WorldWideScience

Sample records for methyl mercury mehg

  1. Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography

    Science.gov (United States)

    Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao

    2018-02-01

    Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.

  2. Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in Northwestern Ontario

    International Nuclear Information System (INIS)

    Mailman, M.; Bodaly, R.A.

    2005-01-01

    Terrestrial plants and soil contain substantial amounts of organic carbon (C) and mercury. Flooding terrestrial areas stimulates microbial methyl mercury (MeHg) production and fish obtain elevated MeHg concentrations. Our purpose was to determine the loss of C, total mercury (THg), and MeHg from boreal plants and soil after burning to assess the potential of burning before flooding to lower MeHg. Fresh plants contained 4 to 52 ng g -1 dry weight (dw) of THg and 0.1 to 1.3 ng g -1 dw of MeHg. Upland soils contained 162±132 ng g -1 dw of THg and 0.6±0.6 ng g -1 dw of MeHg. Complete burning caused plants to lose 96, 98, 97, and 94% of the mass, C, THg, and MeHg, respectively. Upland soil lost 27, 95, 79, and 82% of the mass, C, THg, and MeHg, respectively. Our results demonstrated that a substantial loss of C, THg, and MeHg was caused by burning. - Burning terrestrial vegetation and soil causes substantial losses of organic carbon, total mercury, and methyl mercury

  3. Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in Northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Mailman, M. [Department of Zoology, University of Manitoba, Winnipeg, Man. R3T 2N2 (Canada); Freshwater Institute, 501 University Crescent, Winnipeg, Man. R3T 2N6 (Canada)]. E-mail: mailmanma@dfo-mpo.gc.ca; Bodaly, R.A. [Department of Zoology, University of Manitoba, Winnipeg, Man. R3T 2N2 (Canada); Freshwater Institute, 501 University Crescent, Winnipeg, Man. R3T 2N6 (Canada)

    2005-11-15

    Terrestrial plants and soil contain substantial amounts of organic carbon (C) and mercury. Flooding terrestrial areas stimulates microbial methyl mercury (MeHg) production and fish obtain elevated MeHg concentrations. Our purpose was to determine the loss of C, total mercury (THg), and MeHg from boreal plants and soil after burning to assess the potential of burning before flooding to lower MeHg. Fresh plants contained 4 to 52 ng g{sup -1} dry weight (dw) of THg and 0.1 to 1.3 ng g{sup -1} dw of MeHg. Upland soils contained 162{+-}132 ng g{sup -1} dw of THg and 0.6{+-}0.6 ng g{sup -1} dw of MeHg. Complete burning caused plants to lose 96, 98, 97, and 94% of the mass, C, THg, and MeHg, respectively. Upland soil lost 27, 95, 79, and 82% of the mass, C, THg, and MeHg, respectively. Our results demonstrated that a substantial loss of C, THg, and MeHg was caused by burning. - Burning terrestrial vegetation and soil causes substantial losses of organic carbon, total mercury, and methyl mercury.

  4. Gene Responses in the Central Nervous System of Zebrafish Embryos Exposed to the Neurotoxicant Methyl Mercury

    NARCIS (Netherlands)

    Ho, Nga Yu; Yang, Lixin; Legradi, J.B.; Armant, Olivier; Takamiya, Masanari; Rastegar, Sepand; Strähle, Uwe

    2013-01-01

    Methyl mercury (MeHg) is a neurotoxicant with adverse effects on the development of the nervous system from fish to man. Despite a detailed understanding of the molecular mechanisms by which MeHg affects cellular homeostasis, it is still not clear how MeHg causes developmental neurotoxicity. We

  5. Vertical Distribution of Total Mercury and Mercury Methylation in a Landfill Site in Japan

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-06-01

    Full Text Available Mercury is a neurotoxin, with certain organic forms of the element being particularly harmful to humans. The Minamata Convention was adopted to reduce the intentional use and emission of mercury. Because mercury is an element, it cannot be decomposed. Mercury-containing products and mercury used for various processes will eventually enter the waste stream, and landfill sites will become a mercury sink. While landfill sites can be a source of mercury pollution, the behavior of mercury in solid waste within a landfill site is still not fully understood. The purpose of this study was to determine the depth profile of mercury, the levels of methyl mercury (MeHg, and the factors controlling methylation in an old landfill site that received waste for over 30 years. Three sampling cores were selected, and boring sampling was conducted to a maximum depth of 18 m, which reached the bottom layer of the landfill. Total mercury (THg and MeHg were measured in the samples to determine the characteristics of mercury at different depths. Bacterial species were identified by 16S rRNA amplification and sequencing, because the methylation process is promoted by a series of genes. It was found that the THg concentration was 19–975 ng/g, with a geometric mean of 298 ng/g, which was slightly less than the 400 ng/g concentration recorded 30 years previously. In some samples, MeHg accounted for up to 15–20% of THg, which is far greater than the general level in soils and sediments, although the source of MeHg was unclear. The genetic data indicated that hgcA was present mostly in the upper and lower layers of the three cores, merA was almost as much as hgcA, while the level of merB was hundreds of times less than those of the other two genes. A significant correlation was found between THg and MeHg, as well as between MeHg and MeHg/THg. In addition, a negative correlation was found between THg and merA. The coexistence of the three genes indicated that both

  6. Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Mushak, P.; Hall, L.L.

    1987-01-01

    Adult male and female Long Evans rats received 1 mumole of methyl ( 203 Hg) mercuric chloride per kilogram sc. Whole-body retention of mercury and excretion of organic and inorganic mercury in urine and feces were monitored for 98 days after dosing. Females cleared mercury from the body more rapidly than did males. The major route of mercury excretion was feces. By 98 days after dosing, cumulative mercury excretion in feces accounted for about 51% of the dose in males and about 54% of the dose in females. For both sexes, about 33% of the dose was excreted in feces as inorganic mercury. Cumulative excretion of organic mercury in feces accounted for about 18 and 21% of the dose in males and females, respectively. Urinary excretion of mercury was quantitatively a smaller route for mercury clearance but important sexual differences in loss by this route were found. Over the 98-day experimental period, males excreted in urine about 3.2% of the dose and females excreted 7.5%. Cumulative organic Hg excretion in urine accounted for 1.8% of the dose in males and 5.3% of the dose in females. These sexual differences in urinary and fecal excretion of organic and inorganic mercury following methyl mercury treatment were consistent with previous reports of sexual differences in mercury distribution and retention in methyl mercury-treated rats, particularly sexual differences in organic mercury uptake and retention in the kidney. Relationships between body burdens of organic or inorganic Hg and output of these forms of Hg in urine and feces were also found to be influenced by the interval after MeHg treatment and by sex. Relationship between concentration of Hg in liver and feces and in kidney and urine differed for organic and inorganic Hg and depended upon sexual status and interval after MeHg treatment

  7. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Relations between mercury, methyl-mercury and selenium in tissues of Octopus vulgaris from the Portuguese Coast

    Energy Technology Data Exchange (ETDEWEB)

    Raimundo, Joana, E-mail: jraimundo@ipimar.p [IPIMAR - National Institute of Biological Resources, Av. Brasilia, 1449-006 Lisbon (Portugal); REQUIMTE - CQFB, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, Qta Torre, 2829-516 Monte da Caparica (Portugal); Vale, Carlos; Canario, Joao; Branco, Vasco [IPIMAR - National Institute of Biological Resources, Av. Brasilia, 1449-006 Lisbon (Portugal); Moura, Isabel [REQUIMTE - CQFB, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, Qta Torre, 2829-516 Monte da Caparica (Portugal)

    2010-06-15

    Mercury, methyl-mercury (MeHg) and selenium were determined in digestive gland and mantle of Octopus vulgaris, from three areas of the Portuguese coast. To our knowledge these are the first data on MeHg in cephalopods. Concentrations were higher in the digestive gland and percentage of MeHg in mantle. Enhanced Hg and MeHg levels were obtained in digestive gland of specimens from Olhao (3.1-7.4 and 2.0-5.0 mug g{sup -1}, respectively). Differences between areas may be partially related to Hg availability. Relationships between concentrations in mantle and digestive gland pointed to proportional increases of Hg and MeHg in tissues of specimens from Matosinhos and Cascais, but relatively constant values in mantle of individuals from Olhao (higher contamination). Se:Hg molar ratio in digestive gland was 32 and 30 in octopus from Matosinhos and Cascais, respectively, and 5.4 from Olhao. The proximity to the unit suggests demethylation as response to elevated MeHg levels in digestive gland. - Digestive gland presented high accumulation of Hg and MeHg and demethylation processes may occur with the involvement of Se

  9. Relations between mercury, methyl-mercury and selenium in tissues of Octopus vulgaris from the Portuguese Coast

    International Nuclear Information System (INIS)

    Raimundo, Joana; Vale, Carlos; Canario, Joao; Branco, Vasco; Moura, Isabel

    2010-01-01

    Mercury, methyl-mercury (MeHg) and selenium were determined in digestive gland and mantle of Octopus vulgaris, from three areas of the Portuguese coast. To our knowledge these are the first data on MeHg in cephalopods. Concentrations were higher in the digestive gland and percentage of MeHg in mantle. Enhanced Hg and MeHg levels were obtained in digestive gland of specimens from Olhao (3.1-7.4 and 2.0-5.0 μg g -1 , respectively). Differences between areas may be partially related to Hg availability. Relationships between concentrations in mantle and digestive gland pointed to proportional increases of Hg and MeHg in tissues of specimens from Matosinhos and Cascais, but relatively constant values in mantle of individuals from Olhao (higher contamination). Se:Hg molar ratio in digestive gland was 32 and 30 in octopus from Matosinhos and Cascais, respectively, and 5.4 from Olhao. The proximity to the unit suggests demethylation as response to elevated MeHg levels in digestive gland. - Digestive gland presented high accumulation of Hg and MeHg and demethylation processes may occur with the involvement of Se

  10. Methyl mercury exposure in Swedish women with high fish consumption

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernberg, Karolin Ask [Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm (Sweden); Vahter, Marie [Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm (Sweden); Grawe, Kierstin Petersson [Toxicology Division, National Food Administration, Box 622, SE-751 26 Uppsala (Sweden); Berglund, Marika [Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm (Sweden)]. E-mail: Marika.Berglund@imm.ki.se

    2005-04-01

    We studied the exposure to methyl mercury (MeHg) in 127 Swedish women of childbearing age with high consumption of various types of fish, using total mercury (T-Hg) in hair and MeHg in blood as biomarkers. Fish consumption was assessed using a food frequency questionnaire (FFQ), including detailed information about consumption of different fish species, reflecting average intake during 1 year. We also determined inorganic mercury (I-Hg) in blood, and selenium (Se) in serum. The average total fish consumption, as reported in the food frequency questionnaire, was approximately 4 times/week (range 1.6-19 times/week). Fish species potentially high in MeHg, included in the Swedish dietary advisories, was consumed by 79% of the women. About 10% consumed such species more than once a week, i.e., more than what is recommended. Other fish species potentially high in MeHg, not included in the Swedish dietary advisories, was consumed by 54% of the women. Eleven percent never consumed fish species potentially high in MeHg. T-Hg in hair (median 0.70 mg/kg; range 0.08-6.6 mg/kg) was associated with MeHg in blood (median 1.7 {mu}g/L; range 0.30-14 {mu}g/L; r {sub s}=0.78; p<0.001). Hair T-Hg, blood MeHg and serum Se (median 70 {mu}g/L; range 46-154 {mu}g/L) increased with increasing total fish consumption (r {sub s}=0.32; p<0.001, r {sub s}=0.37; p<0.001 and r {sub s}=0.35; p=0.002, respectively). I-Hg in blood (median 0.24 {mu}g/L; range 0.01-1.6 {mu}g/L) increased with increasing number of dental amalgam fillings. We found no statistical significant associations between the various mercury species measured and the Se concentration in serum. Hair mercury levels exceeded the levels corresponding to the EPA reference dose (RfD) of 0.1 {mu}g MeHg/kg b.w. per day in 20% of the women. Thus, there seems to be no margin of safety for neurodevelopmental effects in fetus, for women with high fish consumption unless they decrease their intake of certain fish species.

  11. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland

    International Nuclear Information System (INIS)

    Porvari, Petri; Verta, Matti

    2003-01-01

    Peatlands have higher methyl mercury output than uplands. - Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km 2 ) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l -1 ). TotHg concentrations varied between 0.84 and 24 ng l -1 and MeHg between 0.03 and 3.8 ng l -1 . TotHg fluxes from catchments ranged from 0.92 to 1.8 g km -2 a -1 , and MeHg fluxes from 0.03 to 0.33 g km -2 a -1 . TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland

  12. Methylation of mercury in isopod Porcellio scaber

    International Nuclear Information System (INIS)

    Jereb, V.; Horvat, M.; Cerne, I.; Drobne, D.

    2002-01-01

    Due to some remarkable characteristics, more than a decade ago terrestrial isopods were introduced as biornonitoring organisms for metals in industrially polluted environments. These characteristics are: suitable size, abundance, ease of handling in the laboratory, the ability to accumulate metals (Zn, Cd, Pb) and dose-dependent response to different metals and pesticides (diazinon). The isopod Porcellio scaber is a small terrestrial crab, which colonizes upper soil layers and litter. It lives in a humid environment, mostly under tree-leaves, decaying wood and bigger stones. It is an omnivore, but its most common food is decomposing organic matter. Therefore, isopods are important for decomposition and cycling of mineral matter in nature. Porcellio scaber can be also found on the river banks of river ldrijca a mercury contaminated site, but there is a lack of data on effects of Hg on Porcellio scaber. Therefore, it would be of interest to investigate the biological cycle of mercury in this animal. The objectives of our work were: To assess the magnitudes of biological processes (metal Hg 2+ ) uptake, its retention in the animal, accumulation in glands, excretion of Hg by faeces); To investigate the possibility of mercury transformation in the animal (Hg 2+→ MeHg + ). It is known, that intestine is a possible Hg 2+ methylation site; in the gut of Porcellio scaber are present anaerobes and very likely also sulphate-reducing bacteria, which are known to be responsible for Hg 2+ methylation in nature; To validate an appropriate analytical technique for Hg 2+ methylation assays in the isopod Porcellio scaber

  13. Methyl Mercury Exposure at Niigata, Japan: Results of Neurological Examinations of 103 Adults

    Directory of Open Access Journals (Sweden)

    Kimio Maruyama

    2012-01-01

    Full Text Available Background. Large-scale poisonings caused by methyl mercury (MeHg have occurred in Japan (Minamata in the 1950s and Niigata in the 1960s and Iraq (in the 1970s. The current WHO neurological risk standard for adult exposure (hair level: 50 μg/g was based partly on evidence from Niigata which did not consider any cases who were diagnosed later and/or exposed to low level of MeHg (hair mercury level less than 50 μg/g. Methods. Early in the Niigata epidemic in June 1965 there were two extensive surveys. From these two surveys, we examined 103 adults with hair mercury measurement who consulted two medical institutions. We compared the prevalence and the distribution of neurological signs related to MeHg poisoning between exposure categories. Result. We found 48 subjects with neurological signs related to MeHg poisoning who had hair mercury concentration less than 50 μg/g. Among the neurological signs, sensory disturbance of the bilateral distal extremities was observed more frequently, followed by disequilibrium, hearing impairment, and ataxia, in groups with hair MeHg concentration both below 50 μg/g and over 50 μg/g. Conclusion. The present study suggests the possibility that exposure to MeHg at levels below the current WHO limits could cause neurologic signs, in particular, sensory disturbance.

  14. Methyl mercury in terrestrial compartments

    International Nuclear Information System (INIS)

    Stoeppler, M.; Burow, M.; Padberg, S.; May, K.

    1993-09-01

    On the basis of the analytical methodology available at present the state of the art for the determination of total mercury and of various organometallic compounds of mercury in air, precipitation, limnic systems, soils, plants and biota is reviewed. This is followed by the presentation and discussion of examples for the data obtained hitherto for trace and ultratrace levels of total mercury and mainly methyl mercury in terrestrial and limnic environments as well as in biota. The data discussed stem predominantly from the past decade in which, due to significant methodological progress, many new aspects were elucidated. They include the most important results in this area achieved by the Research Centre (KFA) Juelich within the project 'Origin and Fate of Methyl Mercury' (contracts EV4V-0138-D and STEP-CT90-0057) supported by the Commission of the European Communities, Brussels. (orig.) [de

  15. Methyl mercury exposure in Swedish women with high fish consumption

    International Nuclear Information System (INIS)

    Bjoernberg, Karolin Ask; Vahter, Marie; Grawe, Kierstin Petersson; Berglund, Marika

    2005-01-01

    We studied the exposure to methyl mercury (MeHg) in 127 Swedish women of childbearing age with high consumption of various types of fish, using total mercury (T-Hg) in hair and MeHg in blood as biomarkers. Fish consumption was assessed using a food frequency questionnaire (FFQ), including detailed information about consumption of different fish species, reflecting average intake during 1 year. We also determined inorganic mercury (I-Hg) in blood, and selenium (Se) in serum. The average total fish consumption, as reported in the food frequency questionnaire, was approximately 4 times/week (range 1.6-19 times/week). Fish species potentially high in MeHg, included in the Swedish dietary advisories, was consumed by 79% of the women. About 10% consumed such species more than once a week, i.e., more than what is recommended. Other fish species potentially high in MeHg, not included in the Swedish dietary advisories, was consumed by 54% of the women. Eleven percent never consumed fish species potentially high in MeHg. T-Hg in hair (median 0.70 mg/kg; range 0.08-6.6 mg/kg) was associated with MeHg in blood (median 1.7 μg/L; range 0.30-14 μg/L; r s =0.78; p s =0.32; p s =0.37; p s =0.35; p=0.002, respectively). I-Hg in blood (median 0.24 μg/L; range 0.01-1.6 μg/L) increased with increasing number of dental amalgam fillings. We found no statistical significant associations between the various mercury species measured and the Se concentration in serum. Hair mercury levels exceeded the levels corresponding to the EPA reference dose (RfD) of 0.1 μg MeHg/kg b.w. per day in 20% of the women. Thus, there seems to be no margin of safety for neurodevelopmental effects in fetus, for women with high fish consumption unless they decrease their intake of certain fish species

  16. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    Science.gov (United States)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (pdetermined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of

  17. METHYL MERCURY PRODUCTION IN NATURAL-COLLECTED SEDIMENT WITH DIFFERENT GEOCHEMICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    Markus T. Lasut

    2010-06-01

    Full Text Available Production of methyl mercury (MeHg has been shown in laboratory experiments using mercuric chloride (HgCl2 compound released into natural-collected sediments with different geochemical conditions. While the HgCl2 concentration was 30 µl of 113 ppm of HgCl2, the geochemical conditions [pH, salinity, total organic content (TOC, sulfur] of sampled sediments were A: 8.20, 0.00 ppt, 1.97%, and 0.92 ppt, respectively; B: 7.90, 2.00 ppt, 4.69%, and 1.98 ppt, respectively; and C: 8.20, 24.00 ppt, 1.32 %, and 90.90 ppt, respectively. A control was set with no HgCl2. Samples and control were incubated in room temperature of 27 ± 1 °C. Observations were done along 9 days with interval of 3 days. While total Hg was measured using mercury analyzer with Cold Vapor-Atomic Absorbtion Spectrophometer (CV-AAS system, MeHg was measured by using a gas chromatograph with ECD detector after extracted by dithizone-sodium sulfide extraction method. The result shows that MeHg was found in both treatment and control experiments. The concentrations of the MeHg varied according to the geochemical condition of the sampled sediments. Peak production of MeHg occurred on the third day; however, the production was not significantly affected by the incubation time. Optimum production was found inversely related to the pH, in which highest and lowest the pH formed an ineffectively methylated mercury species. The TOC was significantly correlated to the optimum production. Salinity and sulfate contents were found not correlated to the optimum of MeHg production.   Keywords: Methyl mercury; methylation process; sediment; biogeochemistry

  18. Mercury methylation and bacterial activity associated to tropical phytoplankton

    International Nuclear Information System (INIS)

    Coelho-Souza, Sergio A.; Guimaraes, Jean R.D.; Mauro, Jane B.N.; Miranda, Marcio R.; Azevedo, Sandra M.F.O.

    2006-01-01

    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl- 203 Hg formation from added inorganic 203 Hg and 3 H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H 2 35 S produced from added Na 2 35 SO 4 . There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw -1 h -1 for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10 3 nmol gdw -1 h -1 at a concentration of 1000 nM leucine) and sulfate-reduction (∼21% H 2 35 S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected

  19. Mercury methylation and bacterial activity associated to tropical phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Souza, Sergio A. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Guimaraes, Jean R.D. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil)]. E-mail: jeanrdg@biof.ufrj.br; Mauro, Jane B.N. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Miranda, Marcio R. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Azevedo, Sandra M.F.O. [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, IBCCF/UFRJ, RJ (Brazil)

    2006-07-01

    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl-{sup 203}Hg formation from added inorganic {sup 203}Hg and {sup 3}H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H{sub 2} {sup 35}S produced from added Na{sub 2} {sup 35}SO{sub 4}. There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw{sup -1} h{sup -1} for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10{sup 3} nmol gdw{sup -1} h{sup -1} at a concentration of 1000 nM leucine) and sulfate-reduction ({approx}21% H{sub 2} {sup 35}S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected.

  20. Validation of methodology for determination of the mercury methylation potential in sediments using radiotracers

    International Nuclear Information System (INIS)

    Zizek, Suzana; Horvat, Milena; Ribeiro Guevara, Sergio

    2008-01-01

    Experiments to determine the mercury methylation potential were performed on sediments from two locations on the river Idrijca (Slovenia), differing in ambient mercury concentrations. The tracer used was the radioactive isotope 197 Hg. The benefit of using this tracer is its high specific activity, which enables spikes as low as 0.02 ng Hg 2+ g -1 of sample to be used. It was therefore possible to compare the efficiency of the methylation potential experiments over a range of spike concentrations from picogram to microgram levels. The first part of the work aimed to validate the experimental blanks and the second part consisted of several series of incubation experiments on two different river sediments using a range of tracer additions. The results showed high variability in the obtained methylation potentials. Increasing Hg 2+ additions gave a decrease in the percentage of the tracer methylated during incubation; in absolute terms, the spikes that spanned four orders of magnitude (0.019-190 pg g -1 of sediment slurry) resulted in MeHg formation between 0.01 and 0.1 ng MeHg g -1 in Podroteja and Kozarska Grapa. Higher spikes resulted in slightly elevated MeHg production (up to a maximum of 0.27 ng g -1 ). The values of methylation potential were similar in both sediments. The results imply that the experimental determination of mercury methylation potential strongly depends on the experimental setup itself and the amount of tracer added to the system under study. It is therefore recommended to use different concentrations of tracer and perform the experiments in several replicates. The amount of mercury available for methylation in nature is usually very small. Therefore, adding very low amounts of tracer in the methylation potential studies probably gives results that have a higher environmental relevance. It is also suggested to express the results obtained in absolute amounts of MeHg produced and not just as the percentage of the added tracer. (orig.)

  1. Validation of methodology for determination of the mercury methylation potential in sediments using radiotracers.

    Science.gov (United States)

    Zizek, Suzana; Ribeiro Guevara, Sergio; Horvat, Milena

    2008-04-01

    Experiments to determine the mercury methylation potential were performed on sediments from two locations on the river Idrijca (Slovenia), differing in ambient mercury concentrations. The tracer used was the radioactive isotope (197)Hg. The benefit of using this tracer is its high specific activity, which enables spikes as low as 0.02 ng Hg(2+) g(-1) of sample to be used. It was therefore possible to compare the efficiency of the methylation potential experiments over a range of spike concentrations from picogram to microgram levels. The first part of the work aimed to validate the experimental blanks and the second part consisted of several series of incubation experiments on two different river sediments using a range of tracer additions. The results showed high variability in the obtained methylation potentials. Increasing Hg(2+) additions gave a decrease in the percentage of the tracer methylated during incubation; in absolute terms, the spikes that spanned four orders of magnitude (0.019-190 pg g(-1) of sediment slurry) resulted in MeHg formation between 0.01 and 0.1 ng MeHg g(-1) in Podroteja and Kozarska Grapa. Higher spikes resulted in slightly elevated MeHg production (up to a maximum of 0.27 ng g(-1)). The values of methylation potential were similar in both sediments. The results imply that the experimental determination of mercury methylation potential strongly depends on the experimental setup itself and the amount of tracer added to the system under study. It is therefore recommended to use different concentrations of tracer and perform the experiments in several replicates. The amount of mercury available for methylation in nature is usually very small. Therefore, adding very low amounts of tracer in the methylation potential studies probably gives results that have a higher environmental relevance. It is also suggested to express the results obtained in absolute amounts of MeHg produced and not just as the percentage of the added tracer.

  2. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik, J.; Horvat, M.; Mandic, V.; Logar, M. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg{sup 2+}, Hg{sup 0}) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  3. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Science.gov (United States)

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  4. Total mercury and methyl-mercury contents and accumulation in polar microbial mats.

    Science.gov (United States)

    Camacho, Antonio; Rochera, Carlos; Hennebelle, Raphaëlle; Ferrari, Christophe; Quesada, Antonio

    2015-03-15

    Although polar regions are considered isolated and pristine areas, the organisms that inhabit these zones are exposed to global pollution. Heavy metals, such as mercury, are global pollutants and can reach almost any location on Earth. Mercury may come from natural, volcanic or geological sources, or result from anthropogenic sources, in particular industrial or mining activities. In this study, we have investigated one of the most prominent biological non-marine communities in both polar regions, microbial mats, in terms of their Hg and methyl-mercury (MeHg) concentrations and accumulation capacities. The main hypotheses posed argued on the importance of different factors, and to test them, we have measured Hg concentrations in microbial mats that were collected from 6 locations in different ecological situations. For this purpose, the direct anthropogenic impacts, volcanic influences, proximity to the seashore, latitudinal gradients and C contents were investigated. Our results show that, other than the direct anthropogenic influence, none of the other hypotheses alone satisfactorily explains the Hg content in microbial mats. In contrast, the MeHg contents were noticeably different between the investigated locations, with a higher proportion of MeHg on the McMurdo Ice Shelf (Antarctica) and a lower proportion on Ward Hunt Island (High Arctic). Furthermore, our results from in situ experiments indicated that the microbial mats from South Shetland Islands could quickly accumulate (48 h) Hg when Hg dissolved salts were supplied. Over short-term periods, these mats do not transform Hg into MeHg under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Investigating the Connection between hgcA and Mercury Methylation Rates in the Environment

    Science.gov (United States)

    King, A. J.; Christensen, G. A.; Wymore, A. M.; Podar, M.; Hurt, R. A., Jr.; Brown, S. D.; Palumbo, A. V.; Bender, K. S.; Fields, M. W.; Gilmour, C. C.; Santillan, E. F. U.; Brandt, C. C.; Elias, D. A.

    2015-12-01

    Methylmercury (MeHg) is a common contaminant in many natural environments and is known to be a neurotoxin that impacts human health through bioaccumulation in food webs. The anaerobic conversion of mercury (Hg) to MeHg by microorganisms requires the presence of both HgcA and HgcB. In an effort to link hgcAB abundance and diversity with MeHg generation rates, we performed metagenomic and 16S rRNA sequencing as well as qualitative polymerase chain reaction (qPCR) of hgcA on samples from eight mercury-contaminated sites ranging from tidal marshes to Arctic permafrost. Custom algorithms were developed to filter hgcA sequences from the metagenomes, and to then select for those lineages that also contained hgcB. In the metagenomes, the Deltaproteobacteria dominated the pool of hgcAB from all eight sites; however, Firmicutes and methanogenic Archaea were each 50% less abundant. In parallel to the metagenomics studies, clone libraries of hgcAB were constructed for each site. This more cost-effective approach allowed us to verify the identity of the hgcAB+ organism, and yielded similar results to the metagenomes. Additionally, to determine the accuracy of our new degenerate qPCR primer sets (three sets specific to the three major clades of mercury methylators) in the environment, qPCR hgcA abundance values were compared to those derived from the metagenomes. Finally, we present evidence that hgcA abundance can correlate with MeHg concentrations but that the relationship is influenced by local environmental conditions. Our work demonstrates the relative efficacy of genetic methods for assessing the presence of mercury-methylators in eight different environments contaminated with mercury as well as the strength of association between abundance of hgcA and the rate of mercury methylation.

  6. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America

    International Nuclear Information System (INIS)

    Hoggarth, Cameron G.J.; Hall, Britt D.; Mitchell, Carl P.J.

    2015-01-01

    Using enriched stable 201 Hg injections into intact sediment cores, we provide the first reported Hg methylation potential rate constants (k m ) in prairie wetland ponds (0.016–0.17 d −1 ). Our k m values were similar to other freshwater wetlands and did not differ in ponds categorized with high compared to low surface water concentrations of sulphate. Sites with high sulphate had higher proportions of methylmercury (MeHg) in sediment (2.9 ± 1.6% vs. 1.0 ± 0.3%) and higher surface water MeHg concentrations (1.96 ± 1.90 ng L −1 vs. 0.56 ± 0.55 ng L −1 ). Sediment-porewater partitioning coefficients were small, and likely due to high ionic activity. Our work suggests while k m measurements are useful for understanding mercury cycling processes, they are less important than surface water MeHg concentrations for assessing MeHg risks to biota. Significant differences in MeHg concentrations between sites with high and low sulphate concentrations may also inform management decisions concerning wetland remediation and creation. - Highlights: • Wetlands of the PPR provide many vital ecosystem services, but can have high MeHg concentrations. • Methylation potentials in prairie ponds are similar to other freshwater wetlands. • MeHg and %MeHg in surface water of high sulphate ponds was greater than low sulphate ponds. • Sediment-porewater partitioning coefficients were small compared to other systems. • Potential methylation rate constants did not correlate to surface water concentrations. - Prairie wetland ponds with higher sulphate concentrations have greater sediment and surface water methylmercury concentrations, but potential methylation rates do not differ

  7. Effects of damming on the distribution and methylation of mercury in Wujiang River, Southwest China.

    Science.gov (United States)

    Zhao, Lei; Guo, Yanna; Meng, Bo; Yao, Heng; Feng, Xinbin

    2017-10-01

    Newly built reservoirs are regarded as sensitive ecosystem for mercury (Hg) methylation. A comprehensive study was conducted to understand the influence of damming on the distribution and methylation of Hg within a river-reservoir ecosystem in Wujiang River Basin (WRB), Southwest China. Hg species in inflow-outflow rivers of six cascade reservoirs were analyzed each month during 2006. Mean concentrations of total Hg (THg) and methylmercury (MeHg) in river water in WRB were 3.41 ± 1.98 ng L -1 and 0.15 ± 0.06 ng L -1 , respectively. THg and particulate Hg (PHg) concentrations in outflow rivers of reservoirs significantly decreased after dam construction, suggesting that a considerable amount of PHg was intercepted by way of sedimentation. However, the influence of damming on the distributions of dissolved Hg (DHg) and reactive Hg (RHg) in rivers was less pronounced. MeHg concentrations in outflow rivers of the older reservoirs significantly increased compared to inflow rivers with the maximum increasing factor of 92%, indicating the active net Hg methylation in the reservoirs. However, the difference between MeHg in inflow rivers and outflow rivers were less pronounced in the newly constructed reservoirs, indicating that these reservoirs were not active sites of Hg methylation. The construction of the cascade reservoirs resulted in the elevation of MeHg in several sections of the Wujiang River, which attributed to the net Hg methylation in reservoirs and discharge of MeHg from hypolimnion. MeHg-enriched water in outflow rivers from hypolimnetic water could be transported to downstream, posing potential threat to the aquatic food web and human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cytochemical demonstration of mercury deposits in trout liver and kidney following methyl mercury intoxication: differentiation of two mercury pools by selenium

    DEFF Research Database (Denmark)

    Baatrup, E; Danscher, G

    1988-01-01

    and the selected organs were determined by measuring the uptake of 203Hg-labeled MeHg. Spleen, liver, and kidney had the highest concentrations after both experimental periods, while the largest relative increases were found in brain, muscle, and kidney. The subcellular distribution of mercury accumulations...... was demonstrated cytochemically in liver and kidney using the silver enhancement method by which accumulations of mercury-sulfides and/or mercury-selenides are made visible for light and electron microscopy. When sections prepared from the liver and kidney from fish, injected with selenium 2 hr prior to being...... pronounced in the kidney. The HgSe pool, supposed to represent methyl mercury, was shown by the presence of silver deposits at new locations as well as by an increase in the amount of deposits within lysosomes. The new locations included (1) secretory-like vesicles and the bile canaliculi of the liver...

  9. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Ikuo; Takahashi, Hitoshi (Kumamoto Univ. Medical School (Japan). Inst. for Medical Immunology)

    1992-01-01

    Degradation of methyl mercury (MeHg) and ethyl Hg (EtHg) with reactive oxygens was studied in vitro by using peroxidase-hydrogen peroxide (H{sub 2}O{sub 2})-halide and rose bengal-ultraviolet light A systems. For this purpose, the direct determination method for inorganic Hg was employed. Both systems could effectively degrade EtHg, and MeHg to some extent. Degradation of MeHg and EtHg with the myeloperoxidase (MPO)-H{sub 2}O{sub 2}-chloride system was inhibited by MPO inhibitors (cyanide and azide), catalase, hypochlorous acid (HOCl) scavengers (glycine, alanine, serine and taurine), 1,4-diazabicyclo(2,2,2)octane and 2,5-dimethylfuran, but not by hydroxyl radical scavengers (ethanol and mannitol). Iodide was more effective than chloride as the halide component. Lactoperoxidase (LPO) could substitute for MPO in the iodide, but not the chloride system. With MPO-H{sub 2}O{sub 2}-chloride, MPO-H{sub 2}O{sub 2}-iodide and LPO-H{sub 2}O{sub 2}-iodide systems, we observed the increased degradation of EtHg in deuterium oxide (D{sub 2}O) medium better than that in H{sub 2}O medium. The D{sub 2}O effect upon MeHg degradation was extremely weak. These results suggested that HOCl (or HOI) might be also capable of degrading MeHg and EtHg, besides the hydroxyl radical already reported by us. Singlet oxygen could degrade EtHg but not MeHg. (orig.).

  10. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer

    International Nuclear Information System (INIS)

    Ribeiro Guevara, Sergio; Perez Catan, Soledad; Zizek, Suzana; Repinc, Urska; Jacimovic, Radojko; Horvat, Milena

    2007-01-01

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H 2 SO 4 or HCl were evaluated in freshwater sediments using 197 Hg radiotracer. Values obtained for the 197 Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197 Hg 2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg 2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg 2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H 2 SO 4 method is recommended, since it is free from these interferences. 197 Hg radiotracer (T 1/2 = 2.673 d) has a production rate that is about 50 times higher than that of 203 Hg (T 1/2 46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203 Hg when it is used it in short-term experiments and produced by the irradiation of 196 Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196 Hg isotope is increased, the specific activity of the 197 Hg tracer can be significantly improved. In the present work, 197 Hg tracer was produced from mercury 51.58% enriched in the 196 Hg

  11. Development of a single-meal fish consumption advisory for methyl mercury

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, G.L.; Toal, B.F.

