl anions. The most unexpected feature was examples of a very rapid two-electron process, followed by a much slower one-electron back transfer. The two-electron processes were accompanied by transfer of a ligand between two metals, M-X + M{prime}{sup -} {yields} M{sup -} + M{prime}-X with X groups of CO{sup 2}, H{sup +}, CH{sub 3}{sup +} and Br{sup +}. These transfers, which can be considered nucleophilic displacements, occurred when M{prime}{sup -} was more nucleophilic than M{sup -}. The 21 published manuscripts explore one- and two-electron processes for many such organometallic complexes. Water-Soluble Organometallic Complexes--The potential of water-soluble organometallic complexes in ''green chemistry'' intrigued us. Sixteen manuscripts acknowledging DOE support have appeared thus far in this field. Our research centered on sulfonated phosphine ligands, PPh{sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}Na) and P(m-C{sub 6}H{sub 4}SO{sub 3}Na){sub 3}, to solubilize organometallic complexes in water. These analogues of PPH{sub 3} allowed us to synthesize complexes of Ir, Rh, Ru, Ni, Pd, Pt and Ag that are water-soluble and contain such common organometallic ligands as CO, H and CH{sub 3} in addition to halides and the phosphine ligands. These metal complexes show the ability to activate H{sub 2}, CO, C{sub 2}H{sub 4

  12. Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Generation of antiproliferative effects in vitro.

    Science.gov (United States)

    Vessières, Anne; Top, Siden; Pigeon, Pascal; Hillard, Elizabeth; Boubeker, Leila; Spera, Daniela; Jaouen, Gérard

    2005-06-16

    We report here the synthesis and the strong and unexpected antiproliferative effect of the organometallic diphenolic compound 1,1-bis(4'-hydroxyphenyl)-2-ferrocenyl-but-1-ene (4) on both hormone-dependent (MCF7) and -independent (MDA-MB231) breast cancer cells (IC(50) = 0.7 and 0.6 microM). Surprisingly, 6 [1,2-bis(4'-hydroxyphenyl)-2-ferrocenyl-but-1-ene], the regioisomer of 4, shows only a modest effect on these cell lines. This pertinent organometallic modification seems to trigger an intracellular oxidation of the structurally favorable compound 4, leading to the generation of a potent cytotoxic compound.

  13. Formation of ferric flocks for the removal of Zn and Cu from dockyard wastewater

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Arevalo, Edurado; Stichnothe, Heinz

    2006-01-01

    Wastewater from wash down of boat hulls contains typically Cu, Zn and organometallic biocides, e.g. tributyltin (TBT). In some cases this wastewater is led directly into the marine system. In the present paper a cheap flocculation method (iron flocculants) for removal of Cu and Zn from the wastew......Wastewater from wash down of boat hulls contains typically Cu, Zn and organometallic biocides, e.g. tributyltin (TBT). In some cases this wastewater is led directly into the marine system. In the present paper a cheap flocculation method (iron flocculants) for removal of Cu and Zn from...

  14. OMVPE growth of GaInAsSb in the 2 to 2.4 microm range

    International Nuclear Information System (INIS)

    Charache, G.W.; Wang, C.A.

    1997-12-01

    Ga 1-x In x As y Sb 1-y epilayers were grown lattice matched to GaSb substrates by organometallic vapor phase epitaxy using all organometallic precursors, which include triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony. Layers were grown over a temperature range between 525 and 575 C, a V/III ratio range between 0.9 and 1.7, x 15 cm -3 and hole mobility of ∼ 430 to 560 cm 2 /V-s. The n- and p-type doping of GaInAsSb with diethyltellurium and dimethylzinc, respectively, are also reported

  15. Synthesis and reactivity of triscyclopentadienyl uranium (III) and (IV) complexes

    International Nuclear Information System (INIS)

    Berthet, J.C.

    1992-01-01

    The reactions of (RC 5 H 4 ) 3 U with R=trimethylsilylcyclopentadienyl or tertiobutylcyclopentadienyl are studied for the synthesis of new uranium organometallic compounds. Reactions with sodium hydride are first described uranium (III) anionic hydrides obtained are oxidized for synthesis of stable uranium (IV) organometallic hydrides. Stability of these compounds is discussed. Reactivity of these uranium (III) and (IV) hydrides are studied. Formation of new binuclear compounds with strong U-O and U-N bonds is examined and crystal structure are presented. Monocyclooctatetraenylic uranium complexes are also investigated

  16. Moessbauer spectroscopic characterisation of catalysts obtained by interaction between tetra-n-butyl-tin and silica or silica supported rhodium

    International Nuclear Information System (INIS)

    Millet, J.M.M.; Toyir, J.; Didillon, B.; Candy, J.P.; Nedez, C.; Basset, J.M.

    1997-01-01

    Moessbauer spectroscopy at 78 K was used to study the interaction between tetra-n-butyl-tin and the surfaces of silica or silica supported rhodium. At room temperature, the tetra-n-butyl-tin was physically adsorbed on the surfaces. After reaction under hydrogen at 373 K, the formation of grafted organometallic fragments on the Rh surface was confirmed whereas with pure silica, ≡SiO-Sn(n-C 4 H 9 ) 3 moieties were observed. After treatment at 523 K, the rhodium grafted organometallic species was completely decomposed and there was formation of a defined bimetallic RhSn compound

  17. Thermopower switching by magnetic field: first-principles calculations

    DEFF Research Database (Denmark)

    Maslyuk, Volodymyr V.; Achilles, Steven; Sandratskii, Leonid

    2013-01-01

    We present first-principles studies of the thermopower of the organometallic V4Bz5 molecule attached between Co electrodes with noncollinear magnetization directions. Different regimes in the formation of the noncollinear magnetic state of the molecule lead to a remarkable nonmonotonous dependence...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anjum Qureshi. Articles written in Bulletin of Materials Science. Volume 29 Issue 6 November 2006 pp 605-609. Analysis of organometallics dispersed polymer composite irradiated with oxygen ions · N L Singh Anjum Qureshi A K Rakshit D K Avasthi · More Details Abstract ...

  19. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  20. Mechanistic Insights on the Reductive Dehydroxylation Pathway for the Biosynthesis of Isoprenoids Promoted by the IspH Enzyme

    KAUST Repository

    Abdel-Azeim, Safwat; Jedidi, Abdesslem; Cavallo, Luigi; Eppinger, Jö rg

    2015-01-01

    Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoids

  1. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  2. State-of-the-art coordination chemistry of radioactive elements

    International Nuclear Information System (INIS)

    Kharisov, B I; Mendez-Rojas, Miguel A

    2001-01-01

    Modern procedures for the synthesis of coordination and organometallic compounds of actinides and technetium and the properties of these compounds are surveyed. Experimental techniques, including methods for the synthesis of actinide and technetium complexes from elemental metals (oxidative dissolution and direct electrosynthesis), salts and halide, carbonyl and other complexes are generalised. The bibliography includes 283 references.

  3. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Fellowship; Associateship. Associate Profile. Period: 2013–2016. Maiti, Dr Debabrata. Date of birth: 10 December 1980. Specialization: Organometallic Chemistry, Bioinspired Catalysis Address during Associateship: Dept. of Chemistry, IIT, Mumbai 400 076. Contact: Email: dmaiti@chem.iitb.ac.in. YouTube; Twitter ...

  4. Functional Group Analysis.

    Science.gov (United States)

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  5. Ion-induced redistribution of palladium in polymethyl methacrylate

    International Nuclear Information System (INIS)

    Fink, D.; Mueller, M.; Nakao, Y.; Hirata, K.; Kobayashi, Y.; Behar, M.; Kaschny, J.R.; Vacik, J.; Hnatowicz, V.

