WorldWideScience

Sample records for methyl methacrylate mma

  1. Polymerization of methyl methacrylate by diphenylamido bis (methylcyclopentadienyl) ytterbium complex

    Institute of Scientific and Technical Information of China (English)

    WANG, Yao-Rong(王耀荣); SHEN, Qi(沈琪); MA, Jia-Le(马家乐); ZHAO, Qun(赵群)

    2000-01-01

    Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis(methyicyclopentadienyl) ytterbium complex (MeCp)2YbNPh2(THF). Tne reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the polyMMA with high molecular weights.The initiation mechanism was demonstrated by diphenylamidoterminated methyl methacrylate oligomer.

  2. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone) with Poly(methacrylic acid-co-methyl methacrylate) Gel

    OpenAIRE

    Liu, Guoqin; Yan, Guojin; Zou, Wenjun; Li, Zhengxin

    2011-01-01

    The contraction of poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone) (PVP) is quite different from that of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA) gel. When PVP was introduced into the P(MAA-co-MMA) network, its dynamic mechanic properties vary greatly between complexed and uncomplexed netwo...

  3. Molecular recognition at methyl methacrylate/n-butyl acrylate (MMA/nBA) monomer unit boundaries of phospholipids at p-MMA/nBA copolymer surfaces.

    Science.gov (United States)

    Yu, Min; Urban, Marek W; Sheng, Yinghong; Leszczynski, Jerzy

    2008-09-16

    Lipid structural features and their interactions with proteins provide a useful vehicle for further advances in membrane proteins research. To mimic one of potential lipid-protein interactions we synthesized poly(methyl methacrylate/ n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by phospholipid (PLs). Upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities are capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the monomer interface. By utilizing attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab initio calculations, studies were conducted that identified the origin of SLICs as well as their structural features formed on the surface of p-MMA/nBA copolymer films stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PL. Specific entities responsible for SLIC formation are selective noncovalent bonds of anionic phosphate and cationic quaternary ammonium segments of DLPC that interact with two neighboring carbonyl groups of nBA and MMA monomers of the p-MMA/nBA polymer backbone. To the best of our knowledge this is the first example of molecular recognition facilitated by coalescence of copolymer colloidal particles and the ability of PLs to form SLICs at the boundaries of the neighboring MMA and nBA monomer units of the p-MMA/nBA chain. The dominating noncovalent bonds responsible for the molecular recognition is a combination of H-bonding and electrostatic interactions.

  4. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  5. Radiation synthesis and characterization of zinc phthalocyanine composite based on 2-hydroxyethyl methacrylate/methyl methacrylate copolymer

    International Nuclear Information System (INIS)

    Abdel Ghaffar, A.M.; Youssef, Tamer E.; Mohamed, Hanan H.

    2016-01-01

    The synthesis and characterization of new 2-hydroxyethyl methacrylate-co-methyl methacrylate/zinc phthalocyanine composite Poly(HEMA/MMA/ZnPc) is described for the first time in this study. The aim of this research is to present possibility of radiation synthesis of the newly zinc phthalocyanine composites as potential candidates for wide range of applications. Gel (%) and swelling for Poly(hydroxyethyl methacrylate) Poly(HEMA) and the based Poly(hydroxyethyl methacrylate/methyl methacrylate) copolymer Poly(HEMA/MMA) with different composition 100/0, 95/5, 90/10 and 80/20 wt % were evaluated. It was found that Poly(HEMA/MMA) copolymer with composition 95/5 wt % characterized by its high swelling property at pH 7.4. The prepared composites I and II Poly(HEMA/MMA/ZnPc) with composition (95/5/1 wt%) and (95/5/1.5 wt%) respectively have been characterized by FTIR and TGA. The effect of gamma irradiation on the chemical properties of composite I was described. It is observed that the Zinc phthalocyanine with low concentration 1 wt % enhance chemical, thermal properties and stabilization against gamma radiation of the prepared composite I. - Highlights: • The preparation of Poly(HEMA/MMA/ZnPc) by radiation forming modified composites. • The low concentration of ZcPc (1 or 1.5 wt %) lead to form outstanding properties. • These composites are a potential candidate for wide range of applications.

  6. Radiation synthesis and characterization of zinc phthalocyanine composite based on 2-hydroxyethyl methacrylate/methyl methacrylate copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Ghaffar, A.M., E-mail: am_abdelghaffar@yahoo.com [Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Center for Radiation Research and Technology, Atomic Energy Authority P.O. Box 29, Nasr City, Cairo (Egypt); Youssef, Tamer E. [Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, Dokki, Cairo, 12622 (Egypt); Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, 21589 (Saudi Arabia); Mohamed, Hanan H. [Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo (Egypt)

    2016-08-01

    The synthesis and characterization of new 2-hydroxyethyl methacrylate-co-methyl methacrylate/zinc phthalocyanine composite Poly(HEMA/MMA/ZnPc) is described for the first time in this study. The aim of this research is to present possibility of radiation synthesis of the newly zinc phthalocyanine composites as potential candidates for wide range of applications. Gel (%) and swelling for Poly(hydroxyethyl methacrylate) Poly(HEMA) and the based Poly(hydroxyethyl methacrylate/methyl methacrylate) copolymer Poly(HEMA/MMA) with different composition 100/0, 95/5, 90/10 and 80/20 wt % were evaluated. It was found that Poly(HEMA/MMA) copolymer with composition 95/5 wt % characterized by its high swelling property at pH 7.4. The prepared composites I and II Poly(HEMA/MMA/ZnPc) with composition (95/5/1 wt%) and (95/5/1.5 wt%) respectively have been characterized by FTIR and TGA. The effect of gamma irradiation on the chemical properties of composite I was described. It is observed that the Zinc phthalocyanine with low concentration 1 wt % enhance chemical, thermal properties and stabilization against gamma radiation of the prepared composite I. - Highlights: • The preparation of Poly(HEMA/MMA/ZnPc) by radiation forming modified composites. • The low concentration of ZcPc (1 or 1.5 wt %) lead to form outstanding properties. • These composites are a potential candidate for wide range of applications.

  7. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone with Poly(methacrylic acid-co-methyl methacrylate Gel

    Directory of Open Access Journals (Sweden)

    Guoqin Liu

    2011-01-01

    Full Text Available The contraction of poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone (PVP is quite different from that of poly(acrylic acid (PAA or poly(methacrylic acid (PMAA gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA gel. When PVP was introduced into the P(MAA-co-MMA network, its dynamic mechanic properties vary greatly between complexed and uncomplexed networks. It had the following results: (1 the higher modulus ratio; (2 a slight contraction of gel.

  8. THE KINETICS OF METHYL METHACRYLATE POLYMERIZATION INITIATED BY THE VOLATILE PRODUCTS OF A METHYL METHACRYLATE PLASMA

    Institute of Scientific and Technical Information of China (English)

    杨梅林; 马於光; 郑莹光; 沈家骢

    1990-01-01

    It is found that the volatile products of methyl methacrylate plasma can very actively initiate the polymerization of the monomer to produce ultrahigh molecular weight polymers. This polymerization of MMA occurs by a livlng free radical mechanism with instantaneous initiation and monomer transfer.

  9. Graft Copolymerization Of Methyl Methacrylate Onto Agave Cellulose

    International Nuclear Information System (INIS)

    Noor Afizah Rosli; Ishak Ahmad; Ibrahim Abdullah; Farah Hannan Anuar

    2014-01-01

    The grafting polymerization of methyl methacrylate (MMA) and Agave cellulose was prepared and the grafting reaction conditions were optimized by varying the reaction time and temperature, and ratio of monomer to cellulose. The resulting graft copolymers were characterized by Fourier transform infrared, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy (SEM). The experimental results showed that the optimal conditions were at a temperature of 45 degree Celsius for 90 min with ratio monomer to cellulose at 1:1 (g/ g). An additional peak at 1738 cm -1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted cellulose, respectively. Grafting of MMA onto cellulose enhanced its thermal stability and SEM observation further furnished evidence of grafting MMA onto Agave cellulose with increasing cellulose diameter and surface roughness. (author)

  10. High temperature initiator-free RAFT polymerization of methyl methacrylate in a microwave reactor

    NARCIS (Netherlands)

    Paulus, R.M.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    The reversible additionfragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) was investigated under microwave irradiation. At first, a comparison was made between microwave and thermal heating for the RAFT polymerization of MMA with azobis(isobutyronitrile) (AIBN) as

  11. Modeling of a Buss-Kneader as a Polymerization Reactor for Acrylates. Part II: Methyl Methacrylate Based Resins

    NARCIS (Netherlands)

    Troelstra, E.J; van Dierendonck, L.L.; Janssen, L.P.B.M.; Renken, A.

    2002-01-01

    The Buss-Kneader has proven to be a suitable reactor for the polymerization of acrylates. In this second part, the polymerization of methyl methacrylate and the ter-polymerization of methyl methacrylate (MMA), hydroxyethyl methacrylate and n-butylmethacrylate is carried out in a pilot Buss-Kneader.

  12. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate/poly(N-vinyl-2-pyrrolidone/multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Liu Guoqin

    2014-01-01

    Full Text Available Poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA was prepared in the presence of poly(N-vinyl-2-pyrrolidone (PVP and multiwalled carbon nanotubes (MWNTs via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased.

  13. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate)/poly(N-vinyl-2-pyrrolidone)/multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Guoqin, Liu; Wei, Miao [College of Material Science and Engineering, Henan University of Technology (China); Lin-Jian, Shangguan, E-mail: mikepolymer@126.com [School of Mechanical Engineering, North China University of Water Conservancy and Electric Power (China)

    2014-06-01

    Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) was prepared in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and multi-walled carbon nanotubes (MWNTs) via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA)/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM) revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA)/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased. (author)

  14. Olefin copolymerization via controlled radical polymerization : copolymerization of methyl methacrylate and 1-octene

    NARCIS (Netherlands)

    Venkatesh, R.; Klumperman, B.

    2004-01-01

    The atom transfer radical (co)polymerization (ATRP) of methyl methacrylate (MMA) with 1-octene was investigated. Well controlled homopolymer of MMA was obtained with 2,2,2-trichoroethanol (TCE) and p-toluenesulfonyl chloride (pTsCl), although, uncontrolled copolymerization occurred when pTsCl was

  15. Controlled Grafting of Poly(methyl methacrylate) Brushes on Poly(vinylidene fluoride) Powders by Surface-initiated Atom Transfer Radical Polymerization

    Institute of Scientific and Technical Information of China (English)

    TANG Zhaoqi; LI Wei; LIU Lanqin; HUANG Lei; ZHOU Jin; YU Haiyin

    2009-01-01

    Controlled grafting of well-defined polymer brushes of methyl methacrylate (MMA) on the poly(vinylidene fluoride) (PVDF) powders was carded out by the surface-initiated atom transfer radical polymerization (ATRP). The ATRP initiator was anchored on the PVDF surface by alkaline treatment, followed by UV-induced bromination; then methyl methacrylate (MMA) was grafted onto the brominated PVDF by the ATRP technique. The chemical composition changes of PVDF were characterized by Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS results clearly indicated the successful graft of poly(methyl methacrylate) onto the PVDF surface.

  16. Kinetics and mechanism of polymerization of methyl methacrylate ...

    Indian Academy of Sciences (India)

    Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an initiator in dioxane at 65°C ± 0·1°C. The system follows non-ideal radical kinetics ( ∝ [M]1.4 [I]0.44) due to primary radical termination as well as degradative ...

  17. Polymerization of Methyl Methacrylate with Samarocene Complex Supported on Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Samarocene complex was supported on a series of mesoporous silica with various pore sizes. Polymerization of methyl methacrylate (MMA) by these catalysts provide highly syndiotactic PMMAs with higher molecular weights compared with those obtained by solution polymerization with homogeneous catalyst system.

  18. STUDIES ON THE INITIATION MECHANISM OF ORGANIC PEROXIDE AND N-METHACRYLOYLOXYETHYL-N-METHYL ANILINE IN METHYL METHACRYLATE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Dajie; GUO Xinqiu; FENG Xinde

    1990-01-01

    The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyi aniline (MEMA) binary system has been studied. The kinetics of polymerization of MMA and the ESR spectra of organic peroxide/MEMA system were determined. Based on the ESR study and the end-group analysis by UV spectra of the polymer formed, the initiation mechanism is proposed.

  19. Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles.

    Science.gov (United States)

    Sato, Katsuhiko; Nakajima, Tatsuya; Anzai, Jun-ichi

    2012-12-01

    Poly(methyl methacrylate) (PMMA) microcapsules were prepared by the in situ polymerization of methyl methacrylate (MMA) and N,N'-methylenebisacrylamide on the surface of calcium carbonate (CaCO(3)) particles, followed by the dissolution of the CaCO(3) core in ethylenediaminetetraacetic acid solution. The microcapsules were characterized using fluorescence microscopy, atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. The average sizes of the CaCO(3) particles and PMMA capsules were 3.8±0.6 and 4.0±0.6 μm, respectively. A copolymer consisting of MMA and rhodamine B-bearing MMA was also used to prepare microcapsules for fluorescent microscopy observations. Fluorescein isothiocyanate-labeled bovine serum albumin was enclosed in the PMMA microcapsules and its release properties were studied. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    International Nuclear Information System (INIS)

    Pietrucha, K.; Pekala, W.; Kroh, J.

    1981-01-01

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by irradiation with 60 Co γ-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The mechanism of some of the processes occurring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed. (author)

  1. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    Energy Technology Data Exchange (ETDEWEB)

    Pietrucha, K.; Pekala, W.; Kroh, J. (Lodz Univ. (Poland))

    1981-01-01

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by irradiation with /sup 60/Co ..gamma..-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The mechanism of some of the processes occurring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  2. Preparation and performances of porous polyacrylonitrile-methyl methacrylate membrane for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.Y.; Wang, G.Z.; Tan, C.L.; Rao, M.M.; Liao, Y.H. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li, W.S.; Li, G.L. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2008-10-01

    A copolymer, polyacrylonitrile-methyl methacrylate P(AN-MMA), was synthesized by suspension polymerization with acrylonitrile (AN) and methyl methacrylate (MMA) as monomers. With this copolymer, polymer membrane was prepared by phase inversion. The performances of the polymer were characterized by FTIR, SEM, DSC/TG, EIS and LSV. The copolymer contains CH{sub 2}, CN and CO bonds, and shows its thermal stability up to 300 C. The polymer membrane has a porous structure with an average pore diameter of 0.5 {mu}m. The conductivity of the polymer electrolyte is 1.25 mS cm{sup -1} at room temperature, and it is electrochemically stable up to 5 V (vs. Li). Using the polymer electrolyte as the gel polymer electrolyte (GPE), the cell Li/GPE/LiCoO{sub 2} shows its cyclic stability as good as the cell with liquid electrolyte. (author)

  3. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO3) surface modified with (-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  4. Redox Polymerization of Methyl Methacrylate in the Fluorous Triphasic System

    Institute of Scientific and Technical Information of China (English)

    Shi Zhen CHEN; Yun Peng BAI; Zhao Long LI

    2006-01-01

    Methyl methacrylate (MMA) was polymerized by using of benzoyl peroxide (BPO) and N, N-dimethylaniline (DMA) as an redox initiator in fluorous triphasic system at room temperature.The polymerization was occurred in both initiator layer and monomer layer in a U-tube. It was found that PMMA obtained from the initiator layer with relatively narrow polydispersity.(PDI =1.38)

  5. Iron halide mediated atom transfer radical polymerization of methyl methacrylate with N-Alkyl-2-pyridylmethanimine as the ligand

    NARCIS (Netherlands)

    Zhang, H.; Schubert, U.S.

    2004-01-01

    The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N-(n-hexyl)-2-pyridylmethanimine (NHPMI) is described. The ethyl 2-bromoisobutyrate (EBIB)-initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in

  6. Controlled/living photopolymerization of methyl methacrylate in miniemulsion mediated by HTEMPO

    Institute of Scientific and Technical Information of China (English)

    Xiaoxuan LIU; Yanni JING; Yingkun BAI

    2008-01-01

    Controlled/living photopolymerization of methyl methacrylate (MMA) in miniemulsion mediated by 4-hydroxy-2,2,6,6-tetramethyl-piperidinyloxy (HTEMPO) was carried out at ambient temperatures. MMA miniemulsion was prepared by using an anionic surfactant with cetylalcohol as a co-stabilizer. The photopolymerization led to stable lattices and they were obtained with no coagulation during synthesis and no destabilization over time. It was found that the obtained MMA homopolymers exhibited relatively narrow mole-cular weight distribution (PDI = 1.27- 1.36) which was characterized by GPC. The plots of number-average molecular weight in (Mn) vs. Conversion and ln([MO]/[M]) vs. Time both were linear indicating that the reaction was a controlled/living free radical polymerization.

  7. Preparation and Characterization of InP/Poly(methyl methacrylate) Nanocomposite Films.

    Science.gov (United States)

    Kwon, Younghoon; Kim, Jongsung

    2017-04-01

    Quantum dots (QDs) are nanocrystalline semiconductors with many unusual optical properties. They exhibit very high fluorescence intensities and possess exceptional stability against photo-bleaching. In this study, we report the preparation of InP QDs-poly(methyl methacrylate) (PMMA) hybrids by fabricating QDs via a thermal decomposition reaction, followed by radical polymerization. The InP QDs were synthesized using indium(III) chloride and tris(dimethylamino)phosphine. Flexible composite films were obtained by radical polymerization using methyl methacrylate (MMA) as the monomer and 2,2′-azobis(2-methylpropionitrile) (AIBN) as a radical initiator. The PL intensity of the QDs was lowered upon composite formation with PMMA. However, the composites exhibited higher thermal stability than pure PMMA.

  8. Electrospinning of Poly (MMA-CO-Maa) Copolymers And Their Layered Silicate Nanocomposites For Improved Thermal Properties

    Science.gov (United States)

    2004-12-01

    7518. Ho, B.C., Lee, Y.D. and Chin, W.K., 1992: Thermal Degradation of Polymethacrylic Acid , J. Polym. Sci., Polymer Chemistry, 30, 2389-2397. Lee...AMSRD-ARL-WM-MD Aberdeen Proving Ground, MD 21005-5069 ABSTRACT Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA...from solution of poly (MMA-co-MAA) copolymer (50/50 weight ratio of MMA and methacrylic acid , MAA) in dimethylformamide (DMF) and the corresponding

  9. Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Dengsong; Shi Liyi; Li Li; Zhang Jianping

    2008-01-01

    Novel ternary nanocomposite trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania optical films were successfully prepared through a nonaqueous in situ sol-gel method. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). PMMA/ZrO 2 -TiO 2 incorporating networks formed from alcoholysis of poly(MMA-co-MSMA), zirconium n-butoxide and titanium isoproproxide. The structure, morphology and property of the obtained nanocomposite films were investigated by X-ray photoelectron spectra, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, scanning probe microscopy, thermogravimetric analyses, UV-vis spectrum and spectro-ellipsometer. The nanoparticle size, roughness, thermal stability, UV-shielding property, and refractive index of nanocomposite films increase with the increasing of inorganic contents. The formation mechanism and reason of such improvements were examined and interpreted in a theoretical model. The nanocomposite films possess interesting properties in thermal stability and optical response due to the uniform incorporating networks between organic polymer chains and inorganic clusters

  10. Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuan [Research Center of Nano Science and Technology, Department of Chemistry, Shanghai University, Shanghai 200444 (China); Zhang Dengsong [Research Center of Nano Science and Technology, Department of Chemistry, Shanghai University, Shanghai 200444 (China)], E-mail: dszhang@shu.edu.cn; Shi Liyi [Research Center of Nano Science and Technology, Department of Chemistry, Shanghai University, Shanghai 200444 (China)], E-mail: sly0726@163.com; Li Li; Zhang Jianping [Research Center of Nano Science and Technology, Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2008-08-15

    Novel ternary nanocomposite trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania optical films were successfully prepared through a nonaqueous in situ sol-gel method. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). PMMA/ZrO{sub 2}-TiO{sub 2} incorporating networks formed from alcoholysis of poly(MMA-co-MSMA), zirconium n-butoxide and titanium isoproproxide. The structure, morphology and property of the obtained nanocomposite films were investigated by X-ray photoelectron spectra, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, scanning probe microscopy, thermogravimetric analyses, UV-vis spectrum and spectro-ellipsometer. The nanoparticle size, roughness, thermal stability, UV-shielding property, and refractive index of nanocomposite films increase with the increasing of inorganic contents. The formation mechanism and reason of such improvements were examined and interpreted in a theoretical model. The nanocomposite films possess interesting properties in thermal stability and optical response due to the uniform incorporating networks between organic polymer chains and inorganic clusters.

  11. The Evaluation of Relationship between Spirometric Disorders and Methyl methacrylate in Dental Laboratories Personnel

    OpenAIRE

    E. Nadi; M.J. Asari; A. Zamanian

    2010-01-01

    Introduction & Objective: Methyl methacrylate (MMA), as a monomer of acrylic resin that has a wide variety of usages in denture fabrication, is considered as an air pollution indicator in the laboratories. Occupational exposure to these compound vapors can cause respiratory hypersensitivity, occupational asthma, eye and skin irritation and Allergic Contact Dermatitis (ACD). Therefore control of MMA exposure may promote the personnel’s health. The aim of this study was to determine the relati...

  12. Inducing β Phase Crystallinity in Block Copolymers of Vinylidene Fluoride with Methyl Methacrylate or Styrene

    Directory of Open Access Journals (Sweden)

    Nahal Golzari

    2017-07-01

    Full Text Available Block copolymers of poly(vinylidene fluoride (PVDF with either styrene or methyl methacrylate (MMA were synthesized and analyzed with respect to the type of the crystalline phase occurring. PVDF with iodine end groups (PVDF-I was prepared by iodine transfer polymerization either in solution with supercritical CO2 or in emulsion. To activate all iodine end groups Mn2(CO10 is employed. Upon UV irradiation Mn(CO5 radicals are obtained, which abstract iodine from PVDF-I generating PVDF radicals. Subsequent polymerization with styrene or methyl methacrylate (MMA yields block copolymers. Size exclusion chromatography and NMR results prove that the entire PVDF-I is converted. XRD, FT-IR, and differential scanning calorimetry (DSC analyses allow for the identification of crystal phase transformation. It is clearly shown that the original α crystalline phase of PVDF-I is changed to the β crystalline phase in case of the block copolymers. For ratios of the VDF block length to the MMA block length ranging from 1.4 to 5 only β phase material was detected.

  13. Methyl methacrylate and respiratory sensitization: A Critical review

    Science.gov (United States)

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  14. Continuous ARGET ATPR of methyl methacrylate and butyl acrylate in a stirred tank reactor

    NARCIS (Netherlands)

    Chan, N.; Meuldijk, J.; Cunningham, M.F.; Hutchinson, R.A.

    2013-01-01

    ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization) of butyl acrylate (BA) and methyl methacrylate (MMA) was successfully adapted from a batch process to a continuous stirred tank reactor (CSTR) with 50 ppm copper. A series of batch polymerizations were first

  15. DYE-SENSITIZED PHOTOPOLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COUMARIN DYE/IODONIUM SALT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Fang Gao; Yong-yuan Yang

    1999-01-01

    The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.

  16. Preparation of PLLA/PMMA and PLLA/PS binary blend nanoparticles by incorporation of PLLA in methyl methacrylate or styrene miniemulsion homopolymerization

    Directory of Open Access Journals (Sweden)

    Luana Becker Peres

    2015-02-01

    Full Text Available Miniemulsion homopolymerization reactions of methyl methacrylate (MMA and styrene (STY using poly(L-lactide as co-stabilizer were carried out in order to prepare poly(L-lactide/poly(methyl methacrylate (PLLA/PMMA and poly(L-lactide/polystyrene (PLLA/PS binary blend nanoparticles. The effect of PLLA concentration on methyl methacrylate (MMA and styrene (STY homopolymerization reactions was evaluated. It was found that the incorporation of PLLA resulted on acceleration of MMA and STY homopolymerization reactions and led to a molar mass increase of up to 70% for PS in PLLA/PS blend nanoparticles in relation to those prepared without PLLA, which can be attributed to an increase of reaction loci viscosity (gel effect. PLLA also acted as an efficient co-stabilizer, since it was able to retard diffusional degradation of droplets when no other kind of co-stabilizer was used. Two isolated Tgs were found in both PLLA/PMMA and PLLA/PS blend nanoparticles which can be associated to blend immiscibility. TEM images corroborate these results, suggesting that immiscible PLLA/PMMA and PLLA/PS blend nanoparticles could be formed with two segregated phases and core-shell morphology.

  17. Synthesis and characterization of poly(styrene-co-methyl methacrylate)

    International Nuclear Information System (INIS)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F.

    2011-01-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN 1 H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  18. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    Science.gov (United States)

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  19. Investigation of magnetic nanoparticles in acrylonitrile-methyl methacrylate-divinylbenzene mesoporous template

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, D. E-mail: denilson@quimica.ufg.br; Lima, E.C.D.; Barbosa, D.P.; Silva, V.J.; Silva, O.; Azevedo, R.B.; Silva, L.P.; Lemos, A.P.C.; Morais, P.C

    2002-11-01

    Preparation and characterization of nanosized magnetic particles using alkaline oxidation of ferrous ion retained in acrylonitrile-methyl methacrylate-divinylbenzene (AN-MMA-DVB) spherical micron-sized polymer template is described. Atomic absorption, transmission electron microscopy and magnetic resonance were used to investigate chemically cycled nanoparticle-based composites. The resonance field shifts towards higher values as the nanoparticle concentration reduces in the polymeric template, following two very distinct regimes.

  20. PHOTOPOLYMERIZATION OF MMA INITIATED BY CYANINE DYE AND HEXAARYLBIIMIDAZOLE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The photoinitiating system composed of 1-ethyl-3'-methyl thiacyanine bromide (C-I), 2-chlorohexaarylbiimidazole (o-Cl-HABI) and 3-mercapto-4-methyl-4H-1, 2, 4-triazole (MTA), which act as sensitizer, initiator and hydrogen-donor respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The kinetic study was carried out in trichloromathane solution at 30℃ by using dilatometry. The relation between the polymerization rate and the concentrations of C-I, o-Cl-HABI, MTA and MMA was studied.

  1. ESR study of the radiolysis of cellobiose, cellulose-containing materials, and their mixtures with methyl methacrylate

    International Nuclear Information System (INIS)

    Kozlova, E.Y.; Shostenko, A.G.; Ermolaev, S.V.

    1995-01-01

    The ESR spectra of γ-irradiated cellobiose, paper waste, and cellulose extracted from paper waste and waste pulp sludge were analyzed. The kinetics of formation and decay of cellobiose radicals were investigated, and the radiation-chemical yields of the radicals formed in cellulose-containing materials were calculated. The ESR spectra of cellobiose irradiated in the presence of methyl methacrylate (MMA) were obtained. A probable mechanism of MMA grafting onto cellulose-containing matrices is considered

  2. An effective approach to synthesis of poly(methyl methacrylate)/silica nanocomposites

    International Nuclear Information System (INIS)

    Ding Xuefeng; Wang Zichen; Han Dongxue; Zhang Yuanjian; Shen Yanfei; Wang Zhijuan; Niu Li

    2006-01-01

    A novel synthetic route for nearly monodispersed poly(methyl methacrylate)/SiO 2 composite particles (PMSCP) is reported. Silica nanoparticles modified with oleic acid were used as 'seeds'. Methyl methacrylate (MMA) monomer was copolymerized with oleic acid via in situ emulsion polymerization, in the presence of an initiator; it resulted finally in the formation of composites with core-shell morphology. The composite particles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The number of silica particles inside the composite particles increases with an increase in the silica concentration. The effect of grafted silica concentration on the morphology of PMSCP is also reported in detail. It was found by thermogravimetric analysis that PMSCP show a potential application for fire retardance

  3. Surface modification of hydroxyapatite with poly(methyl methacrylate) via surface-initiated ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan; Zhang Xi; Yan Jinliang; Xiao Yan [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Lang Meidong, E-mail: mdlang@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2011-05-01

    This article describes the fabrication of hydroxyapatite (HAP) nanocomposites grafted with poly(methyl methacrylate) (PMMA). Surface-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was carried out from hydroxyapatite particles derivatized with ATRP initiators. The structure and properties of the nanocomposites were investigated by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), differential scanning calorimeter (DSC) measurements, and contact angle analyses. TGA was used to estimate the grafting density of ATRP initiators (0.49 initiator/nm{sup 2}) and the amount of grafted PMMA on the HAP surface. The contact angle analyses indicated that grafting PMMA onto the HAP surface dramatically increased the hydrophobicity of the surface. Moreover, the HAP nanocomposites showed excellent dispersibility in both aqueous solution and organic solvent.

  4. Surface modification of hydroxyapatite with poly(methyl methacrylate) via surface-initiated ATRP

    International Nuclear Information System (INIS)

    Wang Yan; Zhang Xi; Yan Jinliang; Xiao Yan; Lang Meidong

    2011-01-01

    This article describes the fabrication of hydroxyapatite (HAP) nanocomposites grafted with poly(methyl methacrylate) (PMMA). Surface-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was carried out from hydroxyapatite particles derivatized with ATRP initiators. The structure and properties of the nanocomposites were investigated by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), differential scanning calorimeter (DSC) measurements, and contact angle analyses. TGA was used to estimate the grafting density of ATRP initiators (0.49 initiator/nm 2 ) and the amount of grafted PMMA on the HAP surface. The contact angle analyses indicated that grafting PMMA onto the HAP surface dramatically increased the hydrophobicity of the surface. Moreover, the HAP nanocomposites showed excellent dispersibility in both aqueous solution and organic solvent.

  5. Methyl methacrylate oligomerically-modified clay and its poly(methyl methacrylate) nanocomposites

    International Nuclear Information System (INIS)

    Zheng Xiaoxia; Jiang, David D.; Wilkie, Charles A.

    2005-01-01

    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

  6. Influence of wood extractives in the polymerization of methyl methacrylate by gamma irradiation

    International Nuclear Information System (INIS)

    Burillo de V, G.; Loyola V, V.M.; Albarran S, G.; Candelas, J.

    1975-01-01

    Those materials that can be extracted from pine or oak by ether, ethanol, methyl methacrylate (MMA), or benzene--alcohol all act as inhibitors in the γ polymerization of MMA--wood composites. It was found that preirradiation of either the wood or of the wood--monomer combination reduces or eliminates the inhibitory effect. The most practical industrial solution to this problem is to increase the dose, thereby achieving high molecular polymer in the composite. However, the presence of a maximum in the molecular weight--dose curves means that each wood--monomer pair may have a different optimum dose

  7. Biocompatible and Biodegradable Ultrafine Nanoparticles of Poly(Methyl Methacrylate-co-Methacrylic Acid Prepared via Semicontinuous Heterophase Polymerization: Kinetics and Product Characterization

    Directory of Open Access Journals (Sweden)

    Henned Saade

    2016-01-01

    Full Text Available Ultrafine nanoparticles, less than 10 nm in mean diameter, of the FDA approved copolymer methyl methacrylate- (MMA- co-methacrylic acid (MAA, 2/1 (mol/mol, were prepared. The method used for the preparation of these particles stabilized in a latex containing around 11% solids includes the dosing of the monomers mixture on a micellar solution preserving monomer starved conditions. It is thought that the operation at these conditions combined with the hydrophilicity of MMA and MAA units favors the formation of ultrafine particles; the propagation reaction carried out within so small compartments renders copolymer chains rich in syndiotactic units very likely as consequence of the restricted movements of the end propagation of the chains. Because of their biocompatibility and biodegradability as well as their extremely small size these nanoparticles could be used as vehicles for improved drug delivery in the treatment of chronic-degenerative diseases.

  8. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  9. A New Kind of Void Soap-free P(MMA-EA-MAA) Latex Particles

    Institute of Scientific and Technical Information of China (English)

    Kai KANG; Cheng You KAN; Yi DU; Yu Zhong LI; De Shan LIU

    2005-01-01

    Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.

  10. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst

    Directory of Open Access Journals (Sweden)

    Mohamed Benadda

    2014-10-01

    Full Text Available In the present work poly (N-vinyl-2-pyrrolidone-co-methyl methacrylate copolymers were prepared successfully and cleanly by a one step process via cationic copolymerization of N-vinyl-2-pyrrolidone (NVP with methyl methacrylate (MMA, in heterogeneous phase using “Maghnite-H+” (Mag-H+ as catalyst in bulk, Maghnite is a montmorillonite sheet silicate clay exchanged with protons to produce Maghnite-H+. Temperature is varied between 20 and 80 °C. The effects of reaction temperature, amount of Mag-H+ on the yield and the intrinsic viscosity (η were investigated. A typical reaction product of poly (NVP-co- MMA was analyzed by infra red spectroscopy (FTIR and 1H-NMR, 13C-NMR spectroscopy as well as by viscosimetry. © 2014 BCREC UNDIP. All rights reservedReceived: 24th November 2013; Revised: 30th June 2014; Accepted: 8th July 2014How to Cite: Benadda, M., Ferrahi, M.I., Belbachir, M. (2014. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 201-206. (doi: 10.9767/bcrec.9.3.5743.201-206Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.5743.201-206

  11. STUDIES ON RADICAL POLYMERIZATION OF METHYL METHACRYLATE INITIATED WITH ORGANIC PEROXIDE-AMINE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; SHUI Li; FENG Xinde

    1984-01-01

    Radical polymerization of methyl methacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization Rp of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT.The aromatic tertiary amines possess obvious structural effect on the Rp values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and the kinetics of polymerization of MMA initiated with BPO-DMT system was investigated.

  12. Synthesis, Characterization and Application of A Novel Carbon Bridged Half-metallocene Chromium Catalyst for Methyl Methacrylate Polymerization

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhengzai; GONG Kai; WANG Yang; ZHOU Xue; ZHANG Weixing; LI Yin; SUN Junquan; LI Wenbing

    2014-01-01

    A new carbon bridged cyclopentadienyl chromium complex of the type [(C5H4)C(CH3)2 CH2(C5H4N)]CrCl2 was prepared by treatment of CrCl3•(THF)3 in THF solution with the lithium salt of ligand containing cyclopentadienyl and pyridyl groups. The chromium complex was characterized by 1H NMR and elemental analysis(EA), and the crystal structure was determined by X-ray diffraction analysis. Activated by Al(i-Bu)3, the chromium complex displayed a very high activity for methyl methacrylate (MMA) polymerization. After 24 hours,more than 95.5%MMA was converted to polymethyl methacrylate (PMMA) with a viscosity average molecular weight (Wη) of 416000 g•mol-1 at 60℃for MMA/Al(i-Bu)3/chromium catalyst molar ratio of up to 2000:20:1. Effects of temperature, molar ratios of MMA/catalyst and catalyst/cocatalyst on the polymerization have been studied. The high conversion of MMA and high molecular weight of PMMA with narrow molecular weight distribution is caused by the unique stable active site formed by the new chromium complex and aluminum cocatalyst.

  13. Low-weight Impact Behaviour of Carbon Fibre Reinforced Methyl Methacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Virginija Jankauskaitė

    2015-06-01

    Full Text Available Inthis study, the carbon fibre reinforced methyl methacrylate (CF/MMA compositetoecap for safety shoes was manufactured to increase the energy absorptioncapacity during impact. Different types of nanofillers such as organic andinorganic nanotubes, unmodified and organically modified nanoclays were appliedto modify matrix impact properties. The drop-weight impact tests of thenanocomposite toecap were performed with respect to nanofiller nature andcarbon fibre stacking sequence. It was found that the most influence on thestiffness and impact damage of the carbon fibre methyl methacrylatenanocomposite toecaps besides stacking sequence show organic and inorganic nanotubesor unmodified nanoclay.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.7075

  14. EFFECTS OF ω-ACRYLOYL POLY(ETHYLENE OXIDE) MACROMONOMER ON EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE AND n-BUTYL ACRYLATE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macromonomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxide with diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction terminating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emulsion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containing various concentrations of PEO-A was studied. In all cases stable emulsion coplymerizations of MMA and BA were obtained. The stabilizing effect was found to be dependent on the molecular weight and the feed amount of the macromonomer.

  15. γ-Diimine palladium(II based complexes mediated polymerization of methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Mahmoud Sunjuk

    2017-02-01

    Full Text Available The synthesis of new palladium(II complexes of the type [Pd(A–NC–ph–CN–ACl2] (4a–e (A = cyclohexyl (a, 2-isoprpropyl (b, pyrenyl (c, naphthyl (d, and 2,6-diisopropyl (e is described. The isolated γ-diimine ligands and their corresponding palladium(II complexes were characterized by their physical properties, elemental analysis, 1H NMR-, 13C NMR, and infrared spectroscopy. The palladium(II complexes (4a–e were employed successfully as catalysts for atom transfer radical polymerization (ATRP of methyl methacrylate (MMA in the presence of ethyl-2-bromoisobutyrate (EBIB as initiator at 90 °C. Polymerization with these catalyst systems afforded polymers with low molecular weight distribution (Mw/Mn and syndio-rich atactic poly (MMA with relatively higher [rr] diads.

  16. Unique effects of microwave heating on polymerization kinetics of poly(methyl methacrylate) composites

    Energy Technology Data Exchange (ETDEWEB)

    Spasojević, Pavle [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Jovanović, Jelena, E-mail: jelenaj@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia); Adnadjevic, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia)

    2013-09-16

    The effects of heating mode (conventional and microwave) on the kinetics of isothermal polymerization of MMA composite materials were investigated. Isothermal kinetics curves at temperature range from 343 K to 363 K for both conventional (CH) and microwave heating (MWH) were determined. It was found that the polymerization of MMA composite materials was kinetically elementary reaction for both CH and MWH. The kinetics of CH polymerization can be described by the model of phase-boundary controlled process (contracting volume), whereas the kinetics of MWH polymerization can be described by the model of first-order chemical reaction. The kinetics parameters (E{sub a} and ln A) of the polymerization under microwave heating are lower than for conventional heating. The established decreases in the activation energy and pre-exponential factor under the MWH compared to the CH is explained with the increase in the energy of ground vibrational level of the C–O valence vibrations (ν = 987 cm{sup −1}) in methyl methacrylate molecule and with the decrease in its anharmonicity factor which is caused with the selective resonant transfer of energy from the energetic reservoir to the oscillators in methyl methacrylate molecules. - Graphical abstract: Display Omitted - Highlights: • The MWH speeds the MMA material polymerization and changes the kinetics model. • A novel concept of MWH action based on activation complexes formation is presented. • The Selective Energy Transfer model is used to explain the effects of MWH. • The kinetics parameters under MWH are lower than for CH. • The activation energy for both MWH and CH polymerization is quantized.

  17. PREPARATION OF POLY(METHYL METHACRYLATE)/LAYERED DOUBLE HYDROXIDES NANOCOMPOSITES via in situ SOLUTION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposite was prepared by in situ solution polymerization of methyl methacrylate (MMA) in the presence of 4-vinylbenzenesulfonate intercalated LDHs(MgAl-VBS LDHs). MgAl-VBS LDHs was prepared by the ion exchange method, and the structure and composition of the MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy and elemental analysis. XRD and transmission electron microscopy (TEM) were employed to examine the structure of LDHs/PMMA nanocomposite. It was indicated that the LDHs layers were well exfoliated and dispersed in the PMMA matrix. The grafting of PMMA onto LDHs was confirmed by the extraction result and the weight fraction of grafted PMMA increased as the weight fraction of LDHs in the nanocomposites increased.

  18. Preparation of poly(methyl methacrylate) grafted titanate nanotubes by in situ atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Gao Yuan; Zhou Yongfeng; Yan Deyue; Gao Xueping

    2008-01-01

    This paper reports the successful preparation of core-shell hybrid nanocomposites by a 'grafting from' approach based on in situ atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from titanate nanotubes (TNTs). Transmission electron microscope (TEM) images of the products provide direct evidence for the formation of a core-shell structure, possessing a hard core of TNTs and a soft shell of poly-MMA (PMMA). Fourier-transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance ( 1 H NMR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA) were used to determine the chemical structure, morphology, and the grafted PMMA quantities of the resulting products. The grafted PMMA content was well controlled and increased with increasing monomer/initiator ratio. Further copolymerization of hydroxyethyl methacrylate (HEMA) with PMMA-coated TNTs as initiators was realized, illustrating the 'living' characteristics of the ATRP method used in this paper.

  19. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    Science.gov (United States)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  20. Surface-Initiated Graft Atom Transfer Radical Polymerization of Methyl Methacrylate from Chitin Nanofiber Macroinitiator under Dispersion Conditions

    Directory of Open Access Journals (Sweden)

    Ryo Endo

    2015-08-01

    Full Text Available Surface-initiated graft atom transfer radical polymerization (ATRP of methyl methacrylate (MMA from self-assembled chitin nanofibers (CNFs was performed under dispersion conditions. Self-assembled CNFs were initially prepared by regeneration from a chitin ion gel with 1-allyl-3-methylimidazolium bromide using methanol; the product was then converted into the chitin nanofiber macroinitiator by reaction with α-bromoisobutyryl bromide in a dispersion containing N,N-dimethylformamide. Surface-initiated graft ATRP of MMA from the initiating sites on the CNFs was subsequently carried out under dispersion conditions, followed by filtration to obtain the CNF-graft-polyMMA film. Analysis of the product confirmed the occurrence of the graft ATRP on the surface of the CNFs.

  1. STABILITY OF EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE/ BUTYL ACRYLATE/SODIUM MONO(ETHYL POLYOXYETHYLENE) MALEATE

    Institute of Scientific and Technical Information of China (English)

    Mao-gen Zhang; Zhi-xue Weng; Zhi-ming Huang; Zu-ren Pan

    1999-01-01

    A series of new water-soluble bifunctional comonomers having both carboxyl and alkyl polyoxyethylene groups, such as sodium mono(ethyl polyoxyethylene) maleate (ZE series) with various molecular weights of polyoxyethylene ethyl ether, were synthesized and characterized. The effects of the structural factor, the amount and feeding mode of the comonomers, the initiator concentration and polymerization temperature on the stability of emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA) in the presence of a small amount of ZE with potassium persulfate as initiator were investigated. Stable, almost monodispersed MMA/BA/ZE emulsifier-free latex particles were prepared.

  2. Radiation-induced polymerization monitored in situ by time-resolved fluorescence of probe molecules in methyl methacrylate

    International Nuclear Information System (INIS)

    Frahn, Mark S.; Abellon, Ruben D.; Luthjens, Leonard H.; Vermeulen, Martien J.W.; Warman, John M.

    2003-01-01

    A technique is presented for monitoring radiation-induced polymerizations in situ based on the measurement of the fluorescence lifetime of molecular probes dissolved in the polymerizing medium. This method is illustrated with results on methyl methacrylate (MMA) using two fluorogenic probe molecules; N-(2-anthracene)methacrylamide (AnMA) and maleimido-fluoroprobe (MFP), a molecule which has a highly dipolar excited state

  3. Mechanical Properties of Surface-Charged Poly(Methyl Methacrylate as Denture Resins

    Directory of Open Access Journals (Sweden)

    Sang E. Park

    2009-01-01

    Full Text Available The aim of this study was to examine the mechanical properties of a new surface-modified denture resin for its suitability as denture base material. This experimental resin is made by copolymerization of methacrylic acid (MA to poly(methyl methacrylate (PMMA to produce a negative charge. Four experimental groups consisted of Orthodontic Dental Resin (DENTSPLY Caulk as a control and three groups of modified PMMA (mPMMA produced at differing ratios of methacrylic acid (5 : 95, 10 : 90, and 20 : 80 MA : MMA. A 3-point flexural test using the Instron Universal Testing Machine (Instron Corp. measured force-deflection curves and a complete stress versus strain history to calculate the transverse strength, transverse deflection, flexural strength, and modulus of elasticity. Analysis of Variance and Scheffe Post-test were performed on the data. Resins with increased methacrylic acid content exhibited lower strength values for the measured physical properties. The most significant decrease occurred as the methacrylic acid content was increased to 20% mPMMA. No significant differences at P<.05 were found in all parameters tested between the Control and 5% mPMMA.

  4. A New Initiator Cholesteryl Chloroformate for Cupper-Based Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    曹健; 楚娟; 张可达

    2004-01-01

    The polymerization of metyl methacrylate (MMA) was studied in detail by use of CuCl/L as a catalyst and cholesteryl chloroformate (CC) as an initiator. It was found that the atom transfer radical polymerization of MMA could proceed when L equals to a multidentate aliphatic amine ligand, N,N,N',N",N"-penta(methyl acrylate)diethylenetriamine (MA5-DETA), and no polymerization was occurred while L=2,2'-bipyridine and 1,10-phenanthroline. The linear proportionality of the molecular weights to the conversions and straight lines observed in ln[M]0/[M] versus time plots indicated that the present polymerization system had the typical controlled polymerization characteristics.

  5. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  6. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    International Nuclear Information System (INIS)

    Buga, Mihaela-Ramona; Zaharia, Cătălin; Bălan, Mihai; Bressy, Christine; Ziarelli, Fabio; Margaillan, André

    2015-01-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, 13 C, 29 Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents

  7. Study of castor oil polyurethane - poly(methyl methacrylate semi-interpenetrating polymer network (SIPN reaction parameters using a 2³ factorial experimental design

    Directory of Open Access Journals (Sweden)

    Fernanda Oliveira Vieira da Cunha

    2004-12-01

    Full Text Available In this work was employed a 2³ factorial experiment design to evaluate the castor oil polyurethane-poly(methyl methacrylate semi-IPN synthesis. The reaction parameters used as independent variables were NCO/OH molar ratio, polyurethane polymerization time and methyl methacrylate (MMA content. The semi-IPNs were cured over 28 h using two thermal treatments. The polymers were characterized by infrared and Raman spectroscopy, thermal analysis and swelling profiles in n-hexane. The glass transition temperature (Tg and the swelling were more affect by the NCO/OH molar ratio variation. The semi-IPNs showed Tg from - 27 to - 6 °C and the swelling range was from 3 to 22%, according to the crosslink density. The IPN mechanical properties were dependent on the cure temperature and MMA content in it. Lower elastic modulus values were observed in IPNs cured at room temperature.

  8. Redox-Initiated Poly(methyl methacrylate) Emulsion Polymerizations Stabilized with Block Copolymers Based on Methoxy-Poly(ethylene glycol), epsilon-Caprolactone, and Linoleic Acid

    NARCIS (Netherlands)

    Tan, Boonhua; Nabuurs, Tijs; Feijen, Jan; Grijpma, Dirk W.

    2009-01-01

    A redox initiating system, consisting of t-butyl hydroperoxide (tBHPO), isoascorbic acid (iAA), and ethylenediaminetetraacetic acid ferric-sodium salt (FeEDTA) was employed in emulsion polymerizations of methyl methacrylate (MMA) at high solids contents of 30 wt % in water. The system was stabilized

  9. Stereocontrol of Methyl Methacrylate during Photoinduced Nitroxide-Mediated Polymerization in the Presence of Photosensitive Alkoxyamine

    Directory of Open Access Journals (Sweden)

    Juahui Su

    2016-01-01

    Full Text Available Photosensitive alkoxyamine 2,2,6,6-tetramethyl-1-(1-phenylethoxypiperidin-4-yl quinoline-2-carboxylate (PE-TEMPO-Q was synthesized. Photochemical properties of PE-TEMPO-Q were studied to develop photoinduced nitroxide-mediated polymerization of methyl methacrylate (MMA. Rapid and facile polymerization at ambient temperature with PE-TEMPO-Q as an initiator was confirmed to proceed in a controlled mechanism based on the linear growth in molecular weight combined with relative narrow polydispersity index (1.4–1.8 of the resulting polymers. The stereochemistry of obtained polymers was also investigated, and the syndiotacticity slightly increased compared with the typical photopolymerization. Dual-controlled photopolymerization of MMA was achieved in the presence of synthesized alkoxyamine.

  10. The Evaluation of Relationship between Spirometric Disorders and Methyl methacrylate in Dental Laboratories Personnel

    Directory of Open Access Journals (Sweden)

    E. Nadi

    2010-04-01

    Full Text Available Introduction & Objective: Methyl methacrylate (MMA, as a monomer of acrylic resin that has a wide variety of usages in denture fabrication, is considered as an air pollution indicator in the laboratories. Occupational exposure to these compound vapors can cause respiratory hypersensitivity, occupational asthma, eye and skin irritation and Allergic Contact Dermatitis (ACD. Therefore control of MMA exposure may promote the personnel’s health. The aim of this study was to determine the relationship between spirometric disorders and methyl methacrylate in dental laboratories personnel.. Materials & Methods: In this case control study, exposure of time-weighted average (TWA and short-term exposure level (STEL were measured with MMA vapors in 39 randomly selected male employee (case group in 25 denture fabrication laboratories in Hamadan city. The air samples were collected by sorbent tubes containing chromosorb (XAD2( and analyzed by gas chromatograph equipped with FID detector based on NIOSH method. In addition 30 men whitout occupational exposure to air pollutants (control group were selected to compare the variation of spirometric parameters. Spirometric parameters of the case and control groups such as FVC, FEV1, FEV1/FVC and FEF25-75 were measured by Vitalograph spirometer (model: 2120 on ATS method, after the standard questionnaire of respiratory diseases had been completed during an interview and medical examination..Results: The mean of MMA concentration was 132.87 ± 220.67 ppm for STEL and 1.95 ± 3.59 ppm for TWA.The relationship between MMA concentration in the STEL and TWA exposures was significant (P<0.05 and the relationship between MMA concentration and ventilation was significant just for STEL. In this study no relationship between MMA concentration and spirometric parameters in both STEL and TWA exposures was found. Also there was no significant difference between spirometric parameters of the case group and normal values of the

  11. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate) microcapsules as energy storage particle

    Science.gov (United States)

    Wu, W. L.; Chen, Z.

    A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.

  12. Methyl methacrylate as a healing agent for self-healing cementitious materials

    International Nuclear Information System (INIS)

    Van Tittelboom, K; De Belie, N; Adesanya, K; Dubruel, P; Van Puyvelde, P

    2011-01-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice

  13. Process for the production of methyl methacrylate

    NARCIS (Netherlands)

    Eastham, G.R.; Johnson, D.W.; Straathof, A.J.J.; Fraaije, Marco; Winter, Remko

    2015-01-01

    A process of producing methyl methacrylate or derivatives thereof is described. The process includes the steps of; (i) converting 2-butanone to methyl propionate using a Baeyer-Villiger monooxygenase, and (ii) treating the methyl propionate produced to obtain methyl methacrylate or derivatives

  14. Initiation of MMA polymerization by iniferters based on dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available Twelve modified dithiocarbamates and a thiuramdisulfide used for the initiation of methyl methacrylate (MMA polymerization were synthesized in this study. The polymerization of MMA was followed by determine the yield and molar mass of the obtained PMMA as a function of polymerization time. Four of the synthesized dithiocarbamates S-benzyl-N,N-dibenzyldithiocarbamate, S-allyl-N,N-dibenzyldithiocarbamate S-benzyl-N,N-diisobutyldithiocarbamate and S-benzoyl-N,N-diisobutyldithiocarbamate, as well as N,N,N',N'-tetrabenzylthiuramdisulfide acted as iniferters. They were active as the initiators of the photo and/or thermally initiated radical polymerization of MMA in bulk and inert solvents (benzene and toluene. S Benzyl - N,N - dibenzyldithiocarbamate can be successfully used for the initiation of MMA polymerization in a polar solvent such as dimethylacetamide.

