Sample records for methyl tetrazolium mtt

  1. Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). (United States)

    Mickisch, G; Fajta, S; Keilhauer, G; Schlick, E; Tschada, R; Alken, P


    MTT staining procedures have been used in chemosensitivity testing of established cell lines of human and other sources as well as of human leukaemias, but only limited information on its application in primary solid human tumors is presently available. We have evaluated MTT staining in primary human Renal Cell Carcinomas (RCCs), studied various factors interfering with the optimal use, and finally applied it in subsequent chemosensitivity testing. The method depends on the conversion of a water-soluble tetrazolium salt (MTT) to a purple colored formazan precipitate, a reaction effected by enzymes active only in living cells. Single cell suspensions of RCCs were obtained either by enzymatic dispersion or by mechanical dissagregation, filtered through gauze, and purified by Ficoll density centrifugation. Tests were carried out in 96-well microculture plates. 10(4) viable tumor cells per well at 4 h incubation time with 20 micrograms MTT/100 microliters total medium volume yielded best results. Formazan crystals were dissolved with DMSO, and the plates were immediately measured on a microculture plate reader at 540 nm. Under these criteria, linearity of the system could be demonstrated. For chemosensitivity testing, cells were continuously exposed to a number of drugs prior to the MTT staining procedure. Reproducibility of results was assessed and confirmed by culturing RCCs in flasks additionally, resubmitting them after 1, 2, and 4 weeks to the MTT assay. We conclude that the semiautomated MTT assay offers a valid, rapid, reliable and simple method to determine the degree of chemoresistance in primary human RCCs.

  2. The use of intermediate electron acceptors to enhance MTT bioreduction in a microculture tetrazolium assay for human growth hormone. (United States)

    Goodwin, C J; Holt, S J; Downes, S; Marshall, N J


    We contrast the effects of three intermediate electron acceptors (IEAs) on the highly quantitative ESTA bioassay for human growth hormone. This is a microculture tetrazolium assay based upon the in vitro reduction of the tetrazolium salt MTT, by Nb2 cells which have been activated with hGH. Each of the IEAs influenced MTT-formazan production in a distinctive manner. The two quinonoids, namely menadione and co-enzyme Q0 markedly increased the MTT-formazan produced by hormone activated Nb2 cells and thereby amplified the response of our bioassay for human growth hormone (hGH). The exceptionally low bioassay baseline which is characteristic of the unstimulated Nb2 cells when only MTT is added was retained in the presence of CoQ0, but was greatly increased by menadione. Phenazine methosulphate, which is the most widely used redox intermediary in microculture tetrazolium assays, also increased the baseline, but had only a minimal additional effect on MTT reduction by activated Nb2 cells. We conclude that CoQ0 is the preferred IEA for this ESTA bioassay for hGH.

  3. In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyl-tetrazolium reduction assay. (United States)

    Hördegen, P; Cabaret, J; Hertzberg, H; Langhans, W; Maurer, V


    Because of the increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against gastrointestinal nematodes. Phytotherapy could be one of the major options to control these pathologies. Extracts or ingredients of six different plant species were tested against exsheathed infective larvae of Haemonchus contortus using a modified methyl-thiazolyl-tetrazolium (MTT) reduction assay. Pyrantel tartrate was used as reference anthelmintic. Bromelain, the enzyme complex of the stem of Ananas comosus (Bromeliaceae), the ethanolic extracts of seeds of Azadirachta indica (Meliaceae), Caesalpinia crista (Caesalpiniaceae) and Vernonia anthelmintica (Asteraceae), and the ethanolic extracts of the whole plant of Fumaria parviflora (Papaveraceae) and of the fruit of Embelia ribes (Myrsinaceae) showed an anthelmintic efficacy of up to 93%, relative to pyrantel tartrate. Based on these results obtained with larval Haemonchus contortus, the modified MTT reduction assay could be a possible method for testing plant products with anthelmintic properties.

  4. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    to inhibit proliferation of HeLa cells was determined using the 3443- dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay. Extracts from roots of Agathisanthemum bojeri, Synaptolepis kirkii and Zanha africana and the leaf extract of Physalis peruviana at a concentration of 10 pg/ml inhibited cell ...

  5. In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyl-tetrazolium reduction assay


    Hördegen, P.; Cabaret, J.; Hertzberg, H.; Langhans, W.; Maurer, V.


    Because of the increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against gastrointestinal nematodes. Phytotherapy could be one of the major options to control these pathologies. Extracts or ingredients of six different plant species were tested against exsheathed infective larvae of Haemonchus contortus using a modified methyl-thiazolyltetrazolium (MTT) reduction assay. Pyrantel tartrate was u...

  6. Microscopic analysis of MTT stained boar sperm cells

    African Journals Online (AJOL)



    2H-tetrazolium bromide is widely used for assessment of cytotoxicity, cell viability, and proliferation studies in cell biology (van Meerloo et al., 2011;. Stockert et al., 2012). The stain is abbreviated as MTT.

  7. Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS. (United States)

    Goodwin, C J; Holt, S J; Downes, S; Marshall, N J


    Microculture tetrazolium assays are being widely exploited to investigate the mechanisms of both cell activation and cell damage. They are colorimetric assays which are based upon the bioreduction of a tetrazolium salt to an intensely coloured formazan. We contrast the responses obtainable with two new tetrazolium salts, MTS and XTT, when used on the rat lymphoma cell line (Nb2 cells), which has been activated by human growth hormone. These tetrazolium salts, unlike the more commonly used MTT, form soluble formazans upon bioreduction by the activated cells. This has the advantage that it eliminates the error-prone solubilisation step which is required for the microculture tetrazolium assays which employ MTT. Bioreduction of XTT and MTS usually requires addition of an intermediate electron acceptor, phenazine methosulphate (PMS). We found that the XTT/PMS, but not the MTS/PMS, reagent mixture was unstable. Nucleation and crystal formation in the XTT/PMS reagent mixture, prepared in DPBS, could occur within 1-3 min. This resulted in a decline in XTT-formazan production and manifested itself in the microculture tetrazolium assay as both poor within-assay precision and serious assay drift. Several features of the system suggested that the formation of charge-transfer complexes between XTT and PMS accounted for this instability. No such instability was encountered when MTS and PMS were mixed. We demonstrate that MTS/PMS provides microculture tetrazolium assays for hGH which are free from these serious artefacts and which are uniquely precise. In conclusion we therefore advocate the use of MTS in preference to XTT for the new generation of microculture tetrazolium assays.

  8. Neutral Red versus MTT assay of cell viability in the presence of copper compounds. (United States)

    Gomez Perez, Mariela; Fourcade, Lyvia; Mateescu, Mircea Alexandru; Paquin, Joanne


    Copper is essential for numerous physiological functions, and copper compounds may display therapeutic as well as cytotoxic effects. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay is a standard test largely used in cytotoxicity studies. This report shows that low micromolar levels of copper compounds such as Cu(II)Urea 2 , Cu(II)Ser 2 and CuCl 2 can interfere with the MTT assay making improper the detection of formazan product of MTT reduction. Comparatively, the Neutral Red assay appears to be sensitive and showing no interference with these compounds. The lactate dehydrogenase alternative assay cannot be used because of inhibitory effect of these copper compounds on the enzyme activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Comparison of Tetrazolium Salt Assays for Evaluation of Drug Activity against Leishmania spp. (United States)

    Ginouves, Marine; Carme, Bernard; Couppie, Pierre


    In French Guiana, leishmaniasis is an essentially cutaneous infection. It constitutes a major public health problem, with a real incidence of 0.2 to 0.3%. Leishmania guyanensis is the causal species most frequently encountered in French Guiana. The treatment of leishmaniasis is essentially drug based, but the therapeutic compounds available have major side effects (e.g., liver damage and diabetes) and must be administered parenterally or are costly. The efficacy of some of these agents has declined due to the emergence of resistance in certain strains of Leishmania. There is currently no vaccine against leishmaniasis, and it is therefore both necessary and urgent to identify new compounds effective against Leishmania. The search for new drugs requires effective tests for evaluations of the leishmanicidal activity of a particular molecule or extract. Microculture tetrazolium assays (MTAs) are colorimetric tests based on the use of tetrazolium salts. We compared the efficacies of three tetrazolium salts—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8)—for quantification of the promastigotes of various species of Leishmania. We found that the capacity of Leishmania to metabolize a tetrazolium salt depended on the salt used and the species of Leishmania. WST-8 was the tetrazolium salt best metabolized by L. guyanensis and gave the best sensitivity. PMID:24719447

  10. The citotoxicity of calcium hydroxide intracanal dressing by MTT assay

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah


    Full Text Available Calcium hydroxide had been used as the intracanal dressing in endodontic treatment due to its high alkaline and high antimicrobial capacity. It also be able to dissolve the necrotic tissue, prevent the root resorbtion and regenerate a new hard tissue. The aim of this study is to identify the concentration of calcium hydroxide that has the lowest citotoxicity. There are 5 groups, each group had 8 samples with different concentration of calcium hydroxide. Group I: 50%, Group II: 55%, Group III: 60%, Group IV: 65% and Group V: 70%. The citotoxicity test by using enzymatic assay of MTT [3-(4.5- dimethylthiazol-2yl ]-2.5 diphenyl tetrazolium bromide, against fibroblast cell (BHK-21. The result of susceptibility test was showed by the citotoxicity detection of the survive cell of fibroblast that was measured spectrophotometrically using 595 nm beam. The data was analyzed using One-Way ANOVA test with significant difference α = 0.05 and subsequently LSD test. The result showed that in concentration 50%, 55%, 60%, 65%, and 70% calcium hydroxide had low toxicity, but calcium hydroxide 60%, had the lowest toxicity.

  11. The optimal condition of performing MTT assay for the determination of radiation sensitivity

    International Nuclear Information System (INIS)

    Hong, Semie; Kim, Il Han


    The measurement of radiation survival using a clonogenic assay, the established standard, can be difficult and time consuming. In this study, We have used the MTT assay, based on the reduction of a tetrazolium salt to a purple formazan precipitate by living cells, as a substitution for clonogenic assay and have examined the optimal condition for performing this assay in determination of radiation sensitivity. Four human cancer cell lines - PCI-1, SNU-1066, NCI-H63O and RKO cells have been used. For each cell line, a clonogenic assay and a MTT assay using Premix WST-1 solution, which is one of the tetrazolium salts and does not require washing or solubilization of the precipitate were carried out after irradiation of 0, 2, 4, 6, 8, 10 Gy, For clonogenic assay, cells in 25 cm 2 flasks were irradiated after overnight incubation and the resultant colonies containing more than 50 cells were scored after culturing the cells for 10-14 days, For MTT assay, the relationship between absorbance and cell number, optimal seeding cell number, and optimal timing of assay was determined. Then, MTT assay was performed when the irradiated cells had regained exponential growth or when the non-irradiated cells had undergone four or more doubling times. There was minimal variation in the values gained from these two methods with the standard deviation generally less than 5%, and there were no statistically significant differences between two methods according to t-test in low radiation dose (below 6 Gy). The regression analyses showed high linear correlation with the R 2 value of 0.975-0.992 between data from the two different methods. The optimal cell numbers for MTT assay were found to be dependent on plating efficiency of used cell line. Less than 300 cells/well were appropriate for cells with high plating efficiency (more than 30%). For cells with low plating efficiency (less than 30%), 500 cells/well or more were appropriate for assay. The optimal time for MTT assay was alter 6

  12. Comparison of tetrazolium colorimetric and [3H]-uridine assays for in vitro chemosensitivity testing. (United States)

    Ford, C H; Richardson, V J; Tsaltas, G


    We have routinely used a [3H]-uridine microplate assay for assessing chemosensitivity. A colorimetric assay with the advantages of safety, cost and simplicity has previously been described and relies on the ability of living cells to reduce a soluble tetrazolium salt, 3-4,5-dimethylthiazol-2,5-diphenyl-tetrazolium bromide (MMT), into an insoluble formazan precipitate. We compared the chemosensitivity of 14 human tumour cell lines of colonic, lung and cervical carcinoma origin to doxorubicin, vindesine or vindesine immunoconjugates in both the [3H]-uridine assay and a modified MTT assay to evaluate whether we could change to the non-radiolabelled method. Correlation between the concentration of drug causing 50% inhibition of cell growth (IC50) for these agents between the two assays was very poor. However, taking account of recent reports in the literature, we modified the MTT assay by removing serum-containing medium and using dimethyl sulphoxide to solubilise the formazan precipitate. This considerably improved the correlation between the assays for doxorubicin (r = 0.871; P = 0.001) and vindesine (r = 0.981; P less than 0.001). Our data indicates that the MTT assay can be used to replace the [3H]-uridine assay for chemosensitivity screening, but further modifications are necessary to improve the sensitivity and decrease the problem of cell loss after washing, which was noted with some adherent cell lines.

  13. The MTT assays of bovine retinal pericytes and human microvascular endothelial cells on DLC and Si-DLC-coated TCPS. (United States)

    Okpalugo, T I T; McKenna, E; Magee, A C; McLaughlin, J; Brown, N M D


    MTT (Tetrazolium)-assay suggests that diamond-like carbon (DLC) and silicon-doped DLC (Si-DLC) films obtained under appropriate deposition parameters are not toxic to bovine retinal pericytes, and human microvascular endothelial cells (HMEC). The observed frequency distributions of the optical density (OD) values indicative of cell viability are near Gaussian-normal distribution. One-way ANOVA indicates that at 0.05 levels the population means are not significantly different for the coated and control samples. The observed OD values depend on the cell line (cell growth/metabolic rate), possibly cell cycle stage, the deposition parameters-bias voltage, ion energy, pressure, argon precleaning, and the dopant. For colored thin films like DLC with room temperature photoconductivity and photoelectric effects, it is important to account for the OD contribution from the coating itself. MTT assay, not surprisingly, seems not to be highly sensitive to interfacial cellular interaction resulting from the change in the film's nanostructure, because the tetrazolium metabolism is mainly intracellular and not interfacial. The thin films were synthesized by 13.56 MHz RF-PECVD using argon and acetylene as source gases, with tetramethylsilane (TMS) vapor introduced for silicon doping. This study could be relevant to biomedical application of the films in the eye, peri-vascular, vascular compartments, and for cell-tissue engineering. (c) 2004 Wiley Periodicals, Inc.

  14. Aloe vera is non-toxic to cells: A microculture tetrazolium technique colorimetric assay study

    Directory of Open Access Journals (Sweden)

    Devi Gopakumar


    Full Text Available Introduction: Aloe vera (Av, a succulent of Liliaceae family is now a widely used medicinal plant. Its′ application covers a wide spectrum of human diseases, including oral mucosa, gastric mucosa and skin. Aloe vera preparations in the form of gel, mouth washes and cream are applied topically for many oral diseases. The applications include oral lichen planus, candidiasis, oral submucous fibrosis, geographic tongue, etc. Aims and Objectives: To evaluate the cytotoxicity of Av on human fibroblasts. Materials and Methods: Aloe vera preparation (70% was applied on the fibroblast cell lineage and the cell viability was evaluated by microculture tetrazolium technique (MTT colorimetric assay. Results: The cell viability at different concentrations was measured. The cells have maintained their viability at different concentrations used in the study. Conclusion: Our study shows the cell viability at different sample concentrations of Av. This could open up wide clinical applications of Av for reactive, inflammatory and potentially malignant oral and other mucocutaneous diseases.

  15. The pyruvic acid analog 3-bromopyruvate interferes with the tetrazolium reagent MTS in the evaluation of cytotoxicity. (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H; Kunjithapatham, Rani; Buijs, Manon; Syed, Labiq H; Rao, Pramod P; Ota, Shinichi; Vali, Mustafa


    3-Bromopyruvate (3BrPA) is a pyruvate analog known for its alkylating property. Recently, several reports have documented the antiglycolytic and anticancer effects of 3BrPA and its potential for therapeutic applications. 3BrPA-mediated cytotoxicity has been evaluated in vitro by various methods including tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)-based assays such as MTT, MTS, and so on. However, growing body of evidences has shown that tetrazolium reagent may interfere with the test compounds. In this study, we investigated whether the tetrazolium reagent interferes with the assessment of 3BrPA cytotoxicity. The results of the tetrazolium-based MTS assay were compared with 3 distinct cell viability detection methods, that is, Trypan Blue staining, ATP depletion, and Annexin V staining in 2 different cell lines, Vx-2 and HepG2. The MTS assay data showed false positive results by indicating increased cell viability at 1 mM and 2 mM 3BrPA whereas the other cell viability assays demonstrated that both Vx-2 and HepG2 cells are not viable at the same treatment conditions. In order to validate the direct interaction of 3BrPA with MTS reagent, we tested cell-free media incubated with different concentrations of 3BrPA. The results of cell-free media showed an increase in absorbance in a dose-dependent manner confirming the interaction of MTS with 3BrPA. Thus, our data clearly demonstrate that 3BrPA interferes with the accuracy of MTS-based cytotoxicity evaluation. Hence, we suggest that employing multiple methods of biochemical as well as morphological cytotoxicity assays is critical to evaluate 3BrPA-mediated cell death.

  16. Evaluation of a MTT assay in measurement of radiosensitizing effect

    International Nuclear Information System (INIS)

    Higuchi, Keiko; Mitsuhashi, Norio; Saitoh, Jun-ichi; Maebayashi, Katsuya; Sakurai, Hideyuki; Akimoto, Tetsuo; Niibe, Hideo


    The usefulness of a MTT assay by measuring the radiosensitizing effect of caffeine on rat yolk sac tumor cell line with a mutant-type p53 in vitro was evaluated. A rat yolk sac tumor cell line with a mutant-type p53, NMT-1R, was used in this study. The radiosensitivity of NMT-1R with or without caffeine was measured with a MTT assay. The results were compared with those by a clonogenic assay. Caffeine at a concentration of 2.0 mM which released radiation-induced G 2 block demonstrated a radiosensitizing effect, but caffeine at a concentration of 0.5 mM did not. The radiosensitizing effect of caffeine measured by a MTT assay correlated with that measured by a clonogenic assay. A MTT assay was useful to measure radiosensitivity and/or a radiosensitizing effect in vitro. (author)

  17. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. (United States)

    Fischer, Janine; Prosenc, Marc H; Wolff, Martin; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank


    Magnesium (Mg) alloys are promising materials for the development of biodegradable implants. However, the current in vitro test procedures for cytotoxicity, cell viability and proliferation are not always suitable for this class of materials. In this paper we show that tetrazolium-salt-based assays, which are widely used in practice, are influenced by the corrosion products of Mg-based alloys. Corroded Mg converts tetrazolium salts to formazan, leading to a higher background and falsifying the results of cell viability. Tetrazolium-based assays are therefore not a useful tool for testing the cytotoxicity of Mg in static in vitro assays. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. 1,3- and 1,4-Substituted tetrazolium salts

    International Nuclear Information System (INIS)

    Voitekhovich, Sergei V; Gaponik, Pavel N; Ivashkevich, Oleg A


    The published data on the synthesis, physicochemical properties, structures and reactions of 1,3-(1,3,5)- and 1,4-(1,4,5)-substituted tetrazolium salts are systematised and generalised. Their applications as starting compounds in the preparative chemistry of heterocyclic derivatives and some other branches of science and technology are reviewed. The bibliography includes 122 references.

  19. Evaluation of rapid MTT tube method for detection of drug susceptibility of mycobacterium tuberculosis to rifampicin and isoniazid

    Directory of Open Access Journals (Sweden)

    Raut U


    Full Text Available Purpose: To evaluate MTT method for detection of drug resistance to rifampicin and isoniazid in M.tuberculosis . This method utilises the ability of viable mycobacterial cells to reduce MTT( 3-4,5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide. Methods: The method was standardised with known resistant and sensitive strains of M.tuberculosis and was then extended to 50 clinical isolates. An inoculum of 10 7 cfu/mL was prepared in Middlebrook 7H9 medium supplemented with oleic acid, albumin, dextrose and catalase. For each drug three tubes were used, one with INH(0.2μg/mL or RIF(1μg/mL, another as inoculum control and third as blank control. These were incubated at 37°C for four and seven days respectively for RIF and INH after which MTT assay was performed. Results were read visually and by colorimeter at 570 nm. Relative optical density unit (RODU of 0.2 was taken as cut off. Results were compared with drug sensitivity obtained by proportion method using LJ medium. Results: For rifampicin, concordance with proportion method was 90% by visual and 94% by RODU. Sensitivity and specificity was 86.8% and 100% respectively by visual method and 95.2% and 87.5% respectively by RODU. For Isoniazid, concordance was 94% and sensitivity and specificity was 94.7 and 91.7% respectively by both visual and RODU. Conclusions: MTT assay proved to be rapid and cheap method for performing drug sensitivity of M.tuberculosis

  20. Some Ternary Phenylmethoxybis(tetrazolium) Complexes of Vanadium(IV,V) and Their Constants of Association


    Gavazov, Kiril Blazhev; Racheva, Petya Vasileva; Lekova, Vanya Dimitrova; Dimitrov, Atanas Nikolov; Türkyilmaz, Murat; Genç, Fatma


    Several liquid-liquid extraction systems containing vanadium {vanadium(IV) or vanadium(V)}, azoderivative of resorcinol {ADR: 4-(2-pyridylazo)-resorcinol (PAR) or 4-(2-thiazolylazo)-resorcinol (TAR)} and (phenylmethoxibis)tetrazolium salts {MBT: 3,3'-(3,3'-dimetoxy-4,4'-biphenylene)-bis(2,5-diphenyl-2H-tetrazolium) chloride (Blue Tetrazolium, BT) or 3,3'-(3,3'-dimetoxy-4,4'-biphenylene)-bis[2,5-di(4-nitrophenyl)-2H-tetrazolium] chloride (Tetranitroblue Tetrazolium, TNBT)} were studied. The op...

  1. Serial nitroblue tetrazolium tests in the management of infection. (United States)

    Freeman, R; King, B; Kite, P


    Two cases are described in which extensive use was made of the nitroblue tetrazolium (NBT) test. In the first case the advantages of using this technique to diagnose and control infection is shown; in the second the considerable advantage of the speed of the technique. In both of these cases the test made a material contribution to the management of the patient, and it is concluded that the test brings bacteriological control of the patient within the immediate clinical area, thus overcoming one of the principal disadvantages of the classical bacteriological methods.

  2. Quantification of cellular viability for the MTT method

    International Nuclear Information System (INIS)

    Altanes, M.


    In the last years, the scientists have been given to the task of finding new biomaterials whose biocompatibility with the human body allow them to substitute parts of the organism, as the bones and the junctures and also that they are little rejected. In the following work it was evaluated and quantified by the method of the MTT, a colorimetric, quick, simple and economic technical, the possible citohepatic effect of a watery extract of a biomaterials of polymeric origin (acrilamide and metacrilic acid) obtained for technical of gamma irradiation, consistent in culture medium 199 and veal serum, in cells Vero. In order to compare the answer of the analysis material, they were used the controls negative (polyethylene of high molecular weight), and positive (Sulphate of Streptomycin), just as they indicate it the established norms, being achieved the waited result of each one of them. In the observation made to the optic microscope, after 24 and 48 hours of contact between the cells and the extract of the analysis material, they were not perceived indicative of damage or cellular lysis, or morphologic changes in the structure of cells that it indicated us the possible cytotoxic effect of this biomaterials, therefore the qualitative analysis was not enough for the determination of the cytotoxic effect of the analysis sample

  3. Nitroblue tetrazolium test in patients with beta-thalassemia major

    International Nuclear Information System (INIS)

    Ghaffari, J.; Vahidshahi, K.; Kosaryan, M.; Karami, H.; Mahdavi, M.; Parvinnejad, N.


    Objective to assess the neutrophil function in thalassemia major (TM)patients and compare it with the control group and to recognize its relevantfactors. This was a retrospective cohort study, which was carried out fromOctober 2007 to February 2008 in the Thalassemia research Center in Boo AliSina Hospital in Sari, Mazandaran, North of Iran. The study populationconsisted of TM patients in Boo Ali Sina Teaching Hospital. The method ofsampling in the case group was systematic and it was target based in thecontrol group. The sample size determined was based on previous studies.Thalassemia major was diagnosed based on hemoglobin electrophoresis (casegroup). The control group was their brothers and sisters, who had +-5 yearsof age difference and were of the same gender as the patients. Datacollection was based on interview, investigating demographic characteristicsand also obtaining medical information from medical records of the patients.The neutrophil function was by performing nitroblue tetrazolium (NBT)reduction test. The test was carried out on both groups and the data wereanalyzed by software using SPSS version 13.0. In this study, 39 patients and39 healthy controls were compared. The average age of the patients was21.6+-5.3 years and it was 22.4+-5.1 years in healthy controls (p=0.7). Therewas a significant correlation between the test's results and the patients age(p=0.008). The rate of impaired NBT results in the patients was 36%, while itwas 10% in controls, which were significantly different. The neutrophilactivity based on NBT test was 89.9+-11.6% in the case group and 93.7+-2.51%in the control group (p=0.025). This study indicates that neutrophil activityin thalassemia patients was significantly lower, compared to the normalcontrol group, especially in young patients. Based on the results, evaluationof neutrophil function and pyogenic infections in TM patients seemsnecessary. (author)

  4. A study on the toxicity of three radiosensitizers on retinoblastoma cells by MTT assay

    International Nuclear Information System (INIS)

    Yi Xianjin; Jin Yizun; Ding Li; Ni Zhou; Wang Wenji


    The toxicity of three radiosensitizers BSO, CM and RSU-1069 on retinoblastoma cells was determined and the efficiency of in vitro MTT assay on drug-screening for retinoblastoma was also evaluated. The results showed that the MTT assay is very useful. The toxicity of radiosensitizers on retinoblastoma cells is dependent on cell line characteristics, drug concentration and time of exposure to it

  5. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun


    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  6. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. (United States)

    Marshall, N J; Goodwin, C J; Holt, S J


    Microculture tetrazolium assays (MTAs) are being widely applied to probe the relationships between cell survival, growth, and differentiation and also to investigate associations between compromised cell metabolism, oxidative stress, and programmed cell death as occurs in apoptosis. MTAs rely upon the cellular reduction of tetrazolium salts to their intensely coloured formazans. The resulting colorimetric assays form the basis of exceptionally precise systems which are technically amenable and capable of a high throughput of samples. As a consequence, MTAs are being used to monitor responses to both extracellular activators and toxic agents in disciplines as diverse as radiobiology and endocrinology. We review the chemistry and histochemical applications of tetrazolium salts and subsequently discuss the criteria for their use in MTAs. These assays are one of the latest examples of the application of the tetrazolium/formazan system to cell biology. We outline current views on the mechanisms of the bioreduction of tetrazolium salts. These probably combine to reflect the integrated pyridine nucleotide dependent redox state of the cell. We try to illustrate how an understanding of these mechanisms helps to avoid some of the pitfalls of the MTA systems. There is now for example, extensive evidence that changes in cell culture environments, such as glucose supply or pH of the medium, influence the reduction of tetrazolium salts and thereby introduce artefacts into MTAs. Finally, we provide examples of situations in which MTAs can be used to complement other more established experimental systems. They then act as unique probes with which to investigate changes in the redox state of the cell. These changes are associated with regulation of cell growth, proliferation and differentiation and conversely, the different pathways leading to cell death.

  7. Tetrazolium Reduction-Malachite Green Method for Assessing the Viability of Filamentous Bacteria in Activated Sludge (United States)

    Bitton, Gabriel; Koopman, Ben


    A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999

  8. Radiation-chemical reaction of 2,3,5-triphenyl-tetrazolium chloride in liquid and solid state

    DEFF Research Database (Denmark)

    Kovacs, A.; Wojnarovits, L.; McLaughlin, W.L.


    In pulse radiolysis of 2,3,5-triphenyl-tetrazolium chloride (TTC) at around 360 nm fast formation of intermediate tetrazolium radical was observed under both oxidizing and reducing conditions. In the latter case bimolecular formation of formazan, absorbing at around 480 nm, was observed. This rea......In pulse radiolysis of 2,3,5-triphenyl-tetrazolium chloride (TTC) at around 360 nm fast formation of intermediate tetrazolium radical was observed under both oxidizing and reducing conditions. In the latter case bimolecular formation of formazan, absorbing at around 480 nm, was observed...

  9. CD4+ count and Nitro-Blue Tetrazolium reduction rate of neutrophil ...

    African Journals Online (AJOL)

    CD4+ count and Nitro-Blue Tetrazolium reduction rate of neutrophil in newly diagnosed HIV-infected adults in Sokoto Metropolis. U.K. Mustapha, C.C. Onyenekwe, A. Yakubu, B.R. Alkali, M.H. Yeldu, K.M. Hamid, I. Abdullahi, N.M. Bunza, M. Bello, A.B. Ibrahim ...

  10. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt (United States)

    Carol A. Clausen; Vina W. Yang


    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  11. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail:


    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  12. Assessment of Nili-Ravi buffalo ( Bubalus bubalis ) semen by MTT ...

    African Journals Online (AJOL)

    The study was conducted to examine and validate the MTT test to assess the sperm viability of Nili-Ravi buffalo bulls and compare the efficiency of the test with the supra-vital staining technique (eosin-nigrosine) and hypo-osmotic swelling test. Fresh semen samples from breeding Nili-Ravi buffalo bulls (n = 20) were ...

  13. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium. (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi


    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  14. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts. (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi


    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Adjustment of tetrazolium methodology for the evaluation of Melanoxylon brauna seeds viability

    Directory of Open Access Journals (Sweden)

    Viviana Borges Corte


    Full Text Available The objective of this work was to adjust the tetrazolium test methodology to Melanoxylon brauna seeds. The seeds werepre-conditioned by immersion in distilled water at 25ºC for 24 hours. The tegument of the seeds were removed and the embryos weresubmerged in the tetrazolium solution (pH 6.5 at concentration of 0.05, 0.1 and 0.3%, and were kept in the dark at 25ºC temperaturefor 10 and 24 hours. The embryos were evaluated for the intensity of color, presence of milky areas, aspect of the tissues, and locationof the color. The embryos were individually classified into nine viability classes. They were also submitted to the germination andseedling emergence tests. The best correlations between the standard tests of seed germination of Melanoxylon brauna were those with0.3% concentration for 10 hours. The viability is represented by classes 1, 2 and 3.

  16. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. (United States)

    Sjögren, G; Sletten, G; Dahl, J E


    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  17. In vitro Cell Viability by CellProfiler® Software as Equivalent to MTT Assay. (United States)

    Gasparini, Luciana S; Macedo, Nayana D; Pimentel, Elisângela F; Fronza, Marcio; Junior, Valdemar L; Borges, Warley S; Cole, Eduardo R; Andrade, Tadeu U; Endringer, Denise C; Lenz, Dominik


    This study evaluated in vitro cell viability by the colorimetric MTT stands for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay compared to image analysis by CellProfiler ® software. Hepatoma (Hepa-1c1c7) and fibroblast (L929) cells were exposed to isolated substances, camptothecin, lycorine, tazettine, albomaculine, 3-epimacronine, trispheridine, galanthine and Padina gymnospora , Sargassum sp. methanolic extract, and Habranthus itaobinus Ravenna ethyl acetate in different concentrations. After MTT assay, cells were stained with Panotic dye kit. Cell images were obtained with an inverted microscope equipped with a digital camera. The images were analyzed by CellProfiler ® . No cytotoxicity at the highest concentration analyzed for 3-epimacronine, albomaculine, galanthine, trispheridine, P. gymnospora extract and Sargassum sp. extract where detected. Tazettine offered cytotoxicity only against the Hepa1c1c7 cell line. Lycorine, camptothecin, and H. itaobinus extract exhibited cytotoxic effects in both cell lines. The viability methods tested were correlated demonstrated by Bland-Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The error was within the limits of the confidence intervals and these values had a narrow difference. The correlation between the two methods was demonstrated by the linear regression plotted as R 2 . CellProfiler ® image analysis presented similar results to the MTT assay in the identification of viable cells, and image analysis may assist part of biological analysis procedures. The presented methodology is inexpensive and reproducible. In vitro cell viability assessment with MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay may be replaced by image analysis by CellProfiler ® . The viability methods

  18. Extraction-radiochemical study of the ion-association complex of antimony (V) with tetrazolium violet and its thermal behavior

    International Nuclear Information System (INIS)

    Kostova, S.G.; Boyanov, B.S.


    The optimum conditions for extraction of ion-associated complexes (IAS) formed from the tetrazolium salt - tetrazolium violet and Sb(V) in hydrochloric acid medium have been studied. An isotope of antimony ( 125 Sb) was used for determination of the recovery factor (R%) and distribution ratio (D S b). The thermal behavior of the antimony complex with tetrazole violet was studied using differential thermal and thermogravimetric analysis. (author) 12 refs.; 3 figs

  19. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity

    International Nuclear Information System (INIS)

    Heo, D.S.; Park, J.G.; Hata, K.; Day, R.; Herberman, R.B.; Whiteside, T.L.


    A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based colorimetric assay was developed and compared with 51Cr release from different adherent tumor cell targets (human squamous cell carcinoma lines of the head and neck established in our laboratory, melanoma, and colorectal carcinoma) using 5-7-day human lymphokine-activated killer cells and monocyte-depleted peripheral blood lymphocytes as effectors. With adherent tumor cell targets, MTT colorimetry was more sensitive than the 51Cr release assay in measuring the antitumor activity of effectors: median, 4385 (range, 988-8144) versus median, 1061 (range, 582-7294) lytic units (the number of effector cells required to lyse 20% of 5 x 10(3) targets)/10(7) effectors (P less than 0.01). Background effects (without effector cells) were comparable in 4-h assays (9% versus 10%) between MTT colorimetry and 51Cr release. In 24-h assays, MTT colorimetry showed higher antitumor activity (70-100% versus 40-60% lysis at 1:1 effector:target cell ratio) but lower background effects (6% versus 38%) than 51Cr release assay. Thus, MTT colorimetry was more sensitive, did not use radiolabeled targets, required fewer effector cells, and was easier, less expensive, and better adaptable to serial monitoring of effector cell function in cancer patients. This colorimetric assay is especially well suited to adherent tumor cell targets. The use of adherent tumor cell monolayers, as opposed to trypsinized single cell suspensions, provides an opportunity to measure interactions of effector cells with enzymatically unaltered solid tumor targets. Because of the greater sensitivity of the colorimetric assay, the transformation of MTT data into lytic units, as commonly used for 51Cr release assays, required an adjustment to avoid the extrapolation based on the exponential fit equation

  20. Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui


    The inhibition effect of blue tetrazolium (BT) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution at 20 o C was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) methods. The results show that BT is a very good inhibitor, and the adsorption of BT on CRS surface obeys Langmuir adsorption isotherm. Polarization curves reveal that BT acts as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability. The inhibition action of BT is also evidenced by SEM images.

  1. Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

    Directory of Open Access Journals (Sweden)

    Homa Mohseni Kouchesfehani


    Full Text Available Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were encapsulated by a PEG-phospholipid. The suspension of iron oxide nanoparticles was prepared using the culture media and cell viability was determined by MTT assay. Results: MTT assay was used to examine the cytotoxicity of iron oxide nanoparticle s. Royan B1 cells were treated with medium containing different concentrations (10, 20, 30, 40, 50, and 60µg/ml of the iron oxide nanoparticle. Cell viability was determined at 12 and 24 hours after treatment which showed significant decreases when concentration and time period increased. Conclusion: The main mechanism of nanoparticles action is still unknown, but in vivo and in vitro studies in different environments suggest that they are capable of producing reactive oxygen species (ROS. Therefore, they may have an effect on the concentration of intracellular calcium, activation of transcription factors, and changes in cytokine. The results of this study show that the higher concentration and duration of treatment of cells with iron oxide nanoparticles increase the rate of cell death.

  2. Genotoxic and cytotoxic potential of whole plant extracts of Kalanchoe laciniata by Ames and MTT assay. (United States)

    Sharif, Ali; Akhtar, Muhammad Furqan; Akhtar, Bushra; Saleem, Ammara; Manan, Maria; Shabbir, Maryam; Ashraf, Muneeb; Peerzada, Sohaib; Ahmed, Shoaib; Raza, Moosa


    Lack of data on safety of herbal medicines have endangered human health and life. The present study evaluated the genotoxic and mutagenic effect of Kalanchoe laciniata to access the safety and usefulness of the medicinal plant. Aqua-methanolic and n-hexane extracts of K. laciniata were evaluated for the genotoxic potential using Ames assay and cytotoxicity was evaluated using MTT assay. Ames assay was conducted using two strains of Salmonella typhimurium TA-100 and TA-102 whereas MTT assay was performed on baby hamster kidney cell line BHK-21. Aqua-methanolic extract of K. laciniata exhibited significant mutagenicity when exposed to TA-102 strain with a mutagenic index of 50.66 and 54.74 at maximum dose 150 mg/plate. The extract was also mutagenic to TA-100 strain but to a lesser extent. M.I of n-hexane extract was 12.15 and 15.51 for TA-100 and TA-102 respectively. n-hexane extract was mutagenic but little difference was observed between results of two strains. Both extracts were found to be cytotoxic with an IC 50 of 321.9 and 638.5 µg/mL for aqua-methanolic and n-hexane extracts respectively. On the basis of results it was concluded that aqua-methanolic and n-hexane extracts of K. laciniata possess mutagenic and cytotoxic potential. It is suggested to explore the plant further to evaluate its safety in rodents and other species.

  3. Radiation-induced coloration of nitro blue tetrazolium gel dosimeter for low dose applications

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Beshir, W.B.; Hassan, H.M.; Soliman, Y.S.


    A radiochromic sensor of nitro blue tetrazolium (NBT) in gelatin was evaluated as a new gel dosimeter for radiation applications. The NBT gel has the advantage of visual color change from faint yellow to violet at low absorbed doses (10–1000 Gy). This color change appears as a result of the reduction of NBT to colored formazan then to diformazan species with further increase of absorbed doses. Responses of the gel at different NBT concentrations were analyzed at the absorption maximum centered at 527 nm. An increase of NBT concentrations in the gel enhances the radiation dose sensitivity. Energy dependent study implies the tissue equivalency of the gel in the energy range of 0.15–20 MeV. Dependence of the gel response on irradiation temperature, and color stability before and after irradiation were also studied. The combined uncertainty associated with the dose monitoring (10–1000 Gy) is 6.26% (2σ). Thus, the NBT gel shows its suitability for food irradiation, insect population control, and some food irradiation applications. - Highlights: • Preparation of nitro blue tetrazolium (NBT) gel for the dose range of 10–1000 Gy. • The sensitivity of it increases with increasing NBT concentrations. • The response of irradiated dosimeter is stable after 5 h from irradiation. • The prepared gel dosimeter is a tissue equivalent. • Its combined uncertainty is equal to 6.26% for 10–1000 Gy dose level.