    2000-01-01

    Pd atoms are released into PMMA by thermal decomposition of a suitable organometallic compound dissolved in the polymer beforehand. These atoms eventually precipitate in ion-irradiated polymer regions. After Ar + ion implantation, metallic enrichment by up to a factor 4.5 in concentration could be achieved. We tend to attribute this Pd enrichment to gettering at the Ar gas bubbles

  6. Organo-gallium and indium complexes with dithiolate and oxo ligands

    Indian Academy of Sciences (India)

    Page 1 ... of several of these com- plexes have been established by single crystal X-ray diffraction analyses. Complexes derived from oxo ligands ... diode) applications.8. Organometallic complexes derived from chelating ligands, such as substituted. 8-hydroxyqunoline and azomethine linkages, are emerging as potential ...

  7. Complex-radical copolymerization of vinyl monomers on organoelemental initiators

    International Nuclear Information System (INIS)

    Grishin, D.F.

    1993-01-01

    Data on regularities of the initiation and growth of the (co)polymerization of polar vinyl series monomers on organo-elemental initiator, organo-boron in particular, are generalized. The effect of organo-metallic compounds and some phenol type inhibitors on the rate of acrylate (co)polymerization is analyzed from view of the change of electroacceptor properties (electrophilicity) of macroradicals

  8. Synthesis and structure of organoantimony(III) compounds containing antimony−selenium and −tellurium terminal bonds

    Czech Academy of Sciences Publication Activity Database

    Dostál, L.; Jambor, R.; Růžička, A.; Lyčka, A.; Brus, Jiří; de Proft, F.

    2008-01-01

    Roč. 27, č. 23 (2008), s. 6059-6062 ISSN 0276-7333 Grant - others:GA ČR(CZ) GP203/07/P094; GA MŠk(CZ) LC523 Program:LC Institutional research plan: CEZ:AV0Z40500505 Keywords : organometallic compounds Subject RIV: CA - Inorganic Chemistry Impact factor: 3.815, year: 2008

  9. Application of enantioselective radical reactions: synthesis of (+)-ricciocarpins A and B.

    Science.gov (United States)

    Sibi, Mukund P; He, Liwen

    2004-05-27

    Enantioselective synthesis of (+)-ricciocarpins A and B has been achieved in 41 and 45% overall yields, respectively, starting from a beta-substituted oxazolidinone. The key steps in the strategy are an enantioselective conjugate radical addition and the addition of a furyl organometallic to a key aldehyde intermediate. [reaction--see text

  10. Aerogel nanoscale magnesium oxides as a destructive sorbent for toxic chemical agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Maříková, Monika; Šubrt, Jan; Oplustil, F.; Olšanská, M.

    2004-01-01

    Roč. 2, č. 1 (2004), s. 16-33 ISSN 1644-3624 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : nanostructures * organometallic compounds * chemical synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.171, year: 2004

  11. Molecule of the Month

    Indian Academy of Sciences (India)

    One of the hallmarks of carbon is its ability to form multiple bonds to itself or to other elements (particularly to O, N or S). This feature is arguably one of the most important reasons for the richness and diversity of organic chemistry and has stimulated inorganic and organometallic chemists to find out if analogous compounds ...

  12. Evaluation of Cytotoxic Activity of Titanocene Difluorides and Determination of Their Mechanism of Action in Ovarian Cancer Cells

    Czech Academy of Sciences Publication Activity Database

    Koubková, L.; Vyzula, R.; Karban, Jindřich; Pinkas, Jiří; Ondroušková, E.; Vojtěšek, B.; Hrstka, R.

    2015-01-01

    Roč. 33, č. 5 (2015), s. 1123-1132 ISSN 0167-6997 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : cisplatin * cytotoxicity * organometallic compounds Subject RIV: CA - Inorganic Chemistry Impact factor: 3.281, year: 2015

  13. Diversity and community composition of tributyltin-resistant bacteria under different conditions

    International Nuclear Information System (INIS)

    Lee, Y. H.; Park, S.; Park, H.; Choi, Y

    2009-01-01

    Tributyltin (TBT) is an organometallic compound used as anti fouling agent in marine paints. this compound is toxic not only for eukaryotes, but also for bacteria. Based on the literature review, a few researchers have reported evidence for the presence of TBT-resistant bacteria in natural seawater and marine sediment. (Author)

  14. Diversity and community composition of tributyltin-resistant bacteria under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Park, S.; Park, H.; Choi, Y

    2009-07-01

    Tributyltin (TBT) is an organometallic compound used as anti fouling agent in marine paints. this compound is toxic not only for eukaryotes, but also for bacteria. Based on the literature review, a few researchers have reported evidence for the presence of TBT-resistant bacteria in natural seawater and marine sediment. (Author)

  15. Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.

    Science.gov (United States)

    van de Waal, B. W.

    1985-01-01

    Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…

  16. Max Planck Institute for Radiation Chemistry, Muelheim a.d. Ruhr

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Institute carriers out research in the field of radiation chemistry, which is understood as a field of science combining photochemistry and radiation chemistry. The research programme focuses on: the radiation chemistry of the deoxyribonucleic acids (DNA), DNA constituents, and DNA model compounds; photobiochemistry and fundamentals of photobiology; organic and organometallic photochemistry, particularly reaction mechanisms and synthesis; photophysics. (orig.) [de

  17. The growth of various buffer layer structures and their influence on the quality of (CdHg)Te epilayers

    CSIR Research Space (South Africa)

    Gouws, GJ

    1993-05-01

    Full Text Available The suitability of various buffer layer structures on (100) GaAs for (CdHg)Te growth by organometallic vapour phase epitaxy (OMVPE) was investigated. The preferred epitaxial orientation of (100) GaAs/ (lll) CdTe was found to be unsuitable due...

  18. The Reduction of a Nitrile (CN) Group by Sodium Borohydride. The Preparation of Phosphine--Amine and Phosphine--Iimidate Complesex of Tungsten Carbonyl.

    Science.gov (United States)

    Faust, Kristen E.; Storhoff, Bruce N.

    1989-01-01

    Describes an experiment for advanced-level undergraduate students for extending student experiences involving recording and interpreting infrared (IR) and nuclear magnetic resonance (NMR) spectra from reactions of organometallic compounds. Experimental procedures, analyses and structural assignments, and suggestions for extension and modification…

  19. Deposition of metal Islands, metal clusters and metal containing single molecules on self-assembled monolayers

    NARCIS (Netherlands)

    Speets, Emiel Adrianus

    2005-01-01

    The central topic of this thesis is the deposition of metals on Self-Assembled Monolayers (SAMs). Metals are deposited in the form of submicron scale islands, nanometer scale clusters, and as supramolecular, organometallic coordination cages. Several SAMs on various substrates were prepared and

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Pakkirisamy Thilagar. Articles written in Journal of Chemical Sciences. Volume 118 Issue 6 November 2006 pp 455-462. Stannoxanes and phosphonates: New approaches in organometallic and transition metal assemblies · Vadapalli Chandrasekhar Kandasamy Gopal ...

  1. NSF-RANN trace contaminants abstracts

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Harnden, D.S.

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Poly-imido analogues of various phosphorus oxo anions have gained recent attention in inorganic chemistry. Current methods to obtain these anions require strong organometallic deprotonating agents in reaction with phosphonium salt like [(NHPh)4P]Cl or phosphoramides such as [(RNH)3P=E] (E = NSiMe3, O, S or Se) ...

  3. Synthesis and characterization of six-membered pincer ...

    Indian Academy of Sciences (India)

    0013167

    SUPPORTING INFORMATION. REGULAR ARTICLE. Synthesis and characterization of six-membered pincer nickelacycles and application in alkylation of benzothiazole. †. HANUMANPRASAD PANDIRI,a DIPESH M SHARMA,a RAJESH G GONNADEb and. BENUDHAR PUNJI*,a. aOrganometallic Synthesis and Catalysis ...