  15. Properties of cellulase as template molecule on chitosan—methyl methacrylate membrane

    Science.gov (United States)

    Lian, Qi; Zheng, Xuefang; Wu, Haixia; Song, Shitao; Wang, Dongjun

    2015-12-01

    In this study, a novel molecular imprinting membrane made of chitosan and methyl methacrylate (MMA) was fabricated with cellulase as template molecule and the thermal response to cellulase was characterized. The film was characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the permeation experiment. The results showed that the space structure of the film was as similar as the cellulase. Moreover, the membrane had advanced molecular imprinting capability to cellulase comparing to pepsin and pectinase at any temperature and the film had excellent ability to identify specific template molecule (cellulase) at the synthesis temperature compared to other temperatures.

  16. Poly (acrylonitrile-co-methyl methacrylate nanoparticles: I. Preparation and characterization

    Directory of Open Access Journals (Sweden)

    M.S. Mohy Eldin

    2017-12-01

    Full Text Available This work concerns the preparation and characterization of poly (acrylonitrile-co-methyl methacrylate Copolymer, P(AN-co-MMA, nano-particles using precipitation polymerization technique. Potassium per-sulfate redox initiation system was used to perform polymerization process in an alcoholic aqueous system. The impact of different polymerization conditions such as comonomer concentration and ratio, polymerization time, polymerization temperatures, initiator concentration and co-solvent composition on the polymerization yield and particle size was studied. Maximum polymerization yield, 70%, was obtained with MMA:AN (90%:10% comonomer composition. Particle sizes ranging from 16 nm to 1483 nm were obtained and controlled by variation of polymerization conditions. The co-polymerization process was approved by FT-IR and TGA analysis. The copolymer composition was investigated by nitrogen content analysis. Copolymers with a progressive percentage of PAN show thermal stabilities close to PAN Homopolymer. SEM photographs prove spherical structure of the produced copolymers. The investigated system shows promising future in the preparation of nanoparticles from comonomers without using emulsifiers or dispersive agents.

  17. The Preparation and Characterization of Tourmaline-Containing Functional Copolymer p (VST/MMA/BA

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2018-01-01

    Full Text Available Tourmaline was modified with vinyl triethoxysilane containing double bond to prepare the polymerizable organic vinylsiliconoxyl tourmaline (VST and then copolymerized with methyl methacrylate (MMA and butyl acrylate (BA to produce the tourmaline-containing functional copolymer p (VST/MMA/BA. The structures and morphologies of VST and p (VST/MMA/BA copolymer were characterized by IR, SEM, and EDX. The experimental results indicated that tourmaline was introduced into the copolymer via surface modification and the tourmaline-containing functional copolymer was obtained by a copolymerization process with MMA and BA. The prepared p (VST/MMA/BA copolymer displayed excellent storage stabilities, high far-infrared radiation and negative ion releasing performances, and good mechanical properties.

  18. Radiation-induced grafting polymerization of MMA onto polybutadiene rubber latex

    International Nuclear Information System (INIS)

    Peng Jing; Wang Maolin; Qiao Jinliang; Wei Genshuan

    2005-01-01

    The grafting of methyl methacrylate (MMA) onto polybutadiene rubber latex by the direct radiation method was carried out. The effects of monomer concentration, absorbed dose and dose rate of gamma rays on the grafting yield were investigated. The graft copolymers were characterized by transmission electron microscopy (TEM), FTIR spectroscopy, and differential scanning calorimetry. TEM photographs revealed that the core-shell structures of latex particles are formed at low MMA content, and with the increasing of MMA content, the semi-IPN-like structure with core-shell could be developed due to the high gel fraction of polybutadiene (PBD) seed particles. In addition, infrared analysis confirmed that MMA could be grafted onto PBD molecular chains effectively under appropriate irradiation conditions. The interfacial adhesion between PBD rubber (core) and PMMA (shell) phases could be enhanced with the increase of MMA concentration

  19. KINETICS OF POLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COPPER POLYPROPYLENE—BASED POLY(OXIME—IMIDODIACETATE)—SODIUM SULFITE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WUJinyuan; YANGChaoxiong; 等

    1992-01-01

    The aqueous polymerization of methyl methacrylate intiated by copper polypropylene-based poly(oxime-imidodiacetate)(P-Cu)-sodium sulfite system has been investigated.The overall rate of polymerization(Rp) was found to be Rp=5.8×1012e-84.1KJ/RT[MMA]1.4[P-Cu]0[Na2SO3]0.50 A mechanism of “coordination-proton transfer”for the production of initiating species was proposed and discussed.

  20. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate microcapsules as energy storage particle

    Directory of Open Access Journals (Sweden)

    W.L. Wu

    Full Text Available A phase-change energy-storage material, silicone rubber (SR coated n-octadecane/poly (styrene-methyl methacrylate (SR/OD/P(St-MMA microcapsule composites, was prepared by mixing SR and OD/P(St-MMA microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TG, differential scanning calorimetry (DSC and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR, of which content was 2 phr (per hundred rubber. The enthalpy value of the composites was 67.6 J g−1 and the composites were found to have good energy storage function. Keywords: n-Octadecane, Silicone rubber, Microcapsule, Energy-storage, Composites

  1. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Science.gov (United States)

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  2. Synthesis and characterization of sugar-based methacrylates and their random copolymers by ATRP

    Directory of Open Access Journals (Sweden)

    G. Acik

    2017-10-01

    Full Text Available Various sugar-based methacrylate monomers have been prepared and randomly copolymerized with methyl methacrylate (MMA using classical atom transfer radical polymerization (ATRP. Firstly, four different sugar-based methacrylates are synthesized by two-step method: (i etherification of protected monosaccharides with epichlorohydrin and (ii following ring-opening reaction of obtained epoxides with methacrylic acid (MAA in the presence of triethylamine. Next, these monomers are copolymerized with MMA via ATRP at 90 °C to obtain corresponding random copolymers. The molecular weights of the copolymers are determined by both GPC (gel permeation chromatography and 1H-NMR (nuclear magnetic resonance spectroscopy analyses and found as 10600~16800 and 12200~18500 g/mol, respectively. Moreover, the copolymer compositions are also determined by 1H-NMR analysis using characteristic signals of the monomers and found as about 94.1~97.8%, which are good agreement with feeding ratio. In addition, the glass transition temperatures of copolymers are found as 101.2~102.9 °C by changing type and composition of sugar-based methacrylate monomers. Overall, a series of well-defined random copolymers comprising different sugar-based methacrylates and methyl methacrylates were successfully synthesized by classical ATRP method.

  3. Self-supported poly(methyl methacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.H.; Zhou, D.Y.; Rao, M.M.; Cai, Z.P.; Liang, Y. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li, W.S.; Tan, C.L. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Lab of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2009-04-01

    Self-supported gel polymer electrolyte (GPE) was prepared based on copolymer, poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)). The copolymer P(MMA-AN-VAc) was synthesized by emulsion polymerization and the copolymer membrane was prepared through phase inversion. The structure and the performance of the copolymer, the membrane and the GPE were characterized by FTIR, NMR, SEM, XRD, DSC/TG, LSV, CA, and EIS. It is found that the copolymer was formed through the breaking of double bond C=C in each monomer. The membrane has low crystallinity and has low glass transition temperature, 39.1 C, its thermal stability is as high as 310 C, and its mechanical strength is improved compared with P(MMA-AN). The GPE is electrochemically stable up to 5.6 V (vs. Li/Li{sup +}) and its conductivity is 3.48 x 10{sup -3} S cm{sup -1} at ambient temperature. The lithium ion transference number in the GPE is 0.51 and the conductivity model of the GPE is found to obey the Vogel-Tamman-Fulcher (VTF) equation. (author)

  4. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Shi, Yongqian [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China); Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China)

    2014-08-15

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.

  5. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    International Nuclear Information System (INIS)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua; Shi, Yongqian; Wang, Bibo; Gui, Zhou; Hu, Yuan

    2014-01-01

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide

  6. Mechanism of alternating copolymerization of methyl methacrylate with styrene in the presence of diethylaluminum chloride

    International Nuclear Information System (INIS)

    Zubov, V.P.; Lachinov, M.B.; Ignatova, E.V.; Georgiev, G.S.; Golubev, V.B.; Kabanov, V.A.

    1982-01-01

    A kinetic study of the propagation mechanism of the alternating copolymerization of styrene (St) with methyl methacrylate (MMA) in the presence of a complexing agent (diethylaluminum chloride, DEAC) in bulk and in tetrachloroethylene solutions at a molar ratio DEAC/MMA = 0.5 has been carried out. It has been shown that the copolymerization is a chain radical process characterized by a short active-center lifetime, bimolecular termination, and high rate of chain transfer to the complexed MMA. A kinetic scheme has been proposed for the propagation mechanism of alternating copolymerization in the presence of a complexing agent not requiring independent measurements of the equilibrium constant of complexation. It has been found that spontaneous and uv-initiated copolymerizations in the system have different mechanisms of initiation and a common mechanism of propagation. The propagation proceeds by addition of single monomers as well as donor-acceptor complexes of the comonomers to the propagation radicals, with the first mechanism being predominant. Inclusion of the monomers in the complex leads to an increase of the St reactivity and to a decrease of the MMA reactivity in propagation to the corresponding macroradicals in comparison with the reactivity of the free monomers. A number of kinetic and statistical parameters of the propagation reaction have been calculated

  7. SYNTHESIS OF CHIRAL BINAPHTHYL CROWN ETHERS AND THEIR USE IN ANIONIC POLYMERIZATION OF METHYL METHACRYLATE AS INITIATOR LIGANDS

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Liu; Chuan-fu Chen; Fu Xi

    2004-01-01

    Some chiral binaphthyl crown ethers were synthesized. The anionic polymerization of methyl methacrylate (MMA) was carried out in the presence of t-BuOK, Ph2CHK or Ph2CHNa (RM), and RM coordination initiator by using chiral binaphthyl crown ethers as ligands, respectively. The results showed that in the former case the PMMA obtained has mainly isotactic structure but without optical activity, while in the later case the PMMA produced predominately has syndiotactic suucture also without optical activity.

  8. A Study on Copolymer Systems of Styrene with Diethanolamine Side Group and Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Aslisah Acikses

    2018-01-01

    Full Text Available 4-Diethanolaminomethyl styrene (DEAMSt monomer was prepared by the modification of 4-chloromethyl styrene with diethanolamine. The copolymers in different combinations (0.11, 0.19, and 0.30 by mole of DEAMSt and methyl methacrylate (MMA were prepared by free radical polymerization method at 60°C in the presence of 1,4-dioxane and AIBN as initiator. The structures of DEAMSt and DEAMSt-MMA copolymer were characterized by FT-IR and 1H-NMR. The glass transition temperature (Tg of the copolymers was measured by DSC. Thermal decomposition behavior of the copolymers was investigated by TGA. The average molecular weights of the copolymers were determined by GPC. The dye uptaking properties of the copolymers were investigated using bromocresol green. Then, the dielectric constant, dielectric loss factor, and conductivity of copolymers were investigated as a function of temperature and frequency. The activation energies (Ea of the copolymers were determined by impedance analyzer.

  9. Mechanical and thermal properties of hydroxyapatite filled poly(methyl methacrylate) heat processed denture base material

    International Nuclear Information System (INIS)

    Mohamed, S.H.; Arifin, A.; Mohd Ishak, Z.A.; Nizam, A.; Samsudin, A.R.

    2004-01-01

    The aim of this study was to evaluate the effect of powder-to-liquid ratio on the glass transition temperature (Tg) and the tensile properties of denture base material prepared from poly (methyl methacrylate) (PMMA) and hydroxyapatite (HA) previously treated with 3-trimethoxysilylpropyl methacrylate (γ-MPS). Specimens for, mechanical testing were prepared by adding composites powder (PMMA, BPO and RA) to the monomer (MMA and EGDMA) followed by hand mixing as in dental laboratory description usage. The glass transition temperature was studied by using differential scanning calorimetry (DSQ. It was observed that the tensile properties and the Tg were affected by the powder-to-liquid ratio. The mechanical characterization of the materials were performed by using single edge notch-tension (SEN-T) specimens; the fracture toughness was slightly higher in formulation which contained RA filler compared to commercial denture base material. (Author)

  10. Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl methacrylate) latex interpenetrating polymer networks by radiation-induced seeded emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    A series of latex interpenetrating polymer networks (LIPNs) were prepared via a two-stage emulsion polymerization of methyl methacrylate (MMA) or mixture of MMA and n-butyl acrylate (n-BA) on crosslinked poly(n-butyl acrylate)(PBA) seed latex using {sup 60}Co {gamma}-ray radiation. The particles of resultant latex were produced with diameters between 150 and 250 nm. FTIR spectra identified the formation of crosslinked copolymers of PMMA or P(MMA-co-BA). Dynamic light scattering (DLS) showed that with increasing n-BA concentration in second-stage monomers, the particle size of LIPN increased. Transmission electron microscope(TEM) photographs showed that the morphology of resultant acrylate interpenetrating polymer network (IPN) latex varied from the distinct core-shell structure to homogenous particle structure with the increase of n-BA concentration, and the morphology was mainly controlled by the miscibility between crosslinked PBA seed and second-stage copolymers and polarity of P(MMA-co-BA)copolymers. In addition, differential scanning calorimeter (DSC) measurements indicated the existence of reinforced miscibility between PBA seed and P(MMA-co-BA)copolymer in prepared LIPNs.

  11. Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures

    International Nuclear Information System (INIS)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo

    2016-01-01

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO 2 , as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO 2 . The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO 2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO 2 +20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO 2 +DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO 2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  12. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, Remi [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Viel, Stephane [Aix-Marseille Universite - CNRS, UMR 6263: Institut des Sciences Moleculaires de Marseille, Chimiometrie et Spectrometries, F-13397 Marseille (France); Hidalgo, Manuel; Allard-Breton, Beatrice [ARKEMA, Centre de Recherche Rhone Alpes, Rue Henri Moissan, F-69493 Pierre-Benite (France); Thevand, Andre [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Charles, Laurence, E-mail: laurence.charles@univ-provence.fr [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France)

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. {sup 1}H and {sup 13}C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  13. Synthesis and characterization of poly(styrene-co-methyl methacrylate); Sintese e caracterizacao do poli(estireno-co-metacrilato de metila)

    Energy Technology Data Exchange (ETDEWEB)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F. [Departamento de Engenharia Quimica e Alimentos - Universidade Federal de Santa Catarina - UFSC, Florianopolis, SC (Brazil)

    2011-07-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN{sup 1}H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  14. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    Science.gov (United States)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of solvents on properties of Bombyx mori silk grafted by methyl methacrylate (MMA and methacrylamide (MAA

    Directory of Open Access Journals (Sweden)

    Wattana Klairatsamee

    2005-11-01

    Full Text Available Mulberry silks were chemically modified in order to increase weight gain, resulting from degumming process using graft copolymerisation technique with vinyl monomers, i.e. MMA, MAA and MMA/MAA. Due to the appearance of PMMA homopolymer granules adhered on the MMA- and MMA/MAA-grafted silk surfaces resulting in surface roughness when silk was grafted by MMA in water, the influence of grafting solvents was examined, using different water/ethanol volume ratios of 100/0, 75/25, 50/50, 25/75 and 0/100. FTIR spectra of the grafted silks presented the absorption bands of the vinyl monomers used for the grafting process. In addition, high values of % polymer add-on were obtained for all of the grafted silks. It was also found that the suitable solvents were 25/75 water/ethanol for the silk grafted by MMA and MMA/MAA, and water for the silk grafted by MAA, in order to get the smooth grafted silk surface and high polymer add-on. Moreover, all the grafted silks showed slightly greater stiffness, as indicated by the increase of Young's modulus and the decrease of elongation.

  16. Polyol mediated nano size zinc oxide and nanocomposites with poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Organophilic nano ZnO particles have been synthesized in various diols (ethylene glycol – EG, 1,2 propane diol – PD, 1,4 butane diol – BD and tetra(ethylene glycol – TEG in the presence of p-toluenesulfonic acid, p-TsOH, as an end capping agent. The addition of p-TsOH reduces the ZnO particle size and increases its crystallite size. With increasing diol main chain length the ZnO particle size increases (EG (32 nm < PD (33 nm < BD (72 nm < TEG (86 nm. Using the assynthesized and unmodified ZnO nanocomposites with poly(methyl methacrylate, PMMA, matrix have been prepared by the in-situ bulk polymerization of methyl methacrylate, MMA. The addition of surface modifiers is avoided which is an advantage for the application since they can influence other properties of the material. ZnO particles, especially those with smaller particle sizes (EG – 32 nm, PD – 33 nm showed enhanced effect on the thermal stability of PMMA, ultraviolet, UV, absorption and transparency for visible light. Transparent materials with high UV absorption and with enhanced resistance to sunlight were obtained by optimizing the nanocomposite preparation procedure using ZnO particles of about 30 nm size in concentrations between 0.05 and 0.1 wt%. The reported nanocomposite preparation procedure is compatible with the industrial process of PMMA sheet production.

  17. Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization

    Science.gov (United States)

    Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd

    2018-06-01

    Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.

  18. Precipitation Polymerization of Methyl Methacrylate by AGET ATRP%MMA的电子活化再生原子转移自由基沉淀聚合

    Institute of Scientific and Technical Information of China (English)

    张守成; 陈永平

    2013-01-01

    Precipitation polymerization of methyl methacrylate (MMA) by AGET ATRP, with cuprous chloride (CuCl2 · 2H2O)/ascorbic acid/PMDETA(C9 H23 N3) as catalyst, and initiated by ethyl bromoacetate in ethanol solution, was carried out. Molecular weight and molecular weight distribution were characterized by GPC. The results show that MMA can be rapidly polymerized with high monomer conversioa PMMA with relative narrow molecular weight distribution can be synthesized. Precipitation polymerization of methyl methacrylate (MMA) by AGET ATRP possesses characteristics of controlled/" living" radical polymerization.%以乙醇为溶剂,氯化铜(CuCl2·2H2O)为催化剂,抗坏血酸为还原剂,溴乙酸乙酯为引发剂,PMDETA为配体,进行了甲基丙烯酸甲酯(MMA)的电子活化再生原子转移自由基(AGET ATRP)沉淀聚合,通过GPC和称重法对聚合物进行表征.结果表明,在这种催化体系中甲基丙烯酸甲酯的转化速率较快,甲基丙烯酸甲酯的AGETATRP沉淀聚合得到了较好的实现,获得了分子量分布较窄的聚合物,并且沉淀聚合实现了产物与催化剂的分离.

  19. ANIONIC POLYMERIZATION OF ALKYL METHACRYLATES INITIATED BY nBuCu(NCy2)Li

    Institute of Scientific and Technical Information of China (English)

    Bing-yong Han; Jian-guo Liang; Jian-min Lu; Feng An; Wan-tai Yang

    2009-01-01

    Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50℃ to -10℃ was investigated. It was found that the polymerization of MMA and nBMA initiated by 1 proceeded quantitatively in THF to afford PMMA and PBMA with polydispersity index 1.15-1.30 and nearly 100% initiator efficiencies at -10℃. The molecular weights increased linearly with the ratio of [monomer]/[1]. However, a post-polymerization experiment carried out on this system revealed a double polymer peak by GPC when fresh monomer was added after an interval of 10 rain. Polymerization of styrene could be initiated by 1, but the initiator efficiency was low.

  20. [Analysis of the character of film decomposition of methyl methacrylate (MMA) coated urea by infrared spectrum].

    Science.gov (United States)

    Li, Dong-po; Wu, Zhi-jie; Liang, Cheng-hua; Chen, Li-jun; Zhang, Yu-lan; Nie, Yan-xi

    2012-03-01

    The degradability characteristics of film with 4 kinds of methyl methacrylate coated urea amended with inhibitors were analyzed by FITR, which was purposed to supply theoretical basis for applying the FITR analysis method to film decomposition and methyl methacrylate coated urea fertilizers on farming. The result showed that the chemical component, molecule structure and material form of the membrane were not changed because of adding different inhibitors to urea. the main peaks of expressing film degradation process were brought by the -C-H of CH3 & CH2, -OH, C-O, C-C, C-O-C, C=O, C=C flexing vibrancy in asymmetry and symmetry in 3 479-3 195, 2 993--2 873, 1 741-1 564, 1 461-925 and 850-650 cm(-1). The peak value changed from smooth to tip, and from width to narrow caused by chemical structural transform of film The infrared spectrum of 4 kinds of fertilizers was not different remarkably before 60 days, and the film was slowly degraded. But degradation of the film was expedited after 60 days, it was most quickened at 120 day, and the decomposition rate of film was decreased at 310 day. The substantiality change of film in main molecule structure of 4 kinds of fertilizers didn't happen in 310 days. The main component of film materials was degraded most slowly in brown soil. The speed of film degradation wasn't heavily impacted by different inhibitors. The characteristic of film degradation may be monitored entirely by infrared spectrum. The degradation dynamic, chemical structure change, degradation speed difference of the film could be represented through infrared spectrum.

  1. N-Chlorosuccinimide (NCS): A Novel Initiator for Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    WANG,Xia-Yan; CHANG,Li-Qun; ZHOU,Hong; ZHANG,Ke-Da

    2006-01-01

    Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved, using N-chlorosuccinimide (NCS) as an initiator together with catalytic system CuCl/PMDETA (N,N,N',N',N"-pentamethyldiethyl-enetriamine), CuCl/MA5-DETA (N,N,N',N',N"-penta(methylacrylate)diethylenetriamine), and CuCl/bipy (bipy=2,2'-bipyridyl) respectively. The results indicated that the polymerization possessed typical controlled/living radical polymerization characteristics. The analysis for terminal group of obtained polymer by 1H NMR proved that NCS is an initiator for ATRP. In comparison with NBS, the polymerization rate was slower and the resulted polymer had narrower molecular weight distribution (MWD) when NCS was employed as the initiator.

  2. Wettability and ζ potentials of a series of methacrylate polymers and copolymers

    OpenAIRE

    Hogt, A.H.; Gregonis, D.E.; Andrade, J.D.; Kim, S.W.; Dankert, J.; Feijen, Jan

    1985-01-01

    Polymers and copolymers of different methacrylates were synthesized and coated on glass slides. The surfaces of the polymer films were characterized by their water contact angles and potentials using the Wilhelmy plate technique and streaming potential measurements, respectively. From contact-angle measurements information was also obtained about mobility of surface polymer chains. Receding contact angles of methyl methacrylate (MMA) copolymers containing hydrophilic or charged units were dec...

  3. Synthesis, characterization, and corrosion protection properties of poly(N-(methacryloyloxymethyl) benzotriazole-co-methyl methacrylate) on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, A.P. [Department of Applied Sciences and Humanities, MIT Campus, Anna University, Chennai 600044 (India); Lavanya, A. [Department of Chemistry, CEG Campus, Anna University, Chennai 600025 (India); Nanjundan, S. [Department of Chemistry, CEG Campus, Anna University, Chennai 600025 (India); Rajendran, N. [Department of Applied Sciences and Humanities, MIT Campus, Anna University, Chennai 600044 (India)]. E-mail: nrajendran@annauniv.edu

    2006-12-15

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and {sup 13}C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  4. Synthesis, characterization, and corrosion protection properties of poly( N-(methacryloyloxymethyl) benzotriazole- co-methyl methacrylate) on mild steel

    Science.gov (United States)

    Srikanth, A. P.; Lavanya, A.; Nanjundan, S.; Rajendran, N.

    2006-12-01

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  5. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  6. Methyl Methacrylate and Alpha-Methyl Styrene: New Strategy for Synthesis of Bloc Copolymers for Use in Potential Biomedical Applications Generated by an Ecologic Catalyst Called Maghnite (Algerian MMT

    Directory of Open Access Journals (Sweden)

    Moulkheir Ayat

    2016-10-01

    Full Text Available A new model for synthesis of the plastics, block copolymers were prepared from methyl methacrylate (MMA and alpha-methyl styrene (α-MS by cationic copolymerization in the presence of a new and efficient catalyst of “Maghnite-Na” at 0 °C in bulk. In this paper, the copolymerization of α-MS and MMA was induced in heterogeneous phase catalyzed by Maghnite-Na was investigated under suitable conditions. The “Maghnite-Na” is a montmorillonite sheet silicate clay, with exchanged sodium cations to produce Na-Montmorillonite (Na+-MMT obtained from Tlemcen, Algeria, was investigated to remove heavy metal ion from wastewater as an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers. The synthesized copolymer were characterized by Nuclear Magnetic Resonance (NMR-1H, NMR-13C, FT-IR spectroscopy, Differential Scanning Calorimetry (DSC, and Gel Permeation Chromatography (GPC to elucidate structural characteristics and thermal properties of the resulting copolymers. The structure compositions of “MMT”, “H+-MMT” and “Na+-MMT” have been developed. The effect of the MMA/α-MS molar ratio on the rate of copolymerization, the amount of catalyst, temperature and time of copolymerization on yield of copolymers was studied. The yield of copolymerization depends on the amount of Na+-MMT used and the reaction time. The kinetic studies indicated that the polymerization rate is first order with respect to monomer concentration. A possible mechanism of this cationic polymerization is discussed based on the results of the 1H-NMR Spectroscopic analysis of these model reactions. A cationic mechanism for the reaction studies showed that monomer was inserted into the growing chains. Copyright © 2016 BCREC GROUP. All rights reserved Received: 2nd May 2015; Revised: 24th February 2016; Accepted: 15th March 2016 How to Cite: Ayat, M., Belbachir, M., Rahmouni, A. (2016. Methyl Methacrylate and Alpha-Methyl Styrene: New

  7. Phase behavior for the poly(alkyl methacrylate)+supercritical CO{sub 2}+DME mixture at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-01-15

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO{sub 2}, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO{sub 2}. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO{sub 2} at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO{sub 2}+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO{sub 2}+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO{sub 2} shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  8. Preparation of PBA-P(MMA-DMA) core-shell latex particles%PBA-P(MMA-DMA)核壳乳胶粒子的制备

    Institute of Scientific and Technical Information of China (English)

    辛丹丹; 刘喜军; 娄春华

    2016-01-01

    A novel poly-butyl methacry1ate(PBA)-poly(methyl methacrylate-dimethylaminoethyl methacrylate)[P(MMA-DMA)]core-shell latex particle containing amino groups in surface layer was prepared by a pre-emulsion semi-continuous seeded emulsion polymerization method. It was characterized through element analyzer, laser particle size analyzer, transmission electron microscope (TEM), and X-ray Photoelectron Spectroscopy(XPS). The results indicate that PBA-P(MMA-DMA)latex particles are well-defined core-shell structure, and the mean grain size of PBA core and PBA-P(MMA-DMA) core-shell latex particles are 270 nm and 340 nm respectively. There exists DMA in shell layer of PBA-P (MMA-DMA) core-shell latex particles. When DMA content in shell layer is 10.0% of MMA, the mass fraction of nitrogen in PBA- P(MMA-DMA) core-shell latex particles reaches 0.29%, equivalent of 0.78% amino in shell layer.%采用预乳化半连续种子乳液聚合方法制备了一种新型的表层含氨基的聚甲基丙烯酸丁酯(PBA)-聚(甲基丙烯酸甲酯-甲基丙烯酸二甲氨基乙酯)[P(MMA-DMA)]核壳乳胶粒子,并通过激光粒径分析仪、透射电子显微镜、X射线光电子能谱仪和元素分析仪等对其进行表征。结果表明:PBA-P(MMA-DMA)乳胶粒子为核壳结构,PBA核芯和PBA-P(MMA-DMA)核壳乳胶粒子的平均粒径分别为270,340nm;PBA-P(MMA-DMA)核壳乳胶粒子的壳层确实含有甲基丙烯酸二甲氨基乙酯(DMA),当DMA用量为甲基丙烯酸甲酯质量的10.0%时,PBA-P(MMA-DMA)核壳乳胶粒子氮元素质量分数达0.29%,折合壳层氨基质量分数达0.78%。

  9. KINETICS OF POLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COPPER POLYPROPYLENE-BASED POLYAMIDOXIME-SODIUM SULFITE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinyuan; YANG Yiguang; YANG Chaoxiong

    1992-01-01

    The aqueous polymerization of methyl methacrylate initiated by copper polypropylene-based polyamidoxime ( PPAO - Cu ) - sodium sulfite system was investigated . The overall rate of polymerization (Rp) is Rp=9.7 × 1012 e-21, 200/RT [MMA]0.88 [ Na2 SO 3 ]0.50 The length of the induction period (τ) is inversely proportional to the concentration of sodium sulfite and independent of the amount of polymer supported copper and the concentration of monomer. It could be expressed as follows:1τ=1.2× 1012e-15,600/RT[ Na2SO3] =KτRi The polymerization is initiated by a primary radical generated from the redox reaction rather than induced by "coordination-proton transfer" mechanism.

  10. Formation of hyperbranched polymers in atom transfer radical copolymerization of MMA and DVB

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hyperbranched poly(methyl methacrylate)s (HPMMAs) have been successfully prepared by atom transfer radical copolymerization of MMA and divinylbenzene (DVB).Kinetic study shows complete consumption of the initiator in 0.5 h,and relatively low polymerization rate when DVB content in the feed was high.By analyzing MALDI-TOF spectra of the resulting copolymers,the linear A n B (n=0,1,2,3) oligomers were formed in 0.5 h of polymerization,and then the oligomers reacted each other to form dimers,further reactions produced HPMMA.The SEC and NMR spectroscopies were used to trace the polymerization,and the results demonstrate that small amount of the branching reactions occur in the initial polymerization,and the branched polymers are significantly generated past a certain conversion depending upon the feed ratios.Raising the content of DVB in the monomer mixture can increase the pendent vinyl groups of the linear oligo-inimers,leading to gelation at low MMA conversion.

  11. Synthesis,Characterization and Application of Benzyl-substituted Cyclopentadienyl lanthanide Complexes as Catalyst Precursors for the Syndiotactic Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    QIAN,Yan-Long(钱延龙); BALA,Muhammad D.; XIE,Xiao-Min(谢小敏); HUANG,Ji-Ling(黄吉玲)

    2004-01-01

    Benzyl-substituted cyclopentadienyl lanthanide complexes were synthesized and characterized by elemental analysis, MS and IR spectroscopy. The analytical data point out the formation of monomeric, unsolvated complexes.In conjunction with Al(Et)3 as co-catalyst, the title complexes are efficient catalysts for the syndiotactic polymerization of methyl methacrylate. For the complex (C6H5CH2C5H4)2YCI, under the optimum polymerization conditions (60 ℃, n(MMA):n(catalyst):n(co-catalyst)= 1000:1:10), a predominantly syndiotactic (rr=66%) polymer of high molecular weight (Mη = 105000) was obtained.

  12. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  13. The Effect of the Chain Length on MMA Free Radicl Polymerization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the polymerization process of methyl methacrylate (MMA), the Arrhenius parameters (activation energy and frequency factor) of propagating reaction monotonically decrease with increasing monomer conversion. At the beginning and middle stage of the propagating reaction, the increase of radical chain length is the main reason of above mentioned change. And at the end stage, the sharp decrease of kp indicates that the activation energy is approximately incline to zero and the propagating reaction is controlled by molecular diffusion motion.

  14. Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte

    International Nuclear Information System (INIS)

    Su’ait, M.S.; Ahmad, A.; Hamzah, H.; Rahman, M.Y.A.

    2011-01-01

    The effect of lithium salts (lithium tetrafluoroborate, LiBF 4 and lithium perchlorate, LiClO 4 ) as doping salts in rubber-polymer blends, 49% poly(methyl methacrylate) grafted natural rubber (MG49) and poly(methyl methacrylate) (PMMA) in solid polymer electrolyte (SPE) film for electrochemical devices application was investigated. The electrolyte films were prepared via the solution casting technique using 0–25 wt.% lithium salt. The effect of the lithium salts on chemical interaction, ionic conductivity and structural and morphological studies of (70:30) MG49-PMMA films was analyzed using Fourier Transform Infrared (FT-IR) Spectroscopy, Electrochemical Impedance Spectroscopy (EIS), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Infrared analysis showed that the interactions between lithium ions and oxygen atoms occur at the ether group (C–O–C) (1500–1100 cm −1 ) on the MMA structure in both MG49 and PMMA. The oxygen atoms in the structure of the polymer host act as electron donor atoms and form a coordinate bond with the lithium ions from the doping salt to form polymer–salt complexes. The ionic conductivity was investigated at room temperature as well as at a temperature range from 303 K to 373 K. The ionic conductivity without the addition of salt was 1.1 × 10 −12 S cm −1 . The highest conductivity at room temperature for (70:30) MG49-PMMA–LiBF 4 was 8.6 × 10 −6 S cm −1 at 25 wt.% of LiBF 4 . The ionic conductivity of (70:30) MG49-PMMA–LiClO 4 was 1.5 × 10 −8 S cm −1 at 25 wt.% of LiClO 4 . However, both electrolyte systems do not exhibit Arrhenius-like behavior. Systems with LiBF 4 salt have higher ionic conductivity than those with LiClO 4 salt because of the differences in anionic size and lattice energy of the appropriate salt. The observations from structural and morphology studies showed that complexation and re-crystallization occur in the system. The XRD studies showed a reduction of the MMA peak

  15. STUDY ON THE POLYMERIZATION KINETICS AND STABILITY OF P(UA)/MMA MICROEMULSION

    Institute of Scientific and Technical Information of China (English)

    Hong-tao Zhang; Tian-bin Ren; Zhao-hui Yin

    2001-01-01

    Urethane acrylate anionomer (APUA) as a kind of new type polymerizable emulsifier was synthesized using 2,4-toluene diisocyanate (TDI), polypropylene glycol (PPG), 2-hydroxyethyl methacrylate (HEMA) and dimethylolpropionic acid (DMPA). The critical micelle concentration (CMC) of APUA was measured by the methods of conductance and surface tension. The comparative studies between polymerizable emulsifier AUPA and conventional emulsifier sodium dodecyl sulfate (SDS) were carried out in the emulsion polymerization of methyl methacrylate (MMA). Polymerization kinetics,stability, size and morphology of the latex particles were investigated. It was found that in APUA both water soluble initiator potassium persulfate (KPS) and oil soluble initiator 2,2'-azobisisobutyronitrile (AIBN) can start the reaction of MMA, and the polymerization rate and yield were very high. On using AIBN as an initiator, the conversion-time behavior of MMA with APUA as emulsifier was different to that of SDS as emulsifier, signifying a different nucleation mechanism of the polymer latex particle. The average size of the two kinds of particles is about 50 nm. The particle size decreases with increasing emulsifier concentration. On using KPS as the initiator, APUA as emulsifier, cross-linking hydrogel of PMMA would be formed, but SDS was used as emulsifier and the hydrogel of PMMA was not present.

  16. Methacrylate-Based Copolymers for Polymer Optical Fibers

    Directory of Open Access Journals (Sweden)

    Daniel Zaremba

    2017-01-01

    Full Text Available Waveguides made of poly-methyl-methacrylate (PMMA play a major role in the homogeneous distribution of display backlights as a matrix for solid-state dye lasers and polymer optical fibers (POFs. PMMA is favored because of its transparency in the visible spectrum, low price, and well-controlled processability. Nevertheless, technical drawbacks, such as its limited temperature stability, call for new materials. In this work, the copolymerization technique is used to modify the properties of the corresponding homopolymers. The analytical investigation of fourteen copolymers made of methyl-methacrylate (MMA or ethyl-methacrylate (EMA as the basis monomer is summarized. Their polymerization behaviors are examined by NMR spectroscopy with subsequent copolymerization parameter evaluation according to Fineman-Ross and Kelen-Tüdös. Therefore, some r-parameter sets are shown to be capable of copolymerizations with very high conversions. The first applications as high-temperature resistant (HT materials for HT-POFs are presented. Copolymers containing isobornyl-methacrylate (IBMA as the comonomer are well-suited for this demanding application.

  17. Methacrylate and acrylate allergy in dental personnel.

    Science.gov (United States)

    Aalto-Korte, Kristiina; Alanko, Kristiina; Kuuliala, Outi; Jolanki, Riitta

    2007-11-01

    Methacrylates are important allergens in dentistry. The study aimed to analyse patch test reactivity to 36 acrylic monomers in dental personnel in relation to exposure. We reviewed the test files at the Finnish Institute of Occupational Health from 1994 to 2006 for allergic reactions to acrylic monomers in dental personnel and analysed the clinical records of the sensitized patients. 32 patients had allergic reactions to acrylic monomers: 15 dental nurses, 9 dentists, and 8 dental technicians. The dentists and dental nurses were most commonly exposed to 2-hydroxyethyl methacrylate (2-HEMA), triethyleneglycol dimethacrylate (TREGDMA), and 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA). 8 dentists and 12 dental nurses were allergic to 2-HEMA. The remaining dentist was positive to bis-GMA and other epoxy acrylates. The remaining 3 dental nurses reacted to diethyleneglycol diacrylate (DEGDA) or triethyleneglycol diacrylate (TREGDA), but not to monofunctional and multifunctional methacrylates. Our dental technicians were mainly exposed and sensitized to methyl methacrylate (MMA) and ethyleneglycol dimethacrylate (EGDMA). 1 technician reacted only to 2-HEMA, and another to ethyl methacrylate (EMA) and ethyl acrylate (EA). 2-HEMA was the most important allergen in dentists and dental nurses, and MMA and EGDMA in dental technicians. Reactions to bis-GMA, DEGDA, TREGDA, EMA and EA were relevant in some patients.

  18. Enhancing both the mechanical and chemical properties of paper sheet by graft co-polymerization with acrylonitrile/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    H.M. Abd El Salam

    2014-09-01

    Full Text Available The chemical graft copolymerization reaction of acrylonitrile (AN and methyl methacrylate (MMA binary mixture onto paper sheet was performed. The effect of initiator concentration, monomer concentration and temperature on the reaction rate was studied. The reaction rate equation of the graft copolymerization reaction is found to be RP = K2 [Initiator]0.795[Monomer]2.007. The apparent activation energy (Ea of the copolymerization reaction is found to be 75.01 kJ/mol. The infrared characteristic absorption bands for cellulosic paper structure and the paper gr-AN-MMA are investigated. Tensile break load, porosity and burst strength were measured for the grafted and pure paper sheet. It was found that the mechanical properties are improved by grafting copolymerization. The chemical resistance of the graft product against a strong acid a strong alkali, polar and nonpolar solvents was investigated. It was found that the resistance to these chemicals is enhanced by grafting.

  19. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    Science.gov (United States)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  20. Improvement of the T-peel Strength of Polypropylene Adhesion Joints by Surface Photografting Pre-Treatment with Methyl Methacrylate

    Science.gov (United States)

    Balart, R.; Sánchez-Nácher, L.; Balart, J.; Fombuena, V.; España, J. M.

    2010-06-01

    Although polypropylene is one of the most used polymers at industrial level due to good balanced properties, it presents some restrictions in applications that require good adhesion properties as well as coating and painting. These restrictions are related to its non polar nature which leads to low wetting properties. So that, in most cases, it is necessary a previous surface pre-treatment in order to improve adhesion properties. These surface treatments could be physical or chemical. Among the wide variety of physical processes, plasma technologies are useful from both technical and environmental points of view. If we take into account economic considerations, chemical processes are interesting due to low cost equipment and procedures. In particular, we have used photografting of methyl methacrylate (MMA) monomer on polypropylene substrates with UV radiation and initiators. This process is useful to promote chemical modification of polypropylene surface by grafting MMA monomers into polypropylene polymer chains. Due to polarity of some groups in MMA monomers, it is possible to increase surface wettability thus promoting a remarkable increase in adhesion properties of polypropylene. In this work, changes in wettability of polypropylene surfaces in terms of the exposure time to UV radiation in presence of MMA monomers and initiators has been investigated. Furthermore, chemical changes have been characterized by FTIR analysis and mechanical performance of adhesion joints has been evaluated by T-peel tests.

  1. Core shell methyl methacrylate chitosan nanoparticles: In vitro mucoadhesion and complement activation

    Directory of Open Access Journals (Sweden)

    F Atyabi

    2011-10-01

    Full Text Available Background and the purpose of the study: Studies show that chitosan nanoparticles increase mucoadhesivity and penetration of large molecules across mucosal surface. The aim of the present study was to investigate the use of thiolated chitosan in the development of polysaccharide-coated nanoparticles in order to confer specific functionality to the system. Methods: Methyl methacrylate nanoparticles were coated with thiolated chitosan using a radical polymerization method. Thiolation was carried out using glutathione (GSH to improve mucoadhesivity and permeation enhancing properties of chitosan. Mucoadhesion studies were carried out by calculating the amount of mucin adsorbed on nanoparticles in a specific period of time. Complement consumption was assessed in human serum (HS by measurement of the hemolytic capacity of the complement system after contact with nanoparticles.   Results:   The FT-IR and 1HNMR spectra both confirmed the synthesis and showed the conjugation of thiolated chitosan to methyl methacrylate (MMA homopolymer. Nanoparticles were spherical having a mean diameter within the range of about 334-650 nm and their positive zeta potential values indicated the presence of the cationic polysaccharide at the nanoparticle surface. Increasing the amount of thiolated chitosan led to mucoadhesivity and complement activation. However there was not dose dependent correlation between these phenomenons and the absence of thiolated chitosan led to particles with larger size, and without ability to activate complement process. Major conclusion: It can be concluded that nanoparticles could be used for the mucosal delivery of peptides and proteins. Results show that the thiolated chitosan had higher mucoadhesion and complement activation than unmodified chitosan.

  2. Preparation of Mesoporous Carbons from Acrylonitrile-methyl Methacrylate Copolymer/Silica Nanocomposites Synthesized by in-situ Emulsion Polymerization

    Institute of Scientific and Technical Information of China (English)

    BAO Yongzhong; ZHAO Wenting; HUANG Zhiming

    2013-01-01

    Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2′-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles,and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites,followed by HF etching.Thermogravimetric analysis of AN-MMA copolymer/silica nanocomposites showed that the carbon yield of copolymer was slightly decreased as silica particle incorporated.N2 adsorption-desorption,scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials.Both SEM and TEM results showed that disordered mesopores were formed in the obtained carbon material mainly through templating effect of silica nanoparticles.The diameter of mesopores was mainly distributed in the range from 5 nm to 15 nm.The mean pore diameter and total pore volume of the material increased as the mass fraction of silica in the nanocomposites increased from 0 to 24.93%.The significant increase of the mean pore diameter and the decrease of surface area for the carbon material prepared from the nanocomposite with 24.93% silica were caused by partial aggregation of silica nanoparticles in the polymer matrix.

  3. Atmospheric Oxidation Mechanism and Kinetic Studies for OH and NO3 Radical-Initiated Reaction of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2014-03-01

    Full Text Available The mechanism for OH and NO3 radical-initiated oxidation reactions of methyl methacrylate (MMA was investigated by using density functional theory (DFT molecular orbital theory. Geometrical parameters of the reactants, intermediates, transition states, and products were fully optimized at the B3LYP/6-31G(d,p level. Detailed oxidation pathways were presented and discussed. The rate constants were deduced by the canonical variational transition-state (CVT theory with the small-curvature tunneling (SCT correction and the multichannel Rice-Ramspergere-Kassele-Marcus (RRKM theory, based on the potential energy surface profiles over the general atmospheric temperature range of 180–370 K. The calculated results were in reasonable agreement with experimental measurement.

  4. Stereocontrol during the radical polymerization of methyl methacrylates with combined Lewis acids:Aluminium trichloride(AlCl3) and iron dichloride tetrahydrate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The radical polymerization of methyl methacrylate(MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system.Compared with the polymerization produced in the presence of single Lewis acids,AlCl3 or FeCl2,the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity(mm=50%) .The molecular weight and polydispersity of PMMA in the presence of Lewis acids were similar with those in the absence of Lewis acids,although Lewis acids decelerate the polymerization of MMA.The effects of the Lewis acids were greater in a solvent with a lower polarity.A possible stereocontrol mechanism of the polymerization was proposed.The Lewis acid composite of AlCl3-FeCl2 readily formed a complex with growing species.These complexes possessed apparent bulkiness that changes the direction of monomer addition to the growing radical center.

  5. Atom-transfer radical polymerization of methyl methacrylate (MMA) using CuSCN as the catalyst

    NARCIS (Netherlands)

    Singha, N.K.; Klumperman, B.

    2000-01-01

    The effect of CuSCN as a catalyst in atom-transfer radical polymerization (ATRP) was investigated. CuSCN can successfully be used for the ATRP of MMA. Substituted bipyridines as well as imines can be used to stabilize the copper complex in solution. CuSCN induces faster polymerization compared to

  6. A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Shen, Yi; Xi, Jingyu; Qiu, Xinping; Zhu, Wentao

    2007-01-01

    In this paper, a new kind of copolymer methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS-co-MMA) was synthesized by free radical polymerization. IR-spectrum and 1 H NMR were used to confirm the structure of the copolymers, and the thermal character of the copolymers was investigated with TGA and DSC. Flexible and transparent membranes based on this kind of copolymer were prepared by solution casting method. The physical properties including ionic exchange capability (IEC), water uptake, proton conductivity, methanol permeability and morphology of the membranes were investigated. These membranes showed higher water uptake though they had lower IEC compared with Nafion-117. The proton conductivity of the membrane with IEC of 0.9 mmol/g was 1.14 x 10 -2 S/cm and its methanol permeability coefficient was 5.46 x 10 -7 cm 2 /s, much lower than that of Nafion-117. Tests on cells were also carried out to measure the performance of the membrane

  7. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate core–shell composite nanoparticles

    Directory of Open Access Journals (Sweden)

    Dafu Wei

    2017-09-01

    Full Text Available Carbon nanospheres with a high Brunauer–Emmett–Teller (BET specific surface area were fabricated via the pyrolysis of polyacrylonitrile–poly(methyl methacrylate (PAN–PMMA core–shell nanoparticles. Firstly, PAN–PMMA nanoparticles at high concentration and low surfactant content were controllably synthesized by a two-stage azobisisobutyronitrile (AIBN-initiated semicontinuous emulsion polymerization. The carbon nanospheres were obtained after the PAN core domain was converted into carbon and the PMMA shell was sacrificed via the subsequent heat treatment steps. The thickness of the PMMA shell can be easily adjusted by changing the feeding volume ratio (FVR of methyl methacrylate (MMA to acrylonitrile (AN. At an FVR of 1.6, the coarse PAN cores were completely buried in the PMMA shells, and the surface of the obtained PAN–PMMA nanoparticles became smooth. The thick PMMA shell can inhibit the adhesion between carbon nanospheres caused by cyclization reactions during heat treatment. The carbon nanospheres with a diameter of 35–65 nm and a high BET specific surface area of 612.8 m2/g were obtained from the PAN–PMMA nanoparticles synthesized at an FVR of 1.6. The carbon nanospheres exhibited a large adsorption capacity of 190.0 mg/g for methylene blue, thus making them excellent adsorbents for the removal of organic pollutants from water.

  8. Investigation of an accident in a resins manufacturing site: The role of accelerator on polymerisation of methyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Casson, Valeria, E-mail: valeria.casson.moreno@gmail.com [Alma Mater Studiorum—Università di Bologna, Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali, Bologna (Italy); Dipartimento di Ingegneria Industriale, Via Marzolo 9, 35131 Padova (Italy); Snee, Tim, E-mail: Tim.Snee@hsl.gsi.gov.uk [Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK 179 JN (United Kingdom); Maschio, Giuseppe, E-mail: giuseppe.maschio@unipd.it [Dipartimento di Ingegneria Industriale, Via Marzolo 9, 35131 Padova (Italy)

    2014-04-01

    Highlights: • The accelerator produces an increase in the initial rate of polymerisation. • The accelerator increases the extent of polymerisation in certain conditions. • The accelerator decreases the induction time due to the presence of inhibitor. • Runaway reaction is more likely to occur in presence of the accelerator. • The experimental data support the hypothesis about the accident. - Abstract: This paper analyzes the effect of an accelerator on the polymerisation of methyl methacrylate (MMA). This study is based on the results of an investigation of an accident in a manufacturing site for resins located in the United Kingdom. As sequence of event to cause the accident the following was assumed: during an unattended batch process a runaway undesired polymerisation of methyl methacrylate occurred, generating rapid vaporisation of monomer, which in contact with an ignition source, led to an explosion followed by a fire. Since no initiator for the polymerisation reaction had been jet added to the blend, it was supposed that the accelerator contributed to the onset of the undesired polymerisation. The accelerator involved in the accident t has therefore been tested by differential scanning calorimetry and adiabatic calorimetry. The experimental data allowed the authors to prove the hypothesis made and to define safety ranges for the polymerisation reaction.

  9. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  10. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Sekiguchi, Masayuki

    2010-01-01

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 γ-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  11. Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Mukarram [Department of Environmental Engineering, University of Dammam, 31982 Dammam (Saudi Arabia); Shehzad, Farrukh [Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia, (Saudi Arabia); Al-Harthi, Mamdouh A., E-mail: mamdouh@kfupm.edu.sa [Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia, (Saudi Arabia); Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, 31261 Dhahran (Saudi Arabia)

    2016-06-10

    Highlights: • Modified graphene imparts thermal stability to Poly (styrene-co-methyl methacrylate) [P(st-mma)]. • The thermal stability of P(st-mma) decreased with microwave irradiation. • The thermal stability of P(st-mma)/MG nanocomposites increased with irradiation time up to 10 min and decreased subsequently. • The degradation of P(st-mma) and P(st-mma)/MG is governed by random scission model. - Abstract: Poly (styrene-co-methyl methacrylate) [P(st-mma)] composite containing 0.1 wt% modified graphene (MG) was prepared via melt blending. MG was prepared by oxidation method using nitric acid. The P(st-mma) and P(st-mma)MG composite were irradiated using microwave radiation. The degradation mechanism and thermal stability of the irradiated and un-irradiated samples was analyzed by TGA. P(st-mma)MG showed high thermal stability. The average activation energy of thermal degradation was found to be 200 kJ/mol for P(st-mma), 214 kJ/mol for P(st-mma)MG. The activation energy was highest for 10 min irradiated nanocomposites indicating an improvement in stability. The degradation mechanism was investigated by comparing the master plots constructed using the experimental data with theoretical master plots of various kinetic models. The thermal degradation of P(st-mma) and P(st-mma)MG composite before and after irradiation governs the random scission mechanism. SEM and TEM micrographs showed improved interactions and degradation of composites after 10 min and 20 min irradiation respectively.

  12. Polymerization of MMA catalyzed by different novel mixed ligand lanthanocene { ( Cp ) ( Cl ) LnSchiff-base (THF) }, ( COT ) Ln(methoxyethylindenyl) (THF)/Al (i-Bu) 3 systems

    Institute of Scientific and Technical Information of China (English)

    YOUSAF, Muhammad; QIAN, Yan-Long; FENG, Zuo-Feng; HUANG, Ji-Ling; SUN, Jun-Quan; PAN, Zhi-Da

    2000-01-01

    This article deals that the rare earth metal complexes along with Al (i-Bu)3 can catalyze the polymerization of methyl methacrylate (MMA) into high molecular weight poly(MMA) along with narrow molecular weight distributions (MWD). A typical example wan mentioned in the case of {Cp(Cl)Sm Schiff-base(THF)} which expresses maximum (conv.%= 55.46 and Mn=354×103) efficiency along with narrow MWD(Mw/Mn<2) at 60°C. The resulting polymer was partially syndiotactic (>60%). The effect of the catalyst, temperature, catalyst/MMA molar ratio, catalyst/Al(i-Bu)3 molar ratio on the polymerization of MMA at 60°C were also investigated.