  4. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. (United States)

    Alley, M C; Scudiero, D A; Monks, A; Hursey, M L; Czerwinski, M J; Fine, D L; Abbott, B J; Mayo, J G; Shoemaker, R H; Boyd, M R


    For the past 30 years strategies for the preclinical discovery and development of potential anticancer agents have been based largely upon the testing of agents in mice bearing transplantable leukemias and solid tumors derived from a limited number of murine as well as human sources. The feasibility of implementing an alternate approach, namely combined in vitro/in vivo screening for selective cytotoxicity among panels of human tumor cell lines derived from a broad spectrum of human solid tumors is under investigation. A group of 30 cell lines acquired from a variety of sources and representing 8 lung cancer pathologies as well as 76 cell lines representing 10 other categories of human cancer (carcinomas of colon, breast, kidney, prostate, ovary, head and neck; glioma; leukemia; melanoma; and sarcoma) have exhibited acceptable growth characteristics and suitable colorimetric profiles in a single, standard culture medium. Measurements of in vitro growth in microculture wells by cell-mediated reduction of tetrazolium showed excellent correlation (0.89 less than r2 less than 0.98) with measurements of cellular protein in adherent cell line cultures as well as viable cell count in suspension cell line cultures (0.94 less than r2 less than 0.99). Since the microculture tetrazolium assay provides sensitive and reproducible indices of growth as well as drug sensitivity in individual cell lines over the course of multiple passages and several months' cultivation, it appears suitable for initial-stage in vitro drug screening.

  5. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds. (United States)

    Liu, Yunbao; Nair, Muraleedharan G


    Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.

  6. In-vitro antimycobacterial drug susceptibility testing of non-tubercular mycobacteria by tetrazolium microplate assay. (United States)

    Sankar, Manimuthu Mani; Gopinath, Krishnamoorthy; Singla, Roopak; Singh, Sarman


    Non-tubercular mycobacteria (NTM) has not been given due attention till the recent epidemic of HIV. This has led to increasing interest of health care workers in their biology, epidemiology and drug resistance. However, timely detection and drug susceptibility profiling of NTM isolates are always difficult in resource poor settings like India. Furthermore, no standardized methodology or guidelines are available to reproduce the results with clinical concordance. To find an alternative and rapid method for performing the drug susceptibility assay in a resource limited settings like India, we intended to evaluate the utility of Tetrazolium microplate assay (TEMA) in comparison with proportion method for reporting the drug resistance in clinical isolates of NTM. A total of fifty-five NTM isolates were tested for susceptibility against Streptomycin, Rifampicin, Ethambutol, Ciprofloxacin, Ofloxacin, Azithromycin, and Clarithromycin by TEMA and the results were compared with agar proportion method (APM). Of the 55 isolates, 23 (41.8%) were sensitive to all the drugs and the remaining 32 (58.2%) were resistant to at least one drug. TEMA had very good concordance with APM except with minor discrepancies. Susceptibility results were obtained in the median of 5 to 9 days by TEMA. The NTM isolates were highly sensitive against Ofloxacin (98.18% sensitive) and Ciprofloxacin (90.09% sensitive). M. mucogenicum was sensitive only to Clarithromycin and resistant to all the other drugs tested. The concordance between TEMA and APM ranged between 96.4 - 100%. Tetrazolium Microplate Assay is a rapid and highly reproducible method. However, it must be performed only in tertiary level Mycobacteriology laboratories with proper bio-safety conditions.

  7. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions); Effets in vitro du piracetam sur la radiosensibilite des cellules hypoxiques (adapatation du test au MTT aux conditions d`hypoxie)

    Energy Technology Data Exchange (ETDEWEB)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T. [Universitaire Instelling Antwerpen, Antwerp (Belgium); Lagarde, P. [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Institut Bergonie, 33 - Bordeaux (France); Pooter, C.M.J. de [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Hopital de Middelheim, Anvers (Belgium); Chomy, F. [Institut Bergonie, 33 - Bordeaux (France)


    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs.

  8. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions)

    International Nuclear Information System (INIS)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T.; Lagarde, P.; Pooter, C.M.J. de; Chomy, F.


    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs

  9. New visible and selective DNA staining method in gels with tetrazolium salts. (United States)

    Paredes, Aaron J; Naranjo-Palma, Tatiana; Alfaro-Valdés, Hilda M; Barriga, Andrés; Babul, Jorge; Wilson, Christian A M


    DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The microculture tetrazolium assay (MTA): another colorimetric method of testing Plasmodium falciparum chemosensitivity. (United States)

    Delhaes, L; Lazaro, J E; Gay, F; Thellier, M; Danis, M


    Malarial lactate dehydrogenase (LDH), which uses 3-acetyl pyridine adenine dinucleotide as coenzyme in a reaction leading to the formation of pyruvate from L-lactate, may be used to study the susceptibility of Plasmodium falciparum to a drug in vitro. Several methods to determine the activity of this enzyme are available. One, the colorimetric method of Makler and colleagues, was modified slightly, by using sodium-2,3-bis-[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5 - carboxanilide (XTT) and following the reaction by measuring the optical density at 450 nm. Using two, culture-adapted strains of P. falciparum, this LDH assay was compared with the unmodified Makler's assay and with the isotopic microtest based on the incorporation of tritium-labelled hypoxanthine. Fresh, clinical P. falciparum isolates were also tested in the presence of several drugs, including chloroquine, mefloquine, quinine, halofantrine, atovaquone and qinghaosu derivatives. The results of the three assays were correlated for all the drugs tested except atovaquone. The two enzymatic assays are non-radioactive, rapid, reliable, inexpensive to perform and semi-automatic. However, they do require an initial parasitaemia of 2% with a haematocrit of 1.8%.

  11. Localization of MTT formazan in lipid droplets. An alternative hypothesis about the nature of formazan granules and aggregates

    Directory of Open Access Journals (Sweden)

    G Diaz


    Full Text Available MTT (3-(4, 5-dimethyl-2-thiazolyl-2, 5-dihphenyltetrazolium bromide assay is a widely used method to assess cell viability and proliferation. MTT is readily taken up by cells and enzymatically reduced to formazan, a dark compound which accumulates in cytoplasmic granules. Formazan is later eliminated by the cell by a mechanisms often indicated as exocytosis, that produces characteristic needle-like aggregates on the cell surface. The shape of formazan aggregates and the rate of exocytosis change in the presence of bioactive amyloid b peptides (Ab and cholesterol. Though the cellular mechanisms involved in MTT reduction have been extensively investigated, the exact nature of formazan granules and the process of exocytosis are still obscure. Using Nile Red, which stains differentially neutral and polar lipids, and a fluorescent analog of cholesterol (NBD-cholesterol, we found that formazan localized in lipid droplets, consistent with the lipophilic nature of formazan. However, formazan granules and aggregates were also found to form after killing cells with paraformaldehyde fixation. Moreover, formazan aggregates were also obtained in cell-free media, using ascorbic acid to reduce MTT. The density and shape of formazan aggregates obtained in cell-free media was sensitive to cholesterol and Ab. In cells, electron microscopy failed to detect the presence of secretory vesicles, but revealed unusual fibers of 50 nm of diameter extending throughout the cytoplasm. Taken together, these findings suggest that formazan efflux is driven by physico-chemical interactions at molecular level without involving higher cytological mechanisms.

  12. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. (United States)

    Bhupathiraju, V K; Hernandez, M; Landfear, D; Alvarez-Cohen, L


    The use of the redox dye 5-cyano-2,3,-ditolyl tetrazolium chloride (CTC) for evaluating the metabolic activity of aerobic bacteria has gained wide application in recent years. In this study, we examined the utility of CTC in capturing the metabolic activity of anaerobic bacteria. In addition, the factors contributing to abiotic reduction of CTC were also examined. CTC was used in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF), that targets bacterial cell wall proteins, to quantitate the active fraction of total bacterial numbers. Facultative anaerobic bacteria, including Escherichia coli grown fermentatively, and Pseudomonas chlorophis, P. fluorescens, P. stutzeri, and P. pseudoalcalegenes subsp. pseudoalcalegenes grown under nitrate-reducing conditions, actively reduced CTC during all phases of growth. Greater than 95% of these cells accumulated intracellular CTC-formazan crystals during the exponential phase. Obligate anaerobic bacteria, including Syntrophus aciditrophicus grown fermentatively, Geobacter sulfurreducens grown with fumarate as the electron acceptor, Desulfovibrio desulfuricans subsp. desulfuricans and D. halophilus grown under sulfate-reducing conditions, Methanobacterium formicicum grown on formate, H2 and CO2, and Methanobacterium thermoautotrophicum grown autotrophically on H2 and CO2 all reduced CTC to intracellular CTC-formazan crystals. The optimal CTC concentration for all organisms examined was 5 mM. Anaerobic CTC incubations were not required for quantification of anaerobically grown cells. CTC-formazan production by all cultures examined was proportional to biomass production, and CTC reduction was observed even in the absence of added nutrients. CTC was reduced by culture fluids containing ferric citrate as electron acceptor following growth of either G. metallireducens or G. sulfurreducens. Abiotic reduction of CTC was observed in the presence of ascorbic acid, cysteine hydrochloride, dithiothreitol

  13. An investigation on the physicochemical properties of the nanostructured [(4-X)PMAT][N(CN)2] ion pairs as energetic and tunable aryl alkyl amino tetrazolium based ionic liquids (United States)

    Khalili, Behzad; Rimaz, Mehdi


    In this study the different class of tunable and high nitrogen content ionic liquids termed TAMATILs (Tunable Aryl Methyl Amino Tetrazolium based Ionic Liquids) were designed. The physicochemical properties of the nanostructured TAMATILs composed of para substituted phenyl methyl amino tetrazolium cations [(4-X)PMAT]+ (X = H, Me, OCH3, OH, NH2, NO2, F, CN, CHO, CF3, COMe and CO2Me) and dicyanimide anion [N(CN)2]- were fully investigated using M06-2X functional in conjunction with the 6-311++G(2d,2p) basis set. For all of the studied nanostructured ILs the structural parameters, interaction energy, cation's enthalpy of formation, natural charges, charge transfer values and topological properties were calculated and discussed. The substituent effect on the interaction energy and physicochemical properties also is taking into account. The results showed that the strength of interaction has a linear correlation with electron content of the phenyl ring in a way the substituents with electron withdrawing effects lead to make more stable ion pairs with higher interaction energies. Some of the main physical properties of ILs such as surface tension, melting point, critical-point temperature, electrochemical stability and conductivity are discussed and estimated for studying ion pairs using quantum chemical computationally obtained thermochemical data. Finally the enthalpy and Gibbs free energy of formation for twelve nanostructured individual cations with the general formula of [(4-X)PMAT]+ (X = 4-H, 4-Me, 4-OMe, 4-OH, 4-NH2, 4-NO2, 4-F, 4-CN, 4-CHO, 4-CF3, 4-COMe and 4-CO2Me) are calculated.

  14. Cytotoxicity test of 40, 50 and 60% citric acid as dentin conditioner by using MTT assay on culture cell line

    Directory of Open Access Journals (Sweden)

    Christian Khoswanto


    Full Text Available Background: Open dentin is always covered by smear layer, therefore before restoration is performed, cavity or tooth which has been prepared should be clean from dirt. The researchers suggested that clean dentin surface would reach effective adhesion between resin and tooth structure, therefore dentin conditioner like citric acid was used to reach the condition. Even though citric acid is not strong acid but it can be very erosive to oral mucous. Several requirements should be fulfilled for dental product such as non toxic, non irritant, biocompatible and should not have negative effect against local, systemic or biological environment. Cytotoxicity test was apart of biomaterial evaluation and needed for standard screening. Purpose: This study was to know the cytotoxicity of 40, 50, 60% citric acid as dentin conditioner using MTT assay. Method: This study is an experimental research using the Post-Test Only Control Group Design. Six samples of each 40, 50 and 60% citric acid for citotoxicity test using MTT assay. The density of optic formazan indicated the number of living cells. All data were statistically analyzed by one way ANOVA. Result: The percentage of living cells in 40, 50 and 60% citric acid were 95.14%, 93.42% and 93.14%. Conclusion: Citric acid is non toxic and safe to be used as dentine conditioner.

  15. Succinate Dehydrogenase Activity Assay in situ with Blue Tetrazolium Salt in Crabtree-Positive Saccharomyces cerevisiae Strain

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska


    Full Text Available A spectrophotometric method for determining succinate dehydrogenase (SDH activity assay in azide-sensitive yeast Saccharomyces cerevisiae has been developed. The permeabilization of yeast cells by 0.05 % digitonin permitted to study yeast enzymatic activity in situ. The reduction of blue tetrazolium salt (BT to blue tetrazolium formazan (BTf was conducted in the presence of phenazine methosulphate (PMS as an exogenous electron carrier, and sodium azide (SA as an inhibitor of cytochrome oxidase (Cyt pathway. Various factors such as type of substrate, BT concentration, cell number, temperature and time of incubation, and different Cyt pathway blockers were optimized. In earlier studies, dimethyl sulfoxide (DMSO had been selected as the best solvent for extraction of BTf from yeast cells. The linear correlation between permeabilized yeast cell density and amount of formed formazan was evidenced in the range from 9·10^7 to 5·10^8 cells per sample solution. Below the yeast cell concentration of 10^7 the absorbance values were too low to detect formazans with good precision. This standarized procedure allows the estimation of SDH activity in whole cells, depending on vitality level of yeast populations. Significant increases of succinate dehydrogenase activities were observed in sequential passages as the result of the increase of activity of the strain and adaptation to cultivation conditions.

  16. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    P. 0 Box 6501 3, Dar Es Salaam, Tanzania. Laboratory of Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmacy, Catholic. University of Leuven, Belgium. Thirty-three aqueous methanolic extracts obtained from thirty plant species, belonging to seventeen families were screened for cytotoxic activity against ...

  17. Investigation of the extraction equilibrium of ternary ionassociation complex of thallium(III) with iodo-nitro-tetrazolium chlorid

    International Nuclear Information System (INIS)

    Alexandrov, A.; Dimitrov, A.


    The extraction equilibrium of the ternary ion-association complex of iodo-nitro-tetrazolium [3-(4-iodophenyl)2-(4-nitrophenyl)-5-phenyltetrazolium chloride] with the chlorocomplex of thallium(III) is investigated radiochemically. The molar ratio of the ion-associate is found to be 1:1, the association constant has a value of 3.2x10 3 in aqueous solution and the distribution constant is 8.9. The extraction constant which gives a quantitative characterization of the equilibrium is 2.3x10 4 . From the investigation performed it can be concluded that a quite satisfactory extraction of thallium(III) by means of iodo-nitro-tetrazole in benzene can be carried out. The extraction constant has a relatively high value which allows to use this system conveniently for the extraction-photometric determination of thallium(III). (T.C.)

  18. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. (United States)

    Singh, Upasana; Akhtar, Shamim; Mishra, Abhishek; Sarkar, Dhiman


    A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z' factors were >0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Design, synthesis, and validation of an in vitro platform peptide-whole cell screening assay using MTT reagent

    Directory of Open Access Journals (Sweden)

    Sahar Ahmed


    Full Text Available An in vitro platform to perform peptide screening against different cancer cell lines was designed. The strategy for this screening relied on the design and detection of high-affinity cancer-targeting peptides based on the sequences of NGR and P160. Evaluation of the best binding peptides was performed via incubation of the peptide array-bounded cells with MTT reagent, which is reduced to purple formazan in living cells and further quantified using an Elispot and Kodak imager. For proof of concept, a peptide library (132 spots, and 66 different peptides was designed, synthesized, and screened against different cancer cell lines. The current strategy assists in the identification of positive and negative peptides as well as the relative binding between positive ones. Better binding peptide sequences of the NGR motif were demonstrated to show up to a 2.6-fold increase in CD13+ cell lines with insignificant binding to CD13− ones. Comparable results were observed for P160 peptide sequences, to which different peptides had increased binding, with an up to 3-fold increase relative to the native P160 peptide. Based on our results, new peptide sequences for cancer targeting were identified, and the developed strategy was applied to two different peptide libraries.

  20. Quantitative aspects of the cytochemical demonstration of glucose-6-phosphate dehydrogenase with tetrazolium salts studied in a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.; Sanders, J. A.


    The enzyme cytochemical demonstration of glucose-6-phosphate dehydrogenase (G6PDH) with several tetrazolium salts has been studied with an artificial model of polyacrylamide films in corporated with the enzyme, which enabled teh correlation of cytochemical and biochemical data. In the model films no

  1. Biogas technology on farms 1; Biokaasuteknologiaa maatiloilla 1. Biokaasulaitoksen hankinta, kaeyttoeoenotto ja operointi - kaeytaennoen kokemuksia MTT:n maatilakohtaiselta laitokselta

    Energy Technology Data Exchange (ETDEWEB)

    Luostarinen, S. (ed.)


    Biogas technologies can be applied for several different purposes in agriculture. It is a means to utilise the energy content of manure and other organic materials, to recycle their nutrients into plant production, enhance utilisation of nitrogen and to mitigate emissions from agriculture. Of the two end-products, biogas can be utilised in the production of heat, electricity and/or vehicle fuel and digestate as fertiliser on fields. Agricultural biogas plants digest mainly animal manure in Finland. Several co-substrates are also used, including different plant biomasses and suitable by-products from especially food production. The aim of using co-substrates is usually to increase the amount of energy produced but they also affect the nutrient content and ratios in the digestate. Planning agricultural biogas plants starts from available fee materials, their amounts and characteristics. The biogas plant is designed for these materials and the technologies used are chosen to suit them. There are several options for plant design and how it can be attached into existing farm structures and it is wise to discuss these matters with an expert. In this way, correct farm-specific decisions can be made. When permitting the plant (permission for construction, environmental permit, safety issues, fertiliser legislation), it is important to make contact with the respective authority. Profitability of the biogas plant should be considered carefully. Things to consider include e.g. available financial incentives, investment cost, energy production and utilisation (own use or sale), nutrient recycling and potential avoidance of mineral fertilisers, co-substrates with gate fee, improved hygiene and less odours. Experiments at MTT Maaninka farm-scale biogas plant showed that dairy cow slurry produces 12-14 m{sup 3} of methane per ton of fresh weight. In this specific biogas plant this results potentially in methane production with an energy content of 400 MWh (3500 m{sup 3} of slurry

  2. Effect of Electron Beam Irradiation on the Structural Properties of Poly (Vinyl Alcohol) Formulations with Triphenyl Tetrazolium Chloride Dye (TTC)

    International Nuclear Information System (INIS)

    Ali, Z.I.; Said, H.M.; Ali, H.E.


    Films of poly (vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the color difference (Δ E) of PVA/TTC films was increased by -10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point (Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation. Keywords: PVA, PVA/TTC composites, Electron beam irradiation, color strength, FTIR, thermal and mechanical characterization

  3. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity. (United States)

    Cheng, Chien-Wei; Chen, Liang-Yü; Chou, Chan-Wei; Liang, Ji-Yuan


    Determination of the superoxide dismutase activity is an important issue in the fields of biochemistry and the medical sciences. In the riboflavin/nitro blue tetrazolium (B2/NBT) method, the light sources used for generating superoxide anion radicals from light-excited riboflavin are normally fluorescent lamps. However, the conditions of B2/NBT experiments vary. This study investigated the effect of the light source on the light-excitation of riboflavin. The effectiveness of the photolysis was controlled by the wavelength of the light source. The spectra of fluorescent lamps are composed of multiple colour lights, and the emission spectra of fluorescent lamps made by different manufacturers may vary. Blue light was determined to be the most efficient for the photochemical reaction of riboflavin in visible region. The quality of the blue light in fluorescent lamps is critical to the photo-decomposition of riboflavin. A blue light is better than a fluorescent lamp for the photo-decomposition of riboflavin. The performance of the B2/NBT method is thereby optimized. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian


    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  5. Nitroblue tetrazolium test (United States)

    ... infections. Normal value ranges may vary slightly from one lab to another. Talk to your doctor about the meaning of your test results. What Abnormal Results Mean If the sample does not change color when NBT is added, ...

  6. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. (United States)

    Rich, Megan C; Keene, Chesleigh N; Neher, Miriam D; Johnson, Krista; Yu, Zhao-Xue; Ganivet, Antoine; Holers, V Michael; Stahel, Philip F


    Intracerebral complement activation after severe traumatic brain injury (TBI) leads to a cascade of neuroinflammatory pathological sequelae that propagate host-mediated secondary brain injury and adverse outcomes. There are currently no specific pharmacological agents on the market to prevent or mitigate the development of secondary cerebral insults after TBI. A novel chimeric CR2-fH compound (mTT30) provides targeted inhibition of the alternative complement pathway at the site of tissue injury. This experimental study was designed to test the neuroprotective effects of mTT30 in a mouse model of closed head injury. The administration of 500 μg mTT30 i.v. at 1 h, 4 h and 24 h after head injury attenuated complement C3 deposition in injured brains, reduced the extent of neuronal cell death, and decreased post-injury microglial activation, compared to vehicle-injected placebo controls. These data imply that site-targeted alternative pathway complement inhibition may represent a new promising therapeutic avenue for the future management of severe TBI. Copyright © 2016. Published by Elsevier Ireland Ltd.

  7. Correlation between the methylation of APC gene promoter and colon cancer. (United States)

    Li, Bing-Qiang; Liu, Peng-Peng; Zhang, Cai-Hua


    The present study was planned to explore the correlation between the methylation of APC (adenomatous polyposis coli) and colon carcinogenesis. Colon cancer tissues and tumor-adjacent normal tissues of 60 colon cancer patients (who received surgical operation in our hospital from January 2012 to December 2014) were collected. SW1116 cells in human colon cancer tissues were selected for culturing. 5-aza-2c-deoxycytidine (5-aza-dC) was utilized as an inhibitor of the methylation for APC gene. Methylation specific PCR (MSP) was utilized for detection of APC methylation in SW1116 cells. The MTT and Transwell assays were performed to detect the effect of the methylation of APC gene on the proliferation and invasive abilities of SW1116 cells. The correlation between the methylation of APC gene and pathological parameters of colon cancer patients was analyzed. MSP results revealed that 41 cases (68.33%) showed methylation of APC gene in colon cancer tissues. No methylation of APC gene was found in tumor-adjacent normal tissues. 5-aza-dC was able to inhibit the methylation of APC gene in SW1116 cells. APC gene methylation was correlated with tumor size, differentiation degree, lymph node metastasis and Dukes staging. In conclusion, the levels of the methylation of APC in colon cancer tissues and SW1116 cells are relatively high. The methylation of APC promoted the proliferation and invasion abilities of SW1116 cells. Furthermore, methylation is correlated with a variety of clinicopathological features of colon cancer patients.

  8. Assessment of cosmetic ingredients in the in vitro reconstructed human epidermis test method EpiSkin™ using HPLC/UPLC-spectrophotometry in the MTT-reduction assay. (United States)

    Alépée, N; Hibatallah, J; Klaric, M; Mewes, K R; Pfannenbecker, U; McNamee, P


    Cosmetics Europe recently established HPLC/UPLC-spectrophotometry as a suitable alternative endpoint detection system for measurement of formazan in the MTT-reduction assay of reconstructed human tissue test methods irrespective of the test system involved. This addressed a known limitation for such test methods that use optical density for measurement of formazan and may be incompatible for evaluation of strong MTT reducer and/or coloured chemicals. To build on the original project, Cosmetics Europe has undertaken a second study that focuses on evaluation of chemicals with functionalities relevant to cosmetic products. Such chemicals were primarily identified from the Scientific Committee on Consumer Safety (SCCS) 2010 memorandum (addendum) on the in vitro test EpiSkin™ for skin irritation testing. Fifty test items were evaluated in which both standard photometry and HPLC/UPLC-spectrophotometry were used for endpoint detection. The results obtained in this study: 1) provide further support for Within Laboratory Reproducibility of HPLC-UPLC-spectrophotometry for measurement of formazan; 2) demonstrate, through use a case study with Basazol C Blue pr. 8056, that HPLC/UPLC-spectrophotometry enables determination of an in vitro classification even when this is not possible using standard photometry and 3) addresses the question raised by SCCS in their 2010 memorandum (addendum) to consider an endpoint detection system not involving optical density quantification in in vitro reconstructed human epidermis skin irritation test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cucurbitacin B inhibits proliferation, induces G2/M cycle arrest and autophagy without affecting apoptosis but enhances MTT reduction in PC12 cells

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu


    Full Text Available In the present study, the effect of cucurbitacin B (a natural product with anti-cancer effect was studied on PC12 cells. It significantly reduced the cell number, changed cell morphology and inhibited colony formation while MTT results showed increased cell viability. Cucurbitacin B treatment increased activity of succinode hydrogenase. No alteration in the integrity of mem-brane, the release of lactic dehydrogenase, the mitochondrial membrane potential, and the expression of apoptotic proteins suggested that cucurbitacin B did not induce apoptosis. The cell cycle was remarkably arrested at G2/M phase. Furthermore, cucurbitacin B induced autophagy as evidence by accumulation of autophagic vacuoles and the increase of LC3II. In addition, cucurbitacin B up-regulated the expression of p-beclin-1, p-ULK1, p-Wee1, p21 and down-regulated p-mTOR, p-p70S6K, CDC25C, CDK1, Cyclin B1. In conclusion, cucurbitacin B inhibited PC12 proliferation but caused MTT pitfall. Cucurbitacin B induced G2/M cell cycle arrest, autophagy, but not the apoptosis in PC12 cells.

  10. Effect of electron beam irradiation on the structural properties of poly(vinyl alcohol) formulations with triphenyl tetrazolium chloride dye (TTC) (United States)

    Ali, Z. I.; Said, Hossam M.; Ali, H. E.


    Films of poly(vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the colour difference (Δ E*) of PVA/TTC films was increased by ˜10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point ( Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation.

  11. Pré-condicionamento das sementes de mamoneira para o teste de tetrazólio = Preconditioning of castor bean seeds for the tetrazolium test

    Directory of Open Access Journals (Sweden)

    Carolina Maria Gaspar-Oliveira


    Full Text Available O objetivo do trabalho foi padronizar a metodologia de pré-condicionamento das sementes de mamoneira (Ricinus communis L. para a avaliação do potencial fisiológico pelo teste de tetrazólio. Testaram-se os seguintes métodos de pré-condicionamento: sementes com tegumento entre papel umedecido a 30, 35 e 40ºC por 6, 8, 10, 12, 14, 16 e 18h; sementes sem tegumento entre papel umedecido e sementes com tegumento imersas em água a 25, 30, 35 e 40º C por 1, 2, 3, 4, 5 e 6h. Após o pré-condicionamento, removeu-se o tegumento das sementes, que foram cortadas no sentido do comprimento e imersas na solução de tetrazólio a 0,2%, por 120 min., a 35ºC. Avaliaram-se a porcentagem de germinação das sementes, o teor de água, antes e após a embebição, e a uniformidade na coloração das sementes após o teste de tetrazólio. O delineamento experimental foi inteiramente casualizado, e a comparação de médias realizada pelo teste de Tukey a 5% de probabilidade. Concluiu-se que o pré-condicionamento para o teste detetrazólio deve ser realizado nas sementes de mamoneira com tegumento, entre papel toalha umedecido, a 35ºC por 12h para que os resultados desse teste assemelhem-se aos obtidos no teste de germinação.This research had the objective of standardizing the methodology for preconditioning of castor bean (Ricinus communis L. seeds for the evaluation of their physiological potential by the tetrazolium test. The evaluated seed preconditioning methods were: seeds with coatbetween moist paper towel at 30, 35 and 40ºC for 6, 8, 10, 12, 14, 16 and 18 hours; and seeds without coat between moist paper towel; and seeds with coat immersed in water, at 25, 30, 35 and 40ºC for 1, 2, 3, 4, 5 and 6 hours. After preconditioning, the seed coat was removed, the seeds were cut lengthwise, and immersed in tetrazolium solution at a concentration of 0.2% for 120 minutes at 35ºC. The seeds’ germination percentage, moisture content before and after

  12. Dissociation dynamics of methylal

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The dissociation of methylal is investigated using mass spectrometry, combined with a pyrolytic radical source and femtosecond pump probe experiments. Based on preliminary results two reaction paths of methylal dissociation are proposed and discussed. (author) 4 fig., 3 refs.

  13. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques


    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  14. Anticancer Activity of Tetrahydrocorysamine against Pancreatic ...

    African Journals Online (AJOL)

    The effects of TCSM on the proliferation and apoptosis of PANC-1 cells were determined by methyl thiazolyl tetrazolium (MTT) and flow cytometry assays. The effect of TCSM on the expressions of mitochondria-mediated apoptotic proteins were investigated by Western blot assay. Xenograft assay was used to evaluate the ...

  15. Effect of Triptolide on Functions of Monocytes/ Macrophages in ...

    African Journals Online (AJOL)

    The number of monocytes/macrophages under the varying conditions was subsequently determined by methyl thiazolyl tetrazolium (MTT) assay. The supernatants were collected after 24-h culture, and the content of VEGF and VEGF-C in each supernatant measured by enzyme-linked immunosorbent assay (ELISA).

  16. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells

    Directory of Open Access Journals (Sweden)

    Samuel Kamatham


    Full Text Available Gallic acid (GA and its derivative methyl gallate (MG are well studied plant phenolics. They have exhibited anticancer effects in several cancer cell lines. However, the presence of GA/MG in the seed coats of Givotia rottleriformis and their inhibitory effect on human epidermoid carcinoma (A431 skin cancer cells were not reported. In this study we have isolated and chemically characterized the bioactive compounds GA and MG from the bioassay guided methanolic (MeOH seed coat extracts of G. rottleriformis. The fractions obtained from open silica column chromatography were subjected to in vitro enzymatic assays. Among seven fractions we found that only fractions 5 and 6 showed significant inhibition activity toward COX-1 with an IC50 value of 28 μg/mL and 9.3 μg/mL and COX-2 with an IC50 value of 35 μg/mL and 7.0 μg/mL respectively. However, we could not find 5-LOX enzyme inhibition activity. MG (10 mg/g DW and GA (6 mg/g DW were the major compounds of seed coats. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay, which showed that GA/MG significantly reduced the growth of A431 cells with an IC50 value of 25 μg/mL and 53 μg/mL and 11 μg/mL and 43 μg/mL at 24 h and 48 h, respectively. However the cytotoxic effect of GA/MG on HaCaT normal skin keratinocyte cell line was found to be less. Western blot analysis has shown that GA/MG treatment down regulated Bcl-2 and up regulated cleaved caspase-3 with respect to increasing doses. Our results conclude that GA and MG have potential anticancer effects and can be used as therapeutic agents for skin cancers.

  17. Effect of alpha-interferon alone and combined with other antineoplastic agents on renal cell carcinoma determined by the tetrazolium microculture assay. (United States)

    Homma, Y; Aso, Y


    The antiproliferative effect of various alpha-interferons (alpha-IFNs), alone or combined with other agents, on a renal cell carcinoma cell line was evaluated by the tetrazolium microculture assay to examine the rationale for combination therapies. Cells incubated in 96-week microculture plates at 5 x 10(3)/well were exposed to various agents for 3 days. There were no obvious differences in the growth inhibition caused by the 5 kinds of alpha-IFN examined as single agents. The combination of alpha-IFN with the following agents was also assessed: 5-fluorouracil (5FU), methotrexate (MTX), mitomycin C, bleomycin, cis-diaminedichloroplatinum (CDDP), vinblastine, etoposide (ETOP), alpha-IFN, tumor necrosis factor-alpha (TNF), and alpha-difluoromethylornithine. Synergism was observed for the combination of alpha-IFN+TNF, while the other combinations had additive or subadditive effects. No interference or antagonism was found. Trimodal combinations of alpha-IFN+MTX with either 5FU, ETOP, or CDDP all showed subadditive effects. These results indicated that an increased antiproliferative effect, although not necessarily synergistic, was obtained by the combination of alpha-IFN with a variety of antineoplastic agents, providing a rationale to seek for combination therapies including alpha-IFN for treating renal cell carcinoma.

  18. An investigation of compositions and effects of local herbal Glycyrrhiza glabra and Mentha pulegium extracts on Helicobacter pylori and cell Line of stomach cancer (AGS by MTT assays

    Directory of Open Access Journals (Sweden)

    Fereshteh Salmani Jamaat1


    Full Text Available Background & Aim:According to globally development of stomach cancer especially in Ardabil, Iran, as the second major cause of mortality throughout the world, increased drug-resistant bacteria including Helicobacter pylori as the most important risk factors for stomach cancer, and side effects of antibiotics and chemical drugs normally used to treat. Experimental: The current research was conducted to investigate the anticancer and antimicrobial effects of native herbs of liquorice (Glycyrrhiza glabra and pennyroyal (Mentha pulegium extractions for finding a solution with the lowest complications in control or treatment of stomach cancer.The extractions were firstly obtained using Soxhlet and methanol solvent and then their compounds were determined by GC/MS. Antimicrobial activity, MIC and MBC of the extractions were assessed respectively using agar diffusion and broth dilution test and the anticancer effect on stomach cancer (cell line AGS was assessed by MTT assay. H. pylori ATCC 26695 was respectively revived and purified on Brucella broth containing 7% citrated horse serum and Columbia agar. Results: The analysis showed that liquorice extract contains 15 compositions, mainly consists of 26.48% Nonane, 23.38% Ethylcyclohexan, 8.29% 3-Bromodecane, 10.31% trans-2-Heptenal, 8.93% 9-Octadecenamide and 4.68% β-pregna and pennyroyal extract contains 17 compositions, mainly including 3.36% Camphor, 22.79% Pulegone, 4.92% Paramenth-3-n8-l, 8.06% Menthoforan, 7.54% Cis-Isopulegon and 24.58% α-Selinene. The bacteria were resistant or semi-sensitive to common antibiotics, whereas had considerable sensitivity to herbal extracts and liquorice showed almost three times more antibacterial effect. Pennyroyal extract had no cytotoxic effects, but the anticancer effect was observed in liquorice extract with optimal concentration of 25 μg/ml after 48 hours. Recommended applications/industries: In conclusion, liquorice extract due to the significant health

  19. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)



    Feb 20, 2013 ... Our method uses a single-CpG-resolution, whole-genome methylation ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, ...... methylation is prevalent in embryonic stem cells andmaybe mediated.

  20. [Detection method for the ability of hemp (Cannabis sativa L.) seed germination by the use of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC)]. (United States)

    Ogata, Jun; Kikura-Hanajiri, Ruri; Yoshimatsu, Kayo; Kiuchi, Fumiyuki; Goda, Yukihiro


    Cannabis plants show a high Delta9-tetrahydrocannabinol content and are used as a psychoactive drug. Therefore the cultivation of hemp and its possession are prohibited by law in Japan. Meanwhile, Cannabis seeds have been used as a component of shichimi-togarashi (a Japanese spice), bird feed, or a crude drug (mashinin). To exclude the possibility of germination, it is officially noticed that hemp seeds must be killed. However, the number of violators has increased in recent years. To judge the ability of seed germination, a germination test is performed. However, the test requires several days and thus has not been used for on-site inspection. In this study, we developed a rapid detection method to determine the ability of Cannabis seeds to germinate using 2,3,5-triphenyl-2H-tetrazolium chloride (TTC). The principle of the assay is as follows. The endogenous respiratory enzymes in hemp seeds convert added colorless TTC into red 1,3,5-triphenylformazan. Consequently, a living embryo is stained red, while red does not appear in the dead seeds. The reaction was active over a pH range of 8.0-9.0, and the optimum activity was found from 40 to 50 degrees C. Under the optimum conditions, we were able to determine the ability of seeds to germinate based on the presence of color within 20 min. Since this method is rapid and simple, it is applicable to on-site inspections. In addition, it could be used as an alternative technique to the germination test, because erroneous decisions is cannot occur under the assay principle.

  1. Methylation pathways in schizophrenia

    International Nuclear Information System (INIS)

    Sargent, T.W. III.


    Research on the biochemical causes of human psychosis concentrates on investigating whether schizophremia is linked to abnormalities in the metabolism of methyl carbon groups in the body. The metabolism of C-14 labeled methyl groups in methionine is studied in animals, normal subjects and patient volunteers

  2. Methyl-Analyzer--whole genome DNA methylation profiling. (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G


    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at Sample dataset is available for download at Supplementary data are available at Bioinformatics online.

  3. Padronização do teste de tetrazólio em sementes de Parkia velutina Benoist (Leguminosae - Mimosoideae Tetrazolium test in Parkia velutina Benoist seeds (Leguminosae - Mimosoideae

    Directory of Open Access Journals (Sweden)

    Angela Maria da Silva Mendes


    Full Text Available O trabalho teve por objetivo determinar métodos de pré-condicionamento e concentrações da solução de tetrazólio na avaliação da qualidade de sementes de Parkia velutina Benoist. Os tratamentos pré-condicionantes das sementes foram avaliados com três métodos de escarificação: desponte na região oposta ao hilo, punção na região mediana e lixa nos dois lados da semente com posterior embebição em 200 ml de água para cada 25 sementes e permanência em câmara a 30 ºC por 16 horas. As concentrações da solução de tetrazólio testadas foram: 1,0%, 0,5% e 0,1% por duas horas na temperatura de 40 ºC. O tratamento de pré-condicionamento mais eficiente foi a combinação do desponte e lixamento nos dois lados da semente. A concentração de tetrazólio a 0,5% pode ser utilizada para avaliar a viabilidade das sementes de P. velutina como complemento ao teste de germinação. O teste de tetrazólio se mostrou eficiente na caracterização de lesões ocasionadas por insetos e danos mecânicos em sementes de P. velutina.This manuscript aimed to determine methods of daily pre-conditioning and concentrations of the tetrazolium solution for evaluating the quality of Parkia velutina Benoist seeds. The daily pre-condicionanting seed treatments were evaluated using three scarification methods: coating cutting on the opposite side of the hilum region, puncture in the medium region and scarification with sandpaper on both sides of the seed, followed by soaking each of the 25 seeds in 200 ml of wate and permanence in chamber 30 ºC for 16 hours. The concentrations of the tetrazolium solution tested were 1.0%, 0.5% and 0.1% for two hours at 40 ºC. The more efficient daily pre-conditioning treatlment was a combination of the coating cutting and the scarification n both sides of the seed. The 0.5% tetrazolium concentration can be used to evaluate the viability of P. velutina seeds as complement to the germination test. The tetrazolium test

  4. Identification of Differentially Methylated Sites with Weak Methylation Effects

    Directory of Open Access Journals (Sweden)

    Hong Tran


    Full Text Available Deoxyribonucleic acid (DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same

  5. DNA methylation in obesity

    Directory of Open Access Journals (Sweden)

    Małgorzata Pokrywka


    Full Text Available The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes, have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.

  6. Methylated β-Cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Madsen, Jens Christian


    The complexation of 6 bile salts with various methylated β-cyclodextrins was studied to elucidate how the degree and pattern of substitution affects the binding. The structures of the CDs were determined by mass spectrometry and NMR techniques, and the structures of the inclusion complexes were...

  7. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.


    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  8. Methylation of food commodities during fumigation with methyl bromide

    International Nuclear Information System (INIS)

    Starratt, A.N.; Bond, E.J.


    Sites of methylation in several commodities (wheat, oatmeal, peanuts, almonds, apples, oranges, maize, alfalfa and potatoes) during fumigation with 14 C-methyl bromide were studied. Differences were observed in levels of the major volatiles: methanol, dimethyl sulphide and methyl mercaptan, products of O- and S-methylation, resulting from treatment of the fumigated materials with 1N sodium hydroxide. In studies of maize and wheat, histidine was the amino acid which underwent the highest level of N-methylation. (author). 24 refs, 3 tabs

  9. Chemosensitivity and radiosensitivity of small cell lung cancer cell lines studied by a newly developed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay

    International Nuclear Information System (INIS)

    Hida, T.; Ueda, R.; Takahashi, T.; Watanabe, H.; Kato, T.; Suyama, M.; Sugiura, T.; Ariyoshi, Y.