  4. Stimulus Responsive Poly(ferrocenylsilanes): Redox Chemistry of Iron in the Main Chain

    NARCIS (Netherlands)

    Giannotti, M.I.; Lv, H.; Ma, Y.; Steenvoorden, M.P.; Overweg, A.R.; Roerdink, M.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Redox chemistry of organometallic poly(ferrocenylsilane) polymers (soluble in organic or aqueous environment) is discussed. Poly(ferrocenyldimethylsilane) (PFDMS) was oxidized in CH2Cl2 solution with different oxidants. Oxidation was accomplished with stepwise increasing amounts of ferric chloride

  5. Electronic Interplay between TTF and Extended-TCNQ Electrophores along a Ruthenium Bis(acetylide) Linker.

    Science.gov (United States)

    Vacher, Antoine; Auffray, Morgan; Barrière, Frédéric; Roisnel, Thierry; Lorcy, Dominique

    2017-11-17

    A bis(TTF-butadiynyl) ruthenium D-D'-D complex, with intramolecular electronic interplay between the three electron-donating electrophores, was easily converted through a cycloaddition-retroelectrocyclization with TCNQ into a D-A-D'-A-D pentad complex, which exhibits an intense intramolecular charge transfer together with an electronic interplay between the two acceptors along the conjugated organometallic bridge.

  6. BODIPY-phosphane as a versatile tool for easy access to new metal-based theranostics

    NARCIS (Netherlands)

    Tasan, Semra; Zava, Olivier; Bertrand, Benoit; Bernhard, Claire; Goze, Christine; Picquet, Michel; Le Gendre, Pierre; Harvey, Pierre; Denat, Franck; Casini, Angela; Bodio, Ewen

    2013-01-01

    A new BODIPY-phosphane was synthesized and proved to be a versatile tool for imaging organometallic complexes. It also led to easy access to a new family of theranostics, featuring gold, ruthenium and osmium complexes. The compounds' cytotoxicity was tested on cancer cells, and their cell uptake was

  7. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  8. The risk evaluation of difficult substances in USES 2.0 and EUSES. A decision tree for data gap filling of Kow, Koc and BCF

    NARCIS (Netherlands)

    Beelen P van; ECO

    2000-01-01

    This report presents a decision tree for the risk evaluation of the so-called "difficult" substances with the Uniform System for the Evaluation of Substances (USES). The decision tree gives practical guidelines for the regulatory authorities to evaluate notified substances like organometallic

  9. Surface Catalytic Sites Prepared from [HRe(CO)5] and [H3Re3(CO)12]: Mononuclear, Trinuclear, and Metallic Rhenium Catalysts Supported on Magnesia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Kirlin, P.S.; Zon, F.B.M. van; Gates, B.C.

    1990-01-01

    MgO-supported catalysts were prepared from [HRe(CO)5] and [H,Re3(CO),,] and characterized by extraction of surface organometallics, infrared and ultraviolet/visible spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS analysis and other data show that

  10. short communication reaction of ethyl acetoacetate and 2

    African Journals Online (AJOL)

    Preferred Customer

    These compounds and their analogs have been reported as specific inhibitors of the growth of endothelic cells and ... The Michael addition of active methylene compounds to chalcones is well documented [15-. 20]. On the basis of ..... Engelman, L.K.; Feng, Y.; Ison, E.A. Organometallics 2011, 30, 4572. 12. Sosnovskikh ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Organometallic compounds; chemical synthesis; luminescence. Abstract. Alq3 is known to emit bright green light under UV excitation. Blue shift of the emission was reported in recent literature. This was ascribed to the presence of various isomers/crystallographic modifications obtained through train sublimation.

  12. (Methyl 2-(cyclohexylamino)-1-cyclopentene-1-dithiocarboxylato)

    African Journals Online (AJOL)

    Leipoldt

    2 W.A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds. (B. Cornils and W.A. Herrmann, eds.), VCH Weinheim, 1995. 3 G.J.J. Steyn, A. Roodt and J.G. Leipoldt, Inorg. Chem., 1992, 31, 3477. 4 A. Roodt and G.J.J. Steyn, Recent Research Developments in Inorganic. Chemistry (S.G. Pandalai ...

  13. Cellulose sulphuric acid as a biodegradable catalyst for conversion ...

    Indian Academy of Sciences (India)

    important applications of these compounds are 1,3- dipolar cycloaddition to produce five-membered hetero- cycles2 and their ... Diazonium salts are multipurpose compounds in organic chemistry. However, their poor stability lim- ..... Organometallics 21 5549. 5. Liu Q and Tor Y 2003 Org. Lett. 5 2571. 6. Zhu W and Ma D ...

  14. Research Article

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... ferrocene derivatives and potentially all analogous organometallic compounds. The results confirm the utility of use of square wave voltammetry techniques for measuring octanol-water partition coefficients of ferrocene derivatives. 5. ACKNOWLEDGEMENT. This research was financed by the laboratory of ...

  15. Author Details

    African Journals Online (AJOL)

    Quantification of Rhodium in a Series of Inorganic and Organometallic Compounds using Cobalt as Internal Standard Abstract PDF · Vol 63 (2010) - Articles Characterization and Oxidative Addition Reactions of Different Rhodium and Iridium Triazolato Complexes Abstract PDF PDF · Vol 64 (2011) - Articles Dissolution and ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The reaction also produced an unexpected dipyridyl-NH-ketimine organometallic compound. [(η⁵-C₅Me₅)M {(C₅H₄N) ₂C=NH}Cl]PF6 as minor product when the reaction was performed under refluxing acetonitrile. The NH-ketimine compounds were formed via N-C single bond cleavage of imine ligand resulting in ...

  17. Author Details

    African Journals Online (AJOL)

    Chiweshe, TT. Vol 66 (2013) - Articles Quantification of Rhodium in a Series of Inorganic and Organometallic Compounds using Cobalt as Internal Standard Abstract PDF. ISSN: 0379-4350. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  18. with palladium (ii)

    African Journals Online (AJOL)

    Mgina

    Mercury telluride is an important semi conductor with application in infra-red detection (Charlon 1982, Mullin & Irrine. 1985). Photolysis of mixture of the organometallic compounds RHgTeR and. RCdTeR can produce mercury cadmium telluride. Haris and Nissan (1987) prepared. (t-butyl)HgTe(t-butyl) and demonstrated that.

  19. Molecular modeling of inorganic compounds

    National Research Council Canada - National Science Library

    Comba, Peter; Hambley, Trevor W; Martin, Bodo

    2009-01-01

    ... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...

  20. Studies of radiation and chemical toxicity. Progress report

    International Nuclear Information System (INIS)

    1986-01-01

    Annual report for the Studies of Radiation and Chemical Toxicity Program at the University of Rochester is presented. Progress is reported on four projects: Neurobehavorial Toxicity of Organometallic Fuel Additives, Mechanisms of Permanent and Delayed Pathologic Effects of Ionizing Radiation, Solid State Radiation Chemistry of the DNA Backbone, and Pulmonary Biochemistry

  1. Organosilicon thin films deposited by plasma enhanced CVD:Thermal changes of chemical structure and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Zajíčková, L.; Buršíková, V.; Kučerová, Z.; Franclová, J.; Siahel, P.; Peřina, Vratislav; Macková, Anna

    2007-01-01

    Roč. 68, 5-6 (2007), s. 1255-1259 ISSN 0022-3697 R&D Projects: GA ČR GA202/07/1669 Institutional research plan: CEZ:AV0Z10480505 Keywords : hin films * organometallic compounds * plasma deposition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.899, year: 2007

  2. Direct catalytic cross-coupling of organolithium compounds

    NARCIS (Netherlands)

    Giannerini, Massimo; Fananas Mastral, Martin; Feringa, Ben L.