  13. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    Science.gov (United States)

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Study of the molecular mobility of methyl-methacrylate and methacrylic acid copolymers by solid state NMR

    International Nuclear Information System (INIS)

    Tavares, Maria Ines B.; Mansur, Claudia R.E.; Monteiro, Elisabeth E.C.

    1997-01-01

    Several methyl-methacrylate/methacrylic acid copolymers were prepared in the presence of concentrated nitric acid. The obtained copolymers were characterized by molecular weigh determination and hydrolization degree. The molecular mobility of these copolymers was studied by solid state nuclear magnetic resonance. Results are presented

  15. Effects of propylene, methyl methacrylate and isopropanol poisoning on spatial performance of a proton exchange membrane fuel cell

    Science.gov (United States)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2018-02-01

    This paper studies the effects of propylene, methyl methacrylate (MMA) and isopropanol (IPA) in air on the spatial performance of proton exchange membrane fuel cells (PEMFCs). The introduction of 100 ppm C3H6 into the oxidant stream resulted in a performance decrease of 130 mV at 1.0 A cm-2, whereas 20 ppm MMA caused a voltage loss of 80 mV. A moderate performance decline of 60 mV was detected in the presence of 5.3ṡ103 ppm IPA in air. Spatial electrochemical impedance spectroscopy (EIS) data showed an increase in charge and mass transfer resistances under exposure to C3H6 and MMA, although IPA did not affect the impedance. The observed PEMFC performances, local current redistributions and EIS data can be explained by the adsorption of contaminants on the Pt surface, their subsequent transformations, and their impacts on the electrochemical surface area and oxygen reduction mechanism. It was assumed that the studied contaminants were oxidized mainly to CO2 via electrochemical and chemical pathways under the operating conditions and at the cathode potential. Self-recovery of PEMFC performance was observed for each contaminant after halting its introduction into the air. Possible contaminant oxidation/reduction mechanisms and their correlations with spatial performance and EIS are presented and discussed.

  16. STUDIES ON ORGANIC PEROXIDE / N ,N-DI (2-α-METHYL-ACRYLOYLOXY PROPYL) -PARA-TOLUIDINE BINARY SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; FU Jie; GUO Xinqiu; FENG Xinde

    1990-01-01

    The polymerization of methyl methacrylate ( MMA )initiated by organic peroxide and polymerizable aromatic tertiary amine such as N,N-di (2-α-methylacryloyloxy propyl )-p- toluidine (MP)2PT binary system has been studied . It was found that the ( MP )2PT promotes MMA polymerization, and the kinetics of MMA polymerization fits the radical polymerization rate equation . Based on the ESR studies and the end-group analysis the initiation mechanism is proposed.

  17. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    You, Linna; He, Man; Chen, Beibei; Hu, Bin

    2017-11-17

    In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Skin sensitization potency of methyl methacrylate in the local lymph node assay: comparisons with guinea-pig data and human experience.

    Science.gov (United States)

    Betts, Catherine J; Dearman, Rebecca J; Heylings, Jon R; Kimber, Ian; Basketter, David A

    2006-09-01

    There is compelling evidence that contact allergens differ substantially (by 4 or 5 orders of magnitude) with respect to their inherent skin-sensitizing potency. Relative potency can now be measured effectively using the mouse local lymph node assay (LLNA) and such data form the basis of risk assessment and risk management strategies. Such determinations also facilitate distinctions being drawn between the prevalence of skin sensitization to a particular contact allergen and inherent potency. The distinction is important because chemicals that are implicated as common causes of contact allergy are not necessarily potent sensitizers. One example is provided by nickel that is undoubtedly a common cause of allergic contact dermatitis, but is a comparatively weak sensitizer in predictive tests. In an attempt to explore other examples of contact allergens where there may exist a discrepancy between prevalence and potency, we describe here analyses conducted with methyl methacrylate (MMA). Results of LLNA studies have been interpreted in the context of historical clinical data on occupational allergic contact dermatitis associated with exposure to MMA.

  19. Adsorption of lead from aqueous solutions by poly (methyl methacrylate)

    International Nuclear Information System (INIS)

    Din, M.; Hussain, R.

    1992-01-01

    The adsorption capability of commercially manufactured poly (methyl methacrylate) for lead in aqueous medium has been investigated. Percent adsorption and distribution coefficient values have been determined in relation to the shaking time, amount of adsorbent, pH effects and concentration of lead in the solution. The experimental results are compatible with Freundlich type of adsorption behavior. It is discernible from the experimental results that poly (methyl methacrylate) can be used for the removal of lead from slightly acidic aqueous solutions. (author)

  20. Kinetics and Mechanism of the Polymerization of Methyl Methacrylate in a Y(acac)3/n-BuMgCl System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the kinetics equation proposed by T. Kagiya, the kinetic study on the polymerization of methyl methacrylate(MMA) by Y(acac)3/n-BuMgCl was carried out with a dilatometer. It was found that the rate of propagation is the first order with respect to the concentration of both active center and monomer. Thus, the equation of propagation rate can be described as Rp=Kp[c*][M]. In addition, the instantaneous chain initiation and single molecular termination were concluded for the present system. The activation energy is close to 32 kJ/mol. In the polymerization, n-BuMgCl acts not only as the cocatalyst, but also as chain transfer agent with cI=3.6×10-4.

  1. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, Ugur, E-mail: ucengiz@gyte.edu.tr [Department of Chemical Engineering, Gebze Institute of Technology, Cayirova, 41400 Kocaeli (Turkey); Avci, Merih Z. [Polymer Science and Technology, Deparment of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul (Turkey); Erbil, H. Yildirim [Department of Chemical Engineering, Gebze Institute of Technology, Cayirova, 41400 Kocaeli (Turkey); Sarac, A. Sezai [Polymer Science and Technology, Deparment of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul (Turkey)

    2012-05-15

    A new statistical terpolymer containing perfluoroethyl alkyl methacrylate (Zonyl-TM), methyl methacrylate and butyl acrylate, poly(Zonyl-TM-ran-MMA-ran-BA) was synthesized in supercritical carbon dioxide at 200 bar and 80 Degree-Sign C using AIBN as an initiator by heterogeneous free radical copolymerization. Nanofibers of this terpolymer were produced by electrospinning from its DMF solution. The structural and thermal properties of terpolymers and electrospun poly(Zonyl-TM-MMA-BA) nanofibers were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and differential scanning calorimetry. Nanofiber morphology was investigated by scanning electron microscopy. Electrospun nanofiber layer was found to be superhydrophobic with a water contact angle of 172 {+-} 1 Degree-Sign and highly oleophobic with hexadecane, glycerol and ethylene glycol contact angles of 70 {+-} 1 Degree-Sign , 167 {+-} 1 Degree-Sign and 163 {+-} 1 Degree-Sign respectively. The change of the contact angle results on the electrospun fiber layer and flat terpolymer surfaces by varying feed monomer composition were compared and discussed in the text.

  2. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  3. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Lestage, David J; Urban, Marek W

    2004-07-20

    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society

  4. Radiation grafting of methacrylate onto carbon nanofiber surface

    International Nuclear Information System (INIS)

    Evora, M.C.; Klosterman, D.; Lafdi, K.; Li, L.

    2011-01-01

    Radiation can be used to modify and improve the properties of materials. Electron beam irradiation has potential application in modifying the structure of carbon fibers in order to produce useful defects in the graphite structure and create reactive sites. In this study, vapor grown carbon nano fibers (VGCF) were irradiated with a high energy (3 MeV) electron beam in air to dose of 1000 kGy to create active sites and added to methyl methacrylate (MMA) dissolved in water/methanol (50% V). The irradiated samples were analyzed by X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy to assess the impact on surface and bulk properties. Oxygen was readily incorporated enhancing the dispersion of VGCF. Raman spectroscopy analyses indicated that the sample irradiated and preirradiated grafted sample with MMA had the intensity ratio increased. (author)

  5. Reinforcement of Natural Rubber with Core-Shell Structure Silica-Poly(Methyl Methacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qinghuang Wang

    2012-01-01

    Full Text Available A highly performing natural rubber/silica (NR/SiO2 nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate, SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA. The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

  6. Effect of Inhibitors on Atom Transfer Radical Polymerization of MMA

    Institute of Scientific and Technical Information of China (English)

    张鸿; 徐冬梅; 张可达

    2005-01-01

    Effect of a series of inhibitors as additives on atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with FeCl2/PPh3 as catalyst system was studied, including 2,4,6-trinitrophenol (TNP), 4-methoxyphenol (4-MP), hydroquinone (HQ) and nitrobenzene (NB). It was found that TNP was the only. efficient additive for ATRP among these inhibitors. In the presence of small amounts of TNP, the polymerization proceeded rapidly after induction period to yield the polymers with controlled molecular weights and narrow molecular weight distributions (MWD). The initiating efficiency of the modified catalyst system with TNP was increased. The mechanism was proposed and confirmed by the end group analysis of the polymer.

  7. Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu Jin; Lee, Ha Jun; Lee, Hyo Sun [Kyungpook National University, Daeju (Korea, Republic of)

    2014-09-15

    The reaction between [CdBr{sub 2}·4H{sub 2}O] and anhydrous [ZnCl{sub 2}] with N,N'-bidentate N-(pyridin-2-ylmethylene)- cyclopentanamine (impy) in ethanol yields dimeric [(impy)Cd(μ-Br)Br]2 and monomeric [(impy)ZnCl{sub 2}] complexes, respectively. The X-ray crystal structure of Cd(II) and Zn(II) complexes revealed that the cadmium atom in [(impy)Cd(μ-Br)Br]2 and zinc in [(impy)ZnCl{sub 2}] formed a distorted trigonal–bipyramidal and tetrahedral geometry, respectively. Both complexes showed moderate catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO), with polymethylmethacrylate (PMMA) syndiotacticity of about 0.70.

  8. 几个二价稀土金属配合物的催化甲基丙烯酸甲酯聚合反应活性研究%Catalytic Activities of Some Organolanthanide(Ⅱ) Complexes on Methyl Methacrylate (MMA) Polymerization

    Institute of Scientific and Technical Information of China (English)

    周双六; 钱慧民; 陈国栋; 凡家喜

    2008-01-01

    研究了二价稀土金属配合物(η5:η1-C9H6CH2CH2CH2NMe2)2YbⅡ(1),[{η5:η5:η1-(C9H5CH2SiMe2NC4H8)2}EuII2(μ-Cl)]2[μ-η3:η5:η1:η3:η5:η1-(C9H5CH2SiMe2NC4H8)2]·C7H8·(C6H6)0.5(2),and[η5:η1-C9H6CH2SiMe2NC4H8]2YbⅡ(3)催化甲基丙烯酸甲酯聚合活性.探索了催化剂与MMA单体摩尔比、溶剂的极性、温度对MMA聚合反应的影响.%The catalytic activities of the organolanthanide(Ⅱ) complexes(η5:η1-C9H6CH2CH2CH2NMe2)2YbII (1),[{η5:η5:η1-(C9H5CH2SiMe2NC4H8)2}EuII2(μ-Cl)]2[μ-η3:η5:η1:η3:η5:η1-(C9H5CH2SiMe2NC4H8)2]·C7H8·(C6H6)0.5 (2), and [η5:η1-C9H6CH2SiMe2NC4H8]2YbⅡ(3) on methyl methacrylate (MMA) polymerization have been studied. The catalyst/MMA monomer mole ratio, solvents, and temperature effects on MMA polymerization were also examined.

  9. Synthesis of New Silicon-linked Lanthanocene Complexes and Their High Catalytic Activity for Methyl Methacrylate Polymerization with Nanometric Sodium Hydride as Co-catalyst

    Institute of Scientific and Technical Information of China (English)

    谢小敏; 黄吉玲

    2005-01-01

    The synthesis and characterization of four new silicon-linked lanthanocene complexes with pendant phenyl groups on cyclopentadiene were reported. Based on the data of elemental analyses, MS and IR, the complexes were presumed to be unsolvated and dimeric complexes [Me2Si(C5H3CMe2C6H5)2LnC1]2 [Ln=Er (1), Gd (2), Sm (3), Dy (4)]. In conjunction with AlEt3 or sodium hydride as the co-catalyst, these complexes could efficiently catalyze the polymerization of methyl methacrylate (MMA). When the nanometric sodium hydride was used as a co-catalyst, the complexes were highly effective for the polymerization of MMA. At low temperature and in short time, in [MeESi(C5H3CMe2C6H5)2LnC1]2/NaH (nanometric) system, the polymer was obtained in more than 80% yield and the molecular weight was greater than 105. The activity reached that of organolanthanide hydride as a single-component catalyst. In ]MeESi(C5H3CMe2C6H5)2ErC1]2/Nail (nanometric) system, the effects of the molar ratio of MMA/catalyst and catalyst/co-catalyst, and the temperature on polymerization were studied.

  10. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  11. Synthesis of block copolymers derived from N-trityl-(S)-serine and pyrene end-labeled poly(methyl methacrylate) or poly(N-isopropylacrylamide) via ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania); Podasca, Viorica; Buruiana, Tinca [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania)

    2012-10-15

    A new monomer bearing N-trityl-L-serine methyl ester in structure, methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (MTS), was prepared to be further polymerized by atom transfer radical polymerization (ATRP) with pyrene-endcapped poly(methyl methacrylate) (Py-PMMA-Br) or poly(N-isopropylacrylamide) (Py-PNIPA-Br). The resulting block copolymers, poly(methyl methacrylate-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine) (Py-PMMA-b-PMTS) and poly(N-isopropylacrylamide-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (Py-PNIPA-b-PMTS) were characterized by {sup 1}H ({sup 13}C) NMR, ultraviolet, FTIR and fluorescence spectroscopy, thermal analysis, differential scanning calorimetry (DSC), atomic force microscopy (AFM), scanning electron microscopy (SEM), and gel permeation chromatography (GPC) measurements. The chemical composition in Py-PMMA-b-PMTS was estimated from the {sup 1}H NMR analysis that indicated a ratio of the repeating units of 46:19 (MMA:MTS). For the Py-PNIPA-b-PMTS the composition rate in the copolymer was 61:25 (NIPA:MTS). Quenching of the pyrene species with N,N-diethylaniline, nitrobenzene, nitrophenol, potassium iodide, p-nitrotoluene and tetracyanoquinodimethane (TCNQ) in DMF solution excited at 348 nm was evidenced, more efficiently being nitrophenol and TCNQ. In this case, the monomer emission at 388-409 nm underwent a significant decrease caused of an electron transfer from the electron-reach photoexcited pyrene molecule to the electron-deficient quenchers. - Highlights: Black-Right-Pointing-Pointer Diblock copolymers combine the fluorescence of pyrene-PMMA (PNIPA) with the characteristics of PMTS. Black-Right-Pointing-Pointer Such copolymers could be used for nitroderivatives detecting. Black-Right-Pointing-Pointer UV/vis and fluorescence measurements give a good correlation for LCST of Py-PNIPA-Br.

  12. Preparation of Fe3 O4 @ion imprinted poly(MMA-HPMA-DVB)magnetic composite and its selective adsorption to Ni(Ⅱ)%磁性Fe3O4@离子印迹聚(MMA-HPMA-DVB)复合材料的合成及其对水中Ni(Ⅱ)选择性吸附

    Institute of Scientific and Technical Information of China (English)

    王燕; 叶思; 吕珊珊; 张佳丽; 沈昊宇; 叶仙森

    2017-01-01

    采用超声协助悬浮聚合法以Ni(Ⅱ)离子为模板制备了氨基功能化纳米Fe3O4-离子印迹聚(甲基丙烯酸甲酯(MMA)-3-(2-氨基乙基胺)-2-甲基丙烯酸羟丙酯(HPMA)-二乙烯基苯(DVB))磁性复合材料(Fe3O4@ion im-printed poly(MMA-HPMA-DVB),Fe3 O4@IIP(MMA-HPMA-DVB)).通过EA、XRD、FTIR、TEM、VSM等手段对Fe3O4@IIP(MMA-HPMA-DVB)的组成、结构、形貌、磁性等进行了表征,并研究了其吸附水中Ni(Ⅱ)的性能.结果表明:合成的Fe3O4@IIP(MMA-HPMA-DVB)平均粒径为100 nm,饱和磁化强度为43.8 emu/g;共聚单体甲基丙烯酸甲酯(MMA)的羰基通过氢键与Fe3O4表面羟基结合,有利于Fe3O4@IIP(MMA-HPMA-DVB)的核-壳结构的形成与稳定;Fe3O4@IIP(MMA-HPMA-DVB)对Ni(Ⅱ)的吸附受溶液pH值影响较小;等温吸附线符合Langmuir模型,饱和吸附量(q m,c=500 mg/g,q m,e=478 mg/g)高于非离子印迹材料(Fe3 O4@none-ion imprinted poly(MMA-HPMA-DVB),Fe3 O4@NIP(MMA-HPMA-DVB)),q m,c=90.9 mg/g,q m,e=83.8 mg/g).吸附过程可在5 min内达到平衡,符合准二级动力学模型.Fe3 O4@IIP(MMA-HPMA-DVB)能高选择性地有效吸附水中Ni(Ⅱ),对Ni(Ⅱ)的印迹因子(α)为1.9,对几种常见共存离子的选择性因子(β)>7.7,是潜在的高选择性吸附和回收Ni(Ⅱ)的功能材料.%An amino-functionalized Fe3 O4-ion imprinted poly(methyl methacrylate (MMA)-3-(2-amino-ethylami-no)-2-hydroxypropyl methacrylate (HPMA)-divinylbenzene(DVB))magnetic composite (Fe3 O4 @ion imprinted po-ly(IIP)(MMA-HPMA-DVB))was synthesized via ultrasonic assisted suspension polymerization with nickel(Ⅱ)as ion imprinting template.The Fe3 O4 @IIP(MMA-HPMA-DVB)was characterized by EA,XRD,FTIR,TEM,TG and VSM.The application for its adsorption properties on Ni(Ⅱ)from water was investigated.The results show that the Fe3 O4 @IIP(MMA-HPMA-DVB)has an average size of 100 nm,with the saturation magnetization intensity of 43.8 emu/g.The carbonyl group of the co-monomer methyl methacrylate (MMA)can connect

  13. 十八烷/聚(St-MMA)相变微胶囊制备及表征%Preparation and Characterization of n-Octadecane/P(St-MMA) Phase-change Microcapsules

    Institute of Scientific and Technical Information of China (English)

    武卫莉; 李江坤

    2017-01-01

    采用乳液聚合的方法,分别选取聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)或苯乙烯和甲基丙烯酸甲酯的共聚物为壁材,正十八烷为芯材,十二烷基苯磺酸钠(SDBS)为乳化剂,制作相变储能微胶囊.用粒径分析仪、透射电子显微镜(TEM)、热重分析仪(TG)和示差扫描量热测试仪(DSC)对微胶囊的形貌、相变热性能和热稳定性分别进行表征.结果表明:壁材选取两者共聚物,当两种单体的比例为St∶ MMA=1∶5,SDBS用量为1.5g(总质量的3%)时,微胶囊粒径大小均匀,粒子分散性好,壁材的包裹性好.微胶囊的放热峰为起始温度为27.3℃,终止温度为31.9℃,相变温度为28.9℃,相变焓为48.4J/g.TG表明长期使用温度不能超过131℃.IR分析微胶囊中含有芯材和壁材.这种十八烷/聚(St-MMA)相变微胶囊可以用于诸能材料.%A phase-change stored energy microcapsules were prepared by polymerization,in which polystyrene (PS),poly methyl methacrylate (PMMA) or copolymers of styrene and methyl methacrylate were used as shell materials,n-octadecane was used as a core material,and sodium dodecyl benzene sulfonate (SDBS) as a emulsifier.The morphology,phase-change thermal properties and thermal stability of microcapsules,respectively,were characterized by particle size analyzer,transmission electron microscope (TEM),thermogravimetric analyzer (TG) and differential scanning calorimetry (DSC).The results show that the particle size of microcapsules is uniform,the particle dispersion is good,and the shell is well wrapped when the copolymer of styrene (St) and methyl methacrylate (MMA),both mass ratio is 1∶5),is used as shell material,and sodium dodecyl benzene sulfonate content is 1.5g (3% of the total mass).The heat release peaks of microcapsules are at 27.3℃ of starting temperature,at 31.9℃ of end temperature,and the phase transformation temperature is 28.9℃,the phase-change enthalpy of microcapsules is 48.4J

  14. Solution Properties of Water-Soluble “Smart” Poly(N-acryloyl-N′-ethyl piperazine-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    G. Roshan Deen

    2012-01-01

    Full Text Available Water-soluble copolymers of N-acryloyl-N′-ethylpiperazine (AcrNEP with methyl methacrylate (MMA were synthesized to high conversion by free-radical solution polymerization. The composition of the copolymers was determined using Fourier Transform Infra-red Spectroscopy (FTIR. Copolymers containing AcrNEP content above 44 mol% were readily soluble in water and exhibited the critical solution temperature behavior. The copolymers were strongly responsive to changes in pH of the external medium due to the presence of tertiary amine functions that could be protonated at low pH. The influence of various factors such as copolymer composition, pH, temperature, salt and surfactant concentration on the LCST of the copolymers were systematically studied. The intrinsic viscosity of the copolymers in dimethyl formamide decreased with increase in temperature due to a decrease in thermodynamic affinity between polymer chains and solvent molecules. The viscosity behavior of the copolymers in sodium chloride solution was similar to that of classical polyelectrolytes and hydrophobically modified polyacrylate systems.

  15. Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yanchun; Li Gang [Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China); Yu Haipeng, E-mail: yuhaipeng20000@yahoo.com.cn [Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China); Liu Yixing, E-mail: yxl200488@sina.com [Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China)

    2012-01-15

    To convert the hydrophilic surface of wood into a hydrophobic surface, the present study investigated activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) as a method of grafting methyl methacrylate (MMA) onto the wood surface. The wood treated with 2-bromoisobutyryl bromide and with the subsequently attached MMA via ARGET ATRP under different polymerization times (2 h, 4 h, 6 h, 8 h) were examined using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. All the analyses confirmed that PMMA had been grafted onto the wood surface. Water contact angle measurement proved that the covering layer of PMMA on wood made the surface hydrophobic. Polymerization time had a positive influence on the contact angle value and higher contact angle can be produced with the prolongation of the polymerization time. When the reaction time was extended to 8 h, the contact angle of treated wood surface reached 130 Degree-Sign in the beginning, and remained at 116 Degree-Sign after 60 s. The ARGET ATRP method may raise an alteration on the wood surface modification.

  16. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries

    International Nuclear Information System (INIS)

    Liao Youhao; Rao Mumin; Li Weishan; Tan Chunlin; Yi Jin; Chen Lang

    2009-01-01

    Fumed silica was used as a dopant in the preparation of poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)) to improve the ionic conductivity of the P(MMA-AN-VAc)-based gel polymer electrolyte (GPE). The performance of the P(MMA-AN-VAc) membrane and its GPE for lithium ion battery use were studied by XRD, SEM, TGA, LSV, CA, EIS, and charge/discharge test. It is found that the doping of fumed silica in the P(MMA-AN-VAc) changes the membrane from semi-crystal to amorphous state and the pore structure of the membrane. By the doping of 10 wt.% fumed silica in the membrane, the porosity of the membrane increases with the pore dispersed more uniformly and interconnected and having higher electrolyte uptake, resulting in the improvement in ionic conductivity of the GPE from 3.48 x 10 -3 to 5.13 x 10 -3 S cm -1 at ambient temperature. On the other hand, the thermal stability of the membrane, the electrochemical stability of the GPE, and the cyclic performance of the battery are also improved.

  17. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Science.gov (United States)

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  18. Kinetics and mechanism of polymerization of methyl methacrylate ...

    Indian Academy of Sciences (India)

    Unknown

    Kinetics and mechanism of polymerization of methyl methacrylate initiated by stibonium ylide. A K SRIVASTAVA and AJEY KUMAR CHAURASIA. Department of Chemistry, H B Technological Institute, Kanpur 208 002, India e-mail: akspolym@rediffmail.com. MS received 6 September 2002; revised 25 July 2003. Abstract.

  19. Tri-n-Butylborane/WaterComplex-Mediated Copolymerization of Methyl Methacrylate with Proteinaceous Materials and Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Yoshinori Kadoma

    2010-11-01

    Full Text Available Previous studies of tri-n-butylborane–initiated graft copolymerization of methyl methacrylates with hydrated proteinous materials and proteins have focused on the number of grafted-poly (MMA branches as well as the percent graft and graft efficiency. The number of branches in silk fibroin is 1.3, whereas the number in collagen, gelatin, ovalbumin and wool are 0.1, 0.04, 0.02 and 0.03, respectively. The number of grafted-PMMA branches in synthetic poly-L-peptides is approximately 10-fold less than that in gelatin, and decline, in the order poly-Ala > poly-Ser > poly-Pro > poly-Glu > poly-Lys. By contrast, poly-Gly, poly-Tyr and poly-Leu have no branches. The co-catalytic effect (the ratio of the number of polymer formed relative to that of control of amino acids on tri-n-butylborane-initiated polymerization of MMA in the presence of water has been linearly correlated with their ionization potential (IPkoopman; |Äå HOMO (Highest Occupied Molecular Orbital| (r2 = 0.6, outliers: Cys and His; Äå HOMO = [åHOMOaqua − åHOMOvacuum] calculated using the semiempirical AM1 method. Also, a significant exponential relationship between the number of branches of poly-L-polypeptides and the Äå HOMO of the corresponding amino acids has been observed (r2 = 0.9. A possible grafting site of protein (polypeptide is discussed.

  20. Influence of Methacrylic-Acrylic Copolymer Composition on Plasticiser-free Optode Films for pH Sensors

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2003-03-01

    Full Text Available In this work we have examined the use of plasticiser-free polymeric films incorporating a proton selective chromoionophore for optical pH sensor. Four types of methacrylic-acrylic copolymers containing different compositions of n-butyl acrylate (nBA and methyl methacrylate (MMA were synthesised for use as optical sensor films. The copolymers were mixed with appropriate amounts of chromoionophore (ETH5294 and a lipophilic salt before spin coated on glass slides to form films for the evaluation of pH response using spectrophotometry. Co-polymer films with high nBA content gave good response and the response time depended on the film thickness. A preliminary evaluation of the optical films of high nBA content with pHs from 2 - 14 showed distinguishable responses from pH 5 - 9. However, the adhesion of the pH sensitive film was good for copolymers with higher content of MMA but not for films with high nBA.

  1. Modification of phase transitions in swift heavy ion irradiated and MMA-grafted ferroelectric fluoro-polymers

    International Nuclear Information System (INIS)

    Petersohn, E.; Betz, N.; Le Moel, A.

    1994-01-01

    Ferroelectric polyvinylidene fluoride (β) and copolymers of vinylidene fluoride trifluoroethylene (P(VDF/TrFE)) films were irradiated with swift heavy ions and post irradiation grafted with methyl methacrylate (MMA). We have studied the influence of irradiation parameters such as the ion fluence, the type of ion and the electronic stopping power, on the melting and crystallization temperatures and the ferroelectric-paraelectric phase transitions, by differential scanning calorimetry (DSC) and dielectric measurements. The relation between the shift in the transition temperatures and the ion fluence is described by a single term equation. Ion track grafting with MMA affects the ferroelectric-paraelectric phase transitions in P(VDF/TrFE) and leads to a strong amorphization of the polymer films. The grafting in β PVDF occurs mainly on the surface of the samples and no change in the transition temperatures is observed. (authors). 12 refs., 6 figs., 2 tabs

  2. Research of Polylactic Acid Modiifed by Polymethyl Acrylate-Methyl Methacrylate Copolymer%聚丙烯酸甲酯-甲基丙烯酸甲酯共聚物改性聚乳酸的研究

    Institute of Scientific and Technical Information of China (English)

    苏桂仙; 李光辉; 和芹; 李德玲

    2015-01-01

    为了提高聚乳酸(PLA)的韧性,采用聚丙烯酸甲酯-甲基丙烯酸甲酯(PMA-MMA)对PLA进行共混改性。采用悬浮聚合法,以丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)为共聚单体,制备珠粒状的PMA-MMA共聚物。通过熔融共混法,分别以PMA-MMA共聚物为增韧剂,聚乙二醇为增塑剂,聚乙烯蜡为润滑剂,对PLA进行改性,对改性后的PLA复合材料的热性能和力学性能进行研究。结果表明,随着PMA-MMA共聚物用量的增加,PLA复合材料的拉伸强度呈先增大后减小的趋势,而断裂伸长率和冲击强度不断增大。当PMA-MMA共聚物用量为15份时, PLA复合材料的拉伸强度达到最大值,为52.2 MPa;当PMA-MMA共聚物用量为25份时,PLA复合材料冲击强度为53.26 kJ/m2,是纯PLA的4.4倍,断裂伸长率为54.9%。PMA-MMA共聚物与PLA的相容性好,有明显的增韧作用。PMA-MMA共聚物的加入并未降低PLA复合材料的热性能。%In order to improve the toughness of poly(lactic acid)(PLA),polymethyl acrylate-methyl methacrylate(PMA-MMA) copolymer was used to mix with PLA. Methyl acrylate (MA) and methyl methacrylate(MMA) were used as the monomers for the preparation of PMA-MMA copolymer by means of suspention polymerization. PLA and PMA-MMA copolymer were melt-blended with polyethylene glycol(PEG) as a plasticizer and polyethylene as a lubricant. The modified PLA composites were studied by means of heat resistance and mechanical properties. The results show that with the increase of PMA-MMA copolymer content, the elongation at break and impact strength of the composites are improved,and its tensile strength increases first and then decreases. While the content of PMA-MMA copolymer is 15 phr,the tensile strength of the composite has the best tensile strength of 52.2 MPa. While the content of PMA-MMA copolymer is 25 phr,the impact strength of the composite is 53.26 kJ/m2,which is the 4.4 times of the pure PLA

  3. Effects of mass fraction of monomer on emulsion polymerization nucleation of methyl methacrylate%w(MMA)对MMA乳液聚合成核的影响

    Institute of Scientific and Technical Information of China (English)

    成涛涛; 孙彦琳; 何艳萍; 王红; 肖小琴; 许冰文

    2015-01-01

    以甲基丙烯酸甲酯(MMA)为单体,在c(乳化剂)=2 mmol/L下制备乳液,研究不同w(MMA)对MMA乳液聚合成核的影响,并分析了不同w(MMA)对乳胶粒粒径的影响规律.实验结果表明:当w(MMA)≤10%,随着w(MMA)的增加转化率逐渐增大,乳胶粒的生成速率也逐渐增大;当w(MMA)≥10%时,转化率可以达到70%以上,w(MMA)对乳胶粒的生成速率的影响不大,多余的单体用于乳胶粒粒径的增长;在w(MMA)=10%时基本能够满足c(乳化剂)=2 mmol/L时的成核要求.当5%≤w(MMA)≤30%,在乳化剂的自调节作用下,使得最终形成的乳胶粒数目相差不大.

  4. Effect of PVA-co-MMA Copolymer on the Physical, Mechanical, and Thermal Properties of Tropical Wood Materials

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    Full Text Available The present study demonstrates the effect of copolymer on the physical, mechanical, and thermal properties of tropical wood and wood polymer composites (WPCs. Mixed monomers of methyl methacrylate (MMA and polyvinyl alcohol (PVA were effectively impregnated into the cellular structure of several types of tropical wood, which then underwent a catalyst-thermal process to polymerize and form WPC. The manufacturing of WPC was confirmed through Fourier transform infrared (FTIR spectroscopy and scanning electron microscopic (SEM analysis. The SEM observation showed that polymer converted from monomers filled up wood cell cavities and tightly interacted with wood matrix. The X-ray diffraction results reveal that the degree of crystallinity was significantly improved upon impregnation with PVA-co-MMA copolymer. The modulus of elasticity (MOE and compressive modulus were found to be significantly higher after treatment with MMA/PVA indicating improvement of mechanical properties of the wood samples. In addition, the modified WPC had lower water absorption compared to their corresponding raw samples. It is interesting to note that thermogravimetric (TGA analysis shows an extensive improvement in thermal properties of WPC.

  5. Increased radiation degradation in methyl methacrylate copolymers

    International Nuclear Information System (INIS)

    Helbert, J.N; Wagner, G.E.; Caplan, P.J.; Poindexter, E.H.

    1975-01-01

    The effect of polar substituents at the quaternary carbon on degradation processes in several polymers and 10 to 20 percent copolymers of methyl methacrylate was explored. EPR was used to monitor radiation degradation products and to determine radiation G values. Irradiations were carried out at 77 0 K in a gamma irradiator at a dose rate of 0.3 Mrad/hr. (U.S.)

  6. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    Directory of Open Access Journals (Sweden)

    Canan Bural

    2011-08-01

    Full Text Available OBJECTIVES: Residual methyl methacrylate (MMA may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r on in vitro cytotoxicity of L-929 fibroblasts. MATERIAL AND METHODS: A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1 at 74ºC for 9 h, (2 at 74ºC for 9 h and terminal boiling (at 100ºC for 30 min, (3 at 74ºC for 9 h and terminal boiling for 3 h, (4 at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl-3,4-tetrazolium]bis(4-methoxy-6-nitrobenzenesulphonic acid assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05. RESULTS: [MMA]r was significantly (p<0.001 higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01 lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05 for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. CONCLUSION: Due to reduction of leaching residual MMA concentrations, use of terminal boiling in

  7. PREPARATION AND PROPERTIES OF MMA/1-PROPYLMETHACRYLATE-POSS COPOLYMER WITH ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    He-xin Zhang; Ho-young Lee; Young-jun Shin; Dong-ho Lee; Seok Kyun Noh

    2008-01-01

    The methyl methacrylate(MMA)/1-propylmethacrylate-polyhedral oligomeric silsesquioxane(PM-POSS) copolymers were synthesized via atom transfer radical polymerization with CuBr as catalyst.The unreacted PM-POSS monomer could be removed completely by washing the copolymerization product with n-hexane.The copolymers were characterized with 1H-NMR,X-ray diffraction,difierential scanning calorimetry,thermogravimetric analysis and gel permeatlon chromatography.With increasing PM-POSS feed ratio.the total conversion increased while the glass transition temperatures of copolymer decreased.The thermogravimetric analysis demonstrated that the thermal stability of copolymer improved slightly with PM-POSS addition.The molecular weight of copolymers increased with incorporation of PM-POSS.

  8. Tuning Surface Properties of Poly(methyl methacrylate) Film Using Poly(perfluoromethyl methacrylate)s with Short Perfluorinated Side Chains.

    Science.gov (United States)

    Sohn, Eun-Ho; Ha, Jong-Wook; Lee, Soo-Bok; Park, In Jun

    2016-09-27

    To control the surface properties of a commonly used polymer, poly(methyl methacrylate) (PMMA), poly(perfluoromethyl methacrylate)s (PFMMAs) with short perfluorinated side groups (i.e., -CF3, -CF2CF3, -(CF3)2, -CF2CF2CF3) were used as blend components because of their good solubility in organic solvents, low surface energies, and high optical transmittance. The surface energies of the blend films of PFMMA with the -CF3 group and PMMA increased continuously with increasing PMMA contents from 17.6 to 26.0 mN/m, whereas those of the other polymer blend films remained at very low levels (10.2-12.6 mN/m), similar to those of pure PFMMAs, even when the blends contained 90 wt %PMMA. Surface morphology and composition measurements revealed that this result originated from the different blend structures, such as lateral and vertical phase separations. We expect that these PFMMAs will be useful in widening the applicable window of PMMA.

  9. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    Institute of Scientific and Technical Information of China (English)

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  10. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-methyl methacrylate copolymers. 177.1830 Section 177.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Us...

  11. Assessment of the skin sensitising potency of the lower alkyl methacrylate esters.

    Science.gov (United States)

    Kimber, Ian; Pemberton, Mark A

    2014-10-01

    There is continued interest in, and imperatives for, the classification of contact allergens according to their relative skin sensitising potency. However, achieving that end can prove problematic, not least when there is an apparent lack of concordance between experimental assessments of potency and the prevalence allergic contact dermatitis as judged by clinical experience. For the purpose of exploring this issue, and illustrating the important considerations that are required to reach sound judgements about potency categorisation, the lower alkyl methacrylate esters (LAM) have been employed here as a case study. Although the sensitising potential of methyl methacrylate (MMA) has been reviewed previously, there is available new information that is relevant for assessment of skin sensitising potency. Moreover, for the purposes of this article, analyses have been extended to include also other LAM for which relevant data are available: ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), isobutyl methacrylate (iBMA), and 2-ethylhexyl methacrylate (EHMA). In addressing the skin sensitising activity of these chemicals and in drawing conclusions regarding relative potency, a number of sources of information has been considered, including estimates of potency derived from local lymph node assay (LLNA) data, the results of guinea pig assays, and data derived from in silico methods and from recently developed in vitro approaches. Moreover, clinical experience of skin sensitisation of humans by LAM has also been evaluated. The conclusion drawn is that MMA and other LAM are contact allergens, but that none of these chemicals has any more than weak skin sensitising potency. We have also explored here the possible bases for this modest sensitising activity. Finally, the nature of exposure to LAM has been reviewed briefly and on the basis of that information, together with an understanding of skin sensitising potency, a risk assessment has been prepared. Copyright © 2014

  12. Flexible Polymeric Materials Prepared by Radiation Copolymerization of MMA/ Pyridene in the Presence of Acrylic Acid

    International Nuclear Information System (INIS)

    Hegazy, D.E.

    2014-01-01

    Gamma-irradiation initiated copolymerization of methyl methacrylate (MMA) and pyridine (Py) was carried out at room temperature.To improve the obtained copolymer functionality and molecular weight, acrylic acid (AA) was incorporated into the mixture during irradiation. The samples were characterized by thermal analysis techniques (DSC and TGA), Fourier transform infrared spectroscopy (FTIR) and UV-VIS spectrometry. Molecular weight of the obtained copolymers was determined using gel permeation chromatography (GPC). The variation of refractive index and surface hardness with the molecular weight were also investigated. The results obtained show a decrease in glass transition temperature and the hardness (shore D) of the supporting matrix for P(MMA/Py) copolymers with a pronounced increase of the molecular weight. The addition of PAA into the matrix enhanced the hardness and shifts the glass transition temperature to a little higher temperature with a pronounced decrease in the melting temperature. The obtained materials maintain good structural order and flexibility resulting from the softening effect of pyridine onto MMA matrix. The studies performed made possible the selection of experimental conditions to be adequate for the production of new co polymeric materials with high molecular weight that having good flexibility and transparent properties.

  13. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, S.R.; Cardoso, H.R.P. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Oliveira, C.T. [ICET, University Feevale, RS-239, 2755 Novo Hamburgo, RS (Brazil); Santana, J.A.; Sarmento, V.H.V. [Department of Chemistry, Federal University of Sergipe – UFS, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Muller, I.L. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Malfatti, C.F., E-mail: celia.malfatti@ufrgs.br [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2014-04-01

    Highlights: • Siloxane–PMMA film was produced by dip-coating on tin plate substrate. • It was evaluated the influence of (TEOS) addition on siloxane–PMMA hybrid films. • Siloxane–PMMA films without TEOS presented a regular coverage and lowest roughness. • The TEOS addition decrease the corrosion resistance of siloxane–PMMA films. • Siloxane–PMMA without TEOS presented is higher durability in the film wear test. - Abstract: The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane–poly (methyl methacrylate) (PMMA) hybrid film prepared by sol–gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane–PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase

  14. New cobalt-mediated radical polymerization (CMRP of methyl methacrylate initiated by two single-component dinuclear β-diketone cobalt (II catalysts.

    Directory of Open Access Journals (Sweden)

    Feng Bao

    Full Text Available Two dinuclear cobalt complexes based on bis-diketonate ligands (ligand 1: 3,3'-(1,3-phenylenebis(1-phenylpropane-1,3-dione; ligand 2: 3,3'-(1,4-phenylenebis(1-phenylpropane-1,3-dione were successfully synthesized. The two neutral catalysts all showed satisfactory activities in the cobalt-mediated radical polymerization (CMRP of methyl methacrylate (MMA with the common initiator of azodiisobutyronitrile (AIBN. The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities. Mono- or dicomponent low polydispersity polymers could be obtained by using the two dinuclear catalysts under proper reaction conditions. All these improvements facilitate the implementation of the acrylate CMRP and open the door to the scale-up of the syntheses and applications of the multicomponent low polydispersity polymers.

  15. Redox-initiated poly(methyl methcrylate) emulsion polymerizations stabilized with block copolymers based on poly(ethylene oxide), e-caprolactone and linoleic acid

    NARCIS (Netherlands)

    Tan, B.H.; Nabuurs, Tijs; Feijen, Jan; Grijpma, Dirk W.

    2009-01-01

    A redox initiating system, consisting of t-butyl hydroperoxide (tBHPO), isoascorbic acid (iAA), and ethylenediaminetetraacetic acid ferric-sodium salt (FeEDTA) was employed in emulsion polymerizations of methyl methacrylate (MMA) at high solids contents of 30 wt % in water. The system was stabilized

  16. Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties

    International Nuclear Information System (INIS)

    Ilangovan, Pugazhenthi; Sakvai, Mohammed Safiullah; Kottur, Anver Basha

    2017-01-01

    A crucial need to design a functionally active polymer hybrid for the protection of material structure that are exposing to harmful Ultra Violet radiation (UV). In this paper a poly(pyridine-4-yl-methyl) methacrylate ZnO nanocomposite (PPyMMA/ZnO) was developed by in-situ solution polymerization. The X-ray diffraction (XRD) studies confirmed that the nanocomposite is homogeneous with good compatibility between the two counterparts. The morphological variation arises owing to the incorporation of OA-ZnO in the PPyMMA were observed by using electron microscope techniques. The thermal behaviour of PPyMMA and its ZnO nanocomposites were analysed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of the polymer and its ZnO nanocomposites were studied over a wide range of temperature (30–300 °C) at frequency 100 KHz. An optical study was carried out to test the optical properties of PPyMMA/ZnO (2, 5 and 5%), which reveals that 2% ZnONPs loading exhibits an excellent UV shielding properties. - Highlights: • The PPyMMA/ZnO was prepared by in-situ solution polymerization. • The OA-ZnO were incorporated during the solution polymerization of PPyMMA. • The PPyMMA/ZnO nanocomposite exhibit an improved dielectric property. • The PPyMMA with OA-ZnO nanocomposite show an excellent UV-shielding.

  17. Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Ilangovan, Pugazhenthi; Sakvai, Mohammed Safiullah; Kottur, Anver Basha, E-mail: kanverbasha@gmail.com

    2017-06-01

    A crucial need to design a functionally active polymer hybrid for the protection of material structure that are exposing to harmful Ultra Violet radiation (UV). In this paper a poly(pyridine-4-yl-methyl) methacrylate ZnO nanocomposite (PPyMMA/ZnO) was developed by in-situ solution polymerization. The X-ray diffraction (XRD) studies confirmed that the nanocomposite is homogeneous with good compatibility between the two counterparts. The morphological variation arises owing to the incorporation of OA-ZnO in the PPyMMA were observed by using electron microscope techniques. The thermal behaviour of PPyMMA and its ZnO nanocomposites were analysed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of the polymer and its ZnO nanocomposites were studied over a wide range of temperature (30–300 °C) at frequency 100 KHz. An optical study was carried out to test the optical properties of PPyMMA/ZnO (2, 5 and 5%), which reveals that 2% ZnONPs loading exhibits an excellent UV shielding properties. - Highlights: • The PPyMMA/ZnO was prepared by in-situ solution polymerization. • The OA-ZnO were incorporated during the solution polymerization of PPyMMA. • The PPyMMA/ZnO nanocomposite exhibit an improved dielectric property. • The PPyMMA with OA-ZnO nanocomposite show an excellent UV-shielding.

  18. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  19. Synthesis of α-Bromine- Terminated Polystyrene Macroinitiator and Its Initiation of MMA Polymerization by ATRP

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. Α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93.8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate(MMA) in the presence of copper(Ⅰ) halogen and 2,2-bipyridine(bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1.2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by 1H NMR spectra.

  20. CuX2络合物催化甲基丙烯酸甲酯的氧化聚合%CuX2 COMPLEX-CATALYZED OXIDATIVE POLYMERIZATIONS OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    孙燕; 孙晋; 宋瑾; 黄文艳; 蒋必彪; 翟光群

    2011-01-01

    Oxidative polymerizations of methyl methacrylate ( MMA) catalyzed by complexes of transition metal halides in high oxidation states were investigated. First, CuBr2/2, 2'-bipyridine ( bPy)-catalyzed oxidative polymerizations of MMA in the presence of poly (2-( N, iV-dimethylamino) ethyl methacrylate) were performed in different solvents. When cyclohexanone was used as a solvent, only poly ( methyl methacrylate) ( PMMA) was obtained, suggesting redox initiation between CuBr2/bPy and tertiary amines in cyclohexanone is negligible. Second, oxidative polymerizations of MMA catalyzed by different complexes were carried out. Complexes of CuCl2 ,CuBr2 or FeCl3 with bPy,N,N,/V',N",/V"-pentamethyldiethylenetriamine or N,N,N',N'-tetramethylethylenediamine can catalyze oxidative polymerizations of MMA, and polymerization rates increased with the increase of the catalyst concentration. Molecular weight of PMMA increases with monomer conversions initially and maintains constant later. Last,atom transfer radical polymerization ( ATRP) chain extension using PMMA from the oxidative polymerizations at different conversions was performed. The results show the C-X functionality of PMMA chains at low conversion was also 100% ,and it decreased sharply with conversions. Two different mechanisms were conceived to contribute to the oxidative polymerization of MMA: (1) the complexes form ATRP initiators and catalysts with MMA via monomer addition, and then ATRP proceeds to give rise to PMMA chains with C-X terminal groups; (2) the complexes catalyze/initiate conventional free radical polymerizations of MMA.%研究了高氧化态过渡金属卤化物络合物催化甲基丙烯酸甲酯(MMA)的氧化聚合.首先在叔胺类聚合物存在条件下以CuBr2/2,2′-联吡啶(bPy)络合物催化MMA在不同溶剂中的氧化聚合,结果在环己酮中得到PMMA均聚物,CuBr2/b

  1. A highly selective sorbent for removal of Cr(VI) from aqueous solutions based on Fe3O4/poly(methyl methacrylate) grafted Tragacanth gum nanocomposite: Optimization by experimental design

    International Nuclear Information System (INIS)

    Sadeghi, Susan; Rad, Fatemeh Alavi; Moghaddam, Ali Zeraatkar

    2014-01-01

    In this work, poly(methyl methacrylate) grafted Tragacanth gum modified Fe 3 O 4 magnetic nanoparticles (P(MMA)-g-TG-MNs) were developed for the selective removal of Cr(VI) species from aqueous solutions in the presence of Cr(III). The sorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), and thermo-gravimetric analysis (TGA). A screening study on operational variables was performed using a two-level full factorial design. Based on the analysis of variance (ANOVA) with 95% confidence limit, the significant variables were found. The central composite design (CCD) has also been employed for statistical modeling and analysis of the effects and interactions of significant variables dealing with the Cr(VI) uptake process by the developed sorbent. The predicted optimal conditions were situated at a pH of 5.5, contact time of 3.4 h, and 3.0 g L −1 dose. The Langmuir, Freundlich, and Temkin isotherm models were used to describe the equilibrium sorption of Cr(VI) by the absorbent, and the Langmuir isotherm showed the best concordance as an equilibrium model. The adsorption process was followed by a pseudo-second-order kinetic model. Thermodynamic investigations showed that the biosorption process was spontaneous and exothermic. - Highlights: • Fe3O4 nanoparticles were modified with Poly(methyl methacrylate) grafted Tragacanth gum • P(MMA)-g-TG -MNPs can preferentially adsorb Cr(VI) in the presence of Cr(III) • The effects of operational parameters on Cr(VI) removal were evaluated by RSM • Adsorption mechanism, kinetics, and isotherm have been explored • The sorbent was successfully used to remove Cr(VI) from different water samples

  2. Fabrication of poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer as a self-embrittling strippable coating for radioactive decontamination

    International Nuclear Information System (INIS)

    Liu Renlong; Zhang Huiyan; Li Yintao; Zhou Yuanlin; Zhang Quanping; Zheng Jian; Wang Shanqiang

    2016-01-01

    The poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer with different monomer compositions was synthesized via reversible addition-fragmentation chain transfer polymerization. Meanwhile, a novel self-embrittling strippable coating was prepared using the diblock copolymers, which is proposed to be used as radioactive decontamination agents without manual operation. Furthermore, the decontamination efficiencies of self-embrittling strippable coatings for radioactive contamination on glass, marble, and stainless steel surfaces were studied. (author)

  3. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  4. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  5. Synthesis of Isotactic-block-Syndiotactic Poly(methyl Methacrylate via Stereospecific Living Anionic Polymerizations in Combination with Metal-Halogen Exchange, Halogenation, and Click Reactions

    Directory of Open Access Journals (Sweden)

    Naoya Usuki

    2017-12-01

    Full Text Available Isotactic (it- and syndiotactic (st- poly(methyl methacrylates (PMMAs form unique crystalline stereocomplexes, which are attractive from both fundamental and application viewpoints. This study is directed at the efficient synthesis of it- and st-stereoblock (it-b-st- PMMAs via stereospecific living anionic polymerizations in combination with metal-halogen exchange, halogenation, and click reactions. The azide-capped it-PMMA was prepared by living anionic polymerization of MMA, which was initiated with t-BuMgBr in toluene at –78 °C, and was followed by termination using CCl4 as the halogenating agent in the presence of a strong Lewis base and subsequent azidation with NaN3. The alkyne-capped st-PMMA was obtained by living anionic polymerization of MMA, which was initiated via an in situ metal-halogen exchange reaction between 1,1-diphenylhexyl lithium and an α-bromoester bearing a pendent silyl-protected alkyne group. Finally, copper-catalyzed alkyne-azide cycloaddition (CuAAC between these complimentary pairs of polymers resulted in a high yield of it-b-st-PMMAs, with controlled molecular weights and narrow molecular weight distributions. The stereocomplexation was evaluated in CH3CN and was affected by the block lengths and ratios.

  6. Composite poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen.

    Science.gov (United States)

    Miksa, B; Wilczynska, M; Cierniewski, C; Basinska, T; Slomkowski, S

    1995-01-01

    Poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex (ACRYLAT) was synthesized by radical precipitation polymerization. The mass median diameter (MMD) and the geometrical standard deviation (GSD) of the ACRYLAT particles were 138 nm and 1.2, respectively. The concentration of the titrable carboxylic groups in the surface layer of latex particles was equal to 8.41 x 10(-6) mol m-2. Latex was able to bind up to 2.82 x 10(-7) mol of 1-aminopyrene per 1 m2 of the surface of the latex particles due to the ionic interactions between carboxylate anions and ammonium cations of protonated 1-aminopyrene. ACRYLAT was able to immobilize covalently human serum albumin in amounts up to 0.23 mg m-2. Aggregation of ACRYLAT with immobilized HSA, induced with specific antibodies (anti-HSA), was investigated turbidimetrically. The results indicated that in the model turbidimetric immunoassay, ACRYLAT coated with HSA can be used for the detection of anti-HSA in the goat anti-HSA serum diluted from 50 to 7000-fold. Immobilization of rabbit antibodies to plasminogen (anti-Plg) to ACRYLAT via the epsilon-aminocaproic acid linkers provided particles which were used for the development of the turbidimetric immunoassay for plasminogen. In this assay plasminogen could be detected in concentration ranging from 0.75 to 75 micrograms ml-1 in the blood plasma.