    The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay was developed by technically combining the human tumor clonogenic assay and the MTT assay to make the most of both assays. This assay was able to estimate the in vitro growth of cultured cell lines and of tumor cells in pleural effusion, suggesting the possibility of its use for assessment of chemosensitivity and radiosensitivity of fresh tumor samples. Multiple cell lines [including morphological and/or phenotypical in vitro converters and cisplatin (CDDP)-resistant lines] were established from three patients with small cell lung cancer at different stages of the disease. Chemosensitivity of these cell lines to four commonly used chemotherapeutic drugs was tested by the MTT hybrid assay. SK1 and SK3 lines were established from Patient S. K. before and after chemotherapy and radiotherapy, respectively. SK3/CDDP, a CDDP-resistant line derived from the SK3 line, was 30-fold more resistant to CDDP [50% inhibiting dose (IC50), 21.5 micrograms/ml] than the SK1 line. In Patient M. O., MOA2/CDDP, a CDDP-resistant line derived from MOA2 (an in vitro converter from the MO line), was 41-fold more resistant to CDDP (IC50, 37 micrograms/ml) than the parent MO line. From Patient T. M., TM1 and TM2 lines were established before and after chemotherapy, respectively. The latter showed 6-fold more resistance to CDDP than the former. Chemosensitivity of these lines to three other drugs, 4-hydroperoxycyclophosphamide, Adriamycin, and etoposide, suggested cross-resistance between CDDP and 4-hydroperoxycyclophosphamide. Radiosensitivity study was also carried out with the MTT hybrid assay. The MOA2 line was more resistant [Do, 3.0 Gy; extrapolation number (n), 4.0] than the parental MO line (Do, 1.6 Gy; n, 2.1). There was no clear difference in radiosensitivity between the cell lines established before and after radiation therapy in Patient S. K

  10. Methylation in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Regina M. Santella


    Full Text Available

    The development of HCC is a complex, multistep, multistage process. The molecular pathogenesis of HCC appears to involve multiple genetic aberrations in the molecular control of hepatocyte proliferation, differentiation and death and the maintenance of genomic integrity. This process is influenced by the cumulative activation and inactivation of oncogenes, tumor suppressor genes and other genes. p53, a tumor suppressor gene, is the most frequently mutated gene in human cancers. There is also a striking sequence specific binding and induction of mutations by AFB1 at codon 249 of p53 in HCC.

    Epigenetic alterations are also involved in cancer development and progression. Methylation of promoter CpG islands is associated with inhibition of transcriptional initiation and permanent silencing of downstream genes.

    It is now known that most important tumor suppressor genes are inactivated, not only by mutations and deletions but also by promoter methylation. Several studies indicated that p16, p15, RASSF1A, MGMT, and GSTP1 promoter hypermethylation are prevalent in HCC. In addition, geographic variation in the methylation status of tumor DNA indicates that environmental factors may influence the frequent and concordant degree of hypermethylation in multiple genes in HCC and that epigeneticenvironmental interactions may be involved in hepatocarcinogenesis. We have found significant relationships between promoter methylation and AFB1-DNA adducts confirming the impact of environmental exposures on gene methylation.

    DNA isolated from serum or plasma of cancer patients frequently contains the same genetic and

  11. Comparative study of ß-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.)

    DEFF Research Database (Denmark)

    Jiménez, Natalia Ivonne Vera; Pietretti, D.; Wiegertjes, G. F.


    kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS......-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head...... on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head...

  12. Critérios para o teste de tetrazólio na estimativa do potencial germinativo em macaúba Criteria for tetrazolium tests in the estimation of the germination potential of macaw palm

    Directory of Open Access Journals (Sweden)

    Leonardo Monteiro Ribeiro


    Full Text Available O objetivo deste trabalho foi estabelecer critérios para a aplicação do teste de tetrazólio em embriões de macaúba (Acrocomia aculeata. Para a elaboração do esquema de avaliação, foram realizadas avaliações anatômicas, identificação de padrões de coloração por solução de 2,3,5-trifenil cloreto de tetrazólio a 0,5% por quatro horas e cultivo in vitro de embriões. Em um experimento, foram avaliados três períodos de pré-condicionamento das sementes por imersão em água, por 12 e 24 horas, associados a duas temperaturas de coloração, 35 e 40ºC, em dois lotes de sementes além do controle sem pré-condicionamento. Em outro experimento, foram testadas em três lotes de sementes, três concentrações da solução de tetrazólio (0,5, 0,75 e 1%, associadas a dois tempos de coloração (duas e quatro horas. Utilizou-se o cultivo in vitro de embriões para comparação dos resultados. Um esquema de avaliação com dez padrões de coloração, associados a três classes de vigor, foi definido com base na anatomia dos embriões e no desenvolvimento de plântulas in vitro. O tratamento de pré-condicionamento em água não é necessário, e se deve aplicar o tempo de coloração de quatro horas, em solução de sal de tetrazólio, a 0,5% e 35ºC.The objective of this study was to establish criteria for the tetrazolium test in embryos of macaw palm (Acrocomia aculeata. To develop the evaluation scheme, anatomical analyses were performed, and staining patterns were identified using a 0.5% 2,3,5-triphenyl tetrazolium chloride solution for four hours, and embryo was cultured in vitro. In one experiment, three prior seed-soaking times in water (for 12 and 24 hours, besides a control without seed pre-conditioning, associated with two color temperatures (35 and 40ºC in two seed lots were evaluated. In another experiment, three concentrations of tetrazolium solution (0.5, 0.75 and 1%, associated with two staining times (two and four

  13. Tetrazolium test in the evaluation of watermelon physiological seed quality/ Teste de tetrazólio para avaliação da qualidade fisiológica de sementes de melancia

    Directory of Open Access Journals (Sweden)

    Luciana Magda de Oliveira


    Full Text Available The tetrazolium test is one of the most promising methods to estimate in a fast way viability and vigor of seeds. Its usage in watermelon seeds requires some care with the imbibition and handling due to presence of mucilaginous layer adherent to the tegument. The objective of this research work was to define the imbibition time and the method of scarification for removing the mucilage, during pre – conditioning of the tetrazolium test in watermelon. Seeds from different watermellon cultivars were immersed in water at 30°C from 12 to 18 hours, and sloughed in cal, fine and thick sand. After longitudinal cut in the distal portion to the embryonic axis, the tegument was removed and embryos were kept in water for additonal 2 hours at 30°C for hand removal of the remaining membrane. After definition of the ideal pre – conditioning method, the embryos were immersed in tetrazolium solution in concentrations of 0,075%; 0, 5% and 1% for 3 and 4 hours at 30°C. The immersion of watermelon seeds in water at 30°C for 12 hours, mucilage removal with fine sand, longitudinal cut in the distal portion to the embryonic axis, and removal of tegument, followed by the permanence of embryos in water for 2 hours at 30°C for the hand removal of the internal membrane and immersion in the tetrazolium solution at 0,075% for 4 hours at 30°C are adequate procedures for the evaluation of watermelon seed quality.O teste de tetrazólio é um dos métodos mais promissores para estimar, de forma rápida, a viabilidade e o vigor das sementes. Sua utilização em sementes de melancia requer cuidados na embebição e manuseio pela presença de camada mucilaginosa aderente ao tegumento. O objetivo do trabalho foi definir o tempo de embebição e do método de escarificação para retirada da mucilagem, no pré-condicionamento do teste de tetrazólio, sementes de diferentes cultivares de melancia. As sementes foram imersas em água a 30oC por 12 e 18 horas, e escarificadas

  14. DNA methylation and memory formation. (United States)

    Day, Jeremy J; Sweatt, J David


    Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.

  15. Use of HPLC/UPLC-spectrophotometry for detection of formazan in in vitro Reconstructed human Tissue (RhT)-based test methods employing the MTT-reduction assay to expand their applicability to strongly coloured test chemicals. (United States)

    Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P


    A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities. (United States)

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess


    We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC 50 = 111.2μg/ml) in DPPH and IC 50 = 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD 50 = 1.1μg/ml) in brine shrimp lethality test and with (IC 50 = 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC 50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli , Aspergillus niger and Candida albicans. The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  17. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT assay and Larvicidal Activities

    Directory of Open Access Journals (Sweden)

    Saeed Tavakoli


    Full Text Available Background: We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant.Methods: Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Anti­oxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anoph­eles stephensi was carried out according to the method described by WHO.Results: In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-ver­benol (9.66%, isobutyl acetate (25.73% and E-β-caryophyllene (8.68% were main compounds. The oil showed (IC50= 111.2µg/ml in DPPH and IC50= 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD50= 1.1µg/ml in brine shrimp lethality test and with (IC50= 22.0, 25.0 and 42.55 µg/ml on three cancerous cell lines (MCF-7, A-549 and HT-29 respectively. LC50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli, Asper­gillus niger and Candida albicans.Conclusion: The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  18. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)



    Feb 20, 2013 ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, Hidden ... its response to environmental cues. .... have a great potential to become the most cost-effective ... hg18 reference genome (set to 0 if not present in retrieved reads). ..... DNA methylation patterns and epigenetic memory.

  19. Biological activities and phenolic contents of Argania spinosa L ...

    African Journals Online (AJOL)

    Cytotoxic activity was evaluated by methyl-thiazolyldiphenyl-tetrazolium bromide (MTT) assay. Results: The results revealed abundant polyphenols and flavonoids (221.39 ± 5.70 μg GAEq/1 g and 66.86 ± 3.36 μg CAEq/1 g, respectively) in the leaf extract. UPLC-DAD-ESI-QTOF-MS profiling showed the presence of ...

  20. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R


    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  1. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks


    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  2. Naturally occurring methyl salicylate glycosides. (United States)

    Mao, Ping; Liu, Zizhen; Xie, Meng; Jiang, Rui; Liu, Weirui; Wang, Xiaohong; Meng, Shen; She, Gaimei


    As an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates' without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.

  3. Design, Synthesis and Antitumor Activity of Novel 4-Methyl-(3'S,4'S-cis-khellactone Derivatives

    Directory of Open Access Journals (Sweden)

    Taigang Liang


    Full Text Available An asymmetric synthesis of a series of novel 4-methyl-(3'S,4'S-cis-khellactone derivatives 3a–o is reported for the first time. Their structures were confirmed by 1H-NMR, 13C-NMR and MS. Their cytotoxic activity was evaluated by the MTT assay against three selected human cancer cell lines: HEPG-2 (human liver carcinoma, SGC-7901 (human gastric carcinoma, LS174T (human colon carcinoma. Some compounds showed high inhibitory activity against these human cancer cell lines. Among them, compound 3a exhibited strong cytotoxicity, with IC50 values ranging from 8.51 to 29.65 μM. The results showed that 4-methyl-cis-khellactone derivatives with S,S configuration could be a potential antitumor agents.

  4. Process for the production of methyl methacrylate

    NARCIS (Netherlands)

    Eastham, G.R.; Johnson, D.W.; Straathof, A.J.J.; Fraaije, Marco; Winter, Remko


    A process of producing methyl methacrylate or derivatives thereof is described. The process includes the steps of; (i) converting 2-butanone to methyl propionate using a Baeyer-Villiger monooxygenase, and (ii) treating the methyl propionate produced to obtain methyl methacrylate or derivatives

  5. Preparation of C{sup 14}-labelled tetrazolium salts and tracer study of the tetrazene-formazan rearrangement; Preparation de sels de tetrazolium marques au carbone-14 et etude de la transposition tetrazene-formazan, au moyen d'indicateurs radioactifs; Izgotovlenie mechennykh C{sup 14} solej tetrazosoedinenij i issledovanie pri pomoshchi indikatorov peregruppirovok tetrazona-formazana; Preparacion de sales de tetrazolio marcadas con {sup 14}C y estudio de la transposicion tetraceno-formazan con ayuda de trazadores

    Energy Technology Data Exchange (ETDEWEB)

    Marton, Joseph; Meisel, Julia [Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary); Gosztonyi, Thomas [Institute of Organic Chemical Technology, Technical University, Budapest (Hungary)


    The preparation of [5-C{sup 14}]-TTC, [5, 5'-di-C{sup 14}]NT (neotetrazolium) and [5, 5'-di-C{sup 14}]-BT (tetrazolium blue) starting from benzaldehyde- [1-C{sup 14}] has been accomplished. The yields for both mono- and ditetrazolium salts are high, and the products can be obtained with high sp. activity. The purity of the samples was investigated by paper chromatography. In the case of ditetrazolium salts some impurities could be detected and conclusions drawn as to their structure and quantity. A method has been developed to prepare C{sup 14}- labelled ditetrazolium salts of high purity. The formation of the formazan, the precursor of the tetrazolium salt, goes through an unstable intermediate of tetrazene-type structure which rearranges rapidly in basic medium, to yield the formazan. The tetrazene intermediate can be isolated under suitable conditions. By using C{sup 14}-labelled benzaldehyde phenylhydrazone this rearrangement was investigated and a verification of its intramolecular character given. (author) [French] On a procede a la preparation de [5-C{sup 14}]-TTC, de [5,5'-di-C{sup 14}] NT (neotetrazolium) et de [5,5'-di-C{sup 14}]-VT (bleu de tetrazolium), en partant du benzaldehyde-[1-C{sup 14}]. On a pu obtenir un grand rendement, tant pour les sels de monotetrazolium que pour les sels de ditetrazolium, et des produits d'une activite specifique elevee. La purete des echantillons a ete examinee par chromatographie sur papier. Dans le cas des sels de ditetrazolium, on a pu deceler quelques impuretes et tirer des conclusions quant a leur structure et quantite. On a mis au point une methode permettant de preparer des sels de ditetrazolium marques au carbone-14 et presentant une grande purete. Dans la synthese du formazan, precurseur du sel de tetrazolium, on obtient un produit intermediaire instable d'une structure analogue a celle du tetrazene; ce produit se transforme rapidement en milieu alcalin pour donner du formazan. Le tetrazene intermediaire peut

  6. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines. (United States)

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu


    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  7. DNA methylation analysis in rat kidney epithelial cells exposed to 3-MCPD and glycidol. (United States)

    Senyildiz, Mine; Alpertunga, Buket; Ozden, Sibel


    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been regarded as a rat carcinogen, which is known to induce Leydig-cell and mammary gland tumors in males, as well as kidney tumors in both genders. 3-MCPD is highly suspected to be a non-genotoxic carcinogen. 2,3-Epoxy-1-propanol (glycidol) can be formed via dehalogenation from 3-MCPD. We aimed to investigate the cytotoxic effects of 3-MCPD and glycidol, then to demonstrate the possible epigenetic mechanisms with global and gene-specific DNA methylation in rat kidney epithelial cells (NRK-52E). IC 50 value of 3-MCPD was determined as 48 mM and 41.39 mM, whereas IC 50 value of glycidol was 1.67 mM and 1.13 mM by MTT and NRU test, respectively. Decreased global DNA methylation at the concentrations of 100 μM and 1000 μM for 3-MCPD and 100 μM and 500 μM for glycidol were observed after 48 h exposure by using 5-methylcytosine (5-mC) ELISA kit. Methylation changes were detected in promoter regions of c-myc and Rassf1a in 3-MCPD and glycidol treated NRK-52E cells by using methylation-specific PCR (MSP), whereas changes on gene expression of c-myc and Rassf1a were observed by using real-time PCR. However, e-cadherin, p16, VHL and p15 genes were unmethylated in their CpG promoter regions in response to treatment with 3-MCPD and glycidol. Alterations in DNA methylation might be key events in the toxicity of 3-MCPD and glycidol.

  8. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.). (United States)

    Vera-Jimenez, N I; Pietretti, D; Wiegertjes, G F; Nielsen, M E


    The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line. (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar


    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  10. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim


    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  11. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    miRNAting control of DNA methylation. ASHWANI ... function and biological process ... Enrichment analysis of the genes methylated by DRM2 for molecular function and biological ... 39(3), June 2014, 365–380, © Indian Academy of Sciences.

  12. Bacterial production of methyl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been


    The present invention relates to methods and compositions for increasing production of methyl ketones in a genetically modified host cell that overproduces .beta.-ketoacyl-CoAs through a re-engineered .beta.-oxidation pathway and overexpresses FadM.

  13. Electronic transport in methylated fragments of DNA

    International Nuclear Information System (INIS)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.


    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics

  14. Electronic transport in methylated fragments of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L., E-mail:; Albuquerque, E. L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, CE (Brazil); Caetano, E. W. S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Moura, F. A. B. F. de; Lyra, M. L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)


    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  15. Methylation sensitive amplified polymorphism (MSAP) reveals that ...

    African Journals Online (AJOL)

    ajl yemi


    Dec 19, 2011 ... Key words: Salt stress, alkali stress, Gossypium hirsutum L., DNA methylation, methylation sensitive amplified polymorphism (MSAP). INTRODUCTION. DNA methylation is one of the key epigenetic mecha- nisms among eukaryotes that can modulate gene expression without the changes of DNA sequence.

  16. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its ...

  17. Identification of endometrial cancer methylation features using combined methylation analysis methods.

    Directory of Open Access Journals (Sweden)

    Michael P Trimarchi

    Full Text Available DNA methylation is a stable epigenetic mark that is frequently altered in tumors. DNA methylation features are attractive biomarkers for disease states given the stability of DNA methylation in living cells and in biologic specimens typically available for analysis. Widespread accumulation of methylation in regulatory elements in some cancers (specifically the CpG island methylator phenotype, CIMP can play an important role in tumorigenesis. High resolution assessment of CIMP for the entire genome, however, remains cost prohibitive and requires quantities of DNA not available for many tissue samples of interest. Genome-wide scans of methylation have been undertaken for large numbers of tumors, and higher resolution analyses for a limited number of cancer specimens. Methods for analyzing such large datasets and integrating findings from different studies continue to evolve. An approach for comparison of findings from a genome-wide assessment of the methylated component of tumor DNA and more widely applied methylation scans was developed.Methylomes for 76 primary endometrial cancer and 12 normal endometrial samples were generated using methylated fragment capture and second generation sequencing, MethylCap-seq. Publically available Infinium HumanMethylation 450 data from The Cancer Genome Atlas (TCGA were compared to MethylCap-seq data.Analysis of methylation in promoter CpG islands (CGIs identified a subset of tumors with a methylator phenotype. We used a two-stage approach to develop a 13-region methylation signature associated with a "hypermethylator state." High level methylation for the 13-region methylation signatures was associated with mismatch repair deficiency, high mutation rate, and low somatic copy number alteration in the TCGA test set. In addition, the signature devised showed good agreement with previously described methylation clusters devised by TCGA.We identified a methylation signature for a "hypermethylator phenotype" in

  18. MethylMix 2.0: an R package for identifying DNA methylation genes. (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier


    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  19. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Knothe, Gerhard


    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1 H and 13 C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  20. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J


    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  1. Methyl mercury in terrestrial compartments

    International Nuclear Information System (INIS)

    Stoeppler, M.; Burow, M.; Padberg, S.; May, K.


    On the basis of the analytical methodology available at present the state of the art for the determination of total mercury and of various organometallic compounds of mercury in air, precipitation, limnic systems, soils, plants and biota is reviewed. This is followed by the presentation and discussion of examples for the data obtained hitherto for trace and ultratrace levels of total mercury and mainly methyl mercury in terrestrial and limnic environments as well as in biota. The data discussed stem predominantly from the past decade in which, due to significant methodological progress, many new aspects were elucidated. They include the most important results in this area achieved by the Research Centre (KFA) Juelich within the project 'Origin and Fate of Methyl Mercury' (contracts EV4V-0138-D and STEP-CT90-0057) supported by the Commission of the European Communities, Brussels. (orig.) [de

  2. Thermophysical study of methyl levulinate

    International Nuclear Information System (INIS)

    Lomba, Laura; Lafuente, Carlos; García-Mardones, Mónica; Gascón, Ignacio; Giner, Beatriz


    Highlights: • We have carried out a thermophysical characterization of methyl levulinate. • The study has been performed over a temperature range from (278.15 to 328.15) K. • pρT behavior has been studied over a temperature range from (333.15 to 453.15) K. • TRIDEN equation has been used to correlate pρT data. • Results have been compared with of ethyl and butyl levulinate and levulinic acid. -- Abstract: Several thermophysical properties (density, speed of sound, refractive index, surface tension, static permittivity and dynamic viscosity) of methyl levulinate have been measured under atmospheric pressure at temperatures from (278.15 to 338.15) K, while the vapor pressure was determined over a temperature range from (333.15 to 453.15) K. Furthermore, pρT behavior has been also investigated using a high-pressure, high-temperature vibrating tube densimeter over a temperature range from (283.15 to 338.15) K and a pressure range from (0.1 to 60.0) MPa. All these values obtained for methyl levulinate have been compared with other members of the levulinate family and also with levulinic acid

  3. Anti-inflammatory and antifibrotic effects of methyl palmitate

    International Nuclear Information System (INIS)

    El-Demerdash, Ebtehal


    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-α and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (IκBα) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-κB, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research highlights: →Methyl palmitate is a universal macrophage inhibitor. →It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. →The underlying mechanism of these effects could be through NF-kB inhibition.

  4. Evolution of DNA Methylation across Insects. (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J


    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Systemic effects of chronically administered methyl prednisolonate and methyl 17-deoxyprednisolonate. (United States)

    Olejniczak, E; Lee, H J


    The systemic activities of methyl prednisolonate and methyl 17-deoxyprednisolonate (1) were studied in rats. Methyl 17-deoxyprednisolonate produced significant changes in the amount of sodium ion (decreased) and potassium ion (increased) in urine; however, methyl prednisolonate had no effect on electrolyte balance. Both methyl prednisolonate and methyl 17-deoxyprednisolonate had no effect on liver glycogen content, plasma corticosterone level and relative adrenal weight. In contrast, the parent compound prednisolone caused a significant decrease in liver glycogen content, plasma corticosterone level and relative adrenal weight.

  6. Research on DNA methylation of human osteosarcoma cell MGMT and its relationship with cell resistance to alkylating agents. (United States)

    Guo, Jun; Cui, Qiu; Jiang, WeiHao; Liu, Cheng; Li, DingFeng; Zeng, Yanjun


    The objective of this study was to explore the O(6)-methylguanine-DNA methyltransferase (MGMT) gene methylation status and its protein expression, as well as the effects of demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-CdR) on MGMT gene expression and its resistance to alkylating agents, and to elucidate MGMT expression mechanism and significance in osteosarcoma. The human osteosarcoma cell lines Saos-2 and MG-63 were collected and treated with 5-Aza-CdR for 6 days. The cells not treated with 5-Aza-CdR were set as a negative control. The genomic DNA was extracted from the Saos-2 and MG-63 cells using methylation-specific PCR to detect the promoter CpG island methylation status of the MGMT gene. Cell sensitivity to alkylating agents before and after drug administration was detected by the MTT method. The variation in MGMT gene mRNA and protein was detected by reverse transcription PCR (RT-PCR) and Western blotting. The MGMT promoter gene of normal Saos-2 cells was methylated, with reduced MGMT mRNA and protein expression; the MGMT mRNA and protein expression of Saos-2 cells treated with 5-Aza-CdR was obviously enhanced, and its sensitivity to alkylating agents was reversed. Meanwhile, with promoter CpG island unmethylation of the MGMT gene, MGMT protein was expressed in the normal MG-63 cells and the MG-63 cells treated with 5-Aza-CdR, and both showed resistance to alkylating agents. The methylation status of the MGMT gene promoter in human osteosarcoma cells reflected the cells' ability to induce MGMT protein expression and can be used as a molecular marker to project the sensitivity of cancer tissues to alkylating agent drugs.

  7. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer. (United States)

    Zhao, Zhenzhen; Liu, Wen; Liu, Jincheng; Wang, Jiayi; Luo, Bing


    Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p. © 2017 Wiley Periodicals, Inc.

  8. Methylation patterns in marginal zone lymphoma. (United States)

    Arribas, Alberto J; Bertoni, Francesco

    Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Wp specific methylation of highly proliferated LCLs

    International Nuclear Information System (INIS)

    Park, Jung-Hoon; Jeon, Jae-Pil; Shim, Sung-Mi; Nam, Hye-Young; Kim, Joon-Woo; Han, Bok-Ghee; Lee, Suman


    The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes

  10. Structure, bioactivity, and synthesis of methylated flavonoids. (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao


    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  11. Colorectal Cancer "Methylator Phenotype": Fact or Artifact?

    Directory of Open Access Journals (Sweden)

    Charles Anacleto


    Full Text Available It has been proposed that human colorectal tumors can be classified into two groups: one in which methylation is rare, and another with methylation of several loci associated with a "CpG island methylated phenotype (CIMP," characterized by preferential proximal location in the colon, but otherwise poorly defined. There is considerable overlap between this putative methylator phenotype and the well-known mutator phenotype associated with microsatellite instability (MSI. We have examined hypermethylation of the promoter region of five genes (DAPK, MGMT, hMLH1, p16INK4a, and p14ARF in 106 primary colorectal cancers. A graph depicting the frequency of methylated loci in the series of tumors showed a continuous, monotonically decreasing distribution quite different from the previously claimed discontinuity. We observed a significant association between the presence of three or more methylated loci and the proximal location of the tumors. However, if we remove from analysis the tumors with hMLH1 methylation or those with MSI, the significance vanishes, suggesting that the association between multiple methylations and proximal location was indirect due to the correlation with MSI. Thus, our data do not support the independent existence of the so-called methylator phenotype and suggest that it rather may represent a statistical artifact caused by confounding of associations.

  12. Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence

    Directory of Open Access Journals (Sweden)

    Mark Lucock


    Conclusion: A methylation diet influences methyl group synthesis in the regulation of blood homocysteine level, and is modulated by genetic interactions. Methylation-related nutrients also interact with key genes to modify risk of AP, a precursor of colorectal cancer. Independent of diet, two methylation-related genes (A2756G-MS and A66G-MSR were directly associated with AP occurrence.

  13. Synthesis, Characterization, and Cytotoxicity of a Novel Gold(III Complex with O,O′-Diethyl Ester of Ethylenediamine-N,N′-Di-2-(4-MethylPentanoic Acid

    Directory of Open Access Journals (Sweden)

    Nebojša Pantelić


    Full Text Available A novel gold(III complex, [AuCl2{(S,S-Et2eddl}]PF6, ((S,S-Et2eddl = O,O′-diethyl ester of ethylenediamine-N,N′-di-2-(4-methylpentanoic acid was synthesized and characterized by IR, 1D (1H and 13C, and 2D (H,H-COSY and H,H-NOESY NMR spectroscopy, mass spectrometry, and elemental analysis. Density functional theory calculations confirmed that (R,R-N,N′ diastereoisomer was energetically the most stable isomer. In vitro antitumor action of ligand precursor [(S,S-H2Et2eddl]Cl2 and corresponding gold(III complex was determined against tumor cell lines: human adenocarcinoma (HeLa, human colon carcinoma (LS174, human breast cancer (MCF7, non-small cell lung carcinoma cell line (A549, and non-cancerous cell line human embryonic lung fibroblast (MRC-5 using microculture tetrazolium test (MTT assay. The results indicate that both ligand precursor and gold(III complex have showed very good to moderate cytotoxic activity against all tested malignant cell lines. The highest activity was expressed by [AuCl2{(S,S-Et2eddl}]PF6 against the LS174 cells, with IC50 value of 7.4 ± 1.2 µM.

  14. A genome-wide methylation study on obesity Differential variability and differential methylation

    NARCIS (Netherlands)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling


    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common

  15. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. (United States)


    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  16. Aberrant TET1 Methylation Closely Associated with CpG Island Methylator Phenotype in Colorectal Cancer. (United States)

    Ichimura, Norihisa; Shinjo, Keiko; An, Byonggu; Shimizu, Yasuhiro; Yamao, Kenji; Ohka, Fumiharu; Katsushima, Keisuke; Hatanaka, Akira; Tojo, Masayuki; Yamamoto, Eiichiro; Suzuki, Hiromu; Ueda, Minoru; Kondo, Yutaka


    Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer. ©2015 American Association for Cancer Research.

  17. The Synthesis of Methyl Salicylate: Amine Diazotization. (United States)

    Zanger, Murray; McKee, James R.


    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  18. Evidence Suggesting Absence of Mitochondrial DNA Methylation

    DEFF Research Database (Denmark)

    Mechta, Mie; Ingerslev, Lars R; Fabre, Odile


    , 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent...

  19. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  20. Methyl 3-(Quinolin-2-ylindolizine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Roumaissa Belguedj


    Full Text Available A novel compound, methyl 3-(quinolin-2-ylindolizine-1-carboxylate (2 has been synthesized by cycloaddition reaction of 1-(quinolin-2-ylmethylpyridinium ylide (1 with methyl propiolate in presence of sodium hydride in THF. The structure of this compound was established by IR, 1H-NMR, 13C-NMR and MS data

  1. Adenine N6-methylation in diverse fungi

    NARCIS (Netherlands)

    Seidl, Michael F.


    A DNA modification - methylation of cytosines and adenines - has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant

  2. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A; Khamis, Abdullah M.; Kulakovskiy, Ivan V; Ba Alawi, Wail; Bhuyan, Md Shariful I; Kawaji, Hideya; Lassmann, Timo; Harbers, Matthias; Forrest, Alistair RR; Bajic, Vladimir B.


    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect

  3. DMPD: TLR ignores methylated RNA? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16111629 TLR ignores methylated RNA? Ishii KJ, Akira S. Immunity. 2005 Aug;23(2):11...1-3. (.png) (.svg) (.html) (.csml) Show TLR ignores methylated RNA? PubmedID 16111629 Title TLR ignores methylated

  4. Modeling spatiotemporal dynamics of DNA methylation

    DEFF Research Database (Denmark)

    Lövkvist, Cecilia Elisabet

    into how epigenetic marks are distributed in the human genome. In the first part of the thesis, we investigate DNA methylation and maintenance of methylation patterns throughout cell division. We argue that collaborative models, those where the methylation of CpG sites depends on the methylation status...... into the game more explicitly in another type of model that speaks out the duality of the two aspects. Using statistical analysis of experimental data, this thesis further explores a link between DNA methylation and nucleosome occupancy. By comparing the patterns on promoters to regions with similar Cp...... division. The patterns of epigentic marks depend on enzymes that ensure their maintenance and introduction. Using theoretical models, this thesis proposes new mechanisms for how enzymes operate to maintain patterns of epigenetic marks. Through analysis of experimental data this work gives new insight...

  5. Protein methylation reactions in intact pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.


    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ( 3 H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented

  6. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.


    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  7. Methylation analysis of polysaccharides: Technical advice. (United States)

    Sims, Ian M; Carnachan, Susan M; Bell, Tracey J; Hinkley, Simon F R


    Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. DNA sequence explains seemingly disordered methylation levels in partially methylated domains of Mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Dimos Gaidatzis


    Full Text Available For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs, recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%-40% of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS. Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R(2 of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features.

  9. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). (United States)

    Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.


    The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.

  10. The origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes (United States)

    Wolff, George A.; Lamb, Neil A.; Maxwell, James R.


    Treatment of 4-methylcholest-4-ene under mild acid conditions at low temperatures gives chemical evidence for certain features seen in the distributions of sedimentary 4-methyl steroid hydrocarbons, and further indicates that many low temperature diagenetic reactions of steroids are explicable in terms of acid catalysed rearrangements. Specifically, the results provide: (i) Indirect evidence that the 4-ene skeleton is a key intermediate in the dehydration of 4-methyl stanols in sediments. (ii) An explanation for the distribution of 4-methyl sterenes and A-nor sterenes in the lacustrine Messel shale (Eocene). (iii) An explanation for the presence of 4β-methyl steranes in relatively immature sedimentary rocks, despite the precursor stanols having the 4α-methyl configuration. With increasing maturity in the Paris Basin shales (Lower Toarcian), the less stable 4β-methyl steranes decrease gradually in abundance relative to their 4α-methyl counterparts, at a rate fairly similar to the change in pristane stereochemistry.

  11. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). (United States)

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J


    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  12. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors

    International Nuclear Information System (INIS)

    Amatruda, James F; Frazier, A Lindsay; Poynter, Jenny N; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh


    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy

  13. Teste de tetrazólio para avaliação da qualidade fisiológica em sementes de Goiabeira-serrana (Acca sellowiana O. Berg Burret Tetrazolium test to evaluate physiological quality of Brazilian Guava seeds (Acca sellowiana O. Berg Burret

    Directory of Open Access Journals (Sweden)

    Marcelo Benevenga Sarmento


    Full Text Available A goiabeira-serrana, espécie frutífera nativa do Sul do Brasil, vem mostrando- se promissora em termos ecológicos e comerciais. O trabalho objetivou avaliar a qualidade fisiológica de dois lotes de sementes de goiabeira-serrana por meio do teste de tetrazólio. O experimento foi dividido em duas etapas. Na primeira, os lotes foram submetidos aos testes de germinação, índice de velocidade de germinação, tempo médio de germinação, emergência em casa de vegetação, índice de velocidade de emergência de plântulas em casa de vegetação, tempo médio de emergência e comprimento de parte aérea. Na segunda, foi realizado o teste de tetrazólio nas concentrações de 0,5 e 1,0, e tempos de embebição (2 h e 4 h. O tratamento 0,5 TZ 4h obteve 73% de sementes viáveis (lote 2007. Para o lote 2008, não houve diferenças entre os tratamentos. O teste de germinação apresentou correlação positiva para os tratamentos 0,5 TZ 2 h e 1 TZ 2 h. Para a emergência de plântulas em casa de vegetação, houve correlação positiva para o tratamento 0,5 TZ 2 h. O teste de tetrazólio permitiu a classificação dos lotes em quatro níveis de viabilidade, confirmando a eficiência do teste na avaliação da viabilidade de sementes de goiabeira-serrana.Brazilian guava, native fruit tree from Southern Brazil, has become relevant due to its potencial use as ecological and comercial. This article aims evaluate the physiological quality of Brazilian guava seeds by tetrazolium test. The work was divided in two parts. In the first, both lots were submitted to the germination test, index of speed germination, mean time of germination, emergency of seedlings in greenhouse, mean time of emergency and shoot length of seedlings. In the second part it was performed the tetrazolium test. Two concentrations of tetrazolium were used (0,5 e 1,0 and two times of imbibition (2 h e 4 h. To the lot 2007, the treatment 0,5 TZ 4 h obtained 73% of viable seeds

  14. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro


    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  15. Homogalacturonan methyl-esterification and plant development. (United States)

    Wolf, Sebastian; Mouille, Grégory; Pelloux, Jérome


    The ability of a plant cell to expand is largely defined by the physical constraints imposed by its cell wall. Accordingly, cell wall properties have to be regulated during development. The pectic polysaccharide homogalacturonan is a major component of the plant primary walls. Biosynthesis and in muro modification of homogalacturonan have recently emerged as key determinants of plant development, controlling cell adhesion, organ development, and phyllotactic patterning. This review will focus on recent findings regarding impact of homogalacturonan content and methyl-esterification status of this polymer on plant life. De-methyl-esterification of homogalacturonan occurs through the action of the ubiquitous enzyme 'pectin methyl-esterase'. We here describe various strategies developed by the plant to finely tune the methyl-esterification status of homogalacturonan along key events of the plant lifecycle.

  16. Annotating the genome by DNA methylation. (United States)

    Cedar, Howard; Razin, Aharon


    DNA methylation plays a prominent role in setting up and stabilizing the molecular design of gene regulation and by understanding this process one gains profound insight into the underlying biology of mammals. In this article, we trace the discoveries that provided the foundations of this field, starting with the mapping of methyl groups in the genome and the experiments that helped clarify how methylation patterns are maintained through cell division. We then address the basic relationship between methyl groups and gene repression, as well as the molecular rules involved in controlling this process during development in vivo. Finally, we describe ongoing work aimed at defining the role of this modification in disease and deciphering how it may serve as a mechanism for sensing the environment.

  17. Methylation of hemoglobin to enhance flocculant performance (United States)

    An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...

  18. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. (United States)

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M


    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  19. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia


    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  20. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode


    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  1. Methyl Iodide Decomposition at BWR Conditions

    International Nuclear Information System (INIS)

    Pop, Mike; Bell, Merl


    Based on favourable results from short-term testing of methanol addition to an operating BWR plant, AREVA has performed numerous studies in support of necessary Engineering and Plant Safety Evaluations prior to extended injection of methanol. The current paper presents data from a study intended to provide further understanding of the decomposition of methyl iodide as it affects the assessment of methyl iodide formation with the application of methanol at BWR Plants. This paper describes the results of the decomposition testing under UV-C light at laboratory conditions and its effect on the subject methyl iodide production evaluation. The study as to the formation and decomposition of methyl iodide as it is effected by methanol addition is one phase of a larger AREVA effort to provide a generic plant Safety Evaluation prior to long-term methanol injection to an operating BWR. Other testing phases have investigated the compatibility of methanol with fuel construction materials, plant structural materials, plant consumable materials (i.e. elastomers and coatings), and ion exchange resins. Methyl iodide is known to be very unstable, typically preserved with copper metal or other stabilizing materials when produced and stored. It is even more unstable when exposed to light, heat, radiation, and water. Additionally, it is known that methyl iodide will decompose radiolytically, and that this effect may be simulated using ultra-violet radiation (UV-C) [2]. In the tests described in this paper, the use of a UV-C light source provides activation energy for the formation of methyl iodide. Thus is similar to the effect expected from Cherenkov radiation present in a reactor core after shutdown. Based on the testing described in this paper, it is concluded that injection of methanol at concentrations below 2.5 ppm in BWR applications to mitigate IGSCC of internals is inconsequential to the accident conditions postulated in the FSAR as they are related to methyl iodide formation

  2. Whole genome DNA methylation: beyond genes silencing


    Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati


    The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the ...

  3. DNA methylation abnormalities in congenital heart disease. (United States)

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A


    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  4. Methylated spirit burns: an ongoing problem. (United States)

    Jansbeken, J R H; Vloemans, A F P M; Tempelman, F R H; Breederveld, R S


    Despite many educational campaigns we still see burns caused by methylated spirit every year. We undertook a retrospective study to analyse the impact of this problem. We retrospectively collected data of all patients with burns caused by methylated spirit over twelve years from 1996 to 2008. Our main endpoints were: incidence, age, mechanism of injury, total body surface area (TBSA) burned, burn depth, need for surgery and length of hospital stay. Ninety-seven patients with methylated spirit burns were included. During the study period there was no decrease in the number of patients annually admitted to the burn unit with methylated spirit burns. 28% of the patients (n=27) were younger than eighteen years old, 15% (n=15) were ten years old or younger. The most common cause of burns was carelessness in activities involving barbecues, campfires and fondues. Mean TBSA burned was 16% (SD 12.4). 70% (n=68) had full thickness burns. 66% (n=64) needed grafting. Mean length of hospital stay was 23 days (SD 24.7). The use of methylated spirit is an ongoing problem, which continues to cause severe burns in adults and children. Therefore methylated spirit should be banned in households. We suggest sale only in specialised shops, clear labelling and mandatory warnings. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  5. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska


    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  6. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  7. [Effect of total glucosides of peony on expression and DNA methylation status of ITGAL gene in CD4(+) T cells of systemic lupus erythematosus]. (United States)

    Zhao, Ming; Liang, Gongping; Luo, Shuangyan; Lu, Qianjin


    To investigate the effect of total glucosides of peony (TGP) on expression and DNA methylation status of ITGAL gene (CD11a) in CD4(+) T cells from patients with systemic lupus erythematosus (SLE). CD4(+) T cells were isolated by positive selection using CD4 beads. CD4(+) T cells were treated by TGP at 0, 62.5, 312.5 and 1562.5 mg/L for 48 h. The MTT method was used to assess cell viability; mRNA expression level was measured by realtime-PCR; protein level of CD11a was measured by flow cytometric analysis; DNA methylation status was assayed by bisulfite sequencing. No significant change in cell viability was found in CD4(+) T cells among the different concentration groups (P>0.05). Compared with control, the mRNA and protein levels of ITGAL were down-regulated significantly in SLE CD4(+) T cells treated with TGP (1562.5 mg/L) (PTGP (1562.5 mg/L) treated CD4(+) T cells compared with control group (PTGP can repress CD11a gene expression through enhancing DNA methylation of ITGAL promoter in CD4(+) T cells from patients with SLE. This observation represents a preliminary step in understanding the mechanism of TGP in SLE therapy.