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern

  3. Ortho lithiation-in situ borylation of substituted morpholine benzamides

    DEFF Research Database (Denmark)

    Cederbalk, Anna; Lysén, Morten; Kehler, Jan

    2017-01-01

    Morpholine amides are cheap and safe alternative to Weinreb amides as acylating agents of organometallic species. Herein, the in-situ lithiation/borylation of 18 ortho- meta- and para-substituted morpholine benzamides has been investigated. 10 of the 18 substrates provided the desired boronic est...

  4. Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents

    NARCIS (Netherlands)

    Vila, Carlos; Giannerini, Massimo; Hornillos, Valentin; Fananas-Mastral, Martin; Feringa, Ben L.

    2014-01-01

    Palladium-catalysed cross-coupling of secondary C(sp(3)) organometallic reagents has been a long-standing challenge in organic synthesis, due to the problems associated with undesired isomerisation or the formation of reduction products. Based on our recently developed catalytic C-C bond formation

  5. Metal centre effects on HNO binding in porphyrins and the electronic origin: metal's electronic configuration, position in the periodic table, and oxidation state.

    Science.gov (United States)

    Yang, Liu; Fang, Weihai; Zhang, Yong

    2012-04-21

    HNO binds to many different metals in organometallic and bioinorganic chemistry. To help understand experimentally observed metal centre effects, a quantum chemical investigation was performed, revealing clear general binding trends with respect to metal centre characteristics and the electronic origin for the first time. This journal is © The Royal Society of Chemistry 2012

  6. CNA Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Kevin Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-16

    Presentation that covers: an introduction to the field of high-nitrogen chemistry; aqueous chemistry of Th with the high-nitrogen ligand bis(tetrazolylamine) and BTA; and water-free, oxygen-free chemistry of Th, U with high-nitrogen ligands using organometallic actinide precursors

  7. Development of the first well-defined tungsten oxo alkyl derivatives supported on silica by SOMC: towards a model of WO3/SiO2 olefin metathesis catalyst

    KAUST Repository

    Mazoyer, Etienne; Merle, Nicolas; Mallmann, Aimery De; Basset, Jean-Marie; Berrier, Elise; Delevoye, Laurent; Paul, Jean Franois; Nicholas, Christopher P.; Gauvin, Ré gis M.; Taoufik, Mostafa

    2010-01-01

    A well-defined, silica-supported tungsten oxo alkyl species prepared by the surface organometallic chemistry approach displays high and sustained activity in propene metathesis. Remarkably, its catalytic performances outpace those of the parent imido derivative, underlining the importance of the oxo ligand in the design of robust catalysts. © 2010 The Royal Society of Chemistry.

  8. Optical excitation and external photoluminescence quantum efficiency of Eu3+ in GaN

    NARCIS (Netherlands)

    de Boer, W.D.A.M.; McGonigle, C.; Gregorkiewicz, T.; Fujiwara, Y.; Stallinga, P.

    2014-01-01

    We investigate photoluminescence of Eu-related emission in a GaN host consisting of thin layers grown by organometallic vapor-phase epitaxy. By comparing it with a reference sample of Eu-doped Y2O3, we find that the fraction of Eu3+ ions that can emit light upon optical excitation is of the order of

  9. Immobilization of nanoparticles by occlusion into microbial calcite

    DEFF Research Database (Denmark)

    Skuce, Rebecca L.; Tobler, Dominique Jeanette; MacLaren, Ian

    2017-01-01

    systems. In this study, the ureolytic bacteria Sporosarcina pasteurii was used to induce calcium carbonate precipitation in the presence of organo-metallic manufactured nanoparticles. As calcite crystals grew the nanoparticles in the solution became trapped inside these crystals. Capture of NPs within...

  10. Synthesis of group 10 metal complexes with a new unsymmetrical PN3P-pincer ligand through ligand post-modification: Structure and reactivity

    KAUST Repository

    Wang, Xiufang

    2017-01-01

    A post-modification strategy are used to synthesize a new class of diimine-amido PN3P-pincer group-10 transition metal complexes. The coordination chemistry and the thermal stabilities of their organometallic derivatives are characterized and investigated.

  11. Research in the Laboratory of Supramolecular Chemistry: functional nanostructures, sensors, and catalysts.

    Science.gov (United States)

    Severin, Kay

    2011-01-01

    This article summarizes research activities in the Laboratory of Supramolecular Chemistry (LCS) at the EPFL. Three topics will be discussed: a) the construction of functional nanostructures by multicomponent self-assembly processes, b) the development of chemosensors using specific receptors or ensembles of crossreactive sensors, and c) the investigation of novel synthetic procedures with organometallic catalysts.

  12. 78 FR 15303 - Hazardous Materials; Miscellaneous Amendments (RRR)

    Science.gov (United States)

    2013-03-11

    ... previous rulemaking. Add the inadvertently omitted entries for ``Paint related material, flammable..., flammable, corrosive (including paint thinning or reducing compound)'' UN3469, PG II, and PG III to the Sec... the more appropriate generic entries for organometallic compounds and substances. Add the entries for...

  13. Combined experimental and theoretical mechanistic investigation of the Barbier allylation in aqueous media

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Fristrup, Peter; Madsen, Robert

    2008-01-01

    -determining step. For Zn, In, Sn, Sb, and Bi, an inverse secondary kinetic isotope effect was found (k(H)/k(D) = 0.75-0.95), which was compatible with the formation of a discrete organometallic species prior to allylation via a closed six-membered transition state. With Mg, a significantly larger build...

  14. Actinide Sciences at ITN - Basic Studies in Chemistry with Potential Interest for Partitioning, Fuel Fabrication and More

    International Nuclear Information System (INIS)

    Almeida, M.; Dias, M.; Goncalves, A.P.; Henriques, M.S.; Lopes, E.B.; Pereira, L.C.J.; Santos, I.C.; Verbovytskyy, Y.; Waerenborgh, J.C.; Branco, J.B.; Carretas, J.M.; Cruz, A.; Ferreira, A.C.; Gasche, T.A.; Leal, J.P.; Lopes, G.; Lourenco, C.; Marcalo, J.; Maria, L.; Monteiro, B.; Mora, E.; Pereira, C.C.L.; Paiva, I.

    2010-01-01

    The current activities in the area of actinide chemistry at ITN, comprising basic research studies in inorganic and organometallic chemistry, catalysis, gas-phase ion chemistry, thermochemistry, and solid state chemistry, are briefly described. Actinide (and lanthanide) chemistry studies at ITN will be pursued connecting basic research with potential applications in nuclear and non-nuclear areas. (authors)

  15. Jagirdar, Prof. Balaji Rao

    Indian Academy of Sciences (India)

    Fellow Profile. Elected: 2013 Section: Chemistry. Jagirdar, Prof. Balaji Rao Ph.D. (Kansas State). Date of birth: 9 September 1965. Specialization: Organometallic Chemistry, Materials Chemistry, Catalysis Address: Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka

  16. Impact Assessment and Bioremediation of oil Contaminated Soil: A ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    remediation process was descriptive using denitrifying bacteria for 27 days at 7 days intervals. The results ... environmental degradation has also been witnessed in the Niger ... in which toxic waste was deposited in pretence of ... wrapped in a well labeled foil paper to avoid ... organometallic compounds that migrate with.

  17. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja; Dey, Raju; Kavitake, Santosh Giridhar; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali Imad Ali; Basset, Jean-Marie

    2016-01-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support

  18. Use of [SbF.sub.6./sub.] .sup.-./sup. to isolate cationic copper and silver adducts with more than one ethylene on the metal center

    Czech Academy of Sciences Publication Activity Database

    Fianchini, M.; Campana, C.F.; Chilukuri, B.; Cundari, T.R.; Petříček, Václav; Dias, H.V.