    2000-02-01

    Methyl mercury (meHg) contamination of fish is the leading cause of fish consumption advisories in the US. These advisories have focused upon repeated or chronic exposure, whereas risks during pregnancy may also exist from a single-meal exposure if the fish tissue concentration is high enough. In this study, acute exposure to meHg from a single fish meal was analyzed by using the one-compartment meHg biokinetic model to predict maternal hair concentrations. These concentrations were evaluated against the mercury hair concentration corresponding to the US Environmental Protection Agency's reference dose (RfD), which is intended to protect against neurodevelopmental effects. The one-compartment model was validated against blood concentrations from three datasets in which human subjects ingested meHg in fish, either as a single meal or multiple meals. Model simulations of the single-meal scenario at different fish meHg concentrations found that concentrations of 2.0 ppm or higher can be associated with maternal hair concentrations elevated above the RfD level for days to weeks during gestation. A single-meal fish concentration cutoff of {ge} 2.0 ppm is an important consideration, especially because this single high exposure event might be in addition to a baseline meHg body burden from other types of fish consumption. This type of single-meal advisory requires that fish sampling programs provide data for individual rather than composited fish, and take into account seasonal differences that may exist in fish concentrations.

  12. Validation of methodology for determination of the mercury methylation potential in sediments using radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, Suzana; Horvat, Milena [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia); Ribeiro Guevara, Sergio [Centro Atomico Bariloche, Laboratorio de Analisis por Activacion Neutronica, Bariloche (Argentina)

    2008-04-15

    Experiments to determine the mercury methylation potential were performed on sediments from two locations on the river Idrijca (Slovenia), differing in ambient mercury concentrations. The tracer used was the radioactive isotope {sup 197}Hg. The benefit of using this tracer is its high specific activity, which enables spikes as low as 0.02 ng Hg{sup 2+} g{sup -1} of sample to be used. It was therefore possible to compare the efficiency of the methylation potential experiments over a range of spike concentrations from picogram to microgram levels. The first part of the work aimed to validate the experimental blanks and the second part consisted of several series of incubation experiments on two different river sediments using a range of tracer additions. The results showed high variability in the obtained methylation potentials. Increasing Hg{sup 2+} additions gave a decrease in the percentage of the tracer methylated during incubation; in absolute terms, the spikes that spanned four orders of magnitude (0.019-190 pg g{sup -1} of sediment slurry) resulted in MeHg formation between 0.01 and 0.1 ng MeHg g{sup -1} in Podroteja and Kozarska Grapa. Higher spikes resulted in slightly elevated MeHg production (up to a maximum of 0.27 ng g{sup -1}). The values of methylation potential were similar in both sediments. The results imply that the experimental determination of mercury methylation potential strongly depends on the experimental setup itself and the amount of tracer added to the system under study. It is therefore recommended to use different concentrations of tracer and perform the experiments in several replicates. The amount of mercury available for methylation in nature is usually very small. Therefore, adding very low amounts of tracer in the methylation potential studies probably gives results that have a higher environmental relevance. It is also suggested to express the results obtained in absolute amounts of MeHg produced and not just as the percentage of

  13. Postnatal exposure to methyl mercury from fish consumption: a review and new data from the Seychelles Child Development Study.

    Science.gov (United States)

    Myers, Gary J; Thurston, Sally W; Pearson, Alexander T; Davidson, Philip W; Cox, Christopher; Shamlaye, Conrad F; Cernichiari, Elsa; Clarkson, Thomas W

    2009-05-01

    Fish is an important source of nutrition worldwide. Fish contain both the neurotoxin methyl mercury (MeHg) and nutrients important for brain development. The developing brain appears to be most sensitive to MeHg toxicity and mothers who consume fish during pregnancy expose their fetus prenatally. Although brain development is most dramatic during fetal life, it continues for years postnatally and additional exposure can occur when a mother breast feeds or the child consumes fish. This raises the possibility that MeHg might influence brain development after birth and thus adversely affect children's developmental outcomes. We reviewed postnatal MeHg exposure and the associations that have been published to determine the issues associated with it and then carried out a series of analyses involving alternative metrics of postnatal MeHg exposure in the Seychelles Child Development Study (SCDS) Main Cohort. The SCDS is a prospective longitudinal evaluation of prenatal MeHg exposure from fish consumption. The Main Cohort includes 779 subjects on whom recent postnatal exposure data were collected at the 6-, 19-, 29-, 66-, and 107-month evaluations. We examined the association of recent postnatal MeHg exposure with multiple 66- and 107-month outcomes and then used three types of alternative postnatal exposure metrics to examine their association with the children's intelligence quotient (IQ) at 107 months of age. Recent postnatal exposure at 107 months of age was adversely associated with four endpoints, three in females only. One alternative postnatal metric was beneficially associated with 9-year IQ in males only. We found several associations between postnatal MeHg biomarkers and children's developmental endpoints. However, as has been the case with prenatal MeHg exposure in the SCDS Main Cohort study, no consistent pattern of associations emerged to support a causal relationship.

  14. Methyl mercury bioaccumulation in long-finned eels, Anguilla dieffenbachii, from three rivers in Otago, New Zealand.

    Science.gov (United States)

    Redmayne, A C; Kim, J P; Closs, G P; Hunter, K A

    2000-10-30

    This research focuses on mercury (Hg) bioaccumulation in New Zealand long-tinned eels (Anguilla dieffenbachii) from the aquatic environment. Total Hg (HgT) and methyl mercury (MeHg) concentrations were determined in muscle tissue from eels living in three South Island rivers dominated respectively by urban, native bush and agricultural land-uses. Most of the Hg in eels was MeHg (> 84%) and the MeHg concentrations increased linearly with both length and eel age for a given river habitat. The annual growth rates for eels from the urban and agricultural streams were greater than for eels from the native bush stream. The average MeHg accumulation rate was significantly higher for the eels in the agricultural stream compared with either the urban or native bush catchments. These results are probably due to a combination of factors and further investigations in the lower food web are necessary to elucidate the exact mechanisms of MeHg bioaccumulation in these creatures.

  15. Preferential feeding on high quality diets decreases methyl mercury of farm-raised common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Schultz, Sebastian; Vallant, Birgit; Kainz, Martin J

    2012-03-29

    This study on aquaculture ponds investigated how diet sources affect methyl mercury (MeHg) bioaccumulation of the worldwide key diet fish, common carp ( Cyprinus carpio ). We tested how MeHg concentrations of one and two year-old pond-raised carp changed with different food quality: a) zooplankton (natural pond diet), b) cereals enriched with vegetable oil (VO ponds), and c) compound feeds enriched with marine fish oils (FO ponds). It was hypothesized that carp preferentially feed on supplementary diets with the highest biochemical quality (FO diet over VO diets over zooplankton). Although MeHg concentrations were highest in zooplankton of FO ponds, MeHg concentrations of carp were clearly lower in FO ponds (17-32 ng g - 1 dry weight) compared to the reference (40-46 ng g - 1 dry weight) and VO ponds (55-86 ng g - 1 dry weight). Stable isotope mixing models (δ 13 C, δ 15 N) indicated selective feeding of carp on high quality FO diets that caused MeHg concentrations of carp to decrease with increasing dietary proportions of supplementary FO feeds. Results demonstrate that carp selectively feed on diets of highest biochemical quality and strongly suggest that high diet quality can reduce MeHg bioaccumulation in farm-raised carp.

  16. Methyl mercury uptake across bovine brain capillary endothelial cells in vitro: The role of amino acids

    International Nuclear Information System (INIS)

    Aschner, M.; Clarkson, T.W.

    1989-01-01

    Previous studies in the rat in vivo have demonstrated that co-injection of methyl mercury (MeHg) with L-cysteine into the common carotid artery enhances brain Hg levels folowing a single capillary pass through the CNS vasculature. In order to elucidate the relationship between MeHg transport and the neutral amino acid transport carrier system, regulatory aspects of MeHg transport across the bovine blood-brain barrier were investigated in isolated brain microvessel preparations. Following 1 hour co-incubations of 203 Hg-MeHgCl with 0.1 mM L-cysteine at 37 deg. C, 203 Hg uptake by suspended microvessels was significantly increased (P 203 Hg was abolished by co-incubations of microvessels with 0.1 mM L-cysteine-L-methionine, or 0.1 mM L-cysteine plus AT-125 (alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazolacetic acid), an irreversible inhibitor of gamma-glutamyl-transpeptidase. One hr co-incubations of bovine capilaries with 203 Hg-MeHgCl and 0.1 mM D-cysteine at 37 deg. C or 0.1 mM L-cysteine at 0 deg. did not increase rat of 203 Hg uptake compared with controls. These results indicate that L-cysteine enhances the rate of capillary MeHg uptake. The accumulation of 203 Hg in the bovine microvessels appears to be a carrier-mediated process. It is inhibited by L-methionin, a competitive substrate for neutral amino acid transport, and by AT-125. Capillary uptake of 203 Hg is stereospecific to the L-enantiomorph of cystine, suggesting selective uptake of MeHg across the blood-brain barrier. The data emphasize the relationship between the L-enantiomorph neutral amino acid carrier system and MeHg transport across the capillaries. (author)

  17. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.

    Science.gov (United States)

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M; Chen, Hongmei; Lu, Xia; Zhang, Weihua; Lin, Hui; Yu, Han-Qing; Liang, Liyuan; Sheng, Guo-Ping; Gu, Baohua

    2017-01-01

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. We report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). These results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils

    International Nuclear Information System (INIS)

    Liu, Yu-Rong; Dong, Ji-Xin; Han, Li-Li; Zheng, Yuan-Ming; He, Ji-Zheng

    2016-01-01

    Currently, rice straw return in place of burning is becoming more intensive in China than observed previously. However, little is known on the effect of returned rice straw on mercury (Hg) methylation and microbial activity in contaminated paddy fields. Here, we conduct a microcosm experiment to evaluate the effect of rice straw amendment on the Hg methylation and potential nitrification in two paddy soils with distinct Hg levels. Our results show that amended rice straw enhanced Hg methylation for relatively high Hg content soil, but not for low Hg soil, spiking the same additional fresh Hg. methylmercury (MeHg) concentration was significantly correlated to the dissolved organic carbon (DOC) content and relative abundance of dominant microbes associated with Hg methylation. Similarly, amended rice straw was found to only enhance the potential nitrification rate in soil with relatively high Hg content. These findings provide evidence that amended rice straw differentially modulates Hg methylation and nitrification in Hg contaminated soils possibly resulting from different characteristics in the soil microbial community. This highlights that caution should be taken when returning rice straw to contaminated paddy fields, as this practice may increase the risk of more MeHg production. Main finding: Rice straw amendment enhanced both Hg methylation and nitrification potential in the relatively high, but not low, Hg soil. - Highlights: • Rice straw enhanced Hg methylation in relatively high Hg content paddy soils. • Microbial community directly correlated to the Hg methylation. • Mercury methylation in soils depend on Hg bioavailability and microbial activities. • Hg input affects microbial community associated with decomposition of rice straw.

  19. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    Science.gov (United States)

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  20. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region

    International Nuclear Information System (INIS)

    Oswald, Claire J.; Carey, Sean K.

    2016-01-01

    In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L −1 . The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L −1 ) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO 4 2− concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed. - Highlights: • A constructed fen peatland in the Athabasca Oil Sands Region was studied. • Total and methyl mercury concentrations in fen sediment and waters

  1. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.

  2. The cumulative MeHg and PCBs exposure and risk of tribal and US general population with SHEDS-multimedia

    Science.gov (United States)

    Studies have shown that the U.S. population continues to be exposed to methyl mercury (MeHg) and polychlorinated biphenyls (PCBs) due to the long half-life of those environmental contaminants. Fish intake of Tribal populations is much higher than the U.S. general population due t...

  3. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.

    Science.gov (United States)

    Huguet, L; Castelle, S; Schäfer, J; Blanc, G; Maury-Brachet, R; Reynouard, C; Jorand, F

    2010-02-15

    The Petit-Saut ecosystem is a hydroelectric reservoir covering 365km(2) of flooded tropical forest. This reservoir and the Sinnamary Estuary downstream of the dam are subject to significant mercury methylation. The mercury methylation potential of plankton and biofilm microorganisms/components from different depths in the anoxic reservoir water column and from two different sites along the estuary was assessed. For this, reservoir water and samples of epiphytic biofilms from the trunk of a submerged tree in the anoxic water column and from submerged branches in the estuary were batch-incubated from 1h to 3 months with a nominal 1000ng/L spike of Hg(II) chloride enriched in (199)Hg. Methylation rates were determined for different reservoir and estuarine communities under natural nutrient (reservoir water, estuary freshwater) and artificial nutrient (culture medium) conditions. Methylation rates in reservoir water incubations were the highest with plankton microorganisms sampled at -9.5m depth (0.5%/d) without addition of biofilm components. Mercury methylation rates of incubated biofilm components were strongly enhanced by nutrient addition. The results suggested that plankton microorganisms strongly contribute to the total Hg methylation in the Petit-Saut reservoir and in the Sinnamary Estuary. Moreover, specific methylation efficiencies (%Me(199)Hg(net)/cell) suggested that plankton microorganisms could be more efficient methylating actors than biofilm consortia and that their methylation efficiency may be reduced in the presence of biofilm components. Extrapolation to the reservoir scale of the experimentally determined preliminary methylation efficiencies suggested that plankton microorganisms in the anoxic water column could produce up to 27mol MeHg/year. Taking into account that (i) demethylation probably occurs in the reservoir and (ii) that the presence of biofilm components may limit the methylation efficiency of plankton microorganisms, this result is

  4. Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires.

    Science.gov (United States)

    Garcia, Edenise; Carignan, Richard; Lean, David R S

    2007-08-01

    We compared the effects of natural and anthropogenic watershed disturbances on methyl mercury (MeHg) concentration in bulk zooplankton from boreal Shield lakes. MeHg in zooplankton was monitored for three years in nine lakes impacted by deforestation, in nine lakes impacted by wildfire, and in twenty lakes with undisturbed catchments. Lakes were sampled during spring, mid- and late summer. MeHg in zooplankton showed a seasonal trend: concentrations were the lowest in spring, then peaked in mid-summer and decreased in late summer. Over the three study years, MeHg concentrations observed in mid-summer in zooplankton from forest harvested lakes were significantly higher than in reference and fire-impacted lakes, whereas differences between these two groups of lakes were not significant. The pattern of distribution of MeHg in zooplankton during the different seasons paralleled that of dissolved organic carbon (DOC), which is known as a vector of Hg from watershed soils to lake water. Besides DOC, MeHg in zooplankton also showed a positive significant correlation with epilimnetic temperature and sulfate concentrations. An inter-annual decreasing trend in MeHg was observed in zooplankton from reference and fire-impacted lakes. In forest harvested lakes, however, MeHg concentrations remained higher and nearly constant over three years following the impact. Overall these results indicate that the MeHg pulse observed in zooplankton following deforestation by harvesting is relatively long-lived, and may have repercussions to the accumulation of MeHg along the food chain. Therefore, potential effects of deforestation on the Hg contamination of fish should be taken into account in forest management practices.

  5. Does water-level fluctuation affect mercury methylation in wetland soils?

    Energy Technology Data Exchange (ETDEWEB)

    Branfireun, B.A.; Mitchell, C.P.J.; Iraci, J.M. [Toronto Univ., ON (Canada). Dept. of Geography; Krabbenhoft, D.P. [United States Geological Survey, Middleton, WI (United States); Fowle, D.A. [Kansas Univ., Lawrence, KS (United States). Dept. of Geology; Neudahl, L. [Minnesota Power, Duluth, MN (United States)

    2006-07-01

    Mercury (Hg) concentrations in fish vary considerably in freshwater lakes and reservoirs. However, the variations are not generally consistent with physical factors such as basin characteristics, wetland cover or lake chemistry. Pronounced differences in Hg concentrations in fish have been noted in the reservoirs of the St. Louis River system near Duluth Minnesota. The differences were observed between headwater reservoir systems with seasonal flooding and drawdown, and a peaking reservoir with approximately daily water level fluctuations during seasonal lower flow periods. It was suggested that these differences could be attributed to water level fluctuations in the reservoir which influenced the actual production of methylmercury (MeHg) in the surrounding wetland soils. In response to this hypothesis, the authors investigated the role of water level fluctuation in the production and mobilization of MeHg in sediments from wetlands that lie adjacent to a headwater reservoir, a peaking reservoir, and a nearby natural flowage lake used as a control. Preliminary field surveys of the wetland soils revealed that although the average MeHg concentrations in the headwater and peaking reservoir wetlands were not considerably different, both were much higher than the natural lake. Each site demonstrated high variability, but maximum MeHg concentrations ranged from 29.2 ng/g for the peaking reservoir to 4.44 ng/g at the natural lake. A laboratory experiment was therefore performed in which sediments from each wetland were subjected to different water level regimes. The purpose was to assess Hg methylation potential. Stable Hg isotopes were used at the beginning and end of the experiment. In order to determine if water level fluctuation can significantly change the methylation potential of wetland soils on its own, the microbial consortia will also be assessed during the laboratory experiment.

  6. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.

    Science.gov (United States)

    Ribeiro Guevara, Sergio; Zizek, Suzana; Repinc, Urska; Pérez Catán, Soledad; Jaćimović, Radojko; Horvat, Milena

    2007-03-01

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T1/2=2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T1/2=46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold

  7. Reducing surface water total and methyl mercury concentrations and bioavailability using a coagulation-wetland system

    Science.gov (United States)

    Kraus, T. E.; Fleck, J.; Henneberry, Y. K.; Stumpner, E. B.; Krabbenhoft, D. P.; Bachand, P.; Randall, P.

    2013-12-01

    With the recent passage of laws regulating concentrations and loads of mercury (Hg) in surface waters, there is a need to develop management practices that will reduce the export of Hg from both point and non-point sources. Coagulation with metal based salts to remove particles and dissolved organic matter (DOM) from solution is a practice commonly employed by drinking water utilities. Because dissolved Hg is associated with particles and DOM, it follows that Hg should also be removed during the coagulation process and end up associated with the organo-metal precipitate, termed flocculate (floc). The effectiveness of iron- and aluminum-based coagulants for removing both inorganic and methyl mercury (IHg and MeHg, respectively) from solution was demonstrated in laboratory studies conducted on agricultural drainage waters of the Sacramento-San Joaquin Delta: dissolved concentrations of MeHg decreased by 80% while IHg decreased by 97% following coagulation. To test the field application of this technology, samples were collected from the inflows and outflows of wetland treatment cells constructed in the central Delta of California. This replicated field experiment includes three replicates each of three inflow waters treatments: (1) iron sulfate addition, (2) polyaluminum chloride addition, and (3) untreated controls. Water entering and exiting the nine treatment cells was sampled approximately monthly over a 1-year period for total Hg and MeHg in both the dissolved and particulate aqueous phases. Initial results confirm that coagulant addition is removing Hg (total and methyl, particulate and dissolved) from solution and sequestering it in the floc. Seasonal effects on DOM concentration and other factors appear to effect whether passage through the wetland cells alters surface water dissolved organic carbon (DOC) and Hg concentrations. Related studies will examine whether the presence of the floc affects the production and fate of MeHg within the wetland cells. If

  8. Distribution and retention of organic and inorganic mercury in methyl mercury-treated neonatal rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Hall, L.L.; Mushak, P.

    1988-01-01

    Seven-day-old Long Evans rats received one mumol of 203 Hg-labeled methyl mercury/kg sc and whole body retention and tissue distribution of organic and inorganic mercury were examined for 32 days postdosing. Neonates cleared mercury slowly until 10 days postdosing when the clearance rate abruptly increased. During the interval when whole body clearance of mercury was extremely slow, methyl mercury was metabolized to inorganic mercury. Peak concentration of mercury in kidney occurred at 2 days postdosing. At 32 days postdosing, 8% of mercury in kidney was in an organic from. Liver mercury concentration peaked at 2 days postdosing and organic mercury accounted for 38% at 32 days postdosing. Brain concentrations of mercury peaked at 2 days postdosing. At 10 days postdosing, organic mercury accounted for 86% of the brain mercury burden, and, at 32 days postdosing, for 60%. The percentage of mercury body burden in pelt rose from 30 to 70% between 1 and 10 days postdosing. At 32 days postdosing pelt contained 85% of the body burden of mercury. At all time points, about 95% of mercury in pelt was in an organic form. Compartmental analysis of these data permitted development of a model to describe the distribution and excretion of organic and inorganic mercury in methyl mercury-treated neonatal rats

  9. Phytoremediation of Mercury- and Methyl Mercury-Contaminated Sediments by Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has the potential for implementation at Hg- (Hg) and methylHg (MeHg)-contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated forms...

  10. Microbial Community Response to Carbon Substrate Amendment in Mercury Impacted Sediments: Implications on Microbial Methylation of Mercury.

    Science.gov (United States)

    Elias, D. A.; Somenahally, A. C.; Moberly, J. G.; Hurt, R. A., Jr.; Brown, S. D.; Podar, M.; Palumbo, A. V.; Gilmour, C. C.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxic and bio-accumulative product of the microbial methylation of inorganic mercury (Hg(II)). Methylating organisms are now known to exist in almost all anaerobic niches including fermentation, Fe(III)- and sulfate- reduction as well as methanogenesis. The study objective was to determine the effect of different carbon sources on the microbial community and methylating populations in particular along a Hg contaminated creek. Sediment cores from upstream and downstream at the Hg contaminated East Fork Poplar Creek (EFPC), Oak Ridge TN, and a background site were sectioned by depth, and Hg-methylation potential (HgMP) assays were performed using stable isotope spikes. Sediments from the lowest depth possessed the highest in-situ activity. Replicate samples were amended with different carbon substrates (cellulose, acetate, propionate, lactate, ethanol and methanol), spiked with stable isotopes for HgMP assays and incubated for 24hrs. Sequencing of the 16S rRNA gene was performed to determine alterations in Bacterial and Archaeal population dynamics. Additionally, bioinformatics and our new qualitative and quantitative hgcAB primers were utilized to determine microbial community structure alterations and correlate organism and gene abundance with altered MeHg generation. HgMP was significantly reduced in cellulose amended sediments while acetate and propionate slightly decreased HgMP in both sites. Methanol, ethanol and lactate increased the HgMP in EFPC downstream while cellulose amendment significantly decreased the Proteobacteria, and the Firmicutes increased but none are currently known to produce MeHg. Geobacter bemidjiensis in particular significantly decreased in cellulose amended sediments in all three sites from being predominant in-situ. This suggests that in EFPC downstream and background sites, the prevalent Hg-methyaltors might be Deltaprotebacteria, since upstream, cellulose amendment did not reduce HgMP even though

  11. Essential versus potentially toxic dietary substances: A seasonal comparison of essential fatty acids and methyl mercury concentrations in the planktonic food web

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, Martin [Aquatic Ecosystem Management Research Division, National Water Research Institute, Environment Canada, 867 Lakeshore Road, P.O. Box 505, Burlington, ON L7R 4A6 (Canada)], E-mail: martin.kainz@donau-uni.ac.at; Arts, Michael T. [Water and Aquatic Sciences Research Program, University of Victoria, Department of Biology, P.O. Box 3020, Stn. CSC, Victoria, BC V8W 3N5 (Canada); Mazumder, Asit [Aquatic Ecosystem Management Research Division, National Water Research Institute, Environment Canada, 867 Lakeshore Road, P.O. Box 505, Burlington, ON L7R 4A6 (Canada)

    2008-09-15

    We investigated seasonal variability of essential fatty acids (EFA) and methyl mercury (MeHg) concentrations in four size categories of planktonic organisms in two coastal lakes. MeHg concentrations increased significantly with increasing plankton size and were independent of plankton taxonomy. However, total EFA increased from seston to mesozooplankton, but decreased in the cladoceran-dominated macrozooplankton size-class. Analysis of EFA patterns revealed that linoleic, alpha-linolenic, arachidonic, and eicosapentaenoic acids increased with increasing zooplankton size, but docosahexaenoic acid (DHA) in the cladoceran-dominated macrozooplankton was generally lower than in seston. This consistent pattern demonstrates that cladocerans, although bioaccumulating MeHg, convey less DHA than similar-sized copepods to their consumers. It is thus evident that fish consuming cladocerans have restricted access to DHA, yet unrestricted dietary access to MeHg. Thus, the structure of planktonic food webs clearly affects the composition of EFA and regulates dietary supply of these essential nutrients, while MeHg bioaccumulates with increasing zooplankton size. - The structure of planktonic food webs largely regulates the composition and dietary supply of essential fatty acids, while MeHg bioaccumulates with zooplankton size.

  12. Essential versus potentially toxic dietary substances: A seasonal comparison of essential fatty acids and methyl mercury concentrations in the planktonic food web

    International Nuclear Information System (INIS)

    Kainz, Martin; Arts, Michael T.; Mazumder, Asit

    2008-01-01

    We investigated seasonal variability of essential fatty acids (EFA) and methyl mercury (MeHg) concentrations in four size categories of planktonic organisms in two coastal lakes. MeHg concentrations increased significantly with increasing plankton size and were independent of plankton taxonomy. However, total EFA increased from seston to mesozooplankton, but decreased in the cladoceran-dominated macrozooplankton size-class. Analysis of EFA patterns revealed that linoleic, alpha-linolenic, arachidonic, and eicosapentaenoic acids increased with increasing zooplankton size, but docosahexaenoic acid (DHA) in the cladoceran-dominated macrozooplankton was generally lower than in seston. This consistent pattern demonstrates that cladocerans, although bioaccumulating MeHg, convey less DHA than similar-sized copepods to their consumers. It is thus evident that fish consuming cladocerans have restricted access to DHA, yet unrestricted dietary access to MeHg. Thus, the structure of planktonic food webs clearly affects the composition of EFA and regulates dietary supply of these essential nutrients, while MeHg bioaccumulates with increasing zooplankton size. - The structure of planktonic food webs largely regulates the composition and dietary supply of essential fatty acids, while MeHg bioaccumulates with zooplankton size

  13. Novel methodology for the study of mercury methylation and reduction in sediments and water using {sup 197}Hg radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Guevara, Sergio; Perez Catan, Soledad [Centro Atomico Bariloche, Laboratorio de Analisis por Activacion Neutronica, Bariloche (Argentina); Zizek, Suzana; Repinc, Urska; Jacimovic, Radojko; Horvat, Milena [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2007-03-15

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H{sub 2}SO{sub 4} or HCl were evaluated in freshwater sediments using {sup 197}Hg radiotracer. Values obtained for the {sup 197}Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of {sup 197}Hg{sup 2+} into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg{sup 2+} contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg{sup 2+} contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H{sub 2}SO{sub 4} method is recommended, since it is free from these interferences. {sup 197}Hg radiotracer (T{sub 1/2} = 2.673 d) has a production rate that is about 50 times higher than that of {sup 203}Hg (T{sub 1/2} = 46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to {sup 203}Hg when it is used it in short-term experiments and produced by the irradiation of {sup 196}Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the {sup 196}Hg isotope is increased, the specific activity of the {sup 197}Hg tracer can be significantly improved. In

  14. Age standardized cancer mortality ratios in areas heavily exposed to methyl mercury.

    Science.gov (United States)

    Yorifuji, Takashi; Tsuda, Toshihide; Kawakami, Norito

    2007-08-01

    Methyl-mercury (MeHg) was discharged from a chemical factory in Minamata, and consequently spread throughout the Shiranui Sea in Kumamoto, Japan. Although many studies have focused on MeHg-induced neurological disorders, the association between MeHg and malignant neoplasms has not been adequately investigated. Therefore, we explored this association using the age standardized mortality ratio (ASMR) in an ecologic study over a wide area allowing for a long empirical induction period. The subjects were residents in areas around the Shiranui Sea. We divided these areas into exposure groups 1 (Minamata and Ashikita regions) and 2 (Amakusa region). Exposure group 1 was contaminated from the late 1930s, and exposure group 2 was contaminated from the late 1950s. In addition, exposure group 1 was contaminated more heavily than exposure group 2. There were 92,525 and 152,541 residents in each group in 1960, respectively. We analyzed the cancer ASMR in both exposure groups using data from two reference populations (Japan and Kumamoto prefecture) from 1961 to 1997. There were 94,301,494 and 1,856,192 people in each reference group in 1960, respectively. We abstracted population and mortality data from the censuses and the vital statistics of the prefecture and Japan. An increased leukemia ASMR and a decreased gastric cancer ASMR were observed in both exposure groups, while other ASMRs were around unity and less precise. Furthermore, the leukemia ASMRs were elevated differently between the two exposure groups: the leukemia ASMR was already elevated early in the study period in exposure group 1 and increased gradually in exposure group 2. While the negative association between MeHg and gastric cancer might be explained by salt intake, the positive association between MeHg and leukemia could not be explained by potential confounders. Despite some limitations mainly due to its ecologic design, this study indicates the necessity of an individual-level study evaluating the

  15. Prenatal methyl mercury exposure in relation to neurodevelopment and behavior at 19 years of age in the Seychelles Child Development Study.

    Science.gov (United States)

    van Wijngaarden, E; Thurston, S W; Myers, G J; Strain, J J; Weiss, B; Zarcone, T; Watson, G E; Zareba, G; McSorley, E M; Mulhern, M S; Yeates, A J; Henderson, J; Gedeon, J; Shamlaye, C F; Davidson, P W

    2013-01-01

    Fish are important sources of protein and contain a variety of nutrients, such as n-3 long-chain polyunsaturated fatty acids (PUFA), essential for normal brain development. Nevertheless, all fish also contain methyl mercury (MeHg), a known neurotoxicant in adequate dosage. Our studies of the Seychelles Child Development Study (SCDS) Main Cohort enrolled in 1989-1990 (n=779) have found no consistent pattern of adverse MeHg effects at exposures achieved by daily fish consumption. Rather, we have observed evidence of improved performance on some cognitive endpoints as prenatal MeHg exposure increases in the range studied. These observations cannot be related to MeHg and may reflect the role of unmeasured covariates such as essential nutrients present in fish. To determine if these associations persist into young adulthood, we examined the relationship between prenatal MeHg exposure, recent PUFA exposure and subjects' neurodevelopment and behavior at 19 years of age. We examined 533 participants using the following test battery: the Profile of Mood States-Bipolar (POMS-Bi); Finger Tapping; Kaufman Brief Intelligence Test (K-BIT); measures of Fine Motor Control and Complex Perceptual Motor Control; and Visual Spatial Contrast Sensitivity. We collected the following covariates: maternal IQ, family life course stressors, socioeconomic status, and subjects' recent postnatal MeHg, sex, and computer use. Primary analyses (based on N=392-475) examined covariate-adjusted associations in multiple linear regression models with prenatal MeHg as the primary exposure measure. Secondary analyses additionally adjusted for total n-6 and fish-related n-3 PUFA measured in the subjects' serum at the 19-year examination. Study participants had a mean prenatal MeHg exposure of 6.9 ppm, and a mean recent postnatal exposure of 10.3 ppm. There were no adverse associations between prenatal MeHg and any of the measured endpoints. For recent postnatal MeHg exposure, however, adverse associations

  16. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Karaman, Isa; Soylak, Mustafa

    2009-01-01

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L -1 HCl for methyl mercury and 2 mol L -1 HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g -1 . The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L -1 . Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  17. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa, E-mail: m.tuzen@gmail.com [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Uluozlu, Ozgur Dogan [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Karaman, Isa [Gaziosmanpasa University, Faculty of Science and Arts, Biology Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)

    2009-09-30

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L{sup -1} HCl for methyl mercury and 2 mol L{sup -1} HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g{sup -1}. The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L{sup -1}. Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  18. The influence of permanently submerged macrophytes on sediment mercury distribution, mobility and methylation potential in a brackish Norwegian fjord.

    Science.gov (United States)

    Olsen, Marianne; Schaanning, Morten Thorne; Braaten, Hans Fredrik Veiteberg; Eek, Espen; Moy, Frithjof E; Lydersen, Espen

    2018-01-01

    Macrophytes are shown to affect the microbial activity in different aqueous environments, with an altering of the sediment cycling of mercury (Hg) as a potential effect. Here, we investigated how a meadow with permanently submerged macrophytes in a contaminated brackish fjord in southern Norway influenced the conditions for sulfate reducing microbial activity, the methyl-Hg (MeHg) production and the availability of MeHg. Historically discharged Hg from a chlor-alkali plant (60-80tons, 1947-1987) was evident through high Hg concentrations (491mgTot-Hgkg -1 , 268μgMeHgkg -1 ) in intermediate sediment depths (10-20cm) outside of the meadow, with reduced concentrations within the meadow. Natural recovery of the fjord was revealed by lower sediment surface concentrations (1.9-15.5mgTot-Hgkg -1 , 1.3-3.2μgMeHgkg -1 ). Within the meadow, vertical gradients of sediment hydrogen sulfide (H 2 S) E h and pH suggested microbial sulfate reduction in 2-5cm depths, coinciding with peak values of relative MeHg levels (0.5% MeHg). We assume that MeHg production rates was stimulated by the supply and availability of organic carbon, microbial activity and a sulfide oxidizing agent (e.g. O 2 ) within the rhizosphere. Following this, % MeHg in sediment (0-5cm) within the meadow was approximately 10× higher compared to outside the meadow. Further, enhanced availability of MeHg within the meadow was demonstrated by significantly higher fluxes (p<0.01) from sediment to overlying water (0.1-0.6ngm -2 d -1 ) compared to sediment without macrophytes (0.02-0.2ngm -2 d -1 ). Considering the productivity and species richness typical for such habitats, submerged macrophyte meadows located within legacy Hg contaminated sediment sites may constitute important entry points for MeHg into food webs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    Science.gov (United States)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid

  20. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada)

    International Nuclear Information System (INIS)

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-01-01

    Wetlands in large rivers are important sites of production of the neurotoxin methylmercury (MeHg), and the periphyton growing on wetland macrophytes are increasingly recognized as key players in this production and transfer in food webs. Information is lacking about mercury methylation (K m ) and demethylation (K d ) rates in periphytic biofilms from the Northern Hemisphere, as well as about the drivers of net MeHg production, hampering ecosystem modeling of Hg cycling. Mercury methylation and demethylation rates were measured in periphytic biofilms growing on submerged plants in a shallow fluvial lake located in a temperate cold region (St. Lawrence River, Quebec, Canada). Incubations were performed in situ within macrophyte beds using low-level spikes of 199 HgO and Me 200 Hg stable isotopes as tracers. A direct relationship was observed between K m (0.002 to 0.137 d −1 ) and [MeHg] in periphyton. A similar relationship was found between K d (0.096 to 0.334 d −1 ) and [inorganic Hg]. Periphyton of Lake St. Pierre reached high levels of net MeHg production that were two orders of magnitude higher than those found in local sediment. This production varied through the plant growing season and was mainly driven by environmental variables such as depth of growth, available light, dissolved oxygen, temperature, plant community structure, and productivity of the habitat. - Highlights: • Periphyton Hg methylation and demethylation were studied in a large fluvial lake. • Addition of stable Hg isotopes was used to obtain in situ rates for these processes. • Net methylation was higher in periphyton than in local sediments. • Methylation and demethylation rates fluctuated during the summer. • Key drivers of rates were depth, light, temperature, and community structure

  1. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, Stéphanie; Planas, Dolors [GRIL, Département de sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8 (Canada); Amyot, Marc [GRIL, Département de sciences biologiques, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7 (Canada)

    2015-04-15

    Wetlands in large rivers are important sites of production of the neurotoxin methylmercury (MeHg), and the periphyton growing on wetland macrophytes are increasingly recognized as key players in this production and transfer in food webs. Information is lacking about mercury methylation (K{sub m}) and demethylation (K{sub d}) rates in periphytic biofilms from the Northern Hemisphere, as well as about the drivers of net MeHg production, hampering ecosystem modeling of Hg cycling. Mercury methylation and demethylation rates were measured in periphytic biofilms growing on submerged plants in a shallow fluvial lake located in a temperate cold region (St. Lawrence River, Quebec, Canada). Incubations were performed in situ within macrophyte beds using low-level spikes of {sup 199}HgO and Me{sup 200}Hg stable isotopes as tracers. A direct relationship was observed between K{sub m} (0.002 to 0.137 d{sup −1}) and [MeHg] in periphyton. A similar relationship was found between K{sub d} (0.096 to 0.334 d{sup −1}) and [inorganic Hg]. Periphyton of Lake St. Pierre reached high levels of net MeHg production that were two orders of magnitude higher than those found in local sediment. This production varied through the plant growing season and was mainly driven by environmental variables such as depth of growth, available light, dissolved oxygen, temperature, plant community structure, and productivity of the habitat. - Highlights: • Periphyton Hg methylation and demethylation were studied in a large fluvial lake. • Addition of stable Hg isotopes was used to obtain in situ rates for these processes. • Net methylation was higher in periphyton than in local sediments. • Methylation and demethylation rates fluctuated during the summer. • Key drivers of rates were depth, light, temperature, and community structure.