  7. EFFECT OF THE PHASE STRUCTURE EVOLUTION ON THE PROPERTIES OF FILMS FORMED FROM PBA/P(ST-CO-MMA)COMPOSITE LATEX

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A group of heterogeneous latexes poly(butyl acrylate)/poly(styrene-co-methyl methacrylate)(PBA/P(St-co-MMA))were prepared by a semi-continuous seeded emulsion polymerization process under monomer starved conditions.The glass transition temperature(Tg)and the mechanical properties of the film formed from the composite latex changed with the evolution of the particle morphology.A photon transmission method was used to monitor the phase structure evolution of films which were prepared from core-shell PBA/P(St-co-MMA)latex at room temperature and annealed at 383 K above Tg of the polymers.In addition,the changes of the surface of the film formed from the composite latex with time at 383 K were observed by AFM.The evidence illustrated that the film formed from the core-shell latex particles was metastable.The rearrangement of the phases could occur under proper conditions.

  8. Neural Network Models for Free Radical Polymerization of Methyl Methacrylate

    International Nuclear Information System (INIS)

    Curteanu, S.; Leon, F.; Galea, D.

    2003-01-01

    In this paper, a neural network modeling of the batch bulk methyl methacrylate polymerization is performed. To obtain conversion, number and weight average molecular weights, three neural networks were built. Each was a multilayer perception with one or two hidden layers. The choice of network topology, i.e. the number of hidden layers and the number of neurons in these layers, was based on achieving a compromise between precision and complexity. Thus, it was intended to have an error as small as possible at the end of back-propagation training phases, while using a network with reduced complexity. The performances of the networks were evaluated by comparing network predictions with training data, validation data (which were not uses for training), and with the results of a mechanistic model. The accurate predictions of neural networks for monomer conversion, number average molecular weight and weight average molecular weight proves that this modeling methodology gives a good representation and generalization of the batch bulk methyl methacrylate polymerization. (author)

  9. Potassium diperiodatocuprate-mediated preparation of poly(methyl methacrylate/organo-montmorillonite composites via in situ grafting copolymerization

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available In this study, potassium diperiodatocuprate (Cu3+ was selected as an initiator to prepare poly(methyl methacrylate/organo-montmorillonite composites (OMMT-g-PMMA by in situ graft copolymerization. Three synthetic parameters were systematically evaluated as a function of the temperature, the concentration of initiator, pH and the ratio of MMA to OMMT. It was found that Cu3+ was a highly efficient initiator for the preparation of OMMT-g-PMMA i.e., monomer conversion and grafting efficiency were as higher as 95%. The X-ray diffraction measurement showed the intercalation of PMMA chains into OMMT layers on base of an increasing basal spacing after polymerization. FTIR analysis also suggested that the PMMA chains were effectively grafted onto OMMT substrate. The enhanced thermal stabilities of OMMT-g-PMMA composites were confirmed by the thermal gravimetric analysis (TGA. Finally, a single-electron-transfer mechanism was proposed to illustrate the formation of radicals and the preparation process of OMMT-g-PMMA composites. Cu3+ can be used as an effective and practical initiator in preparing the organic/inorganic composite due to its high grafting efficiency and the milder reaction condition.

  10. Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1976-01-01

    Aerosol is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene--Aerosil 300 system and the methyl methacrylate--Aerosil 300 system were similar to those of the styrene-silica gel and methyl methacrylate-silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene--silica gel and methyl methacrylate--silica gel systems the impurities and the presence of micropores have almost no effect on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene--Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization

  11. A highly selective sorbent for removal of Cr(VI) from aqueous solutions based on Fe{sub 3}O{sub 4}/poly(methyl methacrylate) grafted Tragacanth gum nanocomposite: Optimization by experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Susan, E-mail: ssadeghi@birjand.ac.ir; Rad, Fatemeh Alavi; Moghaddam, Ali Zeraatkar

    2014-12-01

    In this work, poly(methyl methacrylate) grafted Tragacanth gum modified Fe{sub 3}O{sub 4} magnetic nanoparticles (P(MMA)-g-TG-MNs) were developed for the selective removal of Cr(VI) species from aqueous solutions in the presence of Cr(III). The sorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), and thermo-gravimetric analysis (TGA). A screening study on operational variables was performed using a two-level full factorial design. Based on the analysis of variance (ANOVA) with 95% confidence limit, the significant variables were found. The central composite design (CCD) has also been employed for statistical modeling and analysis of the effects and interactions of significant variables dealing with the Cr(VI) uptake process by the developed sorbent. The predicted optimal conditions were situated at a pH of 5.5, contact time of 3.4 h, and 3.0 g L{sup −1} dose. The Langmuir, Freundlich, and Temkin isotherm models were used to describe the equilibrium sorption of Cr(VI) by the absorbent, and the Langmuir isotherm showed the best concordance as an equilibrium model. The adsorption process was followed by a pseudo-second-order kinetic model. Thermodynamic investigations showed that the biosorption process was spontaneous and exothermic. - Highlights: • Fe3O4 nanoparticles were modified with Poly(methyl methacrylate) grafted Tragacanth gum • P(MMA)-g-TG -MNPs can preferentially adsorb Cr(VI) in the presence of Cr(III) • The effects of operational parameters on Cr(VI) removal were evaluated by RSM • Adsorption mechanism, kinetics, and isotherm have been explored • The sorbent was successfully used to remove Cr(VI) from different water samples.

  12. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Suegama, P.H. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Sarmento, V.H.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Benedetti, A.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); de Melo, H.G.; Aoki, I.V. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Santilli, C.V., E-mail: santilli@iq.unesp.b [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2010-07-15

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  13. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    International Nuclear Information System (INIS)

    Suegama, P.H.; Sarmento, V.H.V.; Montemor, M.F.; Benedetti, A.V.; de Melo, H.G.; Aoki, I.V.; Santilli, C.V.

    2010-01-01

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  14. Mössbauer studies of iron doped poly(methyl methacrylate) before ...

    Indian Academy of Sciences (India)

    Unknown

    Mössbauer studies of iron doped poly(methyl methacrylate) before and after ion beam modification. D R S SOMAYAJULU, C N MURTHY†, D K AWASTHI‡, N V PATEL and M SARKAR. Physics Department, Faculty of Science, MS University of Baroda, Vadodara 390 002, India. †Applied Chemistry Department, Faculty ...

  15. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    Science.gov (United States)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  16. Radiation graft copolymerization of styrene with m/e and styrene with acrylic acid at highthyl methacryl dose rate

    International Nuclear Information System (INIS)

    Aliev, R.Eh.; Kabanov, B.Ya.

    1984-01-01

    Comparative investigation of radiation graft copolymerization of styrene with methyl methacrylate (MMA) and styrene with acrylic acid (AA) is carried out at considerably differing radiation dose rates. The monomer mixture was grafted to PE low density films at dose rates of 0.16, 0.25 Gy/s (1 MeV electron acceleration). The value of graft was 3-6 and 5-10%, respectively, for the styrene-MMA and styrene-AA systems. An essential difference in the dependences of the formed copolymer composition on initial monomer mixture composition is noticed. Difference in composition of graft polymers prepared at different dose rates is less for the systems with AA, than for systems with MMA. It is shown that at high dose rates in difference with low ones not only radical graft copolymerization of the styrene mixture with AA takes place, but a contribution of the graft styrene polymerization according to cation mechanism as well

  17. Preparation and its drug release property of radiation-polymerized poly(methyl methacrylate) capsule including potassium chloride

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1979-01-01

    Porous flat circular capsules including KCl as a drug were prepared by radiation-induced polymerization of methyl methacrylate at room temperature in the presence of polyethylene glycol No. 600. The porous structure can be controlled by the methyl methacrylate-polyethylene glycol No. 600 composition. The amount of drug released was linearly related to the square root of time. The magnitude of drug release increased roughly in proportional to the water content of capsule, which can be related to porosity in the capsule. (author)

  18. NMR measurement of identical polymer samples by round robin method. 4. Analysis of composition and monomer sequence distribution in poly(methyl methacrylate-co-acrylonitrile) leading to determinations of monomer reactivity ratios

    International Nuclear Information System (INIS)

    Hatada, Koichi; Kitayama, Tatsuki; Terawaki, Yoshio

    1995-01-01

    In order to assess the reliability of NMR measurement of polymers, 1 H and 13 C NMR data for three copolymers of methyl methacrylate (MMA) and acrylonitrile (AN) prepared with AIBN were collected from 46 spectrometers whose resonance frequencies for 1 H NMR measurements ranging from 90 to 500 MHz. 1 H and 13 C NMR spectra were measured in nitrobenzene-d 5 at 110degC and acetonitrile-d 3 at 70degC, respectively. Standard deviations (σ's) for chemical shift measurements of the 1 H and 13 C NMR signals were 0.003-0.008 ppm and 0.03-0.05 ppm, respectively. Compositions of the copolymers were determined from the relative intensities of the signals due to the OCH 3 (MMA) and CH (AN) protons, and the σ values for the determinations were 3.7-9.5%. The compositions determined from 13 C NMR (C = O for MMA unit, CN for AN unit) agreed well with those obtained from 1 H NMR. Monomer reactivity ratios r ij (i,j = 1 or 2) for a penultimate model were determined from monomer feed ratios and triad fractions obtained from the C = O (MMA) and CH (AN) carbon signals. Most of the σ values for r ij determinations were 5-14%. While r 22 and r 12 are nearly equivalent, r 11 and r 21 are significantly different from each other, indicating a possible existence of the penultimate-unit effect in the copolymerization of MMA and AN. Terminal model reactivity ratios, r 1 and r 2 , determined formally from the compositions of three samples by Fineman-Ross method showed large σ values (22-24%). (author)

  19. Refractive microlenses produced by excimer laser machining of poly(methyl methacrylate)

    DEFF Research Database (Denmark)

    Jensen, Martin Frøhling; Krühne, Ulrich; H., L.

    2005-01-01

    A method has been developed whereby refractive microlenses can be produced in poly (methyl methacrylate) by excimer laser irradiation at λ = 248 nm. The lenses are formed by a combined photochemical and thermal process. The lenses are formed as depressions in the substrate material (negative foca...

  20. Radical-Scavenging Activity of Thiols, Thiobarbituric Acid Derivatives and Phenolic Antioxidants Determined Using the Induction Period Method for Radical Polymerization of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2012-04-01

    Full Text Available The radical-scavenging activities of two thiols, eight (thiobarbituric acid derivatives and six chain-breaking phenolic antioxidants were investigated using the induction period method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2’-azobisisobutyronitrile (AIBN and monitored by differential scanning calorimetry (DSC. The induction period (IP for the thiols 2-mercaptoethanol (ME and 2-mercapto-1-methylimidazole (MMI was about half that for phenolic antioxidants. Except for the potent inhibitor 5,5-dimethyl-2-thiobarbituric acid (3, the IP for thiobarbituric acid derivatives was about one tenth of that for phenolic antioxidants. The IP for 1,3,5-trimethyl-2-thiobarbituric acid (1 and 5-allyl-1, 3-dimethyl-2-thiobarbituric acid (7 was less than that of the control, possibly due to inhibition by a small amount of atmospheric oxygen in the DSC container. The ratio of the chain inhibition to that of chain propagation (CI/CP for the thiols and thiobarbituric acid compounds except for 1, 3 and 7 was about 10 times greater or greater than that for phenolic compounds. A kinetic chain length (KCL about 10% greater than that of the control was observed for 1, suggesting that 1 had chain transfer reactivity in the polymerization of MMA. The average molecular weight of polymers formed from thiobarbituric acid derivatives is discussed.

  1. Functionalization and Chemical Modification of 2-Hydroxyethyl Methacrylate with Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Nasirtabrizi

    2012-01-01

    Full Text Available Free radical polymerization of the resulting monomers methyl methacrylate (MMA, ethyl methacrylate (EMA, methylacrylate (MA and ethylacrylate (EA with 2-hydroxyethyl methacrylate (HEMA (in 1:1 mole ratio were carried out using azobis(isoboutyronitrile (AIBN as initiator at the temperature ranges 60-70°C. The modification of polymers were carried out by 9-anthracenecarboxylic acid (9-ACA via the esterification reaction between —OH of poly(HEMA and —COOH of 9-ACA, in presence of N,N′-dicyclohexyl-carbodiimide (DCC, 4-(dimethylamino pyridine (DMAP and N,N-dimethyl formamid (DMF. It was found that the molar ratio acid/alcohol/catalysts= 0.02: 0.02: 0.02 and 0.002, optimal for preparation of the ester. As demonstrated by FT-IR, 1H-NMR and dynamic mechanical thermal analysis (DMTA. The Tg value of methacrylate and acrylate copolymers containing 9-ACA groups was found to increase with incorporation of 9-ACA groups in polymer structures. The presence of 9-ACA groups in the polymer side chains created new polymers with novel modified properties that find some applications in polymer industry. These anthracenic factors could take part in cyclo addition reaction with other factors such as anhydrides and kinons.

  2. Study by the positron annihilation technique of Graft copolimerization of methyl methacrylate in polyethylene induced by gamma radiation

    International Nuclear Information System (INIS)

    Zaldivar Gonzalez, M.E.

    1992-01-01

    Radiation initiated grafting is a very broad field which has attracted considerable interest over the last two decades. Graft copolymers may combine suitable properties of two polymeric components. Radiation methods are particulary appropiate for the production of a large variety of graft copolymers having interesting properties. Ionizing radiation has provided a convenient and clean method to activate a sustrate polymer and undoubtedly, it has added impetus to this field of research. In the present work, graft polymerization of methyl methacrylate (MMA) onto low density polyethylene (LDPE) was carried out. The effect of gamma ray irradiation dose on the grafting degree was investigated for two different methods: direct and preirradiation. The best method to prepare the copolymer for the LDPE film thickness studied: 0.05 and 0.2 mm., was direct method. In both polyethylene thickness, the grafting degree increased as a function of the reaction time. However, grafting for LDPE 0.2 mm. it is better, because the copolymer with that thickness conserve the main physical-chemistry properties of the LDPE along the different grafting degrees obtained, which it is important for practical purposes. Infrared spectroscopy was used to probe the changes ocurred in the LDPE structure with the graft of MMA, first spectrum showed typical bands for LDPE structure, while in the second spectrum new bands appeared which corresponded to PMMA structure grafted onto LDPE. Positron annihilation lifetime technique was applied to study the copolymer microstructure according to increase of grafting degree. O-PS lifetime and intensity tend to decrease. This behavior could be due to the diminution of free volume in the original LDPE matrix as grafting proceeds. Copolymer morphology was observed using optical microscopy (Author)

  3. THE EFFECTS OF N-2-HYDROXYETHYL-N-METHYL-P-TOLUIDINE ON METHYL METHACRYLATE RADICAL POLYMERIZATION AND ACRYLONITRILE PHOTOINDUCED POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Zhanghua; FENG Xinde

    1992-01-01

    The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.

  4. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Adam, Nurul Ilham [Faculty of Applied Sciences, Universiti Teknologi MARA, KampusTapah, 35400 Tapah Road, Tapah, Perak (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Sciences and Technology, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Ali, Ab Malik Marwan [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  5. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    International Nuclear Information System (INIS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-01-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ( 1 HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1 HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF 3 SO 3 show the highest conductivity. The complexation between EMG30 and LiCF 3 SO 3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  6. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Science.gov (United States)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  7. Direct Production of a Novel Iron-Based Nanocomposite from the Laser Pyrolysis of Fe(CO5/MMA Mixtures: Structural and Sensing Properties

    Directory of Open Access Journals (Sweden)

    R. Alexandrescu

    2010-01-01

    Full Text Available Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis of Fe(CO5 and methyl methacrylate (MMA mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence of NO2, CO, and CO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towards NO2 detection and NO2 selectivity relatively to CO and CO2. An optimum working temperature of 200°C was found.

  8. Synthesis of block copolymers derived from N-trityl-(S)-serine and pyrene end-labeled poly(methyl methacrylate) or poly(N-isopropylacrylamide) via ATRP

    International Nuclear Information System (INIS)

    Buruiana, Emil C.; Podasca, Viorica; Buruiana, Tinca

    2012-01-01

    A new monomer bearing N-trityl-L-serine methyl ester in structure, methacryloyloxyethyl carbamoyloxy–N-trityl methyl serine (MTS), was prepared to be further polymerized by atom transfer radical polymerization (ATRP) with pyrene-endcapped poly(methyl methacrylate) (Py–PMMA–Br) or poly(N-isopropylacrylamide) (Py–PNIPA–Br). The resulting block copolymers, poly(methyl methacrylate–block–methacryloyloxyethyl carbamoyloxy–N-trityl methyl serine) (Py–PMMA–b–PMTS) and poly(N-isopropylacrylamide–block–methacryloyloxyethyl carbamoyloxy–N-trityl methyl serine (Py–PNIPA–b–PMTS) were characterized by 1 H ( 13 C) NMR, ultraviolet, FTIR and fluorescence spectroscopy, thermal analysis, differential scanning calorimetry (DSC), atomic force microscopy (AFM), scanning electron microscopy (SEM), and gel permeation chromatography (GPC) measurements. The chemical composition in Py–PMMA–b–PMTS was estimated from the 1 H NMR analysis that indicated a ratio of the repeating units of 46:19 (MMA:MTS). For the Py–PNIPA–b–PMTS the composition rate in the copolymer was 61:25 (NIPA:MTS). Quenching of the pyrene species with N,N-diethylaniline, nitrobenzene, nitrophenol, potassium iodide, p-nitrotoluene and tetracyanoquinodimethane (TCNQ) in DMF solution excited at 348 nm was evidenced, more efficiently being nitrophenol and TCNQ. In this case, the monomer emission at 388–409 nm underwent a significant decrease caused of an electron transfer from the electron-reach photoexcited pyrene molecule to the electron-deficient quenchers. - Highlights: ► Diblock copolymers combine the fluorescence of pyrene–PMMA (PNIPA) with the characteristics of PMTS. ► Such copolymers could be used for nitroderivatives detecting. ► UV/vis and fluorescence measurements give a good correlation for LCST of Py–PNIPA–Br.

  9. Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Peralta, Rene D.; Infante, Ramiro; Cortez, Gladis

    2005-01-01

    Densities of the binary systems of 1,1-dimethylethyl methyl ether (MTBE) with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate have been measured as a function of the composition, at 298.15 and 308.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The calculated excess molar volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. The excess molar volumes are negative for the binaries of MTBE + methacrylates; the system MTBE with vinyl acetate presents near ideal behavior. The excess coefficient of thermal expansion is positive for all the systems studied here; the value of the coefficient for the system MTBE + allyl methacrylate is at least three times larger than that for the other systems

  10. Study on radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. II. Radiation-induced polymerization of methyl methacrylate adsorbed on several inorganic substances

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1975-01-01

    The radiation-induced polymerization of methyl methacrylate (MMA) adsorbed on such inorganic substances as silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to compare with the case of styrene. The rate of radiation-induced polymerization adsorbed on inorganic substances was high compared with that of radiation-induced bulk state polymerization, as was the case with styrene. Inorganic substrates which contain aluminum as a component element are more likely to be grafted than those which consist of SiO 2 alone, as with styrene. The molecular weight distribution of unextractable polymer and extractable polymer differs, depending on the type of inorganic substance. Experiments by a preirradiation method were carried out in case of silica gel, white carbon, and silicic acid anhydride. GPC spectra of the polymer obtained were different from those of polymer formed by the simultaneous irradiation method. It appears that all the unextractable polymer is grafted to the inorganic surface with chemical bond

  11. Molecular changes in copolymers of styrene and methyl methacrylate caused by radiation

    International Nuclear Information System (INIS)

    Busfield, W.K.; O'Donnell, J.H.; Smith, C.A.

    1976-01-01

    Homopolymers of styrene and methyl methacrylate and copolymers of these monomers were irradiated in vacuo at room temperature using 60 Co γ-radiation to various doses. The gaseous radiolysis products of the polymers were analysed by gas chromatography. The radiation chemical yield, G values, of the gaseous and liquid products were calculated for the homopolymers and copolymers. The G values obtained for the homopolymers were compared with those obtained by previous workers. The graphs of G value versus composition (% Styrene) showed a marked deviation from linearity which indicated that the styrene in the copolymer had a greater effect on the behaviour than did the methyl methacrylate units. It has been postulated that the benzene ring on the styrene unit acts in some way as an energy sink, and hence protects the copolymer from radiation damage in an analogous way to that suggested for hydrocarbon mixtures. Mechanisms for the process are discussed. (author)

  12. Influence Of Initiator Types And Emulsion Polymerization Techniques To Particle Size Of Copolymerization Styrene-Butyl Acrylate-Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Ariyanti Sarwono

    2008-11-01

    Full Text Available Influence of initiator types and emulsion polymerization techniques to particle size of copolymerization styrene-butyl acrylate-methyl methacrylate. Copoly(styrene/butyl acrylic/methyl methacrylic was prepared by emulsion polymerization method. This paper describes effect of insiator types i.e. ammonium persulfate (APS, hydrogen peroxide, ters-butyl peroxide (TBHP, initiator redox (H2O2/ascorbic acid and polymerization techniques i.e. batch and semicontinue to particle size distribution of copoly(styrene/butyl acrylic/methyl methacrylic. Initiator TBHP and H2O2 could not initiate copolymerization properly, but initiator APS and redox initiate copolymerization with batch and semi continue techniques could well perform. The higher concentration of APS, the greater particle size of the copolymer, but the copolymer is polymodal. Initiator redox (H2O2/ascorbic acid produced greater particle size than initiator redox (ascorbic acid/ H2O2.

  13. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Li Fan, E-mail: lfan@ncu.edu.cn [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Chen Yiwang, E-mail: ywchen@ncu.edu.cn [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang Xiaofeng [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China)

    2011-08-15

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: > ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. > ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. > Thermal stability of these films is improved compared with those of physically blending ones.

  14. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    International Nuclear Information System (INIS)

    Zhang Lin; Li Fan; Chen Yiwang; Wang Xiaofeng

    2011-01-01

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: → ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. → ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. → Thermal stability of these films is improved compared with those of physically blending ones.

  15. The Polymerization of MMA and ST to Prepare Material with Gradient Refractive Index in Electric Field

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2015-01-01

    Full Text Available Light scattering material with gradient refractive index was prepared under the electrical field by taking methyl methacrylate (MMA monomer as the matrix with the addition of a little preheated styrene (ST and peroxidation benzoin formyl (BPO. The material obtained under electrical field presented different transmittance and molecular weight at different parts of the cylindrical sample along the axis of the direction of electric field which led to the layering phenomenon and gradient refractive index. The disparity of molecular weight between different layers can be as much as 230 thousand. There were several peaks in the figure of GPC test of the sample under electric field. This proved that there were polymers with different molecular weights in the sample. Therefore, it can be concluded that electrical field has a significant effect on polymerization.

  16. STUDY ON THE KINETICS OF POLYMERIZATION OF MMA BY COPPER(Ⅱ) CHELATING RESINS

    Institute of Scientific and Technical Information of China (English)

    WangHongzuo; JiangYuanzhang; 等

    1993-01-01

    The polymerization of MMA initiated by copper(Ⅱ) chelating resins/CCl4 system was studied.From the kinetic data,the kinetic equation of polymerization can be expressed as Rp=Ke-56400/RT[MMA]1.57[CCl4]m[RESIN-Cu]0.18 where m:3-4.5,when[CCl4] 0.1-6.93M.The free radical polymerization mechanism is proposed.The primary radicals are formed by the process of complexation-chlorine transformation among the copper(Ⅱ) chelating resin,CCl4 and methacrylate.

  17. Influence of CO2 on ultrasound-induced polymerizations in high-pressure fluids

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Jacobs, L.J.M.; Kemmere, M.F.; Keurentjes, J.T.F.

    2005-01-01

    A strong viscosity increase upon polymerization hinders cavitation and subsequent radical formation during an ultrasound-induced bulk polymerization. Ultrasound-induced radical polymerizations of methyl methacrylate (MMA) have been performed in CO2-expanded MMA, as well as in bulk MMA. For this

  18. Chemical structure of chromium(III) crosslinked collagen-poly(methyl methacrylate) copolymers in radiation grafting

    International Nuclear Information System (INIS)

    Pietrucha, K.

    1991-01-01

    Upon γ-irradiation of aqueous emulsions of methyl methacrylate embedded into chrome tanned skin, the formation of graft copolymers is observed. The number-average molecular weight of the grafted poly(methyl methacrylate) side chains was in the range of 430000 (for a dose of 10 kGy) and practically independent of grafting degree. However, the number of branches per graft copolymer molecule increases from 0.3 to 0.8 when the degree of grafting increases from 32% to 88%. Similarly, the radiation yield, i.e. the number of branches formed per 100 eV of energy absorbed in the substrate polymer increases from 0.75 to 1.94. The value and meaning of molecular weight of graft copolymer is discussed along with the mechanism of polymer chain termination. (author) 14 refs.; 3 figs.; 4 tabs

  19. A sustained release system using porous cellulose spheres modified by grafting as matrices

    International Nuclear Information System (INIS)

    Hosoi, Fumio; Makuuchi, Keizo; Saito, Kenji; Koishi, Masumi.

    1987-01-01

    Polymer-coated spheres, obtained by the graft polymerization of methyl methacrylate (MMA) onto porous spheres based on cellulose by the pre-irradiation method, were used as matrices for the drug sustained release system for salicylic acid. The adsorption of salicylic acid was carried out by dipping the grafted spheres in a 50% aqueous ethanol solution containing salicylic acid. The amount of salicylic acid adsorbed (Q) increased proportionately with the percent graft of MMA (G) to the power of 2.9. Adsorption mechanism of salicylic acid could be expressed in term of Langmuir's adsorption isotherm. The ratio of constants for adsorption and desorption (k) and the saturated amount of salicylic acid adsorbed (Q 0 ) were expressed as k = k 1 G and Q 0 = k 2 G 2.4 , respectively. These results indicate that the number of adsorption sites increased proportionately with the nth power of G as a results of the interaction of grafted poly (methyl methacrylate)(PMMA) and cellulose. Similar results were obtained with grafting of MMA, MMA-styrene (St), and MMA-methacrylic acid (MAc) in the presence of salicylic acid. (author)

  20. Preparation and Characterization of Acrylic Primer for Concrete Substrate Application

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2016-01-01

    Full Text Available This study dealt with the properties of acrylic primer for concrete substrate using acrylic syrup, made from a methyl methacrylate monomer solution of terpolymers. Terpolymer systems consisting of methyl methacrylate (MMA, 2-ethylhexyl acrylate (2-EHA, and methacrylic acid (MAA with different chemical composition ratios of MMA and 2-EHA were synthesized through bulk polymerization using azobisisobutyronitrile (AIBN as initiator. The terpolymer composition is characterized by FTIR, 1H NMR, DSC, TGA, and SEM. The glass transition temperature and the thermal stability increased with increasing amounts of MMA in the terpolymer backbone. The effect of chemical composition of terpolymers on physicomechanical properties of primer films was investigated. However, increasing the amount of MMA in terpolymer backbone increased tensile and contact angle of primer films while elongation at break, water absorption, and bond strength are decreased. In particular, the primer syrup containing 65% 2-EHA has good bonding strength with concrete substrate around 1.1 MPa.

  1. Allylthioketone Mediated Free Radical Polymerization of Methacrylates

    Directory of Open Access Journals (Sweden)

    Feng Zhong

    2017-11-01

    Full Text Available By combination of high trapping free radical efficiency of the thioketone and resonance of the allylic radical, a new type of mediating agent, 1,3,3-triphenylprop-2-ene-1-thione (TPPT has been successfully synthesized, and then is used to study controlled free radical polymerization of methacrylates. Very stable TPPT radicals at the end of poly(methyl methacrylate (PMMA are detected in the polymerization of MMA using TPPT and AIBN as the control agent and initiator. The MALDI-TOF MS spectra are used to identify terminal groups of the resultant poly(glycidyl methacrylate (PGMA, and major component of the obtained polymer has the structure, (CH32(CNC-PGMA-C7H9O3. Chain extension reaction tests ascertain formation of the dead polymers during the polymer storage and purification process of the polymers. Owing to very slow fragmentation reaction of the TPPT-terminated polymethacrylate radical and addition reaction of this radical with a primary radical, the growing chain radicals are difficult to be regenerated, leading to an unobvious change of the molecular weight with monomer conversion. The molecular weights of polymers can be controlled by the ratios of monomer/initiator and TPPT/initiator. However, the first order kinetics of the polymerization and the polymers with narrow polydispersity are obtained, and these phenomena are discussed. This study provides useful information on how to design a better controlling agent.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Kinetics and mechanism of polymerization of methyl methacrylate initiated by stibonium ylide · A K Srivastava Ajey Kumar Chaurasia · More Details Abstract Fulltext PDF. Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an ...

  3. Polymerization of Methyl Methacrylate Catalyzed by Co(II), Cu(II), and Zn(II) Complexes Bearing N-Methyl-N-((pyridin-2-yl)methyl) cyclohexanamine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seoung Hyun; Lee, Hyosun [Kyungpook National University, Daegu (Korea, Republic of); Shin, Jongwon [POSTECH, Pohang (Korea, Republic of); Nayab, Saira [Shaheed Benazir Bhutto University, Sheringal (Pakistan)

    2016-05-15

    We demonstrated the synthesis and characterization of Co(II), Cu(II), and Zn(II) complexes ligated to N-methyl-N-((pyridin-2-yl)methyl)cyclohexanamine. The complex [Co(nmpc)Cl{sub 2}] in the presence of MMAO showed the highest catalytic activity for MMA polymerization at 60 °C compared with its Zn(II) and Cu(II) analogs. The metal center showed an obvious influence on the catalytic activity, although this appeared to have no effect on the stereo-regularity of the resultant PMMA. X-ray diffraction analysis revealed that [Co(nmpc)Cl{sub 2}] and [Zn(nmpc)Cl{sub 2}] crystallized in the monoclinic system with space group P2{sub 1}/c and existed as monomeric and solvent-free complexes.

  4. Radioisotope investigations on the stratigraphic distribution of poly/methyl methacrylate/grafted onto leather

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1984-01-01

    Investigations on the stratigraphic distribution of poly/methyl methacrylate/ in leather follow our earlier experiments on radiation grafting of vinyl monomers in situ. Polymer distribution was determined for pigskins and cattlehides tanned with basic sulphates of chromium/III/. 14 C-labelled methyl methacrylate was used in present experiments. Precision slicing technique was employed to cut consecutive slices parallel to the grain surface of the radiation modified leather. Quantative analysis of polymer distribution in leather was based on radioactivity measurements. Each layer was burned in Oxymat apparatus and resulting 14 CO 2 was analysed by liquid scintillation method. On the basis of radioactivity measurements and visual observations with light microscope conclusion on desirable distribution of polymer was reached. In the midcorium part of leather polymer is evenly distributed and its content is much higher than for outer layers next to surface and flesh. Mechanism of relevant processes as well as formation and role played by peroxide compounds is discussed

  5. Radioisotope investigations on the stratigraphic distribution of poly(methyl methacrylate) grafted onto leather

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1985-01-01

    Investigations on the stratigraphic distribution of poly(methyl methacrylate) in leather follow our earlier experiments on radiation grafting of vinyl monomers in situ. Polymer distribution was determined for pigskins and cattlehides tanned with basic sulphates of chromium (III). 14 C-labelled methyl methacrylate was used in present experiments. Precision slicing technique was employed to cut consecutive slices parallel to the grain surface of the radiation modified leather. Quantitative analysis of polymer distribution in leather was based on radioactivity measurements. Each layer was burned in Oxymat apparatus and resulting 14 CO 2 was analysed by liquid scintillation method. On the basis of radioactivity measurements and visual observations with light microscope conclusion on desirable distribution of polymer was reached. In the midcorium part of leather polymer is evenly distributed and its content is much higher than for outer layers next to surface and flesh. Mechanism of relevant processes as well as formation and role played by peroxide compounds are discussed. (author)

  6. Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xie, Huili; Liao, Youhao; Sun, Ping; Chen, Tingting; Rao, Mumin; Li, Weishan

    2014-01-01

    Highlights: • P(MMA-co-BA)/nano-SiO 2 /PE based GPE was developed for high voltage lithium ion battery. • P(MMA-co-BA)/nano-SiO 2 /PE has uniform and interconnected pore structure. • The GPE exhibits improved ionic conductivity and compatibility with electrodes. • 5 V battery using the GPE presents excellent cyclic stability. - Abstract: Nano-SiO 2 as dopant was used for preparing polyethylene-supported poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)/PE) based membrane and corresponding gel polymer electrolyte (GPE), which is applied to improve the cyclic stability of high voltage lithium ion battery. P(MMA-co-BA)/nano-SiO 2 /PE based membranes and corresponding GPEs were characterized with scanning electron spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, mechanical test, thermogravimetric analysis, linear sweep voltammetry, and charge/discharge test. It is found that the GPE with 5 wt.% nano-SiO 2 shows the best performance. Compared to the undoped membrane, the 5 wt.% nano-SiO 2 doped membrane has a better pore structure and higher electrolyte uptake, leading to the enhancement in ionic conductivity of the resulting GPE from 1.23 × 10 −3 to 2.26 × 10 −3 S.cm −1 at room temperature. Furthermore, the thermal stability of the doped membrane is increased from 300 to 320 °C while its decomposition potential of GPE is from 5.0 to 5.6 V (vs. Li/Li + ). The cyclic stability of Li/GPE/Li(Li 0.13 Ni 0.30 Mn 0.57 )O 2 cell at the high voltage range of 3.5 V ∼ 5.0 V is consequently improved, the capacity retention of the cell using the doped membrane is 92.8% after 50 cycles while only 88.9% for the cell using undoped membrane and 66.9% for the cell using liquid electrolyte

  7. Síntese e caracterização de copolímeros reticulados à base de estireno, divinilbenzeno e metacrilato de metila com propriedades magnéticas Synthesis and characterization of crosslinked copolymers based on syrene, divinylbenzene and methyl methacrylate with magnetic properties

    Directory of Open Access Journals (Sweden)

    Flavio S. Souza

    2013-01-01

    Full Text Available Neste trabalho, foram sintetizados copolímeros à base de estireno (STY, divinilbenzeno (DVB e metacrilato de metila (MMA com propriedades magnéticas pela técnica de polimerização em suspensão. Os copolímeros foram caracterizados quanto a sua morfologia, ao teor de ferro incorporado, a densidade aparente, a distribuição de tamanho de partículas e as suas propriedades magnéticas. Foi avaliado o efeito da concentração de MMA sobre as características das partículas poliméricas obtidas. Copolímeros que não utilizaram MMA foram, em geral, os que apresentaram maior incorporação de ferro e melhor controle morfológico. Quando a temperatura foi alterada de 80 ºC para 70 ºC e a velocidade de agitação de 480 rpm para 360 rpm, houve aumento no teor de ferro incorporado nas partículas poliméricas.In this work, copolymers based on styrene (STY, divinylbenzene (DVB and methyl methacrylate (MMA with magnetic properties were synthesized using the suspension polymerization technique. The copolymers were characterized according to morphology, iron content incorporated, bulk density, particle size distribution and magnetic properties. The effect of MMA content on the characteristics of polymeric particles was investigated. Generally, copolymers without MMA presented the biggest iron content incorporated and the best morphologic control. When the temperature was decreased from 80 ºC to 70 ºC and the stirring speed was reduced from 480 rpm to 360 rpm the iron content in the polymeric particles increased.

  8. Surface self-assembly of fluorosurfactants during film formation of MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Dreher, W R; Urban, M W

    2004-11-23

    These studies focus on the behavior of fluorosurfactants (FS) containing hydrophobic and ionic entities in the presence of methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal dispersions stabilized by sodium dodecyl sulfate (SDS). The presence of FS significantly not only alters the mobility of SDS in MMA/nBA films, but their hydrophobic and ionic nature results in self-assembly near the film-air (F-A) interface leading to different surface morphologies. Spherical islands and rodlike morphologies are formed which diminish the kinetic coefficient of friction of films by at least 3 orders of magnitude, and the presence of dual hydrophobic tails and an anionic head appears to have the largest effect on the surface friction. Using internal reflection IR imaging, these studies show that structural and chemical features of FS are directly related to their ability to migrate to the F-A interface and self-assemble to form specific morphological features. While the anionic nature of FS allows for SDS migration to the F-A interface and the formation of stable domains across the surface, intermolecular cohesion of nonionic FS allows for the formation of rodlike structures due to inability to form mixed micelles with SDS. These studies also establish the relationship between surface morphologies, kinetic coefficient of friction, and structural features of surfactants in the complex environments.

  9. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica

    DEFF Research Database (Denmark)

    Song, Yihu; Bu, Jing; Zuo, Min

    2017-01-01

    transition and segmental dynamics of PMMA in the nanocomposites prepared via solution casting was compared. The remarkable depression (≥10 °C) of glass transition temperature (Tg) induced by the incorporation of SiO2 and CS was both observed at low loadings. Here, different mechanisms were responsible...... for the effect of SiO2 and CS on the segmental acceleration of PMMA matrix. The formation of rigid amorphous fraction (RAF) layer around SiO2 with the thickness of 16.4 nm led to the adjacent molecular packing frustration, while the “lubrication” effect of nonwetting interface between the grafted crosslinked......Core-shell (CS) nanocomposite particles with 53.4 wt% cross-linked poly (methyl methacrylate) (PMMA) shell of 11.6 nm in thickness were fabricated via miniemulsion polymerization of methyl methacrylate in the presence of modified nanosilica. The influence of nanosilica and CS nanoparticles on glass...

  10. MALDI-TOF MS coupled with collision-induced dissociation (CID) measurements of poly(methyl methacrylate)

    NARCIS (Netherlands)

    Baumgaertel, A.; Becer, C.R.; Gottschaldt, M.; Schubert, U.S.

    2008-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was chosen for an in-detail analysis of poly(methyl methacrylate) (PMMA) in order to determine the possible fragmentation mechanism with the help of collision-induced dissociation (CID). All experiments were

  11. Synthesis and Characterization of Metal Sulfides Nanoparticles/Poly(methyl methacrylate) Nanocomposites

    OpenAIRE

    Ajibade, Peter A.; Mbese, Johannes Z.

    2014-01-01

    Metal sulfides nanoparticles in poly(methyl methacrylate) matrices were prepared and characterized by infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscope (SEM), and transmission electron microscope (TEM). The FTIR confirms the dispersion of the nanoparticles in PMMA matrices with the C=O and C–O–C bonds of the PMMA shifting slightly which may be attributed to the interactions between the nanoparticles and PMMA. The ZnS nanoparticles in PMM...

  12. P(MMA-EMA Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Nurul Akmaliah Dzulkurnain

    2015-02-01

    Full Text Available Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10−6 S·cm−1 and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.

  13. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  14. Mineralogical and Thermal Properties of Poly(methyl methacrylate) Alite Composite

    International Nuclear Information System (INIS)

    Ismail, M.R.; El-Fass, M.M.; Abd-El-Rahman, H.A.; El-Miligy, A.A.

    1999-01-01

    The X-ray diffraction (XRD) characteristics and thermal stability of PMMA alite composite have been studied. The dried alite samples were impregnated by methyl methacrylate monomer and then subjected to gamma irradiation. The mineralogical and thermal properties of the PMMA alite composite materials were investigated by using XRD, DTA, and TGA techniques. The results indicate that, a markedly reduction of the peaks intensities of XRD for tricalcium silicate and calcium hydroxide. TGA data showed that PMMA alite composite has a high thermal stability as compared to PMMA

  15. Third-order nonlinear optical properties of the poly(methyl methacrylate)-phenothiazinium dye hybrid thin films

    International Nuclear Information System (INIS)

    Sun, Ru; Lu, Yue-Ting; Yan, Bao-Long; Lu, Jian-Mei; Wu, Xing-Zhi; Song, Ying-Lin; Ge, Jian-Feng

    2014-01-01

    The third-order nonlinear optical properties of poly(methyl methacrylate) films doped with charge flowable 3,7-di(piperidinyl)phenothiazin-5-ium chloride, which tested by Z-scan method with nanosecond laser beam at 532 nm, are reported. Large third-order nonlinear optical susceptibilities (up to 10 −7 esu) and high second hyperpolarizabilities (up to 10 −27 esu) are found. The third-order nonlinear absorptions change from reverse saturated absorptions to saturated absorptions with different percentage of the phenothiazinium dye in the poly(methyl methacrylate) films, which can be explained by the accumulation phenomenon of the phenothiazinium. The results suggest that the phenothiazinium salt is a promising material for third order non-linear applications. - Highlights: • Phenothiazinium containing optical films • Strong third-order nonlinear optical (NLO) absorption • Large third-order NLO susceptibilities

  16. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    International Nuclear Information System (INIS)

    Lang, X.Y.; Zhang, G.H.; Lian, J.S.; Jiang, Q.

    2006-01-01

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO 2 . In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences

  17. New results in pulsed laser deposition of poly-methyl-methacrylate thin films

    International Nuclear Information System (INIS)

    Cristescu, R.; Socol, G.; Mihailescu, I.N.; Popescu, M.; Sava, F.; Ion, E.; Morosanu, C.O.; Stamatin, I.

    2003-01-01

    Thin organic films based on poly-methyl-methacrylate (PMMA) polymer have been obtained by pulsed laser deposition (PLD) on silicon substrates. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy (RS). We observed that the film composition and structure depend on the laser fluence and on the temperature of the substrate during deposition

  18. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  19. CONCERNING CHAIN GROWTH SPECIFIC REACTION RATE AS A PART OF THE PROCESS OF METHYL METHACRYLATE MASS RADICAL POLYMERIZATION

    Directory of Open Access Journals (Sweden)

    A. A. Sultanova

    2017-02-01

    Full Text Available It is the chain growth specific reaction rate that was determined for the process of methyl methacrylate mass radical polymerization within the temperature range of 40–900 С in quasi-steady approximation by means of Monte Carlo method. The theoretical model of radical polymerization was developed taking the gel effect into account. Computer software was developed that enables to imitate radical polymerization process taking gel effect into account within the minimum run time. The programme was tested on asymptotic examples as well as was applied for methyl methacrylate mass radical polymerization. The programme makes it possible to calculate monomer conversion, molecular mass variation, molecular-mass distribution, etc.

  20. Influence of Emulsion Polymerization Techniques to Particle Size of Copoly(styrene/butyl acrylate/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Tresye Utari

    2008-04-01

    Full Text Available In the majority of applications, particle size and particle size distribution are highly significant factors that determine the properties of a polymer dispersion, such as its flow behavior or its stability. For example, a coating material with small particle size will give smooth coating result, good adhesive strength, good water resistance and latex stability. This article describes influence of various emulsion polymerization techniques to particle size of copoly(styrene/butyl acrylate/methyl methacrylate with mix surfactant SDBS linear chain and nonyl fenol (EO10 and initiator ammonium persulphate. DSC data, solid content and IR spectrum showed that copoly(styrene/butyl acrylate/methyl methacrylate was produced. Batch emulsion polymerization technique gave the highest particle size i.e. 615 nm and also the highest % conversion of monomer i.e. 97%. The more concentration of monomer was seeded to initial charge gave greater particle size and greater poly dispersity index.

  1. Synthesis of indenyllanthanide amides: the effective initiators for polymerization of methyl methacrylate

    Institute of Scientific and Technical Information of China (English)

    赵群; 姚英明; 沈琪

    2000-01-01

    Diisopropylamido bisindenyl lanthanides ( C9H7)2LnN( i-Pr)2(Ln=Gd (1), Y(2), Er (3)) were successfully synthesized in satisfied yield by the reaction of Ln(N(i-Pr)2)3(THF) with indene in 1:2 molar ratio in toluene. All of the complexes exhibit very high catalytic activity in the polymerization of methyl methacrylate. The resulting polymers have narrow molecular weight distributions and syndiotacticity.

  2. Self-Assembled Structures of PMAA-PMMA Block Copolymers : Synthesis, Characterization, and Self-Consistent Field Computations

    NARCIS (Netherlands)

    Li, Feng; Schellekens, Mike; de Bont, Jens; Peters, Ron; Overbeek, Ad; Leermakers, Frans A. M.; Tuinier, Remco

    2015-01-01

    Block copolymers composed of methacrylic acid (MAA) and methyl methacrylate (MMA) blocks are interesting candidates for replacing surfactants in emulsion polymerization methods. Here the synthesis and experimental characterization of well-defined PMAA-PMMA block copolymers made via RAFT

  3. Self-assembled structures of PMAA-PMMA block copolymers: Synthesis, characterization, and self-consistent field computations

    NARCIS (Netherlands)

    Li, F.; Schellekens, J.; Bont, de J.A.M.; Peters, R.; Overbeek, A.; Leermakers, F.A.M.; Tuinier, R.

    2015-01-01

    Block copolymers composed of methacrylic acid (MAA) and methyl methacrylate (MMA) blocks are interesting candidates for replacing surfactants in emulsion polymerization methods. Here the synthesis and experimental characterization of well-defined PMAA–PMMA block copolymers made via RAFT

  4. A novel process for ultrasound-induced radical polymerization in CO2-expanded fluids

    NARCIS (Netherlands)

    Kemmere, M.F.; Kuijpers, M.W.A.; Prickaerts, R.M.H.; Keurentjes, J.T.F.

    2005-01-01

    A strong viscosity increase upon polymerization hinders cavitation and subsequent radical formation during an ultrasound-induced bulk polymerization. In this work, ultrasound-induced radical polymerizations of methyl methacrylate (MMA) have been performed in CO2-expanded MMA in order to reduce the

  5. Synthesis of TiO(2)-PMMA nanocomposite: using methacrylic acid as a coupling agent.

    Science.gov (United States)

    Khaled, S M; Sui, Ruohong; Charpentier, Paul A; Rizkalla, Amin S

    2007-03-27

    Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Methacrylic acid (MA), a functionalization agent that can chemically link TiO2 nanomaterials (n-TiO2) and polymer matrix, was used to modify the surface of n-TiO2 using a Ti-carboxylic coordination bond. Then, the double bond in MA was copolymerized with methyl methacrylate (MMA) to form a n-TiO2-PMMA nanocomposite. The resulting n-TiO2-PMMA nanocomposite materials were characterized by using thermal analysis, electron microscopy, and elemental analysis. The dynamic mechanical properties (Young's and shear modulus) were measured using an ultrasonic pulse technique. The electron microscopy results showed a good distribution of the nanofillers in the polymer matrix. The glass transition temperature, thermal degradation temperature, and dynamic elastic moduli of the nanocomposites were shown to increase with an increase in the weight percentage of nanofibers in the composite. The resulting nanocomposites exhibited improved elastic properties and have potential application in dental composites and bone cements.

  6. Morphological study and thermal analysis of surface modified α-FeOOH via in situ polymerization of methyl methacrylate

    International Nuclear Information System (INIS)

    Han Yaoxing; Ma Xinsheng; Cao Hongming; Zhang Haiying; Wu Qiufang

    2004-01-01

    Considering the interfacial characteristics of goethite (α-FeOOH, iron oxide yellow), the in situ polymerization of methyl methacrylate was employed to modify the surfaces of α-FeOOH pigments in aqueous slurry. The scanning electron micrographs indicated that the poly(methyl methacrylate) anchored on the surfaces of the particle homogeneously. From this study, it was found that one of the key requirements in the synthesis of the α-FeOOH-PMMA composite was to enhance interfacial compatibility between inorganic particles and organic monomer. Moreover, polymer-treated α-FeOOH particles were easily dispersed in organic medium to form a stable colloid and the heat resistance of α-FeOOH particles was improved

  7. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites

    KAUST Repository

    Zubair, Mukarram; Jose, Jobin Vinodh; Emwas, Abdul-Hamid M.; Al-Harthi, Mamdouh Ahmed

    2014-01-01

    The effect of modified graphene (MG) and microwave irradiation on the interaction between graphene (G) and poly(styrene-co-methyl meth acrylate) [P(S-co-MMA)] polymer matrix has been studied in this article. Modification of graphene was performed

  8. Thermodynamics of poly(7-methoxy-2-acetylbenzofurane methyl methacrylate-co-styrene) and poly(2-acetylbenzofurane methyl methacrylate-co-styrene)-probe interactions at different temperatures by inverse gas chromatography

    International Nuclear Information System (INIS)

    İlter, Zülfiye; Demir, Abdullah; Kaya, İsmet

    2016-01-01

    Highlights: • Thermodynamic of methacrylate-co-styrene polymers were studied by the inverse gas chromatography. • The sorption parameters of polymer-solute systems were determined under glass transition temperature of polymers. • The solubility parameter (δ 2 ) of the polymer was obtained from the slope and intercepts. • Flory-Huggins interaction parameter (χ 12 ∞ ) were determined for polymer-solute systems. - Abstract: In this study, some thermodynamic properties of poly(7-methoxy-2-acetylbenzofurane methyl methacrylate-co-styrene) Poly(MABMM-co-St) and poly(2-acetylbenzofurane methyl methacrylate-co-styrene) Poly(ABMM-co-St) were studied by the inverse gas chromatography (IGC) technique. The retention times (t r ) of selected organic probes were determined from the interactions with Poly(MABMM-co-St) and Poly(ABMM-co-St) of four groups of solvents with different chemical natures and polarities. Then, specific volume (V g 0 ) values of probes were calculated at different column temperatures. The glass transition temperatures (T g ) of Poly(MABMM-co-St) and Poly(ABMM-co-St) were found as 393, 413 K from inverse gas chromatography measurements, respectively. Under the glass transition temperatures adsorption heat (ΔH a ) and above the glass transition molar heat (ΔH 1 S ), free energies (ΔG 1 S ) and entropies (ΔS 1 S ) belonging to sorption for every probe were calculated from inverse gas chromatography measurements. The partial molar heat (ΔH 1 ∞ ), partial molar free energy (ΔG 1 ∞ ), Flory-Huggins interaction parameter (χ 12 ∞ ) and weight fraction activity coefficient (a 1 /w 1 ) ∞ , values for infinite dilute solutions were calculated for polymer-probe systems. The solubility parameter (δ 2 ) of the polymer was obtained from the slope and intercepts of Flory-Huggins interaction parameter (χ 12 ∞ ) graphs with solubility parameters (δ 1 ) of probes.

  9. Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites.

    Science.gov (United States)

    Morimune, Seira; Nishino, Takashi; Goto, Takuya

    2012-07-25

    Graphene oxide (GO) possesses the desirable characteristic of aqueous solution processability attributed to the oxygen-containing functional groups on the basal planes and edges of graphene. To provide an alternative to conventional procedures for fabricating poly (methyl methacrylate) (PMMA)/GO nanocomposites, which use organic solutions and/or surfactants, we have developed an environmentally friendly technique in which PMMA is polymerized by soap-free emulsion polymerization and incorporated with GO using water as a processing medium. Experimental results showed that the fabricated PMMA/GO nanocomposites had excellent mechanical, thermal, and O2 barrier properties with the nanodispersion of GO.