    2013-01-01

    Roč. 32, č. 10 (2013), s. 3034-3041 ISSN 0276-7333 Institutional support: RVO:68378271 Keywords : organometallic compounds * X-ray structure analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.253, year: 2013

  19. Microhydration Prevents Fragmentation of Uracil and Thymine by Low-Energy Electrons

    Czech Academy of Sciences Publication Activity Database

    Kočišek, Jaroslav; Pysanenko, Andriy; Fárník, Michal; Fedor, Juraj

    2016-01-01

    Roč. 7, AUG 2016 (2016), s. 3401-3405 ISSN 1948-7185 R&D Projects: GA ČR GJ16-10995Y Institutional support: RVO:61388955 Keywords : Microhydration * ionization * organometallics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.353, year: 2016

  20. Fulltext PDF

    Indian Academy of Sciences (India)

    One of the hallmarks of carbon is its ability to form multiple bonds to itself or to other elements (particularly to 0, N or S). This feature is arguably one of the most important reasons for the richness and diversity of organic chemistry and has stimulated inorganic and organometallic chemists to find out if analogous compounds ...

  1. Bikash Kumar Panda

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Bikash Kumar Panda. Articles written in Journal of Chemical Sciences. Volume 116 Issue 5 August 2004 pp 245-250. Synthesis, characterization and emission properties of quinolin-8-olato chelated ruthenium organometallics · Bikash Kumar Panda · More Details Abstract ...

  2. Krishnamurthy, Prof. Setharampattu Seshaiyer

    Indian Academy of Sciences (India)

    Specialization: Main Group Chemistry and Organometallic Chemistry Address: Department of Inorganic and Physical Chemistry, Indian Inst. of Science, Bengaluru 560 012, Karnataka Contact: ... The 29th Mid-year meeting of the Academy will be held from 29–30 June 2018 in Infosys, Mysuru ... 11 to 25 June, 2018

  3. New Fellows and Honorary Fellow

    Indian Academy of Sciences (India)

    Elected: 1974 Section: Chemistry ... Date of death: 11 July 2004. Specialization: Inorganic & Organometallic Chemistry, Metal Alkoxides and Sol-Gel Chemistry ... The 29th Mid-year meeting of the Academy will be held from 29–30 June 2018 ...

  4. Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination.

    Science.gov (United States)

    Qiu, Youai; Tian, Cong; Massignan, Leonardo; Rogge, Torben; Ackermann, Lutz

    2018-05-14

    Electrocatalysis has been identified as a powerful strategy for organometallic catalysis, and yet electrocatalytic C-H activation is restricted to strongly N-coordinating directing groups. The first example of electrocatalytic C-H activation by weak O-coordination is presented, in which a versatile ruthenium(II) carboxylate catalyst enables electrooxidative C-H/O-H functionalization for alkyne annulations in the absence of metal oxidants; thereby exploiting sustainable electricity as the sole oxidant. Mechanistic insights provide strong support for a facile organometallic C-H ruthenation and an effective electrochemical reoxidation of the key ruthenium(0) intermediate. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microcolumn high pressure liquid chromatography with a glass-frit nebulizer interface for plasma emission detection

    International Nuclear Information System (INIS)

    Ibrahim, M.; Nisamaneepong, W.; Caruso, J.

    1985-01-01

    Microcolumn high pressure liquid chromatography (micro-HPLC) is rapidly gaining recognition as a practical separation tool for organometallic compounds. The use of the inductively coupled plasma (ICP) as a detector for micro-HPLC is studied. Several miniaturized glass-frit nebulizers are investigated as interfaces between the output of the microbore column and the ICP torch. Their performance with aqueous and methanolic solutions is evaluated by direct nebulization and flow injection analysis. The most efficient of these nebulizers is used in the micro-HPLC/ICP study of some Cd, Pb, and Zn organometallic compounds. Detection limits of 1.92 ng of Pb for tetramethyllead and 5.01 ng of Pb for tetraethyllead are obtained and compared with regular HPLC/ICP of these same compounds. Approximately equivalent detection limits were obtained when using a microwave induced plasma as an alternate plasma source

  6. In silico evaluation of highly efficient organic light-emitting materials

    Science.gov (United States)

    Kwak, H. Shaun; Giesen, David J.; Hughes, Thomas F.; Goldberg, Alexander; Cao, Yixiang; Gavartin, Jacob; Dixon, Steve; Halls, Mathew D.

    2016-09-01

    Design and development of highly efficient organic and organometallic dopants is one of the central challenges in the organic light-emitting diodes (OLEDs) technology. Recent advances in the computational materials science have made it possible to apply computer-aided evaluation and screening framework directly to the design space of organic lightemitting diodes (OLEDs). In this work, we will showcase two major components of the latest in silico framework for development of organometallic phosphorescent dopants - (1) rapid screening of dopants by machine-learned quantum mechanical models and (2) phosphorescence lifetime predictions with spin-orbit coupled calculations (SOC-TDDFT). The combined work of virtual screening and evaluation would significantly widen the design space for highly efficient phosphorescent dopants with unbiased measures to evaluate performance of the materials from first principles.

  7. 200 years of lithium and 100 years of organolithium chemistry

    International Nuclear Information System (INIS)

    Wietelmann, Ulrich; Klett, Jan

    2018-01-01

    The element lithium has been discovered 200 years ago. Due to its unique properties it has emerged to play a vital role in industry, esp. for energy storage, and lithium-based products and processes support sustainable technological developments. In addition to the many uses of lithium in its inorganic forms, lithium has a rich organometallic chemistry. The development of organometallic chemistry has been hindered by synthetic problems from the start. When Wilhelm Schlenk developed the basic principles to handle and synthesize air- and moisture-sensitive compounds, the road was open to further developments. After more information was available about the stability and solubility of such compounds, they started to play an essential role in other fields of chemistry as alkyl or aryl transfer reagents. (copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  8. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  9. Optical spectroscopy of f-element compounds

    International Nuclear Information System (INIS)

    Carnall, W.T.

    1978-01-01

    It is noted that the energies and intensities of transitions observed in the optical spectra of lanthanide (Ln) and actinide (An) compounds can typically be measured with a high degree of accuracy. The observed transitions can then be directly represented as upper state energy levels where the structure is induced by the environment. A discussion is presented of the systematic theoretical interpretation of these transitions both in terms of energy level structure and transition probability. Particularly for the trivalent lanthanides and actinides, the detail to which the interpretation can be carried is unique in the periodic table. The electronic structure of organometallic lanthanides and actinides is emphasized in the discussion. It is made clear that this type of ligand does not present any unique interpretive problems. The basic framework of the interpretation is not dependent upon the specific ionic environment. On the other hand, organometallic compounds represent a particularly interesting group in which to study excited state relaxation

  10. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre-formed Ir metal particles. These solids possess promising properties, in terms of selectivity, as catalysts for propane dehydrogenation to propene. Detailed CO-adsorption DRIFTS, XANES and EXAFS characterization studies have been performed on these systems in order to compare the structural and electronic evolution of systems in relation to the nature of the Ir-Sn bonds present in the precursor compounds and to propose a structural model of the Ir-Sn species present at the silica surface of the final catalyst. © 2013 The Royal Society of Chemistry.

  11. The preparation of HfC/C ceramics via molecular design.

    Science.gov (United States)

    Inzenhofer, Kathrin; Schmalz, Thomas; Wrackmeyer, Bernd; Motz, Günter

    2011-05-07

    Polymer derived ceramics have received lots of attention throughout the last few decades. Unfortunately, only a few precursor systems have been developed, focusing on silicon based polymers and ceramics, respectively. Herein, the synthesis of novel hafnium containing organometallic polymers by two different approaches is reported. Dialkenyl substituted hafnocene monomers were synthesized and subsequently polymerized via a free radical mechanism. Salt metathesis reactions of hafnocene dichloride with bifunctional linkers led to the formation of polymeric materials. NMR spectroscopic methods--in solution as well as in the solid state--were used to characterize the organometallic polymers. Ceramics were finally obtained after cross-linking and thermal treatment under argon (T(max) = 1800 °C). SEM investigations, elemental analyses, Raman spectroscopy and XRD investigations identified the pyrolyzed products as partially crystalline HfC/C mixed phases.