  2. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments

    International Nuclear Information System (INIS)

    Zhong Huan; Wang Wenxiong

    2009-01-01

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments. - Mercury-particle sorption was more important than mercury-organic matter and organic matter-particle sorption in controlling the partitioning of Hg or MeHg in sediments

  3. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Huan [Atmospheric, Marine and Coastal Environment Program and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong [Atmospheric, Marine and Coastal Environment Program and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)], E-mail: wwang@ust.hk

    2009-03-15

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments. - Mercury-particle sorption was more important than mercury-organic matter and organic matter-particle sorption in controlling the partitioning of Hg or MeHg in sediments.

  4. Effect of Gestational Intake of Fisetin (3,3',4',7-Tetrahydroxyflavone) on Developmental Methyl Mercury Neurotoxicity in F1 Generation Rats.

    Science.gov (United States)

    Jacob, Sherin; Thangarajan, Sumathi

    2017-06-01

    Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F 1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F 1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F 1 generation rats.

  5. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  6. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000.

    Science.gov (United States)

    Sunderland, Elsie M; Dalziel, John; Heyes, Andrew; Branfireun, Brian A; Krabbenhoft, David P; Gobas, Frank A P C

    2010-03-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost 40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast, MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs.

  7. Practical isolation of methyl mercury in natural waters

    International Nuclear Information System (INIS)

    Schintu, M.; Kauri, T.; Contu, A.; Kudo, A.

    1987-01-01

    A simple method to isolate both organic and inorganic mercury in natural waters is described. The mercuric compounds were quantitatively extracted with dithizone from six different kinds of water spiked at nanogram levels with radioactive mercuric chloride and methylmercuric chloride. After the separation from the inorganic mercury with sodium nitrite, methyl mercury was transferred to aqueous medium with sodium thiosulfate. The method provides a high recovery of organic as well as inorganic mercury to an aqueous medium, prior to their determination by gold-trap cold vapor atomic absorption spectrophotometry. This method is easy, rapid, and inexpensive. Furthermore, the limited number of analytical steps should reduce loss and contamination

  8. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  9. Methyl mercury concentrations in macroinvertebrates and fish from burned and undisturbed lakes on the Boreal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Prepas, E.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Lakehead Univ., Thunder Bay, ON (Canada). Faculty of Forest and the Forest Environment; Gabos, S.; Zhang, W. [Alberta Health and Wellness, Edmonton, AB (Canada); Strachan, W.M.J. [Environment Canada, Burlington, ON (Canada). National Water Research Inst.

    2005-09-01

    Methylmercury (MeHg) concentrations in macroinvertebrates and fish from 5 lakes in burned catchments in Alberta's Swan Hills region were compared with those from 5 reference lakes on the western Canadian Boreal Plain. The objective was to determine the effect of forest fire on the bioaccumulation of MeHg, a toxic pollutant. It was noted that lakes near the Alberta Special Waste Treatment Centre (ASWTC) have fish consumption advisories due to high mercury concentrations. In a separate comparison, MeHg concentrations in biota from a single lake were compared before and after a forest fire interrupted a prescribed timber harvest experiment. The affect of lake water chemistry, watershed characteristics, and trophic ecology on the bioaccumulation and biomagnification of MeHg in littoral food webs was also examined. The study area covered 2 ecoregions, the Boreal Foothills and the Boreal Mixedwood. Two years after the fire, MeHg concentrations in 5 of 6 aquatic taxa did not differ between burned and reference drainage basins in the Swan Hills. These results were in agreement with previous studies. Biomagnification of MeHg was negatively correlated with lake water chlorophyll 'a' concentration. Ecoregional variation in water chemistry seemed to influence MeHg concentrations in aquatic biota, which eluded comparisons of MeHg bioaccumulation between burned and reference drainage basins. MeHg concentrations in biota were negatively correlated with lake water pH, as well as with total phosphorous and dominant cation concentrations, all of which were higher in Mixedwood than in Foothills lakes. It was concluded that in the short-term, fire may lower MeHg concentrations in aquatic biota in a nutrient-rich setting by inducing an increase in lake productivity that dilutes MeHg at the base of the food web. 42 refs., 5 tabs., 7 figs.

  10. Selenium-mercury relationships in Idaho lake fish versus Northeastern USA lake fish

    Science.gov (United States)

    Methyl-mercury (MeHg) exposure to wildlife and humans occurs primarily through the foodweb, notably fish consumption. Selenium moderates the toxicity of MeHg in all animal models that utilize selenoenzymatic protein synthesis, as do humans. A Se:Hg molar ratio of <1:1 appears to...

  11. Contribution of suspended particulate matter and zooplankton to MeHg contamination of the food chain in mid-northern Quebec (Canada) reservoirs

    International Nuclear Information System (INIS)

    Plourde, Y.; Lucotte, M.; Pichet, P.

    1997-01-01

    The high increase in mercury (Hg) concentrations in fish following the creation of hydroelectric reservoirs was discussed. Flooded forest soils are a major source of mercury contamination of fish after impoundment. Flooding stimulates bacterial activity in the humic horizon of soils and results in the transformation of inorganic mercury into methyl mercury (MeHg), the most toxic form of mercury. The reservoirs of the La Grande hydroelectric complex at James Bay in northern Quebec were sampled and compared to neighbouring natural lakes. Sampling was carried out in 1992 during June, August and September. Results of the analysis revealed an increase in the MeHg concentrations in zooplankton and suspended particulate matter (SPM); mean concentrations were about 5 times higher in the reservoirs than in neighbouring lakes. Although the process is not well understood, it is believed that the MeHg is transferred up the food chain which accounts, in part, for MeHg contamination of fishes. 45 refs., 9 figs

  12. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    Science.gov (United States)

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy.

    Science.gov (United States)

    Wells, Ellen M; Herbstman, Julie B; Lin, Yu Hong; Hibbeln, Joseph R; Halden, Rolf U; Witter, Frank R; Goldman, Lynn R

    2017-04-01

    Prior studies addressing associations between mercury and blood pressure have produced inconsistent findings; some of this may result from measuring total instead of speciated mercury. This cross-sectional study of 263 pregnant women assessed total mercury, speciated mercury, selenium, and n-3 polyunsaturated fatty acids in umbilical cord blood and blood pressure during labor and delivery. Models with a) total mercury or b) methyl and inorganic mercury were evaluated. Regression models adjusted for maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity, smoking, n-3 fatty acids and selenium. Geometric mean total, methyl, and inorganic mercury concentrations were 1.40µg/L (95% confidence interval: 1.29, 1.52); 0.95µg/L (0.84, 1.07); and 0.13µg/L (0.10, 0.17), respectively. Elevated systolic BP, diastolic BP, and pulse pressure were found, respectively, in 11.4%, 6.8%, and 19.8% of mothers. In adjusted multivariable models, a one-tertile increase of methyl mercury was associated with 2.83mmHg (0.17, 5.50) higher systolic blood pressure and 2.99mmHg (0.91, 5.08) higher pulse pressure. In the same models, an increase of one tertile of inorganic mercury was associated with -1.18mmHg (-3.72, 1.35) lower systolic blood pressure and -2.51mmHg (-4.49, -0.53) lower pulse pressure. No associations were observed with diastolic pressure. There was a non-significant trend of higher total mercury with higher systolic blood pressure. We observed a significant association of higher methyl mercury with higher systolic and pulse pressure, yet higher inorganic mercury was significantly associated with lower pulse pressure. These results should be confirmed with larger, longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Chuu, Jiunn-Jye; Huang, Zih-Ning; Yu, Hsun-Hsin; Chang, Liang-Hao [College of Engineering, Southern Taiwan University, Institute of Biotechnology, Tainan (China); Lin-Shiau, Shoei-Yn [College of Medicine, National Taiwan University, Institute of Pharmacology, Taipei (China)

    2008-06-15

    This study is aimed at exploring the possible mechanism of hypnosis-enhancing effect of HgS or cinnabar (a traditional Chinese medicine containing more than 95% HgS) in mice treated with pentobarbital. We also examined whether the effect of HgS is different from that of the well-known methyl mercury (MeHg). After a short period (7 days) of oral administration to mice, a nontoxic dose (0.1 g/kg) of HgS not only significantly enhanced pentobarbital-induced hypnosis but also attenuated tolerance induction; while a higher dose (1 g/kg) of HgS or cinnabar exerted an almost irreversible enhancing effect on pentobarbital-hypnosis similar to that of MeHg (2 mg/kg) tested, which was still effective even after 10 or 35 days cessation of administration. To study comparatively the effects of different mercury forms from oral administration of MeHg and HgS on membrane ATPase activities of experimental mice, analysis of the Hg content in the cerebral cortex revealed that correlated with the decrease of Na{sup +}/K{sup +}-ATPase and Ca{sup 2+}-ATPase activities. Furthermore, NO levels of blood but not that of cerebral cortex were also decreased by mercuric compounds. Although pentobarbital alone enhanced cytochrome p450-2C9 in time dependent manner, all of mercurial compounds tested had no such effect. All of these findings indicated that the mercurial compounds including cinnabar, HgS and MeHg exert a long-lasting enhancing hypnotic activity without affecting pentobarbital metabolism, which provides evidence-based sedative effect of cinnabar used in Chinese traditional medicine for more than 2,000 years. The nontoxic HgS dosing (0.1 g/kg/day) for consecutive 7 days is perhaps useful for delaying or preventing pentobarbital-tolerance. (orig.)

  15. [Effects of Citric Acid on Activation and Methylation of Mercury in the Soils of Water-Level-Fluctuating Zone of the Three Gorges.Reservoir].

    Science.gov (United States)

    Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong

    2015-12-01

    To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid.

  16. Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study.

    Science.gov (United States)

    Strain, J J; Davidson, Philip W; Bonham, Maxine P; Duffy, Emeir M; Stokes-Riner, Abbie; Thurston, Sally W; Wallace, Julie M W; Robson, Paula J; Shamlaye, Conrad F; Georger, Lesley A; Sloane-Reeves, Jean; Cernichiari, Elsa; Canfield, Richard L; Cox, Christopher; Huang, Li Shan; Janciuras, Joanne; Myers, Gary J; Clarkson, Thomas W

    2008-09-01

    Fish consumption during gestation can provide the fetus with long-chain polyunsaturated fatty acids (LCPUFA) and other nutrients essential for growth and development of the brain. However, fish consumption also exposes the fetus to the neurotoxicant, methyl mercury (MeHg). We studied the association between these fetal exposures and early child development in the Seychelles Child Development Nutrition Study (SCDNS). Specifically, we examined a priori models of Omega-3 and Omega-6 LCPUFA measures in maternal serum to test the hypothesis that these LCPUFA families before or after adjusting for prenatal MeHg exposure would reveal associations with child development assessed by the BSID-II at ages 9 and 30 months. There were 229 children with complete outcome and covariate data available for analysis. At 9 months, the PDI was positively associated with total Omega-3 LCPUFA and negatively associated with the ratio of Omega-6/Omega-3 LCPUFA. These associations were stronger in models adjusted for prenatal MeHg exposure. Secondary models suggested that the MeHg effect at 9 months varied by the ratio of Omega-6/Omega-3 LCPUFA. There were no significant associations between LCPUFA measures and the PDI at 30 months. There were significant adverse associations, however, between prenatal MeHg and the 30-month PDI when the LCPUFA measures were included in the regression analysis. The BSID-II mental developmental index (MDI) was not associated with any exposure variable. These data support the potential importance to child development of prenatal availability of Omega-3 LCPUFA present in fish and of LCPUFA in the overall diet. Furthermore, they indicate that the beneficial effects of LCPUFA can obscure the determination of adverse effects of prenatal MeHg exposure in longitudinal observational studies.

  17. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA

    Science.gov (United States)

    Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.

    2013-12-01

    Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish

  18. Effects of stream water chemistry and tree species on release and methylation of mercury during litter decomposition.

    Science.gov (United States)

    Tsui, Martin Tsz Ki; Finlay, Jacques C; Nater, Edward A

    2008-12-01

    Foliage of terrestrial plants provides an important energy and nutrient source to aquatic ecosystems but also represents a potential source of contaminants, such as mercury (Hg). In this study, we examined how different stream water types and terrestrial tree species influenced the release of Hg from senesced litter to the water and its subsequent methylation during hypoxic litter decomposition. After laboratory incubations of maple leaf litter for 66 days, we observed 10-fold differences in dissolved Hg (DHg, tree species collected at the same site and incubated with the same source water, litter from slower decomposing species (e.g., cedar and pine) yielded higher DHg concentrations than those with more labile carbon (e.g., maple and birch). Percent MeHg, however, was relatively similar among different leaf species (i.e., 61-86%). Our study is the first to demonstrate that stream water chemistry and terrestrial plant litter characteristics are important factors determining Hg release and methylation during hypoxic litter decomposition. These results suggest that certain watershed and aquatic ecosystem properties can determine the levels of MeHg inputs during litterfall events.

  19. Accumulation of Mercury (Hg) and Methyl Mercury (Me Hg) Concentrations In Selected Marine Biota From Manjung Coastal Area

    International Nuclear Information System (INIS)

    Anisa Abdullah; Zaini Hamzah; Ahmad Saat; Ahmad Saat; Abd Khalik Wood; Masitah Alias

    2015-01-01

    Level of mercury (Hg) and methyl mercury (Me Hg) in marine ecosystem has been intensively studied as these toxic substances could be accumulated in the marine biota. This study is focusing on the Hg and Me Hg content in marine biota in Manjung coastal area. This area has high potential being affected by rapid socio-economic development of Manjung area such as heavy industrial activities (coal fired power plant, iron foundries, port development and factories), agricultural runoff, waste and toxic discharge, quarries, housing constructions. It may has a potential risk when released into the atmosphere and dispersed on the surface of water and continue deposited at the bottom of the water and sediment and being absorbed by marine biota. The concentrations of Hg and Me Hg in marine ecosystem can be adversely affect human health when it enters the food chain. In this study, five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using inductively coupled plasma mass spectrometry (ICP-MS) technique. The Hg concentrations for dry and rainy season are in the range 65.13-102.12 μg/ kg and 75.75-106.10 μg/ kg respectively, while for MeHg concentrations for dry and rainy seasons are in the range 4.35-6.26 μg/ kg and 5.42-6.46 μg/ kg, respectively. These results are below the limit set by Malaysia Food Act (1983). Generally, marine biota from the Manjung coastal area is safe to consume due to low value of ingestion dose rate and health risk index (HRI) for human health. (author)

  20. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Orihel, Diane M. [Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada)], E-mail: orihel@ualberta.ca; Paterson, Michael J.; Blanchfield, Paul J.; Bodaly, R.A. [Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada); Gilmour, Cynthia C. [Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 (United States); Hintelmann, Holger [Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8 (Canada)

    2008-07-15

    Our objective was to examine how the behavior of atmospheric mercury (Hg) deposited to boreal lake mesocosms changed over time. We added inorganic Hg enriched in a different stable isotope in each of two years, which allowed us to differentiate between Hg added in the first and second year. Although inorganic Hg and methylmercury (MeHg) continued to accumulate in sediments throughout the experiment, the availability of MeHg to the food web declined within one year. This decrease was detected in periphyton, zooplankton, and water mites, but not in gomphid larvae, amphipods, or fish. We suggest that reductions in atmospheric Hg deposition should lead to decreases in MeHg concentrations in biota, but that changes will be more easily detected in short-lived pelagic species than long-lived species associated with benthic food webs. - Mercury deposited to aquatic ecosystems becomes less available for uptake by biota over time.

  1. Methods for measuring specific rates of mercury methylation and degradation and their use in determining factors controlling net rates of mercury methylation

    International Nuclear Information System (INIS)

    Ramlal, P.S.; Rudd, J.W.M.; Hecky, R.E.

    1986-01-01

    A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14 C end products of 14 CH 3 HgI demethylation. This method was used in conjuction with a 203 Hg 2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding

  2. Mercury in fish tissue of Idaho lakes vs. those of the Northeastern United States as it relates to the moderating effects of selenium

    Science.gov (United States)

    The primary methyl-mercury (MeHg) exposure mode to wildlife and humans is through the consumption of aquatic organisms, particulary fish. Selenium has been demonstrated to moderate the toxicity of MeHg in every test animal type examined to date. A molar ratio of Se:Hg >1 appear...

  3. Distribution and excretion of methyl and phenyl mercury salts

    Energy Technology Data Exchange (ETDEWEB)

    Gage, J C

    1964-01-01

    The distribution, metabolism, and excretion of phenyl mercury acetate (P.M.A.) and of methyl mercury dicyanidiamide (M.M.D.) has been studied in the rat during the repeated subcutaneous administration of small doses over a period of six weeks, and for several weeks after a single dose. The results indicate that P.M.A. is absorbed unchanged into the circulation from which it is mainly removed by the liver and kidneys where it is metabolized and excreted in the feces and urine mostly as inorganic mercury. During repeated dosage the rats reached a steady state by the end of the second week when excretion approximately balanced intake. No measurable amount of mercury was found in the central nervous system. After repeated dosage with M.M.D. there is no clear indication of a steady state being reached after six weeks. There is an accumulation of organic mercury in all tissues, particularly in the red cells, and a progressive increase in the brain concentration. M.M.D. is more slowly released from the tissues than P.M.A. and the breakdown to inorganic mercury is low. The control of human exposure to alkyl and aryl mercury salts is considered in the light of these experimental observations. The recommendation that the concentration of alkyl mercury salts in the atmosphere should not exceed 0-01 mg/m/sup 3/ seems justifiable, but there appears to be no reason to establish the figure for aryl mercury salts below the 0-1 mg/m/sup 3/ recommended for inorganic mercury vapor. 13 references, 4 tables.

  4. The dynamics of mercury near Idrija mercury mine, Slovenia: Horizontal and vertical distributions of total, methyl, and ethyl mercury concentrations in soils.

    Science.gov (United States)

    Tomiyasu, Takashi; Kodamatani, Hitoshi; Imura, Ryusuke; Matsuyama, Akito; Miyamoto, Junko; Akagi, Hirokatsu; Kocman, David; Kotnik, Jože; Fajon, Vesna; Horvat, Milena

    2017-10-01

    The distributions of the total mercury (T-Hg), methylmercury (MeHg), and ethylmercury (EtHg) concentrations in soil and their relationship to chemical composition of the soil and total organic carbon content (TOC, %) were investigated. Core samples were collected from hill slope on the right and left riverbanks of the Idrija River. Former smelting plant is located on the right bank. The T-Hg average in each of the core samples ranged from 0.25 to 1650 mg kg -1 . The vertical T-Hg variations in the samples from the left bank showed no significant change with depth. Conversely, the T-Hg varied with depth, with the surface, or layers several centimeters from the surface, tending to show the highest values in the samples from the right bank. Since the right and left bank soils have different chemical compositions, different pathways of mercury delivery into soils were suggested. The MeHg and EtHg concentrations ranged from n.d. (not detected) to 444 μg kg -1 and n.d. to 17.4 μg kg -1 , respectively. The vertical variations of MeHg and EtHg were similar to those of TOC, except for the near-surface layers containing TOC greater than 20%. These results suggest that the decomposition of organic matter is closely related to organic mercury formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Prenatal exposure to methyl mercury from fish consumption and polyunsaturated fatty acids: associations with child development at 20 mo of age in an observational study in the Republic of Seychelles.

    Science.gov (United States)

    Strain, J J; Yeates, Alison J; van Wijngaarden, Edwin; Thurston, Sally W; Mulhern, Maria S; McSorley, Emeir M; Watson, Gene E; Love, Tanzy M; Smith, Tristram H; Yost, Kelley; Harrington, Donald; Shamlaye, Conrad F; Henderson, Juliette; Myers, Gary J; Davidson, Philip W

    2015-03-01

    Fish is a rich source of n-3 polyunsaturated fatty acids (PUFAs) but also contains the neurotoxicant methyl mercury (MeHg). PUFAs may modify the relation between prenatal MeHg exposure and child development either directly by enhancing neurodevelopment or indirectly through the inflammatory milieu. The objective was to investigate the associations of prenatal MeHg exposure and maternal PUFA status with child development at 20 mo of age. The Seychelles Child Development Study Nutrition Cohort 2 is an observational study in the Republic of Seychelles, a high-fish-eating population. Mothers were enrolled during pregnancy and their children evaluated at 20 mo of age by using the Bayley Scales of Infant Development II (BSID-II), the MacArthur Bates Communicative Development Inventories (CDI), and the Infant Behavior Questionnaire-Revised. There were 1265 mother-child pairs with complete data. Prenatal MeHg exposure had no direct associations with neurodevelopmental outcomes. Significant interactions were found between MeHg and PUFAs on the Psychomotor Developmental Index (PDI) of the BSID-II. Increasing MeHg was associated with lower PDI but only in children of mothers with higher n-6/n-3. Among mothers with higher n-3 PUFAs, increasing MeHg was associated with improved PDI. Higher maternal docosahexaenoic acid (DHA) was associated with improved CDI total gestures (language development) but was significantly adversely associated with the Mental Development Index (MDI), both with and without MeHg adjustment. Higher n-6:n-3 ratios were associated with poorer scores on all 3 CDI outcomes. We found no overall adverse association between prenatal MeHg exposure and neurodevelopmental outcomes. However, maternal PUFA status as a putative marker of the inflammatory milieu appeared to modify the associations of prenatal MeHg exposure with the PDI. Increasing DHA status was positively associated with language development yet negatively associated with the MDI. These findings may

  6. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: Correlation with autoimmune parameters during and after treatment in susceptible mice

    International Nuclear Information System (INIS)

    Havarinasab, Said; Bjoern, Erik; Nielsen, Jesper B.; Hultman, Per

    2007-01-01

    Methylmercury (MeHg) is present in the environment as a result of the global cycling of mercury, although anthropogenic sources may dramatically increase the availability in confined geographical areas. Accumulation of MeHg in the aquatic food chain is the dominating way of exposure in mammals, which accumulate MeHg in all organs, including Brain. Demethylation has been described in the organs, especially in phagocytic cells, but mainly in the flora of the intestinal tract. While most of the inorganic mercury (Hg 2+ ) formed in the intestine is excreted, a fraction is reabsorbed which together with the local demethylation increases the organ Hg 2+ concentration. MeHg is a well-known immunosuppressive agent, while Hg 2+ is associated with immunostimulation and autoimmunity especially in genetically susceptible rodents, creating a syndrome, i.e. mercury-induced autoimmunity (HgIA). This study aimed at exploring the effect of MeHg with regard to HgIA, and especially the immunological events after stopping treatment, correlated with the presence of MeHg and Hg 2+ in the organs. Treatment of A.SW mice for 30 days with 4.2 mg MeHg/L drinking water (corresponding to approximately 420 μg Hg/kg body weight/day) caused all the HgIA features observed after primary treatment with inorganic Hg, except systemic immune complex deposits. The total Hg concentration was 5-fold higher in the kidneys as compared with lymph nodes, but the fraction of Hg 2+ was similar (17-20%). After stopping treatment, the renal and lymph node MeHg concentration declined according to first order kinetics during the initial 4-6 weeks, but then slower. A similar decline in the organ Hg 2+ concentration occurred during the initial 2 weeks after stopping treatment but then ceased, causing the Hg 2+ concentration to exceed that of MeHg in the lymph nodes and kidneys after 3 and 8 weeks, respectively. The selective increase in lymph node Hg 2+ fraction is likely to be due to demethylation of MeHg in the

  7. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    International Nuclear Information System (INIS)

    Ruiz Montoya, Mercedes; Pintado, Sara; Rodriguez Mellado, Jose Miguel

    2010-01-01

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H 2 SO 4 ) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH a ), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK a the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  8. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, Mercedes, E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, Sara; Rodriguez Mellado, Jose Miguel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' , E-14014 Cordoba (Spain)

    2010-03-30

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H{sub 2}SO{sub 4}) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH < pK{sub a}), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK{sub a} the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  9. Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    MARÚCIA I. M. AMORIM

    2000-12-01

    Full Text Available The mercury rejected in the water system, from mining operations and lixiviation of soils after deforestation, is considered to be the main contributors to the contamination of the ecosystem in the Amazon Basin. The objectives of the present study were to examine cytogenetic functions in peripheral lymphocytes within a population living on the banks of the Tapajós River with respect to methylmercury (MeHg contamination, using hair mercury as a biological indicator of exposure. Our investigation shows a clear relation between methylmercury contamination and cytogenetic damage in lymphocytes at levels well below 50 micrograms/gram, the level at which initial clinical signs and symptoms of mercury poisoning occur. The first apparent biological effect with increasing MeHg hair level was the impairment of lymphocyte proliferation measured as mitotic index (MI. The relation between mercury concentration in hair and MI suggests that this parameter, an indicator of changes in lymphocytes and their ability to respond to culture conditions, may be an early marker of cytotoxicity and genotoxicity in humans and should be taken into account in the preliminary evaluation of the risks to populations exposed in vivo. This is the first report showing clear cytotoxic effects of long-term exposure to MeHg. Although the results strongly suggest that, under the conditions examined here, MeHg is both a spindle poison and a clastogen, the biological significance of these observations are as yet unknown. A long-term follow-up of these subjects should be undertaken.

  10. Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J. [Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeaa (Sweden); Dept. of Analytical Chemistry, Umeaa Univ. (Sweden); Skyllberg, U. [Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeaa (Sweden); Tu, Q.; Frech, W. [Dept. of Analytical Chemistry, Umeaa Univ. (Sweden); Bleam, W.F. [Dept. of Soil Science, University of Wisconsin, Madison, WI (United States)

    2000-07-01

    Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO{sub 4} and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g{sup -1}, calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times

  11. Co-exposure to radiation and methyl mercury during a critical phase of neonatal brain development in mice enhances developmental neuro-behavioral effects

    International Nuclear Information System (INIS)

    Sundell-Bergman, Synnoeve; Eriksson, Per; Fredriksson, Anders; Fischer, Celia; Stenerloew, Bo

    2008-01-01

    Full text: Organisms, including man, are continuously exposed to low doses of ionizing radiation as well as persistent and non persistent chemicals in the environment. Hence, in the process of developing numerical limits for environmental protection, there is a strong need to consider interactive effects between radiation and other environmental stressors. It is known that ionizing radiation, as well as methyl mercury, can give rise to neuro-toxicological and neuro behavioural effects in mammals and that developmental neurotoxic effects can be seen after exposure during gestation. However, there is a lack of knowledge concerning effects and consequences from low-dose exposure during critical phases of perinatal and/or neonatal brain development and the combination of ionizing radiation and environmental chemicals. Epidemiological studies of patients with haemangioma have indicated that radiation exposures to the brain during infancy might deteriorate cognitive ability in adulthood. Ten-day old neonatal NMRI male mice were exposed to a single oral dose of MeHg (0.40 or 4.0 mg/kg bw). Four hours after the MeHg exposure the mice were irradiated with 60 Co gamma radiation at doses of 0,2 and 0,5 Gy. The animals were subjected to a spontaneous behaviour test at the ages of 2- and 4-months, and the water maze test at the age of 5 months. Neither the single dose of MeHg (0.4 mg/kg bw) nor the radiation dose of 0.2 Gy affected the spontaneous behavior, but the co-exposure to radiation and MeHg caused developmental neurotoxic effects. These effects were manifested as disrupted spontaneous behavior, lack of habituation, and impaired learning and memory functions. Studies are continuing to verify the effects ant to elucidate possible underlying mechanisms. (author)

  12. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    Science.gov (United States)

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Influence of Reservoir Water Level Fluctuations on Sediment Methylmercury Concentrations Downstream of the Historical Black Butte Mercury Mine, OR

    Science.gov (United States)

    Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have e...

  14. Wetland influence on mercury fate and transport in a temperate forested watershed

    Energy Technology Data Exchange (ETDEWEB)

    Selvendiran, Pranesh [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: pselvend@syr.edu; Driscoll, Charles T. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: ctdrisco@syr.edu; Bushey, Joseph T. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: jtbushey@syr.edu; Montesdeoca, Mario R. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: mmontesd@syr.edu

    2008-07-15

    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 {mu}g/m{sup 2}-year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands.

  15. Wetland influence on mercury fate and transport in a temperate forested watershed

    International Nuclear Information System (INIS)

    Selvendiran, Pranesh; Driscoll, Charles T.; Bushey, Joseph T.; Montesdeoca, Mario R.

    2008-01-01

    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 μg/m 2 -year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands

  16. Methods for Investigating Mercury Speciation, Transport, Methylation, and Bioaccumulation in Watersheds Affected by Historical Mining

    Science.gov (United States)

    Alpers, C. N.; Marvin-DiPasquale, M. C.; Fleck, J.; Ackerman, J. T.; Eagles-Smith, C.; Stewart, A. R.; Windham-Myers, L.

    2016-12-01

    Many watersheds in the western U.S. have mercury (Hg) contamination from historical mining of Hg and precious metals (gold and silver), which were concentrated using Hg amalgamation (mid 1800's to early 1900's). Today, specialized sampling and analytical protocols for characterizing Hg and methylmercury (MeHg) in water, sediment, and biota generate high-quality data to inform management of land, water, and biological resources. Collection of vertically and horizontally integrated water samples in flowing streams and use of a Teflon churn splitter or cone splitter ensure that samples and subsamples are representative. Both dissolved and particulate components of Hg species in water are quantified because each responds to different hydrobiogeochemical processes. Suspended particles trapped on pre-combusted (Hg-free) glass- or quartz-fiber filters are analyzed for total mercury (THg), MeHg, and reactive divalent mercury. Filtrates are analyzed for THg and MeHg to approximate the dissolved fraction. The sum of concentrations in particulate and filtrate fractions represents whole water, equivalent to an unfiltered sample. This approach improves upon analysis of filtered and unfiltered samples and computation of particulate concentration by difference; volume filtered is adjusted based on suspended-sediment concentration to minimize particulate non-detects. Information from bed-sediment sampling is enhanced by sieving into multiple size fractions and determining detailed grain-size distribution. Wet sieving ensures particle disaggregation; sieve water is retained and fines are recovered by centrifugation. Speciation analysis by sequential extraction and examination of heavy mineral concentrates by scanning electron microscopy provide additional information regarding Hg mineralogy and geochemistry. Biomagnification of MeHg in food webs is tracked using phytoplankton, zooplankton, aquatic and emergent vegetation, invertebrates, fish, and birds. Analysis of zooplankton in

  17. Mercury mass balance study in Wujiangdu and Dongfeng Reservoirs, Guizhou, China

    International Nuclear Information System (INIS)

    Feng Xinbin; Jiang Hongmei; Qiu Guangle; Yan Haiyu; Li Guanghui; Li Zhonggen

    2009-01-01

    From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km -2 for DF Reservoir, and 489.2 g km -2 for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km -2 yr -1 , yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km -2 yr -1 , yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs. - Reservoirs are the sink of total mercury but source of methylmercury to the aquatic systems.

  18. Microbiology and biogeochemistry of sediments and rhizosphere of mangroves: bacterial production, sulphate-reduction and methylation of mercury with methodological focus on incubation-extraction of 14C-leucine

    International Nuclear Information System (INIS)

    Feijo, Issabella Vitoria Abduche

    2015-01-01

    Mangroves are one of the most important ecosystems when it comes to cycling of various elements, including carbon and mercury. Microbiological processes that occur in sediment are essential for carbon mineralization, its conversion into biomass and for availability of mercury to the food chain. Sulfate-reducing bacteria are one of the main groups responsible for degradation of organic compounds in marine sediments and mercury methylation, especially in the rhizosphere of macrophyte. The aim of this study was to evaluate bacterial production (BP) over different sedimentary profiles as well as mercury methylation (% MeHg), sulfate reduction rates (SRR) and bacterial production in the rhizosphere of a ubiquitous mangrove tree. Radiochemical approaches were used to access bacterial production ( 14 C-leucine), sulfate reduction ( 35 SO 4 ) and mercury methylation ( 203 Hg). Study area was located at Coroa Grande (Sepetiba bay) and Jequia mangrove (Guanabara bay). Methodological studies using 14 C-leucine as a tool to assess bacterial production in mangrove sediment were not found. In this context, we tested two leucine uptake methodologies for measuring bacterial production in mangrove sediments according to Baath et al. (2001) Soil Biol. Biochem., v.33,p. 1571-1574 and Fischer and Pusch (1999) Appl. Environ. Microbiol., v.6, p.4411-4418. Our results suggest that an adaptation of both techniques were suitable to measure BP in mangrove sediment. We also provided underlying parameters of the method such as saturation level and linearity of leucine incorporation that can be used as guidance for future studies in mangrove. Once the methodology was established, we accessed BP along a shallow sedimentary profile in three physiographic mangroves types: basin, fringe and riverine. BP was highly heterogeneous in different physiographic types of mangroves and along the sediment profiles.The mangrove located at Guanabara bay presented BP which was 50 times higher than tho one

  19. The influence of some thiols on biliary excretion of methyl mercury

    International Nuclear Information System (INIS)

    Refsvik, T.

    1983-01-01

    N-Acetylpenicillamine and thiola increased biliary excretion of methyl mercury and sulfhydryl right after administration. Cysteine increased excretion of methyl mercury in bile after a temporary decrease following administration. During the interval of decreased mercury excretion biliary excretion of cysteine passed through a maximum. This indicates the existence of a common factor of the excretory systems for cysteine and methyl mercury and illustrates that cysteine cannot carry methyl mercury from liver to bile. Relatively large proportions of unchanged thiola and N-acetylpenicillamine were excreted in bile. Bile collected after administration of one of these compounds, in addition to thiola or N-acetylpenicillamine, contained other methyl mercury carrying components not present in control bile. From the experiments undertaken it cannot be stated whether these components play any role in the increased excretion of methyl mercury in bile caused by thiola and N-acetylpenicillamine. The mechanisms of increased biliary excretion of methyl mercury following administration of N-acetylpenicillamine, thiola and cysteine are discussed. (author)

  20. Possible interferences of mercury sulfur compounds with ethylated and methylated mercury species using HPLC-ICP-MS

    International Nuclear Information System (INIS)

    Wilken, R.D.; Nitschke, F.; Falter, R.