  10. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  11. Concomitant sensitization to glutaraldehyde and methacrylic monomers among dentists and their patients

    Directory of Open Access Journals (Sweden)

    Maya Grigorievna Lyapina

    2016-06-01

    Full Text Available Background: A multitude of methacrylic monomers is used in dentistry. Glutaraldehyde (G is used in dental practice and consumer products as a broad-spectrum antimicrobial agent. The purpose of our study is to evaluate the frequency and the risk of concomitant sensitization to some methacrylic monomers (methyl methacrylate (MMA, triethyleneglycol dimethacrylate (TEGDMA, ethyleneglycol dimethacrylate (EGDMA, 2,2-bis-[4-(2-hydroxy-3-methacrylo-xypropoxyphenyl]-propane (Bis-GMA, 2-hydroxy-ethyl methacrylate (2-HEMA and tetrahydrofurfuryl methacrylate (THFMA and glutaraldehyde in students of dentistry, students from the dental technician school, dental professionals and dental patients. Material and Methods: A total of 262 participants were included in the study: students of dentistry, students from the dental technician school, dental professionals, and dental patients as a control group. All were patch-tested with methacrylic monomers and glutaraldehyde. The results were subject to the statistical analysis (p < 0.05. Results: Among the group of dental students, the highest frequency of concomitant sensitization was to TEGDMA and G (15.5%. In the group of patients the highest frequency of concomitant sensitization was to EGDMA and G (16.4%. The frequency of concomitant sensitization among dental professionals was much lower, with the highest rate to TEGDMA and G (7.7%, too. We consider the students from the dental technician school, where the exposure to glutaraldehyde is less likely, to be the group at a lesser risk of concomitant sensitization. Conclusions: Dental students and dental patients could be outlined as groups at the risk of concomitant sensitization to glutaraldehyde and methacrylic monomers. For dental professionals, we assumed an increased risk for concomitant sensitization to TEGDMA and aldehydes that are commonly used in dentistry. We consider the students from the dental technician school to be the group at a lesser risk of

  12. Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    functional PDMS microspheres were coated with poly(methyl methacrylate) (PMMA) by spin coating with different concentrations of PMMA solutions. The quality of the resulting PMMA shell is investigated using rheological measurements at 50 8C with a timesweep procedure. The results strongly suggest that PMMA-coated...... PDMS microspheres react around 20 times slower than the uncoated ones, and that the PMMA shell significantly hinders the reaction between the PDMS microsphere and cross-linker. Thus the thin PMMA shells are very efficient in protecting the reactive PDMS microspheres, since the PMMA shell forms...

  13. Synthesis and optimization of EA-MMA copolymer emulsion%EA-MMA共聚乳液合成工艺及优化

    Institute of Scientific and Technical Information of China (English)

    张成芬; 武玉民

    2011-01-01

    以丙烯酸乙酯(EA)和甲基丙烯酸甲酯(MMA)为共聚单体、过硫酸钾(KPS)为引发剂、十二烷基硫酸钠(SDS)和壬基酚聚氧乙烯醚(OP-10)为复合乳化剂,采用乳液聚合法合成出一种稳定的EA-MMA乳液.通过单因素试验法考察了乳化剂浓度、引发剂浓度、反应温度和反应时间等因素对乳液平均粒径和单体转化率的影响,并采用正交试验法进一步优选出制备EA-MMA乳液的最佳工艺条件.结果表明:当w(乳化剂)=2.0%、w(引发剂)=0.60%、反应时间为4 h和反应温度为80℃时,制成的EA-MMA乳液较稳定,并且单体转化率相对最高.%With ethyl acrylate(EA) and methyl methacrylate( MMA) as comonomers ,potassium persulfate(KPS)as initiator,and sodium dodecyl sulfate(SDS) and nonylphenol ethoxylates(OP-10) as composite emulsifier,a stable EA-MMA emulsion was synthesized by emulsion polymerization. The influences of some factor(such as emulsifier concentration,initiator concentration,reaction temperature and reaction time) on average particle size of emulsion and monomer conversion rate were investigated by single factor experiment method,then the optimal process conditions of preparing EA-MMA emulsion were preferred by orthogonal experiment method. The results showed that the EA-MMA emulsion had better stability and relatively highest monomer conversion rate when the mass fractions of emulsifier and initiator were 2.0% and 0.60% respectively,the reaction time and reaction temperature were 4 h and 80 ℃ respectively.

  14. Synthesis of acrylic prepolymer

    International Nuclear Information System (INIS)

    Hussin bin Mohd Nor; Dahlan bin Haji Mohd; Mohamad Hilmi bin Mahmood.

    1988-04-01

    An acrylic prepolymer was synthesized from glycidyl methacrylate (GMA), butyl methacrylate (BMA), methyl methacrylate (MMA) and acrylic acid (AA). Butyl acetate (BAc), benzoyl peroxide (BzO), 4-methoxyphenol (MPh) and triethylamine (TEA) were used as solvent, initiator, inhibitor and catalyst respectively. Observations of the synthesis leading to the formation of acrylic prepolymer are described. (author)

  15. The thermal degradation of poly(iso-butyl methacrylate and poly(sec-butyl methacrylate

    Directory of Open Access Journals (Sweden)

    IVANKA G. POPOVIC

    2000-12-01

    Full Text Available The non-oxidative thermal degradation of poly(iso-butyl methacrylate and poly(sec-butyl methacrylate was investigated by studying changes in the polymer residue. Due to the different number of b-hydrogens in their ester substituents, these two polymeric isomers behave differently when subjected to elevated temperatures. Poly(iso-butyl methacrylate degrades quantitatively by depolymerisation with zip lengths of the same order of magnitude as those of poly(methyl methacrylate. Poly(sec-butyl methacrylate degrades by a combined degradation mechanism of depolymerisation and de-esterification. De-esterification becomes a significant thermolysis route at temperatures higher than 240°C.

  16. ESR investigations of radiation grafting of methyl methacrylate in aqueous emulsion onto chrome-tanned pig skin

    International Nuclear Information System (INIS)

    Pietrucha, K.; Pekala, W.; Plonka, A.

    1980-01-01

    Upon γ-irradiation at 77 K of the aqueous emulsions of methyl methacrylate embedded into chrome-tanned pig skins there are formed only the radicals of collagen and of 2-el-2-methylopropionic acid methyl ester. The presence of water in the system increases markedly the radiation yield of collagen radicals. During gradual heating up the polymerization reactions start and the macro-radical of growing polymer is observed. Chromium does not participate in the processes of initiation and grafting. (author)

  17. Process for production of an alkyl methacrylate

    NARCIS (Netherlands)

    Eastham, Graham Ronald; Johnson, David William; Fraaije, Marco; Winter, Remko

    2015-01-01

    A process for the production of an alkyl methacrylate, particularly methyl methacrylate, is provided, in which a Baeyer-Villiger Monooxygenase enzyme is used to convert an alkylisopropenylketone substrate to the relevant alkyl methacrylate by abnormal asymmetric oxygen insertion. The invention

  18. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open air conditions.

    Science.gov (United States)

    Li, Liangliang; Wang, Jiangfeng; Wang, Yu

    2016-08-01

    Analysis of the process of decomposition is essential in establishing the postmortem interval. However, despite the fact that insects are important players in body decomposition, their exact function within the decay process is still unclear. There is also limited knowledge as to how the decomposition process occurs in the absence of insects. In the present study, we compared the decomposition of a pig carcass in open air with that of one placed in a methyl methacrylate box to prevent insect contact. The pig carcass in the methyl methacrylate box was in the fresh stage for 1 day, the bloated stage from 2 d to 11 d, and underwent deflated decay from 12 d. In contrast, the pig carcass in open air went through the fresh, bloated, active decay and post-decay stages; and 22.3 h (0.93 d), 62.47 h (2.60 d), 123.63 h (5.15 d) and 246.5 h (10.27 d) following the start of the experiment respectively, prior to entering the skeletonization stage. A large amount of soft tissue were remained on the pig carcass in the methyl methacrylate box on 26 d, while only scattered bones remained on the pig carcass in open air. The results indicate that insects greatly accelerate the decomposition process. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. A new lithography of functional plasma polymerized thin films

    International Nuclear Information System (INIS)

    Kim, Sung-O

    2001-01-01

    The preparation of the resist for the vacuum lithography was carried out by plasma polymerization. The resist manufactured by plasma polymerization is a monomer produced by MMA (Methyl methacrylate). The functional groups of MMA appeared in the PPMMA (Plasma Polymerized Methyl methacrylate) as well, and this was confirmed through an analysis using FT-IR. The polymerization rate increased as a function of the plasma power and decreased as a function of the system pressure. The sensitivity and contrast of the plasma polymerized thin films were 15 μC/cm2 and 4.3 respectively. The size of the pattern manufactured by Vacuum Lithography using the plasma polymerized thin films was 100 nm

  20. Nitroxide-mediated radical ring-opening copolymerization: chain-end investigation and block copolymer synthesis.

    Science.gov (United States)

    Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2014-02-01

    Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of trace elements in poly(methyl methacrylate) by neutron activation analysis

    International Nuclear Information System (INIS)

    Kobayashi, M.

    1979-01-01

    The results are reported of the neutron activation analysis of poly(methyl methacrylate) polymerized with a redox system of chromium (II) acetate and p-chlorobenzyl peroxide in dimethylformamide at 30 0 C. Since the polymer was originally synthesized in experiments for kinetic studies, the results indicate an arbitrary background of purity of polymers obtained in a laboratory. Samples were irradiated for 28m and gamma spectra detected trace amounts of chlorine, aluminum, vanadium, magnesium, manganese, potassium, copper, zinc, sodium, bromine, lanthanum, gold, and chromium. 2 figures, 1 table

  2. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    Science.gov (United States)

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  3. Influence of the way of synthesis of poly(methyl methacrylate in the presence of surface modified TiO2 nanoparticles on the properties of obtained nanocomposites

    Directory of Open Access Journals (Sweden)

    Džunuzović Enis S.

    2010-01-01

    Full Text Available Incorporation of inorganic nanoparticles can significantly affect the properties of the polymer matrix. The properties of polymer nanocomposites depend on the type of incorporated nanoparticles, their size and shape, their concentration, and interactions with the polymer matrix. Homogeneity of polymer nanocomposites is influenced very much by the preparation method. In this study, TiO2 nanoparticles surface modified with 6-palmitate ascorbic acid (6-PAA were incapsulated in poly(methyl methacrylate (PMMA by in situ radical polymerization of methyl methacrylate initiated by 2,2'-azobisisobutyronitrile (AIBN. The surface modification of the TiO2 nanoparticles was achieved by the formation of a charge transfer complex between TiO2 nanoparticles and 6-palmitate ascorbic acid. The radical polymerization of MMA in the presence of TiO2-PAA nanoparticles was conducted in solution (PMMA/TiO2-PAA-R, in bulk (PMMA/TiO2-PAA-M or in suspension (PMMA/TiO2-PAA-S. The main purpose of this study was to investigate the influence of the preparation method on the molar masses and thermal properties of PMMA/TiO2-PAA nanocomposite. It was obtained that molar masses of PMMA extracted from the composites had smaller values compared to molar masses of pure PMMA synthesized in the same manner, which indicated that TiO2-PAA nanoparticles affected the reaction of termination. Thermal properties were investigated by DSC and TGA. The values of glass transition temperature, Tg, were influenced by the way the radical polymerization was conducted, even in the case of the pure PMMA. The Tg of composite samples was always smaller than the value of the corresponding PMMA sample and the smallest value was obtained for PMMA/TiO2-PAA-M since they contained the largest amount of low molar mass residue. The TGA results showed that thermal and thermooxidative stability of polymer composites obtained in solution and in suspension was better than for the pure PMMA obtained in the same way.

  4. Transparent Heat-Resistant PMMA Copolymers for Packing Light-Emitting Diode Materials

    Directory of Open Access Journals (Sweden)

    Shu-Ling Yeh

    2015-07-01

    Full Text Available Transparent and heat-resistant poly(methyl methacrylate copolymers were synthesized by bulk polymerizing methyl methacrylate (MMA, isobornyl methacrylate (IBMA, and methacrylamide (MAA monomers. Copolymerization was performed using a chain transfer agent to investigate the molecular weight changes of these copolymers, which exhibited advantages including a low molecular weight distribution, excellent optical properties, high transparency, high glass transition temperature, low moisture absorption, and pellets that can be readily mass produced by using extrusion or jet injection for packing light-emitting diode materials.

  5. Poly(Poly(Ethylene Glycol Methyl Ether Methacrylate Grafted Chitosan for Dye Removal from Water

    Directory of Open Access Journals (Sweden)

    Bryan Tsai

    2017-03-01

    Full Text Available As the demand for textile products and synthetic dyes increases with the growing global population, textile dye wastewater is becoming one of the most significant water pollution contributors. Azo dyes represent 70% of dyes used worldwide, and are hence a significant contributor to textile waste. In this work, the removal of a reactive azo dye (Reactive Orange 16 from water by adsorption with chitosan grafted poly(poly(ethylene glycol methyl ether methacrylate (CTS-GMA-g-PPEGMA was investigated. The chitosan (CTS was first functionalized with glycidyl methacrylate and then grafted with poly(poly(ethylene glycol methyl ether methacrylate using a nitroxide-mediated polymerization grafting to approach. Equilibrium adsorption experiments were carried out at different initial dye concentrations and were successfully fitted to the Langmuir and Freundlich adsorption isotherm models. Adsorption isotherms showed maximum adsorption capacities of CTS-g-GMA-PPEGMA and chitosan of 200 mg/g and 150 mg/g, respectively, while the Langmuir equations estimated 232 mg/g and 194 mg/g, respectively. The fundamental assumptions underlying the Langmuir model may not be applicable for azo dye adsorption, which could explain the difference. The Freundlich isotherm parameters, n and K, were determined to be 2.18 and 17.7 for CTS-g-GMA-PPEGMA and 0.14 and 2.11 for chitosan, respectively. An “n” value between one and ten generally indicates favorable adsorption. The adsorption capacities of a chitosan-PPEGMA 50/50 physical mixture and pure PPEGMA were also investigated, and both exhibited significantly lower adsorption capacities than pure chitosan. In this work, CTS-g-GMA-PPEGMA proved to be more effective than its parent chitosan, with a 33% increase in adsorption capacity.

  6. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Li, Wei; Song, Guolin; Chu, Xiaodong; Tang, Guoyi

    2012-01-01

    Microcapsules containing n-octadecane with different methylmethacrylate (MMA (methyl methacrylate))-based copolymer shells were fabricated by a suspension-like polymerization. Butyl acrylate (BA), butyl methacrylate (BMA), lauryl methacrylate (LMA) and stearyl methacrylate (SMA) were employed as monomers to copolymerize with MMA. Pentaerythritol tetraacrylate (PETRA) was employed as a crosslinking agent. The (microencapsulted phase change materials) MicroPCMs were characterized using Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Thermal properties and thermal resistances of MicroPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. Phase change enthalpies and PCM contents of MicroPCMs increased with the length decreasing of the side chain of the monomers. The n-octadecane content of as much as 77.3% can be obtained in the crosslinked MicroPCMs with P(MMA-co-BMA) as shell, and accompanied by the highest melting enthalpy (173.7 J/g) and crystallization enthalpy (174.4 J/g). Heat capacities of crosslinked MicroPCMs are higher than those of their uncrosslinked counterparts. The crosslinked MicroPCMs exhibit significantly greater thermal stabilities compared with their uncrosslinked counterparts and the n-ontadecane bulk. The crosslinked MicroPCMs with P(MMA-co-SMA) displays the highest thermal resistance temperature up to 255 °C. Therefore, MicroPCMs with MMA-based copolymer as shells, especially crosslinked copolymer shells, show excellent potentials for thermal energy storage. -- Highlights: ► n-Octadecane was encapsulated with methylmethacrylate(MMA)-based copolymer shells. ► n-Octadecane content of Microcapsules increased with length decreasing of side chain of monomers. ► Microcapsule with P(MMA-co-butyl methacrylate) has the highest latent heat. ► Microcapsule with P(MMA-co-stearyl methacrylate) has the greatest thermal stability.

  7. Copolymerization of Styrene and Methacrylates in the presence of Catalytic Chain Transfer Agents (Cacti's)

    International Nuclear Information System (INIS)

    Hussain, M.Sakhawat; Khan, M.A.; Ahmad, Shafique

    2005-01-01

    The present paper focuses on the use of a Co (II) complex, [Co(afdo-H)] as a catalytic chain transfer agent (CCTA) for controlling molecular weight in copolymerization of styrene (STY) with butyl methacrylate (BMA) and methylmethacrylate (MMA). The catalyst is structurally similar to [co(dmg-H) (BF)] patented by Du Pont as a CCTA. Average catalytic chain transfer constant, C8 of [co(afdo-H) (BF)] for coplymerization of STY with BMA and MMA determined from Maya plot, was found to be in the range of 10-10.This value is lower than the value reported for the [Co(dmg-H)(BF)). In the case of STY-BMA or STY-MMA copolymerization, a considerable reduction in the viscosity average molecular weights (Mv) was observed in the copolymers. The average molecular weight of poly (MMA-BMA) was reduced by a factor of ten compared to the reduction in poly (STY-MMA) and poly (STY-BMA) for the same concentration of the CCTA. (author)

  8. Graft Copolymerization of Methyl Methacrylate Monomer onto Starch and Natural Rubber Latex Initiated by Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    S. Iskandar

    2011-04-01

    Full Text Available To obtain the degradable plastic, the graft copolymerization of methyl methacrylate onto starch and natural rubber latex was conducted by a simultaneous irradiation technique. Gamma-ray from cobalt-60 source was used as the initiator. The grafted copolymer of starch-polymethyl methacrylate and the grafted copolymer of natural rubber-polymethyl methacrylate were mixed in the blender, and dried it in the oven. The dried grafted copolymer mixture was then molded using hydraulic press machine. The effect of irradiation dose, composition of the grafted copolymer mixture, film forming condition and recycle effect was evaluated. The parameters observed were tensile strength, gel fraction and soil burial degradability of grafted copolymer mixture. It was found that the tensile strength of grafted copolymer mixture increased by -ray irradiation. Increasing of the grafted copolymer of natural rubber-polymethyl methacrylate content, the gel fraction and tensile strength of the grafted copolymer mixture increased. The tensile strength of the grafted copolymer mixture was increased from 18 MPa to 23 MPa after recycled (film forming reprocessed 3 times. The grafted copolymer mixture was degraded completely after soil buried for 6 months

  9. Luminescent sensitization and blue shift emission of Ir(ppy){sub 2}(VPHD) by copolymerization with MMA

    Energy Technology Data Exchange (ETDEWEB)

    An Baoli, E-mail: blan@staff.shu.edu.cn [Department of Chemistry, College of Science, Shanghai University, Shanghai 200444 (China); Dai Fanzeng; Zhang Yanling; Song Jian; Huang, Xiao-Di [Department of Chemistry, College of Science, Shanghai University, Shanghai 200444 (China); Xu, Jia-Qiang, E-mail: xujiaqiang@shu.edu.cn [Department of Chemistry, College of Science, Shanghai University, Shanghai 200444 (China); State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2011-08-15

    Ir(ppy){sub 2}(VPHD) (ppy=2-phenyl pyridine, VPHD=6-(4-vinylphenyl)-2,4-hexanedione) was copolymerized with methyl methacrylate (MMA). The copolymer had high quantum yield of 52.3{+-}0.5% in dilute ethyl acetate solution, and the yield increased around 45% than that of the iridium monomer. The maximum emission peaks for the copolymers shifted from 515 to 489 nm while the iridium complex content was less than 0.005 mol% in the feed. The blue emission at 489 nm and the green emission at 520 nm were analyzed by Lorenz function. They are attributed to {sup 1}MLCT and {sup 3}MLCT emissions, respectively. - Highlights: > PMMA-Ir(ppy){sub 2}(VPHD) as luminescent material with high yield of 53%. > The blue color emission at 489 nm from {sup 1}MLCT in conformity with Lorenz function. > The quantum yield for the copolymer increases 45% than that of the iridium monomer. > The {sup 3}MLCT Ex. intensity versus the monomer concentration is in conformity with Boltzmann function.

  10. Poly(methyl methacrylate) films for organic vapour sensing

    CERN Document Server

    Capan, R; Hassan, A K; Tanrisever, T

    2003-01-01

    Optical constants and fabrication parameters are investigated using surface plasmon resonance (SPR) studies on spun films of poly(methyl methacrylate) (PMMA) derivatives in contact with two different dielectric media. A value of 1.503 for the refractive index of PMMA films produced from a solution having concentration of 1 mg ml sup - sup 1 at the speed of 3000 rpm is in close agreement with the data obtained from ellipsometric measurements. The film thickness shows a power-law dependence on the spin speed but the thickness increases almost linearly with the concentration of the spreading solution. These results are in good agreement with the hydrodynamic theory for a low-viscosity and highly volatile liquid. On the basis of SPR measurements under dynamic conditions, room temperature response of PMMA films to benzene vapours is found to be fast, highly sensitive and reversible. The sensitivity of detection of toluene, ethyl benzene and m-xylene is much smaller than that of benzene.

  11. Analytical calculations and properties of gamma-rays polymerization of novel acrylates copolymer system

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, S.M., E-mail: smelsayed@hotmail.co [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt); Madani, M.; El-Bayoumi, A.S. [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt)

    2009-11-15

    A detailed study of some physical properties of pure PMMA (polymethyl methacrylate) film and MMA/Ani (methyl methacrylate/aniline) films is presented. Films of thicknesses ranged from 0.04 to 0.72 mm for MMA/Ani were prepared while it is 0.68 mm for PMMA. The structure of the sample is analyzed by X-ray diffraction technique and is found to be amorphous (PMMA) and partially crystalline (MMA/Ani). Ultra violet-visible electronic absorption spectra measurements were analyzed to obtain some important parameters such as molar extrication coefficient, oscillator strength, dipole strength and having good thermal stability (T{sub d} >300 deg. C) was also reported. TGA studies revealed that the thermal stability of polymethyl methacrylate, prepared by radiation polymerization of methyl methacrylate, improved after copolymerization with aniline. Also, optical behavior of film samples was analyzed by obtaining transmission spectra, in the wavelength range of 200-1100 nm. It was found that all studied samples lead to the appearance of a second edge at lower photon energy due to the formation of the induced energy states. From the intensity of absorption interband transitions (B and Q) which are assigned as type pi-pi* for both PMMA and MMA/Ani films, the energy gaps E{sub g1} and E{sub g2} were calculated respectively. The optical conductivity (sigma) was determined and it was found that with the increase of thicknesses optical energy gap decreases monotonically and the refractive index increases.

  12. Copolymerization of poly (ethylene oxide) and poly (methyl methacrylate) initiated by ceric ammonium nitrate

    International Nuclear Information System (INIS)

    Gomes, A.S.; Ferreira, A.A.; Coutinho, F.M.B.; Marinho, J.R.D.

    1984-01-01

    Cerium (IV) salts such as the ceric ammonium nitrate and ceric ammonium sulfate in aqueous acid solution with reducing agents such as alcohols, thiols, glycols, aldehydes and amines are well known initiators of vinyl polymerization. In this work, the polymerization of methyl methacrylate initiated by ceric ammonium nitrate/HNO 3 -poly(ethylene oxide) with hydroxyl end group system was studied in aqueous solution at 25 0 C to obtain block copolymers. (Author) [pt

  13. Co-polymerization of methyl methacrylate and styrene via surfactant-free emulsion polymerization, as a potential material for photonic crystal application

    Science.gov (United States)

    Kassim, Syara; Zahari, Siti Balqis; Tahrin, Rabiatul Addawiyah Azwa; Harun, Noor Aniza

    2017-09-01

    Photonic crystals are being the great interest of researcher to studies due to a variety of potential application for the interaction of light including the solar cells, optical sensors and paints. In order to evaluate the fabrication of photonic crystals thin film, a free-emulsifier emulsion copolymerization of styrene and methyl methacrylate was carried out. By using the self -assembly approach, this method offers the opportunity to produce crystalline polymer sphere in more ease operation, low cost and environmental friendly. The influences of the mixing ratio of monomer and amount of initiators were studied. In advance, the presence of styrene as co-monomer had improved the thermal degradation of polymer methyl methacrylate. While in changing the mixing ratio of styrene and methyl methacrylate resulted in particle size of the sphere. The size of polymer particles slightly increased on increasing volume of styrene monomer ratio. This occurred because the properties of styrene in water where it sparingly soluble and lead to coagulation of particles. This simple, yet effective method for preparing functional complex 3D structures has the potential to be used generically to fabricate a variety of functional porous 3D structures that could find application not only in new or improved photonic crystal (PC) devices but also in areas such as catalysis, solar cell, separation, fuel cells technology, microelectronics and optoelectronics.

  14. Rheological, mechanical and morphological properties of poly(methyl methacrylate/poly(ethylene terephthalate blend with dual reactive interfacial compatibilization

    Directory of Open Access Journals (Sweden)

    Juciklécia da Silva Reinaldo

    2015-10-01

    Full Text Available Abstract In this work, the rheological, mechanical and morphological behavior of immiscible blend poly (methyl methacrylate with elastomeric particles (PMMAelast and post-consumer poly (ethylene terephthalate (PET with and without the use of the interfacial compatibilizer poly (methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate (MGE was studied. The significant increase in torque presented in rheological analyses has shown a indication of chemical reactions between the epoxy group of MGE with end groups of PET chains and also with the elastomeric phase of PMMAelast. The increased concentration of PET yielded an increase in maximum strength and elasticity modulus and a decrease in elongation at break. The PMMAelast/PET binary blend (50/50 wt% and PMMAelast/PET/MGE compatibilized blend (65/30/5 wt% showed pronounced results in elongation at break compared to PMMAelast, whereas, in the first results were due to the evidence of a co-continuous morphological structure and in the second, due to the efficiency of the dual reactive interfacial compatibilization of PMMAelast/PET blends. Scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses showed that PMMAelast/PET/MGE blends exhibit complex phase morphology due to the presence of elastomeric particles in the PMMAelast copolymer and in the use of MGE terpolymer.

  15. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Science.gov (United States)

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  16. Preparation of epoxy-functionalized methyl methacrylate-butadiene-styrene core-shell particles and investigation of their dispersion in polyamide-6

    NARCIS (Netherlands)

    Aerdts, A.M.; Groeninckx, G.; Zirkzee, H.F.; Aert, van H.A.M.; Geurts, J.M.

    1997-01-01

    Functional core—shell impact modifiers of glycidyl methacrylate (GMA) functionalized methyl methacrylate—butadiene—styrene (MBS) have been prepared via a seeded semi-continuous emulsion polymerization. These functional MBS—GMA particles were blended with polyamide-6. Investigations by transmission

  17. Study on grafting of different types of acrylic monomers onto natural rubber by γ-rays

    International Nuclear Information System (INIS)

    Dafader, N.C.; Haque, M.E.; Akhtar, F.; Ahmad, M.U.

    2006-01-01

    A comparative study of various acrylic monomers for grafting onto natural rubber was done. The stability of natural rubber latex (NRL) against coagulum with monomer, mechanical properties of grafted rubbers and percent of grafting were investigated. The NRL with monomers, methylacrylate (MA), ethylacrylate (EA) and n-butylacrylate (n-BA), is unstable but it is stable with methyl methacrylate (MMA), n-butyl methacrylate (BMA) and cyclohexyl methacrylate (CHMA). The mechanical properties and degree of grafting attained a maximum at a total radiation dose of 4 kGy. The values of tensile properties of MMA and CHMA grafted rubbers are almost similar, and higher than those of BMA grafted rubbers. On the other hand, the degree of grafting for CHMA is higher than those of MMA and BMA grafted rubbers. The infrared (IR) spectra of monomer grafted natural rubber were also studied

  18. Segmental dynamics in poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks: structural relaxation experiments

    International Nuclear Information System (INIS)

    Ribelles, J L Gomez; Duenas, J M Meseguer; Cabanilles, C Torregrosa; Pradas, M Monleon

    2003-01-01

    The miscibility of poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks (IPNs) has been studied by probing the conformational mobility of the component polymer chains. These IPNs exhibit the phenomenon of forced compatibilization. In a conventional heating differential scanning calorimetry (DSC) thermogram, the highly cross-linked IPN shows a single glass transition which covers a temperature interval of around 100 d eg C; in contrast, loosely cross-linked IPNs show two glass transitions. The conformational mobility in these IPNs is studied by subjecting them to isothermal annealings at temperatures in the region of the glass transition and below it. The DSC scans measured after these treatments allow one to determine the temperature interval in which the sample is out of thermodynamic equilibrium but keeps enough conformational mobility to relax during the isothermal annealing in such a way that the enthalpy loss is measurable with the sensitivity of a conventional DSC. The results allow one to reach some conclusions about the compositional distribution of the IPN on the nanometre scale

  19. Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2017-02-01

    Full Text Available Surface-initiated atom transfer radical polymerization (SI-ATRP is one of the most versatile techniques to modify the surface properties of materials. Recent developed metal-free SI-ATRP makes such techniques more widely applicable. Herein photo-induced metal-free SI-ATRP of methacrylates, such as methyl methacrylate, N-isopropanyl acrylamide, and N,N-dimethylaminoethyl methacrylate, on the surface of SBA-15 was reported to fabricate organic-inorganic hybrid materials. A SBA-15-based polymeric composite with an adjustable graft ratio was obtained. The structure evolution during the SI-ATRP modification of SBA-15 was monitored and verified by FT-IR, XPS, TGA, BET, and TEM. The obtained polymeric composite showed enhanced adsorption ability for the model compound toluene in aqueous conditions. This procedure provides a low-cost, readily available, and easy modification method to synthesize polymeric composites without the contamination of metal.

  20. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    Science.gov (United States)

    Gwon, Sung-Jin; Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun; Ihm, Young-Eon; Nho, Young-Chang

    2008-08-01

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.

  1. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Sung-Jin [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Materials Engineering, Chnugnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Ihm, Young-Eon [Department of Materials Engineering, Chnugnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Nho, Young-Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: ycnho@kaeri.re.kr

    2008-08-15

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.

  2. Property improvement by gamma polymerization of methyl methacrylate impregnated local Thai wood Yang (Dipterocarpus Sp.)

    International Nuclear Information System (INIS)

    Saisomboon, S.; Sumitra, T.

    1990-01-01

    Property improvement of a local Thai wood (Yang-Dipterocarpus Sp.) was studied by impregnating with methyl methacrylate before polymerizing with gamma ray. The polymer loading were 126 and 68 percent for sapwood and heart wood, respectively. Significant improvements in impact, compressive and bending strength were observed in the wood polymer composite (WPC). In addition, the microstructure and the impact fractured-surfaces of WPC were also carried with a scanning electron-microscope

  3. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ~20 d......B in the wavelength range 480-900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ~45 dB m-1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C-1, defined as the red-shift of the resonances per °C, which is three times higher than...... the sensitivity of polymer fiber Bragg gratings....

  4. Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Gillon, X; Diallo, M; Houssiau, L; Pireaux, J-J, E-mail: zhiling.li@fundp.ac.be [University of Namur (FUNDP) Research Centre in Physics of Matter and Radiation (PMR), 61, Rue de Bruxelles, 5000 Namur (Belgium)

    2011-01-01

    A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.

  5. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed; Webber, Andrew

    2004-01-01

    Polymer nanocomposite gel electrolytes consisting of high molecular weight poly(methyl methacrylate) PMMA-clay nanocomposite, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer, and LiClO 4 electrolyte are reported. Montmorillonite clay was ion exchanged with a zwitterionic surfactant (octadecyl dimethyl betaine) and dispersed in methyl methacrylate, which was then polymerized to synthesize PMMA-clay nanocomposites. The nanocomposite was dissolved in a mixture of EC/PC with LiClO 4 , heated and pressed to obtain polymer gel electrolyte. X-ray diffraction (XRD) of the gels indicated intercalated clay structure with d-spacings of 2.85 and 1.40 nm. In the gel containing plasticizer, the clay galleries shrink suggesting intercalation rather than partial exfoliation observed in the PMMA-clay nanocomposite. Ionic conductivity varied slightly and exhibited a maximum value of 8 x 10 -4 S/cm at clay content of 1.5 wt.%. The activation energy was determined by modeling the conductivity with a Vogel-Tamman-Fulcher expression. The clay layers are primarily trapped inside the polymer matrix. Consequently, the polymer does not interact significantly with LiClO 4 electrolyte as shown by FTIR. The presence of the clay increased the glass transition temperature (Tg) of the gel as determined by differential scanning calorimetry. The PMMA nanocomposite gel electrolyte shows a stable lithium interfacial resistance over time, which is a key factor for use in electrochemical applications

  6. Mechanism of radiation-induced degradation of poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Oyama, Ken-ichi; Yoshida, Hiroshi

    1995-01-01

    ESR and gel permeation chromatographic measurements of poly(methyl methacrylate) γ-irradiated between 77 K and 300 K have been carried out to elucidate the mechanism of radiation-induced degradation of the polymer. It is revealed that the scission of the main chain is not taken place immediately after the absorption of radiation energy but is induced by the intramolecular radical conversion of the side-chain -COOCH 2 radical to the tertiary -CH 2 -C(CH 3 )- radical followed by the main-chain β-scission of the latter radical. The degradation is not taken place below 190 K, because the side-chain radical starts to convert only above 190 K. The residual monomer in the polymer reacts with the side-chain radical below 190 K to generate the stable propagating-type radical, so that the degradation is suppressed even after warming the polymer to the ambient temperature. (author)

  7. Observations of crystallization and melting in poly(ethylene oxide)/poly(methyl methacrylate) blends by hot-stage atomic-force microscopy

    NARCIS (Netherlands)

    Pearce, R.; Vancso, Gyula J.

    1998-01-01

    The binary blend of poly(ethylene oxide)/atactic poly(methyl methacrylate) is examined using hot-stage atomic-force microscopy (AFM) in conjunction with differential scanning calorimetry and optical microscopy. It was found possible to follow in real time the melting process, which reveals itself to

  8. Radiation induced graft copolymerization of vinyl monomers onto synthetic polymeric films

    International Nuclear Information System (INIS)

    Chauhan, G.S.; Kaur, Inderjeet; Misra, B.N.

    1997-01-01

    Polyethylene (PE) and polyamide (PA) films have been modified by radiochemical grafting of methylacrylate (MA), ethylacrylate (EA), methyl methacrylate (MMA) and ethyl methacrylate (EMA) in aqueous medium in air. Grafted films show increased area and lower thermal stability. The swelling behaviour of these films vary as a function of percent grafting (P g ). (author). 8 refs., 1 tab

  9. Effect of RAMEB on Soap-free Emulsion Polymerization of MMA%无规甲基化β-环糊精对甲基丙烯酸甲酯无皂乳液聚合影响

    Institute of Scientific and Technical Information of China (English)

    杨学红; 胡杰; 周志平; 魏伟

    2011-01-01

    采用溶液法制备了无规甲基化β-环糊精(RAMEB)/甲基丙烯酸甲酯(MMA)包合物,利用紫外-可见光谱、热重-差热分析等检测手段表明RAMEB与MMA可以形成摩尔比为1∶ 1的包合物,从而使MMA的热稳定性大大提高.通过RAMEB与 MMA的包合作用研究了RAMEB对MMA无皂乳液聚合反应的影响.结果表明,当RAMEB的加入量为4.2×10-4 mol时,体系在75 ℃反应30 min时,单体转化率达89.2%,比同一时间下没有加入RAMEB的空白样的单体转化率提高了30.6%.当RAMEB的加入量为8.4×10-4 mol时,聚合反应速率比空白样低,单体的最终转化率与空白样差不多.同时,RAMEB的引入可以使PMMA微球粒径变大,随着RAMEB加入量的增加,聚合物微球的大小越来越均匀.%The inclusion complex of methyl methacrylate (MMA) with randomly methylated βcyclodextrin (RAMEB) was synthesized by the solvent method and characterized by UV, TG- DSC. The molar ratio method shows that the 1:1 inclusion compound has formed between RAMEB and MMA. The TG - DSC analysis shows that RAMEB and MMA have formed a steady inclusion and the stability of MMA has increased remarkably. By the inclusion of REMEB and MMA ,we investigated the influence of RAMEB on the soap-free emulsion polymerization of MMA. It is found that when the addition of RAMEB is 4. 2 × 10 -4 mol,and the conversion of MMA reached 89. 2% in 30 min at 75 ℃. Compared to the no addition of RAMEB, the conversion increased 30. 6%. When the addition of RAMEB is 8.4 × 10-4 mol, the polymerization speed decelerated and the monomer conversion was almost the same compared to the no addition of RAMEB. The addition of RAMEB will increase the particle size of PMMA. With the increase of RAMEB,PMMA particles are getting more and more uniform.

  10. Process Development for Reactive-Ion Etching of Molybdenum Disulfide (MoS2) Utilizing a Poly(methyl methacrylate) (PMMA) Etch Mask

    Science.gov (United States)

    2017-10-01

    Nichols, Matthew L Chin, Sina Najmaei, Eugene Zakar, and Madan Dubey Sensors and Electron Devices Directorate, ARL Approved for public...EBL; Vistec EBPG5000+) with an exposure dose of 850 μC/cm2 and development in 25 mL of isopropyl alcohol (IPA): 10 mL methyl isobutyl ketone for...deposition EBL electron beam lithography IPA isopropyl alcohol MoS2 molybdenum disulfide O2 oxygen PMMA poly(methyl methacrylate) RIE reactive

  11. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    International Nuclear Information System (INIS)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ∼20 dB in the wavelength range 480–900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ∼45 dB m −1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C −1 , defined as the red-shift of the resonances per °C, which is three times higher than the sensitivity of polymer fiber Bragg gratings. (paper)

  12. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites

    KAUST Repository

    Zubair, Mukarram

    2014-08-04

    The effect of modified graphene (MG) and microwave irradiation on the interaction between graphene (G) and poly(styrene-co-methyl meth acrylate) [P(S-co-MMA)] polymer matrix has been studied in this article. Modification of graphene was performed using nitric acid. P(S-co-MMA) polymer was blended via melt blending with pristine and MG. The resultant nanocomposites were irradiated under microwave at three different time intervals (5, 10, and 20 min). Compared to pristine graphene, MG showed improved interaction with P(S-co-MMA) polymer (P) after melt mixing and microwave irradiation. The mechanism of improved dispersion and interaction of modified graphene with P(S-co-MMA) polymer matrix during melt mixing and microwave irradiation is due to the presence of oxygen functionalities on the surface of MG as confirmed from Fourier transform infrared spectroscopy. The formation of defects on modified graphene and free radicals on P(S-co-MMA) polymer chains after irradiation as explained by Raman spectroscopy and X-Ray diffraction studies. The nanocomposites with 0.1 wt% G and MG have shown a 26% and 38% increase in storage modulus. After irradiation (10 min), the storage modulus further improved to 11.9% and 27.6% of nanocomposites. The glass transition temperature of nanocomposites also improved considerably after melt mixing and microwave irradiation (but only for polymer MG nanocomposite). However, at higher irradiation time (20 min), degradation of polymer nanocomposites occurred. State of creation of crosslink network after 10 min of irradiation and degradation after 20 min of irradiation of nanocomposites was confirmed from SEM studies. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Studies on the effects of titanate and silane coupling agents on the performance of poly (methyl methacrylate)/barium titanate denture base nanocomposites.

    Science.gov (United States)

    Elshereksi, Nidal W; Ghazali, Mariyam J; Muchtar, Andanastuti; Azhari, Che H

    2017-01-01

    This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied. Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated. NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (pPMMA composites. Thus, TCA seemed to be more effective than silane. Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate Template

    Directory of Open Access Journals (Sweden)

    Zhang Chunxiang

    2008-01-01

    Full Text Available AbstractSuperfine powders of poly (methyl methacrylate (PMMA have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol–gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.

  15. Synthesis and characterization of poly(methyl methacrylate)/OMMT nanocomposites by γ-ray irradiation polymerization

    International Nuclear Information System (INIS)

    Zhang Weian; Shen Xiaofeng; Li Yu; Fang Yuee

    2003-01-01

    Organophilic montmorillonite (OMMT) was synthesized by cationic exchange between Na-MMT and cetyltrimethylammonium bromide in an aqueous solution. Poly(methyl methacrylate)(PMMA)/(OMMT) nanocomposites was prepared by γ-ray irradiation polymerization. The dispersion degree and the intercalation spacing of these nanocomposites were investigated with the X-ray diffraction and high-resolution transmission electron microscopy, respectively. The thermal stabilities of the samples were studied by the thermal gravimetric analysis. The nanocomposites had higher storage modulus and higher glass transition temperature (T g ) than the pure PMMA, which were measured by dynamic mechanical analysis

  16. Poly(methyl methacrylate) Composites with Size-selected Silver Nanoparticles Fabricated Using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Muhammad, Hanif; Juluri, Raghavendra R.; Chirumamilla, Manohar

    2016-01-01

    based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a ±5–7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight...... tendency to flattening upon impact. By controlling the polymer hardness (from viscous to soft state) prior the cluster deposition and annealing conditions after the deposition the degree of immersion of the nanoparticles into polymer can be tuned, thus, making it possible to create composites with either...

  17. Polymerization of an acetoxyvinyl substituted chlorocyclophosphazene

    NARCIS (Netherlands)

    Bosscher, G; Jekel, AP; vandeGrampel, JC

    The vinyl acetate derivative, gem-isopropyl-2-(alpha-acetoxyvinyl)tetrachlorocyclotriphosphazene (1), has been used in radical homopolymerization and copolymerization reactions with methyl methacrylate, (MMA) and styrene. The 1,1-disubstituted olefin did not undergo radical homopolymerization.

  18. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction.

    Science.gov (United States)

    Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya

    2015-05-22

    In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Xia Minggang [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Center on Experimental Physics, School of Science, Xi' an Jiaotong University, 710049 (China); Su Zhidan; Zhang Shengli [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, 710049 (China)

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  20. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate thin film

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2012-09-01

    Full Text Available The Raman spectra of bilayer graphene covered with poly(methyl methacrylate (PMMA were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  1. Thermogravimetric studies on alkyl methacrylate polymers and poly(alkyl methacrylate)-grafted polypropylene fibers

    International Nuclear Information System (INIS)

    Hayakawa, Kiyoshi; Taoda, Hiroshi; Kawase, Kaoru; Tazawa, Masato; Yamakita, Hiromi

    1986-01-01

    Thermal behavior of several kinds of poly (alkyl methacrylate) and polypropylene-g-poly (alkyl methacrylate) fibers prepared by γ-irradiation was investigated by thermogravimetric measurements with the intermittent analysis of the gaseous products. The degradation of poly (methyl methacrylate) proceeded according to the deploymerization mechanism reproducing the pristine monomer exclusively. The thermogram in inert atmosphere showed the features of a two-step depolymerization, while in air it showed no such a stepwise decrease with the elevating temperature. The dissolution-precipitation treatment of polymer seemed to affect the decomposition behavior. On other alkyl methacrylate polymers, the thermal decomposition generally proceeded also according to the depolymerization mechanism. But, for instance, at least two kinds of products besides its own monomer were formed from poly (isobutyl methacrylate), and their relative fractions differed with the temperature. Polypropylene-g-poly (alkyl methacrylate) fibers showed lowering of initiation temperature of decomposition with the increase in extent of the grafting, and their initiation temperatures of decomposition in air were lower than those in inert atmosphere. (author)

  2. Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method.

    Science.gov (United States)

    Bai, Hao; Walsh, Flynn; Gludovatz, Bernd; Delattre, Benjamin; Huang, Caili; Chen, Yuan; Tomsia, Antoni P; Ritchie, Robert O

    2016-01-06

    Using a bidirectional freezing technique, combined with uniaxial pressing and in situ polymerization, "nacre-mimetic" hydroxyapatite/poly(methyl methacrylate) (PMMA) composites are developed by processing large-scale aligned lamellar ceramic scaffolds. Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India.

    Science.gov (United States)

    Basu, Arin; Mitra, Soma; Chung, Joyce; Guha Mazumder, D N; Ghosh, Nilima; Kalman, David; von Ehrenstein, Ondine S; Steinmaus, Craig; Liaw, Jane; Smith, Allan H

    2011-09-01

    Ingested inorganic arsenic (InAs) is methylated to monomethylated (MMA) and dimethylated metabolites (DMA). Methylation may have an important role in arsenic toxicity, because the monomethylated trivalent metabolite [MMA(III)] is highly toxic. We assessed the relationship of creatinine and nutrition--using dietary intake and blood concentrations of micronutrients--with arsenic metabolism, as reflected in the proportions of InAS, MMA, and DMA in urine, in the first study that incorporated both dietary and micronutrient data. We studied methylation patterns and nutritional factors in 405 persons who were selected from a cross-sectional survey of 7,638 people in an arsenic-exposed population in West Bengal, India. We assessed associations of urine creatinine and nutritional factors (19 dietary intake variables and 16 blood micronutrients) with arsenic metabolites in urine. Urinary creatinine had the strongest relationship with overall arsenic methylation to DMA. Those with the highest urinary creatinine concentrations had 7.2% more arsenic as DMA compared with those with low creatinine (p creatinine concentration was the strongest biological marker of arsenic methylation efficiency, and therefore should not be used to adjust for urine concentration in arsenic studies. The new finding that animal fat intake has a positive relationship with MMA% warrants further assessment in other studies. Increased MMA% was also associated, to a lesser extent, with low serum selenium and folate.

  4. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  5. Radiation degradation of methyl methacrylate grafted natural rubber

    International Nuclear Information System (INIS)

    Perera, M.C.S.

    1998-01-01

    M G rubber is a mixture consisting of the graft copolymer and two home polymers. Natural rubber is known to undergo crosslinking during exposure to high energy radiation where as poly methyl methacrylate is a polymer where high energy radiation causes chain scission. It is interesting to determine how this partially miscible blend of scission and crosslinking polymers will behave under high energy radiation. Dynamic Mechanical Analysis (DMA) was used to study the variations in the glass transition regions during high energy treatment of the polymers. Another techniques that is available to obtain motional information and miscibility of blends is Nuclear Magnetic Resonance Spectroscopy (NMR).The present study is aimed at understanding the changes in the molecular structure of rubber when exposed to high energy radiation. The changes in the dynamic mechanical properties in the glass transition region and solid state NMR were made used of for this investigation. The data obtained from the DMA results were analysed to calculate the radiation chemical yields. The local dynamics were investigated with measurement of carbon relaxation times and molecular structure was studied with focus on the level of intermolecular mixing by proton relaxation times

  6. Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation

    Science.gov (United States)

    Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad

    2018-03-01

    This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.

  7. Effect of dentin desensitizing procedures on methyl methacrylate ...

    African Journals Online (AJOL)

    2013-10-29

    Oct 29, 2013 ... Materials and Methods: Forty extracted restoration and caries free human premolar teeth ... Departments of Prosthodontics, Faculty of Dentistry, University of Gaziantep, ..... associated primarily with direct methods of fabrication[28] ... MMA may lead to allergic reactions on the skin as well as on oral mucosa.

  8. Analysis of Gel Permeation Chromatography From Irradiation Copolymer Grafting of Methylmethacrylate on to Natural Rubber

    International Nuclear Information System (INIS)

    Hendrana, Sunit; Purwanto, Indratmoko Hari; Karyaningsih, Ipit; Utama, MargaHerwinarni

    2004-01-01

    Grafting of methyl methacrylate (MMA) onto natural rubber was carried out by γ-irradiation using 60 Co source at dose rate 1 KGy/h and total dose of 5 KGy. Gel permeation chromatography (GPC) was used to analyse the grafting. The GPC's chromatogram, molecular weight and molecular weight distribution data indicate that grafting of MMA onto natural rubber and homo polymerization of MMA are the reaction mostly occurs. Meanwhile, the presence of natural rubber radical with a chain end natural rubber radical affect the PMMA homopolymer occurred

  9. Bonding at Compatible and Incompatible Amorphous Interfaces of Polystyrene and Poly(Methyl Methacrylate) Below the Glass Transition Temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Films of high-molecular-weight amorphous polystyrene (PS, M-w = 225 kg/mol, M-w/M-n = 3, T-g-bulk = 97degreesC, where T-g-bulk is the glass transition temperature of the bulk sample) and poly(methyl methacrylate) (PMMA, M-w = 87 kg/mol, M-w/M-n = 2, Tg-bulk = 109degreesC) were brought into contact...

  10. Radiolytic stabilization of industrial poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Aquino, Katia Aparecida da Silva

    2005-03-01

    Poly(methyl methacrylate), PMMA, Acrigel, a Brazilian polymer, is used in the manufacture of medical supplies sterilisable by ionizing radiation. However, when PMMA is gamma-irradiated it undergoes main chain scissions, which promote molecular degradation causing reduction in its physical properties. Therefore, radiolytic stabilization of PMMA is important for to become it commercially radio sterilisable. In this work we investigated the radiolytic stabilization of PMMA by using HALS (Hindered Amine Light Stabilizer) additive, commercially used for photo and thermo oxidative stabilization of polymers. The investigation of the radiation-induced main chain scissions was carried out by viscometric method. The additive added to the polymer system at 0.3 % w/w promotes a molecular radioprotection of 61%. That means a reduction of G value (scissions/100 eV) from 2.6 to 1.0. In addition, the glassy transition temperature (Tg) of PMMA (no additive), significantly changed by radiation, does not change when PMMA (with additive) is irradiated. TGA analysis showed that the additive promotes thermal stability to the system, increasing decomposition temperature of PMMA. Spectroscopy analysis, FT-IR and RMN ( 1 H), showed that the radioprotector additive added to the system does not change the PMMA structure. Analysis on mechanical (tensile strength and elongation at break) and optical (yellowness index and refractive index) properties showed a good influence of the additive on polymer system. (author)

  11. Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique

    Directory of Open Access Journals (Sweden)

    Dong Kwon Park

    2013-09-01

    Full Text Available BackgroundThe forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results.MethodsUnder local anesthesia with intravenous (IV sedation, an incision was made on the scalp and a meticulous and delicate subperiosteal dissection was then performed. MMA monomers and polymers were mixed, the dough was injected into the space created, and manual molding was performed along with direct inspection. This surgery was indicated for patients who wanted to correct an unattractive appearance by forehead augmentation. Every patient in this study visited our clinics 3 months after surgery to evaluate the results. We judged the postoperative results in terms of re-operation rates caused by the dissatisfaction of the patients and complications.ResultsDuring a 13-year period, 516 patients underwent forehead augmentation with MMA. With the injection-molding technique, the inner surface of the MMA implant is positioned close to the underlying frontal bone, which minimizes the gap between the implant and bone. The borders of the implant should be tapered sufficiently until no longer palpable or visible. Only 28 patients (5.4% underwent a re-operation due to an undesirable postoperative appearance.ConclusionsThe injection-molding technique using MMA is a simple, safe, and ideal method for the augmentation of the forehead.

  12. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films

    International Nuclear Information System (INIS)

    Wang Jinyan; Chen Xinhua; Kang Yingke; Yang Guangbin; Yu Laigui; Zhang Pingyu

    2010-01-01

    Superhydrophobic poly(methyl methacrylate)-SiO 2 (coded as PMMA-SiO 2 ) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO 2 ) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO 2 nanocomposite films was investigated in relation to the dosage of SiO 2 nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO 2 nanocomposite films when hydrophobic SiO 2 nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO 2 nanocomposite films had a static water contact angle of above 162 o , showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.