  12. Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles.

    Science.gov (United States)

    Retif, Paul; Reinhard, Aurélie; Paquot, Héna; Jouan-Hureaux, Valérie; Chateau, Alicia; Sancey, Lucie; Barberi-Heyob, Muriel; Pinel, Sophie; Bastogne, Thierry

    This article addresses the in silico-in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy.

  13. Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?

    Directory of Open Access Journals (Sweden)

    Michel Ferreira

    2017-01-01

    Full Text Available The behaviour of platinum(II and palladium(0 complexes coordinated by various hydrosoluble monodentate phosphane ligands has been investigated by 31P{1H} NMR spectroscopy in the presence of randomly methylated β-cyclodextrin (RAME-β-CD. This molecular receptor can have no impact on the organometallic complexes, induce the formation of phosphane low-coordinated complexes or form coordination second sphere species. These three behaviours are under thermodynamic control and are governed not only by the affinity of RAME-β-CD for the phosphane but also by the phosphane stereoelectronic properties. When observed, the low-coordinated complexes may be formed either via a preliminary decoordination of the phosphane followed by a complexation of the free ligand by the CD or via the generation of organometallic species complexed by CD which then lead to expulsion of ligands to decrease their internal steric hindrance.

  14. 200 years of lithium and 100 years of organolithium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wietelmann, Ulrich [Albemarle Germany GmbH, Synthesis Solutions, Industriepark Hoechst, Frankfurt am Main (Germany); Klett, Jan [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz (Germany)

    2018-03-01

    The element lithium has been discovered 200 years ago. Due to its unique properties it has emerged to play a vital role in industry, esp. for energy storage, and lithium-based products and processes support sustainable technological developments. In addition to the many uses of lithium in its inorganic forms, lithium has a rich organometallic chemistry. The development of organometallic chemistry has been hindered by synthetic problems from the start. When Wilhelm Schlenk developed the basic principles to handle and synthesize air- and moisture-sensitive compounds, the road was open to further developments. After more information was available about the stability and solubility of such compounds, they started to play an essential role in other fields of chemistry as alkyl or aryl transfer reagents. (copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  15. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    International Nuclear Information System (INIS)

    Chen, W.C.; Wang, Y.T.; Shih, C.J.

    2010-01-01

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 o C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol -1 . The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  16. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.C. [School of Dentistry, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Wang, Y.T. [Department of Medical Research and Education, Chen Hsin General Hospital, 45 Cheng-Hsin Street, Pai-Tou, Taipei 11220, Taiwan (China); Shih, C.J., E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-02-04

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 {sup o}C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol{sup -1}. The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  17. Catalysed hydrogen isotope exchange

    International Nuclear Information System (INIS)

    1973-01-01

    A method is described for enhancing the rate of exchange of hydrogen atoms in organic compounds or moieties with deuterium or tritium atoms. It comprises reacting the organic compound or moiety and a compound which is the source of deuterium or tritium in the presence of a catalyst consisting of a non-metallic, metallic or organometallic halide of Lewis acid character and which is reactive towards water, hydrogen halides or similar protonic acids. The catalyst is a halide or organometallic halide of: (i) zinc or another element of Group IIb; (ii) boron, aluminium or another element of Group III; (iii) tin, lead, antimony or another element of Groups IV to VI; or (iv) a transition metal, lanthanide or stable actinide; or a halohalide. (author)

  18. Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells.

    Science.gov (United States)

    Teixeira, Ricardo G; Brás, Ana Rita; Côrte-Real, Leonor; Tatikonda, Rajendhraprasad; Sanches, Anabela; Robalo, M Paula; Avecilla, Fernando; Moreira, Tiago; Garcia, M Helena; Haukka, Matti; Preto, Ana; Valente, Andreia

    2018-01-01

    Three new compounds have been synthesized and completely characterized by analytical and spectroscopic techniques. The new bipyridine-perfluorinated ligand L1 and the new organometallic complex [Ru(η 5 -MeCp)(PPh 3 ) 2 Cl] (Ru1) crystalize in the centrosymmetric triclinic space group P1¯. Analysis of the phenotypic effects induced by both organometallic complexes Ru1 and [Ru(η 5 -MeCp)(PPh 3 )(L1)][CF 3 SO 3 ] (Ru2), on human colorectal cancer cells (SW480 and RKO) survival, showed that Ru2 has a potent anti-proliferative activity, 4-6 times higher than cisplatin, and induce apoptosis in these cells. Data obtained in a noncancerous cell line derived from normal colon epithelial cells (NCM460) revealed an intrinsic selectivity of Ru2 for malignant cells at low concentrations, showing the high potential of this compound as a selective anticancer agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS.

    Science.gov (United States)

    Ferrari, Raffaele; Talamini, Laura; Violatto, Martina Bruna; Giangregorio, Paola; Sponchioni, Mattia; Morbidelli, Massimo; Salmona, Mario; Bigini, Paolo; Moscatelli, Davide

    2017-01-03

    Fluorescent poly(ε-caprolactone)-based nanoparticles (NPs) have been synthesized and successfully loaded with a titanium organometallic compound as a mimic of a water-insoluble drug. The nature of this nanovector enabled us to combine the quantification of the metal in tissues after systemic administration in healthy immunocompetent mice by inductively coupled plasma mass spectroscopy (ICP-MS) followed by the visualization of NPs in organ sections by confocal microscopy. This innovative method of nanodrug screening has enabled us to elucidate the crucial parameters of their kinetics. The organometallic compound is a good mimic of most anticancer drugs, and this approach is an interesting starting point to design the relevance of a broad range of nanoformulations in terms of safety and targeted delivery of the cargoes.

  20. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO.

    Science.gov (United States)

    Tornow, Claire E; Thorson, Michael R; Ma, Sichao; Gewirth, Andrew A; Kenis, Paul J A

    2012-12-05

    The synthesis and application of carbon-supported, nitrogen-based organometallic silver catalysts for the reduction of CO(2) is studied using an electrochemical flow reactor. Their performance toward the selective formation of CO is similar to the performance achieved when using Ag as the catalyst, but comparatively at much lower silver loading. Faradaic efficiencies of the organometallic catalyst are higher than 90%, which are comparable to those of Ag. Furthermore, with the addition of an amine ligand to Ag/C, the partial current density for CO increases significantly, suggesting a possible co-catalyst mechanism. Additional improvements in activity and selectivity may be achieved as greater insight is obtained on the mechanism of CO(2) reduction and on how these complexes assemble on the carbon support.

  1. Oriented Poly(dialkylstannane)s

    DEFF Research Database (Denmark)

    Choffat, Fabien; Fornera, Sara; Smith, Paul

    2008-01-01

    The inorganic (or 'organometallic') polymers poly(dibutylstannane), poly(dioctylstannane), and poly(didodecylstannane) have been oriented by shear forces, the tensile drawing of blends with polyethylene, and deposition from solution onto glass slides coated with all oriented, friction-deposited p......The inorganic (or 'organometallic') polymers poly(dibutylstannane), poly(dioctylstannane), and poly(didodecylstannane) have been oriented by shear forces, the tensile drawing of blends with polyethylene, and deposition from solution onto glass slides coated with all oriented, friction......-deposited poly(tetrafluoroethylene) (PTFE) layer. Orientation of the polystannanes has been examined by polarization microscopy, UV-vis spectroscopy with polarized light, and X-ray diffraction and their direction is found to depend on the length of the alkyl side groups and the method of orientation. Remarkably...