    2003-01-01

    The HPLC-ICP-MS coupling technique is able to separate and detect methyl, ethyl and inorganic mercury isotopes specifically. An identification of ethyl mercury(+) is not possible when the widely used sodium tetraethylborate derivatisation method in combination with GC-AFS/AAS or ICP-MS techniques is performed because it contains ethyl groups. An unidentified compound with the same retention time as ethyl mercury was found in the HPLC chromatograms of industrial sewage samples and humic-rich soils of microcosm experiments after applying water vapour distillation. We also observed such unidentified peaks in samples of heavily contaminated sites in Eastern Germany, separated by HPLC fractionation only. In the experiments described, different mercury sulfur adducts were synthesised and tested for their retention times in the HPLC-ICP-MS system. It was found that the compound CH 3 -S-Hg + showed the same retention time as the ethyl mercury standard. It is therefore possible that ethyl mercury detected in chromatography by comparison of the retention time could also be due to an adduct of a sulfur compound and a mercury species. CH 3 -S-Hg + should be tested in other chromatographic mercury speciation methods for this effect. This work can also be regarded as a contribution to the discussion of artificially occurring methyl mercury in sediments during sample preparation. (orig.)

  1. Some like it cold: microbial transformations of mercury in polar regions

    Directory of Open Access Journals (Sweden)

    Niels Kroer

    2011-12-01

    Full Text Available The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terrestrial environments, little is known about the responsible transformations and transport pathways and the processes that control them. We posit that as in temperate environments, microbial transformations play a key role in mercury geochemical cycling in polar regions by: (1 methylating mercury by one of four proposed pathways, some not previously described; (2 degrading MeHg by activities of mercury resistant and other bacteria; and (3 carrying out redox transformations that control the supply of the mercuric ion, the substrate of methylation reactions. Recent analyses have identified a high potential for mercury-resistant microbes that express the enzyme mercuric reductase to affect the production of gaseous elemental mercury when and where daylight is limited. The integration of microbially mediated processes in the paradigms that describe mercury geochemical cycling is therefore of high priority especially in light of concerns regarding the effect of global warming and permafrost thawing on input of MeHg to polar regions.

  2. Using Sulfate-Amended Sediment Slurry Batch Reactors to Evaluate Mercury Methylation

    International Nuclear Information System (INIS)

    Harmon, S.M.

    2003-01-01

    In the methylated form, mercury represents a concern to public health primarily through the consumption of contaminated fish tissue. Research conducted on the methylation of mercury strongly suggests the process is microbial in nature and facilitated principally by sulfate-reducing bacteria. This study addressed the potential for mercury methylation by varying sulfate treatments and wetland-based soil in microbial slurry reactors with available inorganic mercury. Under anoxic laboratory conditions conducive to growth of naturally occurring sulfate-reducing bacteria in the soil, it was possible to evaluate how various sulfate additions influenced the methylation of inorganic mercury added to overlying water. Treatments included sulfate amendments ranging FR-om 25 to 500 mg/L (0.26 to 5.2 mM) above the soil's natural sulfate level. This study also provided an assessment of mercury methylation relative to sulfate-reducing bacterial population growth and subsequent sulfide production. Mercury methylation in sulfate treatments did not exceed that of the non-amended control during a 35-day incubation. However, increases in methylmercury concentration were linked to bacterial growth and sulfate reduction. A time lag in methylation in the highest treatment correlated with an equivalent lag in bacterial growth

  3. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice

    DEFF Research Database (Denmark)

    Havarinasab, Said; Björn, Erik; Nielsen, Jesper Bo

    2007-01-01

    ). This study aimed at exploring the effect of MeHg with regard to HgIA, and especially the immunological events after stopping treatment, correlated with the presence of MeHg and Hg(2+) in the organs. Treatment of A.SW mice for 30 days with 4.2 mg MeHg/L drinking water (corresponding to approximately 420...... during the initial 6 weeks after stopping treatment, while all other HgIA features including antichromatin antibodies declined to control levels after 2-4 weeks. This indicates differences in either dose requirement or induction mechanisms for the different HgIA parameters. The selective accumulation...... together with the local demethylation increases the organ Hg(2+) concentration. MeHg is a well-known immunosuppressive agent, while Hg(2+) is associated with immunostimulation and autoimmunity especially in genetically susceptible rodents, creating a syndrome, i.e. mercury-induced autoimmunity (HgIA...

  4. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region.

    Science.gov (United States)

    Oswald, Claire J; Carey, Sean K

    2016-06-01

    In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L(-1). The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L(-1)) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO4(2-) concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mercury exposure induces cytoskeleton disruption and loss of renal function through epigenetic modulation of MMP9 expression.

    Science.gov (United States)

    Khan, Hafizurrahman; Singh, Radha Dutt; Tiwari, Ratnakar; Gangopadhyay, Siddhartha; Roy, Somendu Kumar; Singh, Dhirendra; Srivastava, Vikas

    2017-07-01

    Mercury is one of the major heavy metal pollutants occurring in elemental, inorganic and organic forms. Due to ban on most inorganic mercury containing products, human exposure to mercury generally occurs as methylmercury (MeHg) by consumption of contaminated fish and other sea food. Animal and epidemiological studies indicate that MeHg affects neural and renal function. Our study is focused on nephrotoxic potential of MeHg. In this study, we have shown for the first time how MeHg could epigenetically modulate matrix metalloproteinase 9(MMP9) to promote nephrotoxicity using an animal model of sub chronic MeHg exposure. MeHg caused renal toxicity as was seen by increased levels of serum creatinine and expression of early nephrotoxicity markers (KIM-1, Clusterin, IP-10, and TIMP). MeHg exposure also correlated strongly with induction of MMP9 mRNA and protein in a dose dependent manner. Further, while induction of MMP9 promoted cytoskeleton disruption and loss of cell-cell adhesion (loss of F-actin, Vimentin and Fibronectin), inhibition of MMP9 was found to reduce these disruptions. Mechanistic studies by ChIP analysis showed that MeHg modulated MMP9 by promoting demethylation of its regulatory region to increase its expression. Bisulfite sequencing identified critical CpGs in the first exon of MMP9 which were demethylated following MeHg exposure. ChIP studies also showed loss of methyl binding protein, MeCP2 and transcription factor PEA3 at the demethylated site confirming decreased CpG methylation. Our studies thus show how MeHg could epigenetically modulate MMP9 to promote cytoskeleton disruption leading to loss of renal function. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Total and methyl mercury, moisture, and porosity in Lake Michigan surficial sediment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Total and methyl mercury, moisture content (%), and porosity were measured in Lake Michigan sediment by the U.S. Environmental Protection Agency/Office of Research...

  7. Spatial variability in the speciation and bioaccumulation of mercury in an arid subtropical reservoir ecosystem.

    Science.gov (United States)

    Becker, Jesse C; Groeger, Alan W; Nowlin, Weston H; Chumchal, Matthew M; Hahn, Dittmar

    2011-10-01

    Patterns of spatial variation of mercury and methylmercury (MeHg) were examined in sediments and muscle tissue of largemouth bass (Micropterus salmoides) from Amistad International Reservoir, a large and hydrologically complex subtropical water body in the Rio Grande drainage. The distributions of both Hg and MeHg were compared with environmental and biological factors known to influence production of MeHg. The highest concentrations of total Hg (THg) in sediment were found in the Rio Grande arm of the reservoir, whereas MeHg was highest at sites in the Devils River arm and inundated Pecos River (often more than 3.0 ng/g). Conditions in the sediments of the Devils River arm and Pecos River channel were likely more favorable to the production of MeHg, with higher sediment porewater dissolved organic carbon, and porewater sulfate levels in the optimal range for methylation. Although the detection of different groups of sulfate-reducing bacteria by polymerase chain reaction (PCR) was generally correlated with MeHg concentrations, bacterial counts via fluorescent in situ hybridization (FISH) did not correlate with MeHg. A sample of 156 largemouth bass (35 cm), 77% exceeded the 0.3 mg/kg U.S. Environmental Protection Agency screening value. This study shows that significant variation in sediment MeHg and biotic Hg concentration can exist within lakes and reservoirs and that it can correspond to variation in environmental conditions and Hg methylation. Copyright © 2011 SETAC.

  8. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada Region.

    Directory of Open Access Journals (Sweden)

    Adam James Houben

    Full Text Available Gold mines in the Yellowknife, NT, region--in particular, the Giant Mine--operated from 1949-99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3 dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As concentrations are well above guidelines for drinking water (10 μg/L and protection for aquatic life (5 μg/L, ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations.

  9. Mercury contamination and exposure assessment of fishery products in Korea.

    Science.gov (United States)

    Yang, Hye-Ran; Kim, Na-Young; Hwang, Lae-Hong; Park, Ju-Sung; Kim, Jung-Hun

    2015-01-01

    In this study, total (T-Hg) and methyl mercury (Me-Hg) contamination was investigated in fishery products including canned fish, fish sauces, dried bonito and frozen tuna sashimi, collected from retail markets in Korea, to assess dietary exposure. Direct mercury analyser and gas chromatography-electron captured detector were employed to measure T-Hg and Me-Hg, respectively. The highest T-Hg and Me-Hg contamination was present in tuna sashimi, followed by dried bonito, respectively. Canned tuna showed more frequent detection and higher content than other canned fishery products. The weekly exposure estimate indicates that exposure to mercury from fishery products is safe, showing 2.59% provisional tolerable weekly intake (PTWI) for T-Hg, 1.82% PTWI for Me-Hg and 4.16% reference dose for Me-Hg. However, it should be addressed to monitor the mercury contamination in fish and fishery products regularly, to safeguard vulnerable population such as children, to limit intake of these food products.

  10. Effects of methyl mercury exposure on the growth of juvenile common loons

    Science.gov (United States)

    Kenow, K.P.; Gutreuter, S.; Hines, R.K.; Meyer, M.W.; Fournier, F.; Karasov, W.H.

    2003-01-01

    We conducted a dose-response laboratory study to quantify the level of mercury exposure associated with negative effects on the development of common loon chicks reared in captivity from hatch to 105 days. A dose regimen was implemented that provided exposure levels that bracketed relevant exposure levels of methyl mercury found in loon chicks across North America. We observed no overt signs of mercury toxicosis and detected no significant effect of dietary mercury exposure on growth or food consumption. However, asymptotic mass was lower in chicks that hatched from eggs collected from nests on low pH lakes relative to eggs from neutral pH lakes. Rapid excretion of methyl mercury during feather growth likely provides loon chicks protection from methyl mercury toxicity and may explain the lack of convincing toxicological findings in this study. Lake-source effects suggest that in ovo exposure to methyl mercury or other factors related to lake pH have consequences on chick development.

  11. Methyl Mercury Production In Tropical Hydromorphic Soils: Impact Of Gold Mining.

    Science.gov (United States)

    Guedron, S.; Charlet, L.; Harris, J.; Grimaldi, M.; Cossa, D.

    2007-12-01

    Artisanal alluvial gold mining is important in many tropical developing countries and several million people are involved worldwide. The dominant use of mercury for gold amalgamation in this activity leads to mercury accumulation in soils, to sediment contamination and to methyl mercury (MMHg) bioaccumulation along the food chain. In this presentation we will present recent data on methyl mercury production in hydromorphic soils and tailing ponds from a former gold mining area located in French Guiana (South America). Comparison of specific fluxes between a pristine sub watershed and the contaminated watershed shows that former mining activities lead to a large enhancement of dissolved and particulate MMHg emissions at least by a factor of 4 and 6, respectively. MMHg production was identified in sediments from tailing ponds and in surrounding hydromorphic soils. Moreover, interstitial soil water and tailing pond water profiles sampled in an experimental tailing pond demonstrate the presence of a large MMHg production in the suboxic areas. Both tailing ponds and hydromorphic soils present geochemical conditions that are favorable to bacterial mercury methylation (high soil Hg content, high aqueous ferric iron and dissolved organic carbon concentrations). Although sulfate-reducing bacteria have been described as being the principal mercury methylating bacteria, the positive correlation between dissolved MMHg and ferrous iron concentrations argue for a significant role of iron-reducing bacteria. Identifications by sequencing fragments of 16S rRNA from total soil DNA support these interpretations. This study demonstrates that current and past artisanal gold mining in the tropics lead to methyl mercury production in contaminated areas. As artisanal activities are increasing with increasing gold prices, the bio- magnification of methyl mercury in fish presents an increasing threat to local populations whose diet relies on fish consumption.

  12. Biological methylation of inorganic mercury by Saccharomyces cerevisiae - a possible environmental process

    International Nuclear Information System (INIS)

    Reisinger, K.; Stoeppler, M.; Nuernberg, H.W.

    1983-01-01

    The biological methylation of inorganic mercury by S-adenosylmethione (SAM) was investigated by incubation experiments with Saccharomyces cerevisae (''bakers' yeast''). The methyl donor (methionine) and the acceptor (Hg 2+ as HgCl 2 ) were also applied in their labelled form (double labelling). Methylmercury as a result of a possibly biological methyl group transfer could not be detected. As reaction product only small amounts (0.01per mille yield) of elemental mercury (Hg 0 ) were found, while the overwhelming amount of HgCl 2 had not reacted. (orig.) [de

  13. Use of implantable pellets to administer low levels of methyl mercury to fish

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B.S.; Jagoe, C.H.; Gross, T.S.

    1999-07-01

    Implantable pellets of methyl mercury chloride were tested in Nile Tilapia (oreochromis niloticus) to appraise the effectiveness of the method for chronic studies of mercury. Two dosing regimes of 15 and 1.5 grams/CH{sub 3}HgCl pellet (test 1) and 1 and 0.1 grams/pellet (tests 2--3) of methyl mercury chloride were used in three tests. Additional pellets containing only matrix were used as controls. The pellets were inserted into the peritoneal cavity along with a microchip for identification. Three methods of incision closure: sutures and two types of surgical glue, were tested. Pellets used in test one released the dose too fast, resulting in premature death of the fish. Results from tests 2 and 3 show blood mercury concentrations over time and tissue levels at necropsy consistent with dose suggestion that this is a viable method of dosing fish.

  14. Study of the distribution of methyl mercury (203Hg) by whole body autoradiography of macaque monkeys (Macaca irus)

    International Nuclear Information System (INIS)

    Benard, Patrick; Burgat-Sacaze, Viviane; Rico, Andre; Braun, J.-P.; Eghbali, Behrokh

    1978-01-01

    The distribution of methyl-mercury labelled with mercury-203 has been studied in Monkeys by whole body autoradiography technique. The mercury is rapidly absorbed. It is localized in all the body and mainly in well defined areas of the central nervous-system [fr

  15. Modulation of vasodilator response via the nitric oxide pathway after acute methyl mercury chloride exposure in rats.

    Science.gov (United States)

    Omanwar, S; Saidullah, B; Ravi, K; Fahim, M

    2013-01-01

    Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO) bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.). The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh). In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10(-4) M) was significantly increased, and in presence of glybenclamide (10(-5) M), the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF). In addition, superoxide dismutase (SOD) + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS) and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  16. Modulation of Vasodilator Response via the Nitric Oxide Pathway after Acute Methyl Mercury Chloride Exposure in Rats

    Directory of Open Access Journals (Sweden)

    S. Omanwar

    2013-01-01

    Full Text Available Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.. The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh. In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M was significantly increased, and in presence of glybenclamide (10-5 M, the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF. In addition, superoxide dismutase (SOD + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.

  17. Association of methionine requirement with methyl mercury resistant mutants of yeast

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Sherman, F.

    1974-01-25

    It has been known for several years that strains resistant to mercury can be obtained in several bacterial species. Soon after the correlation between resistance to antibiotics and to mercury was recognized, it was established that genetic elements conferring resistance to antibiotics, mercury and other heavy metals in Escherichia coli and Samonella typhimurium and Staphylococcus aureus reside on extrachromosomal resistance transfer factors or plasmids. Among fungi, mercury resistant strains of Botrytis cinerea, Penicillium notatum, Sclerotinia fructicola, Stemphylium sarcinaeforme, and Saccharomyces cerevisiae have been reported. In most cases, this was accomplished by training the normal strains for growth on media supplemented with successively increasing concentrations of mercury compounds, and in some cases the resistance was lost when subcultured on mercury-free media. It is noteworthy that in none of the mercury-adapted strains of fungi has the genetic basis of resistance been determined. In this report we describe a method of isolation and characterization of methyl mercury resistant mutants of S. cerevisiae. This study was undertaken with the view that the examination of physiological changes associated with genetically defined resistant mutants will be useful in studying the mechanisms of cellular detoxification of organic mercurials.

  18. Evaluation of CP sil 8 film thickness for the capillary GC analysis of methyl mercury

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Drabæk, Iver

    1992-01-01

    Different commercially available CP-Sil 8 CB capillary columns have been tested with a mixed standard containing methyl mercury chloride, ethyl mercury chloride and a stable nonpolar chlorinated hydrocarbon. The aim of the study was to see whether the columns tested could be used without special...... available insert for on-column injections on wide bore columns, and a 5.35 mum thick stationary phase. It was concluded that this CP Sil 8 CB column gave good results although minor interactions between the organo-mercury compounds and the column could be seen....

  19. Chemical speciation and transformation of mercury in contaminated sediments

    OpenAIRE

    Drott, Andreas

    2009-01-01

    Biomagnification of mercury (Hg) in aquatic food webs occurs almost exclusively as mono-methyl Hg (MeHg). In this thesis, the influence of chemical speciation and environmental conditions on transformations of inorganic Hg (HgII) and MeHg was studied at eight sites in Sweden with Hg contaminated sediments. The source of contamination was either Hg0(l) or phenyl-Hg, and total Hg concentrations ranged between 1.0-1100 nmol g-1. The environmental conditions, e.g. salinity, temperature climate, p...

  20. Microbiology and biogeochemistry of sediments and rhizosphere of mangroves: bacterial production, sulphate-reduction and methylation of mercury with methodological focus on incubation-extraction of {sup 14}C-leucine; Microbiologia e biogeoquimica de sedimentos e rizosfera de manguezais: producao bacteriana, sulfato-reducao e metilacao do mercurio com enfoque metodologico na incubacao-extracao de {sup 14}C-leucina

    Energy Technology Data Exchange (ETDEWEB)

    Feijo, Issabella Vitoria Abduche

    2015-07-01

    Mangroves are one of the most important ecosystems when it comes to cycling of various elements, including carbon and mercury. Microbiological processes that occur in sediment are essential for carbon mineralization, its conversion into biomass and for availability of mercury to the food chain. Sulfate-reducing bacteria are one of the main groups responsible for degradation of organic compounds in marine sediments and mercury methylation, especially in the rhizosphere of macrophyte. The aim of this study was to evaluate bacterial production (BP) over different sedimentary profiles as well as mercury methylation (% MeHg), sulfate reduction rates (SRR) and bacterial production in the rhizosphere of a ubiquitous mangrove tree. Radiochemical approaches were used to access bacterial production ({sup 14}C-leucine), sulfate reduction ({sup 35}SO{sub 4}) and mercury methylation ({sup 203}Hg). Study area was located at Coroa Grande (Sepetiba bay) and Jequia mangrove (Guanabara bay). Methodological studies using {sup 14}C-leucine as a tool to assess bacterial production in mangrove sediment were not found. In this context, we tested two leucine uptake methodologies for measuring bacterial production in mangrove sediments according to Baath et al. (2001) Soil Biol. Biochem., v.33,p. 1571-1574 and Fischer and Pusch (1999) Appl. Environ. Microbiol., v.6, p.4411-4418. Our results suggest that an adaptation of both techniques were suitable to measure BP in mangrove sediment. We also provided underlying parameters of the method such as saturation level and linearity of leucine incorporation that can be used as guidance for future studies in mangrove. Once the methodology was established, we accessed BP along a shallow sedimentary profile in three physiographic mangroves types: basin, fringe and riverine. BP was highly heterogeneous in different physiographic types of mangroves and along the sediment profiles.The mangrove located at Guanabara bay presented BP which was 50 times

  1. METHYL MERCURY IN GREEN MUSCLE (Mytilus viridis L. FROM FISH MARKET MUARA ANGKE : BEFORE AND AFTER COOKING

    Directory of Open Access Journals (Sweden)

    Ermin K. Winarno

    2010-06-01

    Full Text Available The determination of methyl mercury content in green muscle (Mytilus viridis L. that were taken from Pasar Pelelangan Ikan Muara Angke, Jakarta Bay has been carried out. Sampling was taken in November 2005 and March 2006, the samples were bought from the green muscle sellers. The aim of this research is to know the effect of cooking on the content of methyl mercury in green muscle. Samples were homogenized, weighed and washed with aceton and toluene. After washing, the homogenized material was added with HCl solution, extracted with toluene, then the methyl mercury content in toluene extract was analyzed using gas chromatography. The results of this research showed that methyl mercury concentration in raw and cooked green muscle respectively were 0.803 + 0.019 mg/g and 0.443 + 0.035 mg/g (in November 2005 and 0.096 + 0.014 mg/g and 0.079 + 0.016 mg/g (in March 2006 respectively. The methyl mercury content in raw (in November 2005 was higher than in cooked green muscle as permitted concentration in the sea biota by WHO and FAO, it is 0.5 ppm (mg/g, on the other hand the result of the second sampling in March 2006 showed that methyl mercury content in green muscle was lower than permitted concentration. Cooking process of the green muscle decreased methyl mercury content 44.85% (sampling in November 2005 and 17.71% (sampling in March 2006, because methyl mercury that bonded to protein were distributed to boiling water. Methyl mercury content in green muscle after cooking was still lower than the permitted concentration.   Keywords: methyl mercury, green muscle, Mytilus viridis L., Muara Angke

  2. Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste

    Science.gov (United States)

    Hines, M.E.; Horvat, M.; Faganeli, J.; Bonzongo, J.-C.J.; Barkay, T.; Major, E.B.; Scott, K.J.; Bailey, E.A.; Warwick, J.J.; Lyons, W.B.

    2000-01-01

    The Idrija Mine is the second largest Hg mine in the world which operated for 500 years. Mercury (Hg)-laden tailings still line the banks, and the system is a threat to the Idrija River and water bodies downstream including the Soca/Isonzo River and the Gulf of Trieste in the northern Adriatic Sea. A multidisciplinary study was conducted in June 1998 on water samples collected throughout the Idrija and Soca River systems and waters and sediments in the Gulf. Total Hg in the Idrija River increased >20-fold downstream of the mine from 60 ng liter-1 with methyl mercury (MeHg) accounting for ~0.5%. Concentrations increased again downstream and into the estuary with MeHg accounting for nearly 1.5% of the total. While bacteria upstream of the mine did not contain mercury detoxification genes (mer), such genes were detected in bacteria collected downstream. Benthic macroinvertebrate diversity decreased downstream of the mine. Gulf waters near the river mouth contained up to 65 ng liter-1 total Hg with ~0.05 ng liter-1 MeHg. Gulf sediments near the river mouth contained 40 ??g g-1 total Hg with MeHg concentrations of about 3 ng g-1. Hg in sediment pore waters varied between 1 and 8 ng liter-1, with MeHg accounting for up to 85%. Hg methylation and MeHg demethylation were active in Gulf sediments with highest activities near the surface. MeHg was degraded by an oxidative pathway with >97% C released from MeHg as CO2. Hg methylation depth profiles resembled profiles of dissolved MeHg. Hg-laden waters still strongly impact the riverine, estuarine, and marine systems. Macroinvertebrates and bacteria in the Idrija River responded to Hg stress, and high Hg levels persist into the Gulf. Increases in total Hg and MeHg in the estuary demonstrate the remobilization of Hg, presumably as HgS dissolution and recycling. Gulf sediments actively produce MeHg, which enters bottom waters and presumably the marine food chain. (C) 2000 Academic Press.

  3. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    Directory of Open Access Journals (Sweden)

    Emily B. Graham

    2018-04-01

    Full Text Available Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM may influence methylmercury (MeHg production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2 on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1 changes in microbiome structure towards Clostridia, (2 metagenomic shifts toward fermentation, and (3 degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.

  4. Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard

    International Nuclear Information System (INIS)

    Jaeger, Iris; Hop, Haakon; Gabrielsen, Geir W.

    2009-01-01

    Concentrations and biomagnification of total mercury (TotHg) and methyl mercury (MeHg) were studied in selected species from the pelagic food web in Kongsfjorden, Svalbard. Twelve species of zooplankton, fish and seabirds, were sampled representing a gradient of trophic positions in the Svalbard marine food web. TotHg and MeHg were analysed in liver, muscle and/or whole specimens. The present study is the first to provide MeHg levels in seabirds from the Svalbard area. The relative MeHg levels decreased with increasing levels of TotHg in seabird tissues. Stable isotopes of nitrogen (δ 15 N) were used to determine the trophic levels and the rate of biomagnification of mercury in the food web. A linear relationship between mercury levels and trophic position was found for all seabird species combined and their trophic level, but there was no relationship within species. Biomagnification factors were all > 1 for both TotHg and MeHg, indicating biomagnification from prey to predator. TotHg levels in the different seabirds were similar to levels detected in the Kongsfjorden area in the 1990s.

  5. Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada

    International Nuclear Information System (INIS)

    Velden, S. van der; Dempson, J.B.; Evans, M.S.; Muir, D.C.G.; Power, M.

    2013-01-01

    Patterns of total Hg (THg) and methyl Hg (MeHg) biomagnification were investigated in six pairs of co-located lacustrine and marine food webs supporting a common predator, Arctic charr. Mercury biomagnification rates (the slope of log Hg concentration versus δ 15 N-inferred trophic level) did not differ significantly between the two feeding habitats for either THg or MeHg, but THg and MeHg concentrations at the base of the food web were higher in the lacustrine environment than in the marine environment. The proportion of THg as MeHg was related to trophic level, and the relationship was statistically similar in the lacustrine and marine habitats. The biomagnification rate of MeHg exceeded that of THg in both habitats. We conclude that the known difference in Hg concentration between anadromous and non-anadromous Arctic charr is driven by differential Hg concentrations at the base of the lacustrine and marine foodwebs, and not by differential biomagnification rates. - Highlights: ► Concentrations of total mercury ([THg]) and methylmercury ([MeHg]) were measured in 6 paired lacustrine and marine food webs. ► Biomagnification rates (slopes of [THg] or [MeHg] versus δ 15 N-inferred trophic level) were similar in the two habitat types. ► Mercury concentrations at the base of the food web were higher in lacustrine than in marine food webs. ► The percentage of methylated mercury increased with trophic level similarly in the two habitat types. ► The biomagnification rate of MeHg exceeded that of THg in both habitats

  6. Bioaccumulation of newly deposited mercury by fish and invertebrates : an enclosure study using stable mercury isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, M.J.; Blanchfield, P.J.; Podemski, C.; Rudd, J.W.M.; Sandilands, K.A. [Fisheries and Oceans Canada, Winnipeg, MB (Canada). Freshwater Inst.; Hintelmann, H.H.; Ogrinc, N. [Trent Univ., Peterborough, ON (Canada). Dept. of Chemistry; Gilmour, C.C. [Smithsonian Environmental Research Center, Edgewater, MD (United States); Harris, R. [Tetra Tech Inc., Oakville, ON (Canada)

    2006-10-15

    Concentrations of methyl mercury (MeHg) are elevated in fish from North American lakes, which has resulted in the closure of fisheries and the issuance of consumption advisories in many areas. This study investigated the utility of using stable isotopes of enriched stable mercury (Hg) to examine Hg accumulation in aquatic communities. Enriched stable HG isotopes were added to 4 10 m diameter enclosures in an experimental lake to increase inorganic Hg loading. The objective of the study was to trace low-level additions of isotope-enriched Hg through the biogeochemical cycle and into the food web; and to determine the relative contribution of the newly deposited Hg to MeHg accumulation by fish and other biota. The experiment was conducted over 2 summers with a variety of enriched Hg isotopes being added each year. Data suggested that changes in deposition of inorganic Hg will result in changes in MeHg accumulation by fish and other biota. Results showed that within 1 month, spikes of Hg were detected in water, zooplankton, and benthic invertebrates as MeHg, and in fish as total Hg. In 2001, concentrations in water of inorganic spike Hg added in 2000 were near detection limits. Concentrations of 2000 spike MeHg in water and biota remained unchanged or greater. The accumulation of ambient, non-spike MeHg predominated in all organisms despite comparatively large increases in inorganic Hg loading. It was concluded that although long-term changes in Hg deposition may result in changes in MeHg accumulation by biota, it may take upwards of a decade for steady-state conditions to be achieved. Further research is needed to determine to what extent data from the enclosures can be applied to natural lakes. 29 refs., 5 tabs., 5 figs.

  7. Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems.

    Science.gov (United States)

    Jones, Taylor A; Chumchal, Matthew M; Drenner, Ray W; Timmins, Gabrielle N; Nowlin, Weston H

    2013-03-01

    Methyl mercury (MeHg) is one of the most hazardous contaminants in the environment, adversely affecting the health of wildlife and humans. Recent studies have demonstrated that aquatic insects biotransport MeHg and other contaminants to terrestrial consumers, but the factors that regulate the flux of MeHg out of aquatic ecosystems via emergent insects have not been studied. The authors used experimental mesocosms to test the hypothesis that insect emergence and the associated flux of MeHg from aquatic to terrestrial ecosystems is affected by both bottom-up nutrient effects and top-down fish consumer effects. In the present study, nutrient addition led to an increase in MeHg flux primarily by enhancing the biomass of emerging insects whose tissues were contaminated with MeHg, whereas fish decreased MeHg flux primarily by reducing the biomass of emerging insects. Furthermore, the authors found that these factors are interdependent such that the effects of nutrients are more pronounced when fish are absent, and the effects of fish are more pronounced when nutrient concentrations are high. The present study is the first to demonstrate that the flux of MeHg from aquatic to terrestrial ecosystems is strongly enhanced by bottom-up nutrient effects and diminished by top-down consumer effects. Copyright © 2012 SETAC.

  8. Landscape controls on total and methyl mercury in the upper Hudson River basin of New York State

    Science.gov (United States)

    Burns, D. A.; Murray, K. R.; Bradley, P. M.; Brigham, M. E.; Aiken, G.; Smith, M.

    2010-12-01

    High levels of mercury (Hg) in aquatic biota have been identified in surface waters of the Adirondack region of New York, and factors such as the prevalence of wetlands, extensive forest cover, and oligotrophic waters promote Hg bioaccumulation in this region. Past research in this region has focused on improved understanding of the Hg cycle in lake ecosystems. In the study described herein, the landscape controls on total Hg and methylmercury (MeHg) concentrations in riverine ecosystems were explored through synoptic surveys of 27 sites in the upper Hudson River basin of the Adirondack region. Stream samples were collected and analyzed for total Hg, MeHg, dissolved organic carbon (DOC), and ultraviolet absorbance at 254 nm (UV254) during spring and summer of 2006-08. Landscape indices including many common land cover, hydrographic, and topographic-based measures were explored as predictors of Hg through multivariate linear regression. Multivariate models that included a wetland or riparian area-based metric, an index for open water area, and in some cases a topographic metric such as the wetness index explained 55 to 65 percent of the variation in MeHg concentrations, and 55 to 80 percent of the variation in total Hg concentrations. An open water index (OWI) was developed that incorporated both the basin area drained by ponded water and the surface area of these ponds. This index was inversely related to concentrations of total Hg and MeHg. This OWI was also inversely related to specific ultra-violet absorbance, consistent with previous studies showing that open water increases the influence of algal-derived carbon on DOC, decreasing aromaticity, which should decrease the ability of the dissolved carbon pool to bind Hg. The OWI was not significant in models for total Hg that also included UV254 as a predictive variable, but the index did remain significant in similar models for MeHg suggesting that biogeochemical factors in addition to decreasing carbon

  9. Biological effects of methyl and ethyl mercury compounds used as disinfectants for seed-grain on domestic and wild life

    Energy Technology Data Exchange (ETDEWEB)

    Tejning, S

    1971-01-01

    A short survey of the harmful effects of methyl and ethyl mercury on wild and domestic life and on man since the introduction of these compounds in plant protection is given. The biological effects of methyl mercury in birds are illustrated by experiments in hens concerning its accumulation in their organs and plumage, its elimination in eggs and excrements and its influence on the health of the birds, their laying habits and egg production including the occurrence of embryonic damages and the hatchability. Attention is drawn to the ability of methyl mercury to cause genetical disorders. 14 references, 1 figure, 1 table.

  10. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangliang [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Cai Yong [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States)], E-mail: cai@fiu.edu; Philippi, Thomas [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Kalla, Peter; Scheidt, Daniel [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States); Richards, Jennifer [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Scinto, Leonard [Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Appleby, Charlie [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States)

    2008-05-15

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments.

  11. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    International Nuclear Information System (INIS)

    Liu Guangliang; Cai Yong; Philippi, Thomas; Kalla, Peter; Scheidt, Daniel; Richards, Jennifer; Scinto, Leonard; Appleby, Charlie

    2008-01-01

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments

  12. Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure.

    Science.gov (United States)

    Liu, Cheng-Bin; Qu, Guang-Bo; Cao, Meng-Xi; Liang, Yong; Hu, Li-Gang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-12-01

    Inorganic divalent mercury complexes (Hg 2+ ) and monomethylmercury complexes (MeHg) are the main mercury species in aquatic systems and their toxicity to aquatic organisms is of great concern. Tetrahymena is a type of unicellular eukaryotic protozoa located at the bottom of food chain that plays a fundamental role in the biomagnification of mercury. In this work, the dynamic accumulation properties, toxicological characteristics and mechanisms of Hg 2+ and MeHg in five Tetrahymena species were evaluated in detail. The results showed that both Hg 2+ and MeHg were ingested and exhibited inhibitory effects on the proliferation or survival of Tetrahymena species. However, the ingestion rate of MeHg was significantly higher than that of Hg 2+ . The mechanisms responsible for the toxicity of MeHg and Hg 2+ were different, although both chemicals altered mitochondrial membrane potential (MMP). MeHg disrupted the integrity of membranes while Hg 2+ had detrimental effects on Tetrahymena as a result of the increased generation of reactive oxygen species (ROS). In addition, the five Tetrahymena species showed different capacities in accumulating Hg 2+ and MeHg, with T. corlissi exhibiting the highest accumulations. The study also found significant growth-promoting effect on T. corlissi under low concentration exposure (0.003 and 0.01μg Hg/mL (15 and 50nM)), suggesting different effect and mechanism that should be more closely examined when assessing the bioaccumulation and toxicity of mercury in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mercury transport between sediments and the overlying water of the St. Lawrence River area of concern near Cornwall, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Delongchamp, Tania M., E-mail: tdelongchamp@intrinsikscience.co [Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Ridal, Jeffrey J. [St. Lawrence River Institute of Environmental Sciences, 2 Belmont Street, Cornwall, Ontario, K6H 4Z1 (Canada); Lean, David R.S. [Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Poissant, Laurier [Meteorological Service of Canada, Atmospheric Toxic Processes Section, Environment Canada, 105 McGill 7th floor (Youville), Montreal, Quebec H2Y 2E7 (Canada); Blais, Jules M., E-mail: jules.blais@uottawa.c [Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2010-05-15

    Contaminated sediments in the St. Lawrence River remain a difficult problem despite decreases in emissions. Here, sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and diffusion from the sediment to the overlying water was 17.5 +- 10.6 SE ng cm{sup -2} yr{sup -1} for THg and 3.8 +- 1.7 SE ng cm{sup -2} yr{sup -1} for MeHg. These fluxes were very small when compared to the particle-bound mercury flux accumulating in the sediment (183 +- 30 SE ng cm{sup -2} yr{sup -1}). Studies have reported that fish from the westernmost site have higher Hg concentrations than fish collected from the other two sites of the Cornwall Area of Concern, which could not be explained by differences in the Hg flux or THg concentrations in sediments, but the highest concentrations of sediment MeHg, and the greatest proportions of MeHg to THg in both sediment and pore water were observed where fish had highest MeHg concentrations. - Sediments in the St. Lawrence area of concern near Cornwall are a net sink for mercury.