  8. Global DNA methylation of ischemic stroke subtypes.

    Directory of Open Access Journals (Sweden)

    Carolina Soriano-Tárraga

    Full Text Available Ischemic stroke (IS, a heterogeneous multifactorial disorder, is among the leading causes of mortality and long-term disability in the western world. Epidemiological data provides evidence for a genetic component to the disease, but its epigenetic involvement is still largely unknown. Epigenetic mechanisms, such as DNA methylation, change over time and may be associated with aging processes and with modulation of the risk of various pathologies, such as cardiovascular disease and stroke. We analyzed 2 independent cohorts of IS patients. Global DNA methylation was measured by luminometric methylation assay (LUMA of DNA blood samples. Univariate and multivariate regression analyses were used to assess the methylation differences between the 3 most common IS subtypes, large-artery atherosclerosis (LAA, small-artery disease (SAD, and cardio-aortic embolism (CE. A total of 485 IS patients from 2 independent hospital cohorts (n = 281 and n = 204 were included, distributed across 3 IS subtypes: LAA (78/281, 59/204, SAD (97/281, 53/204, and CE (106/281, 89/204. In univariate analyses, no statistical differences in LUMA levels were observed between the 3 etiologies in either cohort. Multivariate analysis, adjusted by age, sex, hyperlipidemia, and smoking habit, confirmed the lack of differences in methylation levels between the analyzed IS subtypes in both cohorts. Despite differences in pathogenesis, our results showed no global methylation differences between LAA, SAD, and CE subtypes of IS. Further work is required to establish whether the epigenetic mechanism of methylation might play a role in this complex disease.

  9. Inductive effect of methyl group in a series of methylated indoles: A ...

    Indian Academy of Sciences (India)

    Vol. 125, No. 4, July 2013, pp. 905–912. c Indian Academy of Sciences. Inductive effect of methyl group in a series of methylated indoles: A graph theoretical analysis in the light of density functional theory and correlation with experimental charge transfer transition energies. AMIT S TIWARYa,∗ and ASOK K MUKHERJEEb.

  10. Evidence for methyl group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis

    International Nuclear Information System (INIS)

    Bedale, W.A.; Nettleton, D.O.; Sopata, C.S.; Thoelke, M.S.; Ordal, G.W.


    The authors present evidence for methyl (as methyl or methoxy) transfer from the methyl-accepting chemotaxis proteins H1 and possibly H3 of Bacillus subtilis to the methyl-accepting chemotaxis protein H2. This methyl transfer, which has been observed in vitro was strongly stimulated by the chemoattractant aspartate and thus may plan an important role in the sensory processing system of this organism. Although radiolabeling of H1 and H3 began at once after the addition of [ 3 H] methionine, radiolabeling of H2 showed a lag. Furthermore, the addition of excess nonradioactive methionine caused immediate exponential delabeling of H1 and H3 while labeling of H2 continued to increase. Methylation of H2 required the chemotactic methyltransferase, probably to first methylate H1 and H3. Aspartate caused increased labeling of H2 and strongly decreased labeling of H1 and H3 after the addition of nonradioactive methionine. Without the addition of nonradioactive methionine, aspartate caused demethylation of H1 and to a lesser extent H3, with an approximately equal increase of methylation of H2

  11. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters (United States)

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  12. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique


    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  13. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique


    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  14. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun


    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  15. Prognostic DNA Methylation Markers for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Siri H. Strand


    Full Text Available Prostate cancer (PC is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181 and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC.

  16. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.


    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  17. Dynamic Alu Methylation during Normal Development, Aging, and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yanting Luo


    Full Text Available DNA methylation primarily occurs on CpG dinucleotides and plays an important role in transcriptional regulations during tissue development and cell differentiation. Over 25% of CpG dinucleotides in the human genome reside within Alu elements, the most abundant human repeats. The methylation of Alu elements is an important mechanism to suppress Alu transcription and subsequent retrotransposition. Decades of studies revealed that Alu methylation is highly dynamic during early development and aging. Recently, many environmental factors were shown to have a great impact on Alu methylation. In addition, aberrant Alu methylation has been documented to be an early event in many tumors and Alu methylation levels have been associated with tumor aggressiveness. The assessment of the Alu methylation has become an important approach for early diagnosis and/or prognosis of cancer. This review focuses on the dynamic Alu methylation during development, aging, and tumor genesis. The cause and consequence of Alu methylation changes will be discussed.

  18. Developmental differences in posttranslational calmodulin methylation in pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.


    A calmodulin-N-methyltransferase was used to analyze the degree of lysine-115 methylation of pea calmodulin. Calmodulin was isolated from segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by the calmodulin methyltransferase in the presence of 3 H-methyl-S-adenosylmethionine. Calmodulin methylation levels were lower in apical root segments and in the young lateral roots compared with the mature, differentiated root tissues. The methylation of these calmodulin samples occurs specifically at lysine 115 since site-directed mutants of calmodulin with substitutions at this position were not methylated and competitively inhibited methylation. The present findings, combined with previous data showing differences in NAD kinase activation by methylated and unmethylated calmodulins, raise the possibility that posttranslational methylation could affect calmodulin action

  19. Methylated liquor treatment process in caffeine production (United States)

    Zhou, Junbo; Yang, Mingyang; Huang, Wenjia; Cui, Shenglu; Gao, Liping


    The caffeine production process produces a large amount of sodium methyl sulphate in the methylated mother liquor. In order to recycle this part of ingredient, we use the mother liquid of Shijiazhuang Xin Nuowei Pharmaceutical Co., Ltd. as the object of study, the use of “nanofiltration (NF) - Dish Type Reverse Osmosis (DTRO) “combination of membrane technology for desalination and concentration. The experimental results show that the concentration of sodium sulfate in the nanofiltration solution is 0.37 g • L -1, the rejection rate is 98%, and the concentration of sodium methyl sulfate in DTRO concentrated solution is 453.80 g • L -1, which meets the requirements of the enterprise.

  20. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard


    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  1. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons. (United States)

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla


    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Information Thermodynamics of Cytosine DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Robersy Sanchez

    Full Text Available Cytosine DNA methylation (CDM is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise" induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1 the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2 whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic

  3. DNA methylation and healthy human aging. (United States)

    Jones, Meaghan J; Goodman, Sarah J; Kobor, Michael S


    The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. A novel method to quantify local CpG methylation density by regional methylation elongation assay on microarray

    Directory of Open Access Journals (Sweden)

    Qiao Yingjuan


    Full Text Available Abstract Background DNA methylation based techniques are important tools in both clinical diagnostics and therapeutics. But most of these methods only analyze a few CpG sites in a target region. Indeed, difference of site-specific methylation may also lead to a change of methylation density in many cases, and it has been found that the density of methylation is more important than methylation of single CpG site for gene silencing. Results We have developed a novel approach for quantitative analysis of CpG methylation density on the basis of microarray-based hybridization and incorporation of Cy5-dCTP into the Cy3 labeled target DNA by using Taq DNA Polymerase on microarray. The quantification is achieved by measuring Cy5/Cy3 signal ratio which is proportional to methylation density. This methylation-sensitive technique, termed RMEAM (regional methylation elongation assay on microarray, provides several advantages over existing methods used for methylation analysis. It can determine an exact methylation density of the given region, and has potential of high throughput. We demonstrate a use of this method in determining the methylation density of the promoter region of the tumor-related gene MLH1, TERT and MGMT in colorectal carcinoma patients. Conclusion This technique allows for quantitative analysis of regional methylation density, which is the representative of all allelic methylation patterns in the sample. The results show that this technique has the characteristics of simplicity, rapidness, specificity and high-throughput.

  5. Analysis of DNA Cytosine Methylation Patterns Using Methylation-Sensitive Amplification Polymorphism (MSAP). (United States)

    Guevara, María Ángeles; de María, Nuria; Sáez-Laguna, Enrique; Vélez, María Dolores; Cervera, María Teresa; Cabezas, José Antonio


    Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.

  6. Trans-methylation reactions in plants: focus on the activated methyl cycle. (United States)

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa


    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.

  7. Origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, G.A.; Lamb, N.A.; Maxwell, J.R.


    Treatment of 4-methylcholest-4-ene under mild acid conditions at low temperatures gives chemical evidence for certain features seen in the distributions of sedimentary 4-methyl steroid hydrocarbons, and further indicates that many low temperature diagenetic reactions of steroids are explicable in terms of acid catalyzed rearrangements. Specifically, the results provide: (i) Indirect evidence that the 4-ene skeleton is a key intermediate in the dehydration of 4-methyl stanols in sediments. (ii) An explanation for the distribution of 4-methyl sterenes and A-nor sterenes in the lacustrine Messel shale (Eocene). (iii) An explanation for the presence of 4..beta..-methyl steranes in relatively immature sedimentary rocks, despite the precursor stanols having the 4..cap alpha..-methyl configuration. With increasing maturity in the Paris Basin shales (Lower Toarcian), the less stable 4..beta..-methyl steranes decrease gradually in abundance relative to their 4..cap alpha..-methyl counterparts, at a rate fairly similar to the change in pristane stereochemistry.

  8. Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation. (United States)

    Dou, John; Schmidt, Rebecca J; Benke, Kelly S; Newschaffer, Craig; Hertz-Picciotto, Irva; Croen, Lisa A; Iosif, Ana-Maria; LaSalle, Janine M; Fallin, M Daniele; Bakulski, Kelly M


    Cord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells, generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability. We evaluated differences in cell composition and DNA methylation between cord blood buffy coat and whole cord blood samples. Cord blood DNA methylation was measured with the Infinium EPIC BeadChip (Illumina) in eight individuals, each contributing buffy coat and whole blood samples. We analyzed principal components (PC) of methylation, performed hierarchical clustering, and computed correlations of mean-centered methylation between pairs. We conducted moderated t-tests on single sites and estimated cell composition. DNA methylation PCs were associated with individual (P PC1 = 1.4 × 10 -9 ; P PC2 = 2.9 × 10 -5 ; P PC3 = 3.8 × 10 -5 ; P PC4 = 4.2 × 10 -6 ; P PC5 = 9.9 × 10 -13 , P PC6 = 1.3 × 10 -11 ) and not with sample type (P PC1-6 >0.7). Samples hierarchically clustered by individual. Pearson correlations of mean-centered methylation between paired samples ranged from r = 0.66 to r = 0.87. No individual site significantly differed between buffy coat and whole cord blood when adjusting for multiple comparisons (five sites had unadjusted Pcoat and whole cord blood are much lower than inter-individual variation, demonstrating that both sample preparation types can be analytically combined and compared.

  9. Maternal Methyl-Group Donor Intake and Global DNA (HydroxyMethylation before and during Pregnancy

    Directory of Open Access Journals (Sweden)

    Sara Pauwels


    Full Text Available It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxylmethylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring’s Epigenome study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxymethylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxymethylation levels were highest pre-pregnancy and at weeks 18–22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04 and hydroxymethylation (p = 0.04. A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxymethylation percentage in weeks 11–13 and weeks 18–22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxymethylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy.

  10. Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Gail, S.; Sarathy, S.M.; Thomson, M.J. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 (Canada); Dievart, P.; Dagaut, P. [CNRS, 1C, Ave de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)


    This study examines the effect of unsaturation on the combustion of fatty acid methyl esters (FAME). New experimental results were obtained for the oxidation of methyl (E)-2-butenoate (MC, unsaturated C{sub 4} FAME) and methyl butanoate (MB, saturated C{sub 4} FAME) in a jet-stirred reactor (JSR) at atmospheric pressure under dilute conditions over the temperature range 850-1400 K, and two equivalence ratios ({phi}=0.375,0.75) with a residence time of 0.07 s. The results consist of concentration profiles of the reactants, stable intermediates, and final products, measured by probe sampling followed by on-line and off-line gas chromatography analyses. The oxidation of MC and MB in the JSR and under counterflow diffusion flame conditions was modeled using a new detailed chemical kinetic reaction mechanism (301 species and 1516 reactions) derived from previous schemes proposed in the literature. The laminar counterflow flame and JSR (for {phi}=1.13) experimental results used were from a previous study on the comparison of the combustion of both compounds. Sensitivity analyses and reaction path analyses, based on rates of reaction, were used to interpret the results. The data and the model show that MC has reaction pathways analogous to that of MB under the present conditions. The model of MC oxidation provides a better understanding of the effect of the ester function on combustion, and the effect of unsaturation on the combustion of fatty acid methyl ester compounds typically found in biodiesel. (author)

  11. Methyl methacrylate oligomerically-modified clay and its poly(methyl methacrylate) nanocomposites

    International Nuclear Information System (INIS)

    Zheng Xiaoxia; Jiang, David D.; Wilkie, Charles A.


    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

  12. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    Directory of Open Access Journals (Sweden)

    Canan Bural


    Full Text Available OBJECTIVES: Residual methyl methacrylate (MMA may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r on in vitro cytotoxicity of L-929 fibroblasts. MATERIAL AND METHODS: A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1 at 74ºC for 9 h, (2 at 74ºC for 9 h and terminal boiling (at 100ºC for 30 min, (3 at 74ºC for 9 h and terminal boiling for 3 h, (4 at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl-3,4-tetrazolium]bis(4-methoxy-6-nitrobenzenesulphonic acid assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05. RESULTS: [MMA]r was significantly (p<0.001 higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01 lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05 for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. CONCLUSION: Due to reduction of leaching residual MMA concentrations, use of terminal boiling in

  13. Origin of methyl torsional potential barrier – An overview

    Indian Academy of Sciences (India)


    This paper presents the evolution of views on methyl internal rotation ... recognized in the early years of quantum theory.1 Since then, detailed experimental and ..... C−C bond in the methyl conjugated molecules is an important factor for barrier.

  14. Allele specific expression and methylation in the bumblebee, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Zoë Lonsdale


    Full Text Available The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.

  15. RESEARCH ARTICLE Changes of Host DNA Methylation in ...

    Indian Academy of Sciences (India)



    Nov 17, 2016 ... *These authors contributed equally to this work. 1To whom .... Ethics statement ... three times with 700 ml of IP buffer. Methylated ... as crucial genes affected by Salmonella infection and termed these differentially methylated.

  16. Transcription factors as readers and effectors of DNA methylation. (United States)

    Zhu, Heng; Wang, Guohua; Qian, Jiang


    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

  17. Solubility of ethylene in methyl propionate

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Florusse, L.J.; Peters, C.J.


    In this work, the solubility of ethylene in methyl propionate was measured within a temperature range of 283.5–464.8 K and pressures up to 10.7 MPa. Experiments were carried out using the Cailletet apparatus, which uses a synthetic method for the experiments. The critical points of several isopleths

  18. DNA Methylation Landscapes of Human Fetal Development

    NARCIS (Netherlands)

    Slieker, Roderick C.; Roost, Matthias S.; van Iperen, Liesbeth; Suchiman, H. Eka D; Tobi, Elmar W.; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P. Eline; Heijmans, Bastiaan T.; Chuva de Sousa Lopes, Susana M.


    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA

  19. 27 CFR 21.116 - Methyl alcohol. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21...

  20. Methyl 3,4-bis(cyclopropylmethoxybenzoate

    Directory of Open Access Journals (Sweden)

    Xian-Chao Cheng


    Full Text Available The title compound, C16H20O4, was obtained unintentionally as the byproduct of an attempted synthesis of methyl 3-(cyclopropylmethoxy-4-hydroxybenzoate. In the crystal, the molecules are linked by intermolecular C—H...O interactions.

  1. Genome-Wide Methylation Profiling of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Rukova B.


    Full Text Available Schizophrenia is one of the major psychiatric disorders. It is a disorder of complex inheritance, involving both heritable and environmental factors. DNA methylation is an inheritable epigenetic modification that stably alters gene expression. We reasoned that genetic modifications that are a result of environmental stimuli could also make a contribution.

  2. Atmospheric fate of methyl vinyl ketone

    DEFF Research Database (Denmark)

    Praske, Eric; Crounse, John D; Bates, Kelvin H


    First generation product yields from the OH-initiated oxidation of methyl vinyl ketone (3-buten-2-one, MVK) under both low and high NO conditions are reported. In the low NO chemistry, three distinct reaction channels are identified leading to the formation of (1) OH, glycolaldehyde, and acetyl...

  3. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles? (United States)

    Kossoski, F.; Varella, M. T. do N.


    The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.

  4. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation (United States)

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.


    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  5. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME). (United States)

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing


    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone (United States)

    Nowak, D. M.


    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  7. Allele-Specific DNA Methylation Detection by Pyrosequencing®

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten


    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide......-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon....

  8. DNA Methylation as a Biomarker for Preeclampsia

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Cindy M.; Ralph, Jody L.; Wright, Michelle L.; Linggi, Bryan E.; Ohm, Joyce E.


    Background: Preeclampsia contributes significantly to pregnancy-associated morbidity and mortality as well as future risk of cardiovascular disease in mother and offspring, and preeclampsia in offspring. The lack of reliable methods for early detection limits the opportunities for prevention, diagnosis, and timely treatment. Purpose: The purpose of this study was to explore distinct DNA methylation patterns associated with preeclampsia in both maternal cells and fetal-derived tissue that represent potential biomarkers to predict future preeclampsia and inheritance in children. Method: A convenience sample of nulliparous women (N = 55) in the first trimester of pregnancy was recruited for this prospective study. Genome-wide DNA methylation was quantified in first-trimester maternal peripheral white blood cells and placental chorionic tissue from normotensive women and those with preeclampsia (n = 6/group). Results: Late-onset preeclampsia developed in 12.7% of women. Significant differences in DNA methylation were identified in 207 individual linked cytosine and guanine (CpG) sites in maternal white blood cells collected in the first trimester (132 sites with gain and 75 sites with loss of methylation), which were common to approximately 75% of the differentially methylated CpG sites identified in chorionic tissue of fetal origin. Conclusion: This study is the first to identify maternal epigenetic targets and common targets in fetal-derived tissue that represent putative biomarkers for early detection and heritable risk of preeclampsia. Findings may pave the way for diagnosis of preeclampsia prior to its clinical presentation and acute damaging effects, and the potential for prevention of the detrimental long-term sequelae.

  9. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies. (United States)

    Needhamsen, Maria; Ewing, Ewoud; Lund, Harald; Gomez-Cabrero, David; Harris, Robert Adam; Kular, Lara; Jagodic, Maja


    The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.

  10. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil


    a Grignard reagent to methyl iodide, and for reduction of methyl iodide with tributyltin hydride or with gaseous hydrogen iodide. Very small KIE's were found for electron transfer to methyl iodide from magnesium in ether or from sodium in ammonia. The reason may be that these reactions are transport...

  11. Clinical Utility of promoter methylation of the tumor suppressor ...

    African Journals Online (AJOL)

    Aim: Aim is to examine the potential usefulness of blood based methylation specific polymerase chain reaction (MSP) of methylated DKK3 and RASSF1A genes in early detection of breast cancer. Method: Methylation status of DKK3 and RASSF1 was investigated in forty breast cancer patients, twenty fibroadenoma patients ...

  12. Synthesis of 14C-labelled α-methyl tyrosine

    International Nuclear Information System (INIS)

    Rajagopal, S.; Venkatachalam, T.K.; Conway, T.; Diksic, M.


    A new route for the preparation of radioactively labelled α-methyl L-tyrosine is described. The labelling at the α position has been successfully achieved with 14 C-, 11 C- (very preliminary, unpublished), and 3 H-labelled methyl iodide. A detailed report on 14 C-labelling at the α position and the hydrolysis of 4-methoxy α-methyl phenylalanine is presented. The alkylation proceeds via the methylation of the carbanion of N-benzylidene 4-methoxy phenylalanine methyl ester 2. Hydrolysis of 4-O methyl tyrosine to tyrosine by HBr and HI were analysed and used in the optimization of the hydrolysis conditions of 4. Enantiomeric purity of the isolated L-isomer has been found to be 99% as judged by HPLC. Pseudo first-order rate constant for the hydrolysis of 14 C-labelled α-methyl 4-methoxy phenyl alanine methyl ester was determined. Preliminary findings of the 3 H- and 11 C-radiolabelled α-methyl tyrosine (methyl labelled) are also mentioned. For the first time it was shown that α-methyl D,L-tyrosine can be separated into enantiomerically pure α-methyl D- and L-tyrosine using a CHIRALPAK WH column. (author)

  13. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    Directory of Open Access Journals (Sweden)

    Zhi-hong Huang


    Full Text Available Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA and graphitized carbon blacks (GCB, the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  14. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS. (United States)

    Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia


    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  15. Synthesis of [methyl-14C]crotonobetaine from DL-[methyl-14C]carnitine

    International Nuclear Information System (INIS)

    Loester, H.; Seim, H.


    The causes of carnitine deficiency syndromes are not completely understood, but decomposition of L-carnitine in vivo is likely to be involved. Carnitine is metabolized to γ-butyrobetaine, and crotonobetaine is probably an intermediate in this pathway. To validate experimentally the precursor-product relationship between the three physiologically occuring γ-betaines - L-carnitine, crotonobetaine, γ-butyrobetaine - labelling with stable or radioactive isotopes became necessary. Methyl-labelled carnitine isomers (L(-)-, D(+)- or DL-) or γ-butyrobetaine can be easily synthesized by methylation of 4-amino-3-hydroxybutyric acid isomers or 4-aminobutyric acid, respectively. Because of problems with the 4-aminocrotonic acid, we synthesized labelled crotonbetaine from labelled carnitine. Thus, DL-[methyl- 14 C]carnitine was dehydrated by reaction with concentrated sulfuric acid. After removal of the latter the products were separated and purified by ion exchange chromatography on DOWEX 50 WX8 (200 - 400 mesh) and gradient elution with hydrochloric acid. In addition to the labelled main product [methyl- 14 C]crotonobetaine (yield about 50 %), [methyl- 14 C]glycine betaine and [methyl- 14 C]acetonyl-trimethylammonium (ATMA) were formed. The end products were identified by combined thin layer chromatography/autoradiography and quantified by liquid scintillation counting. (Author)

  16. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia (United States)

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua


    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  17. [Specific features of 2-methyl hydroxybenzene and 3-methyl hydroxybenzene distribution in the organism of warm-blooded animals]. (United States)

    Shormanov, B K; Grishenko, V K; Astashkina, A P; Elizarova, M K


    The present work was designed to study the specific features of 2-methyl hydroxybezene and 3-methyl hydroxybenzene distribution after intragastric administration of these toxicants to warm-blooded animals (rats). They were detected in the unmetabolized form in the internal organs and blood of the animals. The levels of 2-methyl hydroxybezene were especially high in the stomach and blood whereas the maximum content of 3-methyl hydroxybenzene was found in brain, blood, small intestines of the poisoned rats.

  18. Evaluation of Methyl-Binding Domain Based Enrichment Approaches Revisited.

    Directory of Open Access Journals (Sweden)

    Karolina A Aberg

    Full Text Available Methyl-binding domain (MBD enrichment followed by deep sequencing (MBD-seq, is a robust and cost efficient approach for methylome-wide association studies (MWAS. MBD-seq has been demonstrated to be capable of identifying differentially methylated regions, detecting previously reported robust associations and producing findings that replicate with other technologies such as targeted pyrosequencing of bisulfite converted DNA. There are several kits commercially available that can be used for MBD enrichment. Our previous work has involved MethylMiner (Life Technologies, Foster City, CA, USA that we chose after careful investigation of its properties. However, in a recent evaluation of five commercially available MBD-enrichment kits the performance of the MethylMiner was deemed poor. Given our positive experience with MethylMiner, we were surprised by this report. In an attempt to reproduce these findings we here have performed a direct comparison of MethylMiner with MethylCap (Diagenode Inc, Denville, NJ, USA, the best performing kit in that study. We find that both MethylMiner and MethylCap are two well performing MBD-enrichment kits. However, MethylMiner shows somewhat better enrichment efficiency and lower levels of background "noise". In addition, for the purpose of MWAS where we want to investigate the majority of CpGs, we find MethylMiner to be superior as it allows tailoring the enrichment to the regions where most CpGs are located. Using targeted bisulfite sequencing we confirmed that sites where methylation was detected by either MethylMiner or by MethylCap indeed were methylated.

  19. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples. (United States)

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M


    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  20. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; A S Langie, Sabine; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode


    Maternal nutrition is critically involved in the development and health of the fetus. We evaluated maternal methyl-group donor intake through diet (methionine, betaine, choline, folate) and supplementation (folic acid) before and during pregnancy in relation to global DNA methylation and hydroxymethylation and gene specific (IGF2 DMR, DNMT1, LEP, RXRA) cord blood methylation. A total of 115 mother-infant pairs were enrolled in the MAternal Nutrition and Offspring's Epigenome (MANOE) study. The intake of methyl-group donors was assessed using a food-frequency questionnaire. LC-MS/MS and pyrosequencing were used to measure global and gene specific methylation, respectively. Dietary intake of methyl-groups before and during pregnancy was associated with changes in LEP, DNMT1, and RXRA cord blood methylation. Statistically significant higher cord blood LEP methylation was observed when mothers started folic acid supplementation more than 6 months before conception compared with 3-6 months before conception (34.6 ± 6.3% vs. 30.1 ± 3.6%, P = 0.011, LEP CpG1) or no folic acid used before conception (16.2 ± 4.4% vs. 13.9 ± 3%, P = 0.036 for LEP CpG3 and 24.5 ± 3.5% vs. 22.2 ± 3.5%, P = 0.045 for LEP mean CpG). Taking folic acid supplements during the entire pregnancy resulted in statistically significantly higher cord blood RXRA methylation as compared with stopping supplementation in the second trimester (12.3 ± 1.9% vs. 11.1 ± 2%, P = 0.008 for RXRA mean CpG). To conclude, long-term folic acid use before and during pregnancy was associated with higher LEP and RXRA cord blood methylation, respectively. To date, pregnant women are advised to take a folic acid supplement of 400 µg/day from 4 weeks before until 12 weeks of pregnancy. Our results suggest significant epigenetic modifications when taking a folic acid supplement beyond the current advice.

  1. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho


    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  2. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho


    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  3. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  4. DNA methylation in sugarcane somaclonal variants assessed through methylation-sensitive amplified polymorphism. (United States)

    Francischini, J H M B; Kemper, E L; Costa, J B; Manechini, J R V; Pinto, L R


    Micropropagation is an important tool for large-scale multiplication of plant superior genotypes. However, somaclonal variation is one of the drawbacks of this process. Changes in DNA methylation have been widely reported as one of the main causes of somaclonal variations in plants. In order to investigate the occurrence of changes in the methylation pattern of sugarcane somaclonal variants, the MSAP (methylation-sensitive amplified polymorphism) technique was applied to micro-propagated plantlets sampled at the third subculture phase. The mother plant, in vitro normal plantlets, and in vitro abnormal plantlets (somaclonal variants) of four sugarcane clones were screened against 16 MSAP selective primers for EcoRI/MspI and EcoRI/HpaII restriction enzymes. A total of 1005 and 1200 MSAP-derived markers with polymorphism percentages of 28.36 and 40.67 were obtained for EcoRI/HpaII and EcoRI/MspI restriction enzyme combinations, respectively. The genetic similarity between the mother plant and the somaclonal variants ranged from 0.877 to 0.911 (EcoRI/MspI) and from 0.928 to 0.955 (EcoRI/HpaII). Most of the MASPs among mother plant and micro-propagated plantlets were derived from EcoRI/MspI restriction enzymes suggesting alteration due to gain or loss of internal cytosine methylation. A higher rate of loss of methylation (hypomethylation) than gain of methylation (hypermethylation) was observed in the abnormal in vitro sugarcane plantlets. Although changes in the methylation pattern were also observed in the in vitro normal plantlets, they were lower than those observed for the in vitro abnormal plantlets. The MASP technique proved to be a promising tool to early assessment of genetic fidelity of micro-propagated sugarcane plants.

  5. A genome-wide methylation study on obesity: differential variability and differential methylation. (United States)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Hidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling


    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14-20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances.

  6. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer. (United States)

    Wu, Yu; Davison, Jerry; Qu, Xiaoyu; Morrissey, Colm; Storer, Barry; Brown, Lisha; Vessella, Robert; Nelson, Peter; Fang, Min


    To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.

  7. Regulation and function of DNA methylation in plants and animals

    KAUST Repository

    He, Xinjian


    DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. © 2011 IBCB, SIBS, CAS All rights reserved.

  8. Methyl bromide residues in fumigated cocoa beans

    International Nuclear Information System (INIS)

    Adomako, D.


    The 14 C activity in unroasted [ 14 C]-methyl bromide fumigated cocoa beans was used to study the fate and persistence of CH 3 Br in the stored beans. About 70% of the residues occurred in the shells. Unchanged CH 3 Br could not be detected, all the sorbed CH 3 Br having reacted with bean constituents apparently to form 14 C-methylated derivatives and inorganic bromide. No 14 C activity was found in the lipid fraction. Roasting decreased the bound (non-volatile) residues, with corresponding changes in the activities and amounts of free sugars, free and protein amino acids. Roasted nibs and shells showed a two-fold increase in the volatile fraction of the 14 C residue. This fraction may be related to the volatile aroma compounds formed by Maillard-type reactions. (author)

  9. Diet and Asthma: Vitamins and Methyl Donors (United States)

    Han, Yueh-Ying; Blatter, Josh; Brehm, John M.; Forno, Erick; Litonjua, Augusto A; Celedón, Juan C.


    SUMMARY Dietary changes may partly explain the high burden of asthma in industrialized nations. Experimental studies have motivated a significant number of observational studies of the relation between vitamins (A, C, D, and E) or nutrients acting as methyl donors (folate, vitamin B12, and choline) and asthma. Because observational studies are susceptible to several sources of bias, well-conducted randomized controlled trials (RCTs) remain the “gold standard” to determine whether a vitamin or nutrient has an effect on asthma. Evidence from observational studies and/or relatively few RCTs most strongly justify ongoing and future RCTs of: 1) vitamin D to prevent or treat asthma, 2) choline supplementation as adjuvant treatment for asthma, and 3) vitamin E to prevent the detrimental effects of air pollution in subjects with asthma. At this time, there is insufficient evidence to recommend supplementation with any vitamin or nutrient acting as a methyl donor to prevent or treat asthma. PMID:24461761

  10. Adsorption of methyl iodide on charcoal

    International Nuclear Information System (INIS)

    Hidajat, K.; Aracil, J.; Kenney, C.N.


    The adsorption of non-radioactive methyl iodide has been measured experimentally over a range of conditions of concentration, and temperature on an activated charcoal. This is of interest since methyl iodide is formed from iodine fission products in gas cooled nuclear reactors. A mathematical model has also been developed which describes the rate of adsorption, under isothermal and linear adsorption isotherm conditions in a recycle adsorber. This model takes into account the resistance to adsorption caused by the surface adsorption, as well as the external and internal mass transfer resistances. The solution to the model for the recycle adsorber was obtained using a semidiscretisation method to reduce the partial differential equations to a system of stiff ordinary differential equations, and the resulting differential equations solved by a standard numerical technique. (author)

  11. Methyl iodide tests on used adsorbents

    International Nuclear Information System (INIS)

    Kovach, J.L.


    This paper discusses the history of events leading to the current problems in radioiodine test conditions. These radioiodine tests are performed in the adsorbent media from both safety and non-safety related Nuclear Air Treatment Systems (NATS). The main problem addressed is that currently there are still numerous plant technical specifications for NATS which reference outdated test protocols for the surveillance testing of the radioactive methyl iodide performance of the adsorbents. Recommendations for correcting the test condition problems are presented. 7 refs

  12. Increased radiation degradation in methyl methacrylate copolymers

    International Nuclear Information System (INIS)

    Helbert, J.N; Wagner, G.E.; Caplan, P.J.; Poindexter, E.H.


    The effect of polar substituents at the quaternary carbon on degradation processes in several polymers and 10 to 20 percent copolymers of methyl methacrylate was explored. EPR was used to monitor radiation degradation products and to determine radiation G values. Irradiations were carried out at 77 0 K in a gamma irradiator at a dose rate of 0.3 Mrad/hr. (U.S.)

  13. Kinetics of enzymatic hydrolysis of methyl ricinoleate


    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.


    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  14. Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M = Ni, Pd) with methylation agents

    KAUST Repository

    Lee, S. Y Tina; Ghani, Amylia Abdul; D'Elia, Valerio; Cokoja, Mirza; Herrmann, Wolfgang A.; Basset, Jean-Marie; Kü hn, Fritz


    Ring opening of various nickela- and palladalactones induced by the cleavage of the M-O bond by methyl trifluoromethanesulfonate (MeOTf) and methyl iodide (MeI) is examined. Experimental evidence supports the mechanism of ring opening by the alkylating agent followed by β-H elimination leading to methyl acrylate and a metal-hydride species. MeOTf shows by far higher efficiency in the lactone ring opening than any other methylating agent including the previously reported methyl iodide. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  15. Dynamic instability of genomic methylation patterns in pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ooi Steen KT


    Full Text Available Abstract Background Genomic methylation patterns are established during gametogenesis, and perpetuated in somatic cells by faithful maintenance methylation. There have been previous indications that genomic methylation patterns may be less stable in embryonic stem (ES cells than in differentiated somatic cells, but it is not known whether different mechanisms of de novo and maintenance methylation operate in pluripotent stem cells compared with differentiating somatic cells. Results In this paper, we show that ablation of the DNA methyltransferase regulator DNMT3L (DNA methyltransferase 3-like in mouse ES cells renders them essentially incapable of de novo methylation of newly integrated retroviral DNA. We also show that ES cells lacking DNMT3L lose DNA methylation over time in culture, suggesting that DNA methylation in ES cells is the result of dynamic loss and gain of DNA methylation. We found that wild-type female ES cells lose DNA methylation at a much faster rate than do male ES cells; this defect could not be attributed to sex-specific differences in expression of DNMT3L or of any DNA methyltransferase. We also found that human ES and induced pluripotent stem cell lines showed marked but variable loss of methylation that could not be attributed to sex chromosome constitution or time in culture. Conclusions These data indicate that DNA methylation in pluripotent stem cells is much more dynamic and error-prone than is maintenance methylation in differentiated cells. DNA methylation requires DNMT3L in stem cells, but DNMT3L is not expressed in differentiating somatic cells. Error-prone maintenance methylation will introduce unpredictable phenotypic variation into clonal populations of pluripotent stem cells, and this variation is likely to be much more pronounced in cultured female cells. This epigenetic variability has obvious negative implications for the clinical applications of stem cells.

  16. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  17. DNA methylation signatures of educational attainment (United States)

    van Dongen, Jenny; Bonder, Marc Jan; Dekkers, Koen F.; Nivard, Michel G.; van Iterson, Maarten; Willemsen, Gonneke; Beekman, Marian; van der Spek, Ashley; van Meurs, Joyce B. J.; Franke, Lude; Heijmans, Bastiaan T.; van Duijn, Cornelia M.; Slagboom, P. Eline; Boomsma, Dorret I.; BIOS consortium


    Educational attainment is a key behavioural measure in studies of cognitive and physical health, and socioeconomic status. We measured DNA methylation at 410,746 CpGs (N = 4152) and identified 58 CpGs associated with educational attainment at loci characterized by pleiotropic functions shared with neuronal, immune and developmental processes. Associations overlapped with those for smoking behaviour, but remained after accounting for smoking at many CpGs: Effect sizes were on average 28% smaller and genome-wide significant at 11 CpGs after adjusting for smoking and were 62% smaller in never smokers. We examined sources and biological implications of education-related methylation differences, demonstrating correlations with maternal prenatal folate, smoking and air pollution signatures, and associations with gene expression in cis, dynamic methylation in foetal brain, and correlations between blood and brain. Our findings show that the methylome of lower-educated people resembles that of smokers beyond effects of their own smoking behaviour and shows traces of various other exposures.

  18. Neural Tube Defects, Folic Acid and Methylation (United States)

    Imbard, Apolline; Benoist, Jean-François; Blom, Henk J.


    Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects. PMID:24048206

  19. Fragrance material review on cyclohexyl methyl pentanone. (United States)

    Scognamiglio, J; Letizia, C S; Api, A M


    A toxicologic and dermatologic review of cyclohexyl methyl pentanone when used as a fragrance ingredient is presented. Cyclohexyl methyl pentanone is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for cyclohexyl methyl pentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, photoallergy, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  20. [Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique]. (United States)

    Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li


    The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.

  1. Tetrazolium chloride as an indicator of pine pollen germinability (United States)

    Stanton A. Cook; Robert G. Stanley


    Controlled pollination in forest tree breeding requires pollen of known germination capacity. Methods of determining pollen viability include germination in a hanging drop, in a moist atmosphere, on agar gel, or in a sugar solution (DUFFIELD, 1954; DILLON et al., 1957). Errors commonly arise in the application of these techniques because maximum...

  2. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  3. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Casper, J.M.; Ordal, G.W.


    The addition of attractant to Bacillus subtilis briefly exposed to radioactive methionine causes an increase of labeling of the methyl-accepting chemotaxis proteins. The addition of attractant to cells radiolabeled for longer times shows no change in the extent of methylation. Therefore, the increase in labeling for the briefly labeled cells is due to an increased turnover of methyl groups caused by attractant. All amino acids gave enhanced turnover. This turnover lasted for a prolonged time, probably spanning the period of smooth swimming caused by the attractant addition. Repellent did not affect the turnover when added alone or simultaneously with attractant. Thus, for amino acid attractants, the turnover is probably the excitatory signal, which is seen to extend long into or throughout the adaptation period, not just at the start of it

  4. Production of Methyl Laurate from Coconut Cream through Fractionation of Methyl Ester

    Directory of Open Access Journals (Sweden)

    Johnner P. Sitompul


    Full Text Available This paper concerns the production of methyl laurate from coconut cream through fractionation of methyl esters. Coconut oil was produced by wet processing of coconut cream. The esters were prepared by reacting coconut oil and methanol using homogeneous catalyst KOH in a batch reactor, followed by fractionation of fatty acid methyl esters (FAME at various reduced pressures applying differential batch vacuum distillation. Experimental data were compared with simulation of a batch distillation employing the simple Raoult’s model and modified Raoult’s model of phase equilibria. Activity coefficients (γi were determined by optimization to refine the models. The modified Rault’s model with activity coefficients gave better agreement with the experimental data, giving the value of γi between 0,56-0,73. For a given boiling temperature, lower operating pressure produced higher purity of C10 and C12 FAME for respective distillates.