  13. Cadmium Sulfide Quantum Dot Particles (CdSQD Dispersed in Poly Methyl Methacrylate as an Effective Gamma Counter for the Scintillation Detector

    Directory of Open Access Journals (Sweden)

    Askari Mohammad Bagher

    2017-08-01

    Full Text Available The synthetic material, cadmium sulfide quantum dot particles (CdSQD, using a hydrothermal method was dispersed in poly methyl methacrylate (PMM polymer. In order to study the synthesized quantum dot particles, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR techniques were applied. Transmission electron microscopy (TEM and scanning electron microscopy (SEM images were also used to study the surface morphology of synthetic quantum dot particles. Energy-dispersive X-ray spectroscopy (EDX test was done for identification of constituent percent of prepared material. Optical properties of CdSQD particles were evaluated by UV-visible and photoluminescence spectroscopy (PL. Finally the capability of CdSQD particles dispersed in poly methyl methacrylate (CdSQD@PMM as a scintillator material was investigated by photomultiplier tube (PMT test. The result of PMT test along with statistical studies showed that the CdSQD@PMM can be applied as a crystalline promising material in the field of inorganic scintillator detectors regarding to the efficiency and economic aspects.

  14. SANS study of three-layer micellar particles

    CERN Document Server

    Plestil, J; Kuklin, A I; Cubitt, R

    2002-01-01

    Three-layer nanoparticles were prepared by polymerization of methyl methacrylate (MMA) in aqueous micellar solutions of poly(methyl methacrylate)-block-poly(methacrylic acid) (PMMA-b-PMA) and polystyrene-block-poly(methacrylic acid) (PS-b-PMA). The resulting polymer forms a layer on the core surface of the original micelles. SANS curves were fitted using an ellipsoidal (PMMA/PMMA/PMA) or spherical (PS/PMMA/PMA) model for the particle core. The particle size (for the presented series of the PMMA/PMMA/PMA particles, the core semiaxes ranged from 87 to 187 A and the axis ratio was about 6) can be finely tuned by variation of monomer concentration. Time-resolved SANS experiments were carried out to describe the growth of the PS/PMMA/PMA particles during polymerization. (orig.)

  15. Synthesis of Poly(cinnam-4'-yl methyl methacrylate) derivatives and their thermal stability as photoalignment layer

    International Nuclear Information System (INIS)

    Lee, Jong Woo; Kim, Hak Won; Kim, Hong Doo

    2001-01-01

    Photocyclizable poly(cinnam-4'-yl methyl methacrylate) derivatives bearing methoxy benzene (PMCMMA), anthracene (PACMMA), and coumarin (PCCMMMA) have been synthesized via Heck type reaction. Three different types of polymers are photoreactable using linearly polarized UV light and applicable as liquid crystal alignment layer. Anthracene and coumarin containing polymers (PACMMA, PCCMMA) have better thermal stability than PMCMMA. This observation may be attributed to the glass transition temperature elevation due to the bulky size and another photocrosslinking site provided by anthracene or coumarin group

  16. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  17. PREPARATION AND PROPERTY OF POLYMERIC PENDANT Ru(bpy)32+ COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    HOU Xiaohuai; Masao Kaneko; Akira Yamada

    1984-01-01

    Polymeric pendant Ru(bpy)32+ complexes were prepared from homopolymer and copolymers of 4-methyl-4'-vinyl-2,2'-bipyridine (Vbpy). Vbpy was prepared from 4-methylpyridine. The comonomers were styrene (St), acrylic acid (AA), N-vinylpyrrolidone (Pyr), 4-vinylpyridine (Vpy), methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), acrylonitrile (AN) and N-ethyl-4-vinylpyridium bromide (EQ-Vpy). The fraction of the pendant Ru(bpy)32+ repeating unit in the polymeric complex was 0.022 to 0.052. Absorption maximum, molar extinction coefficient, emission maximum and relative emission intensity of the polymeric complexes were studied.

  18. Luminescent Properties of Surface Functionalized BaTiO₃ Embedded in Poly(methyl methacrylate).

    Science.gov (United States)

    Requena, Sebastian; Lacoul, Srijan; Strzhemechny, Yuri M

    2014-01-16

    As-received BaTiO₃ nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (APTES) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO₃ powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

  19. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    Science.gov (United States)

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  20. Arsenic methylation capacity is associated with breast cancer in northern Mexico.

    Science.gov (United States)

    López-Carrillo, Lizbeth; Hernández-Ramírez, Raúl Ulises; Gandolfi, A Jay; Ornelas-Aguirre, José Manuel; Torres-Sánchez, Luisa; Cebrian, Mariano E

    2014-10-01

    Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case-control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined by HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA ORQ5vs.Q1=2.63; 95%CI 1.89,3.66; p for trend 42, 95%CI 0.31,0.59, p for trend iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A highly selective sorbent for removal of Cr(VI) from aqueous solutions based on Fe₃O₄/poly(methyl methacrylate) grafted Tragacanth gum nanocomposite: optimization by experimental design.

    Science.gov (United States)

    Sadeghi, Susan; Rad, Fatemeh Alavi; Moghaddam, Ali Zeraatkar

    2014-12-01

    In this work, poly(methyl methacrylate) grafted Tragacanth gum modified Fe3O4 magnetic nanoparticles (P(MMA)-g-TG-MNs) were developed for the selective removal of Cr(VI) species from aqueous solutions in the presence of Cr(III). The sorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), and thermo-gravimetric analysis (TGA). A screening study on operational variables was performed using a two-level full factorial design. Based on the analysis of variance (ANOVA) with 95% confidence limit, the significant variables were found. The central composite design (CCD) has also been employed for statistical modeling and analysis of the effects and interactions of significant variables dealing with the Cr(VI) uptake process by the developed sorbent. The predicted optimal conditions were situated at a pH of 5.5, contact time of 3.4 h, and 3.0 g L(-1) dose. The Langmuir, Freundlich, and Temkin isotherm models were used to describe the equilibrium sorption of Cr(VI) by the absorbent, and the Langmuir isotherm showed the best concordance as an equilibrium model. The adsorption process was followed by a pseudo-second-order kinetic model. Thermodynamic investigations showed that the biosorption process was spontaneous and exothermic. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In the present work, new dye ligand affinity chromatographic support for papain adsorption was synthesized. For this purpose, poly(acrylamide–methyl methacrylate) [poly(AAm–MMA)] cryogels were synthesized by using the free radical cryopolymerization technique. These cryogels were then functionalized with Reactive ...

  3. Controlled and Efficient Polymerization of Conjugated Polar Alkenes by Lewis Pairs Based on Sterically Hindered Aryloxide-Substituted Alkylaluminum

    Directory of Open Access Journals (Sweden)

    Xiaojun Wang

    2018-02-01

    Full Text Available Reported herein is the development of an effective strategy for controlled and efficient Lewis pair polymerization of conjugated polar alkenes, including methyl methacrylate (MMA, n-butyl methacrylate (nBuMA, and γ-methyl-α-methylene-γ-butyrolactone (γMMBL, by the utilization of sterically encumbered Al(BHT2Me (BHT: 2,6-di-tert-butyl-4-methylphenol as a Lewis acid that shuts down intramolecular backbiting termination. In combination with a selected N-heterocyclic carbene (NHC as a Lewis base, the polymerization of MMA exhibited activity up to 3000 h−1 TOF and an acceptable initiation efficiency of 60.6%, producing polymers with high molecular weight (Mn up to 130 kg/mol and extremely narrow dispersity (Đ = 1.06~1.13. This controlled polymerization with a living characteristic has been evidenced by chain-extension experiments and chain-end analysis, and enabled the synthesis of well-defined diblock copolymers.

  4. SYNTHESIS OF STYRENE-METHYL METHACRYLATE BLOCK COPOLYMER BY POLYAZOAMIDE AS INITIATOR

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongyi; WEI Jeqing

    1996-01-01

    Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) by free radical polymerization. The fraction of block copolymer was about 50%. The structure of the block-copolymer was characterized by IR and the results of 1H-NMR and GPC showed that the content of the block and the molecular weight (-Mw) of the prepolymer and block copolymer could be controlled by varying the mol ratio of styrene/PAA and MMA/prepolymer. DSC and TEM results revealed that the block copolymer has two separated glass transition temperatures and phase separation within the domain structure.

  5. 3D scaffolds from vertically aligned carbon nanotubes/poly(methyl methacrylate) composites via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tebikachew, Behabtu; Magina, Sandra [CICECO, Department of Chemistry, University of Aveiro (Portugal); Mata, Diogo; Oliveira, Filipe J.; Silva, Rui F. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro (Portugal); Barros-Timmons, Ana, E-mail: anabarros@ua.pt [CICECO, Department of Chemistry, University of Aveiro (Portugal)

    2015-01-15

    Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O{sub 2} (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest.

  6. 3D scaffolds from vertically aligned carbon nanotubes/poly(methyl methacrylate) composites via atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Tebikachew, Behabtu; Magina, Sandra; Mata, Diogo; Oliveira, Filipe J.; Silva, Rui F.; Barros-Timmons, Ana

    2015-01-01

    Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O 2 (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest

  7. Water-enhanced adhesion at interface in immiscible bilayer film of polystyrene and poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Harada, M; Koga, T; Fukumori, K; Sugiyama, J; Geue, T

    2014-01-01

    From nano-scratch tests, strong interfacial adhesion has been found for polystyrene (PS) and poly(methyl methacrylate) (PMMA) bilayer films prepared by a water floating (WF) method, while a PS layer on a PMMA film produced by a spin coating (SC) method peels off easily at the interface. Neutron reflectivity measurements demonstrated a clear difference in the interfacial width (σ) between the two bilayers; σ = 9 nm for the film obtained by the WF method, whereas σ = 5 nm for that by the SC method. Plasticization of the films by water would be responsible for broadening of the interface to enhance adhesion strength.

  8. Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yanting; Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742 (United States); Chu, Deryn [Sensors and Electron Device Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783 (United States)

    2010-06-15

    Instead of modification of pre-existing polymers, a new route of preparation of polyelectrolyte OH{sup -} conductive membranes via copolymerization of selected functional monomers was reported in this study. A random copolymer of poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) was synthesized via copolymerization, which was followed by quaternization and membrane casting. The intrinsic OH{sup -} conductivity of the free-standing polyelectrolyte membranes can reach 8.2 x 10{sup -3} S cm{sup -1} at 80 C. The alkaline fuel cells using copolymer polyelectrolytes demonstrated the feasibility of the preparation concept of these membranes. (author)

  9. Strengthening of Poly Methyl Methacrylate (PMMA) through Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Sung Ho; Lim, Hyung San; Ha, Jun Mok; Cho, Sung Oh [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Poly Methyl Methacrylate (PMMA) was previously known to show the deteriorating mechanical properties when irradiated with electrons. This is true for low electron irradiation does, but it was found, through experimentation, that at high irradiation dose, PMMA demonstrates improved mechanical properties. With enough electron irradiation dose, the scissions can form new links amongst one another to achieve stability that surpasses that of the PMMA in pre-irradiation treatment state. With higher irradiation dosage and beam strength, hardness of irradiated PMMA could be increased to a much greater extent. Electrons with 50keV of energy can only penetrate around 30 μm of PMMA, thus increasing the beam energy could potentially allow for hardening of not just the surface of the PMMA samples, but the whole samples themselves. Furthermore, Pencil Hardness Test is a method to roughly analyze a material's hardness and does not provide an accurate feedback on the mechanical properties of the material of interest. Hence, a more thorough and effective method of measuring data from the use of equipment such as IZOD Impact Tester, Strain-Stress Tester and Haze Meter will be utilized in the future.

  10. Radiolytic stabilization of poly(methyl methacrylate) using commercial additives

    International Nuclear Information System (INIS)

    Aquino, Katia Aparecida da Silva

    2000-04-01

    Poly(methyl methacrylate), PMMA, Acrigel, a Brazilian polymer, is used in the manufacture of medical supplies sterelizable by ionizing radiation. However, when PMMA is gamma-irradiated it undergoes main chain scissions, which promote molecular degradation causing reduction in its mechanical properties. Therefore, radiolytic of PMMA is important for it to become commercially radiosterizable. In this work some commercial additives, originally used in photo-and thermo-oxidate stabilization of polymers, were tested. Only two additives, type HALS (Hindered Amine Light Stabilizer), denoted Scavenger, showed a good protective quality. The investigation of radiation-induced main scissions was carried out by viscosimetric method. The most effective additive, added to the polymer system at 0.3 w/w%, promotes a great molecular radioprotection of 93%. That means a reduction of G-value (scissions/100 eV) from 0.611 to 0.053. In addition, the glassy transition temperature (T g ) of PMMA (no additive) significantly changed by radiation does not change when PMMA (with additive) is irradiated. The spectroscopy analysis, FT-IR and NMR ( 1 H), showed that the radioprotector added to the system does not change the PMMA structure. (author)

  11. 60Co γ-irradiation induced polymerization of methyl methacrylate in imidazolium ionic liquids

    International Nuclear Information System (INIS)

    Qi Mingying; Wu Gongzhong; Liu Yaodong; Chen Shimou; Sha Maolin

    2006-01-01

    Room temperature ionic liquids (RTILs), as a class of novel environmental benign 'green solvents', have been used as reaction media for various polymerizations due to their unique properties of non-volatility, high polarity, ease of recycling and chirality. In radiation polymerization, the energetic photons or electrons result in the formation of solvated electron and radical ions in ionic liquids, which initiate polymerization of monomers without any chemical initiator. In this work, effects of gamma ray irradiation on pure ionic liquid [bmim][PF 6 ] was investigated in detail in a dose range of 5-400 kGy. The ionic liquids were quite stable under low dose irradiations, but underwent notable radiolysis with high doses. With the irradiated [bmim][PF 6 ], the UV-Vis absorbance increased and the fluorescence intensity decreased with increasing doses. Raman spectra proved that gamma radiation induced significant chemical scission of n-butyl group (e.g. C-H and C-C scission), along with damages to the [PF6] - anion. In cooled samples of the irradiated [bmim][PF 6 ] we found two coexist crystal structures, which had suffered a continuous destruction under high dose irradiation. After ensuring stability of the ionic liquids to low dose irradiation, radiation polymerization of methyl methacrylate (MMA) in ionic liquids and IL/organic solutions was performed. By adding the ionic liquids, the monomer conversion and molecular weight (Mw) of the polymer increased significant. Mw of PMMA in neat ionic liquid increased by about 60 times, from 3 x 10 4 with pure organic solvent to about 2 x 10 6 . Molecular weight of the polymer increased with the IL fraction in the IL/organic solutions, and it was dependent on ionic liquids and solvents used, too. It was also found that the polymer obtained in the existence of IL showed multi-modal broadened molecular weight distribution (MWD). A reasonable explanation is the inhomogeneous nature of the ionic liquid in micron scale and the

  12. Photocatalytic polymerization induced by a transparent anatase titania aqueous sol and fabrication of polymer composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The surface modification of the anatase titania nanoparticles prepared via a controlled nonhydrolytic sol-gel process is achieved by the formation of the bidentate coordination between titania and methacrylic acid (MAA molecules. The in situ photocatalytic polymerization of methyl methacrylate (MMA monomer is initiated by surface modified anatase titania nanoparticles under Xe lamp irradiation. A variety of techniques including differential scanning calorimetry (DSC, thermo-gravimetric analysis (TGA and scanning electron microscopy (SEM are employed to characterize the resulting materials. The glass transition temperatures and the thermal stabilities of polymethyl methacrylate (PMMA composite materials prepared via photocatalytic polymerization are enhanced compared with pure polymer. The partial aggregation of titania nanoparticles in PMMA composite films is derived from the surface polymerization of MMA, which makes the inorganic particles hydrophobic and drives them to the water/oil interfaces.

  13. Arsenic methylation capacity is associated with breast cancer in northern Mexico

    Energy Technology Data Exchange (ETDEWEB)

    López-Carrillo, Lizbeth; Hernández-Ramírez, Raúl Ulises [Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México (Mexico); Gandolfi, A. Jay [Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ (United States); Ornelas-Aguirre, José Manuel [Unidad de Investigación en Epidemiología Clínica del Hospital de Especialidades No. 2, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Ciudad Obregón, Sonora, México (Mexico); Torres-Sánchez, Luisa [Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México (Mexico); Cebrian, Mariano E., E-mail: mcebrian@cinvestav.mx [Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México City, México (Mexico)

    2014-10-01

    Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case–control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined by HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29 μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35 μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA OR{sub Q5vs.Q1} = 2.63; 95%CI 1.89,3.66; p for trend < 0.001; PMI OR{sub Q5vs.Q1} = 1.90; 95%CI 1.39,2.59, p for trend < 0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA OR{sub Q5vs.Q1} = 0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI OR{sub Q5vsQ1} = 0.42, 95%CI 0.31,0.59, p for trend < 0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. - Highlights: • Arsenic methylation capacity is associated to an increased breast cancer (BC) risk. • Women with higher capacity to methylate arsenic to MMA were at higher BC risk. • Women with higher capacity to methylate arsenic to

  14. Poly(vinyl acetate-Based Block Copolymer/Clay Nanocomposites Prepared by In Situ Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    M.A. Semsarzadeh

    2009-12-01

    Full Text Available Atom transfer radical polymerization of styrene (St and methyl methacrylate (MMA was performed at 90oC in the absence and presence of nanoclay (Cloisite 30B. Trichloromethyl-terminated poly(vinyl acetate telomerand CuCl/ PMDETA were used as a macroinitiator and catalyst system, respectively. The experimental results showed that the atom transfer radical polymerization of St and MMA in the absence or presence of nanoclay proceeds via a controlled/living mode. It was observed that nanoclay significantly enhances the homopolymerization rate of MMA, which was attributed to the activated conjugated C=C bond of MMA monomer via interaction between the carbonyl group of MMA monomer and the hydroxyl moiety (Al-O-H of nanoclay as well as the effect of nanoclay on the dynamic equilibrium between the active (macro radicals and dormant species.Homopolymerization rate of St (a non-coordinative monomer with nanoclay decreased slightly in the presence of nanoclay. This could be explained by insertion of a portion of macroinitiator into the clay galleries, where no sufficient St monomer exists due to the low compatibility or interaction of St monomer with nanoclay to react with the macroinitiator. The results obtained from XRD, TEM and TGA analyses were fully in agreement with the kinetic data. Structure of the poly(vinyl acetate-bpolystyrene nanocomposite was found to be a combination of stacking layers and exfoliated structures while poly(vinyl acetate-b-poly(methyl methacryale nanocomposite had an exfoliated structure. This difference in the structure of nanocomposites was attributed to the different capability of the monomers (styrene and methyl methacrylate to react with the hydroxyl moiety (Al-O-H of nanoclay.

  15. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinyan [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); Chen Xinhua [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Kang Yingke; Yang Guangbin; Yu Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); Zhang Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China)

    2010-12-15

    Superhydrophobic poly(methyl methacrylate)-SiO{sub 2} (coded as PMMA-SiO{sub 2}) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO{sub 2}) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO{sub 2} nanocomposite films was investigated in relation to the dosage of SiO{sub 2} nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO{sub 2} nanocomposite films when hydrophobic SiO{sub 2} nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO{sub 2} nanocomposite films had a static water contact angle of above 162{sup o}, showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.

  16. Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique

    Directory of Open Access Journals (Sweden)

    Dong Kwon Park

    2013-09-01

    Full Text Available Background The forehead, which occupies about one third of the face, is one of the majordeterminants of a feminine or masculine look. Various methods have been used for the augmentationof the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate(MMA is the most appropriate material for augmentation of the forehead, and we have usedan injection-molding technique with MMA to achieve satisfactory results.Methods Under local anesthesia with intravenous (IV sedation, an incision was made onthe scalp and a meticulous and delicate subperiosteal dissection was then performed. MMAmonomers and polymers were mixed, the dough was injected into the space created, andmanual molding was performed along with direct inspection. This surgery was indicated forpatients who wanted to correct an unattractive appearance by forehead augmentation. Everypatient in this study visited our clinics 3 months after surgery to evaluate the results. Wejudged the postoperative results in terms of re-operation rates caused by the dissatisfactionof the patients and complications.Results During a 13-year period, 516 patients underwent forehead augmentation with MMA.With the injection-molding technique, the inner surface of the MMA implant is positionedclose to the underlying frontal bone, which minimizes the gap between the implant and bone.The borders of the implant should be tapered sufficiently until no longer palpable or visible.Only 28 patients (5.4% underwent a re-operation due to an undesirable postoperative appearance.Conclusions The injection-molding technique using MMA is a simple, safe, and ideal methodfor the augmentation of the forehead.

  17. Synthesis and Characterization of Metal Sulfides Nanoparticles/Poly(methyl methacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2014-01-01

    Full Text Available Metal sulfides nanoparticles in poly(methyl methacrylate matrices were prepared and characterized by infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscope (SEM, and transmission electron microscope (TEM. The FTIR confirms the dispersion of the nanoparticles in PMMA matrices with the C=O and C–O–C bonds of the PMMA shifting slightly which may be attributed to the interactions between the nanoparticles and PMMA. The ZnS nanoparticles in PMMA have average crystallite sizes of 4–7 nm while the CdS has particle size of 10 nm and HgS has crystallite sizes of 8–20 nm. The increasing order of particle sizes as calculated from the XRD is ZnS/PMMA

  18. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    Science.gov (United States)

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.

  19. Kinetics of Vinyl Polymerization of Methyl Methacrylate Initiated by Ce(IV-Vanillin Redox System

    Directory of Open Access Journals (Sweden)

    M. Palanivelu

    2012-01-01

    Full Text Available The kinetics of polymerization of methyl methacrylate initiated by Ce(IV-Vanillin redox system was studied in aqueous solution of sulfuric acid at 40°C. The rate of polymerization (Rp and the reaction orders with respect to monomer, initiator and ligand have been determined and found to be 1.5, 0.5 and 0.5 respectively. The effect of concentration of sulfuric acid on the polymerization was also studied. The rate of polymerization was found to increase with increasing temperature 30–60°C and decreases at higher temperature (>60°C. The overall activation energy (Ea was found to be 36.7 kJ/mol. A suitable kinetic scheme has been proposed.

  20. PHOTOPOLYMERIZATION OF METHYL METHACRYLATE USING PIPERAZINE-SULFUR DIOXIDE CHARGE-TRANSFER COMPLEX AS A PHOTOINITIATOR%哌嗪-二氧化硫电荷转移复合物引发的甲基丙烯酸甲酯光聚合

    Institute of Scientific and Technical Information of China (English)

    高青雨; 杜福胜; 李润明; 杨更须; 俞贤达

    2001-01-01

    本文研究了哌嗪(PPZ)与二氧化硫(SO2)电荷转移复合物(CTC)的制备及其作为光引发剂引发甲基丙烯酸甲酯(MMA)的聚合,发现PPZ/SO2摩尔比对聚合速率影响甚大.当PPZ/SO2为1∶2时,形成了具有潜在引发能力的复合物(Ⅰ).Ⅰ引发MMA光聚合的动力学关系式为Rp=Kp[Ⅰ]0.34[MMA]1.06,表观活化能为23.7 kJ/mol.并对引发机理进行了探讨.%Photopolymerization of methyl methacrylate (MMA) was kinetically studied by using piperazine (PPZ)-sulfur dioxide (SO2) charge-transfer complex as a photoinitiator. It was found that the polymerization rate (Rp) was dependent on the molar ratio of piperazine to sulfur dioxide, and the complex(Ⅰ) with a composition of PPZ/SO2=1/2 in molar ratio was the most effective. By using Ⅰ as the photoinitiator, the polymerization kinetics can be expressed as Rp=Kp [Ⅰ]0.34[MMA]1.06, and the apparent activation energy (Ea) value was obtained to be 23.7 kJ/mol. A possible polymerization mechanism was also proposed.

  1. Data of PCL-b-P(MMA-DMAEMA2 characterization and related assays

    Directory of Open Access Journals (Sweden)

    Camila Franco

    2017-12-01

    Full Text Available The data presented here are related to the research paper entitled “PCL-b-P(MMA-co-DMAEMA2 new triblock copolymer for novel pH-sensitive nanocapsules intended for drug delivery to tumors” by Franco et al. [1]. Characterization data of PCL-diol, macroinitiator Br-PCL-Br, homopolymers (PMMA and PDMAEMA and copolymers (batch 1 and batch 2 analyzed by FTIR, SEC and NMR, as well as, characterization of PCL-NS formulation by laser diffraction and DLS analysis, initial nanocapsule formulations and 1C-NC and 2C-NC formulations, including hydrodynamic diameter at different pH media, and DMSO cytotoxicity. Keywords: Methacrylic copolymer, Polycaprolactone, Nanocapsules, pH-sensitive, Cell viability

  2. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    Science.gov (United States)

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  3. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    Science.gov (United States)

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  4. Well-defined 4-arm stars with hydroxy-terminated polyethylene, polyethylene-b-polycaprolactone and polyethylene-b-(polymethyl methacrylate) 2 arms

    KAUST Repository

    Zhang, Zhen

    2016-07-20

    Bis-boron-thexyl-silaboracycle was prepared by hydroboration of 1,4-bis(methyldivinylsilyl)butane with thexylborane and used to initiate the polyhomologation of dimethylsulfoxonium methylide to afford well-defined hydroxy-terminated 4-arm polyethylene (PE) stars. The synthesized PE stars were transformed to (PE-b-PCL)4 starblock copolymers via the ring-opening polymerization of ϵ-caprolactone (CL) initiated by the hydroxyl end groups of (PE-OH)4 in the presence of P2-tBu phosphazene base. Esterification of the hydroxyl groups of the OH-terminated PE star with 2,2-dichloroacetyl chloride led to (PE-Cl2)4 which was used as initiator (eight initiating atom transfer radical polymerization, ATRP, sites) for the synthesis of (PE-b-PMMA2)4 dendrimer-like stars by the ATRP of methyl methacrylate (MMA). All intermediates and final products were characterized by high temperature gel permeation chromatography and proton nuclear magnetic resonance spectroscopy. © 2016 The Royal Society of Chemistry.

  5. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement

    OpenAIRE

    Jammalamadaka U; Tappa K; Weisman JA; Nicholson JC; Mills DK

    2017-01-01

    Uday Jammalamadaka,1 Karthik Tappa,1 Jeffery A Weisman,1 James Connor Nicholson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3The School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA Abstract: Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase ...

  6. Synthesis of acrylates and methacrylates from coal-derived syngas

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L. [Bechtel, San Francisco, CA (United States)] [and others

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  7. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit

    DEFF Research Database (Denmark)

    Sáez-Rodríguez, D.; Nielsen, Kristian; Bang, Ole

    2014-01-01

    that increasing strain during photo-inscription leads to an increased photosensitivity, which is evidence of photodegradation. Likewise, refractive index change in the fiber was measured to be positive, which provides evidence for further polymerization of the material. Finally, we relate the data obtained......In this Letter, we provide evidence suggesting that the main photosensitive mechanism of an undoped poly(methyl methacrylate)-based microstructured optical fiber under UV radiation at 325 nm is a competitive process of both photodegradation and polymerization. We found experimentally...

  8. Si+ and N+ ion implantation for improving blood compatibility of medical poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Li, D.J.; Cui, F.Z; Cui, F.Z.

    1998-01-01

    Si + and N + ion implantation into medical poly(methyl methacrylate) (PMMA) were performed at an energy of 80 keV with fluences ranging from 5x10 12 to 5x10 15 ions/cm 2 at room temperature to improve blood compatibility. The results of the blood contacting measurements in vitro showed that the anticoagulability and anticalcific behaviour on the surface morphology were enhanced after ion implantation. No appreciable change in the surface morphology was detected by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) analysis indicated that ion implantation broke some original chemical bonds on the surface to form some new Si- and N-containing groups. These results were considered responsible for the enhancement in the blood compatibility of PMMA. (author)

  9. Luminescent Properties of Surface Functionalized BaTiO3 Embedded in Poly(methyl methacrylate)

    Science.gov (United States)

    Requena, Sebastian; Lacoul, Srijan; Strzhemechny, Yuri M.

    2014-01-01

    As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (APTES) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV. PMID:28788468

  10. Characteristic of natural rubber latex-methyl metha-crylate copolymer in mineral lubricant base oil

    International Nuclear Information System (INIS)

    Meri Suhartini; Rahmawati

    2010-01-01

    Natural rubber latex-methyl methacrylate copolymer was diluted in xylene, then diluted in four types of lubricant base oil with concentrations of 0.25%, 1%, 5%, and 10%. The mixed solutions were analyzed to obtain kinematics viscosity, viscosity index, density, ash content, metal content, flash point, shear stability and total alkali number. The viscosity index of sample, increased by adding the copolymer solution. The results showed that lubricant base oil of High Viscosity index (HVI) 60 and mixed HVI 60: HVI 650 gave optimum viscosity index. The higher concentration of polymer added into base lubricant oil, the higher viscosity index obtained. The shear stability test showed that the kinematics viscosity of sample decreased 6.5% after 60 minutes of treatment test. (author)

  11. Luminescent Properties of Surface Functionalized BaTiO3 Embedded in Poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Sebastian Requena

    2014-01-01

    Full Text Available As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyltriethoxysilane (APTES and mixed with poly(methyl methacrylate/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

  12. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakalak, Huseyin [Selcuk University, Metallurgy and Materials Engineering (Turkey); Ulasan, Mehmet; Yavuz, Emine [Selcuk University, Advanced Technology Research and Application Center (Turkey); Camli, Sevket Tolga, E-mail: tolgacamli@gmail.com [Biyotez Machinery Chemistry R& D Co. Ltd. (Turkey); Yavuz, Mustafa Selman, E-mail: selmanyavuz@selcuk.edu.tr [Selcuk University, Metallurgy and Materials Engineering (Turkey)

    2014-12-15

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV–Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells.

  13. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    International Nuclear Information System (INIS)

    Sakalak, Huseyin; Ulasan, Mehmet; Yavuz, Emine; Camli, Sevket Tolga; Yavuz, Mustafa Selman

    2014-01-01

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV–Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells

  14. Erythrocyte membrane stabilization effect and antioxidant activity of methyl methacrylate

    International Nuclear Information System (INIS)

    Popov, B.

    2004-01-01

    Methyl methacrylate (MMK) is a synthetic product with mild impact on human health that is not well studied on cellular basis. Here, human erythrocytes were used to investigate the effects MMK exerts on acid and heat-induced hemolysis. Biphasic effect of MMK was observed for acid-induced hemolysis; i.e., protection at low (0 - 0.05% v/v) and stimulation at higher (0.1- 0.4% v/v) concentrations. The maximal protective effect was produced at 0.03% (v/v). At this concentration MMK increased the temperatures of heat denaturation of erythrocyte membrane proteins, spectrin and integral proteins, by about 2 0 C and inhibited the heat-induced hemolysis by 20 %. This membrane stabilization effect of MMK is similar to that produced by some anti-inflammatory and antirheumatic drugs. The increased acid resistance possibly indicated anti-oxidant properties of MMK. The nonenzymatic antioxidant activity test evidenced that MMK has no superoxide dismutase-like activity but demonstrates strong catalase-like activity (about 900 kU/mmol at 0.05-0.1 mmol/l concentration). The results indicate that at low concentration MMK exerts benign effect on cellular membrane that could find therapeutic usage. (author)

  15. Copolyacrylates with phenylalanine and anthracene entities prepared by ATRP and microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, E.C., E-mail: emilbur@icmpp.r [Romanian Academy, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi (Romania); Murariu, Mioara; Buruiana, Tinca [Romanian Academy, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi (Romania)

    2010-10-15

    In this study, two amino acid copolymers containing anthracene incorporated either on the one end, poly(N-acryloyl-L-phenylalanine-co-methyl methacrylate)-1 or as pendant groups, poly-(N-acryloyl-L-phenylalanine-co-methyl methacrylate)-2 were prepared directly from N-acryloyl-L-phenylalanine (APhe) and methyl methacrylate (MMA) through atom transfer radical polymerization (ATRP) and microwave-assisted synthesis. In the first case, 9-(chloromethyl)anthracene was used as an ATRP-initiator to obtain a copolymer that contains amino acid sequences and anthracene end-capped units (0.03 molar fraction). Rapid synthesis of copolymer under microwave irradiation (250 W) in the presence of 1,1'-azobis(cyclohexanecarbonitrile) used as an initiator was followed of a functionalization of the formed copolymer with an anthracene derivative yielding copolyacrylate with pendant anthracene (0.02 molar fraction). The structure of the copolymers was verified by {sup 1}H NMR, UV-Vis and FTIR spectroscopy, gel permeation chromatography (GPC), and fluorescence spectroscopy. The fluorescence quenching process of anthracene which exists in copolymers by FeCl{sub 3}, cobalt acetate, nitrobenzene, maleic anhydride, diethylaniline and nitromethane in DMF solutions shows that this involves an electron transfer between the excited state anthracene and the present transitional metal cations, more efficiently being FeCl{sub 3} for poly-(APhe-co-MMA)-1 and cobalt acetate for the latter copolymer.

  16. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green

    International Nuclear Information System (INIS)

    Abd-El Kader, F.H.; Osman, W.H.; Hafez, R.S.

    2013-01-01

    Cast thin films of Poly (methyl methacrylate)/Poly (vinyl acetate) blends of different concentrations undoped and doped with malachite green have been prepared and subjected to both dc electrical conduction and dielectric spectroscopy measurements. The analysis of dc electrical conduction data showed that the space charge limited current mechanism has been dominant for Poly (vinyl acetate) while Schottky-Richardson conduction mechanism prevailed for the Poly (methyl methacrylate) and blended samples. The values of field lowering constant β and the thermal activation energy ΔE involved in the dc conduction were reported, which provide another support for the suggested Schottky-Richardson mechanism. The increase in current for the blend sample doped with malachite green has been attributed to the formation of charge transfer complexes inside the polyblend matrix. The dielectric constant as a function of temperature for all samples have been calculated which are affected by the composition ratio and the addition of dye. The relaxation peak that appeared in the dielectric loss curve at 347 K for the doped blend sample is related to local dipoles that are present in the dye material. The obtained relaxation process spectra present in the investigated samples were analyzed with the well-known model of Havriliak-Negami.

  17. Synthesis of Nanometer-Sized Poly (methyl methacrylate) Polymer Network by Gold Nanoparticle Template

    Science.gov (United States)

    Liu, Fu-Ken; Hsieh, Shang-Yu; Ko, Fu-Hsiang; Chu, Tieh-Chi; Dai, Bau-Tong

    2003-06-01

    Gold nanoparticle/polymer composites have been produced using a one-system polymer synthesis. The linear polymer, poly (methyl methacrylate) (PMMA, MW = 15,000 g/mol) is applied for the stabilization of gold nanoparticles. The Fourier transfer infrared (FT-IR) analysis data and transition electron microscopy (TEM) image reveal that the core shell structure of gold/PMMA nanocomposite has been synthesized. The ratio of the concentration of the capping polymer material to the concentration of the gold precursor could control the sizes of gold nanoparticles. With specific concentration of the reductant, the core-shell nanostructure could be fluctuated in order. After heating treatment, the network structure of PMMA capped gold nanoparticles could be synthesized as confirmed by the TEM image. The result indicates that PMMA not only acts as the stabilizer, but also as the bridge of the neighboring gold nanoparticles.

  18. Reversible-Deactivation Radical Polymerization of Methyl Methacrylate Induced by Photochemical Reduction of Various Copper Catalysts

    Directory of Open Access Journals (Sweden)

    Jaroslav Mosnáček

    2014-11-01

    Full Text Available Photochemically mediated reversible-deactivation radical polymerization of methyl methacrylate was successfully performed using 50–400 ppm of various copper compounds such as CuSO4·5H2O, copper acetate, copper triflate and copper acetylacetonate as catalysts. The copper catalysts were reduced in situ by irradiation at wavelengths of 366–546 nm, without using any additional reducing agent. Bromopropionitrile was used as an initiator. The effects of various solvents and the concentration and structure of ligands were investigated. Well-defined polymers were obtained when at least 100 or 200 ppm of any catalyst complexed with excess tris(2-pyridylmethylamine as a ligand was used in dimethyl sulfoxide as a solvent.

  19. Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes

    International Nuclear Information System (INIS)

    Uyar, Tamer; Besenbacher, Flemming; Nur, Yusuf; Hacaloglu, Jale

    2009-01-01

    Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: α-CD, β-CD, and γ-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 deg. C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order α-CD β-CD>α-CD.

  20. Effect of γ-ray irradiation on polystyrene, poly (methyl methacrylate), and their copolymer prepared by cast polymerization

    International Nuclear Information System (INIS)

    Tsukame, Takahiro; Kutsuzawa, Michio; Saitoh, Hideki; Shibasaki, Yoshio

    1998-01-01

    Effect of γ-ray irradiation on polystyrene (PS), poly(methyl methacrylate) (PMMA), and their copolymer prepared by cast polymerization was studied using size exclusion chromatography. The main chemical reactions in irradiated polymers were crosslinking and scission. Conversion of all irradiated samples increased regardless of the concentration of initiator (AIBN) used for cast polymerization. On γ-ray irradiation, the molecular weight of PS increased and its distribution broadened, whereas the molecular weight of PMMA decreased. These phenomena should be attributable to the competitive occurrence of scission and crosslinking in PS by γ-ray irradiation, whereas scission occurred mainly in PMMA. (author)

  1. A thermodynamic approach to choosing pervaporatives membranes

    Directory of Open Access Journals (Sweden)

    Mahacine Amrani

    2006-09-01

    Full Text Available This work describes separating a mixture of several components obtained as a product of methyl polymethyl metha- crylate (PMMA thermo-degradation. It was aimed at purifying methyl methacrylate monomer (MMA obtained by 95% mass thermal degradation to reach 99.5% maximum pervaporation concentration. This work studied the theory of pervaporation and applying the main thermodynamic criteria for choosing suitable polymer membranes for separating the MMA/PRP/ISB mixture. Such thermodynamic criteria were based on monomer interaction with and solubility on the membrane. The advantage of using this separation technique lies mainly in the fact that this method has low energy consumption compared to other processes, such as distillation or crystallisation.

  2. Radiolytic stabilization of poly(methyl methacrylate) in blends with polystyrene

    International Nuclear Information System (INIS)

    Lima, Ivania Soares de

    2002-04-01

    In this work the radiolytic stabilization of poly(methyl methacrylate) was analyzed by three radioprotective agents: polystyrene (PS) and hindered amine light stabilizers (HEALS), respectively, PMMA/PS systems, so a called polymeric blends were prepared with different compositions, where the miscibility of these blends were studied using viscometric, microscopy (SEM) and spectroscopy (FT-IR) techniques. The results show that PMMA/PS blends in the compositions below 10 wt% of PS are miscible, on films casting from solution of toluene and methyl-ethyl-ketone (1;1) mixture. On the other hand, in the composition above 10 wt% of PS, PMMA/PS blends show imminiscibility behavior. These polymer solutions were irradiated with gamma rays ( 60 Co) and viscometric, microscopic and spectroscopic experiments show gamma radiation-induced compatibilization on PMMA/PS blends on proportion 50/50 and 30/70 take place. Viscometric interaction parameters of miscible and compatibilized PMMA/PS bends were calculated in the range of - 50 kGy, with the goal to find out the polymeric interactions after irradiation of the films. G values of PMMA, PMMA/PS and PMMA+St systems were calculated in order to analyze the radioprotection of PS and St into PMMA matrix. The results show that (90/10) PMMA/PS and PMMA+1,5%St systems promote protection against the gamma the radiation-induced scissions, effect that leads to polymer degradation. Moreover, a small amount of crosslinking observed in irradiated blends has contributed to stabilize mechanical properties of PMMA films. PMMA+0,3% HALS system irradiated in doses above 60 kGy showed little stabilization of the mechanical properties of PMMA, since it was observed mechanical degradation this system. Based on these results, PS and St showed to be the best radioprotective agents to PMMA. (author)

  3. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Dye-doped polymer optical fibre preforms were fabricated by the controlled polymeriza- tion of Rh B-doped methyl methacrylate (MMA). Hole in the preform can be achieved by placing a teflon rod on the centre of the glass tube during the polymerization. Final fibre structure with required diameter was ...

  4. INITIATION EFFICIENCY f OF METHYL METHACRYLATE BULK RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    沈家骢; 田元; 王国斌; 杨梅林

    1990-01-01

    The values of the initiation efficiency f at various conversions in the bulk polymerization of MMA initiated by AIBME have first been determined according to a strict unsteady-state formula and based on the data of radical concentration and the termination rate constant determined using ESR method. A model of diffusion control initiation is proposed. The theory is well in agreement with the experiments during the whole process of polymerization.

  5. Differences of Urinary Arsenic Metabolites and Methylation Capacity between Individuals with and without Skin Lesions in Inner Mongolia, Northern China

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available Incomplete arsenic (As methylation has been considered a risk factor of As-related diseases. This study aimed to examine the difference of urinary As metabolites and the methylation capacity between subjects with and without skin lesions. Urinary inorganic arsenic (iAs, monomethylarsonic acid (MMA, and dimethylarsinic acid (DMA were analyzed. The percentage of each As species (iAs%, MMA%, and DMA%, the primary methylation index (PMI and secondary methylation index (SMI were calculated. The results showed that subjects with skin lesions have higher levels of urinary iAs (99.08 vs. 70.63 μg/g Cr, p = 0.006 and MMA (69.34 vs. 42.85 μg/g Cr, p = 0.016 than subjects without skin lesions after adjustment for several confounders. Significant differences of urianry MMA% (15.49 vs. 12.11, p = 0.036 and SMI (0.74 vs. 0.81, p = 0.025 were found between the two groups. The findings of the present study suggest that subjects with skin lesions may have a lower As methylation capacity than subjects without skin lesions.

  6. Differences of urinary arsenic metabolites and methylation capacity between individuals with and without skin lesions in Inner Mongolia, Northern China.

    Science.gov (United States)

    Zhang, Qiang; Li, Yongfang; Liu, Juan; Wang, Da; Zheng, Quanmei; Sun, Guifan

    2014-07-18

    Incomplete arsenic (As) methylation has been considered a risk factor of As-related diseases. This study aimed to examine the difference of urinary As metabolites and the methylation capacity between subjects with and without skin lesions. Urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were analyzed. The percentage of each As species (iAs%, MMA%, and DMA%), the primary methylation index (PMI) and secondary methylation index (SMI) were calculated. The results showed that subjects with skin lesions have higher levels of urinary iAs (99.08 vs. 70.63 μg/g Cr, p = 0.006) and MMA (69.34 vs. 42.85 μg/g Cr, p = 0.016) than subjects without skin lesions after adjustment for several confounders. Significant differences of urianry MMA% (15.49 vs. 12.11, p = 0.036) and SMI (0.74 vs. 0.81, p = 0.025) were found between the two groups. The findings of the present study suggest that subjects with skin lesions may have a lower As methylation capacity than subjects without skin lesions.

  7. Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluoromethanesulfonyl)imide based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S.; Lu, Soon-Chien [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2008-12-01

    The effect of nanosized silica when incorporated in polymer electrolytes is analyzed by means of Fourier transform infrared (FTIR) spectroscopy, conductivity and thermal properties. Nanocomposite polymer electrolytes are synthesized by the dispersion of nanosized silica (SiO{sub 2}), up to 10 wt.% maximum, into a matrix formed by poly(methyl methacrylate) (PMMA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The highest conductivity is 2.44 x 10{sup -6} S cm{sup -1} at room temperature, with 4 wt.% of silica added. The FTIR spectra show evidence of complexation between PMMA, LiTFSI and SiO{sub 2}. The addition of silica to the polymer electrolytes also improves the thermal stability and the ability to retain conductivity over time. (author)

  8. The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation

    International Nuclear Information System (INIS)

    Wang Huan; Hu Xijun; Ka Ming Ng; Feng Jiyun

    2009-01-01

    Poly(methyl methacrylate) (PMMA)/multiwalled carbon nanotube (MWCNT) nanocomposite particles with 1, 2 and 4 wt% of MWCNTs were prepared by mechanical grinding of PMMA and MWCNT powders in a mortar at room temperature. Both scanning electron microscopy and Raman scattering characterizations revealed that these nanocomposite particles consist of a PMMA core and a MWCNT shell. The PMMA/MWCNT nanocomposite particles were used to fabricate the corresponding nanocomposites in the form of a hollow cylinder with various diameters and heights under 700 W microwave irradiation within 1 min. A mechanism for the fast microwave assisted forming process is proposed. These experimental results may lead to a new technology for forming hollow polymeric articles that is different from the conventional injection and blowing process.

  9. Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release.

    Directory of Open Access Journals (Sweden)

    Xiao Li

    Full Text Available To improve the efficacy of anti-inflammatory factors in patients who undergo cataract surgery, poly(2-hydroxyethyl methacrylate-co-methyl methacrylate (p(HEMA-co-MMA hydrogels containing β-cyclodextrin (β-CD (pHEMA/MMA/β-CD were designed and prepared as intraocular lens (IOLs biomaterials that could be loaded with and achieve the sustained release of dexamethasone. A series of pHEMA/MMA/β-CD copolymers containing different ratios of β-CD (range, 2.77 to 10.24 wt.% were obtained using thermal polymerization. The polymers had high transmittance at visible wavelengths and good biocompatibility with mouse connective tissue fibroblasts. Drug loading and release studies demonstrated that introducing β-CD into hydrogels increased loading efficiency and achieved the sustained release of the drug. Administering β-CD via hydrogels increased the equilibrium swelling ratio, elastic modulus and tensile strength. In addition, β-CD increased the hydrophilicity of the hydrogels, resulting in a lower water contact angle and higher cellular adhesion to the hydrogels. In summary, pHEMA/MMA/β-CD hydrogels show great potential as IOL biomaterials that are capable of maintaining the sustained release of anti-inflammatory drugs after cataract surgery.

  10. Association between body mass index and arsenic methylation efficiency in adult women from southwest U.S. and northwest Mexico

    International Nuclear Information System (INIS)

    Gomez-Rubio, Paulina; Roberge, Jason; Arendell, Leslie; Harris, Robin B.; O'Rourke, Mary K.; Chen, Zhao; Cantu-Soto, Ernesto; Meza-Montenegro, Maria M.; Billheimer, Dean; Lu Zhenqiang; Klimecki, Walter T.

    2011-01-01

    Human arsenic methylation efficiency has been consistently associated with arsenic-induced disease risk. Interindividual variation in arsenic methylation profiles is commonly observed in exposed populations, and great effort has been put into the study of potential determinants of this variability. Among the factors that have been evaluated, body mass index (BMI) has not been consistently associated with arsenic methylation efficiency; however, an underrepresentation of the upper BMI distribution was commonly observed in these studies. This study investigated potential factors contributing to variations in the metabolism of arsenic, with specific interest in the effect of BMI where more than half of the population was overweight or obese. We studied 624 adult women exposed to arsenic in drinking water from three independent populations. Multivariate regression models showed that higher BMI, arsenic (+ 3 oxidation state) methyltransferase (AS3MT) genetic variant 7388, and higher total urinary arsenic were significantly associated with low percentage of urinary arsenic excreted as monomethylarsonic acid (%uMMA) or high ratio between urinary dimethylarsinic acid and uMMA (uDMA/uMMA), while AS3MT genetic variant M287T was associated with high %uMMA and low uDMA/uMMA. The association between BMI and arsenic methylation efficiency was also evident in each of the three populations when studied separately. This strong association observed between high BMI and low %uMMA and high uDMA/uMMA underscores the importance of BMI as a potential arsenic-associated disease risk factor, and should be carefully considered in future studies associating human arsenic metabolism and toxicity.

  11. [Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure].

    Science.gov (United States)

    Su, Liqin; Cheng, Yibin; Lin, Shaobin; Wu, Chuanye

    2007-05-01

    To investigate the difference of arsenic metabolism in populations with long-term high arsenic exposure and explore the relationship between arsenic metabolism diversity and skin lesion. 327 residents in an arsenic polluted village were voluntarily enrolled in this study. Questionnaire survey and medical examination were carried out to learn basic information and detect skin lesions. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic fluorescence spectrometry. Total arsenic concentration in hair was determined with DDC-Ag method. Hair arsenic content of studied polutions was generally high, but no significant difference were found among the studied four groups. MMA and DMA concentration in urine increased with studied polution age, and were positively related with skin lesion grade. The relative proportion of MMA in serious skin lesion group was significantly higher than in other 3 groups, while DMA/MMA ratio was significantly lower than control and mild group. The relative proportion of MMA was positively related with skin lesion grade, DMA/ MMA ratio was negatively related with skin lesion grade. Males could have higher arsenic cumulation and lower methylation capacity than those of females. The population of above 40 years old may have higher methylation capacity than those of adults below 40yeas old. Smokers and drinkers seemed lower methylation capacity than those of non-smokers and non-drinkers respectively. The methylation of arsenic could affect by several factors, including age gender, smoking and drinking. Arsenic methylation copacity mey be associated with skin lesion induced by arsenic exposure.

  12. Formation of polystyrene/poly(methyl methacrylate) heteroarm star-like nanogels from complementarily reactive well-defined diblock copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Amamoto, Y; Otsuka, H; Takahara, A, E-mail: otsuka@ms.ifoc.kyushu-u.ac.j [Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0385 (Japan)

    2009-08-01

    Formation of star-like nanogels with two different arms via cross-linking reaction of complementarily reactive diblock copolymers was successfully accomplished. The two types of diblock copolymers, consisting of poly(methyl methacrylate) (PMMA) or polystyrene (PSt) block and alkoxyamine-based cross-linkable block, were prepared by atom transfer radical polymerization (ATRP) methods. The cross-linking reactions were carried out by merely heating their mixture, and traced by gel permeation chromatography (GPC) and multi-angle light scattering (MALS) measurements. The diblock copolymers were reacted in complementarily reactive systems, showing that all star-like nanogels have necessarily two types of arms as PMMA and PSt chains.

  13. Effect of microencapsulated phase change materials on the thermo-mechanical properties of poly(methyl-methacrylate) based biomaterials.

    Science.gov (United States)

    De Santis, Roberto; Ambrogi, Veronica; Carfagna, Cosimo; Ambrosio, Luigi; Nicolais, Luigi

    2006-12-01

    Microencapsulated paraffin based phase change material (PCM) have been incorporated into Poly(methyl-methacrylate) (PMMA) matrix in order to enhance the thermo-mechanical properties. Calorimetric and mechanical analyses are carried out and the thermo regulating potential of PMMA/PCM composites is investigated. Results indicate that the PCM phase has a negligible effect on the glass transition temperature of the PMMA matrix, and the thermal regulating capability spans around body temperature absorbing or releasing a thermal energy up to 30 J/g. One of the effect of the PCM phase into the cement is the reduction of the peak temperature developed during the exothermal reaction.

  14. Dehydrogenation mechanism of LiBH{sub 4} by Poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmei [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Yan, Yurong [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Wang, Hui [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-10-05

    Highlights: • LiBH{sub 4} is amorphous after modified with PMMA. • Dehydrogenation temperature of LiBH{sub 4} decreases by 120 °C after modifying with PMMA. • The LiBH{sub 4}@PMMA composite releases 10 wt.% hydrogen at 360 °C within 1 h. • C=O group of PMMA weakens the B−H bonds to lower dehydrogenation temperature. - Abstract: We investigated the dehydrogenation properties and mechanism of Poly(methyl methacrylate) (PMMA) confined LiBH{sub 4}. Thermal stability of LiBH{sub 4} was reduced by PMMA, with a decrease in dehydrogenation temperature by 120 °C. At 360 °C, the composite showed fast dehydrogenation kinetics with 10 wt.% of hydrogen released within 1 h. The improved dehydrogenation performance was mainly attributed to the reaction between LiBH{sub 4} and PMMA forming Li{sub 3}BO{sub 3} as a final product. Furthermore, the presence of electrostatic interaction between B atom of LiBH{sub 4} and O atom in the carbonyl group of PMMA may weaken the B−H bonding of [BH{sub 4}]{sup −} and lower the hydrogen desorption temperature.