  14. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  15. Mercury methylation influenced by areas of past mercury mining in the Terlingua district, Southwest Texas, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Hines, Mark E.; Biester, Harald

    2006-01-01

    Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg 2+ , Hg 0 , methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 μg/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg 0 , and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg 2+ , organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 μg/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly

  16. The influence of Parachlorella beyerinckii CK-5 on the absorption and excretion of methylmercury (MeHg) in mice.

    Science.gov (United States)

    Uchikawa, Takuya; Yasutake, Akira; Kumamoto, Yoshimitsu; Maruyama, Isao; Kumamoto, Shoichiro; Ando, Yotaro

    2010-02-01

    Chlorella (Parachlorella beyerinckii CK-5), previously identified as Chlorella vulgaris CK-5, is a unicellular green algae that has for many years been used as a nutritional supplement. In order to investigate the effects of methylmercury (MeHg) detoxification by Chlorella, we examined the absorption and excretion of MeHg in mice. Female C57BL/6N mice were randomly divided into three groups of five, and were housed in metabolism cages. Mice were orally administered MeHg chloride at doses of 5 mg (4 mg Hg)/kg body weight with or without 100 mg/mouse of P. beyerinckii powder (BP), and were assigned to either a MeHg group or MeHg + BP group, accordingly. Twenty-four hr after oral administration, feces and urine were collected, and blood, liver, and kidney samples were obtained. Total mercury contents in the samples obtained were determined using an atomic absorption method. The amounts of Hg excreted in feces and urine of the MeHg + BP group were increased nearly 1.9 and 2.2-fold compared with those of the MeHg group. On the other hand, blood and organ Hg levels were not significantly different between two groups. These results suggest that the intake of BP may induce the excretion of Hg both in feces and urine, although it does not affect MeHg absorption from the gastrointestinal tract. The effect of BP on the tissue mercury accumulation may become evident in a long-term experiment.

  17. Methylation of mercury in earthworms and the effect of mercury on the associated bacterial communities.

    Science.gov (United States)

    Rieder, Stephan Raphael; Brunner, Ivano; Daniel, Otto; Liu, Bian; Frey, Beat

    2013-01-01

    Methylmercury compounds are very toxic for most organisms. Here, we investigated the potential of earthworms to methylate inorganic-Hg. We hypothesized that the anaerobic and nutrient-rich conditions in the digestive tracts of earthworm's promote the methylation of Hg through the action of their gut bacteria. Earthworms were either grown in sterile soils treated with an inorganic (HgCl2) or organic (CH3HgCl) Hg source, or were left untreated. After 30 days of incubation, the total-Hg and methyl-Hg concentrations in the soils, earthworms, and their casts were analyzed. The impact of Hg on the bacterial community compositions in earthworms was also studied. Tissue concentrations of methyl-Hg in earthworms grown in soils treated with inorganic-Hg were about six times higher than in earthworms grown in soils without Hg. Concentrations of methyl-Hg in the soils and earthworm casts remained at significantly lower levels suggesting that Hg was mainly methylated in the earthworms. Bacterial communities in earthworms were mostly affected by methyl-Hg treatment. Terminal-restriction fragments (T-RFs) affiliated to Firmicutes were sensitive to inorganic and methyl-Hg, whereas T-RFs related to Betaproteobacteria were tolerant to the Hg treatments. Sulphate-reducing bacteria were detected in earthworms but not in soils.

  18. The upland flooding experiment : assessing the impact of reservoir creation on the biogeochemical cycling of mercury in boreal forest uplands

    Energy Technology Data Exchange (ETDEWEB)

    Rolfhus, K.R. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Bodaly, R.A.; Fudge, R.J.P.; Huebert, D.; Paterson, M.J. [Department of Fisheries and Oceans, Ottawa, ON (Canada) Fresh Water Inst.; Hall, B.D.; St Louis, V.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Krabbenhoft, D.P. [U.S. Geological Survey (United States); Hurley, J.P. [Wisconsin Univ., Madison, WI (United States). Water Resources Inst.; Peech, K. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Entomology

    2000-07-01

    One of the major environmental problems associated with boreal hydroelectric reservoirs such as those found in Canada and other northern countries is the elevated concentrations of mercury (Hg) in fish. A flooding experiment was conducted in northern Ontario to study methyl mercury (MeHg) production/bioaccumulation and greenhouse gas dynamics in impoundments with flooded upland forests of different soil carbon content, moisture and vegetation. The study, entitled Upland Flooding Experiment (FLUDEX) took place in June 1999 at the Experimental Lakes Area (ELA) where three impoundments of 0.7 ha were flooded to a depth of 1 m using oligotrophic lake water. The hydraulic residence time was 10-14 days. Responses to flooding were compared among treatment reservoirs and to previously flooded wetlands. The study included researchers from Canada and the United States who characterized mercury species fluxes from soils, the overall reservoir mass balance for total Hg and MeHg, inorganic Hg and MeHg concentration in zooplankton, benthic invertebrates, emerging insects and fish. Carbon decomposition was also examined. Preliminary results, one year after inundation, show significantly high levels of MeHg concentration compared to the feed water and that of surrounding natural lakes. Outflow samples from the dry forest areas showed the highest concentrations of Hg and MeHg, with lower concentrations from the moist forest. The lowest levels were observed from the outflow from the driest forest reservoir. A rapid pulse of inorganic Hg appears to have been released during the first 2 weeks of flooding. Soil leaching was found to be the main mechanism or inorganic Hg supply while MeHg appears to have been supplied by in situ microbial methylation. It was also shown that forage fish introduced into the reservoir had significantly elevated concentrations of MeHg compared to fish in natural lakes.

  19. Hg L3 XANES Study of Mercury Methylation in Shredded Eichhornia Crassipes

    International Nuclear Information System (INIS)

    Rajan, M.; Darrow, J.; Hua, M.; Barnett, B.; Mendoza, M.; Greenfield, B.K.; Andrews, J.C.

    2008-01-01

    Eichhornia crassipes (water hyacinth) is a non-native plant found in abundance in the Sacramento-San Joaquin River Delta (hereafter called Delta). This species has become a problem, clogging waterways and wetlands. Water hyacinth are also known to accumulate mercury. Recent attempts to curb its proliferation have included shredding with specialized boats. The purpose of this research is to better understand the ability of water hyacinth to phytoremediate mercury and to determine the effect of shredding and anoxic conditions on mercury speciation in plant tissue. In the field assessment, total mercury levels in sediment from the Dow Wetlands in the Delta were found to be 0.273 ± 0.070 ppm Hg, and levels in hyacinth roots and shoots from this site were 1.17 ± 0.08 ppm and 1.03 ± 0.52 ppm, respectively, indicating bioaccumulation of mercury. Plant samples collected at this site were also grown in nutrient solution with 1 ppm HgCl 2 under (1) aerobic conditions, (2) anaerobic conditions, and (3) with shredded plant material only. The greatest accumulation was found in the roots of whole plants. Plants grown in these conditions were also analyzed at Stanford Synchrotron Radiation Laboratory using Hg L 3 X-ray Absorption Near Edge Spectroscopy (XANES), a method to examine speciation that is element-specific and noninvasive. Least-squares fitting of the XANES data to methylated and inorganic mercury(II) model compounds revealed that in plants grown live and aerobically, 5 ± 3% of the mercury was in the form of methylmercury, in a form similar to methylmercury cysteine. This percentage increased to 16 ± 4% in live plants grown anaerobically and to 22 ± 6% in shredded anaerobic plants. We conclude that shredding of the hyacinth plants and, in fact, subjection of plants to anaerobic conditions (e.g., as in normal decay, or in crowded growth conditions) increases mercury methylation. Mechanical removal of the entire plant is significantly more expensive than shredding

  20. Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil.

    Science.gov (United States)

    Abeysinghe, Kasun S; Yang, Xiao-Dong; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Cao, Axiang; Feng, Xinbin; Liu, Shengjie; Mammides, Christos; Meng, Bo; Quan, Rui-Chang; Sun, Jing; Qiu, Guangle

    2017-05-01

    Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC. © 2016 SETAC.

  1. Determination of MeHg sources to fish in the St. Louis River, MN, USA, using Hg stable isotopes

    Science.gov (United States)

    Mercury contamination in the Great Lakes region has become a prevalent concern due to elevated methylmercury (MeHg) levels in fish. While atmospheric deposition of Hg is ubiquitous, releases from legacy point-sources give rise to numerous Areas of Concern (AOCs) across the Great ...

  2. Methylation of Mercury in Earthworms and the Effect of Mercury on the Associated Bacterial Communities

    OpenAIRE

    Rieder, Stephan Raphael; Brunner, Ivano; Daniel, Otto; Liu, Bian; Frey, Beat

    2013-01-01

    Methylmercury compounds are very toxic for most organisms. Here, we investigated the potential of earthworms to methylate inorganic-Hg. We hypothesized that the anaerobic and nutrient-rich conditions in the digestive tracts of earthworm's promote the methylation of Hg through the action of their gut bacteria. Earthworms were either grown in sterile soils treated with an inorganic (HgCl2) or organic (CH3HgCl) Hg source, or were left untreated. After 30 days of incubation, the total-Hg and meth...

  3. Health risk and significance of mercury in the environment.

    Science.gov (United States)

    Li, W C; Tse, H F

    2015-01-01

    Mercury (Hg) has long been recognised as a global pollutant, because it can remain in the atmosphere for more than 1 year. The mercury that enters the environment is generally acknowledged to have two sources: natural and anthropogenic. Hg takes three major forms in the environment, namely methyl-Hg (MeHg), Hg(0) and Hg(2+). All three forms of Hg adversely affect the natural environment and pose a risk to human health. In particular, they may damage the human central nervous system, leading to cardiovascular, respiratory and other diseases. MeHg is bioavailable and can be bioaccumulated within food webs. Therefore, several methods of eliminating Hg from the soil and the aquatic system have been proposed. The focus of this article is on phytoremediation, as this technique provides a low-cost and environmentally friendly alternative to traditional methods.

  4. Double spike with isotope pattern deconvolution for mercury speciation

    International Nuclear Information System (INIS)

    Castillo, A.; Rodriguez-Gonzalez, P.; Centineo, G.; Roig-Navarro, A.F.; Garcia Alonso, J.I.

    2009-01-01

    Full text: A double-spiking approach, based on an isotope pattern deconvolution numerical methodology, has been developed and applied for the accurate and simultaneous determination of inorganic mercury (IHg) and methylmercury (MeHg). Isotopically enriched mercury species ( 199 IHg and 201 MeHg) are added before sample preparation to quantify the extent of methylation and demethylation processes. Focused microwave digestion was evaluated to perform the quantitative extraction of such compounds from solid matrices of environmental interest. Satisfactory results were obtained in different certificated reference materials (dogfish liver DOLT-4 and tuna fish CRM-464) both by using GC-ICPMS and GC-MS, demonstrating the suitability of the proposed analytical method. (author)

  5. Isoproterenol potentiation of methyl mercury effects in vivo cardiac ATPasees and 3H-dopamine uptake

    International Nuclear Information System (INIS)

    Ahammad-Sahib, K.I.; Moorthy, K.S.; Cameron, J.A.; Desaiah, D.

    1988-01-01

    Isoproterenol, a potent B-adrenergic receptor agonist, has been known to produce infarct-like myocardial lesions in rats characterized by swelling of endoplasmic reticulum. The swelling of this system is interpreted as an influx of large amount of extracellular fluid into myocardial cells by disturbances of the electrolyte metabolism. Isoproterenol is employed clinically as a bronchodilator in respiratory disorders and as a stimulant in heart block and cardiogenic shocks. In spite of its clinical use, possible drug-chemical interactions leading to adverse health effects are obvious when individuals on a regular isoproterenol treatment are exposed to an environmental contaminant such as methyl mercury. Consumption of fish and fish products is by far the most significant route of exposure to environmental mercury. In spite of such a possibility, little is know about isoproterenol-methyl mercury interaction. The present study forms the first of this kind to report such interactions and their effects on cardiac membrane bound enzymes such as Na + -K + and Ca 2+ -ATPases. Since Na + -K + ATPase has been implicated in uptake and release processes of catecholamines, the effects were also studied on 3 H-dopamine uptake by sarcoplasmic reticulum. As a prelude to these proposed long-term chronic studies with non-lethal doses in the present report only single and sub-lethal doses were used for a shorter (48h) duration

  6. The effect of selenium on the biliary excretion and organ distribution of mercury in the rat after exposure to methyl mercuric chloride

    International Nuclear Information System (INIS)

    Alexander, J.; Norseth, T.

    1979-01-01

    The influence of selenium compounds on the biliary excretion and the organ distribution of mercury after injection of methyl mercuric chloride(4μmol/kg) have been tested. Selenite, seleno-di-N-acetylglycine and seleno-methionine strongly inhibited the biliary excretion of mercury. Selenite even in a molar dose of 1/40 of the methyl mercury dose inhibited the biliary excretion of mercury. The loss toxic seleno-di-N-acetylglycine was needed in larger molar doses and did not act as rapidly as selenite. Biliary excreted methyl mercury is known to be partly reabsorbed in the gut. Subsequently a part of it is deposited in the kidneys since drainage of the bile lowered the kidney content of mercury. Rats given selenium compounds in combination with bile drainage showed further reduction of the kidney mercury content than bile duct drainage alone. Thus the demonstrated lowering effect of selenium compounds on the kidney mercury content cannot be completely explained by an inhibition of biliary excretion of mercury. The mercury concentration in the brain was increased by the selenium compounds; the effect being dependent of the selenium dose reaching a maximum at an equimolar selenite - to methyl mercury dose ratio. The mechanisms by which selenium influences the methyl mercury kinetics are discussed. (author)

  7. Insights into microbial communities involved in mercury methylation in the San Francisco Bay estuary

    Science.gov (United States)

    Machak, C.; Francis, C. A.

    2013-12-01

    San Francisco Bay (SFB) estuary is the largest estuary on the western coast of the United States, draining a watershed covering more than one third of the state of California. Mercury (Hg) contamination in SFB, as a result of gold and mercury mining in the Coast Range and Sierra Nevada region, has been observed for at least 150 years. Additional sources of Hg contamination to SFB come from active oil refineries, manufacturing, and wastewater treatment plants in the area. Concentrations of methylmercury in the sediment at the time of sample collection for the present study ranged from 0.011-3.88 μg/kg (dry weight). At some sites, the concentration exceeds wetland toxicity limits, posing a threat to the health of the ecosystem and potentially endangering humans that use the estuary for food and recreation. This study attempts to understand the factors that control the transformation of Hg to methylmercury by microorganisms in aquatic sediments, where the majority of Hg methylation is known to occur. Under anoxic conditions, some sulfate- and iron-reducing bacteria have the capacity to transform Hg into methylmercury. To better understand the microbial communities involved in Hg methylation, an extensive library of 16S rRNA sequences was generated (via Illumina sequencing) from sediment samples at 20 sites throughout the SFB estuary. In addition to genomic data, we have access to a massive database of geochemical measurements made by the SFB Regional Monitoring Program at the sampling locations. These measurements show that our sediment samples have varying methylmercury concentrations and span gradients in porewater sulfate and Fe(III), which are the two known alternative electron acceptors for mercury-methylating anaerobic bacteria. The sampling sites also span gradients in other geochemical factors known to influence microbial community composition (and potentially Hg mercury methylation), such as available organic carbon, pH, and salinity. We will present the

  8. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury

    Directory of Open Access Journals (Sweden)

    Diana M. Narváez

    2017-09-01

    Full Text Available Mercury (Hg exposure is a public health concern due to its persistence in the environment and its high toxicity. Such toxicity has been associated with the generation of oxidative stress in occupationally exposed subjects, such as artisanal gold miners. In this study, we characterize occupational exposure to Hg by measuring blood, urine and hair levels, and investigate oxidative stress and DNA methylation associated with gold mining. To do this, samples from 53 miners and 36 controls were assessed. We show higher levels of oxidative stress marker 8-OHdG in the miners. Differences in LINE1 and Alu(Yb8 DNA methylation between gold miners and control group are present in peripheral blood leukocytes. LINE1 methylation is positively correlated with 8-OHdG levels, while XRCC1 and LINE1 methylation are positively correlated with Hg levels. These results suggest an effect of Hg on oxidative stress and DNA methylation in gold miners that may have an impact on miners’ health.

  9. Characterization of mercury contamination in the Androscoggin River, Coos County, New Hampshire

    Science.gov (United States)

    Chalmers, Ann; Marvin-DiPasquale, Mark C.; Degnan, James R.; Coles, James; Agee, Jennifer L.; Luce, Darryl

    2013-01-01

    The former chloralkali facility in Berlin, New Hampshire, was designated a Superfund site in 2005. Historic paper mill activities resulted in the contamination of groundwater, surface water, and sediments with many organic compounds and mercury (Hg). Hg continues to seep into the Androscoggin River in elemental form through bedrock fractures. The objective of this study was to spatially characterize (1) the extent of Hg contamination in water, sediment, and biota; (2) Hg speciation and methylmercury (MeHg) production potential rates in sediment; (3) the availability of inorganic divalent Hg (Hg(II)) for Hg(II)-methylation (MeHg production); and (4) ancillary sediment geochemistry necessary to better understand Hg speciation and MeHg production potential rates in this system.

  10. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    Science.gov (United States)

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  11. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.

    Science.gov (United States)

    Guimarães, J R; Meili, M; Hylander, L D; de Castro e Silva, E; Roulet, M; Mauro, J B; de Lemos, R

    2000-10-16

    In aquatic systems, bottom sediments have often been considered as the main methylmercury (MeHg) production site. In tropical floodplain areas, however, floating meadows and flooded forests extend over large areas and can be important Hg methylating sites. We present here a cross-system comparison of the Hg net methylation capacity in surface sediments, flooded soils and roots of floating aquatic macrophytes, assayed by in situ incubation with 203Hg and extraction of formed Me203 Hg by acid leaching and toluene. The presence of mono-MeHg was confirmed by thin layer chromatography and other techniques. Study areas included floodplain lakes in the Amazon basin (Tapajós, Negro and Amazon rivers), the Pantanal floodplain (Paraguay river basin), freshwater coastal lagoons in Rio de Janeiro and oxbow lakes in the Mogi-Guaçú river, São Paulo state. Different Hg levels were added in assays performed in 1994-1998, but great care was taken to standardise all other test parameters, to allow data comparisons. Net MeHg production was one order of magnitude higher (mean 13.8%, range 0.28-35) in the living or decomposing roots of floating or rooted macrophyte mats (Eichhornia azurea, E. crassipes, Paspalum sp., Eleocharis sellowiana, Salvinia sp., S. rotundifolia and Scirpus cubensis) than in the surface layer of underlying lake sediments (mean 0.6%, range 0.022-2.5). Methylation in flooded soils presented a wide range and was in some cases similar to the one found in macrophyte roots but usually much lower. In a Tapajós floodplain lake, natural concentrations of MeHg in soil and sediment cores taken along a lake-forest transect agreed well with data on net methylation potentials in the same samples. E. azurea, E. crassipes and Salvinia presented the highest methylation potentials, up to 113 times higher than in sediments. Methylation in E. azurea from six lakes of the Paraguay and Cuiabá rivers, high Pantanal, was determined in the 1998 dry and wet seasons and ranged from

  12. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clayden, Meredith G., E-mail: meredith.clayden@gmail.com [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Arsenault, Lilianne M. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O' Driscoll, Nelson J. [Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Mallory, Mark L. [Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2015-03-15

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ{sup 13}C and δ{sup 15}N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ{sup 15}N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas.

  13. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    International Nuclear Information System (INIS)

    Clayden, Meredith G.; Arsenault, Lilianne M.; Kidd, Karen A.; O'Driscoll, Nelson J.; Mallory, Mark L.

    2015-01-01

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ 13 C and δ 15 N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ 15 N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas

  14. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-456 Marine Sediment Samples

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of prime concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess t h e reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. A marine sediment sample with certified mass amount contents for aluminium, arsenic, cadmium chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, vanadium and zinc was recently produced by the IAEA Environment Laboratories. This publication presents the sample preparation methodology, including material homogeneity and the stability study, the selection of laboratories, the evaluation of results from the certification campaign, and the assignment of property values and their associated uncertainty. As a result, certified values for mass fractions and associated expanded uncertainty were

  15. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary

    Science.gov (United States)

    Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.

    2012-01-01

    The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.

  16. Recent changes in mercury deposition and primary productivity inferred from sediments of lakes from the Hudson Bay Lowlands, Ontario, Canada

    International Nuclear Information System (INIS)

    Brazeau, Michelle L.; Poulain, Alexandre J.; Paterson, Andrew M.; Keller, Wendel; Sanei, Hamed; Blais, Jules M.

    2013-01-01

    Spatial and temporal changes in mercury (Hg) concentrations and organic carbon in lake sediments were examined from the Hudson Bay Lowlands to investigate whether Hg deposition to sediments is related to indicators of autochthonous production. Total organic carbon, “S2” carbon (mainly algal-derived OC), C:N and ∂ 13 C indicators suggest an increase in autochthonous productivity in recent decades. Up-core profiles of S2 concentrations and fluxes were significantly correlated with Hg suggesting that varying algal matter scavenging of Hg from the water column may play an important role in the temporal profiles of Hg throughout the sediment cores. Absence of significant relationship between total Hg and methyl Hg (MeHg) in surficial sediments suggested that inorganic Hg supply does not limit MeHg production. MeHg and OC were highly correlated across lakes in surface and deep sediment layers, indicating that sediment organic matter content explains part of the spatial variation in MeHg concentrations between lakes. - Highlights: ► Hg concentrations in sediment cores correlate with autochthonous organic production. ► Inorganic Hg supply in sediment does not limit MeHg production. ► Sediment methylmercury concentration is highly correlated with organic C content. - Increased mercury concentrations in lake sediment cores coincide with evidence of increased autochthonous production in lakes of the Hudson Bay Lowlands, Canada.

  17. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  18. Determination of total and organic mercury and evaluation of methylation and demethylation processes in sediments of the Rio Grande Reservoir, State of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Franklin, Robson Leocadio

    2010-01-01

    The Rio Grande reservoir is located in the metropolitan area of Sao Paulo and it is a very important water supply for this region. In the present study bottom waters and sediment samples collected in this reservoir, in four sampling points, in four campaigns, from September 2008 to January 2010, were analyzed. Firstly total Hg was determined in sediment and bottom waters by cold vapor atomic absorption technique (CV AAS). Following, the analytical methodology for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. The validation of this methodology, in terms of precision and accuracy, was performed by means of IAEA 405 and BCR-CRM 580 reference materials analyses. For methylation and demethylation processes evaluation in this environment, the following physical and chemical parameters were assessed, in situ: pH, water temperature, redox potential (EH), transparency and depth. For the sediment samples, granulometry, total organic carbon, sulphate-reducing bacteria, total N and P, besides the metals Co, Cu, Fe and Mn were evaluated. The selection of these parameters was related to the factors that influence the behavior of MeHg in the sediments and its transition zone. Total Hg ranging from 1.0 to 71.0 mg kg'- 1 and organic mercury from -1 in sediments and methylation rates from 0.06 to 1.4% were found, along the reservoir. Different methylation conditions along the reservoir and its influences were also discussed. As supplementary study the concentration of some metals and trace elements in the sediments by neutron activation analysis technique was determined. As, Ba, Br, Co, Cr, Cs, Hf, Fe, Na, Rb, Sb, Sc and Zn and rare earth elements Ce, Eu, La, Lu, Nd, Sm and Yb were determined. The enrichment factor in relation to earth crust values using Sc as normalizer element reached values higher than 2.0 for the elements As, Br

  19. Distribution of biotransformation of methyl mercuric chloride in different tissues of mice

    International Nuclear Information System (INIS)

    Mehra, M.; Choi, B.H.

    1981-01-01

    The distribution of 203 Hg radioactivity has been studied in various organs of adult male and female mice from one hour to 21 days after treating with 203 Hg-labeled methyl mercuric chloride (MMC). The amount of methyl mercury (MeHg) and inorganic mercury (Hg) has also beam determined by injecting single doses of non-radioactive MMC, and subsequently measuring total, organic and inorganic Hg content by atomic absorption technique. In addition, photoemulsion histochemical method (PEHM) was used to demonstrate localization of Hg grains in various cellular compartments of organs and tissues. The highest levels of radioactivity were attained at 7 hours post-treatment on all organs except for brain and testis. The testis showed the highest radioactivity at one day and the brain at two days post-treatment. MeHg persisted in brain over a longer period though the level was not as high. The content of MeHg and inorganic Hg was maximum in kidneys as compared to other organs. The brain and the reproductive organs contained the least amoun of inorganic Hg. By PEHM, Hg grains were most prominently observed in the sinusoids, Kupfer cells, hepatic cells and bile duct epithelium of liver; in the lumen of blood vessels, convoluted and collecting tubules of kidneys; and in the gastrointestinal epithelium. The pattern of uptake and distribution of MeHg correlated well with the morphological demonstration of Hg grains in tissue sections. (author)

  20. Zuotai and HgS differ from HgCl2 and methyl mercury in Hg accumulation and toxicity in weanling and aged rats.

    Science.gov (United States)

    Zhang, Bin-Bin; Li, Wen-Kai; Hou, Wei-Yu; Luo, Ya; Shi, Jing-Zhen; Li, Cen; Wei, Li-Xin; Liu, Jie

    2017-09-15

    Mercury sulfides are used in Ayurvedic medicines, Tibetan medicines, and Chinese medicines for thousands of years and are still used today. Cinnabar (α-HgS) and metacinnabar (β-HgS) are different from mercury chloride (HgCl 2 ) and methylmercury (MeHg) in their disposition and toxicity. Whether such scenario applies to weanling and aged animals is not known. To address this question, weanling (21d) and aged (450d) rats were orally given Zuotai (54% β-HgS, 30mg/kg), HgS (α-HgS, 30mg/kg), HgCl 2 (34.6mg/kg), or MeHg (MeHgCl, 3.2mg/kg) for 7days. Accumulation of Hg in kidney and liver, and the toxicity-sensitive gene expressions were examined. Animal body weight gain was decreased by HgCl 2 and to a lesser extent by MeHg, but unaltered after Zuotai and HgS. HgCl 2 and MeHg produced dramatic tissue Hg accumulation, increased kidney (kim-1 and Ngal) and liver (Ho-1) injury-sensitive gene expressions, but such changes are absent or mild after Zuotai and HgS. Aged rats were more susceptible than weanling rats to Hg toxicity. To examine roles of transporters in Hg accumulation, transporter gene expressions were examined. The expression of renal uptake transporters Oat1, Oct2, and Oatp4c1 and hepatic Oatp2 was decreased, while the expression of renal efflux transporter Mrp2, Mrp4 and Mdr1b was increased following HgCl 2 and MeHg, but unaffected by Zuotai and HgS. Thus, Zuotai and HgS differ from HgCl 2 and MeHg in producing tissue Hg accumulation and toxicity, and aged rats are more susceptible than weanling rats. Transporter expression could be adaptive means to reduce tissue Hg burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    Science.gov (United States)

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Joshua T.

    2016-01-01

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  2. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements

    Science.gov (United States)

    Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; Fujii, R.

    2011-01-01

    We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 μg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.

  3. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study

    Science.gov (United States)

    Windham-Myers, Lisamarie; Fleck, Jacob A.; Ackerman, Joshua T.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Heim, Wesley A.; Bachand, Philip A.M.; Eagles-Smith, Collin A.; Gill, Gary; Stephenson, Mark; Alpers, Charles N.

    2014-01-01

    With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007–2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed — drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay — led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands — slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife — may enhance microbial

  4. Mercury methylation and reduction potentials in marine water: An improved methodology using {sup 197}Hg radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Koron, Neza [National Institute of Biology, Marine Biology Station, Fornace 41, 6330 Piran (Slovenia); Bratkic, Arne [Department of Environmental Sciences, ' Jozef Stefan' Institute, Jamova 39, 1000 Ljubljana (Slovenia); Ribeiro Guevara, Sergio, E-mail: ribeiro@cab.cnea.gov.ar [Laboratorio de Analisis por Activacion Neutronica, Centro Atomico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche (Argentina); Vahcic, Mitja; Horvat, Milena [Department of Environmental Sciences, ' Jozef Stefan' Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2012-01-15

    A highly sensitive laboratory methodology for simultaneous determination of methylation and reduction of spiked inorganic mercury (Hg{sup 2+}) in marine water labelled with high specific activity radiotracer ({sup 197}Hg prepared from enriched {sup 196}Hg stable isotope) was developed. A conventional extraction protocol for methylmercury (CH{sub 3}Hg{sup +}) was modified in order to significantly reduce the partitioning of interfering labelled Hg{sup 2+} into the final extract, thus allowing the detection of as little as 0.1% of the Hg{sup 2+} spike transformed to labelled CH{sub 3}Hg{sup +}. The efficiency of the modified CH{sub 3}Hg{sup +} extraction procedure was assessed by radiolabelled CH{sub 3}Hg{sup +} spikes corresponding to concentrations of methylmercury between 0.05 and 4 ng L{sup -1}. The recoveries were 73.0{+-}6.0% and 77.5{+-}3.9% for marine and MilliQ water, respectively. The reduction potential was assessed by purging and trapping the radiolabelled elemental Hg in a permanganate solution. The method allows detection of the reduction of as little as 0.001% of labelled Hg{sup 2+} spiked to natural waters. To our knowledge, the optimised methodology is among the most sensitive available to study the Hg methylation and reduction potential, therefore allowing experiments to be done at spikes close to natural levels (1-10 ng L{sup -1}). - Highlights: Black-Right-Pointing-Pointer Inorganic mercury methylation and reduction in marine water were studied. Black-Right-Pointing-Pointer High specific activity {sup 197}Hg was used to label Hg{sup 2+} spikes at natural levels. Black-Right-Pointing-Pointer Methylmercury extraction had 73% efficiency for 0.05-4 ng L{sup -1} levels. Black-Right-Pointing-Pointer High sensibility to assess methylation potentials, below 0.1% of the spike. Black-Right-Pointing-Pointer High sensibility also for reduction potentials, as low as 0.001% of the spike.

  5. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-470 Oyster Sample

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the production of the IAEA-470 certified reference material, which was produced following ISO Guide 34:2009, General Requirements for the Competence of Reference Materials Producers. A sample of approximately 10 kg of dried oysters was taken from oysters collected, dissected and freeze-dried by the Korean Ocean Research and Development Institute, and was further processed at the IAEA Environment Laboratories to produce a certified reference material. The sample contained certified mass fractions for arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, methyl mercury, rubidium, selenium, silver, sodium, strontium, vanadium and zinc. The produced vials containing the processed oyster sample were carefully capped and stored for further certification studies. Between-unit homogeneity and stability during dispatch and storage were quantified in accordance with ISO Guide 35:2006, Reference Materials - General and Statistical Principles for Certification. The material was characterized by laboratories with demonstrated competence and adhering to ISO/IEC 17025:2005. Uncertainties of the certified values were calculated in compliance with the guide to the Expression of Uncerdainty in Measurement (JCGM 100:2008), including uncertainty associated with heterogeneity and instability of the material, and with the characterization itself. The material is intended for the quality control and assessment of method performance. As with any reference material, it can also be used for control charts or validation studies

  6. Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India--a UNESCO World Heritage Site.

    Science.gov (United States)

    Chatterjee, Mousumi; Canário, João; Sarkar, Santosh Kumar; Branco, Vasco; Godhantaraman, Nallamuthu; Bhattacharya, Bhaskar Deb; Bhattacharya, Asokkumar

    2012-09-01

    This study was performed to elucidate the distribution, concentration trend and possible sources of total mercury (Hg(T)) and methylmercury (MeHg) in sediment cores (<63 μm particle size; n = 75) of Sundarban mangrove wetland, northeastern part of the Bay of Bengal, India. Total mercury was determined by atomic absorption spectrometry (AAS) in a Leco AMA 254 instrument and MeHg by gas chromatography-atomic fluorescence spectrometry (GC-AFS). A wide range of variation in Hg(T) (0.032-0.196 μg g(-1) dry wt.) as well as MeHg (0.04-0.13 ng g(-1) dry wt.) concentrations revealed a slight local contamination. The prevalent low Hg(T) levels in sediments could be explained by sediment transport by the tidal Hugli (Ganges) River that would dilute the Hg(T) values via sediment mixing processes. A broader variation of MeHg proportions (%) were also observed in samples suggesting that other environmental variables such as organic carbon and microbial activity may play a major role in the methylation process. An overall elevated concentration of Hg(T) in surface layers (0-4 cm) of the core is due to remobilization of mercury from deeper sediments. Based on the index of geoaccumulation (I (geo)) and low effects-range (ER-L) values, it is considered that the sediment is less polluted by Hg(T) and there is less ecotoxicological risk. The paper provides the first information of MeHg in sediments from this wetland environment and the authors strongly recommend further examination of Hg(T) fluxes for the development of a detailed coastal MeHg model. This could provide more refine estimates of a total flux into the water column.

  7. Within-person reproducibility of red blood cell mercury over a 10- to 15-year period among women in the Nurses' Health Study II

    DEFF Research Database (Denmark)

    Kioumourtzoglou, Marianthi-Anna; Roberts, Andrea L; Nielsen, Flemming

    2016-01-01

    Most epidemiologic studies of methylmercury (MeHg) health effects rely on a single measurement of a MeHg biomarker to assess long-term exposures. Long-term reproducibility data are, therefore, needed to assess the reliability of a single measure to reflect long-term exposures. In this study, we...... assessed within-person reproducibility of red blood cell (RBC) mercury (Hg), a marker of methyl-mercury, over 10-15 years in a sample of 57 women. Fifty-seven women from the Nurses' Health Study II provided two blood samples 10-15-years apart (median: 12 years), which were analyzed for mercury levels...... in the red blood cells (B-Hg*). To characterize within-person reproducibility, we estimated correlation and intraclass correlation coefficients (r and ICC) across the two samples. Further, we compared different prediction models, including variables on fish and seafood consumption, for B-Hg* at the first...

  8. Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir

    International Nuclear Information System (INIS)

    Stewart, A.R.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Saiki, M.K.; Alpers, C.N.; Krabbenhoft, D.P.