  5. Search for methylation-sensitive amplification polymorphisms in mutant figs. (United States)

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S


    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  6. DNA methylation in states of cell physiology and pathology.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski


    Full Text Available DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation. The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences five new genes which are potential biomarkers of lung cancer have been presented.

  7. Permeability and toxicity characteristics of L-cysteine and 2-methyl-thiazolidine-4-carboxylic acid in Caco-2 cells. (United States)

    Kartal-Hodzic, Alma; Marvola, Tuuli; Schmitt, Mechthild; Harju, Kirsi; Peltoniemi, Marikki; Sivén, Mia


    Acetaldehyde is a known mutagenic substance and has been classified as a group-one carcinogen by the WHO. It is possible to bind acetaldehyde locally in the gastrointestinal (GI) tract with the semi-essential amino acid l-cysteine, which reacts covalently with acetaldehyde and forms compound 2-methyl-thiozolidine-4-carboxylic acid (MTCA). The Caco-2 cell line was used to determine the permeation of l-cysteine and MTCA, as well as the possible cell toxicity of both substances. Neither of the substances permeated through the Caco-2 cells at the concentrations used in this study, and only the highest concentration of MTCA affected the viability of the cells in the MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide) test. These results showed that when l-cysteine is administered in formulations releasing it locally in the lower parts of GI tract, it is not absorbed but can react with acetaldehyde, and that neither l-cysteine nor MTCA is harmful to the cells when present locally in the upper parts of GI tract. This study also shows that MTCA is sensitive at a lower pH of 5.5. Since stable MTCA is desired in different parts of the GI tract, this observation raises concern over the influence of lower pH on l-cysteine-containing product ability to bind and eliminate carcinogenic acetaldehyde.

  8. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine (United States)

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.


    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  9. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato


    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  10. Structure, function and carcinogenicity of metabolites of methylated and non-methylated polycyclic aromatic hydrocarbons: a comprehensive review. (United States)

    Flesher, James W; Lehner, Andreas F


    The Unified Theory of PAH Carcinogenicity accommodates the activities of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) and states that substitution of methyl groups on meso-methyl substituted PAHs with hydroxy, acetoxy, chloride, bromide or sulfuric acid ester groups imparts potent cancer producing properties. It incorporates specific predictions from past researchers on the mechanism of carcinogenesis by methyl-substituted hydrocarbons, including (1) requirement for metabolism to an ArCH2X type structure where X is a good leaving group and (2) biological substitution of a meso-methyl group at the most reactive center in non-methylated hydrocarbons. The Theory incorporates strong inferences of Fieser: (1) The mechanism of carcinogenesis involves a specific metabolic substitution of a hydrocarbon at its most reactive center and (2) Metabolic elimination of a carcinogen is a detoxifying process competitive with that of carcinogenesis and occurring by a different mechanism. According to this outlook, chemical or biochemical substitution of a methyl group at the reactive meso-position of non-methylated hydrocarbons is the first step in the mechanism of carcinogenesis for most, if not all, PAHs and the most potent metabolites of PAHs are to be found among the meso methyl-substituted hydrocarbons. Some PAHs and their known or potential metabolites and closely related compounds have been tested in rats for production of sarcomas at the site of subcutaneous injection and the results strongly support the specific predictions of the Unified Theory.

  11. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry

    Directory of Open Access Journals (Sweden)

    Emma Louise Beckett


    Full Text Available Vitamin D is known for its role in the regulation of gene expression via the vitamin D receptor, a nuclear transcription factor. More recently, a role for vitamin D in regulating DNA methylation has been identified as an additional mechanism of modulation of gene expression. How methylation status influences vitamin D metabolism and response pathways is not yet clear. Therefore, we aimed to assess the relationship between plasma 25-hydroxycholecalciferol (25(OHD and the methylation status of vitamin D metabolism enzyme genes (CYP2R1, CYP27B1 and CYP24A1 and the vitamin D receptor gene (VDR. This analysis was conducted in the context of dietary vitamin D, and background methyl donor related biochemistry, with adjustment for several dietary and lifestyle variables. Percentage methylation at CpG sites was assessed in peripheral blood cells using methylation sensitive and dependent enzymes and qPCR. Standard analytical techniques were used to determine plasma 25(OHD and homocysteine, and serum folate and B12, with the relationship to methylation status assessed using multi-variable regression analysis. CYP2R1 and VDR methylation were found to be independent predictors of plasma 25(OHD, when adjusted for vitamin D intake and other lifestyle variables. CYP24A1 was related to plasma 25(OHD directly, but not in the context of vitamin D intake. Methyl-group donor biochemistry was associated with the methylation status of some genes, but did not alter the relationship between methylation and plasma 25(OHD. Modulation of methylation status of CYP2R1, CYP24A1 and VDR in response to plasma 25(OHD may be part of feedback loops involved in maintaining vitamin D homeostasis, and may explain a portion of the variance in plasma 25(OHD levels in response to intake and sun exposure. Methyl-group donor biochemistry, while a potential independent modulator, did not alter this effect.

  12. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles. (United States)

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh


    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  13. Current trends in electrochemical sensing and biosensing of DNA methylation. (United States)

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech


    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Methylation of mercury in isopod Porcellio scaber

    International Nuclear Information System (INIS)

    Jereb, V.; Horvat, M.; Cerne, I.; Drobne, D.


    Due to some remarkable characteristics, more than a decade ago terrestrial isopods were introduced as biornonitoring organisms for metals in industrially polluted environments. These characteristics are: suitable size, abundance, ease of handling in the laboratory, the ability to accumulate metals (Zn, Cd, Pb) and dose-dependent response to different metals and pesticides (diazinon). The isopod Porcellio scaber is a small terrestrial crab, which colonizes upper soil layers and litter. It lives in a humid environment, mostly under tree-leaves, decaying wood and bigger stones. It is an omnivore, but its most common food is decomposing organic matter. Therefore, isopods are important for decomposition and cycling of mineral matter in nature. Porcellio scaber can be also found on the river banks of river ldrijca a mercury contaminated site, but there is a lack of data on effects of Hg on Porcellio scaber. Therefore, it would be of interest to investigate the biological cycle of mercury in this animal. The objectives of our work were: To assess the magnitudes of biological processes (metal Hg 2+ ) uptake, its retention in the animal, accumulation in glands, excretion of Hg by faeces); To investigate the possibility of mercury transformation in the animal (Hg 2+→ MeHg + ). It is known, that intestine is a possible Hg 2+ methylation site; in the gut of Porcellio scaber are present anaerobes and very likely also sulphate-reducing bacteria, which are known to be responsible for Hg 2+ methylation in nature; To validate an appropriate analytical technique for Hg 2+ methylation assays in the isopod Porcellio scaber

  15. DNA methylation-based variation between human populations. (United States)

    Kader, Farzeen; Ghai, Meenu


    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  16. MECP2 promoter methylation and X chromosome inactivation in autism. (United States)

    Nagarajan, Raman P; Patzel, Katherine A; Martin, Michelle; Yasui, Dag H; Swanberg, Susan E; Hertz-Picciotto, Irva; Hansen, Robin L; Van de Water, Judy; Pessah, Isaac N; Jiang, Ruby; Robinson, Wendy P; LaSalle, Janine M


    Epigenetic mechanisms have been proposed to play a role in the etiology of autism. This hypothesis is supported by the discovery of increased MECP2 promoter methylation associated with decreased MeCP2 protein expression in autism male brain. To further understand the influence of female X chromosome inactivation (XCI) and neighboring methylation patterns on aberrant MECP2 promoter methylation in autism, multiple methylation analyses were peformed on brain and blood samples from individuals with autism. Bisulfite sequencing analyses of a region 0.6 kb upstream of MECP2 in brain DNA samples revealed an abrupt transition from a highly methylated region in both sexes to a region unmethylated in males and subject to XCI in females. Chromatin immunoprecipitation analysis demonstrated that the CCTC-binding factor (CTCF) bound to this transition region in neuronal cells, consistent with a chromatin boundary at the methylation transition. Male autism brain DNA samples displayed a slight increase in methylation in this transition region, suggesting a possible aberrant spreading of methylation into the MECP2 promoter in autism males across this boundary element. In addition, autistic female brain DNA samples showed evidence for aberrant MECP2 promoter methylation as an increase in the number of bisulfite sequenced clones with undefined XCI status for MECP2 but not androgen receptor (AR). To further investigate the specificity of MECP2 methylation alterations in autism, blood DNA samples from females and mothers of males with autism were also examined for XCI skewing at AR, but no significant increase in XCI skewing was observed compared to controls. These results suggest that the aberrant MECP2 methylation in autism brain DNA samples is due to locus-specific rather than global X chromosome methylation changes.

  17. Methylated spirit burns following traditional hair dressing practice. (United States)

    Michael, Afieharo I; Iyun, Ayodele O


    Methylated spirit burns have been reported following domestic uses such as igniting fondues. It has also been used as an accelerant for self-immolation. We report the first documented case of severe methylated spirit burns sustained during traditional hair dressing. Increased awareness on the dangers of methylated spirit as well as making it less readily available for domestic use is warranted. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  18. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses. (United States)

    Rebollo, Rita; Mager, Dixie L


    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  19. Disinfectant effect of Methylated Ethanol against Listeria species


    Y Yakubu; M D Salihu; O O Faleke; M B Abubakar; A A Magaji,A U Junaidu


    This study was carried out in order to determine the disinfectant effect of Methylated spirit® (95% methanol and 5% ethanol) as a teat dip against Listeria species. Hand milking was employed to collect 576 (288 x 2) raw milk samples from different lactating cows within Sokoto metropolis (Nigeria). 288 samples were collected before disinfecting the udder teats with Methylated spirit®, while the other 288 were collected after disinfection with Methylated spirit®. The ...

  20. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo


    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  1. Thermodynamic study of 2-methyl-tetrahydrofuran with isomeric chlorobutanes

    International Nuclear Information System (INIS)

    Aldea, M. Eugenia; Martin, Santiago; Artigas, Hector; Lopez, Maria C.; Lafuente, Carlos


    Excess molar volumes, V E , isentropic compressibility deviations, Δκ S , and excess molar enthalpies, H E , for the binary mixtures 2-methyl-tetrahydrofuran with 1-chlorobutane, 2-chlorobutane, 2-methyl-1-chloropropane and 2-methyl-2-chloropropane have been determined at temperatures 298.15 and 313.15 K, excess molar enthalpies were only measured at 298.15 K. We have applied the Prigogine-Flory-Patterson (PFP) theory to these mixtures at 298.15 K

  2. 21 CFR 172.872 - Methyl ethyl cellulose. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number...

  3. A comprehensive study of methyl decanoate pyrolysis

    International Nuclear Information System (INIS)

    Pyl, Steven P.; Van Geem, Kevin M.; Puimège, Philip; Sabbe, Maarten K.; Reyniers, Marie-Françoise; Marin, Guy B.


    The thermal decomposition of methyl decanoate (MD) was studied in a bench-scale pyrolysis set-up equipped with a dedicated on-line analysis section including a GC × GC-FID/(TOF-MS). This analysis section enables quantitative and qualitative on-line analyses of the entire reactor effluent with high level of detail including measurement of formaldehyde and water. The reactor temperature was varied from 873 K to 1123 K at a fixed pressure of 1.7 bar and a fixed residence time of 0.5 s, for both high (10mol N 2 /mol MD ) and low (0.6mol N 2 /mol MD ) nitrogen dilution. Thus covering a wide conversion range in both dilution regimes. In these experiments, significant amounts of large linear olefins and unsaturated esters were observed at lower temperatures, the amounts of which decreased at higher temperatures in favor of permanent gasses (CO, CO 2 , CH 4 ) and light olefins. At the highest temperatures more than 5 wt% of mono-aromatic and poly-aromatic components were observed. The acquired dataset was used to validate 3 recently published microkinetic models which were developed to model oxidation and/or pyrolysis of methyl decanoate. The results showed that these models accurately predict the product distribution, although important discrepancies were observed for some major products such as certain unsaturated esters, CO 2 and H 2 O. Reaction path analyses and CBS-QB3 quantum-chemical calculations are presented and discussed in order to explain the observed differences. -- Highlights: ► New extensive experimental dataset for the pyrolysis of methyl decanoate in a tubular reactor. ► A dedicated separation section including on-line GC × GC allows to obtain quantitative data for over 150 components. ► High level ab-initio calculations for important reactions of the methyl decanoate decomposition. ► Identification of missing reactions/reaction families/inaccurate kinetics in the presently available kinetic models.

  4. Method to remove methyl iodide131 gas

    International Nuclear Information System (INIS)

    Deitz, V.R.; Blachly, C.H.


    A two-stage impregnation process for charcoal is presented which is to be used for radioactive iodine or methyl iodide removal from the waste gas of a nuclear reactor. In the first stage, the coal is treated at pH 10 with an aqueous mixture of a salt of iodic acid (hypoiodite, iodate, or periodate) with iodine or iodide. In the second stage, impregnation with a tertiary amine occurs. The concentrations are chosen so that the charcoal will take up between 0.5 and 4% by weight of iodine. (UWI) [de

  5. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    KAUST Repository

    Bruckmeier, Christian


    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β-hydride elimination and the liberation of the acrylate species. © 2010 American Chemical Society.

  6. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen


    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  7. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development. (United States)

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W


    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    KAUST Repository

    Bruckmeier, Christian; Lehenmeier, Maximilian W.; Reichardt, Robert; Vagin, Sergei; Rieger, Bernhard


    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β


    Institute of Scientific and Technical Information of China (English)

    杨梅林; 马於光; 郑莹光; 沈家骢


    It is found that the volatile products of methyl methacrylate plasma can very actively initiate the polymerization of the monomer to produce ultrahigh molecular weight polymers. This polymerization of MMA occurs by a livlng free radical mechanism with instantaneous initiation and monomer transfer.

  10. Evidence for non-CpG methylation in mammals

    DEFF Research Database (Denmark)

    Yan, Jie; Zierath, Juleen R; Barres, Romain


    In mammals, the existence of cytosine methylation on non-CpG sequences is controversial. Here, we adapted a LuminoMetric-based Assay (LUMA) to determine global non-CpG methylation levels in rodent and human tissues. We observed that......In mammals, the existence of cytosine methylation on non-CpG sequences is controversial. Here, we adapted a LuminoMetric-based Assay (LUMA) to determine global non-CpG methylation levels in rodent and human tissues. We observed that...

  11. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Tseng, C.-H.


    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  12. Abiotic Formation of Methyl Halides in the Terrestrial Environment (United States)

    Keppler, F.


    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  13. Resistance of sunflower hybrids to imazamox and tribenuron-methyl

    DEFF Research Database (Denmark)

    Bozic, D; Saric, M; Malidza, G


    The response of the imazamox resistant and susceptible sunflower hybrids Rimi and S to imazamox and of tribenuron-methyl resistant and susceptible hybrids Rsu and S to tribenuron-methyl was investigated both in a whole-plant bioassay and in field experiments. Plants were treated post-emergence wi......The response of the imazamox resistant and susceptible sunflower hybrids Rimi and S to imazamox and of tribenuron-methyl resistant and susceptible hybrids Rsu and S to tribenuron-methyl was investigated both in a whole-plant bioassay and in field experiments. Plants were treated post...

  14. Methylation pattern of IFNG in periapical granulomas and radicular cysts. (United States)

    Campos, Kelma; Gomes, Carolina Cavaliéri; de Fátima Correia-Silva, Jeane; Farias, Lucyana Conceição; Fonseca-Silva, Thiago; Bernardes, Vanessa Fátima; Pereira, Cláudia Maria; Gomez, Ricardo Santiago


    Interferon-γ plays an important role in the pathogenesis of periapical lesions, and the methylation of IFNG has been associated with transcriptional inactivation. The purpose of the present study was to investigate IFNG promoter methylation in association with gene transcription and protein levels in periapical granulomas and radicular cysts. Methylation-specific polymerase chain reaction was used to assess the DNA methylation pattern of the IFNG gene in 16 periapical granulomas and 13 radicular cyst samples. The transcription levels of IFNG mRNA were verified by quantitative real-time polymerase chain reaction, and protein expression was evaluated by immunohistochemistry. All the periapical lesion samples exhibited partial or total methylation of the IFNG gene. In addition, an increased methylation profile was found in radicular cysts compared with periapical granulomas. Increased IFNG mRNA expression was observed in the partially methylated periapical lesion samples relative to the samples that were completely methylated. The present study provides the first evidence of the possible impact of IFNG methylation on IFNG transcription in periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. CpG Island Methylator Phenotype in Primary Gastric Carcinoma


    TOJO Masayuki:筆頭著者; KONISHI Kazuo; YANO Yuichiro; KATAGIRI Atsushi; NOZAWA Hisako; KUBOTA Yutaro; MURAMOTO Takashi; KONDA Kenichi; SHINMURA Kensuke; TAKIMOTO Masafumi; IMAWARI Michio; YOSHIDA Hitoshi


    Gastric cancers (GC) with methylation of multiple CpG islands have a CpG island methylator phenotype (CIMP) and they can have different biological features. The aim of this study was to investigate the DNA methylation status of GCs and its association with their clinicopathological features. We evaluated the methylation status of four genes (MINT1, MINT2, MINT25 and MINT31) in 105 primary GCs using bisulfite-pyrosequencing analysis. We classified tumors as CIMP-high (CIMP-H), CIMP-low (CIMP-L...

  16. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures. (United States)

    Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C


    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.

  17. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, G. Barney


    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures of 300 – 1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K and the initial products are (CH2=C=O and CH3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH2=C=O and CH3OH, CH3, CH2=O, H, CO, CO2) appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of (CH3CH2CH=C=O, CH3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH3CH2CH=C=O, CH3OH, CH3, CH2=O, CO, CO2, CH3CH=CH2, CH2CHCH2, CH2=C=CH2, HCCCH2, CH2=C=C=O, CH2=CH2, HCΞCH, CH2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH2-COOCH3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted

  18. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    International Nuclear Information System (INIS)

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.


    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH 3 -S-CHO (MSCHO) and O-methyl thioformate CH 3 -O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH 3 -S-CHO represents the most stable structure lying 4372.2 cm −1 below cis-CH 3 -O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm −1 ) than for MOCHS (1963.6 cm −1 ). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V 3 (cis) are determined to be 139.7 cm −1 (CH 3 -S-CHO) and 670.4 cm −1 (CH 3 -O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm −1 for CH 3 -S-CHO and negligible for CH 3 -O-CHS

  19. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L., E-mail: [Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid 28006 (Spain); Puzzarini, C., E-mail: [Dipartimento di Chimica G. Ciamician, Università di Bologna, Via F. Selmi 2, I-40126 Bologna (Italy); Hochlaf, M., E-mail: [Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée (France); Domínguez-Gómez, R., E-mail: [Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid, Madrid (Spain); Carvajal, M., E-mail: [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Unidad Asociada IEM-CSIC-U.Huelva, Universidad de Huelva, 21071 Huelva (Spain)


    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  20. Synthesis of 1-Methyl-3-oxo-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gil Valdo José da Silva


    Full Text Available A simple and efficient method for the preparation of 1-methyl-3-oxo-7- oxabicyclo[2.2.1]hept-5-en-2-carboxylic acid methyl ester (1 is described. The first step is a highly regioselective Diels-Alder reaction between 2-methylfuran and methyl-3-bromo- propiolate. A remarkably difficult ketal hydrolysis reaction was effected by treatment with HCl, a simple reagent that was shown to be more efficient, in this case, than commonly used more elaborate methods.

  1. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear overhauser enhancement spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, Vincenzo; Fawzi, Nicolas L.; Clore, G. Marius, E-mail: [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)


    Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to {approx}1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the protein, nor experiments that transfer magnetization between methyl groups and the protein backbone, are required. PRE-derived assignments are refined by 4D methyl-methyl nuclear Overhauser enhancement data, eliminating ambiguities and errors that may arise due to the high sensitivity of PREs to the potential presence of sparsely-populated transient states.

  2. Drugging the methylome: DNA methylation and memory. (United States)

    Kennedy, Andrew J; Sweatt, J David


    Over the past decade, since epigenetic mechanisms were first implicated in memory formation and synaptic plasticity, dynamic DNA methylation reactions have been identified as integral to long-term memory formation, maintenance, and recall. This review incorporates various new findings that DNA methylation mechanisms are important regulators of non-Hebbian plasticity mechanisms, suggesting that these epigenetic mechanisms are a fundamental link between synaptic plasticity and metaplasticity. Because the field of neuroepigenetics is so young and the biochemical tools necessary to probe gene-specific questions are just now being developed and used, this review also speculates about the direction and potential of therapeutics that target epigenetic mechanisms in the central nervous system and the unique pharmacokinetic and pharmacodynamic properties that epigenetic therapies may possess. Mapping the dynamics of the epigenome in response to experiential learning, even a single epigenetic mark in isolation, remains a significant technical and bioinformatic hurdle facing the field, but will be necessary to identify changes to the methylome that govern memory-associated gene expression and effectively drug the epigenome.

  3. Accelerated degradation of methyl iodide by agrochemicals. (United States)

    Zheng, Wei; Papiernik, Sharon K; Guo, Mingxin; Yates, Scott R


    The fumigant methyl iodide (MeI, iodomethane) is considered a promising alternative to methyl bromide (MeBr) for soil-borne pest control in high-cash-value crops. However, the high vapor pressure of MeI results in emissions of a significant proportion of the applied mass into the ambient air, and this may lead to pollution of the environment. Integrating the application of certain agrochemicals with soil fumigation provides a novel approach to reduce excessive fumigant emissions. This study investigated the potential for several agrochemicals that are commonly used in farming operations, including fertilizers and nitrification inhibitors, to transform MeI in aqueous solution. The pseudo-first-order hydrolysis half-life (t(1/2)) of MeI was approximately 108 d, while the transformation of MeI in aqueous solutions containing selected agrochemicals was more rapid, with t(1/2) agrochemicals on the rate of MeI degradation in soil was also determined. Adsorption to soil apparently reduced the availability of some nitrification inhibitors in the soil aqueous phase and lowered the degradation rate in soil. In contrast, addition of the nitrification inhibitors thiourea and allylthiourea to soil significantly accelerated the degradation of MeI, possibly due to soil surface catalysis. The t(1/2) of MeI was 300 h).

  4. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers. (United States)

    Rathore, Mangal S; Jha, Bhavanath


    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  5. MTHFR methylation moderates the impact of smoking on DNA methylation at AHRR for African American young adults. (United States)

    Beach, Steven R H; Lei, Man Kit; Ong, Mei Ling; Brody, Gene H; Dogan, Meeshanthini V; Philibert, Robert A


    Smoking has been shown to have a large, reliable, and rapid effect on demethylation of AHRR, particularly at cg05575921, suggesting that methylation may be used as an index of cigarette consumption. Because the availability of methyl donors may also influence the degree of demethylation in response to smoking, factors that affect the activity of methylene tetrahydrofolate reductase (MTHFR), a key regulator of methyl group availability, may be of interest. In the current investigation, we examined the extent to which individual differences in methylation of MTHFR moderated the association between smoking and demethylation at cg05575921 as well as at other loci on AHRR associated with a main effect of smoking. Using a discovery sample (AIM, N = 293), and a confirmatory sample (SHAPE, N = 368) of young adult African Americans, degree of methylation of loci in the first exon of MTHFR was associated with amplification of the association between smoking and AHRR demethylation at cg05575921. However, genetic variation at a commonly studied MTHFR variant, C677T, did not influence cg05575921 methylation. The significant interaction between MTHFR methylation and the smoking-induced response at cg05575921 suggests a role for individual differences in methyl cycle regulation in understanding the effects of cigarette consumption on genome wide DNA methylation. © 2017 Wiley Periodicals, Inc.

  6. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. (United States)

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi


    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  7. Cytosine methylation at CpCpG sites triggers accumulation of non-CpG methylation in gene bodies


    Zabet, NR; Catoni, Marco; Prischi, F; Paszkowski, Jerzy Waclaw


    Methylation of cytosine is an epigenetic mark involved in the regulation of transcription, usually associated with transcriptional repression. In mammals, methylated cytosines are found predominantly in CpGs but in plants non-CpG methylation (in the CpHpG or CpHpH contexts, where H is A, C or T) is also present and is associated with the transcriptional silencing of transposable elements. In addition, CpG methylation is found in coding regions of active genes. In the absence of the demethylas...

  8. Kismeth: Analyzer of plant methylation states through bisulfite sequencing

    Directory of Open Access Journals (Sweden)

    Martienssen Robert A


    Full Text Available Abstract Background There is great interest in probing the temporal and spatial patterns of cytosine methylation states in genomes of a variety of organisms. It is hoped that this will shed light on the biological roles of DNA methylation in the epigenetic control of gene expression. Bisulfite sequencing refers to the treatment of isolated DNA with sodium bisulfite to convert unmethylated cytosine to uracil, with PCR converting the uracil to thymidine followed by sequencing of the resultant DNA to detect DNA methylation. For the study of DNA methylation, plants provide an excellent model system, since they can tolerate major changes in their DNA methylation patterns and have long been studied for the effects of DNA methylation on transposons and epimutations. However, in contrast to the situation in animals, there aren't many tools that analyze bisulfite data in plants, which can exhibit methylation of cytosines in a variety of sequence contexts (CG, CHG, and CHH. Results Kismeth is a web-based tool for bisulfite sequencing analysis. Kismeth was designed to be used with plants, since it considers potential cytosine methylation in any sequence context (CG, CHG, and CHH. It provides a tool for the design of bisulfite primers as well as several tools for the analysis of the bisulfite sequencing results. Kismeth is not limited to data from plants, as it can be used with data from any species. Conclusion Kismeth simplifies bisulfite sequencing analysis. It is the only publicly available tool for the design of bisulfite primers for plants, and one of the few tools for the analysis of methylation patterns in plants. It facilitates analysis at both global and local scales, demonstrated in the examples cited in the text, allowing dissection of the genetic pathways involved in DNA methylation. Kismeth can also be used to study methylation states in different tissues and disease cells compared to a reference sequence.

  9. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate (United States)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  10. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation. (United States)

    Marioni, Juliana; da Silva, María Angel; Cabrera, José Luis; Montoya, Susana C Núñez; Paraje, María Gabriela


    Candida tropicalis is increasingly becoming among the most commonly isolated pathogens causing fungal infections with an important biofilm-forming capacity. This study addresses the antifungal effect of rubiadin (AQ1) and rubiadin 1-methyl ether (AQ2), two photosensitizing anthraquinones (AQs) isolated from Heterophyllaea pustulata, against C. tropicalis biofilms, by studying the cellular stress and antioxidant response in two experimental conditions: darkness and irradiation. The combination with Amphotericin B (AmB) was assayed to evaluate the synergic effect. Biofilms of clinical isolates and reference strain of Candida tropicalis were treated with AQs (AQ1 or AQ2) and/or AmB, and the biofilms depletion was studied by crystal violet and confocal scanning laser microscopy (CSLM). The oxidant metabolites production and the response of antioxidant defense system were also evaluated under dark and irradiation conditions, being the light a trigger for photo-activation of the AQs. The Reactive Oxygen Species (ROS) were detected by the reduction of Nitro Blue Tetrazolium test, and Reactive Nitrogen Intermediates (RNI) by the Griess assay. ROS accumulation was also detected inside biofilms by using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) probe, which was visualized by CSLM. Superoxide dismutase (SOD) activity and the total antioxidant capacity of biofilms were measured by spectrophotometric methods. The minimun inhibitory concentration for sessile cells (SMIC) was determined for each AQs and AmB. The fractional inhibitory concentration index (FICI) was calculated for the combinations of each AQ with AmB by the checkerboard microdilution method. Biofilm reduction of both strains was more effective with AQ1 than with AQ2. The antifungal effect was mediated by an oxidative and nitrosative stress under irradiation, with a significant accumulation of endogenous ROS detected by CSLM and an increase in the SOD activity. Thus, the prooxidant-antioxidant balance was

  11. Monoclonal antibodies specific for the organophosphate pesticide azinphos-methyl

    NARCIS (Netherlands)

    Jones, WT; Harvey, D; Jones, SD; Ryan, GB; Wynberg, H; TenHoeve, W; Reynolds, PHS


    2-(2-Mercapto-5-methyl-1,3,2-dioxaphosphorinan-5-yl,2-sulphide) methoxyacetic acid has been synthesized and used to prepare an azinphos hapten and protein conjugates. Monoclonal antibodies of high affinity against the pesticide azinphos-methyl were prepared from mice immunized with the

  12. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). (United States)

    Keyte, Anna L; Percifield, Ryan; Liu, Bao; Wendel, Jonathan F


    Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.

  13. 21 CFR 173.250 - Methyl alcohol residues. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl alcohol residues. 173.250 Section 173.250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD.... Methyl alcohol may be present in the following foods under the conditions specified: (a) In spice...

  14. Methyl chavicol: characterization of its biogenic emission rate

    NARCIS (Netherlands)

    Bouvier-Brown, N.C.; Goldstein, A.H.; Worton, D.R.; Matross, D.M.; Gilman, J.B.; Kuster, W.C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J.A.; Cahill, M.J.; Holzinger, R.


    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California.

  15. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A


    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  16. Chemical oxygen demand (cod) attenuation of methyl red in water ...

    African Journals Online (AJOL)

    Chemical oxygen demand (cod) attenuation of methyl red in water using biocarbons obtained from Nipa palm leaves. ... eco-friendly and locally accessible biocarbon for mitigation of organic contaminants in water. Keywords: Chemical oxygen demand, biocarbon, methyl red, biodegradation, bioremediation, Nipa palm ...

  17. 7 CFR 305.6 - Methyl bromide fumigation treatment schedules. (United States)


    ... 12 40 or above 16 8 T408-g-1 Chamber 60 or above 10 24 60 or above 20 15.5 T408-g-2 Tarpaulin 60 or..., fumigation with methyl bromide for sapote fruit fly. Regulated citrus fruits originating inside an area quarantined for sapote fruit fly that are to be moved outside the quarantined area may be treated with methyl...

  18. Alternative Production of Fatty Acid Methyl Esters from Triglycerides ...

    African Journals Online (AJOL)

    The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ1 not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yields of approximately 59% after 3h as compared to SZ2 (32%). In addition ...

  19. Implications of DNA Methylation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ernesto Miranda-Morales


    Full Text Available It has been 200 years since Parkinson’s disease (PD was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.

  20. DNA methylation and genetic diversity analysis of genus Cycas in ...

    African Journals Online (AJOL)

    10 Cycas species as well as one subspecies localized in Thailand were studied using the methylation sensitive amplification polymorphism (MSAP) technique. 11 MSAP primer combinations were used and 720 MSAP bands were generated. The percentages of DNA methylation estimated from MSAP fingerprints were in ...

  1. Heterogeneity of DNA methylation in multifocal prostate cancer. (United States)

    Serenaite, Inga; Daniunaite, Kristina; Jankevicius, Feliksas; Laurinavicius, Arvydas; Petroska, Donatas; Lazutka, Juozas R; Jarmalaite, Sonata


    Most prostate cancer (PCa) cases are multifocal, and separate foci display histological and molecular heterogeneity. DNA hypermethylation is a frequent alteration in PCa, but interfocal heterogeneity of these changes has not been extensively investigated. Ten pairs of foci from multifocal PCa and 15 benign prostatic hyperplasia (BPH) samples were obtained from prostatectomy specimens, resulting altogether in 35 samples. Methylation-specific PCR (MSP) was used to evaluate methylation status of nine tumor suppressor genes (TSGs), and a set of selected TSGs was quantitatively analyzed for methylation intensity by pyrosequencing. Promoter sequences of the RASSF1 and ESR1 genes were methylated in all paired PCa foci, and frequent (≥75 %) DNA methylation was detected in RARB, GSTP1, and ABCB1 genes. MSP revealed different methylation status of at least one gene in separate foci in 8 out of 10 multifocal tumors. The mean methylation level of ESR1, GSTP1, RASSF1, and RARB differed between the paired foci of all PCa cases. The intensity of DNA methylation in these TSGs was significantly higher in PCa cases than in BPH (p epigenetic profile of recurrent tumors can be inferred from our data.

  2. Production of methyl-vinyl ketone from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI


    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  3. Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases

    NARCIS (Netherlands)

    van Beek, Hugo L.; Winter, Remko T.; Eastham, Graham R.; Fraaije, Marco W.


    Methyl propanoate is an important precursor for polymethyl methacrylates. The use of a Baeyer-Villiger monooxygenase (BVMO) to produce this compound was investigated. Several BVMOs were identified that produce the chemically non-preferred product methyl propanoate in addition to the normal product

  4. Novel methyl transfer during chemotaxis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Kirby, J.R.; Ordal, G.W.


    If Bacillus subtilis is incubated in radioactive methionine in the absence of protein synthesis, the methyl-accepting chemotaxis proteins (MCPs) become radioactively methylated. If the bacteria are further incubated in excess nonradioactive methionine (cold-chased) and then given the attractant aspartate, the MCPs lose about half of their radioactivity due to turnover, in which lower specific activity methyl groups from S-adenosylmethionine (AdoMet) replace higher specific activity ones. Due to the cold-chase, the specific activity of the AdoMet pool is reduced at least 2-fold. If, later, the attractant is removed, higher specific activity methyl groups return to the MCPs. Thus, there must exist an unidentified methyl carrier than can reversibly receive methyl groups from the MCPs. In a similar experiment, labeled cells were transferred to a flow cell and exposed to addition and removal of attractant and of repellent. All four kinds of stimuli were found to cause methanol production. Bacterial with maximally labeled MCPs were exposed to many cycles of addition and removal of attractant; the maximum amount of radioactive methanol was evolved on the third, not the first, cycle. This result suggests that there is a precursor-product relationship between methyl groups on the MCPs and on the unidentified carrier, which might be the direct source of methanol. However, since no methanol was produced when a methyltransferase mutant, whose MCPs were unmethylated, was exposed to addition and removal of attractant or repellent, the methanol must ultimately derive from methylated MCPs

  5. Comparison of Different Promoter Methylation Assays in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Karijn P. M. Suijkerbuijk


    Full Text Available Background: Promoter hypermethylation has emerged as a promising cancer biomarker. Currently, a large variety of quantitative and non-quantitative techniques is used to measure methylation in clinical specimens. Here we directly compared three commonly used methylation assays and assessed the influence of tissue fixation, target sequence location and the amount of DNA on their performance.

  6. Polymerization of methyl methacrylate by diphenylamido bis (methylcyclopentadienyl) ytterbium complex

    Institute of Scientific and Technical Information of China (English)

    WANG, Yao-Rong(王耀荣); SHEN, Qi(沈琪); MA, Jia-Le(马家乐); ZHAO, Qun(赵群)


    Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis(methyicyclopentadienyl) ytterbium complex (MeCp)2YbNPh2(THF). Tne reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the polyMMA with high molecular weights.The initiation mechanism was demonstrated by diphenylamidoterminated methyl methacrylate oligomer.

  7. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan


    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene ex...

  8. Folate, colorectal cancer and the involvement of DNA methylation. (United States)

    Williams, Elizabeth A


    Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.

  9. Biological meaning of the methyl eugenol to fruit flies

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, S.; Subahar, S


    The objective of this research is to test a hypothesis whether methyl eugenol has a benefit in sexual selection of fruit flies and to find at what age the male flies respond to methyl eugenol. This test was conducted using carambola fruit fly (Bractocera carambolae) at Inter University Center for Life Science of ITB. The results of the tests are summarized as follows ; 1. Males started to respond to methyl eugenol at the age of 11 days old and the maximum number of males were recorded on 14 and 15 days old. 2. Most of the carambola fruit fly start to respond to methyl eugenol before they become sexually mature. 3. A very small percentage of newly emerged males (less than 1%) survive to mate with females during treatment with methyl eugenol. Methyl eugenol has benefit in sexual selection of carabola fruit fly, i.e., males responded to methyl eugenol before they engage in sexual activities, while females responded to methyl eugenol only when males started their mating activities. (author)

  10. Acibenzolar-S-methyl induces lettuce resistance against ...

    African Journals Online (AJOL)



    Aug 24, 2011 ... Acibenzolar-S-methyl (Benzo [1,2,3] thiadiazole-7-carbothioic acid-S-methyl ester, ASM; Bion 50 WG) was found to ... compounds are frequently used, they have hazardous effect on ... resistance (SAR) is characterized by a reduction in the number of ... cellular defence responses such as synthesis of patho-.


    African Journals Online (AJOL)


    Axle Wood Carbon (AWC) was used to study the removal of Methyl Blue (MB) from ... height, initial methyl blue (MB) concentration, .... colour from blue to dark purple- .... Environ. Earth Sci. 13; 1–13. Yagub, M. T., Sen, T. K., Afroze, S., and Ang,.

  12. DNMT1-interacting RNAs block gene specific DNA methylation (United States)

    Di Ruscio, Annalisa; Ebralidze, Alexander K.; Benoukraf, Touati; Amabile, Giovanni; Goff, Loyal A.; Terragni, Joylon; Figueroa, Maria Eugenia; De Figureido Pontes, Lorena Lobo; Alberich-Jorda, Meritxell; Zhang, Pu; Wu, Mengchu; D’Alò, Francesco; Melnick, Ari; Leone, Giuseppe; Ebralidze, Konstantin K.; Pradhan, Sriharsa; Rinn, John L.; Tenen, Daniel G.


    Summary DNA methylation was described almost a century ago. However, the rules governing its establishment and maintenance remain elusive. Here, we present data demonstrating that active transcription regulates levels of genomic methylation. We identified a novel RNA arising from the CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extended the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic targets in disease. PMID:24107992

  13. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Elvira eCarrio


    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  14. DNA methylation regulates neurophysiological spatial representation in memory formation

    Directory of Open Access Journals (Sweden)

    Eric D. Roth


    Full Text Available Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here, we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single-unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together, our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  15. [Neuroepigenetics: Desoxyribonucleic acid methylation in Alzheimer's disease and other dementias]. (United States)

    Mendioroz Iriarte, Maite; Pulido Fontes, Laura; Méndez-López, Iván


    DNA methylation is an epigenetic mechanism that controls gene expression. In Alzheimer's disease (AD), global DNA hypomethylation of neurons has been described in the human cerebral cortex. Moreover, several variants in the methylation pattern of candidate genes have been identified in brain tissue when comparing AD patients and controls. Specifically, DNA methylation changes have been observed in PSEN1 and APOE, both genes previously being involved in the pathophysiology of AD. In other degenerative dementias, methylation variants have also been described in key genes, such as hypomethylation of the SNCA gene in Parkinson's disease and dementia with Lewy bodies or hypermethylation of the GRN gene promoter in frontotemporal dementia. The finding of aberrant DNA methylation patterns shared by brain tissue and peripheral blood opens the door to use those variants as epigenetic biomarkers in the diagnosis of neurodegenerative diseases. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  16. DNA methylation regulates neurophysiological spatial representation in memory formation. (United States)

    Roth, Eric D; Roth, Tania L; Money, Kelli M; SenGupta, Sonda; Eason, Dawn E; Sweatt, J David


    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  17. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul


    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  18. Forensic DNA methylation profiling from evidence material for investigative leads (United States)

    Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin


    DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369] PMID:27099236

  19. 4-Methyl-N-(2-methylbenzoylbenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda


    Full Text Available In the title compound, C15H15NO3S, the conformation of the N—H bond in the C—SO2—NH—C(O segment is anti to the C=O bond. Further, the conformation of the C=O bond is syn to the ortho-methyl group in the benzoyl ring. The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 87.1 (1° and that between the sulfonyl and the benzoyl benzene rings is 58.2 (1°. In the crystal structure, molecules are linked by pairs of N—H...O(S hydrogen bonds, forming inversion dimers.