  15. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  16. Characteristic of Polymer-Impregnated Cement Mortar: Composites: Bulk Density and Microstructure

    International Nuclear Information System (INIS)

    Younes, M.M.; Abo-El-Enein, S.A.; El-Saft, M.M.; Sadek, M.A.; Zohdy, K.M.

    2010-01-01

    The effect of radiation initiated polymerization of some monomers on the physical properties of polymer-incorporated mortar was studied. The monomers used were: castor oil (C.O.), 4, 4'-diphenylmethane diisocyanate (MDI) and methyl methacrylate (MMA). Polymerization was carried out by subjecting the monomer-impregnated mortar specimens to different doses of gamma radiation. Where polyurethane (pu) and polyurethane -methyl methacrylate copolymers were formed within the pore system. The influence of polymer impregnation on the various physico-mechanical characteristics of the resulting composites was studied with respect to bulk density and polymer loading. Scanning electron microscopy (SEM) was employed to study the micro-structural characteristics of the neat hardened Ordinary Portland Cement (OPC) mortar pastes and their polymer-impregnated composites

  17. Synthesis of novel glycopolymer brushes via a combination of RAFT-mediated polymerisation and ATRP

    Directory of Open Access Journals (Sweden)

    Eric T.A. van den Dungen

    2011-03-01

    Full Text Available Glycopolymers (synthetic sugar-containing polymers have become increasingly attractive to polymer chemists because of their role as biomimetic analogues and their potential for commercial applications. Glycopolymers of different structures confer high hydrophilicity and water solubility and can therefore be used for specialised applications, such as artificial materials for a number of biological, pharmaceutical and biomedical uses. The synthesis and characterisation of a series of novel glycopolymer brushes, namely poly(2-(2-bromoisobutyryloxy ethyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(BIEM-g-P(6-O-MMAGIc, poly(2-(2-bromoisobutyryloxy ethyl methacrylate-co-methyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside P(BIEM-co-MMA-g-P(6-O-MMAGIc, poly(2-(2-bromoisobutyryloxy ethyl methacrylate-b-methyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside P(BIEM-b-MMA-g-P(6-O-MMAGIc and poly(4-vinylbenzyl chloride-alt-maleic anhydride-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(Sd-alt-MAnh-g-P(6-O-MMAGIc are described in this paper. Reversible addition-fragmentation chain transfer (RAFT-mediated polymerisation was used to synthesise four well-defined atom transfer radical polymerisation (ATRP macroinitiators (the backbone of the glycopolymer brushes. These ATRP macroinitiators were subsequently used in the ‘grafting from’ approach (in which side chains are grown from the backbone to prepare high molar mass and low polydispersity index glycopolymer brushes with different grafting densities along the backbone. The number average molar mass of the glycopolymer brushes was determined using size exclusion chromatography with a multi-angle laser light

  18. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions.

    Science.gov (United States)

    Mose, Kristian F; Andersen, Klaus E; Christensen, Lars Porskjaer

    2012-04-01

    Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different storage conditions. Petrolatum samples of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxypropyl acrylate (2-HPA), cinnamal and eugenol in patch test concentrations were stored in three different test chambers (IQ chamber™, IQ Ultimate™, and Van der Bend® transport container) at room temperature and in a refrigerator. The samples were analysed in triplicate with high-performance liquid chromatography. The decrease in concentration was substantial for all five allergens under both storage conditions in IQ chamber™ and IQ Ultimate™, with the exception of 2-HEMA during storage in the refrigerator. For these two chamber systems, the contact allergen concentration dropped below the stability limit in the following order: MMA, cinnamal, 2-HPA, eugenol, and 2-HEMA. In the Van der Bend® transport container, the contact allergens exhibited acceptable stability under both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens. © 2012 John Wiley & Sons A/S.

  19. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Lakshmi; Mohanty, Smita [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Nayak, Sanjay K., E-mail: drsknayak@gmail.com [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Ali, Anwar [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India)

    2011-05-15

    Research highlights: {yields} The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. {yields} The effect of various modified nanoclays on the properties of base matrix has been investigated. {yields} It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T{sub g} of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  20. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    International Nuclear Information System (INIS)

    Unnikrishnan, Lakshmi; Mohanty, Smita; Nayak, Sanjay K.; Ali, Anwar

    2011-01-01

    Research highlights: → The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. → The effect of various modified nanoclays on the properties of base matrix has been investigated. → It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T g of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  1. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  2. Fluorescence enhancement of samarium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix

    International Nuclear Information System (INIS)

    Jiu Hongfang; Zhang Lixin; Liu Guode; Fan Tao

    2009-01-01

    The fluorescence property of Sm(DBM) 3 phen- (DBM-dibenzoylmethide, phen-1,10-phenanthroline) and Tb(DBM) 3 phen-co-doped poly(methyl methacrylate) (PMMA) was investigated. The excitation, emission spectra and fluorescence lifetime of the co-doped samples were examined. In the co-doped samples, the luminescence intensities of Sm 3+ enhance with an increase of the Tb(DBM) 3 phen content and with a decrease of the Sm(DBM) 3 phen content. The reason for the fluorescence enhancement effect in the co-doped polymer is the intermolecular energy transfer. To give a vivid picture for this co-doped system, a model for the fluorescence enhancement of Sm(DBM) 3 phen- and Tb(DBM) 3 phen-co-doped PMMA is presented

  3. Solvent and polymer concentration effects on the surface morphology evolution of immiscible polystyrene/poly(methyl methacrylate) blends

    International Nuclear Information System (INIS)

    Cui Liang; Ding Yan; Li Xue; Wang Zhe; Han Yanchun

    2006-01-01

    The effects of solvent nature on the surface topographies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blend films spin-coated onto the silicon wafer were investigated. Four different solvents, such as ethylbenzene, toluene, tetrahydrofuran and dichloromethane, were chosen. They are better solvents for PS than that for PMMA. When dichloromethane, tetrahydrofuran and toluene were used, PMMA-rich phase domains protruded from the background of PS. When ethylbenzene was used, PS-rich phase domains elevated on the average height of PMMA-rich phase domains. In addition, continuous pits, networks and isolated droplets consisted of PS formed on the blend film surfaces with the decrease of polymer concentrations. The mechanism of the surface morphology evolution was discussed in detail

  4. Fabrication and characterization of perovskite solar cells added with MnCl2, YCl3 or poly(methyl methacrylate)

    Science.gov (United States)

    Taguchi, Masaya; Suzuki, Atsushi; Tanaka, Hiroki; Oku, Takeo

    2018-01-01

    Perovskite-type CH3NH3PbI3-based photovoltaic devices were fabricated and characterized. Effects of manganese (Mn), yttrium (Y) compounds addition into the perovskite crystal on the photovoltaic properties were investigated. Also, the effects of poly(methyl methacrylate) (PMMA) addition on perovskite layer on the photovoltaic properties were investigated. When 3 % MnCl2 was added, the short circuit current density and conversion efficiency were improved by promoting the crystal growth of perovskite phase. The photoelectric conversion efficiency for 0.9 mg mL-1 PMMA added was 7.36 %. Open circuit voltage and fill factor were improved by 5 % YCl3 addition.

  5. FTIR and dielectric studies of molecular interaction between alkyl methacrylates and primary alcohols

    International Nuclear Information System (INIS)

    Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P.

    2007-01-01

    The molecular interaction between alkyl methacrylates (methyl methacrylate, ethyl methacrylate and butyl methacrylate) and primary alcohols (1-propanol, 1-butanol, 1-pentanol, 1-heptanol, 1-octanol and 1-decanol) has been studied in carbon tetrachloride by FTIR spectroscopic and dielectric methods. The results show that the most likely association between alcohol and ester is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of ester, and the alkyl chain length of both the alcohols and esters plays an important role in the determination of the strength of hydrogen bond (O-H:O=C) formed

  6. Poly(methyl-methacrylate) nanocomposites with low silica addition.

    Science.gov (United States)

    Balos, Sebastian; Pilic, Branka; Markovic, Dubravka; Pavlicevic, Jelena; Luzanin, Ognjan

    2014-04-01

    Poly(methyl-methacrylate) (PMMA) represents the most popular current denture material. However, its major drawbacks are insufficient ductility and strength. The purpose of this study was to improve the mechanical properties of PMMA in denture base application by adding small quantities of nanosilica. Silica nanoparticles were added to the liquid component of the tested materials. The standard heat polymerizing procedure was followed to obtain 6 PMMA--silicon dioxide (/SiO2) concentrations (0.023%, 0.046%, 0.091%, 0.23%, 0.46%, and 0.91% by volume). Microhardness and fracture toughness of each set of specimens was compared with the unmodified specimens. Furthermore, differential scanning calorimetry and scanning electron microscopy analyses were conducted, and the results obtained were correlated with the results of mechanical properties. It was found that the maximum microhardness and fracture toughness values of the materials tested were obtained for the lowest nanosilica content. A nanosilica content of 0.023% resulted in an almost unchanged glass transition temperature (Tg), whereas the maximum amount of nanosilica induced a considerable increase in Tg. A higher Tg indicated the possible existence of a thicker interfacial layer caused by the chain immobility due to the presence of the particles. However, scanning electron microscopy results demonstrated extensive agglomeration at 0.91% nanosilica, which may have prevented the formation of a homogenous reinforced field. At a nanosilica content of 0.023%, no agglomeration was observed, which probably influenced a more homogenous distribution of nanoparticles as well as uniform reinforcing fields. Low nanoparticle content yields superior mechanical properties along with the lower cost of nanocomposite synthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    International Nuclear Information System (INIS)

    Liu Chaozong; Cui Naiyi; Osbeck, Susan; Liang He

    2012-01-01

    Highlights: ► PMMA micro-beads were processed using a rotary air plasma reactor. ► Surface chemistry and surface texture of PMMA micro-beads were characterised. ► Surface wettability was evaluated using “floating” water contact angle method. ► Surface oxidation and texture changes induced by air plasma attributed to the improvement of surface wettability. - Abstract: This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  8. Physical properties of agave cellulose graft polymethyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor (Malaysia)

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  9. Evaluation of the Thermophysical Properties of Poly(MethylMethacrylate): A Reference Material for the Development of a flammability Test for Micro-Gravity Environments

    OpenAIRE

    Steinhaus, Thomas

    1999-01-01

    A study has been conducted using PMMA (Poly(methyl methacrylate)) as a reference material in the development process of the Forced Flow and flame Spread Test (FIST). This test attempts to establish different criteria for material flammability for micro-gravity environments. The FIST consists of two tests, ignition and flame spread tests, that provide a series of material “fire” properties that jointly provide important information on the flammability of a material. This work de...

  10. Urinary arsenic methylation capability and carotid atherosclerosis risk in subjects living in arsenicosis-hyperendemic areas in southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.-L. [Department of Public Health, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Y.-M. [Department of Public Health, School of Medicine, Taipei Medical University, Taipei, Taiwan (China)], E-mail: ymhsueh@tmu.edu.tw; Huang, Y.-K. [Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Yip, P.-K. [Department of Neurology, College of Medicine, National Taiwan University, Taiwan (China); Yang, M.-H. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu, Taiwan (China); Chen, C.-J. [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China); Graduate Institute of Epidemiology, College of Public Health, National Taiwan University Taipei, Taiwan (China)

    2009-04-01

    Long-term exposure to inorganic arsenic from artesian drinking well water is associated with carotid atherosclerosis in the Blackfoot Disease (BFD)-hyperendemic area in Taiwan. The current study examined the arsenic methylation capacity and its risk on carotid atherosclerosis. A total of 304 adults (158 men and 146 women) residing in the BFD-hyperendemic area were included. The extent of carotid atherosclerosis was assessed by duplex ultrasonography. Chronic arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE) and the duration of artesian well water consumption. Urinary levels of inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] were determined by high performance liquid chromatography linked on-line to a hydride generator and atomic absorption spectrometry (HPLC-HG-AAS). The percentage of arsenic species, primary methylation index [PMI = MMA(V) / (As(III) + As(V)] and secondary methylation index [SMI = DMA(V) / MMA(V)] were calculated and employed as indicators of arsenic methylation capacity. Results showed that women and younger subjects had a more efficient arsenic methylation capacity than did men and the elderly. Carotid atherosclerosis cases had a significantly greater percentage of MMA(V) [%MMA(V)] and a lower percentage of DMA [%DMA (V)] compared to controls. Subjects in the highest two tertiles of PMI with a median of CAE > 0 mg/L-year had an odds ratio (OR) and a 95% confidence interval (CI) of carotid atherosclerosis of 2.61 and 0.98-6.90 compared to those in the highest two tertiles of PMI with a CAE = 0 mg/L-year. We conclude that individuals with greater exposure to arsenic and lower capacity to methylate inorganic arsenic may be at a higher risk to carotid atherosclerosis.

  11. Urinary arsenic methylation capability and carotid atherosclerosis risk in subjects living in arsenicosis-hyperendemic areas in southwestern Taiwan

    International Nuclear Information System (INIS)

    Huang, Y.-L.; Hsueh, Y.-M.; Huang, Y.-K.; Yip, P.-K.; Yang, M.-H.; Chen, C.-J.

    2009-01-01

    Long-term exposure to inorganic arsenic from artesian drinking well water is associated with carotid atherosclerosis in the Blackfoot Disease (BFD)-hyperendemic area in Taiwan. The current study examined the arsenic methylation capacity and its risk on carotid atherosclerosis. A total of 304 adults (158 men and 146 women) residing in the BFD-hyperendemic area were included. The extent of carotid atherosclerosis was assessed by duplex ultrasonography. Chronic arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE) and the duration of artesian well water consumption. Urinary levels of inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] were determined by high performance liquid chromatography linked on-line to a hydride generator and atomic absorption spectrometry (HPLC-HG-AAS). The percentage of arsenic species, primary methylation index [PMI = MMA(V) / (As(III) + As(V)] and secondary methylation index [SMI = DMA(V) / MMA(V)] were calculated and employed as indicators of arsenic methylation capacity. Results showed that women and younger subjects had a more efficient arsenic methylation capacity than did men and the elderly. Carotid atherosclerosis cases had a significantly greater percentage of MMA(V) [%MMA(V)] and a lower percentage of DMA [%DMA (V)] compared to controls. Subjects in the highest two tertiles of PMI with a median of CAE > 0 mg/L-year had an odds ratio (OR) and a 95% confidence interval (CI) of carotid atherosclerosis of 2.61 and 0.98-6.90 compared to those in the highest two tertiles of PMI with a CAE = 0 mg/L-year. We conclude that individuals with greater exposure to arsenic and lower capacity to methylate inorganic arsenic may be at a higher risk to carotid atherosclerosis

  12. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, A.; Movva, H. C. P.; Kang, S.; McClellan, C.; Corbet, C. M.; Banerjee, S. K. [Microelectronics Research Center, University of Texas, Austin, Texas 78758 (United States)

    2014-02-24

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriers as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.

  13. Lithography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions

    Science.gov (United States)

    Puttaraksa, Nitipon; Norarat, Rattanaporn; Laitinen, Mikko; Sajavaara, Timo; Singkarat, Somsorn; Whitlow, Harry J.

    2012-02-01

    Poly(methyl methacrylate) is a common polymer used as a lithographic resist for all forms of particle (photon, ion and electron) beam writing. Faithful lithographic reproduction requires that the exposure dose, Θ, lies in the window Θ0⩽ΘChiang Mai and Jyväskylä to determine the exposure characteristics in terms of fluence for 2 MeV protons, 3 MeV 4He and 6 MeV 12C ions, respectively. After exposure the samples were developed in 7:3 by volume propan-2-ol:de-ionised water mixture. At low fluences, where the fluence is below the clearing fluence, the exposed regions were characterised by rough regions, particularly for He with holes around the ion tracks. As the fluence (dose) increases so that the dose exceeds the clearing dose, the PMMA is uniformly removed with sharp vertical walls. When Θ exceeds the cross-linking onset fluence, the bottom of the exposed regions show undissolved PMMA.

  14. In-situ synthesis and performance of titanium oxide/poly(methyl methacrylate) nanocomposites.

    Science.gov (United States)

    Bandugula, Uttam C; Clayton, L M; Harmon, J P; Kumar, Ashok

    2005-05-01

    Polymer nanocomposites have elicited extensive research efforts due to their potential to exhibit spectacular properties. They have immense potential and are befitting materials to serve as an ideal and futuristic alternative for varied applications. Poly(methyl methacrylate) (PMMA) and titanium oxide (TiO2) nanocomposites used in this study were fabricated by an in-situ free radical polymerization process. Three point bend tests were conducted with a modified universal microtribometer to evaluate fracture toughness. The results indicated that the stress intensity values increase as the concentration of titanium oxide increases up to 1 vol% and subsequently decrease at higher concentrations. Scanning electron microscopy (SEM) images of fracture surfaces afforded clues as to the possible deformation mechanism. Ultraviolet-visible spectroscopy (UV-vis) evaluated the degree of transparency of the nanocomposites. It was observed that samples became opaque as the concentration was increased beyond 0.01% volume fraction. X-ray diffraction characterized the TiO2 crystalline phase and Scherrer's equation was used to calculate the crystallite size. Among the concentrations considered the 3% volume fraction sample had the largest crystallite size. Finally, microhardness measurements further characterized the mechanical properties of the composites.

  15. Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Uyar, Tamer; Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C (Denmark); Nur, Yusuf; Hacaloglu, Jale [Department of Chemistry, Middle East Technical University, Ankara, 06530 (Turkey)], E-mail: tamer@inano.dk, E-mail: tamer@unam.bilkent.edu.tr

    2009-03-25

    Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: {alpha}-CD, {beta}-CD, and {gamma}-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 deg. C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order {alpha}-CD<{beta}-CD<{gamma}-CD, the thermal evolution of menthol shifted to higher temperatures, suggesting that the strength of interaction between menthol and the CD cavity is in the order {gamma}-CD>{beta}-CD>{alpha}-CD.

  16. Radiation processing of polymer emulsion, (4). Radiation-induced emulsion polymerization of methyl methacrylate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1983-06-01

    Methyl methacrylate was polymerized in emulsion by Co-60 ..gamma..-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles.

  17. A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites

    Science.gov (United States)

    Balasubramaniyan, R.; Pham, Viet Hung; Jang, Jinhee; Hur, Seung Hyun; Chung, Jin Suk

    2013-11-01

    PMMA-HRG (Poly (methyl methacrylate)-highly reduced graphene) nanocomposites were prepared by a solution blending method, and the effect of HRG loading on the electrical, mechanical, and thermal properties of the materials was studied. PMMA-HRG nanocomposites achieved a percolation threshold of 0.37 vol.% (0.039 S/m) and a maximum electrical conductivity as high as 85 S/m at a loading of 2.7 vol. %. The homogeneous dispersion of HRG sheets overcame aggregation in solution and gave a uniformly distributed single layer graphene in the PMMA matrix. The T g of PMMA-HRG increased by 19°C with a loading of 0.27 vol. %, and the storage modulus of the nanocomposites increased by 37% in the glassy region with a loading of 2.7 vol. %.

  18. Fundamental study on dissolution behavior of poly(methyl methacrylate) by quartz crystal microbalance

    Science.gov (United States)

    Konda, Akihiro; Yamamoto, Hiroki; Yoshitake, Shusuke; Kozawa, Takahiro

    2016-03-01

    Ionizing radiations such as extreme ultraviolet (EUV) and electron beam (EB) are the most promising exposure source for next-generation lithographic technology. In the realization of high resolution lithography, it is necessary for resist materials to improve the trade-off relationship among sensitivity, resolution, and line width roughness (LWR). In order to overcome them, it is essential to understand basic chemistry of resist matrices in resist processes. In particular, the dissolution process of resist materials is a key process. Therefore, it is essential for next-generation resist design for ionizing radiation to clarify the dissolution behavior of the resist film into developer. However, the details in dissolution process of EUV and EB resist films have not been investigated thus far. In this study, main chain scission and dissolution behavior of poly(methyl methacrylate) (PMMA) as main chain scission type resist was investigated using quartz crystal microbalance (QCM) method and gel permeation chromatography (GPC) in order to understand the relationship between the degree of PMMA degradation and dissolution behavior. The relationship between the molecular weight after irradiation and the swelling behavior was clarified.

  19. Preservation of beech and spruce wood by allyl alcohol-based copolymers

    International Nuclear Information System (INIS)

    Solpan, Dilek; Gueven, Olgun

    1999-01-01

    Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place

  20. Utilization of poly(methyl methacrylate) – carbon nanotube and polystyrene – carbon nanotube in situ polymerized composites as masterbatches for melt mixing

    OpenAIRE

    M. Lahelin; M. Annala; J. Seppala

    2012-01-01

    Carbon nanotubes (CNTs) were melt mixed directly or by using an in situ polymerized masterbatch into a matrix polymer, polystyrene (PS) or poly(methyl methacrylate) (PMMA). The mechanical properties of the composites were mostly determined by the amount of CNTs, and not by the use of directly melt mixed CNTs or the use of the masterbatch. In contrast, the electrical resistivity of the composites was dependent on the manner in which the CNTs were added to the matrix polymer. When there was inc...

  1. MMA, A Computer Code for Multi-Model Analysis

    Science.gov (United States)

    Poeter, Eileen P.; Hill, Mary C.

    2007-01-01

    This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations. Many applications of MMA will

  2. Effect of 60Co radiation-induced grafting of methyl methacrylate on mechanical properties of bamboo

    International Nuclear Information System (INIS)

    Zhang Hao; Zhou Liang; Liu Shengquan; Qian Liangcun; Fei Benhua; Jiang Zehui

    2011-01-01

    In order to investigate the effect of radiation grafting on mechanical properties of bamboo, the original and carbonized bamboo soaked with monomer MMA were radiation grafted by 60 Co γ rays with the doses of 60-220 kGy. The results showed that compared with original blanks, treated with MMA and irradiated with the dose of 180 kGy the specific gravity, bending strength modulus of elasticity of original bamboo increased by 6.7%, 4.4%, and 28%, meanwhile its oven-dried radial, tangential and volumetric shrinkage decreased by 38.9%, 47.4%, and 32.9%, respectively. What is more, treated with MMA and irradiated with the doses of 140 kGy the specific gravity and modulus of elasticity of carbonized bamboo increased by 6.8% and 20%, while its oven-dried radial, tangential, volumetric shrinkage decreased by 11%, 4.6% and 12%, respectively. The study reveals that mechanical properties of original and carbonized bamboo can be enhanced by radiation grafting copolymerization with suitable absorbed doses, which may be valuable for the further research of developing new bamboo plastic composites. (authors)

  3. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: chuanhuigao@foxmail.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)

    2010-03-01

    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  4. Formaldehyde-free and thermal resistant microcapsules containing n-octadecane

    International Nuclear Information System (INIS)

    Shan, X.L.; Wang, J.P.; Zhang, X.X.; Wang, X.C.

    2009-01-01

    Microcapsules containing n-octadecane were synthesized using methacrylic acid (MAA), methyl methacrylate (MMA) and 1,4-butylene glycol diacrylate (BDDA) as shell. The surface morphology, thermal physical properties, thermal stabilities and diameter distributions of the microcapsules were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and particle size distribution analysis, respectively. The experimental results show that, the core material is well encapsulated in the presence of emulsifier-sodium salt of styrene-maleic anhydride co-polymer. The average diameter of the microcapsules is 18 μm. The enthalpy of microencapsulated n-octadecane (MC 18 ) with MAA-MMA co-polymeric shell is 155 J g -1 which corresponds to 70 wt.% core content. The thermal resistant temperature of MC 18 is 238 o C, which is affected by n-octadecane/monomers mass ratios and the content of cross-linking agent-BDDA.

  5. Triacrylate of glycerin synthesis and use in network polymer;Sintese do triacrilato de glicerina e seu uso como agente de ligacao cruzada

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Reinaldo Y.; Zawadzki, Sonia F.; Barbosa, Ronilson V., E-mail: yomorita1@hotmail.co [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico

    2009-07-01

    The goal of this work was the synthesis and characterization of a new cross linker: the glyceryl triacrylate. The synthesis was done by an esterification reaction between glycerin and acrylic acid and the product, called GA, was characterized by infrared and nuclear magnetic resonance (NMR- 1a) spectroscopy. The behavior was analysed after a copolymerization with methyl methacrylate monomer (MMA). It was also prepared the PMMA and GA homopolymers. The addition of glycerin triacrylate up to 2 % in the MMA monomer changed the solubility of the copolymer. This one became insoluble in organic solvents in which the pure linear poly(methyl methacrylate) was soluble. Thermal analysis showed that the addition of 2% GA didn't change the Tg value of the PMMA pure, but the GA homopolymer showed a Tg value equal to 180 C, lower than expected. It seems that GA product is working as cross linker, but some insaturation links did not react. They remain as pendent groups, causing the Tg lowering. The results suggest that the new product can be used as cross linker for the application in acrylic polymers. (author)

  6. Triacrylate of glycerin synthesis and use in network polymer

    International Nuclear Information System (INIS)

    Morita, Reinaldo Y.; Zawadzki, Sonia F.; Barbosa, Ronilson V.

    2009-01-01

    The goal of this work was the synthesis and characterization of a new cross linker: the glyceryl triacrylate. The synthesis was done by an esterification reaction between glycerin and acrylic acid and the product, called GA, was characterized by infrared and nuclear magnetic resonance (NMR- 1a) spectroscopy. The behavior was analysed after a copolymerization with methyl methacrylate monomer (MMA). It was also prepared the PMMA and GA homopolymers. The addition of glycerin triacrylate up to 2 % in the MMA monomer changed the solubility of the copolymer. This one became insoluble in organic solvents in which the pure linear poly(methyl methacrylate) was soluble. Thermal analysis showed that the addition of 2% GA didn't change the Tg value of the PMMA pure, but the GA homopolymer showed a Tg value equal to 180 C, lower than expected. It seems that GA product is working as cross linker, but some insaturation links did not react. They remain as pendent groups, causing the Tg lowering. The results suggest that the new product can be used as cross linker for the application in acrylic polymers. (author)

  7. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Neeves, Matthew; Placido, Frank [Thin Film Centre, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smithwick, Quinn [Disney Research, 521 Circle Seven Drive, Glendale, Los Angeles, California 91201 (United States)

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  8. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    International Nuclear Information System (INIS)

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-01-01

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO x thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm 2 , exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively

  9. Study on the production of kanvas shoes adhesive from natural rubber latex grafted with methyl methacrylate (NRL-g PMMA) copolymer

    International Nuclear Information System (INIS)

    Utama, Marga; Sudirman; Setyowati, Penny

    2002-01-01

    The optimation condition of radiation copolymerization of MMA into natural rubber latex at the doses of radiation : 5; 7.5 and 10 kGy with concentration of MMA 25; 50; 75; and 100 phr (Part Hundred Ratio of Rubber) expectially and optimazation condition of the adhesive process all the production of canvas shoes have been carried out. The properties of NRL-g-MMA and its rubber such as total solid contain, viscosity, pH, modulus, tensile, strenght, hardnes, elongation at break, and adhesive strenght for producting canvas shoes where evaluated. The at adhesive results show that NRL-g-MMA with the 75 phr of MMA and iradiation dose 5 kGy is adhesive will good stability during storage. The adhesive strenght of shoes its 16-18 N/6mm, more here than SNI 1-0172-1987 with the value 10N/6mm. Besic there is a tendency that adhesive strengt of product shoes at rome temperature (30-50 o C). stronger than at high temperature (100 o C)

  10. Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal calvaria in vitro organ system.

    Science.gov (United States)

    Ren, Weiping; Wu, Bin; Mayton, Lois; Wooley, Paul H

    2002-09-01

    There is considerable evidence that orthopaedic wear debris plays a crucial role in the pathology of aseptic loosening of joint prostheses. This study examined the effect of inflammatory membranes stimulated with methyl methacrylate and polyethylene on bone resorption, using the murine air pouch model. The capacity of RAW 264.7 mouse macrophages exposed to polymer particles to produce factors affecting bone metabolism was also studied. Neonatal calvaria bones were co-cultured with either pouch membranes or conditioned media from activated macrophages. Bone resorption was measured by the release of calcium from cultured bones, and the activity of tartrate-resistant acid phosphatase in both bone sections and culture medium was also assayed. Results showed that inflammatory pouch membrane activated by methyl methacrylate and polyethylene enhanced osteoclastic bone resorption. Conditioned media from particles stimulated mouse macrophages also stimulated bone resorption, although this effect was weaker than resorption induced by inflammatory pouch membranes. The addition of the particles directly into the medium of cultured calvaria bones had little effect on bone resorption. Our observations indicate that both inflammatory tissue and macrophages provoked by particles can stimulate bone resorption in cultured mouse neonatal calvaria bones. This simple in vitro bone resorption system allows us to investigate the fundamental cellular and molecular mechanism of wear debris induced bone resorption and to screen potential therapeutic approaches for aseptic loosening.

  11. In Situ Synthesis of Poly(methyl methacrylate/SiO2 Hybrid Nanocomposites via “Grafting Onto” Strategy Based on UV Irradiation in the Presence of Iron Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2012-01-01

    Full Text Available Poly(methyl methacrylate/SiO2 (PMMA/SiO2 hybrid composites were prepared via “grafting onto” strategy based on UV irradiation in the presence of iron aqueous solution. Two steps were used to graft polymethyl methacrylate (PMMA onto the surface of nanosilica, anchoring 3-(methacryloxy propyl trimethoxysilane (MPTS onto the surface of nanosilica to modify it with double bonds, and then grafting PMMA onto the surface of nanosilica with FeCl3 as photoinitiator. The products were characterized by FT-IR, TGA, TEM, DLS, and XPS. The results showed that it is easy to graft PMMA onto the surface of nanosilica under UV irradiation, and the hybrid particles are monodisperse and have core-shell structure with nanosilica as the core and PMMA layers as the shell. Furthermore, the products initiated by FeCl3 have higher monomer conversion, percent grafting, and better monodispersion compared with the products initiated by traditional photoinitiator such as 2-hydroxy-4-(2-hydroxyethoxy-2-methyl-propiophenone (Irgacure 2959.

  12. Preparation and biocompatibility of poly (methyl methacrylate reinforced with bioactive particles

    Directory of Open Access Journals (Sweden)

    Pereira Marivalda de Magalhães

    2003-01-01

    Full Text Available Calcium phosphates and bioactive glasses have been used in many biomedical applications for more than 30 years due basically to their bioactive behavior. However, ceramics are too brittle for applications that require high levels of toughness and easy processability. In this work, a biphasic calcium phosphate (BCP and a bioactive glass composition (BG were combined with polymers to produce composites with tailorable properties and processability. The BCP particles were synthesized by a precipitation technique. The BG particles were produced by sol-gel processing. The BCP particles were treated with a silane agent to improve the compatibility between particles and the polymer matrix. Dense samples were produced by hot pressing (200 °C a mixture of 30 wt.% of particles in poly (methyl methacrylate. The samples produced were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Mechanical properties were evaluated by a three point bending test. Samples were also submitted to in vitro bioactivity test and in vivo toxicity test. Results showed that the production of the composites was successfully achieved, yielding materials with particles well dispersed within the matrices. Evaluation of the in vivo inflammatory response showed low activity levels for all composites although composites with silane treated BCP particles led to milder inflammatory responses than composites with non-treated particles.

  13. Inhibition of enamel demineralization and bond-strength properties of bioactive glass containing 4-META/MMA-TBB-based resin adhesive.

    Science.gov (United States)

    Kohda, Naohisa; Iijima, Masahiro; Kawaguchi, Kyotaro; Toshima, Hirokazu; Muguruma, Takeshi; Endo, Kazuhiko; Mizoguchi, Itaru

    2015-06-01

    We investigated the enamel demineralization-prevention ability and shear bond strength (SBS) properties of 4-methacryloxyethyl trimellitic anhydride/methyl methacrylate-tri-n-butyl borane (4-META/MMA-TBB)-based resin containing various amounts (0-50%) of bioactive glass (BG). Disk-shaped specimens were immersed in distilled water and ions released were analysed by inductively coupled plasma atomic-emission spectroscopy. Samples were also immersed in lactic acid solution (pH 4.6) to estimate acid-neutralizing ability. Brackets were bonded to human premolars with BG-containing resins and the bonded teeth were alternately immersed in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 d. The enamel hardness was determined by nanoindentation testing at twenty equidistant distances from the external surface. The SBS for each sample was examined. The amounts of ions released [calcium (Ca), sodium (Na), silicon (Si), and boron (B)] and the acid-neutralizing ability increased with increasing BG content. After alternating immersion, the specimens bonded with the BG-containing resin with high BG content were harder than those in the other groups in some locations 1-18.5 μm from the enamel surface. Bioactive glass-containing (10-40%) resin had bond strength equivalent to the control specimen. Thus, the SBS obtained for BG-containing resin (6.5-9.2 MPa) was clinically acceptable, suggesting that this material has the ability to prevent enamel demineralization. © 2015 Eur J Oral Sci.

  14. A Potential Synergy between Incomplete Arsenic Methylation Capacity and Demographic Characteristics on the Risk of Hypertension: Findings from a Cross-Sectional Study in an Arsenic-Endemic Area of Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2015-03-01

    Full Text Available Inefficient arsenic methylation capacity has been associated with various health hazards induced by arsenic. In this study, we aimed to explore the interaction effect of lower arsenic methylation capacity with demographic characteristics on hypertension risk. A total of 512 adult participants (126 hypertension subjects and 386 non-hypertension subjects residing in an arsenic-endemic area in Inner Mongolia, China were included. Urinary levels of inorganic arsenic (iAs, monomethylarsonic acid (MMA, and dimethylarsinic acid (DMA were measured for all subjects. The percentage of urinary arsenic metabolites (iAs%, MMA%, and DMA%, primary methylation index (PMI and secondary methylation index (SMI were calculated to assess arsenic methylation capacity of individuals. Results showed that participants carrying a lower methylation capacity, which is characterized by lower DMA% and SMI, have a higher risk of hypertension compared to their corresponding references after adjusting for multiple confounders. A potential synergy between poor arsenic methylation capacity (higher MMA%, lower DMA% and SMI and older age or higher BMI were detected. The joint effects of higher MMA% and lower SMI with cigarette smoking also suggest some evidence of synergism. The findings of present study indicated that inefficient arsenic methylation capacity was associated with hypertension and the effect might be enhanced by certain demographic factors.

  15. Performance evaluation of the Personal Mobility and Manipulation Appliance (PerMMA).

    Science.gov (United States)

    Wang, Hongwu; Xu, Jijie; Grindle, Garrett; Vazquez, Juan; Salatin, Ben; Kelleher, Annmarie; Ding, Dan; Collins, Diane M; Cooper, Rory A

    2013-11-01

    The Personal Mobility and Manipulation Appliance (PerMMA) is a recently developed personal assistance robot created to provide people with severe physical disabilities enhanced assistance in both mobility and manipulation. PerMMA aims to improve functional independence when a personal care attendant is not available on site. PerMMA integrates both a smart powered wheelchair and two dexterous robotic arms to assist its users in completing essential mobility and manipulation tasks during basic and instrumental activities of daily living (ADL). Two user interfaces were developed: a local control interface and a remote operator controller. This paper reports on the evaluation of PerMMA with end users completing basic ADL tasks. Participants with both lower and upper extremity impairments (N=15) were recruited to operate PerMMA and complete up to five ADL tasks in a single session of no more than two hours (to avoid fatigue or frustration of the participants). The performance of PerMMA was evaluated by participants completing ADL tasks with two different control modes: local mode and cooperative control. The users' task completion performance and answers on pre/post-evaluation questionnaires demonstrated not only the ease in learning and usefulness of PerMMA, but also their attitudes toward assistance from advanced technology like PerMMA. As a part of the iterative development process, results of this work will serve as supporting evidence to identify design criteria and other areas for improvement of PerMMA. Copyright © 2013 IPEM. All rights reserved.

  16. ТHE RADICAL POLYMERIZATION OF METHYL METHACRYLATE IN THE PRESENCE OF MANGANESE (II 5-METHYL-5-HEXEN-2,4-DIONATE

    Directory of Open Access Journals (Sweden)

    O. V. Shevchenko

    2017-09-01

    function makes it possible to regulate the molecular masses of the products. The resulting metal polymers based on MMA and manganese (II vinyl-b-diketonate may be of potential interest as catalysts or initiators of various reactions.

  17. Miniemulsion copolymerization of (methacrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

    Directory of Open Access Journals (Sweden)

    Bertha T. Pérez-Martínez

    2017-06-01

    Full Text Available Film forming, stable hybrid latexes made of methyl metacrylate (MMA, butyl acrylate (BA and 2-hydroxyethyl methacrylate (HEMA copolymer reinforced with modified multiwalled carbon nanotubes (MWCNTs were synthesized by in situ miniemulsion polymerization. The MWCNTs were pretreated by an air sonication process and stabilized by polyvinylpyrrolidone. The presence of the MWCNTs had no significant effect on the polymerization kinetics, but strongly affected the polymer characteristics (Tg and insoluble polymer fraction. The performance of the in situ composites was compared with that of the neat polymer dispersion as well as with those of the polymer/MWCNT physical blends. The in situ composites showed the presence of an additional phase likely due to the strong interaction between the polymer and MWNCTs (including grafting that reduced the mobility of the polymer chains. As a result, a substantial increase of both the storage and the loss moduli was achieved. At 60 °C, which is above the main transition region of the polymer, the in situ composites maintained the reinforcement, whereas the blends behaved as a liquid-like material. This suggests the formation of a 3D network, in good agreement with the high content of insoluble polymer in the in situ composites.

  18. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    Science.gov (United States)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-03-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  19. Biconvex intraocular lenses and Nd:YAG capsulotomy: Experimental comparison of surface damage with different poly(methyl methacrylate) formulations

    Energy Technology Data Exchange (ETDEWEB)

    Downing, J.E.; Alberhasky, M.T. (Greenview Hospital, Bowling Green, KY (USA))

    1990-11-01

    Biconvex posterior chamber lenses have optical advantages and decrease the risk of capsular opacification, but they are more likely to be pitted during ND:YAG capsulotomy because of apposition of the lens to the capsule. This study reports the likelihood of surface damage to different formulations of poly(methyl methacrylate) at the energy levels required to open posterior capsules. Molded lenses are more easily damaged than higher molecular weight lathe-cut materials (P less than .01), as expected. However, by keeping energy output low, even injection-molded lenses showed minimal damage, with mean pit size 39 +/- 39 microns at 1 mJ. By using a converging contact lens, low power, and keeping the focus behind the capsule, damage to all materials tested should be clinically insignificant.

  20. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam

    International Nuclear Information System (INIS)

    Her, Eun Kyu; Chung, Hee-Suk; Oh, Kyu Hwan; Moon, Myoung-Woon

    2009-01-01

    Angled nano-scale tunnels with high aspect ratio were fabricated on poly(methyl methacrylate) (PMMA) using a focused ion beam (FIB). The fabrication parameters such as ion fluence, incidence angle, and acceleration voltage of the Ga + ion beam were first studied on the PMMA surface to explore the formation of the nano-scale configurations such as nano-holes and cones with diameter in the range of 50-150 nm at an ion beam acceleration voltage of 5-20 kV. It was also found that the PMMA surface exposed to FIB was changed into an amorphous graphitic structure. Angled nano-scale tunnels were fabricated with high aspect ratio of 700-1500 nm in depth and 60 nm in mean diameter at an ion beam acceleration voltage of 5 kV and under a specific ion beam current. The angle of the nano-tunnels was found to follow the incident angle of the ion beam tilted from 0 0 to 85 0 , which has the potential for creating a mold for anisotropic adhesives by mimicking the hairs on a gecko's feet.

  1. Palladium/IzQO-Catalyzed Coordination-Insertion Copolymerization of Ethylene and 1,1-Disubstituted Ethylenes Bearing a Polar Functional Group.

    Science.gov (United States)

    Yasuda, Hina; Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2018-02-07

    Coordination-insertion copolymerization of ethylene with 1,1-disubstituted ethylenes bearing a polar functional group, such as methyl methacrylate (MMA), is a long-standing challenge in catalytic polymerization. The major obstacle for this process is the huge difference in reactivity of ethylene versus 1,1-disubstituted ethylenes toward both coordination and insertion. Herein we report the copolymerization of ethylene and 1,1-disubstituted ethylenes by using an imidazo[1,5-a]quinolin-9-olate-1-ylidene-supported palladium catalyst. Various types of 1,1-disubstituted ethylenes were successfully incorporated into the polyethylene chain. In-depth characterization of the obtained copolymers and mechanistic inferences drawn from stoichiometric reactions of alkylpalladium complexes with methyl methacrylate and ethylene indicate that the copolymerization proceeds by the same coordination-insertion mechanism that has been postulated for ethylene.

  2. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  3. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  4. Periodic nanostructures formed on a poly-methyl methacrylate surface with a femtosecond laser for biocompatibility improvement

    Science.gov (United States)

    Takenaka, Keisuke; Tsukamoto, Masahiro; Sato, Yuji; Ooga, Takahiro; Asai, Satoru; Murai, Kensuke

    2018-06-01

    Poly(methyl methacrylate) (PMMA) is widely used as a biomaterial. The formation of periodic nanostructures on the surface is necessary to improve the biocompatibility. A method was proposed and developed to form periodic nanostructures on a PMMA surface. A PMMA plate was placed on titanium (Ti) plate, and then the Ti plate was irradiated with a laser through the PMMA plate. We try to effectively produce periodic nanostructures on PMMA with a femtosecond laser at a fundamental wavelength by increasing the contact pressure and using titanium (Ti) plate. The contact pressure between PMMA and Ti required to form a periodic nanostructure is 300 kPa, and for a contact pressure of 2400 kPa, periodic nanostructures are formed in 62% of the laser-irradiated area on the PMMA surface. These results suggest that the formation efficiency of the periodic nanostructure depends on the laser conditions and the contact pressure.

  5. Striking dynamics and kinetic properties of boxing and MMA gloves

    Directory of Open Access Journals (Sweden)

    Benjamin Lee

    2014-08-01

    Full Text Available With the growing popularity of Mixed Martial Arts (MMA as a competitive sport, questions regarding the dynamic response and properties of MMA gloves arise. High-energy impacts from punches are very similar to boxing yet MMA competition requires the use of 4 oz fingerless glove, compared to the larger full enclosure boxing glove. This work assessed the kinetic properties and strike dynamics of MMA gloves and compared findings with traditional boxing gloves. Gloves mounted on a molded fist were impacted repetitively on an instrumental anvil designed for impact, over a 5 hour period resulting in 10,000 continuous and consistent strikes. Kinetic data from impacts were sampled at the beginning of the data collection and subsequently every 30 minutes (every 1,000 strikes. MMA gloves produced 4-5 times greater peak force and 5 times faster load rate compared to the boxing glove. However, MMA gloves also showed signs of material fatigue, with peak force increasing by 35% and rate of loading increasing by 60% over the duration of the test. Boxing glove characteristics did deteriorate but to a lesser extent. In summary, the kinetic properties of MMA glove differed substantially from the boxing glove resulting in impacts characterized by higher peak forces and more rapid development of force. Material properties including stiffness and thickness play a role in the kinetic characteristics upon impact, and can be inferred to alter injury mechanisms of blunt force trauma.

  6. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    International Nuclear Information System (INIS)

    Su, Chien-Tien; Lin, Hsiu-Chen; Choy, Cheuk-Sing; Huang, Yung-Kai; Huang, Shiau-Rung; Hsueh, Yu-Mei

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA 5+ ) and dimethylarsinic acid (DMA 5+ ) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: ► This is the first to find that urinary total arsenic is related inversely to the BMI. ► Arsenic methylation capability may be associated with obesity and insulin. ► Obese adolescents with high insulin had low arsenic methylation capacity.

  7. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    OpenAIRE

    Yavuz, Gonul; Zille, Andrea; Seventekin, N.; Souto, A. Pedro

    2017-01-01

    Abstract. In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fab...

  8. Evaluation of the quality of cyanoacrylate adhesive joints using the example of poly(methyl methacrylate and polycarbonate

    Directory of Open Access Journals (Sweden)

    Piotr Mazur

    2017-04-01

    Full Text Available Adhesive bonding is one of the simplest and most common methods used for joining materials. It is applied in both production and repair works. The most commonly used adhesives are cyanoacrylates, due to the possibility of combining various materials and short curing time. One of the ways to assess the quality of the adhesive used is testing the shear strength of bonded joints. Three adhesives commonly available on the Polish market, from various manufacturers and with different prices per gram of product were tested. The polymer materials bonded were poly(methyl methacrylate and polycabonate, since they are broadly used in the automotive industry and household equipment. The study revealed significant differences in bonding strength, reaching as much as 38% The adhesive’s price was not commensurate with the quality of the product tested in all cases.

  9. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.

    Science.gov (United States)

    Yu, Juan; Wang, Chunpeng; Wang, Jifu; Chu, Fuxiang

    2016-05-05

    Recently, the utilization of cellulose nanocrystals (CNCs) as a reinforcing material has received a great attention due to its high elastic modulus. In this article, a novel strategy for the synthesis of self-reinforced CNCs based thermoplastic elastomers (CTPEs) is presented. CNCs were first surface functionalized with an initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Subsequently, SI-ATRP of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in the presence of sacrificial initiator to form CTPEs in situ. The CTPEs together with the simple blends of CNCs and linear poly(MMA-co-BA) copolymer (P(MMA-co-BA)) were characterized for comparative study. The results indicated that P(MMA-co-BA) was successfully grafted onto the surface of CNCs and the compatibility between CNCs and the polymer matrix in CTPEs was greatly enhanced. Specially, the CTPEs containing 2.15wt% CNCs increased Tg by 19.2°C and tensile strength by 100% as compared to the linear P(MMA-co-BA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan

    International Nuclear Information System (INIS)

    Huang, Y.-K.; Tseng, C.-H.; Huang, Y.-L.; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2007-01-01

    Background: Cumulative arsenic exposure (CAE) from drinking water has been shown to be associated with hypertension in a dose-response pattern. This study further explored the association between arsenic methylation capability and hypertension risk among residents of arseniasis-hyperendemic areas in Taiwan considering the effect of CAE and other potential confounders. Method: There were 871 subjects (488 women and 383 men) and among them 372 were diagnosed as having hypertension based on a positive history or measured systolic blood pressure ≥ 140 mm Hg and/or diastolic blood pressure ≥ 90 mm Hg. Urinary arsenic species were determined by high-performance liquid chromatography-hydride generator and atomic absorption spectrometry. Primary arsenic methylation index [PMI, defined as monomethylarsonic acid (MMA V ) divided by (As III + As V )] and secondary arsenic methylation index (SMI, defined as dimethylarsinic acid divided by MMA V ) were used as indicators for arsenic methylation capability. Results: The level of urinary arsenic was still significantly correlated with cumulative arsenic exposure (CAE) calculated from a questionnaire interview (p = 0.02) even after the residents stopped drinking the artesian well water for 2-3 decades. Hypertensive subjects had higher percentages of MMA V and lower SMI than subjects without hypertension. However, subjects having CAE > 0 mg/L-year had higher hypertension risk than those who had CAE = 0 mg/L-year disregard a high or low methylation index. Conclusion: Inefficient arsenic methylation ability may be related with hypertension risk

  11. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Alkan, Cemil; Biçer, Alper; Altuntaş, Ayşe; Bilgin, Cahit

    2014-01-01

    Graphical abstract: This paper was aimed to prepare, characterize and determinate of thermal energy storage properties of PMMA/C19 micro/nanocapsules as a novel encapsulated phase change material (M/N-EPCM). The chemical structure of the prepared M/N-EPCM was verified using FTIR spectroscopy method. The analysis results obtained from POM and SEM indicated that the synthesized capsules had virtually spherical-shape. The PSD analysis indicated that the M/N-EPCM capsules had mean diameter of 8.18 μm and the percentage of the capsules with nanosize was 4.90 (v/v). The DSC results showed that the synthesized M/N-PCM had a melting temperature and total latent heat value as 31.23 °C and 139.20 J/g, respectively. It can be also deduced from all results that the synthesized M/N-EPCM had promising thermal energy storage potential due to its good latent heat thermal energy storage properties, thermal durability, thermal reliability, chemical stability, thermal conductivity and phase change reversibility properties. - Highlights: • The chemical structure of the prepared M/N-EPCM was verified using FTIR spectroscopy method. • POM and SEM results indicated that the M/N-EPCM had virtually spherical shape-appearance. • The M/N-EPCM had mean diameter of 8.18 μm and the percentage of the capsules with nanosize was 4.90 (v/v). • The M/N-PCM had a melting temperature and total latent heat value as 31.23 °C and 139.20 J/g, respectively. • The M/N-EPCM had promising thermal energy storage potential. - Abstract: This paper was aimed to prepare, characterize and determine the thermal energy storage properties of poly(methyl methacrylate) (PMMA)/n-nonadecane (C19) capsules as a novel micro/nanoencapsulated phase change material (M/N-EPCM). The M/N-EPCM was fabricated via emulsion polymerization reaction of methylmethacrylate (MMA) monomer occurred around C19 used as core material. The chemical structure of the prepared M/N-EPCM was verified using Fourier transform infrared

  12. Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties.

    Science.gov (United States)

    Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas

    2016-03-16

    Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.

  13. Nanoindentation and surface roughness profilometry of poly methyl methacrylate denture base materials.

    Science.gov (United States)

    Zafar, Muhammad Sohail; Ahmed, Naseer

    2014-01-01

    Polymers have a wide range of applications in dentistry. Poly methyl methacrylate (PMMA) is the most popular for making orthodontic retainers, dentures as well as synthetic teeth. Prior to clinical applications, the appliances are polished in the dental laboratory to achieve smooth, polished and comfortable surfaces. The objective of this study was to analyze the surface roughness profiles of PMMA dentures polished using two different approaches. In addition, the effects of ultrasonication and sandblasting were also evaluated on the fitting surface of PMMA dentures. This was an in vitro study using non-contact mode surface roughness profilometer and nano-indenter. Samples were polished using two different techniques (Standard and modified). Both cold cure and heat cure PMMA denture surfaces were evaluated for roughness, nanohardness and elastic modulus. The absolute hardness was recorded 297.72±19.04 MPa and 229.93±18.53 MPa for heat cured PMMA and cold cured PMMA. Manufactured acrylic teeth were harder (319.20±12.58 MPa) with an elastic modulus of (4.34±1.86 GPa). Modified polishing techniques (group 3) produced smoother surface. It was concluded that elastic moduli of acrylic tooth and heat cure PMMA is not very different. Surface treatments such as ultrasonication or sandblasting do not affect the roughness profiles of denture fitting surfaces.

  14. Reaction mechanism for radiation-induced degradation of poly(methyl methacrylate) as studied by ESR and ESE

    International Nuclear Information System (INIS)

    Yoshida, H.; Ichikawa, T.

    1991-01-01

    Reaction mechanism for the radiation-induced degradation of poly(methyl methacrylate) has been studied based on the ESR and electron spin echo observations of the free radicals in the polymer irradiated with γ-rays. It is indicated that the side-chain radical, -CH 2 -CCH 3 (COOC-radicalH 2 )-, is the precursor for the main-chain scission. This radical transforms into the propagating-type radical, a fingerprint of the main-chain scission, without loss of the total radical concentration. UV illumination converts the side-chain radical into the acyl-type radical, -CH 2 -CCH 3 (-C-radical=O)-, which thermally transforms into the propagating-type radical. The radical of the type, -CH 2 -C-radicalCH 3 -CH 2 -, is suggested as a common, immediate precursor for the main-chain scission with and without the UV illumination, though it has not been detected because of its short life-time. (author) 7 refs.; 2 figs

  15. Mechanical, relaxation behavior and thermal degradation of UV irradiated poly(vinyl acetate)/poly( methyl methacrylate) blends

    International Nuclear Information System (INIS)

    Mansour, S.A.; Hafez, M.; Hussien, K.A.