    2008-01-01

    A study was conducted to document the water quality in the Camp Far West Reservoir (CFWR) located at 300 feet above sea level in the foothills of the Sierra Nevada in northern California. The CFWR is characterized by drawdown in the late summer and fall. It receives acidic, metal-rich drainage seasonally from an inactive gold mine. Water-quality constituents vary considerably by season. Water-quality data for CFWR were used together with data from studies of sediment and biota to develop a conceptual model for mercury methylation and bioaccumulation in the reservoir and the lower Bear River watershed. The study examined the physical and biogeochemical characteristics of the aquatic environment that affect growth dynamics of phytoplankton and the zooplankton communities that depend on them. The uptake affect of methylmercury (MeHg) into the pelagic food web was also investigated by assessing the changes in the quality and quantity of suspended particulate material, zooplankton taxonomy, and MeHg concentrations with seasonal changes. MeHg concentrations in bulk zooplankton increased at high water and were positively correlated with cladoceran biomass and negatively correlated with rotifer biomass. According to stable isotope analysis, MeHg concentrations in the pelagic-based food web were generally higher than in the benthic-based food web. The difference in MeHg bioaccumulation among trophic pathways appears to be set at the base of the food webs. It was concluded that plankton dynamics plays a key role in driving the MeHg content of zooplankton and MeHg bioaccumulation in top predators in pelagic-based food webs. 58 refs., 1 tab., 8 figs

  9. Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, A.R.; Kuwabara, J.S.; Marvin-DiPasquale, M. [United States Geological Survey, Menlo Park, CA (United States); Saiki, M.K. [United States Geological Survey, Western Fisheries Research Center, Dixon, CA (United States); Alpers, C.N. [United States Geological Survey, California Water Science Center, Sacramento, CA (United States); Krabbenhoft, D.P. [United States Geological Survey, Middleton, WI (United States)

    2008-11-15

    A study was conducted to document the water quality in the Camp Far West Reservoir (CFWR) located at 300 feet above sea level in the foothills of the Sierra Nevada in northern California. The CFWR is characterized by drawdown in the late summer and fall. It receives acidic, metal-rich drainage seasonally from an inactive gold mine. Water-quality constituents vary considerably by season. Water-quality data for CFWR were used together with data from studies of sediment and biota to develop a conceptual model for mercury methylation and bioaccumulation in the reservoir and the lower Bear River watershed. The study examined the physical and biogeochemical characteristics of the aquatic environment that affect growth dynamics of phytoplankton and the zooplankton communities that depend on them. The uptake affect of methylmercury (MeHg) into the pelagic food web was also investigated by assessing the changes in the quality and quantity of suspended particulate material, zooplankton taxonomy, and MeHg concentrations with seasonal changes. MeHg concentrations in bulk zooplankton increased at high water and were positively correlated with cladoceran biomass and negatively correlated with rotifer biomass. According to stable isotope analysis, MeHg concentrations in the pelagic-based food web were generally higher than in the benthic-based food web. The difference in MeHg bioaccumulation among trophic pathways appears to be set at the base of the food webs. It was concluded that plankton dynamics plays a key role in driving the MeHg content of zooplankton and MeHg bioaccumulation in top predators in pelagic-based food webs. 58 refs., 1 tab., 8 figs.

  10. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    Science.gov (United States)

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  11. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  12. Prenatal mercury exposure, maternal seafood consumption and associations with child language at five years.

    Science.gov (United States)

    Vejrup, Kristine; Brandlistuen, Ragnhild Eek; Brantsæter, Anne Lise; Knutsen, Helle Katrine; Caspersen, Ida Henriette; Alexander, Jan; Lundh, Thomas; Meltzer, Helle Margrete; Magnus, Per; Haugen, Margaretha

    2018-01-01

    Methyl mercury (MeHg) is a well-known neurotoxin and evidence suggests that also low level exposure may affect prenatal neurodevelopment. Uncertainty exists as to whether the maternal MeHg burden in Norway might affect child neurodevelopment. To evaluate the association between prenatal mercury exposure, maternal seafood consumption and child language and communication skills at age five. The study sample comprised 38,581 mother-child pairs in the Norwegian Mother and Child Cohort Study. Maternal mercury blood concentration in gestational week 17 was analysed in a sub-sample of 2239 women. Prenatal mercury exposure from maternal diet was calculated from a validated FFQ answered in mid-pregnancy. Mothers reported children's language and communications skills at age five by a questionnaire including questions from the Ages and Stages Questionnaire (ASQ), the Speech and Language Assessment Scale (SLAS) and the Twenty Statements about Language-Related Difficulties (language 20). We performed linear regression analyses adjusting for maternal characteristics, nutritional status and socioeconomic factors. Median maternal blood mercury concentration was 1.03μg/L, dietary mercury exposure was 0.15μg/kgbw/wk, and seafood intake was 217g/wk. Blood mercury concentrations were not associated with any language and communication scales. Increased dietary mercury exposure was significantly associated with improved SLAS scores when mothers had a seafood intake below 400g/wk in the adjusted analysis. Sibling matched analysis showed a small significant adverse association between those above the 90th percentile dietary mercury exposure and the SLAS scores. Maternal seafood intake during pregnancy was positively associated with the language and communication scales. Low levels of prenatal mercury exposure were positively associated with language and communication skills at five years. However, the matched sibling analyses suggested an adverse association between mercury and child

  13. Sexual differences in the distribution and retention of organic and inorganic mercury in methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Marcus, A.H.; Mushak, P.; Hall, L.L.

    1986-01-01

    At 56 days of age, male and female Long-Evans rats received 1 μmole of 203 Hg-labeled mercuric chloride per kilogram sc and total, organic, and inorganic mercury contents and concentrations in tissues were determined for up to 98 days postdosing. When expressed on a concentration basis, the only significant sexual difference was in the higher average concentration of organic mercury in the kidneys of females. When expressed on a tissue content basis, significant male-female differences in the kinetics (sex x time interactions) of organic mercury retention were found in kidney, brain, skeletal muscle, pelt, and whole body. Significant sex x time interactions in the concentrations of organic mercury were found in kidney, skeletal muscle, and whole body. Kinetics of retention and concentration of inorganic Hg in the pelt differed significantly for males and females. Discordance of degree of statistical significance of differences in mercury contents and concentrations reflected in part differences in relative body composition of males and females. Differences in integrated exposure were estimated by the female-to-male ratio of areas under retention curves. Reconstruction of whole body organic and inorganic mercury burdens from constituent tissues indicated that integrated exposures of males and females to inorganic mercury were equal but females had a lower integrated exposure to organic mercury. Integrated exposure of liver to either form of mercury was about equal in males and females. However, the integrated exposure of the brain of females to inorganic mercury was 2.19 times that of males suggest'ing a sexual difference in accumulation or retention of inorganic mercury in the nervous system

  14. Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132.

    Science.gov (United States)

    Zhao, Linduo; Chen, Hongmei; Lu, Xia; Lin, Hui; Christensen, Geoff A; Pierce, Eric M; Gu, Baohua

    2017-09-19

    Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. In this study, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under nonsulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hg via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting microbial Hg uptake and methylation. Additionally, DOM and glutathione greatly decreased Hg sorption by G. sulfurreducens PCA but showed little effect on D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. These observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.

  15. Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Stephanie; Guerin, Thierry [Agence Nationale de Securite Sanitaire de l' Alimentation, Laboratoire de Securite des Aliments de Maisons-Alfort, Unite des Contaminants Inorganiques et Mineraux de l' Environnement, ANSES, Maisons-Alfort (France); Monperrus, Mathilde; Donard, Olivier F.X.; Amouroux, David [IPREM UMR 5254 CNRS - Universite de Pau et des Pays de l' Adour, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l' Environnement et les Materiaux, Pau Cedex (France)

    2011-11-15

    Methylmercury (MeHg) and total mercury (THg) in seafood were determined using species-specific isotope dilution analysis and gas chromatography combined with inductively coupled plasma mass spectrometry. Sample preparation methods (extraction and derivation step) were evaluated on certified reference materials using isotopically enriched Hg species. Solid-liquid extraction, derivation by propylation and automated agitation gave excellent accuracy and precision results. Satisfactory figures of merit for the selected method were obtained in terms of limit of quantification (1.2 {mu}g Hg kg{sup -1} for MeHg and 1.4 {mu}g Hg kg{sup -1} for THg), repeatability (1.3-1.7%), intermediate precision reproducibility (1.5% for MeHg and 2.2% for THg) and trueness (bias error less than 7%). By means of a recent strategy based on accuracy profiles ({beta}-expectation tolerance intervals), the selected method was successfully validated in the range of approximately 0.15-5.1 mg kg{sup -1} for MeHg and 0.27-5.2 mg kg{sup -1} for THg. Probability {beta} was set to 95% and the acceptability limits to {+-}15%. The method was then applied to 62 seafood samples representative of consumption in the French population. The MeHg concentrations were generally low (1.9-588 {mu}g kg{sup -1}), and the percentage of MeHg varied from 28% to 98% in shellfish and from 84% to 97% in fish. For all real samples tested, methylation and demethylation reactions were not significant, except in one oyster sample. The method presented here could be used for monitoring food contamination by MeHg and inorganic Hg in the future to more accurately assess human exposure. (orig.)

  16. Mercury pollution in Wuchuan mercury mining area, Guizhou, Southwestern China: the impacts from large scale and artisanal mercury mining.

    Science.gov (United States)

    Li, Ping; Feng, Xinbin; Qiu, Guangle; Shang, Lihai; Wang, Shaofeng

    2012-07-01

    To evaluate the environmental impacts from large scale mercury mining (LSMM) and artisanal mercury mining (AMM), total mercury (THg) and methyl mercury (MeHg) were determined in mine waste, ambient air, stream water and soil samples collected from Wuchuan mercury (Hg) mining area, Guizhou, Southwestern China. Mine wastes from both LSMM and AMM contained high THg concentrations, which are important Hg contamination sources to the local environment. Total gaseous mercury (TGM) concentrations in the ambient air near AMM furnaces were highly elevated, which indicated that AMM retorting is a major source of Hg emission. THg concentrations in the stream water varied from 43 to 2100 ng/L, where the elevated values were mainly found in the vicinity of AMM and mine waste heaps of LSMM. Surface soils were seriously contaminated with Hg, and land using types and organic matter played an important role in accumulation and transportation of Hg in soil. The results indicated heavy Hg contaminations in the study area, which were resulted from both LSMM and AMM. The areas impacted by LSMM were concentrated in the historical mining and smelting facilities, while Hg pollution resulted from AMM can be distributed anywhere in the Hg mining area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Mercury and flooding cycles in the Tapajos river basin, Brazilian Amazon: The role of periphyton of a floating macrophyte (Paspalum repens)

    International Nuclear Information System (INIS)

    Coelho-Souza, Sergio A.; Guimaraes, Jean R.D.; Miranda, Marcio R.; Poirier, Hugo; Mauro, Jane B.N.; Lucotte, Marc; Mergler, Donna

    2011-01-01

    Methylmercury (MeHg) increases mercury (Hg) toxicity and is biomagnified in the trophic chain contaminating riverine Amazon populations. Freshwater macrophyte roots are a main site of Hg methylation in different Brazilian environments. Paspalum repens periphyton was sampled in four floodplain lakes during the dry, rainy and wet seasons for measurement of total Hg (THg), MeHg, Hg methylation potentials, %C, %N, δ 13 C, δ 15 N and bacterial heterotrophic production as 3 H-leucine incorporation rate. THg concentration varied from 67 to 198 ng/g and the potential of Me 203 Hg formation was expressive (1-23%) showing that periphyton is an important matrix both in the accumulation of Hg and in MeHg production. The concentration of MeHg varied from 1 to 6 ng/g DW and was positively correlated with Me 203 Hg formation. Though methylmercury formation is mainly a bacterial process, no significant correlation was observed between the methylation potentials and bacterial production. The multiple regressions analyses suggested a negative correlation between THg and %C and %N and between methylation potential and δ 13 C. The discriminant analysis showed a significant difference in periphyton δ 15 N, δ 13 C and THg between seasons, where the rainy season presented higher δ 15 N and the wet period lighter δ 13 C, lower THg values and higher Me 203 Hg formation. This exploratory study indicates that the flooding cycle could influence the periphyton composition, mercury accumulation and methylmercury production. - Research highlights: → During rainy season mercury (Hg 2+ ) is carried out from terrestrial to aquatic systems by runoff. → Macrophyte roots accumulates Hg 2+ from suspended particulate matter (SPM). → Hg methylation increases during the wet season. → Flooded forest is a source of labile organic carbon and bioavailable Hg. → Macrophytes decompose during the dry season and made up terrestrial soil.

  18. Distribution of total mercury, methyl mercury and selenium in pod of killer whales (Orcinus Orca) stranded in the northern area of Japan: Comparison of mature females with calves

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Tetsuya [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)]. E-mail: endotty@hoku-iryo-u.ac.jp; Kimura, Osamu [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Hisamichi, Yohsuke [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Minoshima, Yasuhiko [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Haraguchi, Koichi [Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka 815-8511 (Japan); Kakumoto, Chiharu [Marine Wildlife Center of JAPAN - Incorporated Non Profit Organization/NPO, 1-35-103, N21W6 Kita-ku, Sapporo, Hokkaido 001-0021 (Japan); Kobayashi, Mari [Marine Wildlife Center of JAPAN - Incorporated Non Profit Organization/NPO, 1-35-103, N21W6 Kita-ku, Sapporo, Hokkaido 001-0021 (Japan)

    2006-11-15

    Total mercury (T-Hg) and selenium (Se) concentrations in liver, kidney and muscle from a pod of killer whales including five mature females and three calves stranded in the northern area of Japan were analyzed. In the mature female, contamination level of T-Hg in the liver sample (62.2 {+-} 21.9 {mu}g/wet g) was markedly higher than that in kidney sample and muscle sample. The molar ratio of T-Hg to Se in the liver sample was approximately 1, and those in the kidney and muscle samples were markedly lower than 1. These results suggest that the formation of HgSe compound increases the hepatic accumulation of mercury (Hg). In contrast, contamination level of T-Hg in the calf organs was much lower than that in the mature female organs. These results suggest that the transfer of Hg from the mother to the fetus via placenta and/or to calf via milk is trace. - Total mercury, methyl mercury and selenium concentrations in liver, kidney and muscle from a pod of killer whales stranded in the northern area of Japan were analyzed.

  19. Distribution of total mercury, methyl mercury and selenium in pod of killer whales (Orcinus Orca) stranded in the northern area of Japan: Comparison of mature females with calves

    International Nuclear Information System (INIS)

    Endo, Tetsuya; Kimura, Osamu; Hisamichi, Yohsuke; Minoshima, Yasuhiko; Haraguchi, Koichi; Kakumoto, Chiharu; Kobayashi, Mari

    2006-01-01

    Total mercury (T-Hg) and selenium (Se) concentrations in liver, kidney and muscle from a pod of killer whales including five mature females and three calves stranded in the northern area of Japan were analyzed. In the mature female, contamination level of T-Hg in the liver sample (62.2 ± 21.9 μg/wet g) was markedly higher than that in kidney sample and muscle sample. The molar ratio of T-Hg to Se in the liver sample was approximately 1, and those in the kidney and muscle samples were markedly lower than 1. These results suggest that the formation of HgSe compound increases the hepatic accumulation of mercury (Hg). In contrast, contamination level of T-Hg in the calf organs was much lower than that in the mature female organs. These results suggest that the transfer of Hg from the mother to the fetus via placenta and/or to calf via milk is trace. - Total mercury, methyl mercury and selenium concentrations in liver, kidney and muscle from a pod of killer whales stranded in the northern area of Japan were analyzed

  20. Some like it cold: microbial transformations of mercury in polar regions

    DEFF Research Database (Denmark)

    Barkay, Tamar; Kroer, Niels A.; Poulain, Alexandre J.

    2011-01-01

    The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg) in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terres......The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg) in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine...

  1. Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake.

    Science.gov (United States)

    Arcagni, Marina; Juncos, Romina; Rizzo, Andrea; Pavlin, Majda; Fajon, Vesna; Arribére, María A; Horvat, Milena; Ribeiro Guevara, Sergio

    2018-01-15

    Niche segregation between introduced and native fish in Lake Nahuel Huapi, a deep oligotrophic lake in Northwest Patagonia (Argentina), occurs through the consumption of different prey. Therefore, in this work we analyzed total mercury [THg] and methylmercury [MeHg] concentrations in top predator fish and in their main prey to test whether their feeding habits influence [Hg]. Results indicate that [THg] and [MeHg] varied by foraging habitat and they increased with greater percentage of benthic diet and decreased with pelagic diet in Lake Nahuel Huapi. This is consistent with the fact that the native creole perch, a mostly benthivorous feeder, which shares the highest trophic level of the food web with introduced salmonids, had higher [THg] and [MeHg] than the more pelagic feeder rainbow trout and bentho-pelagic feeder brown trout. This differential THg and MeHg bioaccumulation observed in native and introduced fish provides evidence to the hypothesis that there are two main Hg transfer pathways from the base of the food web to top predators: a pelagic pathway where Hg is transferred from water, through plankton (with Hg in inorganic species mostly), forage fish to salmonids, and a benthic pathway, as Hg is transferred from the sediments (where Hg methylation occurs mostly), through crayfish (with higher [MeHg] than plankton), to native fish, leading to one fold higher [Hg]. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An Enigmatic Case of Acute Mercury Poisoning: Clinical, Immunological Findings and Platelet Function

    Directory of Open Access Journals (Sweden)

    Ilka Kleffner

    2017-09-01

    Full Text Available Severe mercury intoxication is very rare in developed countries, but still occurs as the result of volatile substance abuse, suicide attempts, occupational hazards, or endemic food ingestion as reported in the cases of public health disasters in Iraq and in Minamata Bay, Japan. Here, we describe the dramatic physical and cognitive decline of a 23-year-old patient caused by a severe methyl mercury (MeHg intoxication of unknown origin. We show serial magnetic resonance imaging (MRI of the patient’s brain, as well as ex vivo analyses of blood and cerebrospinal fluid including multicolor flow cytometric measurements, functional assays of hemostaseologic efficacy, and evaluation of regulatory effector molecules. Together with the clinical history, our findings show the progressive neuronal degeneration accompanying the deterioration of the patient. Moreover, the ex vivo analyses display alterations of thrombocyte function and coagulation, as well as an immunological milieu facilitating autoimmunity. Despite the successful reduction of the MeHg concentration in the patient’s blood with erythrocyte apheresis and chelator therapy, his condition did not improve and led to a persistent vegetative state. This case illustrates the neurotoxicity of MeHg following severe intoxication for the first time by serial MRI. Data on immune-cell and thrombocyte function as well as on coagulation in mercury poisoning reveal potential implications for anticoagulation and immunomodulatory treatment.

  3. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest

    Science.gov (United States)

    E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman

    2009-01-01

    Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...

  4. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    Science.gov (United States)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  5. Mercury

    Science.gov (United States)

    ... that mercuric chloride and methylmercury are possible human carcinogens. top How does mercury affect children? Very young ... billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum ...

  6. Mercury in soil, vegetable and human hair in a typical mining area in China: Implication for human exposure.

    Science.gov (United States)

    Jia, Qin; Zhu, Xuemei; Hao, Yaqiong; Yang, Ziliang; Wang, Qi; Fu, Haihui; Yu, Hongjin

    2018-06-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) in soil, vegetables, and human hair were measured in a mercury mining area in central China. T-Hg and MeHg concentrations in soil ranged from 1.53 to 1054.97mg/kg and 0.88 to 46.52μg/kg, respectively. T-Hg concentrations was correlated with total organic carbon (TOC) content (R 2 =0.50, p<0.01) and pH values (R 2 =0.21, p<0.05). A significant linear relationship was observed between MeHg concentrations and the abundance of sulfate-reducing bacteria (SRB) (R 2 =0.39, p<0.05) in soil. Soil incubation experiments amended with specific microbial stimulants and inhibitors showed that Hg methylation was derived from SRB activity. T-Hg and MeHg concentrations in vegetables were 24.79-781.02μg/kg and 0.01-0.18μg/kg, respectively; levels in the edible parts were significantly higher than in the roots (T-Hg: p<0.05; MeHg: p<0.01). Hg species concentrations in rhizosphere soil were positively correlated to those in vegetables (p<0.01), indicating that soil was an important source of Hg in vegetables. Risk assessment indicated that the consumption of vegetables could result in higher probable daily intake (PDI) of T-Hg than the provisional tolerable daily intake (PTDI) for both adults and children. In contrast, the PDI of MeHg was lower than the reference dose. T-Hg and MeHg concentrations in hair samples ranged from 1.57 to 12.61mg/kg and 0.04 to 0.94mg/kg, respectively, and MeHg concentration in hair positively related to PDI of MeHg via vegetable consumption (R 2 =0.39, p<0.05), suggesting that vegetable may pose health risk to local residents. Copyright © 2017. Published by Elsevier B.V.

  7. Bioaccumulation and trophic transfer of mercury in a food web from a large, shallow, hypereutrophic lake (Lake Taihu) in China.

    Science.gov (United States)

    Wang, Shaofeng; Li, Biao; Zhang, Mingmei; Xing, Denghua; Jia, Yonfeng; Wei, Chaoyang

    2011-08-01

    Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption. Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), δ(13)C and δ(15)N in the samples were measured. The signature for δ(15)N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the δ(13)C and δ(15)N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ∼3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g(-1)) and MeHg (66 ng g(-1)), however, were lower than the guideline of 200 ng g(-1) of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day(-1) kg(-1) body weight, respectively, was generally lower than the tolerable intake of 230 ng day(-1) kg(-1) body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the δ(15)N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems. Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in

  8. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-461 Clam (Gafrarium tumidum) Sample

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact exerted by large coastal cities on marine ecosystems is an issue of primary concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess the reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. This publication describes the production of the IAEA-461 certified reference material, which was produced following ISO Guide 34:2009, General Requirements for the Competence of Reference Material Producers. A sample of approximately 60 kg of clams (Gafrarium tumidum) was collected in Noumea, New Caledonia, and processed at the IAEA Environment Laboratories to produce a certified reference material of marine biota. The sample contained certified mass fractions for arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, selenium, vanadium and zinc. The produced vials

  9. [Spatial Distribution Characteristics of Different Species Mercury in Water Body of Changshou Lake in Three Gorges Reservoir Region].

    Science.gov (United States)

    Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong

    2015-08-01

    An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake.

  10. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    Science.gov (United States)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  11. Acute and chronic methyl mercury poisoning impairs rat adrenal and testicular function

    Energy Technology Data Exchange (ETDEWEB)

    Burton, G.V.; Meikle, A.W.

    1980-05-01

    Animals poisoned with methyl mercury (CH/sub 3/Hg) exhibit stress intolerance and decreased sexual activity, which suggest both adrenal and testicular dysfunction. Adrenal and testicular function was studied in male rats after treatment with CH/sub 3/Hg. In animals treated chronically, the adrenal glands were markedly hyperplastic with enlargement of the zona fasciculata. The mean basal serum levels of corticosterone were similar in experimental (17.8 ..mu..g/dl) and control (16.8 ..mu..g/dl) groups. However, with ether stress, experimental animals had a subnormal response, and the mean serum levels of corticosterone increased to only 23.9 ..mu../dl compared to 40.6 ..mu..g/dl in the controls. Exogenous ACTH stimulation produced a mean level of 19.0 ..mu..g/dl in the CH/sub 3/Hg-treated animals and 49.7 ..mu..g/dl in the controls. In vitro studies demonstrated a defect in the conversion of cholesterol to pregnenolone. A profound impairment in swimming was partially reversed with glucocorticoid therapy. In animals treated with CH/sub 3/Hg, serum testosterone was lower than normal in the basal state. Human chorionic gonadotropin stimulation increased the mean serum concentration of testosterone to 23.4 ng/ml in controls, but it was only 4.50 ng/ml in experimental animals. The data indicate that CH/sub 3/Hg poisoning impairs adrenal and testicular steroid hormone secretion, which accounts in part for the diminished stress tolerance and decreased sexual activity observed in CH/sub 3/Hg-intoxicated animals.

  12. Fish consumption limit for mercury compounds

    Directory of Open Access Journals (Sweden)

    Abbas Esmaili-Sari

    2011-09-01

    Full Text Available Background and objectives: Methyl mercury can carry out harmful effects on the reproductive, respiratory, and nervous system of human. Moreover, mercury is known as the most toxic heavy metal in nature. Fish and seafood consumption is the major MeHg exposure route for human. The present study tries to cover researches which have been conducted on mercury levels in 21 species of fish from Persian Gulf, Caspian Sea and Anzali Wetland during the past 6 years, and in addition to stating mercury level, it provides recommendations about the restriction of monthly fish consumption for each species separately. Material and methods: Fish samples were transferred to the laboratory and stored in refrigerator under -20oC until they were dissected. Afterwards, the muscle tissues were separated and dried. The dried samples were ground and changed into a homogenous powder and then the mercury concentration rate has been determined by advanced mercury analyzer, model 254. Results: In general, mercury contamination in fishes caught from Anzali Wetland was much more than fishes from Caspian Sea. Also, from among all studied fishes, oriental sole (Euryglossa orientalis, caught from Persian Gulf, allocated the most mercury level to itself with the rate of 5.61ml per kg., therefore, it exercises a severe consumption restriction for pregnant women and vulnerable groups. Conclusion: Based on the calculations, about 50% of fishes, mostly with short food chain, can be easily consumed during the year. However, with regard to Oriental sole (Euryglossa orientalis and shark (Carcharhinus dussumieri, caught from Persian Gulf, special consideration should be taken in their consumption. On the other hand, careful planning should be made for the high rate of fish consumption among fishing community.

  13. Brain, kidney and liver 203Hg-methyl mercury uptake in the rat: Relationship to the neutral amino acid carrier

    International Nuclear Information System (INIS)

    Aschner, M.

    1989-01-01

    To investigate the effect of L-neutral amino acids on tissue levels of methyl mercury in the adult animal, rats were infused into the external jugular vein with solutions containing a) 0.05 mM 203 Hg-MeHgCl and saline, b) 0.05 mM 203 Hg-MgHgCl-0.1 mM L-cysteine, c) 0.05 mM 203 Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-methionine, d) 0.05 mM 203 Hg-MeHgCl-0.1 mM L-leucine, or e) 0.05 mM 203 Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-leucine. Groups of animals were sacrificed at 3 min. 7 hr, and 96 hr. Brain, kidney, and liver 203 Hg radioactivity was measured by means of gamma-scintillation spectrometry. Brain 203 Hg concentrations L-cysteine treated animals were significantly higher compared with saline treated animals (P 203 Hg uptake (P 203 Hg concentrations were not significantly different in any of the treatment groups compared with controls, irrespective of the sacrifice time. Furthermore, the percentage of diffusible 203 Hg (non-protein bound) at each sacrifice time was not statistically different irrespective of the treatment assigned. These results suggest that methyl mercury L-cysteine conjugates in the plasma may share a common transport step with the L-neutral amino acid carrier transport system and indicate the presence in brain capillaries of a transport system capable of selectively mediating methyl mercury uptake across the capillary endothelial cell membrane. (author)

  14. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanlin [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Successful speciation of inorganic and organic Hg with Fe{sup 3+}, Cu{sup 2+} and thiourea as catalysts. Black-Right-Pointing-Pointer Best sensitivity enhancement and similar sensitivity for MeHg and Hg{sup 2+} with Fe{sup 3+}. Black-Right-Pointing-Pointer Successful use of Hg{sup 2+} as the primary standard for quantification of inorganic and total-Hg. Black-Right-Pointing-Pointer Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. Black-Right-Pointing-Pointer Integration with FIA for rapid analysis with a sample throughput of 180 h{sup -1}. - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH{sub 4} were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe{sup 3+}, Cu{sup 2+} and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu{sup 2+} and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe{sup 3+} gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg{sup 2+}. Due to similarity of resulting sensitivity, Hg{sup 2+} was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury

  15. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zhang Yanlin; Adeloju, Samuel B.

    2012-01-01

    Highlights: ► Successful speciation of inorganic and organic Hg with Fe 3+ , Cu 2+ and thiourea as catalysts. ► Best sensitivity enhancement and similar sensitivity for MeHg and Hg 2+ with Fe 3+ . ► Successful use of Hg 2+ as the primary standard for quantification of inorganic and total-Hg. ► Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. ► Integration with FIA for rapid analysis with a sample throughput of 180 h −1 . - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH 4 were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe 3+ , Cu 2+ and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu 2+ and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe 3+ gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg 2+ . Due to similarity of resulting sensitivity, Hg 2+ was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h −1 .

  16. Mercury

    CERN Document Server

    Mahoney, T J

    2014-01-01

    This gazetteer and atlas on Mercury lists, defines and illustrates every named (as opposed to merely catalogued) object and term as related to Mercury within a single reference work. It contains a glossary of terminology used, an index of all the headwords in the gazetteer, an atlas comprising maps and images with coordinate grids and labels identifying features listed in the gazetteer, and appendix material on the IAU nomenclature system and the transcription systems used for non-roman alphabets. This book is useful for the general reader, writers and editors dealing with astronomical themes, and those astronomers concerned with any aspect of astronomical nomenclature.

  17. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  18. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada)

    International Nuclear Information System (INIS)

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-01-01

    Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. - Highlights: • Epiphytes and macrophytes are sites of Hg accumulation in a large temperate river. • Epiphytic biofilms are ten fold more contaminated than their macrophyte host. • Physico-chemical variables influences Hg levels in epiphytes and macrophytes. • Up to 74% of total Hg is in the methylated form in epiphytes. • Epiphytes, should be included in Hg foodweb modeling. - Epiphytic biofilms are key sites of methylmercury accumulation in large river wetlands

  19. Biogeochemistry of mercury in contaminated environment in the wider Idrija region and the Gulf of Trieste. Highlights and achievements

    International Nuclear Information System (INIS)

    Horvat, Milena

    2002-01-01

    Activities at mercury (Hg) mines can lead to the mobilization of large quantities of Hg that enter the environment and are transported downstream. Although much of this Hg is deposited near the source, over time much of this Hg can be carried hundreds of kilometers where it can potentially enter and bioaccumulate in distant food webs. Mining activities in the ldrija, Slovenia mining district occurred for 500 years and the legacy of that mining can be seen in high concentrations of Hg throughout the watershed and into the Gulf of Trieste. Mercury concentrations are high in the sediments near the mouth of the Soca/Isonzo, River in the Gulf, and the Soca River continues to deliver ∼1.5 tons of Hg to the marine environment ∼100 km from the mine. Much of the Hg carried to the sea is probably as fine cinnabar particles, and the potential remobilization and further transformation of this Hg is of concern with regard to local environmental and the accumulation of methylmercury (MeHg in seafood. Mercury sulfide minerals are subject to dissolution and increased bioavailability when they contact sulfidic environments such as what occurs in coastal marine sediments. This 'newly' available Hg can potentially undergo methylation to supply the environment with newly formed MeHg. Indeed, Gulf sediments contain significant concentrations of MeHg and effluxes of MeHg from Gulf sediments have been observed in recent studies. However, sediments can also support active demethylation by aerobic and anaerobic bacteria. This demethylation can be due to either oxidative or reductive pathways. The present study was conducted to determine the potential of sediments from the Gulf of Trieste to methylate and demethylate Hg including an assessment of which demethylation pathway is most prevalent

  20. Mercury and methylmercury in aquatic sediment across western North America

    Science.gov (United States)

    Fleck, Jacob; Marvin-DiPasquale, Mark C.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Lutz, Michelle A; Tate, Michael T.; Alpers, Charles N.; Hall, Britt D.; Krabbenhoft, David P.; Eckley, Chris S.

    2016-01-01

    Large-scale assessments are valuable in identifying primary factors controlling total mercury (THg) and monomethyl mercury (MeHg) concentrations, and distribution in aquatic ecosystems. Bed sediment THg and MeHg concentrations were compiled for > 16,000 samples collected from aquatic habitats throughout the West between 1965 and 2013. The influence of aquatic feature type (canals, estuaries, lakes, and streams), and environmental setting (agriculture, forest, open-water, range, wetland, and urban) on THg and MeHg concentrations was examined. THg concentrations were highest in lake (29.3 ± 6.5 μg kg− 1) and canal (28.6 ± 6.9 μg kg− 1) sites, and lowest in stream (20.7 ± 4.6 μg kg− 1) and estuarine (23.6 ± 5.6 μg kg− 1) sites, which was partially a result of differences in grain size related to hydrologic gradients. By environmental setting, open-water (36.8 ± 2.2 μg kg− 1) and forested (32.0 ± 2.7 μg kg− 1) sites generally had the highest THg concentrations, followed by wetland sites (28.9 ± 1.7 μg kg− 1), rangeland (25.5 ± 1.5 μg kg− 1), agriculture (23.4 ± 2.0 μg kg− 1), and urban (22.7 ± 2.1 μg kg− 1) sites. MeHg concentrations also were highest in lakes (0.55 ± 0.05 μg kg− 1) and canals (0.54 ± 0.11 μg kg− 1), but, in contrast to THg, MeHg concentrations were lowest in open-water sites (0.22 ± 0.03 μg kg− 1). The median percent MeHg (relative to THg) for the western region was 0.7%, indicating an overall low methylation efficiency; however, a significant subset of data (n > 100) had percentages that represent elevated methylation efficiency (> 6%). MeHg concentrations were weakly correlated with THg (r2 = 0.25) across western North America. Overall, these results highlight the large spatial variability in sediment THg and MeHg concentrations throughout western North America and underscore the important roles that landscape and land

  1. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River.

    Science.gov (United States)

    Leitch, Daniel R; Carrie, Jesse; Lean, David; Macdonald, Robie W; Stern, Gary A; Wang, Feiyue

    2007-02-01

    Very high levels of mercury (Hg) have recently been reported in marine mammals and other higher trophic-level biota in the Mackenzie Delta and Beaufort Sea of the western Arctic Ocean. To quantify the input of Hg (particulate, dissolved and methylated) by the Mackenzie River as a potential source for Hg in the ecosystem, surface water and sediment samples were taken from 79 sites in the lower Mackenzie Basin during three consecutive summers (2003-2005) and analyzed for Hg and methylmercury (MeHg). Intensive studies were also carried out in the Mackenzie Delta during the freshets of 2004 and 2005. Large seasonal and annual variations were found in Hg concentrations in the river, coincident with the variations in water discharge. Increased discharges during spring freshet and during the summers of 2003 and 2005 compared to 2004 were mirrored by higher Hg concentrations. The correlation between Hg concentration and riverflow suggests additional Hg sources during periods of high water, potentially from increased surface inundation and increased bank erosion. The increase in the Hg concentration with increasing water discharge amplifies the annual Hg and MeHg fluxes during high water level years. For the period 2003-2005, the Hg and MeHg fluxes from the Mackenzie River to the Beaufort Sea averaged 2.2 tonnes/yr and 15 kg/yr, respectively, the largest known Hg source to the Beaufort Sea. More than half of the mercury flux occurs during the short spring freshet season which coincides with the period of rapid growth of marine biota. Consequently, the Mackenzie River input potentially provides the major mercury source to marine mammals of the Beaufort Sea. The Hg and MeHg fluxes from the Mackenzie River are expected to further increase with the projected climate warming in the Mackenzie Basin.

  2. Kazakhstan In situ BioTransformation of Mercury ...

    Science.gov (United States)

    Our final international work on the biological decontamination of the mercury contamination of soils in the Northern outskirts of Pavlodar as a result of activity at the former PO “Khimprom” chemical plant is reported here. The plant produced chlorine and alkali from the 1970s into the 1990s using the electrolytic amalgam method entailing the use of massive amounts of mercury. Ground water became contaminated with Hg resulting in a plume 470 m wide, 1.9 km long, estimated to contain 2 million cubic meters of water. This plume could reach the River Irtysh, a source of drinking water for large cities in Kazakhstan and Russia. Significant amounts of mercuric compounds are deposited in the sediments of Lake Balkyldak, 1.5 km north of the factory. This lake occasionally received wastewater from the factory. Phase I of the PO “Kimprom” clean-up that isolated the major sources of mercury at the site was completed in 2004. However, significant amounts of mercury remain underground including groundwater contaminated with Hg in the form of HgCl2 with little to no elemental or methyl mercury (MeHg). Develop biotechnology strategies to mitigate mercury contamination in groundwater

  3. Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea.