  20. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  1. Analysis of DNA methylation in various swine tissues.

    Directory of Open Access Journals (Sweden)

    Chun Yang

    Full Text Available DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively.In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.

  2. Mercury methylation and bacterial activity associated to tropical phytoplankton

    International Nuclear Information System (INIS)

    Coelho-Souza, Sergio A.; Guimaraes, Jean R.D.; Mauro, Jane B.N.; Miranda, Marcio R.; Azevedo, Sandra M.F.O.


    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl- 203 Hg formation from added inorganic 203 Hg and 3 H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H 2 35 S produced from added Na 2 35 SO 4 . There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw -1 h -1 for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10 3 nmol gdw -1 h -1 at a concentration of 1000 nM leucine) and sulfate-reduction (∼21% H 2 35 S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected

  3. Mercury methylation and bacterial activity associated to tropical phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Souza, Sergio A. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Guimaraes, Jean R.D. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil)]. E-mail:; Mauro, Jane B.N. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Miranda, Marcio R. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Azevedo, Sandra M.F.O. [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, IBCCF/UFRJ, RJ (Brazil)


    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl-{sup 203}Hg formation from added inorganic {sup 203}Hg and {sup 3}H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H{sub 2} {sup 35}S produced from added Na{sub 2} {sup 35}SO{sub 4}. There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw{sup -1} h{sup -1} for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10{sup 3} nmol gdw{sup -1} h{sup -1} at a concentration of 1000 nM leucine) and sulfate-reduction ({approx}21% H{sub 2} {sup 35}S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected.

  4. Mobility and Molecular Ions of Dimethyl Methyl Phosphonate, Methyl Salicylate, and Acetone. (United States)


    Plasma Chromatography, is an analytical technique used to detect, identify, and quantify trace quantities of organic vapors in gaseous mixtures. IMS has shown excellent detection sensitivity for trace quantities of pesticides,𔃻 TNT,2 nickel carbonyl , and phosphorus esters." Extensive work by...vacuum distilled at 4 torr to remove phosphite and other impurities. The acetone was ACS grade from laboratory stock. The methyl salicylate was ob

  5. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. (United States)

    Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang


    DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.

  6. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. (United States)

    Proudhon, Charlotte; Duffié, Rachel; Ajjan, Sophie; Cowley, Michael; Iranzo, Julian; Carbajosa, Guillermo; Saadeh, Heba; Holland, Michelle L; Oakey, Rebecca J; Rakyan, Vardhman K; Schulz, Reiner; Bourc'his, Déborah


    Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. 78 FR 32157 - Methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate; Exemption from the Requirement of a Tolerance (United States)


    ... study showed no treatment- related effects on mating or fertility. There were no treatment-related... a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting establishment... received and the nature of the adverse effects caused by methyl 5-(dimethylamino)-2-methyl-5- oxopentanoate...

  8. Analysis of DNA Methylation of Gracilariopsis lemaneiformis Under Temperature Stress Using the Methylation Sensitive Amplification Polymorphism (MSAP) Technique (United States)

    Peng, Chong; Sui, Zhenghong; Zhou, Wei; Hu, Yiyi; Mi, Ping; Jiang, Minjie; Li, Xiaodong; Ruan, Xudong


    Gracilariopsis lemaneiformis is an economically important agarophyte, which contains high quality gel and shows a high growth rate. Wild population of G. lemaneiformis displayed resident divergence, though with a low genetic diversity as was revealed by amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. In addition, different strains of G. lemaneiformis are diverse in morphology. The highly inconsistence between genetic background and physiological characteristics recommends strongly to the regulation at epigenetic level. In this study, the DNA methylation change in G. lemaneiformis among different generation branches and under different temperature stresses was assessed using methylation sensitive amplified polymorphism (MSAP) technique. It was shown that DNA methylation level among different generation branches was diverse. The full and total methylated DNA level was the lowest in the second generation branch and the highest in the third generation. The total methylation level was 61.11%, 60.88% and 64.12% at 15°C, 22°C and 26°C, respectively. Compared with the control group (22°C), the fully methylated and totally methylated ratios were increased in both experiment groups (15°C and 26°C). All of the cytosine methylation/demethylation transform (CMDT) was further analyzed. High temperature treatment could induce more CMDT than low temperature treatment did.

  9. Techno-economic and carbon footprint assessment of methyl crotonate and methyl acrylate production from wastewater-based polyhydroxybutyrate (PHB)

    NARCIS (Netherlands)

    Fernandez Dacosta, C.; Posada, John A.; Ramirez, C.A.


    This paper assesses whether a cleaner and more sustainable production of the chemical building blocks methyl crotonate (MC) and methyl acrylate (MA) can be obtained in an innovative process in which resource consumption, waste generation and environmental impacts are minimized by using

  10. Detection and discrimination of maintenance and de novo CpG methylation events using MethylBreak. (United States)

    Hsu, William; Mercado, Augustus T; Hsiao, George; Yeh, Jui-Ming; Chen, Chung-Yung


    Understanding the principles governing the establishment and maintenance activities of DNA methyltransferases (DNMTs) can help in the development of predictive biomarkers associated with genetic disorders and diseases. A detection system was developed that distinguishes and quantifies methylation events using methylation-sensitive endonucleases and molecular beacon technology. MethylBreak (MB) is a 22-mer oligonucleotide with one hemimethylated and two unmethylated CpG sites, which are also recognition sites for Sau96I and SacII, and is attached to a fluorophore and a quencher. Maintenance methylation was quantified by fluorescence emission due to the digestion of SacII when the hemimethylated CpG site is methylated, which inhibits Sau96I cleavage. The signal difference between SacII digestion of both MB substrate and maintenance methylated MB corresponds to de novo methylation event. Our technology successfully discriminated and measured both methylation activities at different concentrations of MB and achieved a high correlation coefficient of R 2 =0.997. Additionally, MB was effectively applied to normal and cancer cell lines and in the analysis of enzymatic kinetics and RNA inhibition of recombinant human DNMT1. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis of N-methyl and N-11C-methyl spiperone by phase transfer catalysis in anhydrous solvent

    International Nuclear Information System (INIS)

    Omokawa, Hiroyoshi; Tanaka, Akira; Iio, Mayumi; Nishihara, Yoshiaki; Inoue, Osamu; Yamazaki, Toshio.


    Spiperone, a butyrophenone neuroleptic drug, has been used in binding studies of dopamine receptors. Langstrom et al. developed N- 11 C-methyl spiperone, and, in cooperate with Wagner et al., made it possible to visualize the distribution of dopamine receptors in the human brain in vivo. In this paper, we independently developed another synthetic method of N- 11 C-methyl spiperone using the phase transfer catalyst in an anhydrous solvent. Separation of the product is feasible only by passing the reactant solution through a Millipore filter and injecting it onto high pressure liquid chromatography (HPLC). The time required for the synthesis and purification of N- 11 C-methyl spiperone from 11 C-methyl iodide and spiperone was 20 min. Radiochemical yield exceeded 35 % against 11 C-methyl iodide without correcting decay of the radioactivity. (author)

  12. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. (United States)

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A


    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.

  13. CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci. (United States)

    Kawasaki, Takako; Ohnishi, Mutsuko; Nosho, Katsuhiko; Suemoto, Yuko; Kirkner, Gregory J; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji


    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct phenotype in colorectal cancer. However, the concept of CIMP-low with less extensive CpG island methylation is still evolving. Our aim is to examine whether density of methylation in individual CpG islands was different between CIMP-low and CIMP-high tumors. Utilizing MethyLight technology and 889 population-based colorectal cancers, we quantified DNA methylation (methylation index, percentage of methylated reference) at 14 CpG islands, including 8 CIMP-high-specific loci (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1). Methylation positivity in each locus was defined as methylation index>4. Low-level methylation (methylation index>0, CIMP-high-specific locus was significantly more common in 340 CIMP-low tumors (1/8-5/8 methylation-positive loci) than 133 CIMP-high tumors (> or =6/8 methylation-positive loci) and 416 CIMP-0 tumors (0/8 methylation-positive loci) (PCIMP-high, low-level methylation, was not persistently more prevalent in CIMP-low tumors. In conclusion, compared to CIMP-high and CIMP-0 tumors, CIMP-low colorectal cancers show not only few methylated CIMP-high-specific CpG islands, but also more frequent low-level methylation at individual loci. Our data may provide supporting evidence for a difference in pathogenesis of DNA methylation between CIMP-low and CIMP-high tumors.

  14. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail:


    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  15. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation. (United States)

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong


    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  16. Methylation-Sensitive High Resolution Melting (MS-HRM). (United States)

    Hussmann, Dianna; Hansen, Lise Lotte


    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  17. Application of methylation in improving plasmid transformation into Helicobacter pylori. (United States)

    Zhao, Huilin; Xu, Linlin; Rong, Qianyu; Xu, Zheng; Ding, Yunfei; Zhang, Ying; Wu, Yulong; Li, Boqing; Ji, Xiaofei


    Helicobacter pylori is an important gastrointestinal pathogen. Its strains possess different levels of powerful restriction modification systems, which are significant barriers to genetic tools used for studying the role of functional genes in its pathogenesis. Methylating vectors in vitro was reported as an alternative to overcome this barrier in several bacteria. In this study we used two H. pylori-E. coli shuttle plasmids and several single/double-crossover homologous recombination gene-targeting plasmids, to test the role of methylation in H. pylori transformation. According to our results, transformants could be obtained only after shuttle plasmids were methylated before transformation. It is helpful in gene complementation and over-expression although at a low frequency. The frequency of gene-targeting transformation was also increased after methylation, especially for the single-crossover recombination plasmids, the transformants of which could only be obtained after methylation. For the double-crossover recombination targeting plasmids, the initial yield of transformants was 0.3-0.8 × 10 2 CFUs per microgram plasmid DNA. With the help of methylation, the yield was increased to 0.4-1.3 × 10 2 CFUs per microgram plasmid DNA. These results suggest that in vitro methylation can improve H. pylori transformation by different plasmids, which will benefit the pathogenic mechanism research. Copyright © 2018. Published by Elsevier B.V.

  18. Histone methylation and aging: Lessons learned from model systems (United States)

    McCauley, Brenna S.; Dang, Weiwei


    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  19. High-resolution analysis of cytosine methylation in ancient DNA.

    Directory of Open Access Journals (Sweden)

    Bastien Llamas

    Full Text Available Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution.

  20. Quantification of 5-methyl-2'-deoxycytidine in the DNA. (United States)

    Giel-Pietraszuk, Małgorzata; Insińska-Rak, Małgorzata; Golczak, Anna; Sikorski, Marek; Barciszewska, Mirosława; Barciszewski, Jan


    Methylation at position 5 of cytosine (Cyt) at the CpG sequences leading to formation of 5-methyl-cytosine (m(5)Cyt) is an important element of epigenetic regulation of gene expression. Modification of the normal methylation pattern, unique to each organism, leads to the development of pathological processes and diseases, including cancer. Therefore, quantification of the DNA methylation and analysis of changes in the methylation pattern is very important from a practical point of view and can be used for diagnostic purposes, as well as monitoring of the treatment progress. In this paper we present a new method for quantification of 5-methyl-2'deoxycytidine (m(5)C) in the DNA. The technique is based on conversion of m(5)C into fluorescent 3,N(4)-etheno-5-methyl-2'deoxycytidine (εm(5)C) and its identification by reversed-phase high-performance liquid chromatography (RP-HPLC). The assay was used to evaluate m(5)C concentration in DNA of calf thymus and peripheral blood of cows bred under different conditions. This approach can be applied for measuring of 5-methylcytosine in cellular DNA from different cells and tissues.

  1. Are one or two dangerous? Methyl salicylate exposure in toddlers. (United States)

    Davis, Jonathan E


    Serious toxicity can result from exposure to small amounts of methyl salicylate. Methyl salicylate is widely available as a component in many over-the-counter brands of creams, ointments, lotions, liniments and medicated oils intended for topical application to relieve musculoskeletal aches and pains. Among the most potent forms of methyl salicylate is oil of wintergreen (98% methyl salicylate). Other products with varying concentrations of methyl salicylate are ubiquitous throughout many parts of the world, including a number of products marketed as Asian herbal remedies. The toxic potential of all of these formulations is often underestimated by health care providers and the general public. A comprehensive review of the existing medical literature on methyl salicylate poisoning was performed, and data compiled over the past two decades by the American Association of Poison Control Centers (AAPCC) was examined. Methyl salicylate continues to be a relatively common source of pediatric exposures. Persistent reports of life-threatening and fatal toxicity were found. In children less than 6 years of age, a teaspoon (5 mL) or less of oil of wintergreen has been implicated in several well-documented deaths. More needs to be done to educate both health care providers and the general public regarding the dangers of these widely available formulations.

  2. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    International Nuclear Information System (INIS)

    Shah, Jinesh N; Shao, Genze; Hei, Tom K; Zhao, Yongliang


    Hypermethylation of the TGFBI promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the TGFBI promoter in human lung and prostate cancer specimens. Methylation-specific primers were designed based on the methylation profiles of the TGFBI promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP. Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the TGFBI promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the TGFBI promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (p < 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the TGFBI promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (p < 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the TGFBI gene in human lung and prostate tumor cell lines. We successfully optimized a MSP method for the precise and efficient screening of TGFBI promoter methylation status. Dense methylation of the TGFBI promoter correlated with the extent of TGFBI gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, TGFBI promoter methylation can be used as a potential

  3. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors

    International Nuclear Information System (INIS)

    Klajic, Jovana; Tost, Jörg; Kristensen, Vessela N; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise


    Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above

  4. CpG methylation controls reactivation of HIV from latency.

    Directory of Open Access Journals (Sweden)

    Jana Blazkova


    Full Text Available DNA methylation of retroviral promoters and enhancers localized in the provirus 5' long terminal repeat (LTR is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5' LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5' LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5' LTR in viremic patients. However, even dense methylation of the HIV-1 5'LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-alpha, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by Cp

  5. Effects of temperature and relative humidity on DNA methylation. (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel


    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  6. Methylation signature of lymph node metastases in breast cancer patients

    International Nuclear Information System (INIS)

    Barekati, Zeinab; Radpour, Ramin; Lu, Qing; Bitzer, Johannes; Zheng, Hong; Toniolo, Paolo; Lenner, Per; Zhong, Xiao Yan


    Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. The quantitative methylation analysis was performed using the SEQUENOM’s EpiTYPER™ assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis

  7. Methylation of the chicken vitellogenin gene: influence of estradiol administration. (United States)

    Meijlink, F C; Philipsen, J N; Gruber, M; Ab, G


    The degree of methylation of the chicken vitellogenin gene has been investigated. Upon induction by administration of estradiol to a rooster, methyl groups at specific sites near the 5'-end of the gene are eliminated. The process of demethylation is slower than the activation of the gene. Demethylation is therefore probably not a prerequisite to gene transcription. At least two other sites in the coding region of the gene are methylated in the liver of estrogenized roosters, but not in the liver of a laying hen, where the gene is naturally active. Images PMID:6298743

  8. What do unicellular organisms teach us about DNA methylation? (United States)

    Harony, Hala; Ankri, Serge


    DNA methylation is an epigenetic hallmark that has been studied intensively in mammals and plants. However, knowledge of this phenomenon in unicellular organisms is scanty. Examining epigenetic regulation, and more specifically DNA methylation, in these organisms represents a unique opportunity to better understand their biology. The determination of their methylation status is often complicated by the presence of several differentiation stages in their life cycle. This article focuses on some recent advances that have revealed the unexpected nature of the epigenetic determinants present in protozoa. The role of the enigmatic DNA methyltransferase Dnmt2 in unicellular organisms is discussed.

  9. Heptyl vicianoside and methyl caramboside from sour star fruit. (United States)

    Yang, Dan; Jia, Xuchao; Xie, Haihui


    Two new alkyl glycosides, heptyl vicianoside (1) and methyl 2-O-β-d-fucopyranosyl-α-l-arabinofuranoside (methyl caramboside, 4), were isolated from the sour fruit of Averrhoa carambola L. (Oxalidaceae), along with octyl vicianoside (2), cis-3-hexenyl rutinoside (3), and methyl α-d-fructofuranoside (5). Their structures were determined by spectroscopic and chemical methods. Compounds 2, 3, and 5 were obtained from the genus Averrhoa for the first time. All the compounds were evaluated for in vitro α-glucosidase, pancreatic lipase, and acetylcholinesterase inhibitory activities, but none of them were potent.

  10. Methyl group rotation and nuclear relaxation at low temperatures

    International Nuclear Information System (INIS)

    Zweers, A.E.


    This thesis deals with the proton spin-lattice relaxation of some methyl group compounds at liquid helium temperatures. In these molecular crystals, an energy difference between the ground and first rotational state of the methyl group occurs, the so-called tunnelling splitting, which is of the order of a few degrees Kelvin. This means that the high temperature approximation is inappropriate for the description of the occupation densities of the two lowest rotational levels. A description of the properties of the methyl group in connection with relaxation

  11. Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene

    DEFF Research Database (Denmark)

    Candiloro, Ida Lm; Mikeska, Thomas; Hokland, Peter


    ABSTRACT: BACKGROUND: Methylation-sensitive high resolution melting (MS-HRM) methodology is able to recognise heterogeneously methylated sequences by their characteristic melting profiles. To further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM (dMS-HRM) t......ABSTRACT: BACKGROUND: Methylation-sensitive high resolution melting (MS-HRM) methodology is able to recognise heterogeneously methylated sequences by their characteristic melting profiles. To further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM (d......MS-HRM) that involves the amplification of single templates after limiting dilution to quantify and to determine the degree of methylation. We used this approach to study methylation of the CDKN2B (p15) cell cycle progression inhibitor gene which is inactivated by DNA methylation in haematological malignancies...... the methylated alleles and assess the degree of methylation. Direct sequencing of selected dMS-HRM products was used to determine the exact DNA methylation pattern and confirmed the degree of methylation estimated by dMS-HRM. CONCLUSION: dMS-HRM is a powerful technique for the analysis of methylation in CDKN2B...

  12. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars. (United States)

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y


    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  13. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. (United States)

    Tan, Ming-pu


    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  14. Transgenerational epigenetics: Inheritance of global cytosine methylation and methylation-related epigenetic markers in the shrub Lavandula latifolia. (United States)

    Herrera, Carlos M; Alonso, Conchita; Medrano, Mónica; Pérez, Ricardo; Bazaga, Pilar


    The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants. © 2018 Botanical Society of America.

  15. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. (United States)

    Tang, Xiao-Mei; Tao, Xiang; Wang, Yan; Ma, Dong-Wei; Li, Dan; Yang, Hong; Ma, Xin-Rong


    Perennial ryegrass (Lolium perenne), an excellent grass for forage and turf, is widespread in temperate regions. Drought is an important factor that limits its growth, distribution, and yield. DNA methylation affects gene expression and plays an important role in adaptation to adverse environments. In this study, the DNA methylation changes in perennial ryegrass under drought stress were assessed using methylation-sensitive amplified polymorphism (MSAP). After 15 days of drought stress treatment, the plant height was less than half of the control, and the leaves were smaller and darker. Genome-wide, a total of 652 CCGG sites were detected by MSAP. The total methylation level was 57.67 and 47.39 % in the control and drought treatment, respectively, indicating a decrease of 10.28 % due to drought exposure. Fifteen differentially displayed DNA fragments in MSAP profiles were cloned for sequencing analysis. The results showed that most of the genes involved in stress responses. The relative expression levels revealed that three demethylated fragments were up-regulated. The expression of a predicted retrotransposon increased significantly, changing from hypermethylation to non-methylation. Although the extent of methylation in two other genes decreased, the sites of methylation remained, and the expression increased only slightly. All of these results suggested that drought stress decreased the total DNA methylation level in perennial ryegrass and demethylation up-regulated related gene expressions and that the extent of methylation was negatively correlated with expression. Overall, the induced epigenetic changes in genome probably are an important regulatory mechanism for acclimating perennial ryegrass to drought and possibly other environmental stresses.

  16. IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, p53

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki


    Full Text Available Insulin-like growth factor binding protein 3 (IGFBP3, which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP, which is associated with microsatellite instability (MSI and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight, we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41 than in MSI-high CIMPhigh (49% = 44/90, P < .0001, MSI-high non-CIMP-high (17% = 6/36, P < .0001, non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001. Among CIMPhigh tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001, but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02. In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/ CIMP, single molecular events (e.g., IGFBP3 methylation, TP53 mutation, TGFBR2 mutation, the related pathways.

  17. Combustion characteristics of the mustard methyl esters

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Vasilev, I.P.


    Mustard Methyl Esters (further bio diesel) and regular diesel fuel were tested in direct injection diesel engine. Analysis of experimental data was supported by an analysis of fuel injection and combustion characteristics. Engine fuelled with bio diesel had increased brake specific fuel consumption, reduced nitrogen oxides emission and smoke opacity, moderate increase in carbon monoxide emission with essentially unchanged unburned hydrocarbons emission. Increase in fuel consumption was attributed to lesser heating value of bio diesel and partially to decreased fuel conversion efficiency. Analysis of combustion characteristics revealed earlier start of injection and shorter ignition delay period of bio diesel. Resulting decrease in maximum rate of heat release and cylinder pressure was the most probable reason for reduced emission of nitrogen oxides. Analysis of combustion characteristics also showed that cetane index determined by ASTM Method D976 is not a proper measure of ignition quality of bio diesel. Conclusion was made on applicability of mustard oil as a source for commercial production of bio diesel in Pakistan. Potentialities of on improving combustion and emissions characteristics of diesel engine by reformulating bio diesel were discussed. (author)

  18. Methyl and ethyl soybean esters production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Park, Kil Jin; Zorzeto, Thais Queiroz [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail:; Bevilaqua, Gabriela [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica


    Biodiesel is a fuel obtained from triglycerides found in nature, like vegetable oils and animal fats. Nowadays it has been the subject of many researches impulses by the creation of the Brazilian law that determined the blend of 2% of biodiesel with petrodiesel. Basically, there are no limitations on the oilseed type for chemical reaction, but due to high cost of this major feedstock, it is important to use the grain that is available in the region of production. Soybean is the oilseed mostly produced in Brazil and its oil is the only one that is available in enough quantity to supply the current biodiesel demand. The objective of this work was to study the effects of reaction time and temperature on soybean oil transesterification reaction with ethanol and methanol. A central composite experimental design with five variation levels was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that none of the factors affected the ethyl esters production. However, the methyl esters production suffered the influence of temperature (linear effect), reaction time (linear and quadratic) and interaction of these two variables. None of the generated models showed significant regression consequently it was not possible to build the response surface. The experiments demonstrated that methanol is the best alcohol for transesterification reactions and the ester yield was up to 85%. (author)

  19. Developmental immunotoxicity testing of 4-methyl anisole. (United States)

    Tonk, Elisa C M; Verhoef, Aart; Gremmer, Eric R; van Loveren, Henk; Piersma, Aldert H


    The developmental immunotoxicity of 4-methyl anisole (4MA) was investigated in the rat. Four study designs were used, with either premating or post-weaning onset of exposure, continued to postnatal day 50, and with or without additional oral gavage of pups from postnatal day 10 onward. Reduced litter size (benchmark dose lower confidence limit (BMDL) 80mg/kg bw/day) was the most sensitive developmental parameter, with pup relative organ weight effects observed at similar BMDLs, in the absence of maternal toxicity. Eosinophil numbers were reduced at lower doses (BMDL 16mg/kg bw/day). KLH challenge resulted in increased IL-13 and TNF-α responses, and variably reduced IgG production (BMDL 27mg/kg bw/day). T4 levels were reduced by 11% at maximum with a BMDL of 73mg/kg bw/day. Differences between exposure cohorts were limited and were considered to be without biological significance. This study shows that 4MA induces developmental immunotoxicity at doses below those inducing developmental and general toxicity. These observations being independent of the study designs applied suggest that the post-weaning period, included in all designs, is the most relevant sensitive period for inducing 4MA mediated developmental immunotoxicity. Moreover, this study stresses the importance of including developmental immunotoxicity testing by default in regulatory toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Synthesis of methyl ester sulphonate by sulfonation of soybean oil methyl ester for chemical flooding application

    International Nuclear Information System (INIS)

    Richie Adi Putra; Renisa Ismayanti; Agam Duma Kalista W


    This research has accomplished the synthesis of Surfactant Methyl Ester Sulphonate from Methyl Soyate and Sodium Bisulfite as sulfonating agent. The Steps of the synthesis were reaction, purification, neutralization, and separation. The reaction done by several variated condition such as Reaction Temperature (100, 110, 120)°C, Reaction time (210, 270, 330)minute, and the mole ratio between Methyl Soyate and NaHSO 3 (1:1, 1:1.5, 1:2) with 1.5 % of Al 2 O 3 as catalyst of sulfonation reaction. The purification process was conducted at 55 °C and 60 minute by adding Methanol 35 % v/v. The neutralization done was conducted by 20 % of NaOH until pH 6-8. And the rest of the methanol are separated from MES using rotary evaporator. MES which is pass the compatibility Test is MES at the condition of reaction (100 °C, 210 minute and 1 : 2 mole ratio).This MES has tested by FT - IR to see the existence of the Sulphonate group.The FT-IR test result has shown the existence of the Sulphonate group at wave length between 1000 until 1300 cm -1 . Which is the highest peak at 1176 cm-1. From the qualitative test above, then the MES performed by IFT Test with light oil of X- field as comparison. The IFT results has shown a decrease of the interfacial tensions between 12,000 ppm of brine water and the light oil with addition of 0.3 % (v/v) MES, from 3.36 dyne/cm 2 to 1.54 dyne/cm 2 . (author)

  1. (E-2-Methyl-6-{[(5-methylpyridin-2-ylimino]methyl}phenol

    Directory of Open Access Journals (Sweden)

    Md. Azharul Arafath


    Full Text Available In the title compound, C14H14N2O, the dihedral angle between the aromatic rings is 5.54 (9°. The conformation is reinforced by an intramolecular O—H...N hydrogen bond, which closes an S(6 ring. The pyridine N atom and methyl group lie to opposite sides of the molecule. In the crystal, the molecules are linked into a zigzag chain propagating in [0-11] by weak C—H...O hydrogen bonds.

  2. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide (United States)

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen


    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093


    NARCIS (Netherlands)


    A new styrene-substituted chlorocyclotriphosphazene, gem-methyl(vinylbenzyl) tetrachlorocyclotriphosphazene, has been prepared from vinylbenzylmagnesium chloride and hexachlorocyclotriphosphazene. The organosubstituted chlorocyclotriphosphazene has been used in radical homo- and copolymerization

  4. Methylation Integration (Mint) | Informatics Technology for Cancer Research (ITCR) (United States)

    A comprehensive software pipeline and set of Galaxy tools/workflows for integrative analysis of genome-wide DNA methylation and hydroxymethylation data. Data types can be either bisulfite sequencing and/or pull-down methods.

  5. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing

    NARCIS (Netherlands)

    Hovestadt, Volker; Jones, David T. W.; Picelli, Simone; Wang, Wei; Kool, Marcel; Northcott, Paul A.; Sultan, Marc; Stachurski, Katharina; Ryzhova, Marina; Warnatz, Hans-Jörg; Ralser, Meryem; Brun, Sonja; Bunt, Jens; Jäger, Natalie; Kleinheinz, Kortine; Erkek, Serap; Weber, Ursula D.; Bartholomae, Cynthia C.; von Kalle, Christof; Lawerenz, Chris; Eils, Jürgen; Koster, Jan; Versteeg, Rogier; Milde, Till; Witt, Olaf; Schmidt, Sabine; Wolf, Stephan; Pietsch, Torsten; Rutkowski, Stefan; Scheurlen, Wolfram; Taylor, Michael D.; Brors, Benedikt; Felsberg, Jörg; Reifenberger, Guido; Borkhardt, Arndt; Lehrach, Hans; Wechsler-Reya, Robert J.; Eils, Roland; Yaspo, Marie-Laure; Landgraf, Pablo; Korshunov, Andrey; Zapatka, Marc; Radlwimmer, Bernhard; Pfister, Stefan M.; Lichter, Peter


    Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies,

  6. DNA Methylation: An Epigenetic Risk Factor in Preterm Birth (United States)

    Menon, Ramkumar; Conneely, Karen N.; Smith, Alicia K.


    Spontaneous preterm birth (PTB; birth prior to 37 weeks of gestation) is a complex phenotype with multiple risk factors that complicate our understanding of its etiology. A number of recent studies have supported the hypothesis that epigenetic modifications such as DNA methylation induced by pregnancy-related risk factors may influence the risk of PTB or result in changes that predispose a neonate to adult-onset diseases. The critical role of timing of gene expression in the etiology of PTB makes it a highly relevant disorder in which to examine the potential role of epigenetic changes. Because changes in DNA methylation patterns can result in long-term consequences, it is of critical interest to identify the epigenetic patterns associated with adverse pregnancy outcomes. This review examines the potential role of DNA methylation as a risk factor for PTB and discusses several issues and limitations that should be considered when planning DNA methylation studies. PMID:22228737

  7. RARβ gene methylation is a candidate for primary glioblastoma ...

    African Journals Online (AJOL)

    Methods: In our study, tumor samples were collected during surgical resection by ... logically active form of vitamin A. RARβ is important ... RARβ methylation in 23 cases of grade II-IV tumors. ..... Piperi, C., Themistocleous, M.S., Papavassiliou,.

  8. Physicochemical, electrical and optical studies of methyl-3-(2 ...

    Indian Academy of Sciences (India)


    crystal methyl-3-(2-furylmethylidene) carbazate, which was grown by employing the slow ... exhibit Type-I phase matching. .... load, a the resistance of the material to initial penetration, ... using Wooster's empirical relation, which is given as.

  9. Parental epigenetic difference in DNA methylation-level may play ...

    African Journals Online (AJOL)



    Aug 22, 2011 ... We found that a specific type of DNA methylation-level difference, that is, relative CHG (H ... eukaryotes and is particularly abundant in higher plants, ..... characterization of a set of disease resistance-gene analogs (RGAs).

  10. Synthesis of [methyl-[sup 14]C]-N-methylputrescine

    Energy Technology Data Exchange (ETDEWEB)

    Secor, H.V.; Izac, R.R.; Hassam, S.B.; Frisch, A.F. (Philip Morris Research Center, Richmond, VA (United States))


    [Methyl-[sup 14]C]-N-methylputrescine was prepared from [[sup 14]C]methylamine hydrochloride in five steps. Reaction of benzaldehyde and [[sup 14]C]methylamine (10 mCi) followed by catalytic hydrogenation yielded [methyl-[sup 14]C]-N-methylbenzylamine. The key step in this process is the alkylation of [methyl-[sup 14]C]-N-methylbenzylamine in aqueous medium with 4-bromobutyronitrile. The radiochemical purity of the final product after two successive catalytic hydrogenations was in excess of 97%. The radiochemical yields in two successive runs were 26 and 38%, based on starting [[sup 14]C]methylamine, with specific activities of 22 and 23 mCi/mmol, respectively. This sequence provides a convenient and efficient regioselective radiosynthesis of [methyl-[sup 14]C]-N-methylputrescine. (author).

  11. Clinical Utility of promoter methylation of the tumor suppressor ...

    African Journals Online (AJOL)

    Marwa H. Saied

    nosis and shortage of treatment facilities, resulting in a high pro- portion of .... Data analysis was performed using the software package SPSS ... out of 20 were negative for methylation) in fibroadenoma and con- .... For instance, in a big cohort.

  12. Methyl Bromide Commodity Fumigation Buffer Zone Lookup Tables (United States)

    Product labels for methyl bromide used in commodity and structural fumigation include requirements for buffer zones around treated areas. The information on this page will allow you to find the appropriate buffer zone for your planned application.

  13. RNA-directed DNA methylation: Mechanisms and functions

    KAUST Repository

    Mahfouz, Magdy M.


    Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response

  14. Oral Methylated N-Aryl Chitosan Derivatives for Inducing Immune ...

    African Journals Online (AJOL)

    TM-CM-CS) and methylated N-(4-pyridinylmethyl) chitosan (TM-Py-CS), with Eqiva degree (equivalent degree) were studied by in vitro absorption enhancement on the transepithelial electrical resistance (TEER) in Caco-2 cell monolayers as ...

  15. Changes of host DNA methylation in domestic chickens infected with ...

    Indian Academy of Sciences (India)



    Sep 15, 2017 ... Gene interaction network analysis of differentially methylated genes in the promoter .... sequencing library and sequenced by HiSeq 2000 Illumina. The chicken ... annotation system (KOBAS) (Xie et al. 2011), which pro-.

  16. The fluorescence behaviour of methyl and phenyl salicylate (United States)

    Ford, D.; Thistlethwaite, P. J.; Woolfe, G. J.


    Fluorcsccnce lifetimes tor the 450 nm emission of methyl and phenyl salicylate in various solvents have been measured. Qucnching studics on the 340 nm fluorescence of these molecules point to the existence of three distinct ground state conformers.

  17. Absolute photoionization cross-section of the methyl radical. (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T


    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  18. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong


    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  19. How to interpret Methylation Sensitive Amplified Polymorphism (MSAP) profiles?


    Fulneček, Jaroslav; Kovařík, Aleš


    Background DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is ...

  20. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Chihara, Yoshitomo; Hirao, Yoshihiko; Kanai, Yae; Fujimoto, Hiroyuki; Sugano, Kokichi; Kawashima, Kiyotaka; Liang, Gangning; Jones, Peter A; Fujimoto, Kiyohide; Kuniyasu, Hiroki


    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  1. Pectin methyl esterase activity in apple and orange pulps

    International Nuclear Information System (INIS)

    Abdullaev, A.; Djumaev, B.B.; Djumaev, N.B.; Mukhidinov, Z.K.


    The results of pectin methyl esterase activity from apple, orange pulp and orange peel depending of ph and temperature are discussed. It's shown that the methyl esterase activity form apple and orange pulps higher in range of temperatures from +37...+60 d ig C . The analysis of dependence of its activity from ph has shown that in both case the enzyme activity increase with increase of ph

  2. Methylation profiling in individuals with Russell-Silver syndrome. (United States)

    Peñaherrera, Maria S; Weindler, Susanne; Van Allen, Margot I; Yong, Siu-Li; Metzger, Daniel L; McGillivray, Barbara; Boerkoel, Cornelius; Langlois, Sylvie; Robinson, Wendy P


    Russell-Silver syndrome (RSS) is a heterogeneous disorder associated with pre- and post-natal growth restriction and relative macrocephaly. Involvement of imprinted genes on both chromosome 7 and 11p15.5 has been reported. To further characterize the role of epimutations in RSS we evaluated the methylation status at both 11p15.5 imprinting control regions (ICRs): ICR1 associated with H19/IGF2 expression and ICR2 (KvDMR1) associated with CDKN1C expression in a series of 35 patients with RSS. We also evaluated methylation at the promoter regions of other imprinted genes involved in growth such as PLAGL1 (6q24), GCE (7q21), and PEG10 (7q21) in this series of 35 patients with RSS. Thirteen of the 35 patient samples, but none of 22 controls, showed methylation levels at ICR1 that were more than 2 SD below the mean for controls. Three RSS patients were highly methylated at the SCGE promoter, all of which were diagnosed with upd(7)mat. To identify further potential global methylation changes in RSS patients, a subset of 22 patients were evaluated at 1505 CpG sites by the Illumina GoldenGate methylation array. Among the few CpG sites displaying a significant difference between RSS patients and controls, was a CpG associated with the H19 promoter. No other sites associated with known imprinted genes were identified as abnormally methylated in RSS patients by this approach. While the association of hypomethylation of the H19/IGF2 ICR1 is clear, the continuous distribution of methylation values among the patients and controls complicates the establishment of clear cut-offs for clinical diagnosis. Copyright 2010 Wiley-Liss, Inc.

  3. Adsorption of lead from aqueous solutions by poly (methyl methacrylate)

    International Nuclear Information System (INIS)

    Din, M.; Hussain, R.


    The adsorption capability of commercially manufactured poly (methyl methacrylate) for lead in aqueous medium has been investigated. Percent adsorption and distribution coefficient values have been determined in relation to the shaking time, amount of adsorbent, pH effects and concentration of lead in the solution. The experimental results are compatible with Freundlich type of adsorption behavior. It is discernible from the experimental results that poly (methyl methacrylate) can be used for the removal of lead from slightly acidic aqueous solutions. (author)

  4. Zinc Mediated Tandem Fragmentation-Allylation of Methyl 5-Iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Madsen, Robert


    In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols.......In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols....

  5. Exploring the Link between Nucleosome Occupancy and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Cecilia Lövkvist


    Full Text Available Near promoters, both nucleosomes and CpG sites form characteristic spatial patterns. Previously, nucleosome depleted regions were observed upstream of transcription start sites and nucleosome occupancy was reported to correlate both with CpG density and the level of CpG methylation. Several studies imply a causal link where CpG methylation might induce nucleosome formation, whereas others argue the opposite, i.e., that nucleosome occupancy might influence CpG methylation. Correlations are indeed evident between nucleosomes, CpG density and CpG methylation—at least near promoter sites. It is however less established whether there is an immediate causal relation between nucleosome occupancy and the presence of CpG sites—or if nucleosome occupancy could be influenced by other factors. In this work, we test for such causality in human genomes by analyzing the three quantities both near and away from promoter sites. For data from the human genome we compare promoter regions with given CpG densities with genomic regions without promoters but of similar CpG densities. We find the observed correlation between nucleosome occupancy and CpG density, respectively CpG methylation, to be specific to promoter regions. In other regions along the genome nucleosome occupancy is statistically independent of the positioning of CpGs or their methylation levels. Anti-correlation between CpG density and methylation level is however similarly strong in both regions. On promoters, nucleosome occupancy is more strongly affected by the level of gene expression than CpG density or CpG methylation—calling into question any direct causal relation between nucleosome occupancy and CpG organization. Rather, our results suggest that for organisms with cytosine methylation nucleosome occupancy might be primarily linked to gene expression, with no strong impact on methylation.

  6. Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation. (United States)

    Yehuda, Rachel; Daskalakis, Nikolaos P; Bierer, Linda M; Bader, Heather N; Klengel, Torsten; Holsboer, Florian; Binder, Elisabeth B


    The involvement of epigenetic mechanisms in intergenerational transmission of stress effects has been demonstrated in animals but not in humans. Cytosine methylation within the gene encoding for FK506 binding protein 5 (FKBP5) was measured in Holocaust survivors (n = 32), their adult offspring (n = 22), and demographically comparable parent (n = 8) and offspring (n = 9) control subjects, respectively. Cytosine-phosphate-guanine sites for analysis were chosen based on their spatial proximity to the intron 7 glucocorticoid response elements. Holocaust exposure had an effect on FKBP5 methylation that was observed in exposed parents as well in their offspring. These effects were observed at bin 3/site 6. Interestingly, in Holocaust survivors, methylation at this site was higher in comparison with control subjects, whereas in Holocaust offspring, methylation was lower. Methylation levels for exposed parents and their offspring were significantly correlated. In contrast to the findings at bin 3/site 6, offspring methylation at bin 2/sites 3 to 5 was associated with childhood physical and sexual abuse in interaction with an FKBP5 risk allele previously associated with vulnerability to psychological consequences of childhood adversity. The findings suggest the possibility of site specificity to environmental influences, as sites in bins 3 and 2 were differentially associated with parental trauma and the offspring's own childhood trauma, respectively. FKBP5 methylation averaged across the three bins examined was associated with wake-up cortisol levels, indicating functional relevance of the methylation measures. This is the first demonstration of an association of preconception parental trauma with epigenetic alterations that is evident in both exposed parent and offspring, providing potential insight into how severe psychophysiological trauma can have intergenerational effects. Published by Elsevier Inc.