    2005-01-01

    The effect of different doses of UV- irradiation on the mechanical and relaxation properties of poly(vinyl acetate)/poly(methyl methacrylate) blends were studied. Films of PVAc/PMMA blend with different contents were prepared using the casting technique. Also, PMMA could be blended with PVAc to improve its impact strength. Moreover UV-irradiation causes degradation of PVAc and formation of ketonic and aldehyde carbonyl groups according to a suggested scheme. Irradiation of PvAc/ PMMA blends causes a higher degree of degradation as compared to the PVAc alone although the PMMA is more susceptible than PVAc to the influence of radiation. Recognizable differences are observed for all parameters between the unirradiated and irradiated samples. Existence of a relaxation mechanism within the first 200s is reported. The shear modulus for all samples is also obtained and discussed. These data are used to calculate the strain energy density using the equation proposed by Blatzetal(1974 trans. Soc.Rheol. 18 145-61), based on the n-measure of Sethe

  16. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  17. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Science.gov (United States)

    2010-04-01

    ... methacrylate copolymer identified in this section may be safely used as an article or component of articles... monomer content of the finished copolymer articles is not more than 11 parts per million as determined by... available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration...

  18. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2011-04-15

    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  19. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Directory of Open Access Journals (Sweden)

    J. G. F. Santos Jr.

    2011-06-01

    Full Text Available Artificial bone cements (BCs based on poly(methyl methacrylate (PMMA powders and methyl methacrylate (MMA liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in-situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA and acrylic acid (AA to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired.

  20. Bond strength of stainless steel orthodontic brackets bonded to prefabricated acrylic teeth.

    Science.gov (United States)

    Wan Abdul Razak, Wan Salbiah; Sherriff, Martyn; Bister, Dirk; Seehra, Jadbinder

    2017-06-01

    The purpose of this in-vitro study was to evaluate the force to debond stainless steel orthodontic brackets bonded to acrylic teeth using different combinations of adhesive and surface treatments. One hundred prefabricated upper lateral incisor acrylic teeth were divided into 4 equal groups: Transbond XT® adhesive only (Group 1, control), Transbond XT® adhesive with sandblasting (Group 2), Transbond XT® adhesive with abrasion / + methyl methacrylate (MMA) (Group 3) and Triad® Gel only (Group 4). The force in Newtons (N) to debond the brackets was measured. One-way analysis of variance (ANOVA) and pairwise multi-comparison of means (Šidak's adjustment) were undertaken. The highest force to debond was recorded for Group 2 (275.7 N; SD 89.0) followed by Group 3 (241.9 N; SD 76.0), Group 1 (142.7 N; SD 36.7) and Group 4 (67.9 N; SD 21.1). Significant differences in bond strength measurements between the experimental groups were detected. Mean force values for the groups revealed no significant differences between Group 2 and Group 3 (p>0.05). Both sandblasting and surface abrasion/+ application of methyl methacrylate (MMA) in combination with Transbond XT® adhesive are recommended for bonding stainless orthodontic brackets to acrylic teeth.

  1. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  2. Genetic polymorphisms of PPAR gamma, arsenic methylation capacity and breast cancer risk in Mexican women.

    Science.gov (United States)

    Pineda-Belmontes, Cristina P; Hernández-Ramírez, Raúl U; Hernández-Alcaraz, César; Cebrián, Mariano E; López-Carrillo, Lizbeth

    2016-04-01

    To evaluate whether the presence of polymorphisms of peroxisome proliferator-activated receptor gamma PPARγ (Pro 1 2Ala) and PPARGC1B (Ala203Pro) modifies the association between the inorganic arsenic (iAs) methylation capacity and breast cancer (BC). Mexican women were interviewed, and blood and urine samples were collected from them (cases/controls= 197/220). The concentration of urinary arsenic species and the polymorphisms of interest were determined by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and polymerase chain reaction (PCR), respectively. In women with a high %MMA (urinary monomethyl arsenic) and high primary methylation ratio (PM = MMA/iAs), the risk of BC was increased (odds ratio [OR]%MMA T3 vs.T1= 3.60: 95% confidence interval [CI] 2.02-6.41, ORPMI T3 vs.T1= 3.47: 95%CI 1.95-6.17), which was maintained after adjusting for polymorphisms. No significant interactions were observed between the polymorphisms and the arsenic variables on the risk of BC. Pro 12Ala and Ala203Pro polymorphisms did not modify the association between the iAs methylation capacity and BC.

  3. TERMINATION PROCESS AND THE TERMINATION PARAMETER k_t OF METHYL METHACRYLATE BULK RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    沈家骢; 田元; 王国斌; 杨梅林

    1990-01-01

    In this work the exact k_t data during the whole process of MMA bulk radical polymerization have been determined under unsteady state by using the post effect technique and ESR method. The effect of the micro-environment of radicals on the termination is discussed.

  4. Effects of sterilization on the mechanical properties of poly(methyl methacrylate) based personalized medical devices.

    Science.gov (United States)

    Münker, T J A G; van de Vijfeijken, S E C M; Mulder, C S; Vespasiano, V; Becking, A G; Kleverlaan, C J; Becking, A G; Dubois, L; Karssemakers, L H E; Milstein, D M J; van de Vijfeijken, S E C M; Depauw, P R A M; Hoefnagels, F W A; Vandertop, W P; Kleverlaan, C J; Münker, T J A G; Maal, T J J; Nout, E; Riool, M; Zaat, S A J

    2018-05-01

    Nowadays, personalized medical devices are frequently used for patients. Due to the manufacturing procedure sterilization is required. How different sterilization methods affect the mechanical behavior of these devices is largely unknown. Three poly(methyl methacrylate) (PMMA) based materials (Vertex Self-Curing, Palacos R+G, and NextDent C&B MFH) were sterilized with different sterilization methods: ethylene oxide, hydrogen peroxide gas plasma, autoclavation, and γ-irradiation. Mechanical properties were determined by testing the flexural strength, flexural modulus, fracture toughness, and impact strength. The flexural strength of all materials was significantly higher after γ-irradiation compared to the control and other sterilization methods, as tested in a wet environment. NextDent C&B MFH showed the highest flexural and impact strength, Palacos R+G showed the highest maximum stress intensity factor and total fracture work. Autoclave sterilization is not suitable for the sterilization of PMMA-based materials. Ethylene oxide, hydrogen peroxide gas plasma, and γ-irradiation appear to be suitable techniques to sterilize PMMA-based personalized medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Poly(methyl methacrylate) and thiophene-coated single-walled carbon nanotubes for volatile organic compound discrimination

    Science.gov (United States)

    Muangrat, Worawut; Chodjarusawad, Thanawee; Maolanon, Rungroj; Pratontep, Sirapat; Porntheeraphat, Supanit; Wongwiriyapan, Winadda

    2016-02-01

    Poly(methyl methacrylate) (PMMA) and thiophene-coated single-walled carbon nanotubes (SWNTs) were fabricated for use in volatile organic compound (VOC) detection. Pristine SWNTs were separately coated with PMMA (PMMA/SWNTs) and thiophene (thiophene/SWNTs) by spin-coating. Pristine SWNTs showed the highest response to methanol, while PMMA/SWNTs enabled 5.4-fold improved dichloromethane detection and thiophene/SWNTs enabled 1.4-fold improved acetone detection compared with pristine SWNTs. The sensor response of PMMA/SWNTs to dichloromethane and that of thiophene/SWNTs to acetone can be attributed to the Hildebrand solubility parameter (HSP). The more similar the HSP, the higher the sensor response. The sensor response of pristine SWNTs to methanol is related to the diffusion coefficient and molecular size. The relationships between the vapor concentration and sensor response of PMMA/SWNTs to dichloromethane and thiophene/SWNTs to acetone are based on Henry’s adsorption isotherm, while that of pristine SWNTs to methanol is based on the Henry-clustering model. Principal component analysis (PCA) results show that dichloromethane, acetone, and methanol were successfully discriminated.

  6. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    Science.gov (United States)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  7. Preparation and Characterization of ZnS, CdS and HgS/Poly(methyl methacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Johannes Z. Mbese

    2014-09-01

    Full Text Available The synthesis and characterization of ZnS/PMMA (poly(methyl methacrylate, CdS/PMMA and HgS/PMMA nanocomposites are presented. Hexadecylamine (HDA-capped ZnS, CdS and HgS nanoparticles were synthesized using dithiocarbamate single molecule precursors at 180 °C. FTIR (Fourier transform infrared spectroscopy spectra measurement confirmed the dispersion of the metal sulfide nanoparticles in the PMMA matrices to form the metal sulfides/PMMA nanocomposites. Powder X-ray diffraction confirmed the presence of the amorphous PMMA in the nanocomposites. The ZnS and HgS particles were indexed to the cubic phase, while the HgS particles correspond to the hexagonal phase. Thermogravimetric analyses showed that the metal sulfide nanocomposites are thermally more stable than their corresponding precursor complexes. The TEM (Transmission electron microscope analyses revealed that the ZnS nanoparticles have a particle size of 3–5 nm; the crystallite size of the CdS nanoparticles is 6–12 nm, and HgS nanoparticles are 6–12 nm.

  8. Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection

    Science.gov (United States)

    Rattanabut, Chanoknan; Wongwiriyapan, Winadda; Muangrat, Worawut; Bunjongpru, Win; Phonyiem, Mayuree; Song, Young Jae

    2018-04-01

    In this paper, we present a gas sensor for volatile organic compound (VOC) detection based on graphene and poly(methyl methacrylate) (GR/PMMA) composite laminates fabricated using CVD-grown graphene. Graphene was transferred to a poly(ethylene terephthalate) (PET) substrate by PMMA-supported wet transfer process without PMMA removal in order to achieve the deposition of GR/PMMA composite laminates on PET. The GR/PMMA and graphene sensors show completely different sensitivities to VOC vapors. The GR/PMMA and graphene sensors showed the highest sensitivities to dichloromethane (DCM). The response of the GR/PMMA sensor to DCM was 3 times higher than that of the graphene sensor but the GR/PMMA sensor hardly responded to acetone, chloroform, or benzene. The sensing mechanism of the graphene sensor can be based on the dielectric constant of VOCs, the size of VOC molecule, and electron hopping effects on defect graphene, while that of the GR/PMMA sensor can be explained in terms of the polymer swelling owing to the Hansen solubility parameter.

  9. Current bonding systems for resin-bonded restorations and fixed partial dentures made of silver–palladium–copper–gold alloy

    Directory of Open Access Journals (Sweden)

    Hideo Matsumura

    2011-02-01

    Full Text Available This review article describes about the bonding systems for noble metal alloys, bonding techniques of restorations and fixed partial dentures (FPDs made of Ag–Pd–Cu–Au alloys, and their clinical performance. Thione monomers, 6-(4-vinylbenzyl-n-propyl amino-1,3,5-triazine-2,4-dithione (VTD, 6-methacryloyloxyhexyl-2-thiouracil-5-carboxylate (MTU-6, and 10-methacryloxydecyl 6,8-dithiooctanoate (MDDT, has been proved effective for bonding noble metal alloys. An acrylic adhesive consists of the tri-n-butylborane (TBB initiator, methyl methacrylate (MMA monomer liquid with 5% 4-methacryloyloxyethyl trimellitate anhydride (4-META, and poly(methyl methacrylate (PMMA, is being used for bonding metallic restorations to abutment surfaces. Clinical performance of restorations and FPDs made of Ag–Pd–Cu–Au alloys is overall excellent when they are seated with the currently available noble metal bonding systems.

  10. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Katharina; Gruner, Janina; Madeja, Michael; Musshoff, Ulrich [Universitaetsklinikum Muenster, Institut fuer Physiologie I, Muenster (Germany); Hartmann, Louise M.; Hirner, Alfred V. [Universitaet Duisburg-Essen, Institut fuer Umweltanalytik, Essen (Germany); Binding, Norbert [Universitaetsklinikum Muenster, Institut fuer Arbeitsmedizin, Muenster (Germany)

    2006-08-15

    Pentavalent and trivalent organoarsenic compounds belong to the major metabolites of inorganic arsenicals detected in humans. Recently, the question was raised whether the organic arsenicals represent metabolites of a detoxification process or methylated species with deleterious biological effects. In this study, the effects of trivalent arsenite (AsO{sub 3} {sup 3-}; iA{sup III}), the pentavalent organoarsenic compounds monomethylarsonic acid (CH{sub 3}AsO(OH){sub 2}; MMA{sup V}) and dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and the trivalent compounds monomethylarsonous acid (CH{sub 3}As(OH){sub 2}, MMA{sup III}) and dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) were tested on glutamate receptors and on voltage-operated potassium and sodium channels heterologously expressed in Xenopus oocytes. Membrane currents of ion channels were measured by conventional two-electrode voltage-clamp techniques. The effects of arsenite were tested in concentrations of 1-1,000 {mu}mol/l and the organic arsenical compounds were tested in concentrations of 0.1-100 {mu}mol/l. We found no significant effects on voltage-operated ion channels; however, the arsenicals exert different effects on glutamate receptors. While MMA{sup V} and MMA{sup III} significantly enhanced ion currents through N-methyl-d-aspartate (NMDA) receptor ion channels with threshold concentrations <10 {mu}mol/l, DMA{sup V} and DMA{sup III} significantly reduced NMDA-receptor mediated responses with threshold concentrations <0.1 {mu}mol/l; iA{sup III} had no effects on glutamate receptors of the NMDA type. MMA{sup III} and DMA{sup V} significantly reduced ion currents through {alpha}-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor ion channels with threshold concentrations <10 {mu}mol/l (MMA{sup III}) and <1 {mu}mol/l (DMA{sup V}). MMA{sup V} and iA{sup III} had no significant effects on glutamate receptors of the AMPA type. The effects of MMA{sup V}, MMA

  11. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Hsiu-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Choy, Cheuk-Sing [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Emergency Department, Taipei Hospital, Department of Health, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shiau-Rung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA{sup 5+}) and dimethylarsinic acid (DMA{sup 5+}) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: Black-Right-Pointing-Pointer This is the first to find that urinary total arsenic is related inversely to the BMI. Black-Right-Pointing-Pointer Arsenic methylation capability may be associated with obesity and insulin. Black-Right-Pointing-Pointer Obese adolescents with high insulin had low arsenic methylation capacity.

  12. Nano-emulsion based on acrylic acid ester co-polymer derivatives as an efficient pre-tanning agent for buffalo hide

    OpenAIRE

    El-Monem, Farouk Abd; Hussain, Ahmed I.; Nashy, EL-Shahat H.A.; El-Wahhab, Hamada Abd; Naser, Abd El-Rahman M.

    2014-01-01

    Acrylic copolymer nanoemulsions were prepared based on methyl methacrylate (MMA) and butyl acrylate (BA). The prepared acrylic copolymer emulsions were characterized using solid content, rheological properties, molecular weight, MFFT and TEM. The prepared polymers were used as pre-tanning of the depickled hide to enhance the physico-mechanical properties of tanned leather. The key parameters which affect exhaustion and fixation of chrome tan as well as shrinkage temperature of the tanned leat...

  13. Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases

    NARCIS (Netherlands)

    van Beek, Hugo L.; Winter, Remko T.; Eastham, Graham R.; Fraaije, Marco W.

    2014-01-01

    Methyl propanoate is an important precursor for polymethyl methacrylates. The use of a Baeyer-Villiger monooxygenase (BVMO) to produce this compound was investigated. Several BVMOs were identified that produce the chemically non-preferred product methyl propanoate in addition to the normal product

  14. Effect of solubility parameter of solvents on electron beam induced graft-polymerization onto polyethylene films

    International Nuclear Information System (INIS)

    Mori, Koji; Koshiishi, Kenji; Masuhara, Ken-ichi

    1992-01-01

    Electron beam induced graft-polymerization by the mutual irradiation technique of methyl methacrylate (MMA) and methacrylic acid (MAAc) blended with solvents, which have different solubility parameters δ, onto high density polyethylene films (PE) were investigated at high dose rates (25 Mrad per second). Graft-polymerization mechanisms were discussed on the basis of grafting rates, surface tensions, atomic rations on the surface by XPS, and SEM images of the grafted films. Grafting rates decreased with increasing δ of solvents, and grafting rates for MMA were larger than those for MAAc. Graft chain contents on the surface, which were evaluated in terms of surface tensions and atomic ratios on the surface, increased with increasing δ of solvents, and graft chain contents on the surface of MAAc grafted PE were higher than those of MMA grafted PE. It is assumed that mutual solubility of PE and solvents (monomer solutions), i.e., infiltration of monomer solutions into PE during graft-polymerization, influenced grafting rates and graft sites in films. In case of high mutual solubility, grafting rates were large and graft sites spread from the surface into bulk. On the other hand, in case of low mutual solubility, grafting rates were small and graft sites localized on the surface of films. (author)

  15. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  16. [Physical properties of resins for veneer crown. (Part 1) Bending strength of thermosetting methacrylic resins (author's transl)].

    Science.gov (United States)

    Kashiwada, T

    1979-01-01

    The physical properties of thermosetting methacrylic resins contain a kind or more than two kinds of cross linking agents were investigated. Knoop hardness and bending strength after drying, water sorption and thermal cycling were listed in table 4 and 5. Hydrophilic resins absorbed water about 3 times as much as hydrophobic resins. The materials contain a small amount of hydrophobic cross linking agents in MMA indicate comparatively excellent properties after drying, water sorption and thermal cycling. Knoop hardness of resins generally reduced by water sorption, especially in the case of the resin contains a large amount of triethylene glycol dimethacrylate.

  17. Ionogels Based on Poly(methyl methacrylate and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Kerstin Zehbe

    2016-03-01

    Full Text Available Ionogels (IGs based on poly(methyl methacrylate (PMMA and the metal-containing ionic liquids (ILs bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II, tetrachloride cobaltate(II, and tetrachlorido manganate(II have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic properties of IGs.

  18. Extended Resection of Chest Wall Tumors with Reconstruction Using Poly Methyl Methacrylate-Mesh Prosthesis

    International Nuclear Information System (INIS)

    Abo Sedira, M.; Nassar, O.; Al-Ariny, A.

    2003-01-01

    This prospective study evaluates the early result of patients with massive chest wall tumors treated by extended resection and reconstruction using Prolene or Marlex mesh-enforced with Poly Methyl Methacrylate Bone Cement (PMMC) prosthesis. Material and Methods: This surgery was performed on 40 patients with a mean age of 45±18 (12-62) at the Department of Surgery, National Cancer Institute, Cairo University between 1998-2001. Primary chest wall tumors were the indications of surgery in 42.5%, while secondary involvement extending from other sites principally breast cancer were the indications for 57.5%. In 85% of patients more than 3 ribs were involved by tumors and lesions were more than 10 cm in the greatest dimension in 50% of cases. Resection involved sternum in 15 (37.5%) cases and in 45% of cases complete extensive rib resections extended between costovertebral junctions and the costochondral junctions were performed. Additional resections of nearby organs were needed in 20 (50%) of cases including partial lung resection in 14 cases, partial vertebral resection in 3 cases and diaphragm resection for 3 cases. Immediate bony reconstruction by inserting Prolene or Marlex mesh-enforced with Poly Methyl Methacrylate Bone Cement (PMMC) prosthesis to the resulting chest wall defect was performed in 36 cases, whereas, 4 cases had delayed reconstruction. Primary simple soft tissue closure was sufficient for 37.5% of patients; whereas 35% were covered by local rotational flap and 27.5% needed myocutaneous flaps. No patient with this immediate reconstruction needed ventilatory support or tracheostomy and flail chest was not noticed ICU stay was markedly reduced; whereas 85% required less than 7 days. Immediate post operative (40 days) complications were found in 14 patients (35%) and cases with additional lung resection had more complication rate than others (64% vs 19%). Infection occurred in 3 patients and conservative treatment for 3-4 weeks using frequent

  19. Heating/ethanol-response of poly methyl methacrylate (PMMA) with gradient pre-deformation and potential temperature sensor and anti-counterfeit applications

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min; Ge, Yu Chun; Zhang, Fan; Zhao, Yong; Wu, Xue Lian; Geng, Junfeng

    2014-01-01

    In this paper, the heating/ethanol-response of a commercial poly methyl methacrylate (PMMA) is investigated. All PMMA samples are pre-deformed by means of impression (surface compression with a mold) to introduce a gradient pre-strain/stress field. Two types of molds are applied in impression. One is a Singaporean coin and the other is a particularly designed mold with a variable protrusive feature on top. Two potential applications—temperature sensors to monitor overheating temperatures and anti-counterfeit labels with a water-mark that appears only upon heating to a particular temperature—are demonstrated. Since the heating-responsive shape memory effect (SME) is an intrinsic feature of almost all polymers, other conventional polymers may be used in such applications as well. (technical note)

  20. POLYMERIZATION OF METHYL METHACRYLATE WITH ETHYLENE BRIDGED HETERODINUCLEAR METALLOCENE OF SAMARIUM AND TITANIUM-STUDY ON SYNERGISM AND KINETICS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Comparison of MMA polymerization results with samarocene chloride, titanocene chloride and the title heterodinuclear (Sm-Ti) catalyst, respectively, showed synergism in the Sm-Ligand-Ti system, which ob viously influenced the polymerization behaviors, for example, of yielding higher activity and higher molecular weight polymer. Kinetic studies on polymerization of MMA with ethylene bridged samarocene and titanocene chloride/M(i-Bu) 3 showed that the polymerization rate was first-order on the catalyst concentration, and 1.9- order on the monomer. The overall activation energy measured was 52.8 kJ/mol.

  1. Synthesis and properties of silane-fluoroacrylate grafted starch.

    Science.gov (United States)

    Qu, Jia; He, Ling

    2013-10-15

    The latex of silane-fluoroacrylate grafted starch for coating materials, VTMS-starch/P(MMA/BA/3FMA), is obtained by two step grafting reactions. Vinyltrimethoxysilane (VTMS) is primarily grafted onto starch by condensation between Si-OH and C-OH at 120 °C, and then the copolymer of methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2-trifluoroethyl methacrylate (3FMA) is grafted onto the VTMS-starch by emulsion polymerization. Fourier transform infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to confirm the chemically grafting reactions in every step. The conversion percent, grafting percent and grafting efficiency for VTMS-starch/p(MMA/BA/3FMA) latex indicate that the optimum conditions should be controlled at 75 °C for 1h as VTMS-starch/P(MMA/BA/3FMA) in 1/3 weight ratio. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis have revealed that the latexes exhibit the uniform spherical particles of 40-60 nm in a narrow size distribution. The latex films perform the obvious hydrophobic (107°) property, lower surface free energy (25-35 mN/m) and the higher thermostability (330-440 °C) than starch (51°, 51.32 mN/m, 100-330 °C). Dynamic thermomechanical analysis (DMA) shows that the latex film could gain considerable toughness and strength with an elongation at break of 39.45% and a tensile strength of 11.97 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Supercritical CO2 drying of poly(methyl methacrylate) photoresist for deep x-ray lithography: a brief note

    Science.gov (United States)

    Shukla, Rahul; Abhinandan, Lala; Sharma, Shivdutt

    2017-07-01

    Poly(methyl methacrylate) (PMMA) is an extensively used positive photoresist for deep x-ray lithography. The post-development release of the microstructures of PMMA becomes very critical for high aspect ratio fragile and freestanding microstructures. Release of high aspect ratio comb-drive microstructure of PMMA made by one-step x-ray lithography (OXL) is studied. The effect of low-surface tension Isopropyl alcohol (IPA) over water is investigated for release of the high aspect ratio microstructures using conventional and supercritical (SC) CO2 drying. The results of conventional drying are also compared for the samples released or dried in both in-house developed and commercial SC CO2 dryer. It is found that in all cases the microstructures of PMMA are permanently deformed and damaged while using SC CO2 for drying. For free-standing high aspect ratio microstructures of PMMA made by OXL, it is advised to use low-surface tension IPA over DI water. However, this brings a limitation on the design of the microstructure.

  3. Chemical resistance of core-shell particles (PS/PMMA) polymerized by seeded suspension

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luiz Fernando Belchior; Machado, Ricardo Antonio Francisco, E-mail: ricardo.machado@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Engenharia de Materiais; Gonçalves, Odinei Hess [Universidade Técnológica Federal do Paraná(UTFPR), Campo Mourão, PR (Brazil); Marangoni, Cintia [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil); Motz, Günter [Lehrstuhl Keramische Werkstoffe, Universität Bayreuth (Germany)

    2017-07-01

    Core-shell particles were produced on seeded suspension polymerization by using polystyrene (PS) as polymer core, or seed, and methyl methacrylate (MMA) as the shell forming monomer. Two synthesis routes were evaluated by varying the PS seed conversion before MMA addition. The main purpose of this work was to investigate the influence of synthesis routes on the morphology and chemical resistance of the resulting particles. {sup 1}H NMR spectroscopy showed that the use of PS seeds with lower conversion led to the formation of higher amount of poly(styrene-co-MMA). The copolymer acted as a compatibilizer, decreasing the interfacial energy between both homopolymers. As a consequence, a larger amount of reduced PMMA cluster were formed, as was revealed by TEM measurements. Samples in this system showed enhanced resistance to cyclohexane attack compared with pure PS, with a PS extraction of only 37% after 54 hours test. (author)

  4. Chemical resistance of core-shell particles (PS/PMMA polymerized by seeded suspension

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Belchior Ribeiro

    2017-09-01

    Full Text Available Abstract Core-shell particles were produced on seeded suspension polymerization by using polystyrene (PS as polymer core, or seed, and methyl methacrylate (MMA as the shell forming monomer. Two synthesis routes were evaluated by varying the PS seed conversion before MMA addition. The main purpose of this work was to investigate the influence of synthesis routes on the morphology and chemical resistance of the resulting particles. 1H NMR spectroscopy showed that the use of PS seeds with lower conversion led to the formation of higher amount of poly(styrene-co-MMA. The copolymer acted as a compatibilizer, decreasing the interfacial energy between both homopolymers. As a consequence, a larger amount of reduced PMMA cluster were formed, as was revealed by TEM measurements. Samples in this system showed enhanced resistance to cyclohexane attack compared with pure PS, with a PS extraction of only 37% after 54 hours test.

  5. Síntese e caracterização de copolímeros à base de metacrilato de metila e divinilbenzeno com propriedades magnéticas Synthesis and characterization of copolymers based on methyl methacrylate and divinylbenzene with magnetic properties

    Directory of Open Access Journals (Sweden)

    Cristiane N. Costa

    2012-01-01

    Full Text Available Neste trabalho, foram sintetizados materiais binários baseados em copolímeros de metacrilato de metila reticulados com divinilbenzeno contendo partículas de ferro com propriedades magnéticas pela técnica de polimerização em suspensão. Foram estudados os efeitos da concentração de ferro adicionado na polimerização, da razão molar MMA/DVB, do tipo de agente de suspensão e da velocidade de agitação na formação do copolímero. Os copolímeros foram caracterizados quanto à morfologia, à estabilidade térmica, ao teor de ferro incorporado, à distribuição de tamanho de partículas, às propriedades magnéticas, à área superficial, ao volume e ao tamanho de poros. Foram obtidas microesferas poliméricas com propriedades magnéticas que apresentaram bom controle morfológico esférico e partículas de ferro aglomeradas por toda a superfície da microesfera. As análises de propriedades magnéticas mostraram que os materiais obtidos não apresentaram ciclos de histerese, estando assim próximos de um material com propriedades superparamagnéticas, com magnetização de saturação entre 8,0 e 13,0 emu.g-1.In this work, copolymers based on methyl methacrylate and divinylbenzene containing iron with magnetic properties were produced using the suspension polymerization method. An investigation was performed of the effect from the concentration of iron added to the polymerization, the MMA/DVB molar ratio in the copolymer formation, type of suspension agent and stirring speed on the synthesis of the copolymers. The copolymers morphology, thermal stability, contents of embedded iron, particle size distribution, magnetic properties, surface area, volume and pore size were evaluated. Polymeric microspheres with magnetic properties were successfully obtained. These materials showed good control of the spherical shape and agglomeration of iron particles under the surface of the microsphere. The analysis of magnetic properties pointed to

  6. Reactivity Ratios for Organotin Copolymer Systems

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2010-04-01

    Full Text Available Di(tri-n-butyltin itaconate (DTBTI and monoethyl tributyltin fumarate (METBTF were synthesized as organotin monomers. The organotin monomers were copolymerized with styrene (ST and methyl methacrylate (MMA via a free radical polymerization technique. The overall conversion was kept low (£15% wt/wt for all studied samples and the copolymer composition was determined from tin analysis. The synthesized monomers and copolymers were characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

  7. Poly(methyl methacrylate) nanocomposites based on TiO{sub 2} nanocrystals: Tailoring material properties towards sensing

    Energy Technology Data Exchange (ETDEWEB)

    Convertino, A., E-mail: annalisa.convertino@ismn.cnr.i [ISMN-CNR Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km. 29.300, 00016 Roma (Italy); Tamborra, M., E-mail: m.tamborra@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy); Striccoli, M., E-mail: m.striccoli@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy); Leo, G., E-mail: gabriella.leo@ismn.cnr.i [ISMN-CNR Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km. 29.300, 00016 Roma (Italy); Agostiano, A., E-mail: a.agostiano@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy); Dipartimento di Chimica., Universita di Bari, Via Orabona 4, 70126 Bari (Italy); Curri, M.L., E-mail: lucia.curri@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy)

    2011-03-31

    Nanocomposite materials have been obtained by dispersing organic capped TiO{sub 2} nanocrystals (NCs) with different shape and surface chemistry in poly(methyl methacrylate) (PMMA) as a host medium. Films of the prepared nanocomposites based on TiO{sub 2} NCs have been fabricated by spin coating and morphologically characterized as a function of the preparative conditions. The organic vapor absorption ability of the PMMA/TiO{sub 2} NC based nanocomposites has been then investigated both for spherical and rod-like NCs, and the chemical nature of the coordinating organic molecules has been also varied. The results of the investigation have demonstrated that NC geometry and surface chemistry can modulate the specific absorption characteristics of the modified PMMA in order to absorb different solvent molecules (i.e. acetone, ethanol, propan-2-ol and water). Such features, due to specific interactions between the potential analyte vapors and the functionalized surface of NCs, can effectively be addressed in a controlled and reproducible way, thus offering original opportunities for designing innovative chemical sensors.

  8. Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite.

    Science.gov (United States)

    Karaj-Abad, Saber Ghasemi; Abbasian, Mojtaba; Jaymand, Mehdi

    2016-11-05

    For the first time, nitroxide-mediated polymerization (NMP) was used for synthesis of graft and block copolymers using cellulose (Cell) as a backbone, and polystyrene (PSt) and poly(methyl metacrylate) (PMMA) as the branches. For this purpose, Cell was acetylated by 2-bromoisobutyryl bromide (BrBiB), and then the bromine group was converted to 4-oxy-2,2,6,6-tetramethylpiperidin-1-oxyl group by a substitution nucleophilic reaction to afford a macroinitiator (Cell-TEMPOL). The macroinitiator obtained was subsequently used in controlled graft and block copolymerizations of St and MMA monomers to yield Cell-g-PSt and Cell-g-(PMMA-b-PSt). The chemical structures of all samples as representatives were characterized by FTIR and (1)H NMR spectroscopies. In addition, Cell-g-(PMMA-b-PSt)/organophilic montmorillonite nanocomposite was prepared through a solution intercalation method. TEM was used to evaluate the morphological behavior of the polymer-clay system. It was demonstrated that the addition of small percent of organophilic montmorillonite (O-MMT; 3wt.%) was enough to improve the thermal stability of the nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  10. The effect of association between inefficient arsenic methylation capacity and demographic characteristics on the risk of skin lesions.

    Science.gov (United States)

    Rasheed, Hifza; Kay, Paul; Slack, Rebecca; Gong, Yun Yun

    2018-01-15

    This study was conducted in rural Pakistan to assess the dose-response relationship between skin lesions and arsenic exposure and their variation by demographic characteristics. The study included 398 participants (66 participants with skin lesions and 332 without) residing in six previously unstudied villages exposed to ground water arsenic in the range of iAs), total arsenic (tAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were analysed to determine methylation capacity, methylation efficiency and the dose-response relationship with skin lesions. Study participants with skin lesions were found to be exposed to arsenic >10μgL -1 with a daily arsenic intake of 3.23±3.75mgday -1 from household ground water sources for an exposure duration of 10-20years. The participants with skin lesions compared to those without skin lesions showed higher levels of urinary iAs (133.40±242.48 vs. 44.24±86.48μgg -1 Cr), MMA (106.38±135.04 vs. 35.43±39.97μgg -1 Cr), MMA% (15.26±6.31 vs.12.11±4.68) and lower levels of DMA% (66.99±13.59 vs. 73.39±10.44) and secondary methylation index (SMI) (0.81±0.11 vs. 0.86±0.07). Study participants carrying a lower methylation capacity characterized by higher MMA% (OR 5.06, 95% CI: 2.09-12.27), lower DMA% (OR 0.64, 95% CI: 0.33-1.26), primary methylation index (PMI) (OR 0.56, 95% CI: 0.28-1.12) and SMI (OR 0.43, 95% CI: 0.21-0.88) had a significantly higher risk of skin lesions compared to their corresponding references after adjusting for occupation categories. The findings confirmed that inefficient arsenic methylation capacity was significantly associated with increased skin lesion risks and the effect might be modified by labour intensive occupations. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Fabrication of poly(methyl methacrylate)-MoS{sub 2}/graphene heterostructure for memory device application

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Sachin M.; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2014-12-07

    Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material as well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.

  12. A preliminary study on the thermal conductivity and flammability of WPC based on some tropical woods

    International Nuclear Information System (INIS)

    Chia, L.H.L.; Chua, P.H.; Lee, E.E.N.

    1985-01-01

    Selected local woods and their wood-polymer combinations or composites (WPC) were tested for their thermal conductivity and their fire resistance. WPC were prepared by polymerizing monomers 'in situ' in oven dried woods by gamma radiation. The monomers included acrylonitrile (AN), 60% styrene-40% acrylonitrile (STAN), methyl methacrylate (MMA), 95% methyl methacrylate-5% dioxane (MD), and vinylidene chloride (VDC). A reduction in thermal conductivity was exhibited by all the composites prepared. W-PAN showed the greatest reduction in thermal conductivity and W-PSTAN in general showed the least. An explanation is suggested for this behaviour. The polymers PMMA and PMD were found to enhance flammability of the woods while PVDC, PAN, and PSTAN imparted fire resistance to the woods. Of the six local woods studied, Ramin-and-Keruing-polymer composites showed the highest flammable tendencies obtained. The correlation of thermal conductivity to flammability is discussed. (author)

  13. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode

    International Nuclear Information System (INIS)

    Tran, Binh; Oladeji, Isaiah O.; Wang, Zedong; Calderon, Jean; Chai, Guangyu; Atherton, David; Zhai, Lei

    2013-01-01

    We report the first fully compressed Li 4 Ti 5 O 12 electrode designed by an aqueous process. An adhesive, elastomeric, and lithium ion conductive PEG-based copolymer is used as a binder for the aqueous fabrication thick, flexible, and densely packed Li 4 Ti 5 O 12 (LTO) electrodes. Self-adherent cathode films exceeding 200 μm in thickness and withholding high active mass loadings of 28 mg/cm 2 deliver 4.2 mAh/cm 2 at C/2 rate. Structurally defect-free electrodes are fabricated by casting aqueous cathode slurries onto nickel foam, dried, and hard-calendared at 10 tons/cm 2 . As a multifunctional material, the binder is synthesized by the copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), methyl methacrylate (MMA), and isobutyl vinyl ether (IBVE) in optimal proportions. Furthermore, coordinating the binder with lithium salt is necessary for the electrode to function

  14. Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base

    Institute of Scientific and Technical Information of China (English)

    WEI Danyi; LI Ning; LU Gui; YAO Kemin

    2006-01-01

    A novel dinuclear copper complex with tetraglycol aldehyde-phenylalanine Schiff base has been synthesized. It was characterized and formulated as [Cu2L(NO3)]NO3 by elemental analysis,magnetic susceptibility, TG-DTA, IR, EPR and 1H NMR spectra. The obtained complex can be used as a good catalyst for the polymerization of methyl methacrylate (MMA). The optimum polymerization conditions are: MMNcatalyst = 500 (molar ratio); [catalyst] = 7.5×10-3 mol. L-1; dioxane as solvent;80℃; 6 h. Polymethyl methacrylate (PMMA) with 80% conversion, 7.2×105 viscosity-average molecular weight and 60.5% syndiotacticity was obtained. This complex has also been shown to play an important role in scavenging O-·2.

  15. Surface Modification of Sodium Montmorillonite Nanoclay by Plasma Polymerization and Its Effect on the Properties of Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rosa Idalia Narro-Céspedes

    2018-01-01

    Full Text Available Sodium montmorillonite nanoclay (Na+-MMT was modified by plasma polymerization with methyl methacrylate (MMA and styrene (St as monomers and was denominated as Na+-MMT/MMA and Na+-MMT/St, respectively. This plasma modified nanoclay was used as reinforcement for polystyrene (PS nanocomposites that were prepared by melt mixing. Pristine and modified Na+-MMT nanoclay were analyzed by the dispersion in various solvents, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. The results confirmed a change in hydrophilicity of the modified Na+-MMT, as well as the presence of a polymeric material over its surface. The pristine PS/Na+-MMT and modified PS/Na+-MMT/MMA and PS/Na+-MMT/St nanocomposites were studied with X-ray diffraction (XRD, differential scanning calorimetry (DSC, and TGA, as well as mechanical properties. It was found that the PS/Na+-MMT/St nanocomposites presented better thermal properties and an improvement in Young’s modulus (YM in compared to PS/Na+-MMT/MMA nanocomposites.

  16. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved.

    Science.gov (United States)

    Skröder, Helena; Engström, Karin; Kuehnelt, Doris; Kippler, Maria; Francesconi, Kevin; Nermell, Barbro; Tofail, Fahmida; Broberg, Karin; Vahter, Marie

    2018-02-01

    It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. We aimed to investigate potential interactions in the methylation of selenium and arsenic. Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women ( n =226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe ( INMT rs6970396 AG+AA, n =74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA ( p -interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.

  17. Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates onto polyethylene

    International Nuclear Information System (INIS)

    Zurakowska-Orszagh, J.; Soerjosoeharto, K.; Busz, W.; Oldziejewski, J.

    1977-01-01

    Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates into polyethylene of Polish production was investigated, using benzoyl peroxide as the initiator as well as preirradiation technique, namely ionizing radiation from a 60 Co γ-source. The effect of α-carbon methyl substituent of methacrylates as well as the influence of the length of alkyl chains in the ester groups of both series of monomers into the grafting process was observed. The ungrafted and some of the grafted polyethylene film obtained was studied by infrared spectrophotometry. (author)

  18. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (piAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  19. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    Science.gov (United States)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the

  20. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  1. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  2. Study on the properties of blend rubber prepared with grafted rubber and irradiated rubber by Gamma Rays

    International Nuclear Information System (INIS)

    Dafader, N. C.; Haque, M. E.; Islam, K. A.

    2004-05-01

    The blend rubbers were prepared by mixing γ-rays irradiated and monomer grafted rubbers. The monomers, methyl methacrylate (MMA) and styrene were used separately to prepare grafted rubber by exposure to radiation. The physico-chemical properties of the blend rubbers were evaluated. The tensile strength and elongation at break of the blend rubbers decrease whereas modulus at 500% elongation, swelling ratio and permanent set increase with the increased proportion of grafted rubber in the blend. The tear strength of the blend between irradiated and styrene grafted rubbers increases with the increased proportion of grafted rubber but that of the blend of irradiated and MMA grafted rubbers remains almost constant. The blend rubber could be used for special type of application like rubber thread, tube, catheter etc

  3. Synthesis and characterization of functional acrylic copolymers via RAFT mini-emulsion polymerization

    Science.gov (United States)

    Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata

    2017-12-01

    Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.

  4. Preparation and characterization of BADCy/MMA semi-IPN%BADCy/MMA半互穿网络的制备及性能表征

    Institute of Scientific and Technical Information of China (English)

    祝保林

    2012-01-01

    The cyanate ester resin/PMMA(BADCy/MMA-SIPN) with semi-interpenetrating polymers network were prepared by adding methyl methacrylate(MMA) monomer(synchronous synthisis)or MMA prepolymer(asynchronous synthesis)into the melting cyanate ester resin(BADCy) and caused.The bulk polymerization occurred.The effects of MMA contents on the mechanical properties and thermal performance of the BADCy/MMA-SIPN were investigated by the mechanical testing,infrared and DSC analysis.The results showed that the mechanical properties and heat resistance of the cyanate ester resin system were greatly improved by the formation of interpenetrating network.The impact strength,flexural strength and glass transition temperature were increased by 97.8%,58.6%,and 65 ℃,respectively.%在加热熔融的氰酸酯树脂(BADCy)中加入甲基丙烯酸甲酯(MMA)单体(同步合成法)或MMA预聚体(异步合成法)并引发使其发生本体聚合,制备了具有半互穿聚合物网络结构的氰酸酯树脂/聚甲基丙烯酸甲酯(BADCy/MMA-SIPN),通过力学性能测试,红外及DSC分析研究了MMA含量对体系力学性能和热性能的影响。结果表明,互穿网絡的形成使氰酸酯树脂体系的力学性能和耐热性能都有较大的提高,冲击强度、弯曲强度及玻璃化温度分别提高了97.8%、58.6%和65℃。

  5. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    International Nuclear Information System (INIS)

    Jeeju, P.P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.

    2013-01-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  6. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, P.P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Chandrasekharan, K.; Sudheesh, P. [Department of Physics, National Institute of Technology, Calicut, Kerala (India)

    2013-03-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  7. Adsorption behavior of protein onto siloxane microspheres

    International Nuclear Information System (INIS)

    Liu Bailing; Cao Shunsheng; Deng Xiaobo; Li Songjun; Luo Rong

    2006-01-01

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption

  8. Adsorption behavior of protein onto siloxane microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: Blliuchem@hotmail.com; Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-09-15

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption.

  9. Self-assembly and omniphobic property of fluorinated unit end-functionalized poly(methyl methacrylate)

    Science.gov (United States)

    Junyan, Liang; Pingdi, Xu; Jingxian, Bao; Ling, He; Nan, Zhu

    2018-03-01

    The self-assembly behavior of fluorinated unit end-functionalized poly(methyl methacrylate) (PDFHM-ef-PMMA) in solution and its influence on the surface microstructure, elemental composition and omniphobic property of cast film was investigated in this work. Specifically, three mixed solutions of tetrahydrofuran (THF)/methanol (MeOH), THF/H2O and THF/H2O/MeOH in various compositions were employed separately as the selective solvents. In THF/MeOH solution, the aggregate morphologies of PDFHM-ef-PMMA changed gradually from core-shell spheres to worm, and then to elliptical vesicles as MeOH content increased. In THF/H2O solution, spherical and bowl-shaped aggregates with significantly larger sizes than those in THF/MeOH solution were favored despite lower H2O content. The further addition of MeOH to THF/H2O mixture could reduce the size of aggregate but hardly change original aggregate morphology. During the film formation process, those self-assembled aggregates in THF/MeOH solution fused with one another to form a smooth surface. When such surface was fully covered by fluorinated segments, the outstanding hexadecane and water slide-off properties and ink-resistant property required for antifouling application were demonstrated. Instead, the aggregates formed in THF/H2O/MeOH mixture were subjected to secondary aggregation of PDFHM-ef-PMMA chains during solvent evaporation, leading to the formation of a particulate film with poor adhesion towards glass plate and hexadecane-repellent property.

  10. A functional monomer is not enough: principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology.

    Science.gov (United States)

    Golker, Kerstin; Karlsson, Björn C G; Rosengren, Annika M; Nicholls, Ian A

    2014-11-10

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.

  11. P(VDF-TrFE)/ZrO{sub 2} polymer-composites for X-ray shielding

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, Crissia Carem Paiva [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Baptista Neto, Annibal Theotonio; Santos, Adelina Pinheiro; Faria, Luiz Oliveira de, E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-03-15

    Poly(vinylidene fluoride - tryfluorethylene) [P(VDF-TrFE)] copolymers were mixed with zirconia nanoparticles. The investigation was conducted with the intention to produce nanocompounds with potential to be used as protective patient shielding in radiological procedures. Polymer based nanocomposites with 1, 2, 3, 5 and 10 wt% of ZrO{sub 2} nanoparticles were prepared using sol-gel route with zirconium butoxide as the precursor for zirconium oxide nanoclusters. UV-Vis and FTIR spectrometry and differential scanning calorimetry (DSC) were used to characterize the composite samples. We observed a more homogeneous distribution of ZrO{sub 2} nanoparticles encapsulated by methyl methacrylate (MMA) into the polymeric matrix, when compared to composites made without the use of surface modifiers from methacrylate group. Apparently, this property is related to the absence of the strong MMA absorption band at 1745 cm{sup -1}, attributed to C=O bond, in the P(VDF-TrFE)/ZrO{sub 2} -MMA nanocomposites. The radiation damage due to high dose exposure was performed for gamma doses ranging from 100 kGy to 1,000 kGy. The radiation shielding characterization conducted using x-rays with effective energy of 40 keV has demonstrated that composites with 10% of ZrO{sub 2}, and only 1.0 mm thick, can attenuate 60% of the x-rays beam. (author)

  12. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-01-01

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  13. Gamma-radiation induced polymerization of methyl methacrylate in aliphatic hydrocarbons: kinetics and evidence for incorporation of hydrocarbon in the polymer chain

    International Nuclear Information System (INIS)

    Mohan, H.; Iyer, R.M.

    1989-01-01

    On γ-radiolysis, the rate of polymerization of methyl methacrylate in hydrocarbon solvents is observed to decrease. It is explained by hydrocarbon entry into the polymer chains. The hydrocarbon entry into the polymer chains is observed to take place at later stages of polymerization and increases with hydrocarbon chain length. The extent of hydrocarbon entry into the polymer chains is estimated by NMR and GLC analysis. It is observed to be equal to ∼ 12% corresponding to ∼ 97 hexadecane molecules in each polymer chain. The IR, DSC, MW determination and radiation effects on the polymer showed evidences for hydrocarbon entry into the polymer. It is explained by chain transfer from the growing polymer radical to the hydrocarbon molecules. The chain transfer constant is determined to be equal to 1 x 10 -2 . (author)

  14. Reaction of aryl diazonium tetrafluoro borates with allyl methacrylate in the presence of rhodanide-anion

    International Nuclear Information System (INIS)

    Grishchuk, B.D.; Baranovskij, V.S.; Simchak, R.V.; Tulajdan, G.N.; Gorbovoj, P.M.

    2006-01-01

    Reaction of aryl diazonium tetrafluoro borates (I) with allyl ester of methacrylic acid in the water-acetone (1:5) medium is studied by means of IR spectroscopy and 1 H NMR. It is established that (I) reacts with aryl methacrylate in the presence of rhodanide-anion and catalytic quantities of copper salts with the formation of allyl esters of 2-thiocyanato-2-methyl-3-aryl propionic acids with the yield of 32-56%. Allyl fragment of biunsaturated compound shows no reaction under the tested conditions [ru

  15. Surface Roughening of Polystyrene and Poly(methyl methacrylate in Ar/O2 Plasma Etching

    Directory of Open Access Journals (Sweden)

    Amy E. Wendt

    2010-12-01

    Full Text Available Selectively plasma-etched polystyrene-block-poly(methyl methacrylate (PS-b-PMMA diblock copolymer masks present a promising alternative for subsequent nanoscale patterning of underlying films. Because mask roughness can be detrimental to pattern transfer, this study examines roughness formation, with a focus on the role of cross-linking, during plasma etching of PS and PMMA. Variables include ion bombardment energy, polymer molecular weight and etch gas mixture. Roughness data support a proposed model in which surface roughness is attributed to polymer aggregation associated with cross-linking induced by energetic ion bombardment. In this model, RMS roughness peaks when cross-linking rates are comparable to chain scissioning rates, and drop to negligible levels for either very low or very high rates of cross-linking. Aggregation is minimal for very low rates of cross-linking, while very high rates produce a continuous cross-linked surface layer with low roughness. Molecular weight shows a negligible effect on roughness, while the introduction of H and F atoms suppresses roughness, apparently by terminating dangling bonds. For PS etched in Ar/O2 plasmas, roughness decreases with increasing ion energy are tentatively attributed to the formation of a continuous cross-linked layer, while roughness increases with ion energy for PMMA are attributed to increases in cross-linking from negligible to moderate levels.

  16. A sol-gel-modified poly(methyl methacrylate) electrophoresis microchip with a hydrophilic channel wall.

    Science.gov (United States)

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-01-01

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was approximately 27.4 degrees compared with approximately 66.3 degrees for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13x10(-4) cm2 V(-1) s(-1) for the native-PMMA channel to 4.86x10(-4) cm2 V(-1) s(-1) for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74,882.3 m(-1) compared with 14,730.5 m(-1) for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  17. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Peinemann, Klaus-Viktor

    2016-01-01

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  18. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan

    2016-03-11

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  19. Carboxymethyl Cellulose From Kenaf Reinforced Composite Polymer Electrolytes Based 49 % Poly (Methyl Methacrylate)-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Serawati Jafirin; Ishak Ahmad; Azizan Ahmad; Ishak Ahmad; Azizan Ahmad

    2014-01-01

    Composite polymer electrolytes based 49 % poly(methyl methacrylate)-grafted natural rubber (MG49) incorporating lithium triflate (LiCF 3 SO 3 ) were prepared. The study mainly focuses on the ionic conductivity performances and mechanical properties. Prior to that, carboxymethyl cellulose was synthesized from kenaf fiber. The films were characterized by electrochemical impedance (EIS) spectroscopy, linear sweep voltammetry (LSV), universal testing machine and scanning electron microscopy (SEM). The conductivity was found to increase with carboxymethyl cellulose loading. The highest conductivity value achieved was 6.5 x 10 -6 Scm -1 upon addition of 6 wt % carboxymethyl cellulose. LSV graph shows the stability of this film was extended to 2.7 V at room temperature. The composition with 6 wt % carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of Young's modulus. The morphology of the electrolytes showed a smooth surface of films after addition of salt and filler indicating amorphous phase in electrolytes system. Excellent mechanical properties and good ionic conductivity are obtained, enlightening that the film is suitable for future applications as thin solid polymer electrolytes in lithium batteries. (author)

  20. Testing of residual monomer content reduction possibility on acrilic resins quality

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2011-01-01

    Full Text Available Poly (methyl methacrylate (PMMA is material widely used in dentistry. Despite the various methods used to initiate the polymerization of acrylic resins, the conversion of monomer to polymer is not complete thus leaving some unreacted methyl methacrylate (MMA, known as residual monomer (RM, in denture structure. RM in dental acrylic resins has deleterious effects on their mechanical properties and their biocompatibility. The objective of the work was to test the residual monomer reduction possibility by applying the appropriate postpolymerization treatment as well as to determine the effects of this reduction on pressure yields stress and surface structure characteristics of the acrylic resins. Postpolymerization treatments and water storage induced reduction of RM amount in cold-polymerized acrylic resins improved their mechanical properties and the homogenized surface structure. After the polymerization of heat-polymerized acrylic resins the post-polymerization treatments for improving the quality of this material type are not necessary.