    Science.gov (United States)

    Bailon, Mark Xavier; David, Anneschel Sheehan; Park, Yeongeon; Kim, Eunhee; Hong, Yongseok

    2018-04-11

    Heavy metal contamination in aquatic systems is a big problem in many areas around the world. In 2016, high mercury concentrations were reported in bivalves (Corbicula leana) and sediments near the confluence of the Hyeongsan River and Chilseong Creek located in Pohang, a steel industrial city in the south-east coast of the Korean peninsula. Given that both the Chilseong and Gumu creeks run through the Pohang industrial complex and ultimately flow to the Hyeongsan River, it is imperative to determine if the industrial effluents have any impact on the mercury contamination in these two streams and the Hyeongsan River. In this work, we investigated the concentration levels of different heavy metals using cold vapor atomic fluorescence spectroscopy and inductively coupled plasma-mass spectroscopy. The metal concentration in the water samples from the Hyeongsan River, Gumu Creek, and Chilseong Creek did not exceed the limits for drinking water quality set by the US EPA and World Health Organization. However, the sediment samples were found to be heavily contaminated by Hg with levels exceeding the toxic effect threshold. Gumu Creek was found to be heavily contaminated. The concentrations of the different heavy metals increased downstream, and the samples collected from the sites in the Hyeongsan River near the Gumu Creek, an open channel for wastewater discharge of companies in the Pohang Industrial Complex, showed higher contamination levels, indicating that the effluents from the industrial complex are a possible source of contamination in the river.

  4. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Li Yingjie; Hu Bin

    2007-01-01

    A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg 2+ was complexed with I - to form HgI 4 2- , and the HgI 4 2- reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg + ) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L -1 HNO 3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg + by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg + . The MeHg + in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg + with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg + , respectively. The limits of detection (LODs) were 56.3 ng L -1 for Hg(II) and 94.6 ng L -1 for MeHg + (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg + (C = 10 μg L -1 , n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2-108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values

  5. Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine.

    Science.gov (United States)

    Johnson, K B; Haines, T A; Kahl, J S; Norton, S A; Amirbahman, Aria; Sheehan, K D

    2007-03-01

    Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 microg/m(2)/year in Cadillac Brook watershed and 10.2 microg/m(2)/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 microg/m(2)/year in Cadillac Brook watershed and 0.10 microg/m(2)/year in Hadlock Brook watershed.

  6. Urine mercury levels correlate with DNA methylation of imprinting gene H19 in the sperm of reproductive-aged men.

    Directory of Open Access Journals (Sweden)

    Zhaoxu Lu

    Full Text Available Mercury (Hg is a well-recognized environmental pollutant known by its toxicity of development and neurotoxicity, which results in adverse health outcomes. However, the mechanisms underlying the teratogenic effects of Hg are not well understood. Imprinting genes are emerging regulators for fetal development subjecting to environmental pollutants impacts. In this study, we examined the association between preconceptional Hg exposure and the alteration of DNA methylation of imprinting genes H19, Meg3, and Peg3 in human sperm DNA.A total of 616 men, aged from 22 to 59, were recruited from Reproductive Medicine Clinic of Maternal and Child Care Service Center and the Urologic Surgery Clinic of Shanxi Academy of Medical Sciences during April 2015 and March 2016. Demographic information was collected through questionnaires. Urine was collected and urinary Hg concentrations were measured using a fully-automatic double-channel hydride generation atomic fluorescence spectrometer. Methylation of imprinting genes H19, Meg3 and Peg3 of sperm DNA from 242 participants were examined by bisulfite pyrosequencing. Spearman's rank and multivariate regression analysis were used for correlation analysis between sperm DNA methylation status of imprinting genes and urinary Hg levels.The median concentration of Hg for 616 participants was 9.14μg/l (IQR: 5.56-12.52 μg/l; ranging 0.16-71.35μg/l. A total of 42.7% of the participants are beyond normal level for non-occupational exposure according to the criterion of Hg poisoning (≥10 μg/L. Spearman's rank analysis indicated a negative correlation between urinary Hg concentrations and average DNA methylation levels of imprinted genes H19 (rs = -0.346, p <0.05, but there was no such a correlation for Peg3 and Meg3. Further, we analyzed the correlation between methylation level at individual CpG site of H19 and urinary Hg level. The results showed a negative correlation between urinary Hg concentrations and three out of

  7. Wet deposition of mercury in Qingdao, a coastal urban city in China: Concentrations, fluxes, and influencing factors

    Science.gov (United States)

    Chen, Lufeng; Li, Yanbin; Liu, Chang; Guo, Lina; Wang, Xiulin

    2018-02-01

    Mercury (Hg) is a global pollutant of public concern because of its high toxicity and capability for worldwide distribution via long-range atmospheric transportation. Wet atmospheric deposition is an important source of Hg in both terrestrial and aquatic environments. Concentrations of various Hg species in precipitation were monitored from March 2016 to February 2017 in a coastal urban area of Qingdao, and their wet deposition fluxes were estimated. The results showed that the volume-weighted mean (VWM) concentrations of total mercury (THg), reactive mercury (RHg), dissolved THg (DTHg), particulate THg (PTHg), total methylmercury (TMeHg), and dissolved and particulate MeHg (DMeHg and PMeHg) in Qingdao's precipitation were 13.6, 1.5, 5.4, 8.2, 0.38, 0.15, and 0.22 ng L-1, respectively, and their annual deposition fluxes were estimated to be 5703.0 (THg), 666.6 (RHg), 2304.0 (DTHg), 3470.4 (PTHg), 161.6 (TMeHg), 64.0 (DMeHg), and 95.7 (PMeHg) ng m-2 y-1, respectively. A relatively high proportion of MeHg in THg was observed in precipitation (3.0 ± 2.6%) possibly due to higher methylation and contributions from an oceanic source to MeHg in the precipitation. Obvious seasonal variations in Hg concentrations and deposition fluxes were observed in the precipitation in Qingdao. Correlation analyses and multiple regression analyses showed that SO2, pH, and NO3- were the controlling factors for THg in precipitation, whereas the MeHg concentration was primarily controlled by the SO2, WS, Cl-, and THg concentrations. PM2.5 and Cl- were the major controlling factors for PMeHg/TMeHg, whereas the TMeHg/THg ratio was mainly influenced by Cl-. The THg and MeHg fluxes were primarily controlled by precipitation, whereas Cl- was also an important factor for the MeHg wet deposition flux. The results of a 72-h backward trajectory analysis in the study region with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicated that Hg deposition in Qingdao mainly

  8. Mercury risk in poultry in the Wanshan Mercury Mine, China

    International Nuclear Information System (INIS)

    Yin, Runsheng; Zhang, Wei; Sun, Guangyi; Feng, Zhaohui; Hurley, James P.; Yang, Liyuan; Shang, Lihai; Feng, Xinbin

    2017-01-01

    In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4–62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2–3917.1 ng/g; MeHg: 7.1–62.8 ng/g) and blood (THg: 12.3–338.0 ng/g; MeHg: 1.4–17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3–238.1 μg; MeHg: 2.2–15.6 μg), ducks (THg: 15.3–238.1 μg; MeHg: 3.5–14.7 μg) and geese (THg: 83.8–93.4 μg; MeHg: 15.4–29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively. - Highlights: • Elevated mercury levels were observed in poultry from Wanshan Mercury Mine, China. • Ducks and geese showed higher mercury levels than chickens. • Liver and blood showed the highest mercury levels. • Poultry can be an important dietary Hg exposure source for local residents. - High levels of Hg associated with poultry surrounding the Wanshan Mercury Mine pose a great risk of Hg exposure to

  9. Effects of mercury intoxication on the response of horizontal cells of the retina of thraira fish (Hoplias malabaricus

    Directory of Open Access Journals (Sweden)

    C.L. Tanan

    2006-07-01

    Full Text Available Methyl mercury (MeHg is highly neurotoxic, affecting visual function in addition to other central nervous system functions. The effect of mercury intoxication on the amplitude of horizontal cell responses to light was studied in the retina of the fish Hoplias malabaricus. Intracellular responses were recorded from horizontal cells of fish previously intoxicated with MeHg by intraperitoneal injection (IP group or by trophic exposure (T group. Only one retina per fish was used. The doses of MeHg chloride administered to the IP group were 0.01, 0.05, 0.1, 1.0, 2.0, and 6.0 mg/kg. The amplitudes of the horizontal cell responses were lower than control in individuals exposed to 0.01 (N = 4 retinas, 0.05 (N = 2 retinas and 0.1 mg/kg (N = 1 retina, whereas no responses were recorded in the 1.0, 2.0, and 6.0 mg/kg groups. T group individuals were fed young specimens of Astyanax sp previously injected with MeHg corresponding to 0.75 (N = 1 retina, 0.075 (N = 8 retinas or 0.0075 (N = 4 retinas mg/kg fish body weight. After 14 doses, one every 5 days, the amplitude of the horizontal cell response was higher than control in individuals exposed to 0.075 and 0.0075 mg/kg, and lower in individuals exposed to 0.75 mg/kg. We conclude that intoxication with MeHg affects the electrophysiological response of the horizontal cells in the retina, either reducing or increasing its amplitude compared to control, and that these effects are related to the dose and/or to the mode of administration.

  10. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part II-evaluation of sorption materials

    International Nuclear Information System (INIS)

    Randall, Paul M.; Yates, Brian J.; Lal, Vivek; Darlington, Ramona; Fimmen, Ryan

    2013-01-01

    The function and longevity of traditional, passive, isolation caps can be augmented through the use of more chemically active capping materials which have higher sorptive capacities, ideally rendering metals non-bioavailable. In the case of Hg, active caps also mitigate the rate and extent of methylation. This research examined low cost, readily available, capping materials for their ability to sequester Hg and MeHg. Furthermore, selected capping materials were evaluated to inhibit the methylation of Hg in an incubation study as well as the capacity of a selected capping material to inhibit translocation of Hg and MeHg with respect to ebullition-facilitated contaminant transport in a column study. Results indicated that bauxite had a better capacity for mercury sorption than the other test materials. However, bauxite as well as soil capping materials did not decrease methylation to a significant extent. Materials with larger surface areas, higher organic matter and acid volatile sulfide (AVS) content displayed a larger partitioning coefficient. In the incubation experiments, the presence of a carbon source (lactate), electron acceptor (sulfate) and the appropriate strains of SRB provided the necessary conditions for Hg methylation to occur. The column study showed effectiveness in sequestering Hg and MeHg and retarding transport to the overlying water column; however, disturbances to the soil capping material resulting from gas ebullition negated its effectiveness

  11. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part II-evaluation of sorption materials

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Yates, Brian J.; Lal, Vivek; Darlington, Ramona [Battelle, 505 King Avenue, Columbus, OH 43201 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States)

    2013-08-15

    The function and longevity of traditional, passive, isolation caps can be augmented through the use of more chemically active capping materials which have higher sorptive capacities, ideally rendering metals non-bioavailable. In the case of Hg, active caps also mitigate the rate and extent of methylation. This research examined low cost, readily available, capping materials for their ability to sequester Hg and MeHg. Furthermore, selected capping materials were evaluated to inhibit the methylation of Hg in an incubation study as well as the capacity of a selected capping material to inhibit translocation of Hg and MeHg with respect to ebullition-facilitated contaminant transport in a column study. Results indicated that bauxite had a better capacity for mercury sorption than the other test materials. However, bauxite as well as soil capping materials did not decrease methylation to a significant extent. Materials with larger surface areas, higher organic matter and acid volatile sulfide (AVS) content displayed a larger partitioning coefficient. In the incubation experiments, the presence of a carbon source (lactate), electron acceptor (sulfate) and the appropriate strains of SRB provided the necessary conditions for Hg methylation to occur. The column study showed effectiveness in sequestering Hg and MeHg and retarding transport to the overlying water column; however, disturbances to the soil capping material resulting from gas ebullition negated its effectiveness.

  12. Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat

    NARCIS (Netherlands)

    Hendriksen, P.J.M.; Freidig, A.P.; Jonker, D.; Thissen, U.; Bogaards, J.J.P.; Mumtaz, M.M.; Groten, J.P.; Stierum, R.H.

    2007-01-01

    The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were

  13. Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil.

    Science.gov (United States)

    Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée

    2016-08-15

    Mercury (Hg) and methylmercury (MeHg) are highly toxic and poorly studied in mangroves. Burrowing Uca crabs change sediment topography and biogeochemistry and thus may affect Hg distribution and MeHg formation. We studied added (203)Hg distribution, Me(203)Hg formation and sulfate reduction rates (SRR) in sediment aquariums containing Uca leptodactyla; and analyzed profiles of Me(203)Hg formation and SRR in sediment cores from two mangroves with distinct environmental impacts. MeHg formation and SRR were higher in the top (≤6cm) sediment and there was no significant difference in Hg methylation in more or less impacted mangroves. In aquariums, crab bioturbation favored Hg retention in the sediment. In the treatment without crabs, Hg volatilization and water Hg concentrations were higher. Hg methylation was higher in bioturbated aquariums but SRR were similar in both treatments. These findings suggest that bioturbating activity favors Hg retention in sediment but also promotes MeHg formation near the surface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia.

    Science.gov (United States)

    Tomiyasu, Takashi; Kodamatani, Hitoshi; Hamada, Yuriko Kono; Matsuyama, Akito; Imura, Ryusuke; Taniguchi, Yoko; Hidayati, Nuril; Rahajoe, Joeni Setijo

    2017-01-01

    This study investigates the distribution of total mercury (T-Hg) and methylmercury (MeHg) in the soil and water around the artisanal and small-scale gold mining (ASGM) area along the Cikaniki River, West Java, Indonesia. The concentration of T-Hg and MeHg in the forest soil ranged from 0.07 to 16.7 mg kg -1 and from <0.07 to 2.0 μg kg -1 , respectively, whereas it ranged from 0.40 to 24.9 mg kg -1 and from <0.07 to 56.3 μg kg -1 , respectively, in the paddy field soil. In the vertical variation of the T-Hg of forest soil, the highest values were observed at the soil surface, and these values were found to decrease with increasing depth. A similar variation was observed for MeHg and total organic carbon content (TOC), and a linear relationship was observed between them. Mercury deposited on the soil surface can be trapped and retained by organic matter and subjected to methylation. The slope of the line obtained for the T-Hg vs. TOC plot became larger near the ASGM villages, implying a higher rate of mercury deposition in these areas. In contrast, the plots of MeHg vs. TOC fell along the same trend line regardless of the distance from the ASGM village. Organic carbon content may be a predominant factor in controlling MeHg formation in forest soils. The T-Hg concentration in the river water ranged from 0.40 to 9.6 μg L -1 . River water used for irrigation can prove to be a source of mercury for the paddy fields. The concentrations of Hg 0 and Hg 2+ in river water showed similar variations as that observed for the T-Hg concentration. The highest Hg 0 concentration of 3.2 μg L -1 can be attributed to the waste inflow from work sites. The presence of Hg 0 in river water can become a source of mercury present in the atmosphere along the river. MeHg concentration in the river water was found to be 0.004-0.14% of T-Hg concentration, which was considerably lower than the concentrations of other Hg species. However, MeHg comprised approximately 0.2% of the T

  15. Certification for Trace Elements and Methyl Mercury Mass Fractions in IAEA-452 Scallop (Pecten maximus) Sample

    International Nuclear Information System (INIS)

    2013-01-01

    to poor environmental management decisions. The IAEA has a long history of organizing interlaboratory studies, which have evolved to include an increasing array of potential contaminants in the marine environment. A marine certified reference material (CRM), IAEA-452, prepared with a scallop (Pecten maximus) sample, was recently produced by the IAEA and certified for trace elements and methylmercury (MeHg). This species of scallop is a common, widely consumed seafood that is also used as a bioindicator for trace metal contamination in marine pollution studies. This publication presents the sample preparation methodology, material homogeneity and stability studies, evaluation of certification campaign results, and assignment of property values and their associated uncertainty. The reference values and associated expanded uncertainty for nine trace elements (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb and Zn) and MeHg in the scallop sample are established. The informative value for one more element (Ni) is also given. The new CRM can be used for the development and validation of analytical methods in the determination of trace elements and MeHg in seafood Pecten maximus as well as for QA/QC purposes

  16. Mercury Contamination in Tree Swallows Nesting at Northern Wisconsin Inland Lakes that Differ in Methylation Potential

    Science.gov (United States)

    Tree swallows (Tachycineta bicolor) are a useful species to assess the bioavailability and effects of trace elements, including mercury, because they will nest in boxes in relatively close proximity to one another. Because tree swallows feed on the aerial stages of benthic aquat...

  17. Mercury accumulation in Yellowfin tuna (Thunnus albacares) with regards to muscle type, muscle position and fish size.

    Science.gov (United States)

    Bosch, Adina C; O'Neill, Bernadette; Sigge, Gunnar O; Kerwath, Sven E; Hoffman, Louwrens C

    2016-01-01

    The concentrations and relationships between individual mercury species and total mercury were investigated in different muscle parts and sizes of Yellowfin tuna (Thunnus albacares). Fourteen Yellowfin tuna caught in the South Atlantic off the coast of South Africa had an average total Hg (tHg) concentration of 0.77 mg/kg wet weight. No differences were detected (p > 0.05) in tHg, MethylHg (MeHg) or inorganic Hg (iHg) accumulation among the four white muscle portions across the carcass, but both tHg and iHg were found in higher concentrations (p < 0.001) in dark muscle than white muscle. Positive linear correlations with fish weight were found for both tHg (r = 0.79, p < 0.001) and MeHg (r = 0.75, p < 0.001) concentrations. A prediction model was formulated to calculate toxic MeHg concentrations from measured tHg concentrations and fish weight (cMeHg = 0.073 + 1.365 · tHg-0.008 · w). As sampling sites and subsampling methods could affect toxicity measurements, we provide recommendations for sampling guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mercury cycling in peatland watersheds. Chapter 11.

    Science.gov (United States)

    Randall K. Kolka; Carl P.J. Mitchell; Jeffrey D. Jeremiason; Neal A. Hines; David F. Grigal; Daniel R. Engstrom; Jill K. Coleman-Wasik; Edward A. Nater; Edward B. Swain; Bruce A. Monson; Jacob A. Fleck; Brian Johnson; James E. Almendinger; Brian A. Branfireun; Patrick L. Brezonik; James B. Cotner

    2011-01-01

    Mercury (Hg) is of great environmental concern due to its transformation into the toxic methylmercury (MeHg) form that bioaccumulates within the food chain and causes health concerns for both humans and wildlife (U.S. Environmental Protection Agency 2002). Mercury can affect neurological development in fetuses and young children. In adults, exposure to Hg can lead to...

  19. Investigation of Increased Mercury Levels in the Fisheries of Lower East Fork Poplar Creek (LEFPC), Oak Ridge Reservation, Tennessee

    International Nuclear Information System (INIS)

    Byrne-Kelly, D.; Cornish, J.; Hart, A.; Southworth, G.; Simms, L.

    2006-01-01

    The DOE Western Environmental Technology Office (WETO) is supporting Oak Ridge's remediation efforts by performing this study. MSE Technology Applications, Inc. (MSE) has performed a series of literature reviews and bench-scale testing to further evaluate the mercury problem in the Lower East Fork Poplar Creek (LEFPC) at Oak Ridge. The primary problem is that total mercury (HgT) levels in LEFPC water decrease, while HgT levels in sunfish muscle tissue increase, with distance away from the National Security Complex (NSC), despite extensive source control efforts at the facility. Furthermore, dissolved methylmercury (d-MeHg) levels increase downstream from the NSC, especially during warm weather and/or high flow events. MSE performed four test series that focused on conversion of dissolved and colloidal forms of elemental mercury (Hg deg.A) to methyl mercury (MeHg) by algal-bacterial bio-films (periphyton) present in the stream-bed of LEFPC; MeHg production by these bio-films under anoxic versus oxic conditions was the critical measurement taken. The bench-scale testing for Phase I was completed November 2005. The final reporting and the planning for Phase II testing are in progress. (authors)

  20. Wood ash or dolomite treatment of catchment areas - effects of mercury in runoff water

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H; Munthe, J [Swedish Environmental Research Inst., Stockholm (Sweden)

    1996-11-01

    A future increased use of biomass as a source of energy, and the planned restoration of mineral nutrient balance in the forest soils by returning the wood ashes, has led to concern for new environmental disturbances. The objectives of the present study were to investigate if the outflow of total mercury (TotHg) and methyl mercury (MeHg) from catchment areas treated with granulated wood ash (1988, 2.2 tons/ha, `ashed area`) or dolomite (1985, 5 tons/ha, `limed area`) differed from the outflow from an untreated (reference) area, and if variations in Hg outflow were correlated with changes in the outflow of organic substances or pH. The study areas are situated in Vaermland, Sweden. Samples of run-off water were taken weekly or monthly (depending on water-flow) during on year (1993-94). The outflow of MeHg, TotHg as well as H+ and dissolved organic material (DOC) was lower from the limed area compared to the other two areas, which did not differ significantly. There was a strong covariation between concentrations of DOC and MeHg and a weaker relation between DOC and TotHg in the run-off waters. MeHg also covaried with temperature while TotHg covaried with pH and water-supply. No difference was found when comparing Hg-data from the limed area before, directly after and eight years after the liming event. 13 refs, 12 figs, 1 tab

  1. Distribution and speciation of mercury in the peat bog of Xiaoxing'an Mountain, northeastern China

    International Nuclear Information System (INIS)

    Liu Ruhai; Wang Qichao; Lu Xianguo; Fang Fengman; Wang Yan

    2003-01-01

    Peat bogs in northeastern China contain high levels of mercury from atmospheric deposition. - Most reports on mercury (Hg) in boreal ecosystems are from the Nordic countries and North America. Comparatively little information is available on Hg in wetlands in China. We present here a study on Hg in the Tangwang River forested catchment of the Xiaoxing'an Mountain in the northeast of China. The average total Hg (THg) in peat profile ranged from 65.8 to 186.6 ng g -1 dry wt with the highest at the depth of 5-10 cm. THg in the peat surface was higher than the background in Heilongjiang province, the Florida Everglades, and Birkeness in Sweden. MethylHg (MeHg) concentration ranged from 0.16 to 1.86 ng g -1 dry wt, with the highest amount at 10-15 cm depth. MeHg content was 0.2-1.2% of THg. THg and MeHg all decreased with the depth. THg in upland layer of soil (0-20 cm) was comparable to the peat surface, but in deeper layers THg concentration in peat was much higher than that in the forested mineral soil. THg in the peat bog increased, but MeHg decreased after it was drained. THg content in plant was different; THg contents in moss (119 ng g -1 dry wt, n=12) were much higher than in the herbage, the arbor, and the shrubs. The peat bog has mainly been contaminated by Hg deposition from the atmosphere

  2. Defining the Molecular-Cellular-Field Continuum of Mercury Detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M. [UCSF

    2014-09-04

    Hg is of special interest to DOE due to past use at the Oak Ridge Reservation (ORR). Its facile redox [Hg2+/0] chemistry, bonding to carbon [e.g. MeHg+] and unique physical properties [e.g., Hg0 volatility] underlie a complex global Hg cycle involving biotic and abiotic chemical and physical transport and transformations in soils, sediments, waterways and the atmosphere. Facultative and anaerobic bacteria make MeHg+, which is neurotoxic to wildlife and humans. Sustainable stewardship requires eliminating both MeHg+ and even more toxic Hg2+, which is also the substrate for methylation. The proteins encoded by the mer locus in aerobic and facultative mercury resistant (HgR) bacteria convert soil or waterborne Hg2+ or MeHg+ to less toxic, gaseous Hg0. HgR microbes live in highly Hg-contaminated sites and depress MeHg+ formation >500-fold in such zones. So, enhancing the capacity of natural HgR microbes to remove Hg2+/MeHg+ from wetlands and waterways is a logical component of contaminated site stewardship. To apply enhancement in the field requires knowing how the HgR pathway works including the metabolic demands it makes on the cell, i.e., the entire cell is the relevant catalytic unit. HgR loci occur in metabolically diverse bacteria and unique mer-host co-evolution has been found. In this project we extended our previous studies of mer enzymes in γ-proteobacteria, which are abundant in high Hg areas of the ORR to include studies of mer enzymes from HgR α-proteobacteria and HgR actinobacteria, which also increase in the high Hg regions of the ORR. Specifically, we (1) examined interactions between structural compoenents of MerA and MerB enzymes from γ-proteobacteria, (2) investigated effects of mutations on kinetic efficiency of Hg2+ reduction by γ-proteobacterial MerA, (3) cloned and performed initital characterization of MerA and MerB enzymes from Streptomyces lividans, an actinobacterium, (4) cloned and performed initial characterization of a fused Mer

  3. Mercury contaminated sediment sites—An evaluation of remedial options

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

    2013-08-15

    Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ► Managing mercury-contaminated sediment sites are challenging to remediate. ► Remediation technologies are making a difference in managing these sites. ► Partitioning plays a dominant role in the distribution of mercury species. ► Mathematical

  4. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China

    International Nuclear Information System (INIS)

    Meng, Mei; Li, Bing; Shao, Jun-juan; Wang, Thanh; He, Bin; Shi, Jian-bo; Ye, Zhi-hong; Jiang, Gui-bin

    2014-01-01

    A total of 155 rice plants were collected from ten mining areas in three provinces of China (Hunan, Guizhou and Guangdong), where most of mercury (Hg) mining takes place in China. During the harvest season, whole rice plants were sampled and divided into root, stalk and leaf, husk and seed (brown rice), together with soil from root zone. Although the degree of Hg contamination varied significantly among different mining areas, rice seed showed the highest ability for methylmercury (MeHg) accumulation. Both concentrations of total mercury (THg) and MeHg in rice plants were significantly correlated with Hg levels in soil, indicating soil is still an important source for both inorganic mercury (IHg) and MeHg in rice plants. The obvious discrepancy between the distribution patterns of THg and MeHg reflected different pathways of IHg and MeHg accumulation. Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- Highlights: • Distribution patterns indicated different pathways of IHg and MeHg accumulation. • Soil is an important source for both THg and MeHg to rice plants. • Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- The distribution patterns indicate different pathways of IHg and MeHg accumulation in rice plants

  5. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China

    International Nuclear Information System (INIS)

    Feng Xinbin; Jiang Hongmei; Qiu Guangle; Yan Haiyu; Li Guanghui; Li Zhonggen

    2009-01-01

    The geochemical processes of mercury in Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively in Wujiang River, which is the upper branch of Yangtze River were investigated. One sampling site was chosen upriver of 1 km from the dam for each reservoir. Three sampling campaigns were conducted at these sampling sites in December 2003, April 2004 and July 2004, respectively. The distributions of different mercury species in the water column, sediment, and sediment pore water were studied. We found that the sediment is the net source of both inorganic and MeHg to the water column for both reservoirs. The MeHg diffusion fluxes in WJD reservoir at all sampling campaigns were significantly higher than those in DF reservoir. Our study demonstrated that the high primary productivity in the reservoir produced elevated organic matter content that would favor the methylmercury production in sediment. - Surface sediment in the reservoirs is the active mercury methylating sites in the systems.

  6. Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon

    International Nuclear Information System (INIS)

    Nagorski, Sonia A.; Engstrom, Daniel R.; Hudson, John P.; Krabbenhoft, David P.; Hood, Eran; DeWild, John F.; Aiken, George R.

    2014-01-01

    Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg. -- Highlights: • We sampled 21 streams in southeastern Alaska for water, sediments, and biota. • Aqueous Hg showed significant relationships with wetlands and DOC. • Biota had higher mercury in wetland-rich streams than in glacier-fed streams. • Spawning salmon appear to contribute methylmercury to stream foodwebs. -- This original survey of mercury concentration and form in southeastern Alaskan streamwater and biota shows substantial spatial variation linked to landscape factors and salmon influence

  7. Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study.

    Science.gov (United States)

    Chouvelon, Tiphaine; Cresson, Pierre; Bouchoucha, Marc; Brach-Papa, Christophe; Bustamante, Paco; Crochet, Sylvette; Marco-Miralles, Françoise; Thomas, Bastien; Knoery, Joël

    2018-02-01

    Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ 13 C and δ 15 N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms

  8. A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanmin; Qiu, Jianhua; Yang, Limin [College of Chemistry and Chemical Engineering, Xiamen University, Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, Xiamen (China); Wang, Qiuquan [College of Chemistry and Chemical Engineering, Xiamen University, Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, Xiamen (China); Xiamen University, State Key Laboratory of Marine Environmental Science, Xiamen (China)

    2007-06-15

    A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC-MS and FT-IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL{sup -1}, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH{sub 4}/NaOH-acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME-AFS. (orig.)

  9. Variations of Mercury Concentrations in American Beech Foliage over a Growing Season

    Science.gov (United States)

    Stinson, I.; Tsui, M. T. K.; Chow, A. T.

    2017-12-01

    Accumulation of atmospheric gaseous mercury (Hg) in foliage is well known, however, a small fraction of Hg always exists as highly bioavailable methylmercury (MeHg) in foliage but the source of MeHg in foliage is unknown. Recent studies suggested in-vivo Hg methylation in foliage while others suggested external inputs (e.g., precipitation) as sources of MeHg in foliage. This study assesses the accumulation of total Hg and MeHg within the foliage of a small sample set of American Beech trees, one of the common tree species in the east coast and the study site is located within the campus of University of North Carolina - Greensboro, over the growing season in 2017 (spring, summer, and fall). In addition, this study evaluates the Hg concentrations in foliage as related to other physiological parameters (e.g., stomatal density, leaf area, chlorophyll, and carbon/nitrogen content) and the changes in environmental characteristics (e.g., sunlight) over the growing season. For this investigation, five American Beech trees with varying characteristics (height, age, and location) were selected. On a biweekly basis, starting late April 2017, foliage samples were collected and composited from different positions on each tree. For the samples processed to date, our results indicate that total Hg accumulation is occurring for all five trees with an initial mean value of 5.79 ng/g, increasing to a mean value of 13.9 ng/g over a ten-week period. Coincidentally, there has been a similar increase in chlorophyll (a+b) concentrations for the foliage, and there is a strong, positive relationship between chlorophyll and total-Hg concentrations. However, we found no relationships between total Hg concentrations and stomatal density of foliage or carbon/nitrogen content. This study is still ongoing and will continue through the end of the growing season in 2017. Additionally, from the same sample sets, besides total Hg analysis and other ancillary parameters in foliage, MeHg analysis

  10. Assessing mercury exposure and effects to American dippers in headwater streams near mining sites.

    Science.gov (United States)

    Henny, Charles J; Kaiser, James L; Packard, Heidi A; Grove, Robert A; Taft, Michael R

    2005-10-01

    To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10-20x) may be used, but with

  11. Diiodido[methyl 2-(quinolin-8-yloxyacetate-κN]mercury(II

    Directory of Open Access Journals (Sweden)

    Yu-Hong Wang

    2012-08-01

    Full Text Available In the title mononuclear complex, [HgI2(C12H11NO3], the HgII ion has a distorted trigonal–planar coordination sphere defined by two I− anions and the N atom of a methyl 2-(quinolin-8-yloxyacetate ligand. In the crystal, face-to-face π–π stacking interactions, with a centroid–centroid distance of 3.563 (9 Å, are observed.

  12. Mercury in breast milk from women in the Federal District, Brazil and dietary risk assessment for breastfed infants.

    Science.gov (United States)

    Rebelo, Fernanda M; Cunha, Leandro R da; Andrade, Patrícia D; Costa Junior, Walkimar A da; Bastos, Wanderley R; Caldas, Eloisa D

    2017-12-01

    Mercury is a toxic metal, ubiquitous in nature; it is excreted in breast milk from exposed mothers and may affect infant neuro-development. In this study, 224 breast milk samples provided by eight human milk banks in the Federal District of Brazil were analyzed for total mercury (THg), of which 183 were also analyzed for methyl mercury (MeHg), the most relevant form of this metal for the breastfed infants. Samples were acid digested in a microwave oven and THg determined by atomic fluorescence spectrometry (LOQ of 0.76μg/L). Samples were lyophilized, ethylated and MeHg determined in a MERX automated system (LOQ of 0.10μg/L). Inorganic mercury (IHg) levels were estimated from the THg and MeHg determined in the samples. Most of the samples were collected 1-2 months postpartum, with 38% during the first month. Over 80% of the samples had THg values above the LOQ, reaching a maximum of 8.40μg/L, with a mean of 2.56μg/L. On average, MeHg accounted for 11.8% of THg, with a maximum of 97.4%. Weekly intakes were estimated individually, considering the baby's age and body weight at the time of milk collection. Mean weekly intake for MeHg was 0.16±0.22μg/kg bw, which represented 10% of the PTWI; in only one case, the intake exceeded 100% of the PTWI (1.90μg/kg bw, 119% of PTWI). Mean intake for IHg was 2.1±1.5μg/kg bw, corresponding to 53% PTWI. These results indicate no health concern for the breastfed babies, a conclusion that can be extended to the consumers of breast milk donated to the milk banks, primarily immature and low weight babies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors

    Science.gov (United States)

    Singer, Michael B.; Harrison, Lee R.; Donovan, Patrick M.; Blum, Joel D.; Marvin-DiPasquale, Mark C.

    2016-01-01

    The biogeochemical cycling of metals and other contaminants in river-floodplain corridors is controlled by microbial activity responding to dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, inundation history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this within a Northern California river system with a legacy of landscape-scale 19th century hydraulic gold mining. We combine hydraulic modeling, Hg measurements in sediment and biota, and first-order calculations of mercury transformation to assess the potential role of river floodplains in producing monomethylmercury (MMHg), a neurotoxin which accumulates in local and migratory food webs. We identify frequently inundated floodplain areas, as well as floodplain areas inundated for long periods. We quantify the probability of MMHg production potential (MPP) associated with hydrology in each sector of the river system as a function of the spatial patterns of overbank inundation and drainage, which affect long-term redox history of contaminated sediments. Our findings identify river floodplains as periodic, temporary, yet potentially important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the hydrologic record. We suggest that inundation is an important driver of MPP in river corridors and that the entire flow history must be analyzed retrospectively in terms of inundation magnitude and frequency in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods or low-flow periods. MMHg bioaccumulation within the aquatic food web in this system may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn. There is a long-term pattern of MPP under the current flow regime that is likely to be

  14. Concentration of Mercury in Cockles (Anadara granosa and A. antiquata) Harvested from Estuaries of Western Lombok, Indonesia, and Potential Risks to Human Health.