  2. Modification in band gap of zirconium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S. [Department of Physics, ISLE, IPS Academy, Indore (M.P.) (India); Mishra, A. [School of Physics, Devi Ahilya Vishwavidyalaya, Indore (M.P.) (India); Shrivastava, B. D. [Govt. P. G. College, Biora (M.P.) (India)

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  3. A study on the photocatalytic reaction of the metals and organics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    TiO{sub 2}-based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author).

  4. Theory-Guided Innovation of Noncarbon Two-Dimensional Nanomaterials

    Science.gov (United States)

    2016-05-24

    macrocycle-containing model complexes for the active site of [FeFe]-hydrogenases, Journal of Organometallic Chemistry, (1 2014): 0. doi: 10.1016...further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. These results have been published in Scientific...yttrium cyanide cluster inside a popular C82 cage—YCN@Cs(6)-C82 (Scientific Reports 2013, 3, 1487), 70 and some new porphyrin or metalloporphyrin

  5. Crystal growth and scintillation properties of Lu substituted CeBr.sub.3./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Ito, T.; Yokota, Y.; Kurosawa, S.; Král, Robert; Kamada, K.; Pejchal, Jan; Ohashi, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 452, Oct (2016), s. 65-68 ISSN 0022-0248. [American Conference on Crystal Growth and Epitaxy /20./ (ACCGE) / 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE) / 2nd 2D Electronic Materials Symposium. Big Sky, MT, 02.08.2015-07.08.2015] Institutional support: RVO:68378271 Keywords : radiation * halides * scintillator materials * crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.751, year: 2016

  6. Nouveaux développements dans la chimie des sels de diazonium en catalyse organométallique : catalyse hétérogène en milieux aqueux

    OpenAIRE

    Le Callonnec , Francois

    2014-01-01

    Diazonium salts are reactive and versatile when used as electrophiles. Unfortunately, their reputation as instable compounds strongly limited their use in chemical synthesis. This work lead to the discovery of new procedure for a safer and more environmentally friendly use of diazonium salts in organometallic coupling reactions. We studied palladium catalised carbon-carbon coupling reactions and copper catalyzed C-H arylatons. A major part of this work is also focalized in the development of ...

  7. Institute of Genetics and Toxicology of Fission Products (IGT) of Karlsruhe Nuclear Research Centre. Progress report on R and D work in 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The main research activities of the IGT in 1985 according to the R and D programme set up for that year have been carried out under the roof of eight different projects or programmes: Gene repair; gene regulation; biological cancerogenesis; molecular genetics of eukaryotes; radiotoxicology of actinides; biochemistry of actinides and other heavy metals; biophysics of organometallic compounds; biochemical principles of decorporation therapy. (orig./MG) [de

  8. Iron piano-stool complexes containing NHC ligands outfitted with pendent arms: synthesis, characterization, and screening for catalytic transfer hydrogenation

    Science.gov (United States)

    Parthapratim Das; Thomas Elder; William W. Brennessel; Stephen C. Chmely

    2016-01-01

    Catalysis is a fundamental technology that is widely used in the food, petrochemical, pharmaceutical, and agricultural sectors to produce chemical products on an industrial scale. Well-defined molecular organometallic species are a cornerstone of catalytic methodology, and the activity and selectivity of these complexes can be modulated by judicious choice of metal and...

  9. Lithium Salts of [1,12-Dialkyl-CB11Me10]- Anions

    Czech Academy of Sciences Publication Activity Database

    Valášek, Michal; Štursa, Jan; Pohl, Radek; Michl, Josef

    2010-01-01

    Roč. 49, č. 22 (2010), s. 10255-10263 ISSN 0020-1669 R&D Projects: GA AV ČR IAA400550708; GA ČR GC203/09/J058 Grant - others:AV ČR(CZ) M200550906 Institutional research plan: CEZ:AV0Z40550506 Keywords : carboranes * organometallics * synthetic methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.326, year: 2010

  10. A study on the photocatalytic reaction of the metals and organics

    International Nuclear Information System (INIS)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee

    1995-12-01

    TiO 2 -based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author)

  11. Trimethylsilylcyclopentadienes with Polyfluorinated Ponytails and Mono- and Bis(?5-cyclopentadienyl)titanium(IV) Complexes Derived from Them

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan; Červenková Šťastná, Lucie; Sýkora, Jan; Císařová, I.; Kvíčala, J.

    2004-01-01

    Roč. 23, č. 12 (2004), s. 2850-2854 ISSN 0276-7333 R&D Projects: GA ČR GA203/99/M037; GA AV ČR IAA4072203; GA AV ČR IAA4072005 Institutional research plan: CEZ:AV0Z4072921 Keywords : molecular structure * organometallic chemistry * methodology Subject RIV: CA - Inorganic Chemistry Impact factor: 3.196, year: 2004

  12. Heavy metals in the hydrological cycle

    International Nuclear Information System (INIS)

    Astruc, M.; Lester, J.N.

    1988-01-01

    An integrated approach to the problems associated with heavy metals in the hydrological cycle is presented. Research and practical experience from a broad spectrum of disciplines are drawn together concentrating on the following themes: water quality, domestic and industrial wastes, sludge and dredge materials, soil interactions, effects on aquatic ecosystems, organometallics (with particular reference to tin compounds), speciation, the marine environment and health effects. One paper is within INIS scope and is processed separately. (U.K.)

  13. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  14. Antifouling Effectiveness of Copolymers for Ship Hull Protection

    Science.gov (United States)

    1993-01-01

    methanol was added dropwise in dim light to the stirred tetraor- ganotin suspension (Rosenberg, Debreczeni, & Weinberg, 1959; Boue , Gielen...Nasielski, 1968; Boue et al., 1969). Upon completion of the reaction, the solvent and low-boiling side products were removed under vaccum at room temperature...organisms, the released species has a minimal impact on the environment. 13 REFERENCES Boue , S., M. Gielen, and J. Nasielski. 1968. "Organometallic

  15. Stereoselective conjugate radical additions: application of a fluorous oxazolidinone chiral auxiliary for efficient tin removal.

    Science.gov (United States)

    Hein, Jason E; Zimmerman, Jake; Sibi, Mukund P; Hultin, Philip G

    2005-06-23

    [reaction: see text] A series of asymmetric free-radical-mediated intermolecular conjugate additions using a fluorous oxazolidinone chiral auxiliary has been completed. The fluorous auxiliary facilitated product isolation using fluorous solid phase extractions (FSPE), effectively removing excess organic and organometallic reagents. Parallel reactions carried out with a similar but nonfluorous norephedrine-derived oxazolidinone demonstrated the superior stereoselectivity and purification obtainable with the fluorous chiral auxiliary.

  16. Decarboxylative Hydroalkylation of Alkynes.

    Science.gov (United States)

    Till, Nicholas A; Smith, Russell T; MacMillan, David W C

    2018-05-02

    The merger of open- and closed-shell elementary organometallic steps has enabled the selective intermolecular addition of nucleophilic radicals to unactivated alkynes. A range of carboxylic acids can be subjected to a CO 2 extrusion, nickel capture, migratory insertion sequence with terminal and internal alkynes to generate stereodefined functionalized olefins. This platform has been further extended, via hydrogen atom transfer, to the direct vinylation of unactivated C-H bonds. Preliminary studies indicate that a Ni-alkyl migratory insertion is operative.

  17. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  18. Aspects of transmetallation reactions of 2-Me2NCH2C6H4- and 2,6-(Me2NCH2)-C6H3-metal (Pd,Pt,Hg,Tl) complexes with metal carboxylates and low-valent metal (Pd,Pt) complexes

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Vrieze, K.