  7. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang


    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  8. The altered promoter methylation of oxytocin receptor gene in autism. (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  9. Effect of temperature stress on protein methyl esters

    International Nuclear Information System (INIS)

    Welch, W.; Kracaw, K.


    Protein methyl esters have been implicated in a number of physiological processes. They have measured the effect of temperature stress on the levels of protein methyl esters in the mesophilic fungus Penicillium chrysogenum (PCPS) and the thermophilic fungus P. duponti (PD). PD and PCPS were incubated with [methyl- 3 H]methionine. The mycelia were collected by filtration, frozen in liquid nitrogen and ground to a fine powder. The nitrogen powder was extracted with either phosphate buffer or with SDS, glycerol, phosphate, 2-mercaptoethanol. Insoluble material was removed by centrifugation. The supernatants were assayed for protein methyl esters. The released [ 3 H]methanol was extracted into toluene:isoamyl alcohol (3:2) and quantitated by liquid scintillation. The production of volatile methanol was confirmed by use of Conway diffusion cells. Soluble proteins accounted for about one-fourth of the total protein methyl ester extracted by SDS. In PCPS, the SDS extracted proteins have about three times the level of esterification of the soluble proteins whereas in PD there is little difference between soluble and SDS extracted protein. The level of protein esterification in PD is about one-tenth that observed in PCPS. Temperature stress caused large changes in the level of protein esterification. The data suggest protein methyl esters may contribute to the adaptation to environmental stress

  10. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients. (United States)

    Lyko, Frank; Stach, Dirk; Brenner, Axel; Stilgenbauer, Stephan; Döhner, Hartmut; Wirtz, Michaela; Wiessler, Manfred; Schmitz, Oliver J


    Changes in the genomic DNA methylation level have been found to be closely associated with tumorigenesis. In order to analyze the relation of aberrant DNA methylation to clinical and biological risk factors, we have determined the cytosine methylation level of 81 patients diagnosed with chronic lymphocytic leukemia (CLL). The analysis was based on DNA hydrolysis followed by derivatization of the 2'-desoxyribonucleoside-3'-monophosphates with BODIPY FL EDA. Derivatives were separated by micellar electrokinetic chromatography, and laser-induced fluorescence was used for detection. We analyzed potential correlations between DNA methylation levels and numerous patient parameters, including clinical observations and biological data. As a result, we observed a significant correlation with the immunoglobulin variable heavy chain gene (VH) mutation status. This factor has been repeatedly proposed as a reliable prognostic marker for CLL, which suggests that the methylation level might be a valuable factor in determining the prognostic outcome of CLL. We are now in the process of refining our method to broaden its application potential. In this context, we show here that the oxidation of the fluorescence marker in the samples and the evaporation of methanol in the electrolytes can be prevented by a film of paraffin oil. In summary, our results thus establish capillary electrophoresis as a valuable tool for analyzing the DNA methylation status of clinical samples.

  11. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca (United States)

    Bruns, Hilke; Riclea, Ramona


    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  12. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena


    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  13. DNA methylation levels associated with race and childhood asthma severity. (United States)

    Chan, Marcia A; Ciaccio, Christina E; Gigliotti, Nicole M; Rezaiekhaligh, Mo; Siedlik, Jacob A; Kennedy, Kevin; Barnes, Charles S


    Asthma is a common chronic childhood disease worldwide. Socioeconomic status, genetic predisposition and environmental factors contribute to its incidence and severity. A disproportionate number of children with asthma are economically disadvantaged and live in substandard housing with potential indoor environmental exposures such as cockroaches, dust mites, rodents and molds. These exposures may manifest through epigenetic mechanisms that can lead to changes in relevant gene expression. We examined the association of global DNA methylation levels with socioeconomic status, asthma severity and race/ethnicity. We measured global DNA methylation in peripheral blood of children with asthma enrolled in the Kansas City Safe and Healthy Homes Program. Inclusion criteria included residing in the same home for a minimum of 4 days per week and total family income of less than 80% of the Kansas City median family income. DNA methylation levels were quantified by an immunoassay that assessed the percentage of 5-methylcytosine. Our results indicate that overall, African American children had higher levels of global DNA methylation than children of other races/ethnicities (p = 0.029). This difference was more pronounced when socioeconomic status and asthma severity were coupled with race/ethnicity (p = 0.042) where low-income, African American children with persistent asthma had significantly elevated methylation levels relative to other races/ethnicities in the same context (p = 0.006, Hedges g = 1.14). Our study demonstrates a significant interaction effect among global DNA methylation levels, asthma severity, race/ethnicity, and socioeconomic status.

  14. Nutrient-dependent methylation of a membrane-associated protein of Escherichia coli

    International Nuclear Information System (INIS)

    Young, C.C.; Alvarez, J.D.; Bernlohr, R.W.


    Starvation of a mid-log-phase culture of Escherichia coli B/r for nitrogen, phosphate, or carbon resulted in methylation of a membrane-associated protein of about 43,000 daltons (P-43) in the presence of chloramphenicol and [methyl-3H]methionine. The in vivo methylation reaction occurred with a doubling time of 2 to 5 min and was followed by a slower demethylation process. Addition of the missing nutrient to a starving culture immediately prevented further methylation of P-43. P-43 methylation is not related to the methylated chemotaxis proteins because P-43 is methylated in response to a different spectrum of nutrients and because P-43 is methylated on lysine residues. The characteristics of P-43 are similar to those of a methylated protein previously described in Bacillus subtilis and B. licheniformis and are consistent with the proposal that methylation of this protein functions in nutrient sensing

  15. Studies of pirimiphos-methyl residues in stored rice, using 14C-pirimiphos-methyl

    International Nuclear Information System (INIS)

    Varca, L.M.; Sanchez, T.E.; Gambalan, N.; Magallona, E.D.


    The distribution and persistence of pirimiphos-methyl on rice (hulled and unhulled) stored over a period of 6 months at 30 deg. C and about 11% moisture were studied using 14 C labelled insecticide. The procedures used for preparing the labelled formulation, applying the insecticide and for the handling and analysis of the grain samples were similar to those described for fenvalerate, see Varca, Sanchez and Magallona, ''Isotopic tracer aided studies of fenvalerate residues in stored products'', these Proceedings. After applying the pirimiphos-methyl, a concentration equal to 0.87 ppm was found on the hulled rice immediately after application; this concentration declined to 0.60 ppm after 6 months of storage. Over 28% of the residue was present in the seed in the methanol extractable form, and 38% was found on the surface at the end of the storage period. For the unhulled rice, most of the residue was retained in the hull with no decrease in the overall level during the storage period. (author)

  16. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Ferrer, Jean-Luc [Universite Joseph Fourier, France; Engle, Nancy L [ORNL; Chern, Mawsheng [University of California, Davis; Ronald, Pamela [University of California, Davis; Tschaplinski, Timothy J [ORNL; Chen, Feng [University of Tennessee, Knoxville (UTK)


    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.

  17. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. (United States)

    Zhao, Nan; Guan, Ju; Ferrer, Jean-Luc; Engle, Nancy; Chern, Mawsheng; Ronald, Pamela; Tschaplinski, Timothy J; Chen, Feng


    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  18. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.


    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  19. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS


    Huang, Zhi-hong; Wang, Zhi-li; Shi, Bao-lin; Wei, Dong; Chen, Jian-xin; Wang, Su-li; Gao, Bao-jia


    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds sa...

  20. Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering. (United States)

    Choudhury, Priyanka; Kumar, Satish; Singh, Abhishek; Kumar, Ashutosh; Kaur, Navneet; Sanyasi, Sridhar; Chawla, Saurabh; Goswami, Chandan; Goswami, Luna


    Patho-physiologies related to skin are diverse in nature such as burns, skin ulcers, atopic dermatitis, psoriasis etc. which impose severe bio-medical problems and thus enforce requirement of new and healthy skin prepared through tissues engineering methodologies. However, fully functional and biodegradable matrix for attachment, growth, proliferation and differentiation of the relevant cells is not available. In the present study, we introduce a set of hydrogels synthesized by incorporation of a synthetic monomer (Hydroxyethlmethacryate) with a semi-synthetic polymer backbone (carboxy methyl tamarind, CMT) in different mole ratios. We termed these materials as CMT:HEMA based hydrogels and these were characterized by different physico-chemical techniques, namely by X-Ray Diffraction, SEM and Dynamic Light Scattering. Biocompatibility studies with HaCaT, NIH-3T3 and mouse dermal fibroblasts confirm that this material is biocompatible. MTT assay further confirmed that this material does not have any cytotoxic effects. Assays for mitochondrial functionality such as ATP assay and mitochondrial reactive oxygen (ROS) generation also suggest that this material is safe and does not have any cytotoxicity. Hemolytic assay with red blood cells and acute skin irritation test on SD Rats confirmed that this material is suitable for ex-vivo application in future. We suggest that this hydrogel is suitable for in-vivo applications and may have clinical and commercial importance against skin disorders. Copyright © 2018. Published by Elsevier Ltd.

  1. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells. (United States)

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio


    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n -hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia.

  2. In Utero Exposure to Dietary Methyl Nutrients and Breast Cancer Risk in Offspring (United States)


    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Lipotropes (methionine, choline, folate , and vitamin B12) are dietary methyl donors and...Lipotropes are methyl group (CH3) containing essential nutrients (methionine, choline, folate , and vitamin B12) and are important methyl highly dependent on methyl donors and cofactors (11, 17). The coenzymes necessary for DNA methylation reactions include folate , vitamin B12, and

  3. Synthesis of [methyl-{sup 14}C]crotonobetaine from DL-[methyl-{sup 14}C]carnitine

    Energy Technology Data Exchange (ETDEWEB)

    Loester, H.; Seim, H. [Leipzig Univ. (Germany). Inst. of Clinical Chemistry and Pathobiochemistry


    The causes of carnitine deficiency syndromes are not completely understood, but decomposition of L-carnitine in vivo is likely to be involved. Carnitine is metabolized to {gamma}-butyrobetaine, and crotonobetaine is probably an intermediate in this pathway. To validate experimentally the precursor-product relationship between the three physiologically occuring {gamma}-betaines - L-carnitine, crotonobetaine, {gamma}-butyrobetaine - labelling with stable or radioactive isotopes became necessary. Methyl-labelled carnitine isomers (L(-)-, D(+)- or DL-) or {gamma}-butyrobetaine can be easily synthesized by methylation of 4-amino-3-hydroxybutyric acid isomers or 4-aminobutyric acid, respectively. Because of problems with the 4-aminocrotonic acid, we synthesized labelled crotonbetaine from labelled carnitine. Thus, DL-[methyl-{sup 14}C]carnitine was dehydrated by reaction with concentrated sulfuric acid. After removal of the latter the products were separated and purified by ion exchange chromatography on DOWEX 50 WX8 (200 - 400 mesh) and gradient elution with hydrochloric acid. In addition to the labelled main product [methyl-{sup 14}C]crotonobetaine (yield about 50 %), [methyl-{sup 14}C]glycine betaine and [methyl-{sup 14}C]acetonyl-trimethylammonium (ATMA) were formed. The end products were identified by combined thin layer chromatography/autoradiography and quantified by liquid scintillation counting. (Author).

  4. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots. (United States)

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin


    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Photoinduced nuclear spin conversion of methyl groups of single molecules

    International Nuclear Information System (INIS)

    Sigl, A.


    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  6. Effect of DNA methylation on identification of aggressive prostate cancer. (United States)

    Alumkal, Joshi J; Zhang, Zhe; Humphreys, Elizabeth B; Bennett, Christina; Mangold, Leslie A; Carducci, Michael A; Partin, Alan W; Garrett-Mayer, Elizabeth; DeMarzo, Angelo M; Herman, James G


    Biochemical (prostate-specific antigen) recurrence of prostate cancer after radical prostatectomy remains a major problem. Better biomarkers are needed to identify high-risk patients. DNA methylation of promoter regions leads to gene silencing in many cancers. In this study, we assessed the effect of DNA methylation on the identification of recurrent prostate cancer. We studied the methylation status of 15 pre-specified genes using methylation-specific polymerase chain reaction on tissue samples from 151 patients with localized prostate cancer and at least 5 years of follow-up after prostatectomy. On multivariate logistic regression analysis, a high Gleason score and involvement of the capsule, lymph nodes, seminal vesicles, or surgical margin were associated with an increased risk of biochemical recurrence. Methylation of CDH13 by itself (odds ratio 5.50, 95% confidence interval [CI] 1.34 to 22.67; P = 0.02) or combined with methylation of ASC (odds ratio 5.64, 95% CI 1.47 to 21.7; P = 0.01) was also associated with an increased risk of biochemical recurrence. The presence of methylation of ASC and/or CDH13 yielded a sensitivity of 72.3% (95% CI 57% to 84.4%) and negative predictive value of 79% (95% CI 66.8% to 88.3%), similar to the weighted risk of recurrence (determined from the lymph node status, seminal vesicle status, surgical margin status, and postoperative Gleason score), a powerful clinicopathologic prognostic score. However, 34% (95% CI 21% to 49%) of the patients with recurrence were identified by the methylation profile of ASC and CDH13 rather than the weighted risk of recurrence. The results of our study have shown that methylation of CDH13 alone or combined with methylation of ASC is independently associated with an increased risk of biochemical recurrence after radical prostatectomy even considering the weighted risk of recurrence score. These findings should be validated in an independent, larger cohort of patients with prostate cancer who have

  7. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  8. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers. (United States)

    Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki


    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.

  9. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes


    Karolina Chwialkowska; Urszula Korotko; Joanna Kosinska; Iwona Szarejko; Miroslaw Kwasniewski


    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing ...

  10. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls


    Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol


    Abstract Background The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Methods Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic ...

  11. SLC9B1 methylation predicts fetal intolerance of labor. (United States)

    Knight, Anna K; Conneely, Karen N; Kilaru, Varun; Cobb, Dawayland; Payne, Jennifer L; Meilman, Samantha; Corwin, Elizabeth J; Kaminsky, Zachary A; Dunlop, Anne L; Smith, Alicia K


    Fetal intolerance of labor is a common indication for delivery by Caesarean section. Diagnosis is based on the presence of category III fetal heart rate tracing, which is an abnormal heart tracing associated with increased likelihood of fetal hypoxia and metabolic acidemia. This study analyzed data from 177 unique women who, during their prenatal visits (7-15 weeks and/or 24-32 weeks) to Atlanta area prenatal care clinics, consented to provide blood samples for DNA methylation (HumanMethylation450 BeadChip) and gene expression (Human HT-12 v4 Expression BeadChip) analyses. We focused on 57 women aged 18-36 (mean 25.4), who had DNA methylation data available from their second prenatal visit. DNA methylation patterns at CpG sites across the genome were interrogated for associations with fetal intolerance of labor. Four CpG sites (P value intolerance of labor. DNA methylation and gene expression were negatively associated when examined longitudinally during pregnancy using a linear mixed-effects model. Positive predictive values of methylation of these four sites ranged from 0.80 to 0.89, while negative predictive values ranged from 0.91 to 0.92. The four CpG sites were also associated with fetal intolerance of labor in an independent cohort (the Johns Hopkins Prospective PPD cohort). Therefore, fetal intolerance of labor could be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation. Fetal intolerance of labor may be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation by assessing DNA methylation patterns of SLC9B1. The identification of pregnant women at elevated risk for fetal intolerance of labor may allow for the development of targeted treatments or management plans.

  12. Ancestry dependent DNA methylation and influence of maternal nutrition.

    Directory of Open Access Journals (Sweden)

    Khyobeni Mozhui

    Full Text Available There is extensive variation in DNA methylation between individuals and ethnic groups. These differences arise from a combination of genetic and non-genetic influences and potential modifiers include nutritional cues, early life experience, and social and physical environments. Here we compare genome-wide DNA methylation in neonatal cord blood from African American (AA; N = 112 and European American (EA; N = 91 participants of the CANDLE Study (Conditions Affecting Neurocognitive Development and Learning in Early Childhood. Our goal is to determine if there are replicable ancestry-specific methylation patterns that may implicate risk factors for diseases that have differential prevalence between populations. To identify the most robust ancestry-specific CpG sites, we replicate our results in lymphoblastoid cell lines from Yoruba African and CEPH European panels of HapMap. We also evaluate the influence of maternal nutrition--specifically, plasma levels of vitamin D and folate during pregnancy--on methylation in newborns. We define stable ancestry-dependent methylation of genes that include tumor suppressors and cell cycle regulators (e.g., APC, BRCA1, MCC. Overall, there is lower global methylation in African ancestral groups. Plasma levels of 25-hydroxy vitamin D are also considerably lower among AA mothers and about 60% of AA and 40% of EA mothers have concentrations below 20 ng/ml. Using a weighted correlation analysis, we define a network of CpG sites that is jointly modulated by ancestry and maternal vitamin D. Our results show that differences in DNA methylation patterns are remarkably stable and maternal micronutrients can exert an influence on the child epigenome.

  13. DNA methylation in human fibroblasts following DNA damage and repair

    International Nuclear Information System (INIS)

    Kastan, M.B.


    Methylation of deoxycytidine (dCyd) incorporated by DNA excision repair synthesis in human diploid fibroblasts following damage with ultraviolet radiation (UV), N-methyl-N-nitrosourea, or N-acetoxy-2-acetylaminofluorene was studied utilizing [6- 3 H]dCyd to label repaired DNA specifically and high performance liquid chromatographic analysis to quantify the percentage of deoxycytidine converted to 5-methyldeoxycytidine (m 5 dCyd). In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication a level of 3.4% m 5 dCyd is reached in less than 2 hours, following UV-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of approx.2.0% m 5 dCyd in the repair patch. This undermethylation of repair patches occurs throughout the genome. In cells from cultures in logarithmic-phase growth, m 5 dCyd formation in UV-induced repair patches occurs faster and to a greater extent, reaching a level of approx.2.7% in 10-20 hours. Pre-existing hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites. The distribution within chromatin of m 5 dCyd in repair patches was also investigated. Over a wide range of extents of digestion by staphylococcal nuclease or deoxyribonuclease I, the level of hypomethylation in repaired DNA in nuclease sensitive and resistant regions of chromatin was constant relative to the genomic level of methylation in these regions. Similar conclusions were reached in experiments with isolated mononucleosomes

  14. An optimized algorithm for detecting and annotating regional differential methylation. (United States)

    Li, Sheng; Garrett-Bakelman, Francine E; Akalin, Altuna; Zumbo, Paul; Levine, Ross; To, Bik L; Lewis, Ian D; Brown, Anna L; D'Andrea, Richard J; Melnick, Ari; Mason, Christopher E


    DNA methylation profiling reveals important differentially methylated regions (DMRs) of the genome that are altered during development or that are perturbed by disease. To date, few programs exist for regional analysis of enriched or whole-genome bisulfate conversion sequencing data, even though such data are increasingly common. Here, we describe an open-source, optimized method for determining empirically based DMRs (eDMR) from high-throughput sequence data that is applicable to enriched whole-genome methylation profiling datasets, as well as other globally enriched epigenetic modification data. Here we show that our bimodal distribution model and weighted cost function for optimized regional methylation analysis provides accurate boundaries of regions harboring significant epigenetic modifications. Our algorithm takes the spatial distribution of CpGs into account for the enrichment assay, allowing for optimization of the definition of empirical regions for differential methylation. Combined with the dependent adjustment for regional p-value combination and DMR annotation, we provide a method that may be applied to a variety of datasets for rapid DMR analysis. Our method classifies both the directionality of DMRs and their genome-wide distribution, and we have observed that shows clinical relevance through correct stratification of two Acute Myeloid Leukemia (AML) tumor sub-types. Our weighted optimization algorithm eDMR for calling DMRs extends an established DMR R pipeline (methylKit) and provides a needed resource in epigenomics. Our method enables an accurate and scalable way of finding DMRs in high-throughput methylation sequencing experiments. eDMR is available for download at

  15. Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: Diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer

    NARCIS (Netherlands)

    Vogel, S. de; Wouters, K.A.D.; Gottschalk, R.W.H.; Schooten, F.J. van; Goeij, A.F.P.M. de; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den; Engeland, M. van; Weijenberg, M.P.


    Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). Among 609 CRC cases and 1,663 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852), we estimated CRC risk according to methyl donor intake across genotypes of folate

  16. Kinetics and mechanism of carbon-8 methylation of purine bases and nucleosides by methyl radical

    International Nuclear Information System (INIS)

    Zady, M.F.; Wong, J.L.


    The kinetics of homolytic methylation of the model purine compound caffeine at carbon-8 were determined as a function of several reaction variables. The methyl radical was generated from tert-butyl peracetate (BPA) either thermally (65 to 95 0 C) or photochemically (greater than 300 nm, 25 0 C). The thermal reaction k (25 0 C) was found to be 3.09 x 10 -8 s -1 from the linear log k (pseudo-first-order) vs. l/T plot. The light reactions using the 450- and 1200-W mercury lamps proceeded with k (25 0 C) 450- and 2160-fold greater, respectively. The derived activation energies are consistent with an S/sub E/Ar reaction. Increasing the concentration of caffeine from 0.25 M to 1.67 M in the presence of 3 molar equiv of BPA did not cause any side reaction. The pH-rate profile can be predicted by rate equations, which are derived on the basis of an electrophilic substitution occurring on the free base and conjugate acid of a heteroaromatic system. A competition study using tetrahydrofuran reveals the presence of a radical sigma complex IIIa and a charge transfer complex IIIb as intermediates for methylation under neutral and acidic conditions, respectively. Their rate-determining nature was indicated by the small positive kinetic isotope effect and the inverse solvent isotope effects: k/sub H 3 O + //k/sub D 3 O + / = 0.87 and k/sub H 2 O//k/sub D 2 O/ = 0.32. Thus, in acidic medium, a preequilibrium proton transfer to form the caffeine conjugate acid precedes the rate-controlling formation of IIIb. In neutral solution, the rate-determining step appears to be the protonation of the radical nitrogen in IIIa converting it to III. The acid-catalyzed caffeine-BPA reaction was shown to be general for other purines such as adenine, adenosine, guanine, guanosine, hypoxanthine, and inosine

  17. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; van Tilburg, Amanda Y.; Ruiters, Marcel H. J.; Rots, Marianne G.


    Like the nucleus, mitochondria contain their own DNA and recent reports provide accumulating evidence that also the mitochondrial DNA (mtDNA) is subjective to DNA methylation. This evidence includes the demonstration of mitochondria-localised DNA methyltransferases and demethylases, and the

  18. The Atmospheric Chemistry of Methyl Chavicol (Estragole) (United States)

    Bloss, W. J.; Alam, M. S.; Rickard, A. R.; Hamilton, J. F.; Pereira, K. F.; Camredon, M.; Munoz, A.; Vazquez, M.; Alacreu, P.; Rodenas, M.; Vera, T.


    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and secondary organic aerosols (SOA), with consequences for health, air quality, crop yields, atmospheric chemistry and radiative transfer. It is estimated that ca. 90 % of VOC emissions to the atmosphere originate from biogenic sources (BVOC); such emissions may increase under future climates. Recent field observations have identified Methyl Chavicol ("MC" hereafter, also known as Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA [Bouvier-Brown et al., 2009], and within an oil palm plantation in Malaysian Borneo, where it was found that MC could represent the highest single floral contribution of reactive carbon to the atmosphere [Misztal et al., 2010]. Palm oil cultivation, and hence emissions of MC, may be expected to increase with societal food and biofuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE (European Photoreactor) facility in Valencia, Spain (200 m3 outdoor smog chamber), investigating the degradation of MC by reaction with OH, O3 and NO3. An extensive range of measurement instrumentation was used to monitor precursor and product formation, including stable species (FTIR, PTR-MS, GC-FID and GC-MS), radical intermediates (LIF), inorganic components (NOx, O3, HONO (LOPAP and aerosol production (SMPS) and composition (PILS and filters; analysed offline by LC-MS and FTICR-MS). Experiments were conducted at a range of NOx:VOC ratios, and in the presence and absence of radical (OH) scavenger compounds. This chamber dataset is used to determine the rate constants for reaction of MC with OH, O3 and NO3, the ozonolysis radical yields, and identify the primary degradation products for each initiation route, alongside the aerosol mass yields. Aerosol composition measurements are analysed to identify markers for MC contributions to

  19. Physicochemical properties of the liquid mixture between stearate methyl / acid methyl sulfur stearate

    Directory of Open Access Journals (Sweden)

    Jesús Alfonso Torres Ortega


    Full Text Available The need of new alternatives for advance of the domestic oil-chemical industry, based local natural resources, make use of palm oil (Elaeis guineensis, as a source for obtaining alkyl esters, an excellent alternative development to be explored initially by the research groups at universities or institutions of scientifc innovation and development. The sulfonation process for the manufacture of surfactant were conducted in a falling flm reactor by the absorption and chemical reaction with SO3 gas on methyl esters derived from hydrogenated palm stearin. Identifying the properties of the reactants, products, and its mix is very important for the characterized by gas chromatography and infrared spectroscopy. It presents the properties of these inputs as a result of a series of experiments, which varies the mole ratio of the mixture of reactants and products, the process temperature and the percentage of sulfonate agent in the gas fow.

  20. Delivery type not associated with global methylation at birth

    Directory of Open Access Journals (Sweden)

    Virani Shama


    Full Text Available Abstract Background Birth by cesarean delivery (CD as opposed to vaginal delivery (VD is associated with altered health outcomes later in life, including respiratory disorders, allergies and risk of developing type I diabetes. Epigenetic gene regulation is a proposed mechanism by which early life exposures affect later health outcomes. Previously, type of delivery has been found to be associated with differences in global methylation levels, but the sample sizes have been small. We measured global methylation in a large birth cohort to identify whether type of delivery is associated with epigenetic changes. Methods DNA was isolated from cord blood collected from the University of Michigan Women’s & Children Hospital and bisulfite-converted. The Luminometric Methylation Assay (LUMA and LINE-1 methylation assay were run on all samples in duplicate. Results Global methylation data at CCGG sites throughout the genome, as measured by LUMA, were available from 392 births (52% male; 65% CD, and quantitative methylation levels at LINE-1 repetitive elements were available for 407 births (52% male; 64% CD. LUMA and LINE-1 methylation measurements were negatively correlated in this population (Spearman’s r = −0.13, p =0.01. LUMA measurements were significantly lower for total CD and planned CD, but not emergency CD when compared to VD (median VD = 74.8, median total CD = 74.4, p = 0.03; median planned CD = 74.2, p = 0.02; median emergency CD = 75.3, p = 0.39. However, this association did not persist when adjusting for maternal age, maternal smoking and infant gender. Furthermore, total CD deliveries, planned CD and emergency CD deliveries were not associated with LINE-1 measurements as compared to VD (median VD = 82.2, median total CD = 81.9, p = 0.19; median planned CD = 81.9, p = 0.19; median emergency CD = 82.1, p = 0.52. This lack of association held when adjusting for maternal age

  1. Methylation of Hg downstream from the Bonanza Hg mine, Oregon (United States)

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn


    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  2. DNA Methylation as a Biomarker for Body Fluid Identification

    Directory of Open Access Journals (Sweden)

    Rania Gomaa


    Full Text Available Currently, available identification techniques for forensic samples are either enzyme or protein based, which can be subjected to degradation, thus limiting its storage potentials. Epigenetic changes arising due to DNA methylation and histone acetylation can be used for body fluid identification. Markers DACT1, USP49, ZC3H12D, FGF7, cg23521140, cg17610929, chromosome 4 (25287119–25287254, chromosome 11 (72085678–72085798, 57171095–57171236, 1493401–1493538, and chromosome 19 (47395505–47395651 are currently being used for semen identification. Markers cg26107890, cg20691722, cg01774894 and cg14991487 are used to differentiate saliva and vaginal secretions from other body fluids. However, such markers show overlapping methylation pattern. This review article aimed to highlight the feasibility of using DNA methylation of certain genetic markers in body fluid identification and its implications for forensic investigations. The reviewed articles have employed molecular genetics techniques such as Bisulfite sequencing PCR (BSP, methylation specific PCR (MSP, Pyrosequencing, Combined Bisulfite Restriction Analysis (COBRA, Methylation-sensitive Single Nucleotide Primer Extension (SNuPE, and Multiplex SNaPshot Microarray. Bioinformatics software such as MATLAB and BiQ Analyzer has been used. Biological fluids have different methylation patterns and thus, this difference can be used to identify the nature of the biological fluid found at the crime scene. Using DNA methylation to identify the body fluids gives accurate results without consumption of the trace evidence and requires a minute amount of DNA for analysis. Recent studies have incorporated next-generation sequencing aiming to find out more reliable markers that can differentiate between different body fluids. Nonetheless, new DNA methylation markers are yet to be discovered to accurately differentiate between saliva and vaginal secretions with high confidence. Epigenetic changes are

  3. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome. (United States)

    Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle


    Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested

  4. Androgenic effect of honeybee drone milk in castrated rats: roles of methyl palmitate and methyl oleate. (United States)

    Seres, A B; Ducza, E; Báthori, M; Hunyadi, A; Béni, Z; Dékány, M; Hajagos-Tóth, J; Verli, J; Gáspár, Róbert


    Numerous honeybee (Apis mellifera) products have been used in traditional medicine to treat infertility and to increase vitality in both men and women. Drone milk (DM) is a relatively little-known honeybee product with a putative sexual hormone effect. The oestrogenic effect of a fraction of DM has recently been reported in rats. However, no information is available on the androgenic effects of DM. The purpose of the present study was to determine the androgen-like effect of DM in male rats and to identify effective compounds. A modified Hershberger assay was used to investigate the androgenic effect of crude DM, and the plasma level of testosterone was measured. The prostatic mRNA and protein expression of Spot14-like androgen-inducible protein (SLAP) were also examined with real-time PCR and Western blot techniques. GC-MS and NMR spectroscopic investigations were performed to identify the active components gained by bioactivity-guided fractionation. The crude DM increased the relative weights of the androgen-dependent organs and the plasma testosterone level in castrated rats and these actions were flutamide-sensitive. DM increased the tissue mRNA and protein level of SLAP, providing further evidence of its androgen-like character. After bioactivity-guided fractionation, two fatty acid esters, methyl palmitate (MP) and methyl oleate (MO), were identified as active compounds. MP alone showed an androgenic effect, whereas MO increased the weight of androgen-sensitive tissues and the plasma testosterone level only in combination. The experimental data of DM and its active compounds (MO and MP) show androgenic activity confirming the traditional usage of DM. DM or MP or/and MO treatments may project a natural mode for the therapy of male infertility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Mechanisms of Hg(II) uptake and methylation in methylating bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Francois M. M. [Princeton Univ., NJ (United States). Geosciences


    The goal of this project was to understand the critical factors which control the availability and transport of Hg(II) into cells, a first step in the production of the neurotoxin, methylmercury. Specifically, this research focused on understanding the mechanism of bacterial mercury uptake and how mercury speciation affects the specificity and kinetics of mercury transport. Our research has shown that Hg(II) uptake in three different iron and sulfate-reducing proteobacteria occurs by the following mechanism (1) : Hg(II) uptake is an active transport process requiring energy, (2) it is dependent upon the structure of the Hg binding ligand, and (3) it is mediated by a heavy metal transporter such as one which transports the essential metal, Zn(II). In order to determine whether this mechanism extends to more diverse phylogenetic groups, we have begun examining Hg(II) uptake and bioavailability in two representative Hg methylating strains within the Firmicutes. These organisms have remarkably different membrane structures distinct from the Proteobacteria. Our results show low uptake rates in these two species of Firmicutes relative to the previously characterized Proteobacteria. This may explain the low methylation rates and yields observed in these organisms. Most surprisingly, however, these organisms appear to take up Hg(II) passively, as the addition of a protonophore failed to reduce Hg(II) uptake in these organisms. This is quite different to what has been observed previously for the Proteobacteria and suggests a different mechanism for Hg(II) uptake in the Firmicutes. We are continuing to understand and describe Hg(II) uptake in these organisms. A manuscript is expected to be submitted on this research in June 2016.

  6. NGSmethDB 2017: enhanced methylomes and differential methylation (United States)

    Lebrón, Ricardo; Gómez-Martín, Cristina; Carpena, Pedro; Bernaola-Galván, Pedro; Barturen, Guillermo; Hackenberg, Michael; Oliver, José L.


    The 2017 update of NGSmethDB stores whole genome methylomes generated from short-read data sets obtained by bisulfite sequencing (WGBS) technology. To generate high-quality methylomes, stringent quality controls were integrated with third-part software, adding also a two-step mapping process to exploit the advantages of the new genome assembly models. The samples were all profiled under constant parameter settings, thus enabling comparative downstream analyses. Besides a significant increase in the number of samples, NGSmethDB now includes two additional data-types, which are a valuable resource for the discovery of methylation epigenetic biomarkers: (i) differentially methylated single-cytosines; and (ii) methylation segments (i.e. genome regions of homogeneous methylation). The NGSmethDB back-end is now based on MongoDB, a NoSQL hierarchical database using JSON-formatted documents and dynamic schemas, thus accelerating sample comparative analyses. Besides conventional database dumps, track hubs were implemented, which improved database access, visualization in genome browsers and comparative analyses to third-part annotations. In addition, the database can be also accessed through a RESTful API. Lastly, a Python client and a multiplatform virtual machine allow for program-driven access from user desktop. This way, private methylation data can be compared to NGSmethDB without the need to upload them to public servers. Database website: PMID:27794041

  7. The Fine LINE: Methylation Drawing the Cancer Landscape

    Directory of Open Access Journals (Sweden)

    Isabelle R. Miousse


    Full Text Available LINE-1 (L1 is the most abundant mammalian transposable element that comprises nearly 20% of the genome, and nearly half of the mammalian genome has stemmed from L1-mediated mobilization. Expression and retrotransposition of L1 are suppressed by complex mechanisms, where the key role belongs to DNA methylation. Alterations in L1 methylation may lead to aberrant expression of L1 and have been described in numerous diseases. Accumulating evidence clearly indicates that loss of global DNA methylation observed in cancer development and progression is tightly associated with hypomethylation of L1 elements. Significant progress achieved in the last several years suggests that such parameters as L1 methylation status can be potentially utilized as clinical biomarkers for determination of the disease stage and in predicting the disease-free survival in cancer patients. In this paper, we summarize the current knowledge on L1 methylation, with specific emphasis given to success and challenges on the way of introduction of L1 into clinical practice.

  8. DNA methylation modifications associated with chronic fatigue syndrome.

    Directory of Open Access Journals (Sweden)

    Wilfred C de Vega

    Full Text Available Chronic Fatigue Syndrome (CFS, also known as myalgic encephalomyelitis, is a complex multifactorial disease that is characterized by the persistent presence of fatigue and other particular symptoms for a minimum of 6 months. Symptoms fail to dissipate after sufficient rest and have major effects on the daily functioning of CFS sufferers. CFS is a multi-system disease with a heterogeneous patient population showing a wide variety of functional disabilities and its biological basis remains poorly understood. Stable alterations in gene function in the immune system have been reported in several studies of CFS. Epigenetic modifications have been implicated in long-term effects on gene function, however, to our knowledge, genome-wide epigenetic modifications associated with CFS have not been explored. We examined the DNA methylome in peripheral blood mononuclear cells isolated from CFS patients and healthy controls using the Illumina HumanMethylation450 BeadChip array, controlling for invariant probes and probes overlapping polymorphic sequences. Gene ontology (GO and network analysis of differentially methylated genes was performed to determine potential biological pathways showing changes in DNA methylation in CFS. We found an increased abundance of differentially methylated genes related to the immune response, cellular metabolism, and kinase activity. Genes associated with immune cell regulation, the largest coordinated enrichment of differentially methylated pathways, showed hypomethylation within promoters and other gene regulatory elements in CFS. These data are consistent with evidence of multisystem dysregulation in CFS and implicate the involvement of DNA modifications in CFS pathology.

  9. Disinfectant effect of Methylated Ethanol against Listeria species

    Directory of Open Access Journals (Sweden)

    Y Yakubu


    Full Text Available This study was carried out in order to determine the disinfectant effect of Methylated spirit® (95% methanol and 5% ethanol as a teat dip against Listeria species. Hand milking was employed to collect 576 (288 x 2 raw milk samples from different lactating cows within Sokoto metropolis (Nigeria. 288 samples were collected before disinfecting the udder teats with Methylated spirit®, while the other 288 were collected after disinfection with Methylated spirit®. The samples were analyzed using selective culture and isolation technique in which the 288 samples collected before disinfection, 114 (39.6% were positive for Listeria species. Among the positive samples 44 (38.6% were Listeria innocua, 16 (14.0% Listeria ivanovii, 36 (31.6% Listeria monocytogenes, 11 (9.6% Listeria welshimeri and 7 (6.1% Listeria seeligeri, while none of the 288 samples collected after disinfection was positive. The study has shown high prevalence of Listeria species in milk collected without washing/disinfecting the teats and has also established the sensitivity of Listeria species to methylated ethanol which can be used as dip for disinfecting udder teats before milking in order to prevent contamination with Listeria species and other methylated spirit-sensitive organisms. This study is essential to educate Fulani herdsmen and other milk handlers on the importance of disinfecting udder teats before milking. [Vet. World 2012; 5(2.000: 91-93

  10. Prediction of methyl-side Chain Dynamics in Proteins

    International Nuclear Information System (INIS)

    Ming Dengming; Brueschweiler, Rafael


    A simple analytical model is presented for the prediction of methyl-side chain dynamics in comparison with S 2 order parameters obtained by NMR relaxation spectroscopy. The model, which is an extension of the local contact model for backbone order parameter prediction, uses a static 3D protein structure as input. It expresses the methyl-group S 2 order parameters as a function of local contacts of the methyl carbon with respect to the neighboring atoms in combination with the number of consecutive mobile dihedral angles between the methyl group and the protein backbone. For six out of seven proteins the prediction results are good when compared with experimentally determined methyl-group S 2 values with an average correlation coefficient r-bar=0.65±0.14. For the unusually rigid cytochrome c 2 no significant correlation between prediction and experiment is found. The presented model provides independent support for the reliability of current side-chain relaxation methods along with their interpretation by the model-free formalism

  11. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics. (United States)

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser


    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  12. Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India. (United States)

    Basu, Arin; Mitra, Soma; Chung, Joyce; Guha Mazumder, D N; Ghosh, Nilima; Kalman, David; von Ehrenstein, Ondine S; Steinmaus, Craig; Liaw, Jane; Smith, Allan H


    Ingested inorganic arsenic (InAs) is methylated to monomethylated (MMA) and dimethylated metabolites (DMA). Methylation may have an important role in arsenic toxicity, because the monomethylated trivalent metabolite [MMA(III)] is highly toxic. We assessed the relationship of creatinine and nutrition--using dietary intake and blood concentrations of micronutrients--with arsenic metabolism, as reflected in the proportions of InAS, MMA, and DMA in urine, in the first study that incorporated both dietary and micronutrient data. We studied methylation patterns and nutritional factors in 405 persons who were selected from a cross-sectional survey of 7,638 people in an arsenic-exposed population in West Bengal, India. We assessed associations of urine creatinine and nutritional factors (19 dietary intake variables and 16 blood micronutrients) with arsenic metabolites in urine. Urinary creatinine had the strongest relationship with overall arsenic methylation to DMA. Those with the highest urinary creatinine concentrations had 7.2% more arsenic as DMA compared with those with low creatinine (p creatinine concentration was the strongest biological marker of arsenic methylation efficiency, and therefore should not be used to adjust for urine concentration in arsenic studies. The new finding that animal fat intake has a positive relationship with MMA% warrants further assessment in other studies. Increased MMA% was also associated, to a lesser extent, with low serum selenium and folate.