    1981-01-01

    A study has been made of reactions involving organometallic compounds containing ortho-Me{2}NCH{2} substituted aryl ligands. The single step syntheses of the new compounds [(2-Me{2}NCH{2}C{6}H{4}){2}TlCl], [ [{(S)-2-Me{2}NCH(Me)C{6}H{4}}{2}TlCl], [{(S)-2-Me{2}NCH(Me)C{6}H{4}}TlCl{2}], [{2,

  19. Safety Protocols at MAT Lab

    International Nuclear Information System (INIS)

    Wadawale, A.; Chopade, S.; Chaudhury, K.; Pal, M.K.; Kushwah, N.; Shah, A.Y.; Kedarnath, G.; Priyadarsini, K.I.; Jain, V.K.

    2017-01-01

    MAT Lab of Chemistry Division, BARC (A Class 10000 Clean room laboratory) has been in operation since 2004 for process development of ultra-purification of several strategically important materials (Ga, As, Sb, In, CsI and Ge) and synthesis of their organometallic compounds. Of these, work related to purification of As, Sb, and In, has been discontinued. Due to high toxicity and pyrophoric nature of some of the compounds, stringent safety regulations were formulated and subsequently implemented by the division

  20. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  1. New insights about antibiotic production by Pseudomonas aeruginosa: a gene expression analysis

    Science.gov (United States)

    Gionco, Bárbara; Tavares, Eliandro R.; de Oliveira, Admilton G.; Yamada-Ogatta, Sueli F.; do Carmo, Anderson O.; Pereira, Ulisses de Pádua; Chideroli, Roberta T.; Simionato, Ane S.; Navarro, Miguel O. P.; Chryssafidis, Andreas L.; Andrade, Galdino

    2017-09-01

    The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified twelve upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.

  2. Generation and Cycloaddition of o-Quinodimethane in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Margarete F. da Silva

    2001-04-01

    Full Text Available o-Quinodimethane can be generated from =α,α'-dihalo-o-xylenes using zinc in aqueous solution. In the presence of activated dienophiles cycloadducts can be obtained directly. Catalysis with tris-triphenylphosphine ruthenium(II dichloride reduces side reactions such as reduction and polymerisation and improves the yield. This is the first example of an organometallic cyclisation in aqueous medium using dihalo compounds.

  3. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  4. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    With 1,1-dithiolate ligands both classical and organometallic complexes of gallium and indium, [M(S ∩ S)3], [RM(S ∩ S)2] and [R2M(S ∩ S)] (where R = Me or Et; M = Ga or In; S ∩ S = RCS2, ROCS2, R2NCS2 and (RO)2PS2) have been isolated. Reactions of internally functionalised oxo ligands with R3MR ⋅ OEt2 ...

  6. Precursors-Derived Ceramic Membranes for High-Temperature Separation of Hydrogen

    OpenAIRE

    Yuji, Iwamoto

    2007-01-01

    This review describes recent progress in the development of hydrogen-permselective ceramic membranes derived from organometallic precursors. Microstructure and gas transport property of microporous amorphous silica-based membranes are briefly described. Then, high-temperature hydrogen permselectivity, hydrothermal stability as well as hydrogen/steam selectivity of the amorphous silica-based membranes are discussed from a viewpoint of application to membrane reactors for conversion enhancement...

  7. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  8. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  9. Valencies of the lanthanides

    OpenAIRE

    Johnson, David A.; Nelson, Peter G.

    2018-01-01

    The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed.

  10. Lewis base binding affinities and redox properties of plutonium complexes

    International Nuclear Information System (INIS)

    Oldham, Susan M.; Schake, Ann R.; Burns, Carol J.; Morgan, Arthur N. III; Schnabel, Richard C.; Warner, Benjamin P.; Costa, David A.; Smith, Wayne H.

    2000-01-01

    As part of the actinide molecular science competency development effort, the initial goal of this work is to synthesize and investigate several series of complexes, varying by actinide metal, ligand set, and oxidation state. We are examining the reactivity of plutonium and neptunium organometallic complexes to elucidate fundamental chemical parameters of the metals. These reactions will be compared to those of the known corresponding uranium complexes in order to recognize trends among the actinide elements and to document differences in chemical behavior

  11. Synthesis of enantioenriched γ-quaternary cycloheptenones using a combined allylic alkylation/Stork–Danheiser approach: preparation of mono-, bi-, and tricyclic systems

    KAUST Repository

    Bennett, Nathan B.; Hong, Allen Y.; Harned, Andrew M.; Stoltz, Brian M.

    2012-01-01

    A general method for the synthesis of β-substituted and unsubstituted cycloheptenones bearing enantioenriched all-carbon γ-quaternary stereocenters is reported. Hydride or organometallic addition to a seven-membered ring vinylogous ester followed by finely tuned quenching parameters achieves elimination to the corresponding cycloheptenone. The resulting enones are elaborated to bi- and tricyclic compounds with potential for the preparation of non-natural analogs and whose structures are embedded in a number of cycloheptanoid natural products.

  12. Microwave-Assisted Alkylation of [CB11H12]- and Related Anions

    Czech Academy of Sciences Publication Activity Database

    Valášek, Michal; Štursa, Jan; Pohl, Radek; Michl, Josef

    2010-01-01

    Roč. 49, č. 22 (2010), s. 10247-10254 ISSN 0020-1669 R&D Projects: GA AV ČR IAA400550708; GA ČR GC203/09/J058 Grant - others:AV ČR(CZ) M200550906 Institutional research plan: CEZ:AV0Z40550506 Keywords : carboranes * organometallics * microwave assisted synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.326, year: 2010

  13. Boron in nuclear medicine: New synthetic approaches to PET and SPECT. Final report, May 1, 1986--April 30, 1996

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1997-08-01

    Research is described in the development of organometallic reagents in which the boron was attached to a nonreactive organic or inorganic matrix such as polystyrene, silica, or alumina. We developed the synthesis of oxygen-15 labelled butanol, which has been found to be a valuable blood flow agent in humans. We have also developed a series of polymeric borane derivatives which were used to prepare nitrogen-13 labelled amines

  14. Demonstrating the utility of boron based precursor molecules for selective area deposition in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Perkins, F.K.; Onellion, M.; Lee, S.; Bowben, T.A.

    1992-01-01

    The scanning tunneling microscope (STM) can be used to selectively deposit material from a gaseous precursor compound. Ultrasmall (less than a 100 nm across) spatial dimensions for selective area deposition may be achieved by this means. In this paper the authors outline a scheme foreselecting and designing main group cluster compounds and organometallics for this type of selective area deposition using nido-decaborane(14) as an example

  15. Recent advances in carbocupration of α-heterosubstituted alkynes

    Directory of Open Access Journals (Sweden)

    Ahmad Basheer

    2010-07-01

    Full Text Available Carbocupration of α-heterosubstituted alkynes leads to the formation of stereodefined functionalized vinyl copper species as single isomer. Recent advances in the field show that a simple pre-association of the organometallic derivative with an additional polar functional group in the vicinity of the reaction center may completely change the stereochemical outcome of the reaction. Representative examples are given in this mini-review.

  16. New Insights about Antibiotic Production by Pseudomonas aeruginosa: A Gene Expression Analysis

    Directory of Open Access Journals (Sweden)

    Bárbara Gionco

    2017-09-01

    Full Text Available The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified 12 upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and we suggesting that may involve in the biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.

  17. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    Science.gov (United States)

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  18. The growth of zinc phthalocyanine thin films by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Šebera, Jakub; Bensalah-Ledoux, A.; Guy, S.; Bulíř, Jiří; Fitl, Přemysl; Vlček, Jan; Zákutná, D.; Marešová, Eva; Hubík, Pavel; Kratochvílová, Irena; Vrňata, M.; Lančok, Ján

    2016-01-01

    Roč. 31, č. 1 (2016), s. 163-172 ISSN 0884-2914 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR(CZ) GA14-10279S; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 Keywords : organometallic * film * laser ablation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.673, year: 2016

  19. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    Science.gov (United States)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  20. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)