  13. De novo DNA methylation during monkey pre-implantation embryogenesis. (United States)

    Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao


    Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis.

  14. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer


    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals ( The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  15. Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation

    International Nuclear Information System (INIS)

    Taioli, Emanuela; Ragin, Camille; Wang, Xiao-hong; Chen, Jiangying; Langevin, Scott M; Brown, Ashley R; Gollin, Susanne M; Garte, Seymour; Sobol, Robert W


    Biomarkers that predict clinical response, tumor recurrence or patient survival are severely lacking for most cancers, particularly for oral and pharyngeal cancer. This study examines whether gene-promoter methylation of tumor DNA correlates with survival and recurrence rates in a population of patients with oral or pharyngeal cancer. The promoter methylation status of the DNA repair gene MGMT and the tumor suppressor genes CDKN2A and RASSF1 were evaluated by methylation-specific PCR in 88 primary oral and pharyngeal tumors and correlated with survival and tumor recurrence. Quantitative MGMT methylation was also assessed. 29.6% of the tumors presented with MGMT methylation, 11.5% with CDKN2A methylation and 12.1% with RASSF1 methylation. MGMT promoter methylation was significantly associated with poorer overall and disease-free survival. No differences in methylation status of MGMT and RASSF1 with HPV infection, smoking or drinking habits were observed. A significant inverse trend with the amount of MGMT methylation and overall and disease-free survival was observed (p trend = 0.002 and 0.001 respectively). These results implicate MGMT promoter methylation as a possible biomarker for oral and pharyngeal cancer prognosis. The critical role of MGMT in DNA repair suggests that defective DNA repair may be correlative in the observed association between MGMT promoter methylation and tumor recurrence. Follow-up studies should include further quantitative MSP-PCR measurement, global methylation profiling and detailed analysis of downstream DNA repair genes regulated by promoter methylation

  16. Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors

    International Nuclear Information System (INIS)

    Lombaerts, Marcel; Middeldorp, Janneke W.; Weide, Esther van der; Philippo, Katja; Wezel, Tom van; Smit, Vincent T.H.B.M.; Cornelisse, Cees J.; Cleton-Jansen, Anne-Marie


    Promoter hypermethylation is known to result in transcriptional downregulation of many genes including the CDH1 gene. In this study we set out to determine CDH1 promoter methylation in breast tumors with decreased or absent E-cadherin protein expression and without CDH1 gene mutations by methylation-specific PCR (MSP). Interestingly, some tumor samples with normal E-cadherin expression yielded a methylation-specific PCR product. We hypothesized that other cells than tumor cells contribute to these products. Since in normal breast tissue no CDH1 promoter methylation is detected, infiltrating leukocytes, often present in tumors, might account for these methylation-specific fragments. Indeed, a methylation-specific fragment is found in all twelve leukocyte samples tested. Furthermore, activated T-cells also yielded a methylation-specific fragment. Sequencing of these fragments reveals two distinct methylation profiles. Leukocytes have only partial methylation of some CpGs, while the tumor-associated methylation profile shows complete methylation of most CpGs. Therefore, to assess whether CDH1 methylation is tumor associated, sequencing of MSP products is a prerequisite. Here we show that out of six lobular tumors lacking E-cadherin protein expression, three have tumor-associated CDH1 promoter methylation while in three other tumors no methylation is detected

  17. DNA methylation analysis from saliva samples for epidemiological studies. (United States)

    Nishitani, Shota; Parets, Sasha E; Haas, Brian W; Smith, Alicia K


    Saliva is a non-invasive, easily accessible tissue, which is regularly collected in large epidemiological studies to examine genetic questions. Recently, it is becoming more common to use saliva to assess DNA methylation. However, DNA extracted from saliva is a mixture of both bacterial and human DNA derived from epithelial and immune cells in the mouth. Thus, there are unique challenges to using salivary DNA in methylation studies that can influence data quality. This study assesses: (1) quantification of human DNA after extraction; (2) delineation of human and bacterial DNA; (3) bisulfite conversion (BSC); (4) quantification of BSC DNA; (5) PCR amplification of BSC DNA from saliva and; (6) quantitation of DNA methylation with a targeted assay. The framework proposed will allow saliva samples to be more widely used in targeted epigenetic studies.

  18. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells


    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  19. Direct observation of vibrational energy dispersal via methyl torsions. (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G


    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  20. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.


    control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.

  1. Methods for measuring specific rates of mercury methylation and degradation and their use in determining factors controlling net rates of mercury methylation

    International Nuclear Information System (INIS)

    Ramlal, P.S.; Rudd, J.W.M.; Hecky, R.E.


    A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14 C end products of 14 CH 3 HgI demethylation. This method was used in conjuction with a 203 Hg 2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding

  2. Genetically contextual effects of smoking on genome wide DNA methylation. (United States)

    Dogan, Meeshanthini V; Beach, Steven R H; Philibert, Robert A


    Smoking is the leading cause of death in the United States. It exerts its effects by increasing susceptibility to a variety of complex disorders among those who smoke, and if pregnant, to their unborn children. In prior efforts to understand the epigenetic mechanisms through which this increased vulnerability is conveyed, a number of investigators have conducted genome wide methylation analyses. Unfortunately, secondary to methodological limitations, these studies were unable to examine methylation in gene regions with significant amounts of genetic variation. Using genome wide genetic and epigenetic data from the Framingham Heart Study, we re-examined the relationship of smoking status to genome wide methylation status. When only methylation status is considered, smoking was significantly associated with differential methylation in 310 genes that map to a variety of biological process and cellular differentiation pathways. However, when SNP effects on the magnitude of smoking associated methylation changes are also considered, cis and trans-interaction effects were noted at a total of 266 and 4353 genes with no marked enrichment for any biological pathways. Furthermore, the SNP variation participating in the significant interaction effects is enriched for loci previously associated with complex medical illnesses. The enlarged scope of the methylome shown to be affected by smoking may better explicate the mediational pathways linking smoking with a myriad of smoking related complex syndromes. Additionally, these results strongly suggest that combined epigenetic and genetic data analyses may be critical for a more complete understanding of the relationship between environmental variables, such as smoking, and pathophysiological outcomes. © 2017 Wiley Periodicals, Inc.

  3. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. (United States)

    Miller-Delaney, Suzanne F C; Das, Sudipto; Sano, Takanori; Jimenez-Mateos, Eva M; Bryan, Kenneth; Buckley, Patrick G; Stallings, Raymond L; Henshall, David C


    Prolonged seizures (status epilepticus) produce pathophysiological changes in the hippocampus that are associated with large-scale, wide-ranging changes in gene expression. Epileptic tolerance is an endogenous program of cell protection that can be activated in the brain by previous exposure to a non-harmful seizure episode before status epilepticus. A major transcriptional feature of tolerance is gene downregulation. Here, through methylation analysis of 34,143 discrete loci representing all annotated CpG islands and promoter regions in the mouse genome, we report the genome-wide DNA methylation changes in the hippocampus after status epilepticus and epileptic tolerance in adult mice. A total of 321 genes showed altered DNA methylation after status epilepticus alone or status epilepticus that followed seizure preconditioning, with >90% of the promoters of these genes undergoing hypomethylation. These profiles included genes not previously associated with epilepsy, such as the polycomb gene Phc2. Differential methylation events generally occurred throughout the genome without bias for a particular chromosomal region, with the exception of a small region of chromosome 4, which was significantly overrepresented with genes hypomethylated after status epilepticus. Surprisingly, only few genes displayed differential hypermethylation in epileptic tolerance. Nevertheless, gene ontology analysis emphasized the majority of differential methylation events between the groups occurred in genes associated with nuclear functions, such as DNA binding and transcriptional regulation. The present study reports select, genome-wide DNA methylation changes after status epilepticus and in epileptic tolerance, which may contribute to regulating the gene expression environment of the seizure-damaged hippocampus.

  4. Identification of DNA methylation changes associated with human gastric cancer

    Directory of Open Access Journals (Sweden)

    Park Jung-Hoon


    Full Text Available Abstract Background Epigenetic alteration of gene expression is a common event in human cancer. DNA methylation is a well-known epigenetic process, but verifying the exact nature of epigenetic changes associated with cancer remains difficult. Methods We profiled the methylome of human gastric cancer tissue at 50-bp resolution using a methylated DNA enrichment technique (methylated CpG island recovery assay in combination with a genome analyzer and a new normalization algorithm. Results We were able to gain a comprehensive view of promoters with various CpG densities, including CpG Islands (CGIs, transcript bodies, and various repeat classes. We found that gastric cancer was associated with hypermethylation of 5' CGIs and the 5'-end of coding exons as well as hypomethylation of repeat elements, such as short interspersed nuclear elements and the composite element SVA. Hypermethylation of 5' CGIs was significantly correlated with downregulation of associated genes, such as those in the HOX and histone gene families. We also discovered long-range epigenetic silencing (LRES regions in gastric cancer tissue and identified several hypermethylated genes (MDM2, DYRK2, and LYZ within these regions. The methylation status of CGIs and gene annotation elements in metastatic lymph nodes was intermediate between normal and cancerous tissue, indicating that methylation of specific genes is gradually increased in cancerous tissue. Conclusions Our findings will provide valuable data for future analysis of CpG methylation patterns, useful markers for the diagnosis of stomach cancer, as well as a new analysis method for clinical epigenomics investigations.

  5. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  6. Genomic imprinting of IGF2 in marsupials is methylation dependent

    Directory of Open Access Journals (Sweden)

    Imumorin Ikhide


    Full Text Available Abstract Background- Parent-specific methylation of specific CpG residues is critical to imprinting in eutherian mammals, but its importance to imprinting in marsupials and, thus, the evolutionary origins of the imprinting mechanism have been the subject of controversy. This has been particularly true for the imprinted Insulin-like Growth Factor II (IGF2, a key regulator of embryonic growth in vertebrates and a focal point of the selective forces leading to genomic imprinting. The presence of the essential imprinting effector, DNMT3L, in marsupial genomes and the demonstration of a differentially methylated region (DMR in the retrotransposon-derived imprinted gene, PEG10, in tammar wallaby argue for a role for methylation in imprinting, but several studies have found no evidence of parent-specific methylation at other imprinted loci in marsupials. Results- We performed the most extensive search to date for allele-specific patterns of CpG methylation within CpG isochores or CpG enriched segments across a 22 kilobase region surrounding the IGF2 gene in the South American opossum Monodelphis domestica. We identified a previously unknown 5'-untranslated exon for opossum IGF2, which is flanked by sequences defining a putative neonatal promoter, a DMR and an active Matrix Attachment Region (MAR. Demethylation of this DMR in opossum neonatal fibroblasts results in abherrant biallelic expression of IGF2. Conclusion- The demonstration of a DMR and an active MAR in the 5' flank of opossum IGF2 mirrors the regulatory features of the 5' flank of Igf2 in mice. However, demethylation induced activation of the maternal allele of IGF2 in opossum differs from the demethylation induced repression of the paternal Igf2 allele in mice. While it can now be concluded that parent-specific DNA methylation is an epigentic mark common to Marsupialia and Eutheria, the molecular mechanisms of transcriptional silencing at imprinted loci have clearly evolved along independent

  7. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.


    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  8. Multiple sporadic colorectal cancers display a unique methylation phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available Epigenetics are thought to play a major role in the carcinogenesis of multiple sporadic colorectal cancers (CRC. Previous studies have suggested concordant DNA hypermethylation between tumor pairs. However, only a few methylation markers have been analyzed. This study was aimed at describing the epigenetic signature of multiple CRC using a genome-scale DNA methylation profiling. We analyzed 12 patients with synchronous CRC and 29 age-, sex-, and tumor location-paired patients with solitary tumors from the EPICOLON II cohort. DNA methylation profiling was performed using the Illumina Infinium HM27 DNA methylation assay. The most significant results were validated by Methylight. Tumors samples were also analyzed for the CpG Island Methylator Phenotype (CIMP; KRAS and BRAF mutations and mismatch repair deficiency status. Functional annotation clustering was performed. We identified 102 CpG sites that showed significant DNA hypermethylation in multiple tumors with respect to the solitary counterparts (difference in β value ≥0.1. Methylight assays validated the results for 4 selected genes (p = 0.0002. Eight out of 12(66.6% multiple tumors were classified as CIMP-high, as compared to 5 out of 29(17.2% solitary tumors (p = 0.004. Interestingly, 76 out of the 102 (74.5% hypermethylated CpG sites found in multiple tumors were also seen in CIMP-high tumors. Functional analysis of hypermethylated genes found in multiple tumors showed enrichment of genes involved in different tumorigenic functions. In conclusion, multiple CRC are associated with a distinct methylation phenotype, with a close association between tumor multiplicity and CIMP-high. Our results may be important to unravel the underlying mechanism of tumor multiplicity.

  9. Selective Cytotoxic Activity of Se-Methyl-Seleno-L-Cysteine- and Se-Polysaccharide-Containing Extracts from Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes). (United States)

    Klimaszewska, Marzenna; Górska, Sandra; Dawidowski, Maciej; Podsadni, Piotr; Szczepanska, Agnieszka; Orzechowska, Emilia; Kurpios-Piec, Dagmara; Grosicka-Maciag, Emilia; Rahden-Staroń, Iwonna; Turło, Jadwiga


    Numerous formulations derived from the shiitake medicinal mushroom, Lentinus edodes, demonstrate anticancer activities. We hypothesized that isolates from selenium (Se)-enriched mycelia of L. edodes would possess stronger cancer-preventive properties than current preparations. The aim of this study was to investigate whether the presence of Se-methyl-seleno-L-cysteine in mycelial extracts of L. edodes affects their cytotoxic activity (makes them stronger) or whether they are as effective as Se-containing polysaccharides. Extracts were prepared from Se-containing mycelia under various conditions and assayed for cytotoxic activity in cancer (PC3 and HeLa) and normal (HMEC-1) cell lines. The chemical composition of the extracts was examined; specifically, the amounts of potentially cytotoxic Se compounds (methylselenocysteine, selenomethionine, and Se-containing polysaccharides) were measured. The relationship between extract composition and biological activity was characterized. Mycelial cultures were cultivated in a 10-L bioreactor in medium enriched with sodium selenite. Mycelial extracts were prepared either at 100°C or at 4°C in acidic solution. Total Se content was determined using the atomic absorption spectrometry method, and methylselenocysteine and selenomethionine contents were measured using reverse-phase high-performance liquid chromatography. Protein, carbohydrate, and polyphenolic contents were determined with spectrophotometric methods, and Se-containing polysaccharides were measured with the use of precipitation. Anticancer activity of mycelial extracts was examined using the MTT cell viability assay. Extracts containing Se-methyl-seleno-L-cysteine or Se-polysaccharides prepared at 4°C and 100°C, respectively, display moderate, time-dependent, specific cytotoxic activity in HeLa and PC3 cell lines. The effect in HeLa cells is more pronounced in the extract prepared at 4°C than at 100°C. The effect is almost equal for the PC3 cell line. However

  10. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination (United States)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe


    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  11. Sonochemical Degradation Kinetics of Methyl Violet in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Wei Lin Guo


    Full Text Available The sonochemical degradation in aqueous solution of methyl violet, chosen as a model of a basic dye, was studied. The ultrasonic degradation kinetics in water were found to be first-order and the degradation rate coefficient is 1.35×10-2 min-1 (R= 0.9934, n=8 at 20±1°C. The influence of the initial concentrations, reaction temperature and the pH of medium on the ultrasonic decomposition of methyl violet were also investigated.

  12. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M


    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...

  13. Reaction pathways of the dissociation of methylal: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H -M; Beaud, P; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Schemata for modelling combustion processes do not yet include reaction rates for oxygenated fuels like methylal (DMM) which is considered as an additive or replacement for diesel due to its low sooting propensity. Density functional theory (DFT) studies of the possible reaction pathways for different dissociation steps of methylal are presented. Cleavage of a hydrogen bond to the methoxy group or the central carbon atom were simulated at the BLYP/6-311++G{sup **} level of theory. The results are compared to the experiment when dissociating and/or ionising DMM with femtosecond pulses. (author) 1 fig., 1 tab., 1 ref.

  14. Identifying DNA Methylation Features that Underlie Prostate Cancer Disparities (United States)


    15.3%) NA 6 (6%) 6 (5.4%) Prostate - specific Antigen (PSA) ng/mL 76.7 (42.9) 78.2 (40.7) pTNM Stage T2 68 (67.3%) 48 (43.2%) T3 29 (28.7%) 58...Profiles Primary Aim #1: Determine if methylation profiles differ by race/ancestry Primary Aim #2: Identify ethnicity- specific markers of prostate ethnicity and to identify ethnicity- specific methylation features of prostate cancer that could contribute the racial disparities that exist in

  15. Optical Properies of Polystyrene Films Doped by Methyl Green Dye

    Directory of Open Access Journals (Sweden)

    Asrar A. Saeed


    Full Text Available Effects of methyl green (MG dye on the optical properties of polystyrene (PS have been studied. Pure polystyrene and MG doped PS films were prepared by using casting method. These films were characterized using UV/VIS spectrophotometer technique in order to estimate the type of electric transition which was found to be indirect transition. The value of the optical energy gap was decreased with increasing doping ratios of methyl green dye. Absorption coefficient, extinction coefficient, refractive index and energy gap have been also investigated; it was found that all the above parameters affects by doping dye.

  16. Stability testing of extemporaneous preparation of methyl salicylate ointment

    Directory of Open Access Journals (Sweden)

    H A Makeen


    Results: The shelf life (t90% of extemporaneously prepared methyl salicylate ointment was found to be 131 days at room temperature (25°C ± 5°C and 176 days in the refrigerator (2°C–8°C. Conclusion: The methyl salicylate present in extemporaneous ointment preparation is fairly stable at cool temperatures but shows faster degradation at higher temperature conditions. Therefore, it is recommended that an expiry date of 4 months can be safely mentioned when stored in cool.

  17. Methods for detection of methyl-CpG dinucleotides (United States)

    Dunn, John J.


    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  18. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin


    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  19. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    DEFF Research Database (Denmark)

    Klærke, Benedikte; Holm, Anne; Andersen, Lars Henrik


    using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results. It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles......Aims. We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods. The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3−C9H7NH+) have been recorded in the 215–338 nm spectral range...

  20. Synthesis of two S-(methyl-3H)-labelled enkephalins and S-(methyl-14C) substance P

    International Nuclear Information System (INIS)

    Naegren, K.; Laangstroem, B.; Franzen, H.M.; Ragnarsson, U.


    The synthesis of 3 H-labelled Met-enkephalin and Tyr-D-Ala-Gly-Phe-Met-NH 2 (DALA) and 14 C-labelled Substance P (SP) from previously described, fully protected intermediates is reported. The labelled peptides were prepared by methylation with ( 3 H)- or ( 14 C)methyl iodide of the sulphide anions formed on deprotection of the corresponding S-benzyl-homocysteine precursors with sodium in liquid ammonia. After purification by LC, the labelled peptides were obtained in radiochemical yields in the range of 9 to 24% with a radiochemical purity higher than 97%. The specific radioactivities of the 3 H- and 14 C- labelled products, corresponding to the labelled methyl iodides used, were 80 mCi/μmol and 60 μCi/μmol, respectively. (author)

  1. The Clinical Implications of Methylated p15 and p73 Genes in Adult Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)



    Aberrant methylation of promoter associated CpG islands is an epigenetic modification of DNA which is associated with gene silencing. It plays an important role in the leukemia pathogenesis. This phenomenon is frequently observed in acute lymphoblastic leukemia (ALL) and results in the functional inactivation of its associated genes. The aim of this study is to investigate the frequency and the prognostic impact of p15 and p73 genes methylation in adult acute lymphoblastic leukemia patients. Patients and Methods: Methylation-specific polymerase chain reaction (PCR) was used to analyze methylation of the p15 and p73 genes in 51 newly diagnosed adult ALL patients. Results: The methylation frequencies of p15 and p73 genes at diagnosis were 41.2% and 27.5% respectively, while concomitant methylation was detected in 14% of the patients. Concomitant methylation of p15 and p73 genes was associated with significant lower rate of CR compared to patients without methylation (57% versus 90%), p=0.008. Overall survival (OS) was not affected by p15 methylation, but was poorer with p73 methylation and the difference was near significant (p=0.059). For patients without meyhylation, the survival benefit was significant when compared to patients with p15, p73 or both genes methylation (p=0.047). The leukemia free survival was not affected by the methylation status of single gene p15 or p73, but tended to be worse in patients with methylated p15, p73 or both genes when compared to patients without methylation (p= 0.08). Conclusion: Aberrant p73 promoter methylation is a potential prognostic factor in adult ALL patients. P15 methylation is frequent in Egyptian adult ALL patients, its concomitant methylation with p73 is of poor prognostic significance. Identification of these molecular targets improve risk assessment and selection of appropriate therapy.

  2. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary. (United States)

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V


    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  3. Genetic and DNA methylation changes in cotton (Gossypium genotypes and tissues.

    Directory of Open Access Journals (Sweden)

    Kenji Osabe

    Full Text Available In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP assays including a methylation insensitive enzyme (BsiSI, and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC. DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  4. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues. (United States)

    Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W


    In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  5. Shotgun Bisulfite Sequencing of the Betula platyphylla Genome Reveals the Tree’s DNA Methylation Patterning

    Directory of Open Access Journals (Sweden)

    Chang Su


    Full Text Available DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees.

  6. Polymerization of Methyl Methacrylate Catalyzed by Co(II), Cu(II), and Zn(II) Complexes Bearing N-Methyl-N-((pyridin-2-yl)methyl) cyclohexanamine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seoung Hyun; Lee, Hyosun [Kyungpook National University, Daegu (Korea, Republic of); Shin, Jongwon [POSTECH, Pohang (Korea, Republic of); Nayab, Saira [Shaheed Benazir Bhutto University, Sheringal (Pakistan)


    We demonstrated the synthesis and characterization of Co(II), Cu(II), and Zn(II) complexes ligated to N-methyl-N-((pyridin-2-yl)methyl)cyclohexanamine. The complex [Co(nmpc)Cl{sub 2}] in the presence of MMAO showed the highest catalytic activity for MMA polymerization at 60 °C compared with its Zn(II) and Cu(II) analogs. The metal center showed an obvious influence on the catalytic activity, although this appeared to have no effect on the stereo-regularity of the resultant PMMA. X-ray diffraction analysis revealed that [Co(nmpc)Cl{sub 2}] and [Zn(nmpc)Cl{sub 2}] crystallized in the monoclinic system with space group P2{sub 1}/c and existed as monomeric and solvent-free complexes.

  7. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. (United States)

    Gahurova, Lenka; Tomizawa, Shin-Ichi; Smallwood, Sébastien A; Stewart-Morgan, Kathleen R; Saadeh, Heba; Kim, Jeesun; Andrews, Simon R; Chen, Taiping; Kelsey, Gavin


    Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci. Given the predominant role of transcription, we sought to investigate whether transcription timing is rate limiting for de novo methylation and determines the asynchrony of methylation events. Therefore, we generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that most sequence elements, including most classes of transposable elements, acquire methylation at similar rates overall. However, methylation of CpG islands (CGIs) is delayed compared with the genome average and there are reproducible differences amongst CGIs in onset of methylation. Although more highly transcribed genes acquire methylation earlier, the major transitions in the oocyte transcriptome occur well before the de novo methylation phase, indicating that transcription is generally not rate limiting in conferring permissiveness to DNA methylation. Instead, CGI methylation timing negatively correlates with enrichment for histone 3 lysine 4 (H3K4) methylation and dependence on the H3K4 demethylases KDM1A and KDM1B, implicating chromatin remodelling as a major determinant of methylation timing. We also identified differential enrichment of transcription factor binding motifs in CGIs acquiring methylation early or late in oocyte growth. By combining these parameters into multiple regression models, we were able to account for about a fifth of the variation in methylation timing of CGIs. Finally

  8. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma. (United States)

    Ogino, Shuji; Odze, Robert D; Kawasaki, Takako; Brahmandam, Mohan; Kirkner, Gregory J; Laird, Peter W; Loda, Massimo; Fuchs, Charles S


    Extensive gene promoter methylation in colorectal carcinoma has been termed the CpG island methylator phenotype (CIMP). Previous studies on CIMP used primarily methylation-specific polymerase chain reaction (PCR), which, unfortunately, may detect low levels of methylation that has little or no biological significance. Utilizing quantitative real-time PCR (MethyLight), we measured DNA methylation in a panel of 5 CIMP-specific gene promoters (CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 459 colorectal carcinomas obtained from 2 large prospective cohort studies. CIMP was defined as tumors that showed methylation in >or=4/5 promoters. CIMP was significantly associated with the presence of mucinous or signet ring cell morphology, marked Crohn's-like lymphoid reaction, tumor infiltrating lymphocytes, marked peritumoral lymphocytic reaction, tumor necrosis, tumor cell sheeting, and poor differentiation. All these features have previously been associated with microsatellite instability (MSI). Therefore, we divided the 459 colorectal carcinomas into 6 subtypes, namely, MSI-high (MSI-H)/CIMP, MSI-H/non-CIMP, MSI-low (MSI-L)/CIMP, MSI-L/non-CIMP, microsatellite stable/CIMP, and micro satellite sstable/non-CIMP. Compared with MSI-H/non-CIMP, MSI-H/CIMP was associated with marked tumor infiltrating lymphocytes, tumor necrosis, sheeting, and poor differentiation (all PCIMP, MSI-L/CIMP was associated with tumors that had CIMP. Both MSI and CIMP appear to play a role in the pathogenesis of specific morphologic patterns of colorectal carcinoma.

  9. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  10. Carcinogenicity of 1-methyl-3(p-chlorophenyl)-1-nitrosourea and its 1-methyl trideuterated derivative in rats. (United States)

    Schreiber, D; Martin, J; Mendel, J


    The carcinogenic activity of 1-methyl-3(p-chlorophenyl)-1-nitrosourea (Cl-MPNU) and its 1-methyl trideuterated analog (Cl-MPNU-d3) was compared by intragastric administration to hooded rats of equimolar doses of both compounds. A 100% frequency of forestomach tumors was observed in both groups. However, the mean latency period of the animals treated with Cl-MPNU-d3 was significantly longer (P less than 0.01). The results suggest the occurrence of a deuterium isotope effect in nitrosoureas but not as distinct as in nitrosamines.

  11. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G


    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  12. Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zheng Min; Fan Ding; Li Xiukun; Li Wenfei; Liu Qibin; Zhang Jianbin


    To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and β-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate

  13. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang


    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  14. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang


    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity. (letter)

  15. [Ursodeoxycholic acid induced apoptosis of human hepatoma cells HepG2 and SMMC-7721 bymitochondrial-mediated pathway]. (United States)

    Wu, Duan; Zhou, Jianyin; Yin, Zhenyu; Liu, Pingguo; Zhao, Yilin; Liu, Jianming; Wang, Xiaomin


    To explore the effects and underlying mechanisms of ursodeoxycholic acid on human hepatoma cells. HepG2 and SMMC-7721 HCC cell lines were respectively treated with ursodeoxycholic acid. And cell proliferation, apoptosis and the expression of Bax/Bcl-2 gene were detected by methyl thiazolyl tetrazolium (MTT), inverted microscopy, fluorescent microscopy, flow cytometry and Western blot. Ursodeoxycholic acid significantly inhibited the proliferation of human hepatoma cells in a concentration- and time-dependent manner. The half maximal inhibitory concentrations (IC50) of HepG2 and SMMC-7721 were 397.3 and 387.7 µg/ml respectively after a 48-hour treatment of 400 µg /ml ursodeoxycholic acid. And it also induced the apoptosis of HepG2 and SMMC-7721 cells, up-regulated Bax gene and down-regulated Bcl-2 gene. Ursodeoxycholic acid inhibits the proliferation of hepatoma cells and induce apoptosis by mitochondrial-mediated pathway.

  16. Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Min [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)], E-mail:; Fan Ding; Li Xiukun [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Li Wenfei; Liu Qibin [College of Materials Science and Engineering, Guizhou University, Guiyang 550003 (China); Zhang Jianbin [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)


    To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and {beta}-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate.

  17. Association of season of birth with DNA methylation and allergic disease

    NARCIS (Netherlands)

    Lockett, G. A.; Soto-Ramirez, N.; Ray, M. A.; Everson, T. M.; Xu, C-J.; Patil, V. K.; Terry, W.; Kaushal, A.; Rezwan, F. I.; Ewart, S. L.; Gehring, U.; Postma, D. S.; Koppelman, G. H.; Arshad, S. H.; Zhang, H.; Karmaus, W.; Holloway, J. W.

    Background Season of birth influences allergy risk; however, the biological mechanisms underlying this observation are unclear. The environment affects DNA methylation, with potentially long-lasting effects on gene expression and disease. This study examined whether DNA methylation could underlie

  18. Direct observation of supported W bis-methylidene from supported W-methyl/methylidyne species

    KAUST Repository

    Callens, Emmanuel; Abou-Hamad, Edy; Riache, Nassima; Basset, Jean-Marie


    Extensive solid-state NMR analyses unambiguously determine the formation of silica supported W bis-methylidene methyl species by reaction of the corresponding methyl carbyne with trimethylphosphine or a cyclic olefin. © 2014 the Partner Organisations.

  19. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.


    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  20. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions. (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej


    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  1. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar


    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.


    NARCIS (Netherlands)


    This paper reports enthalpies of micellization for a series of 1-methyl-4-alkylpyridinium halide surfactants at 303.2 K with different lengths and degrees of branching of the 4-alkyl chain and different sizes of counterions using two microcalorimeters (LKB 2277 and Omega Microcal). The standard

  3. Common DNA methylation alterations in multiple brain regions in autism. (United States)

    Ladd-Acosta, C; Hansen, K D; Briem, E; Fallin, M D; Kaufmann, W E; Feinberg, A P


    Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485,000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes.

  4. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? (United States)

    Fulneček, Jaroslav; Kovařík, Aleš


    DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation.

  5. Kinetics and mechanism of polymerization of methyl methacrylate ...

    Indian Academy of Sciences (India)


    Kinetics and mechanism of polymerization of methyl methacrylate initiated by stibonium ylide. A K SRIVASTAVA and AJEY KUMAR CHAURASIA. Department of Chemistry, H B Technological Institute, Kanpur 208 002, India e-mail: MS received 6 September 2002; revised 25 July 2003. Abstract.

  6. Bioconcentration of haloxyfop-methyl in bluegill (Lepomis macrochirus Rafinesque)

    International Nuclear Information System (INIS)

    Murphy, P.G.; Lutenske, N.E.


    Bluegill (Lepomis macrochirus Rafinesque) were exposed to a 14 C haloxyfop-methyl [methyl 2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate] concentration averaging 0.29 μg/L under flow-through conditions for 28 days. At the end of 28 days, the fish were transferred to clean water for a 4-day flow-through clearance period. Bluegill were found to rapidly absorb the ester from water which was then biotransformed at an extremely fast rate within the fish, such that essentially no haloxyfop-methyl was detected in the fish. The estimated bioconcentration factor for haloxyfop-methyl in whole fish was 14 C residue within whole fish was haloxyfop acid [2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoic acid] which accounted for an average of about 60% of the total radioactivity. The high rate of biotransformation of the parent compound within the fish demonstrates the importance of basing the bioconcentration factor upon the actual concentration of parent material within the organism rather than the total radioactive residue levels for bioconcentration studies with radiolabeled compounds

  7. Exposure to methyl bromide during greenhouse fumigation on Crete, Greece

    NARCIS (Netherlands)

    Vreede, J.A.F. de; Boeft, J. den; Hemmen, J.J. van


    In agricultural areas where greenhouses and dwellings are intermixed, the general population as well as the professional applicators may be exposed to pesticides. In a field study on Crete, exposure to methyl bromide during soil fumigation was assessed. Exposure of applicators (both contractors and

  8. Does DNA methylation pattern mark generative development in winter rape?

    Czech Academy of Sciences Publication Activity Database

    Filek, M.; Janiak, A.; Szarejko, I.; Grabczynska, J.; Macháčková, Ivana; Krekule, Jan


    Roč. 61, 5-6 (2006), s. 387-396 ISSN 0939-5075 R&D Projects: GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511 Keywords : DNA methylation * rape * vernalization Subject RIV: EF - Botanics Impact factor: 0.720, year: 2006

  9. Activity of pectin methyl esterase during blanching of peaches

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Rodis, P.S.; Hertog, M.L.A.T.M.; Proxenia, N.; Dijk, van C.


    The activity of pectin methyl esterase (PE) in peaches during blanching treatments was modelled and analyzed. It was postulated that the enzyme exists in two configurations, one bound and one soluble. The bound configuration can be converted into the soluble configuration. These two configurations

  10. Chemical Oxygen Demand (COD) Attenuation of Methyl Red in ...

    African Journals Online (AJOL)


    Department of Pure & Industrial Chemistry, Faculty of Science , University of ... ABSTRACT: Attenuation of methyl red dyestuff in water was assessed by ... alternative low cost materials (Ahmad et al., 2010, .... ml distilled water as blank was also taken through the .... quality control measures such as washing of glassware,.

  11. Synthesis of Methyl Diantilis, a Commercially Important Fragrance (United States)

    Miles, William H.; Connell, Katelyn B.


    Synthetic sequences in the undergraduate organic chemistry laboratory illustrate important synthetic strategies, reagents, or experimental techniques, oftentimes resulting in the synthesis of commercially important compounds. A fragrance with a 'spicy, carnation, sweet, vanilla', named after carnations (Dianthus caryophllus), Methyl Diantillis is…

  12. Synthesis of a tritiated herbicide with high activity: methyl thifensulfuron

    International Nuclear Information System (INIS)

    Bastide, J.; Ortega, F.


    In order to study the binding on acetolactate synthase, a tritiated herbicide sulfonylurea (thifensulfuron methyl) of high specific activity was synthesized. By use of C 3 H 3 I for esterification of an acid group, a rapid incorporation of tritium into this compound may be achieved. (Author)

  13. Colchicine and amiprophos-methyl (APM) in polyploidy induction in ...

    African Journals Online (AJOL)



    Oct 12, 2011 ... The objective was to assess the colchicine and amiprophos-methyl (APM) concentration and exposure period in the chromosome duplication of breed banana plants diploids. Banana stem tips were used from the following genotypes: breed diploids (1304-04 [Malaccensis x Madang (Musa acuminata spp.

  14. A new C-methylated flavonoid glycoside from Pinus densiflora. (United States)

    Jung, M J; Choi, J H; Chung, H Y; Jung, J H; Choi, J S


    A new C-methyl flavonol glycoside, 5,7,8,4'-tetrahydroxy-3-methoxy-6-methylflavone 8-O-beta-D-glucopyranoside (1), has been isolated from the needles of Pinus densiflora, together with kaempferol 3-O-beta-(6"-acetyl)-galactopyranoside.

  15. Synthesis and antinociceptive activity of methyl nicotinate | Erharuyi ...

    African Journals Online (AJOL)

    ... neutralization of the reaction mixture with 10% sodium bicarbonate. The product was purified by column chromatography and purity ascertained by thin layer chromatography. Structure of the desired product was confirmed by NMR and Mass spectroscopy. Methyl nicotinate was obtained as a white powder (m.p. 40-42oC, ...

  16. Parental epigenetic difference in DNA methylation-level may play ...

    African Journals Online (AJOL)

    Parental epigenetic difference in DNA methylation-level may play contrasting roles for different agronomic traits related to yield heterosis in maize. ... or hybrid vigor has been exploited to nearly the fullest extent, the molecular and genetic basis underlying this remarkable biological phenomenon remains largely an enigma.

  17. Defining Driver DNA Methylation Changes in Human Cancer

    Directory of Open Access Journals (Sweden)

    Gerd P. Pfeifer


    Full Text Available Human malignant tumors are characterized by pervasive changes in the patterns of DNA methylation. These changes include a globally hypomethylated tumor cell genome and the focal hypermethylation of numerous 5′-cytosine-phosphate-guanine-3′ (CpG islands, many of them associated with gene promoters. It has been challenging to link specific DNA methylation changes with tumorigenesis in a cause-and-effect relationship. Some evidence suggests that cancer-associated DNA hypomethylation may increase genomic instability. Promoter hypermethylation events can lead to silencing of genes functioning in pathways reflecting hallmarks of cancer, including DNA repair, cell cycle regulation, promotion of apoptosis or control of key tumor-relevant signaling networks. A convincing argument for a tumor-driving role of DNA methylation can be made when the same genes are also frequently mutated in cancer. Many of the most commonly hypermethylated genes encode developmental transcription factors, the methylation of which may lead to permanent gene silencing. Inactivation of such genes will deprive the cells in which the tumor may initiate from the option of undergoing or maintaining lineage differentiation and will lock them into a perpetuated stem cell-like state thus providing an additional window for cell transformation.

  18. Cluster analysis for DNA methylation profiles having a detection threshold

    Directory of Open Access Journals (Sweden)

    Siegmund Kimberly D


    Full Text Available Abstract Background DNA methylation, a molecular feature used to investigate tumor heterogeneity, can be measured on many genomic regions using the MethyLight technology. Due to the combination of the underlying biology of DNA methylation and the MethyLight technology, the measurements, while being generated on a continuous scale, have a large number of 0 values. This suggests that conventional clustering methodology may not perform well on this data. Results We compare performance of existing methodology (such as k-means with two novel methods that explicitly allow for the preponderance of values at 0. We also consider how the ability to successfully cluster such data depends upon the number of informative genes for which methylation is measured and the correlation structure of the methylation values for those genes. We show that when data is collected for a sufficient number of genes, our models do improve clustering performance compared to methods, such as k-means, that do not explicitly respect the supposed biological realities of the situation. Conclusion The performance of analysis methods depends upon how well the assumptions of those methods reflect the properties of the data being analyzed. Differing technologies will lead to data with differing properties, and should therefore be analyzed differently. Consequently, it is prudent to give thought to what the properties of the data are likely to be, and which analysis method might therefore be likely to best capture those properties.

  19. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation

    NARCIS (Netherlands)

    Dungen, van den Myrthe W.; Murk, Albertinka J.; Gils-Kok, van Dieuwertje; Steegenga, Wilma T.


    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what

  20. Methyl chloride and other chlorocarbons in polluted air during INDOEX

    NARCIS (Netherlands)

    Scheeren, HA; Lelieveld, J; de Gouw, JA; van der Veen, C; Fischer, H


    [1] Methyl chloride (CH3Cl) is the most abundant, natural, chlorine-containing gas in the atmosphere, with oceans and biomass burning as major identified sources. Estimates of global emissions suffer from large uncertainties, mostly for the tropics, partly due to a lack of measurements. We present