    Science.gov (United States)

    Rahayu, Rachmawati Noviana; Irawan, Bambang; Soegianto, Agoes

    2016-01-01

    This study measured the levels of total mercury (tHg) in the whole tissues of cockles (Anadara granosa and A. antiquata) harvested from three estuaries of Western Lombok Island (WLI), Indonesia. This paper also evaluated the hazard level posed by the mercury in relation to the maximum residual limit for human consumption and to estimate the weekly intake and compare it with the provisional tolerable weekly intake (PTWI). The tHg concentrations in A. granosa ranged from 0.020 to 0.070 mg kg(-1), and those in A. antiquata were between 0.032 and 0.077 mg kg(-1) at all locations. All samples of cockles harvested from WLI contain tHg below the permissible limit for human consumption. The maximum weekly intakes for total mercury by coastal people range from 0.28 to 1.08 µg kg(-1) b.w., and they are below the recommended values of PTWI (5.6 µg kg(-1) b.w.). If it is assumed that 100% of the Hg in cockles is methyl mercury (MeHg), consumption of the indicated amounts at the measured values wouldn't exceed the MeHg PTWI (1.6 µg kg(-1) b.w.).

  15. Subcellular controls of mercury trophic transfer to a marine fish

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2010-01-01

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  16. Subcellular controls of mercury trophic transfer to a marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  17. Nineteenth century mercury: Hazard to wading birds and cormorants of the Carson River, Nevada

    Science.gov (United States)

    Henny, Charles J.; Hill, E.F.; Hoffman, D.J.; Spalding, Marilyn G.; Grove, Robert A.

    2002-01-01

    Contemporary mercury interest relates to atmospheric deposition, contaminated fish stocks and exposed fish-eating wildlife. The focus is on methylmercury (MeHg) even though most contamination is of inorganic (IoHg) origin. However, IoHg is readily methylated in aquatic systems to become more hazardous to vertebrates. In response to a classic episode of historical (1859a??1890) IoHg contamination, we studied fish-eating birds nesting along the lower Carson River, Nevada. Adult double-crested cormorants (Phalacrocorax auritus), snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) contained very high concentrations of total mercury (THg) in their livers (geo. means 134.8g/g wet weight (ww), 43.7 and 13.5, respectively) and kidneys (69.4, 11.1 and 6.1, respectively). Apparently tolerance of these concentrations was possible due to a threshold-dependent demethylation coupled with sequestration of resultant IoHg. Demethylation and sequestration processes also appeared to have reduced the amount of MeHg redistributed to eggs. However, the relatively short time spent by adults in the contaminated area before egg laying was also a factor in lower than expected concentrations of mercury in eggs. Most eggs (100% MeHg) had concentrations below 0.80g/g ww, the putative threshold concentration where reproductive problems may be expected; there was no conclusive evidence of mercury-related depressed hatchability. After hatching, the young birds were fed diets by their parents averaging 0.36a??1.18gMeHg/g ww through fledging. During this four to six week period, accumulated mercury concentrations in the organs of the fledglings were much lower than found in adults, but evidence was detected of toxicity to their immune (spleen, thymus, bursa), detoxicating (liver, kidneys) and nervous systems. Several indications of oxidative stress were also noted in the fledglings and were most apparent in young cormorants containing highest concentrations of

  18. Immunotoxicity of environmentally relevant mixtures of polychlorinated aromatic hydrocarbons with methyl mercury on rat lymphocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Omara, F.O.; Brochu, C.; Flipo, D.; Denizeau, F.; Fournier, M. [Univ. of Quebec, Montreal, Quebec (Canada)

    1997-03-01

    The immunosuppressive effects of methyl mercury (MHg), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs) are well established at higher exposure levels but unclear at low exposure levels. The authors exposed Fischer 344 rat splenocytes, thymocytes, and peripheral blood lymphocytes in vitro for 72 h to MHg of three PCDDs and two PCDFs PCB mixtures, or combinations of MHg/PCB/PCDD/PCDF mixtures Mitogenic responses of lymphocytes to concanavalin A, phytohemagglutinin, or lipopolysaccharide/dextran sulfate were determined by {sup 3}H-thymidine uptake; cytotoxicity and intracellular Ca{sup 2+} were determined by flow cytometry. Methylmercury mixtures with 2 {micro}g/ml MHg decreased the viability of splenocytes to 57 and 40% at 4 and 24 h, respectively. Basal intracellular calcium ion levels were unaffected by the treatments. Methylmercury suppressed the responses of lymphocytes to T and B cell mitogens. All combinations of MHg/PCB/PCDD/PCDF mixtures decreased mitogenic responses to levels similar to those to MHg alone. In contrast, PCB and PCDD/PCDF mixtures did not suppress but augmented responses of splenocytes and peripheral blood lymphocytes to T cell mitogens. Overall, no interactive toxicity was observed with MHg/PCB/PCDD/PCDF mixtures on cytotoxicity and lymphocyte mitogenic responses. Therefore, MHg may pose a greater threat than organochlorines to the mammalian immune system.

  19. Species-specific isotopic fractionation of mercury during methylation by bacteria

    International Nuclear Information System (INIS)

    Rodriguez-Gonzalez, P.; Epov, V.N.; Bridou, R.; Tessier, E.; Monperrus, M.; Guyoneaud, R.; Amouroux, D.

    2009-01-01

    Full text: The environmental reactivity of Hg is extremely dependent on its chemical form. In fact, Hg bioaccumulation is due to the greater trophic transfer efficiency of methylmercury which is formed as a result of biotic or abiotic transformations caused by specific redox gradients and bacterial activity. The study of stable isotope biogeochemistry of Hg may provide a powerful tool to track and understand its cycle and pathways in the environment. This work presents the measurement of species-specific Hg isotopic composition by GC-MCICPMS during Hg methylation experiments using cultures of pure bacterial strains incubated with Hg (II) standard NIST 3133. (author)

  20. Mercury and flooding cycles in the Tapajos river basin, Brazilian Amazon: The role of periphyton of a floating macrophyte (Paspalum repens)

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Souza, Sergio A., E-mail: sacs@biof.ufrj.br [Lab. Tracadores Wolfgang C. Pfeiffer, SL 049, Instituto de Biofisica Carlos Chagas Filho/UFRJ, Bloco G, Centro de Ciencias e Saude, Ilha do Fundao, Rio de Janeiro, RJ, CEP 21949-902 (Brazil); Guimaraes, Jean R.D.; Miranda, Marcio R. [Lab. Tracadores Wolfgang C. Pfeiffer, SL 049, Instituto de Biofisica Carlos Chagas Filho/UFRJ, Bloco G, Centro de Ciencias e Saude, Ilha do Fundao, Rio de Janeiro, RJ, CEP 21949-902 (Brazil); Poirier, Hugo [Chaire de Reserche en Environment, Universite du Quebec a Montreal (UQaM), CP 8888, Montreal, H3C 3P8 (Canada); Mauro, Jane B.N. [Lab. Tracadores Wolfgang C. Pfeiffer, SL 049, Instituto de Biofisica Carlos Chagas Filho/UFRJ, Bloco G, Centro de Ciencias e Saude, Ilha do Fundao, Rio de Janeiro, RJ, CEP 21949-902 (Brazil); Lucotte, Marc [Chaire de Reserche en Environment, Universite du Quebec a Montreal (UQaM), CP 8888, Montreal, H3C 3P8 (Canada); Mergler, Donna [CINBIOSE, UQaM, CP 8888, succ. Centre-ville, Montreal, H3C 3P8 (Canada)

    2011-06-15

    Methylmercury (MeHg) increases mercury (Hg) toxicity and is biomagnified in the trophic chain contaminating riverine Amazon populations. Freshwater macrophyte roots are a main site of Hg methylation in different Brazilian environments. Paspalum repens periphyton was sampled in four floodplain lakes during the dry, rainy and wet seasons for measurement of total Hg (THg), MeHg, Hg methylation potentials, %C, %N, {delta}{sup 13}C, {delta}{sup 15}N and bacterial heterotrophic production as {sup 3}H-leucine incorporation rate. THg concentration varied from 67 to 198 ng/g and the potential of Me{sup 203}Hg formation was expressive (1-23%) showing that periphyton is an important matrix both in the accumulation of Hg and in MeHg production. The concentration of MeHg varied from 1 to 6 ng/g DW and was positively correlated with Me{sup 203}Hg formation. Though methylmercury formation is mainly a bacterial process, no significant correlation was observed between the methylation potentials and bacterial production. The multiple regressions analyses suggested a negative correlation between THg and %C and %N and between methylation potential and {delta}{sup 13}C. The discriminant analysis showed a significant difference in periphyton {delta}{sup 15}N, {delta}{sup 13}C and THg between seasons, where the rainy season presented higher {delta}{sup 15}N and the wet period lighter {delta}{sup 13}C, lower THg values and higher Me{sup 203}Hg formation. This exploratory study indicates that the flooding cycle could influence the periphyton composition, mercury accumulation and methylmercury production. - Research highlights: {yields} During rainy season mercury (Hg{sup 2+}) is carried out from terrestrial to aquatic systems by runoff. {yields} Macrophyte roots accumulates Hg{sup 2+} from suspended particulate matter (SPM). {yields} Hg methylation increases during the wet season. {yields} Flooded forest is a source of labile organic carbon and bioavailable Hg. {yields} Macrophytes

  1. Phytoremediation Of Mercury And Methylmercury Contaminated Sediments By Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated f...

  2. Bench-Scale Investigation Of Mercury Phytoremediation By Water Hyacinths (Eichhornia crassipes) In Heavily Contaminated Sediments

    Science.gov (United States)

    Phytoremediation has the potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associat...

  3. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.

    Science.gov (United States)

    Ndu, Udonna; Barkay, Tamar; Schartup, Amina Traore; Mason, Robert P; Reinfelder, John R

    2016-02-01

    Mercury resistant bacteria play a critical role in mercury biogeochemical cycling in that they convert methylmercury (MeHg) and inorganic mercury to elemental mercury, Hg(0). To date there are very few studies on the effects of speciation and bioavailability of MeHg in these organisms, and even fewer studies on the role that binding to cellular ligands plays on MeHg uptake. The objective of this study was to investigate the effects of thiol complexation on the uptake of MeHg by measuring the intracellular demethylation-reduction (transformation) of MeHg to Hg(0) in Hg-resistant bacteria. Short-term intracellular transformation of MeHg was quantified by monitoring the loss of volatile Hg(0) generated during incubations of bacteria containing the complete mer operon (including genes from putative mercury transporters) exposed to MeHg in minimal media compared to negative controls with non-mer or heat-killed cells. The results indicate that the complexes MeHgOH, MeHg-cysteine, and MeHg-glutathione are all bioavailable in these bacteria, and without the mer operon there is very little biological degradation of MeHg. In both Pseudomonas stutzeri and Escherichia coli, there was a pool of MeHg that was not transformed to elemental Hg(0), which was likely rendered unavailable to Mer enzymes by non-specific binding to cellular ligands. Since the rates of MeHg accumulation and transformation varied more between the two species of bacteria examined than among MeHg complexes, microbial bioavailability, and therefore microbial demethylation, of MeHg in aquatic systems likely depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present.

  4. Mercury in the mix: An in situ mesocosm approach to assess relative contributions of mercury sources to methylmercury production and bioaccumulation in the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Fleck, J.; Krabbenhoft, D. P.; Kraus, T. E. C.; Ackerman, J.; Stumpner, E. B.; DeWild, J.; Marvin-DiPasquale, M. C.; Tate, M.; Ogorek, J.

    2014-12-01

    Mercury (Hg) contamination is considered one of the greatest threats to the Sacramento-San Joaquin Delta and the San Francisco Estuary ecosystems. This threat is driven by the transformation of Hg, deposited in the Delta from erosion of upstream historic mining debris and atmospheric deposition, by native bacteria into the more toxic and biologically available form, methylmercury (MeHg), in the wetlands and sediment of the Delta. To effectively manage this threat, a quantitative understanding of the relative contribution of the different Hg sources to MeHg formation is needed. Mass balance estimates indicate as much as 99% of the Hg entering the Delta arrives via tributary inputs. Of the tributary Hg load, approximately 90% is adsorbed to suspended particles from tributary discharge and 10% is in the dissolved fraction, potentially of atmospheric origin. In comparison, the remaining 1-2% of the Hg entering the Delta arrives through direct atmospheric deposition (wet and dry). The relative importance of these sources to MeHg production within the Delta is not linearly related to the mass inputs because atmospherically-derived Hg is believed to be more reactive than sediment-bound Hg with respect to MeHg formation. We conducted an in situ mesocosm dosing experiment where different Hg sources to the Delta (direct atmospheric, dissolved riverine and suspended sediment) were "labeled" with different stable Hg isotopes and added to mesocosms within four different wetlands. Mercury isotopes added with the streambed sediments were equilibrated in sealed containers for six months; while the Hg isotopes associated with the precipitation and river water were equilibrated for 24 hours prior to use. After adding the isotopes, we sampled the water column, overlying air, bottom sediments and fish (Gambusia) at time intervals up to 30 days. Preliminary results from this experiment suggest that aqueous Hg sources (Hg introduced with precipitation and filtered river water) are 10

  5. Geochemistry of Mercury and other trace elements in fluvial tailings upstream of Daguerre Point Dam, Yuba River, California, August 2001

    Science.gov (United States)

    Hunerlach, Michael P.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Taylor, Howard E.; DeWild, John F.

    2004-01-01

    , sampled from material remaining in suspension after the sandy fraction settled for 15-20 minutes, contained mercury concentrations from 23 to 370 ng/g dry weight. Concentrations of MeHg were less than the detection limit (<0.001 ng/g dry weight) in 30 of 31 samples of the sandy fraction. In the suspended clay-silt fraction, MeHg was detected in 16 of 31 samples, in which it ranged in concentration from 0.04 (estimated) to 0.61 ng/g wet weight. Potential rates of mercury methylation and demethylation were evaluated in seven samples using radiotracer methods. Mercury methylation (MeHg production) potentials were generally low, ranging from less than 0.15 to about 1.6 ng/g/d (nanogram per gram of dry sediment per day). Mercury demethylation (MeHg degradation) potentials were moderately high, ranging from 1.0 to 2.2 ng/g/d. The ratio of methylation potential (MP) to demethylation potential (DP) ranged from less than 0.14 to about 1.4 (median = 0.24, mean = 0.44, number of samples = 7), suggesting that the potential for net production of MeHg in deep sediments is generally low. The MeHg production rates and MP/DP ratios were higher in the shallower interval in two of the three holes where two depth intervals were assessed, whereas the MeHg concentrations were higher in the shallower interval for all three holes. A similar spatial distribution was found for concentrations of solid-phase sulfide (measured as total reduced sulfur and likely representing iron-sulfide and iron-disulfide compounds), which were much higher in shallower samples (about 700 to about 2,100 nanomoles per gram, dry sediment) than in deeper samples (32 to 55 nanomoles per gram, dry sediment) in these three holes. If reduced sulfur compounds are oxidized to sulfate as a consequence of sediment disturbance, the activity of sulfate-reducing bacteria might be stimulated, causing a short-term increase in methylation of inorganic Hg(II) (divalent mercury). The extent of increased Hg(II)-methylation w

  6. Simulating mercury and methyl mercury stream concentrations at multiple scales in a wetland influenced coastal plain watershed (McTier Creek, SC, USA)

    Science.gov (United States)

    Chris Knightes; G.M. Davis; H.E. Golden; P.A. Conrads; P.M. Bradley; C.A. Journey

    2016-01-01

    Mercury (Hg) is the toxicant responsible for the most fish advisories across the United States, with 1.1 million river miles under advisory. The processes governing fate, transport, and transformation of mercury in streams and rivers are not well understood, in large part, because these systems are intimately linked with their surrounding watersheds and are often...

  7. Mercury exposure in the freshwater tilapia Oreochromis niloticus

    Energy Technology Data Exchange (ETDEWEB)

    Wang Rui [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wong Minghung [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.h [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-08-15

    Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using {sup 203}Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway. - Trophic transfer was the predominant pathway for mercury accumulation in tilapia, and methylmercury was more important in contributing to Hg accumulation than Hg(II).

  8. Mercury exposure in the freshwater tilapia Oreochromis niloticus

    International Nuclear Information System (INIS)

    Wang Rui; Wong Minghung; Wang Wenxiong

    2010-01-01

    Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using 203 Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway. - Trophic transfer was the predominant pathway for mercury accumulation in tilapia, and methylmercury was more important in contributing to Hg accumulation than Hg(II).

  9. The ascidian Styela plicata hemocytes as a potential biomarker of marine pollution: In vitro effects of seawater and organic mercury.

    Science.gov (United States)

    Parrinello, D; Bellante, A; Parisi, M G; Sanfratello, M A; Indelicato, S; Piazzese, D; Cammarata, M

    2017-02-01

    Toxic metals, such as mercury, contribute substantially to anthropogenic pollution in many estuarine environments. Animals living in those environments, particularly invertebrate filter feeders like tunicates, can be used as bioindicators. In an attempt to identify cellular markers for revealing pollution, this study examined in vitro the effects of different concentrations of methyl mercury on Styela plicata hemocytes. The harvested hemocytes from S. plicata that were exposed to the metal had a significant mortality, cellular count and morphometric alterations. These findings provided evidence of MeHg immunotoxic effects on S. plicata, resulting in hemocyte death and morphological changes induced by cytoskeleton alterations. Thus, a morphometric cellular parameter, such as spreading ability, was used as a complementary method for differentiation between hemocytes treated with a marine solution (as a negative control) and hemocytes incubated with methylmercury and/or Sicilian seawater samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Nineteenth century mercury hazard to wading birds and cormorants of the Carson River, Nevada

    Science.gov (United States)

    Henny, C.J.; Hill, E.F.; Hoffman, D.J.; Spalding, M.G.; Grove, R.A.

    2002-01-01

    Contemporary mercury interest relates to atmospheric deposition, contaminated fish stocks and exposed fish-eating wildlife. The focus is on methylmercury (MeHg) even though most contamination is of inorganic (IoHg) origin. However, IoHg is readily methylated in aquatic systems to become more hazardous to vertebrates. In response to a classic episode of historical (1859-1890) IoHg contamination, we studied fish-eating birds nesting along the lower Carson River, Nevada. Adult double-crested cormorants (Phalacrocorax auritus), snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) contained very high concentrations of total mercury (THg) in their livers (geo. means 134.8 g/g wet weight [ww], 43.7, and 13.5, respectively) and kidneys (69.4, 11.1, and 6.1, respectively). Apparently tolerance of these concentrations was possible due to post-absorption demethylation and sequestration of resultant IoHg. Demethylation and sequestration processes also appeared to have reduced the amount of MeHg redistributed to eggs. However, the relatively short time spent by adults in the contaminated area before egg laying was also a factor in lower than expected concentrations of mercury in eggs. Most eggs (100% MeHg) had concentrations below 0.80 g/g ww, the putative threshold concentration where reproductive problems may be expected; there was no conclusive evidence of depressed hatchability. After hatching, the young birds were fed diets by their parents averaging 0.36 to 1.18 gMeHg/g ww through fledging. During this four to six week period, accumulated mercury concentrations in the organs of the fledglings were much lower than found in adults, but evidence was detected of toxicity to their immune (spleen, thymus, bursa), detoxicating (liver, kidneys) and nervous systems. Several indications of oxidative stress were also noted in the fledglings and were most apparent in young cormorants containing highest concentrations of mercury. This stress was

  11. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael J Carvan

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental neurotoxicant, with human exposures predominantly resulting from fish consumption. Developmental exposure of zebrafish to MeHg is known to alter their neurobehavior. The current study investigated the direct exposure and transgenerational effects of MeHg, at tissue doses similar to those detected in exposed human populations, on sperm epimutations (i.e., differential DNA methylation regions [DMRs] and neurobehavior (i.e., visual startle and spontaneous locomotion in zebrafish, an established human health model. F0 generation embryos were exposed to MeHg (0, 1, 3, 10, 30, and 100 nM for 24 hours ex vivo. F0 generation control and MeHg-exposed lineages were reared to adults and bred to yield the F1 generation, which was subsequently bred to the F2 generation. Direct exposure (F0 generation and transgenerational actions (F2 generation were then evaluated. Hyperactivity and visual deficit were observed in the unexposed descendants (F2 generation of the MeHg-exposed lineage compared to control. An increase in F2 generation sperm epimutations was observed relative to the F0 generation. Investigation of the DMRs in the F2 generation MeHg-exposed lineage sperm revealed associated genes in the neuroactive ligand-receptor interaction and actin-cytoskeleton pathways being effected, which correlate to the observed neurobehavioral phenotypes. Developmental MeHg-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in F2 generation adult zebrafish. Therefore, mercury can promote the epigenetic transgenerational inheritance of disease in zebrafish, which significantly impacts its environmental health considerations in all species including humans.

  12. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River basin, New Jersery, New York, and Pennsylvania, 1998-2001

    Science.gov (United States)

    Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.

    2004-01-01

    Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed

  13. Temporal modulation visual fields, normal aging, Parkinson's disease and methyl-mercury in the James Bay Cree: a feasibility study

    Directory of Open Access Journals (Sweden)

    Jocelyn Faubert

    2003-01-01

    Full Text Available We assessed temporal modulation visual fields (TMFs for 91 observers including controls, Parkinson patients and members of the James Bay Cree community of Northern Québec suspected of being chronically exposed to relatively low levels of methyl-mercury. The main goal was to establish the feasibility of using such procedures to rapidly evaluate visual function in a large field study with the James Bay Cree community. The results show clear normal aging effects on TMFs and the pattern of loss differed depending on the flicker rates used. Group data comparisons between the controls and the experimental groups showed significant effects only between the Cree and normal controls in the 40 to 49 year-old age category for the low temporal frequency condition (2 Hz. Examples of individual analysis shows a Cree observer with severe visual field constriction at the 2 Hz condition with a normal visual field at the 16 Hz condition and a reverse pattern was demonstrated for a Parkinson's patient where a visual field constriction was evident only for the 16 Hz condition. The general conclusions are: Such a technique can be used to evaluate the visual consequences of neuropathological disorders and it may lead to dissociation between certain neurotoxic and neurodegenerative effects depending on the parameters used; this technique can be used for a large field study because it is rapid and easily understood and performed by the subjects; the TMF procedure used showed good test-retest correlations; normal aging causes changes in TMF profiles but the changes will show different patterns throughout the visual field depending on the parameters used.

  14. Mercury distribution and lipid oxidation in fish muscle: Effects of washing and isoelectric protein precipitation

    Science.gov (United States)

    Gong, Y.; Krabbenhoft, D.P.; Ren, L.; Egelandsdal, B.; Richards, M.P.

    2011-01-01

    Nearly all the mercury (Hg) in whole muscle from whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) was present as methyl mercury (MeHg). The Hg content in whole muscle from whitefish and walleye was 0.04-0.09 and 0.14-0.81 ppm, respectively. The myofibril fraction contained approximately three-fourths of the Hg in whitefish and walleye whole muscle. The sarcoplasmic protein fraction (e.g., press juice) was the next most abundant source of Hg. Isolated myosin, triacylglycerols, and cellular membranes contained the least Hg. Protein isolates prepared by pH shifting in the presence of citric acid did not decrease Hg levels. Addition of cysteine during washing decreased the Hg content in washed muscle probably through the interaction of the sulfhydryl group in cysteine with MeHg. Primary and secondary lipid oxidation products were lower during 2 ??C storage in isolates prepared by pH shifting compared to those of washed or unwashed mince from whole muscle. This was attributed to removing some of the cellular membranes by pH shifting. Washing the mince accelerated lipid peroxide formation but decreased secondary lipid oxidation products compared to that of the unwashed mince. This suggested that there was a lipid hydroperoxide generating system that was active upon dilution of aqueous antioxidants and pro-oxidants. ?? 2011 American Chemical Society.

  15. Mercury Sources and Cycling in the Great Lakes: Dramatic Changes Resulting from Altered Atmospheric Loads and the Near-Shore Shunt

    Science.gov (United States)

    Krabbenhoft, D. P.; DeWild, J. F.; Maglio, M. M.; Tate, M. T.; Ogorek, J. M.; Hurley, J. P.; Lepak, R.

    2013-12-01

    there have been large declines in surface water total Hg concentrations (50-75%) across the Great Lakes since about 2000, an observation in agreement with concurrent declines in atmospheric deposition. In addition to a decline in inputs, we hypothesize that appreciable increases in volatilization of gaseous Hg have occurred. Mercury volatilization is directly related to water clarity (via the photo-reduction process), which has increased substantially in the Great Lakes since the invasion of zebra mussels and quagga mussels. Finally, although substantial declines in total aqueous Hg levels are apparent, fish mercury levels over the same time period appear to be relatively steady, and in some locations increasing. We submit this apparent discordance is also the outcome of the invasive mussels, which have caused near-shore eutrophication and off-shore oligotrophication commonly referred to as the near-shore shunt. Initial sampling by this project has revealed that these eutrophied zones are markedly enriched in MeHg. Therefore, it appears that while the open water regions of the Great Lakes appear to have experienced significant aqueous Hg declines, fish Hg levels may be responding to a new site of methylation in the near-shore zone.

  16. Mercury risk in poultry in the Wanshan Mercury Mine, China.

    Science.gov (United States)

    Yin, Runsheng; Zhang, Wei; Sun, Guangyi; Feng, Zhaohui; Hurley, James P; Yang, Liyuan; Shang, Lihai; Feng, Xinbin

    2017-11-01

    In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4-62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2-3917.1 ng/g; MeHg: 7.1-62.8 ng/g) and blood (THg: 12.3-338.0 ng/g; MeHg: 1.4-17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3-238.1 μg; MeHg: 2.2-15.6 μg), ducks (THg: 15.3-238.1 μg; MeHg: 3.5-14.7 μg) and geese (THg: 83.8-93.4 μg; MeHg: 15.4-29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influence of eutrophication on the distribution of total mercury and methylmercury in hydroelectric reservoirs.

    Science.gov (United States)

    Meng, Bo; Feng, X B; Chen, C X; Qiu, G L; Sommar, J; Guo, Y N; Liang, P; Wan, Q

    2010-01-01

    The distribution of mercury (Hg) and the characteristics of its methylation were investigated in Wujiangdu (WJD) and Yinzidu (YZD) reservoirs in Guizhou province, China. The two reservoirs are characterized by high and low levels of primary productivity, respectively. Mercury species in water samples from depth profiles in both reservoirs and from interface water in the WJD were analyzed each season during 2007. The concentrations of total Hg (HgT(unf)) and methylmercury (MeHgT(unf)) in unfiltered water samples from the WJD varied from 3.0 to 18 pmol dm(-3) and from 0.17 to 15 pmol dm(-3), respectively; ranges were 2.0 to 9.5 pmol dm(-3) for HgT(unf) and 0.14 to 2.2 pmol dm(-3) for MeHgT(unf) in the YZD. Elevated methylmercury concentrations in water samples from the bottom water and water-sediment interface demonstrated an active net Hg methylation in the downstream reach of the WJD. There was no discernable Hg methylation occurring in the YZD, nor in the upstream and middle reaches of the WJD. The results suggest that high primary productivity resulting from cage aquaculture activities in the WJD is an important control on Hg methylation in the reservoir, increasing the concentrations of MeHg in water in the Wujiang River basin Southwestern China.

  18. Mercury biomethylation assessment in the estuary of Bilbao (North of Spain)

    International Nuclear Information System (INIS)

    Raposo, J.C.; Ozamiz, G.; Etxebarria, N.; Tueros, I.; Munoz, C.; Muela, A.; Arana, I.; Barcina, I.

    2008-01-01

    The relationship between the microbial methylation of mercury and the microbial activities in sediments and water collected from the estuary of Bilbao (North of Spain) was studied in three different sampling points and in two different seasons. Three different cultures were prepared with a sediment slurry to distinguish between biotic and abiotic methylation pathways and the variations of the methylmercury concentration and the variations of the population of total number of bacteria (TDC), anaerobic heterotrophic bacteria (AHB), sulphate-reducing bacteria (SRB) and Desulfovibrio were measured. From this work, it can be concluded that the variation of MeHg concentrations is a result of the methylation/demethylation processes in the sediments, and that the abiotic processes have a negligible contribution to those processes. According to the statistical analysis of the results (partial least squares analysis) a significant statistical correlation was established between methylmercury and the SRB counts. - The methylation of mercury follows a stationary pattern linked to the variation of sulphate-reducing bacteria

  19. Brain, kidney and liver sup 203 Hg-methyl mercury uptake in the rat: Relationship to the neutral amino acid carrier

    Energy Technology Data Exchange (ETDEWEB)

    Aschner, M [Department of Pharmacology and Toxicology, and the Interdepartmental Neuroscience Training Program, Albany Medical College, Albany, NY (USA)

    1989-01-01

    To investigate the effect of L-neutral amino acids on tissue levels of methyl mercury in the adult animal, rats were infused into the external jugular vein with solutions containing (a) 0.05 mM {sup 203}Hg-MeHgCl and saline, (b) 0.05 mM {sup 203}Hg-MgHgCl-0.1 mM L-cysteine, (c) 0.05 mM {sup 203}Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-methionine, (d) 0.05 mM {sup 203}Hg-MeHgCl-0.1 mM L-leucine, or (e) 0.05 mM {sup 203}Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-leucine. Groups of animals were sacrificed at 3 min. 7 hr, and 96 hr. Brain, kidney, and liver {sup 203}Hg radioactivity was measured by means of gamma-scintillation spectrometry. Brain {sup 203}Hg concentrations L-cysteine treated animals were significantly higher compared with saline treated animals (P<0.05) at 3 min., 7 hr and 96 hr. The coinjection or coinfusion of methyl mercury with L-cysteine and L-methionine abolished the L-cysteine-mediated brain {sup 203}Hg uptake (P<0.05), at each sacrifice time. Kidney and liver {sup 203}Hg concentrations were not significantly different in any of the treatment groups compared with controls, irrespective of the sacrifice time. Furthermore, the percentage of diffusible {sup 203}Hg (non-protein bound) at each sacrifice time was not statistically different irrespective of the treatment assigned. These results suggest that methyl mercury L-cysteine conjugates in the plasma may share a common transport step with the L-neutral amino acid carrier transport system and indicate the presence in brain capillaries of a transport system capable of selectively mediating methyl mercury uptake across the capillary endothelial cell membrane. (author).

  20. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    International Nuclear Information System (INIS)

    Sherman, Laura S.; Blum, Joel D.; Basu, Niladri; Rajaee, Mozhgon; Evers, David C.; Buck, David G.; Petrlik, Jindrich; DiGangi, Joseph

    2015-01-01

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ 199 Hg values to Hg derived from ore deposits (mean urine Δ 199 Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ 199 Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ 199 Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed

  1. Effects of small hydropower plants on mercury concentrations in fish.

    Science.gov (United States)

    Cebalho, Elaine C; Díez, Sergi; Dos Santos Filho, Manoel; Muniz, Claumir Cesar; Lázaro, Wilkinson; Malm, Olaf; Ignácio, Aurea R A

    2017-10-01

    Although the impacts of large dams on freshwater biota are relatively well known, the effects of small hydropower plants (SHP) are not well investigated. In this work, we studied if mercury (Hg) concentrations in fish rise in two tropical SHP reservoirs, and whether similar effects take place during impoundment. Total Hg concentrations in several fish species were determined at two SHP in the Upper Guaporé River basin floodplain, Brazil. In total, 185 specimens were analysed for Hg content in dorsal muscle and none of them reported levels above the safety limit (500 μg kg -1 ) for fish consumption recommended by the World Health Organisation (WHO). The highest levels of Hg (231 and 447 μg kg -1 ) were found in carnivorous species in both reservoirs. Mercury increased as a function of standard length in most of the fish populations in the reservoirs, and higher Hg concentrations were found in fish at the reservoir compared with fish downstream. The high dissolved oxygen concentrations and high transparency of the water column (i.e. oligotrophic reservoir) together with the absence of thermal stratification may explain low Hg methylation and low MeHg levels found in fish after flooding. Overall, according to limnological characteristics of water, we may hypothesise that reservoir conditions are not favourable to high net Hg methylation.

  2. Environmental Mercury and Its Toxic Effects

    Directory of Open Access Journals (Sweden)

    Kevin M. Rice

    2014-03-01

    Full Text Available Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.

  3. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France)

    International Nuclear Information System (INIS)

    Sharif, Abubaker; Monperrus, Mathilde; Tessier, Emmanuel; Bouchet, Sylvain; Pinaly, Hervé; Rodriguez-Gonzalez, Pablo; Maron, Philippe; Amouroux, David

    2014-01-01

    Because mercury (Hg) undergoes significant biogeochemical processes along the estuarine-coastal continuum, the objective of this work was to investigate the distribution and reactivity of methylmercury (MeHg), inorganic mercury (Hg(II)) and gaseous Hg (DGM) in plume waters of the Adour River estuary (Bay of Biscay). Vertical profiles, spatial and tidal variability of Hg species concentrations were evaluated during two campaigns (April 2007 and May 2010) characterized by significant plume extents over the coastal zone. Incubations with isotopically enriched tracers were performed on bulk and filtered waters under sunlight or dark conditions to investigate processes involved in Hg methylation, demethylation and reduction rates. Total Hg(II) concentrations were more dispersed in April 2007 (5.2 ± 4.9 pM) than in May 2010 (2.5 ± 1.1 pM) while total MeHg concentrations were similar for both seasons and averaged 0.13 ± 0.07 and 0.18 ± 0.11 pM, respectively. DGM concentrations were also similar between the two campaigns, averaging 0.26 ± 0.10 and 0.20 ± 0.09 pM, respectively. Methylation yields remained low within the estuarine plume (< 0.01–0.4% day −1 ) while MeHg was efficiently demethylated via both biotic and abiotic pathways (2.3–55.3% day −1 ), mainly photo-induced. Hg reduction was also effective in these waters (0.3–43.5% day −1 ) and was occurring in both light and dark conditions. The results suggest that the plume is overall a sink for MeHg with integrated net demethylation rates, ranging from 2.0–3.7 g (Hg) d −1 , in the same range than the estimated MeHg inputs from the estuary (respectively, 0.9 and 3.5 g (Hg) d −1 ). The large evasion of DGM from the plume waters to the atmosphere (8.8–26.9 g (Hg) d −1 ) may also limit Hg T inputs to coastal waters (33–69 g (Hg) d −1 ). These processes are thus considered to be most significant in controlling the fate of Hg transferred from the river to the coastal zone. - Highlights:

  4. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France)

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Abubaker; Monperrus, Mathilde; Tessier, Emmanuel; Bouchet, Sylvain; Pinaly, Hervé; Rodriguez-Gonzalez, Pablo [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l' Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 Pau cedex 9 (France); Maron, Philippe [Laboratoire des Sciences de l' Ingénieur Appliquées à la Mécanique et au Génie Electrique, Institut Supérieur Aquitain du Bâtiment et des Travaux Publics, Université de Pau et des Pays de l' Adour, Allée du Parc Montaury, 64600 Anglet (France); Amouroux, David, E-mail: david.amouroux@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l' Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 Pau cedex 9 (France)

    2014-10-15

    Because mercury (Hg) undergoes significant biogeochemical processes along the estuarine-coastal continuum, the objective of this work was to investigate the distribution and reactivity of methylmercury (MeHg), inorganic mercury (Hg(II)) and gaseous Hg (DGM) in plume waters of the Adour River estuary (Bay of Biscay). Vertical profiles, spatial and tidal variability of Hg species concentrations were evaluated during two campaigns (April 2007 and May 2010) characterized by significant plume extents over the coastal zone. Incubations with isotopically enriched tracers were performed on bulk and filtered waters under sunlight or dark conditions to investigate processes involved in Hg methylation, demethylation and reduction rates. Total Hg(II) concentrations were more dispersed in April 2007 (5.2 ± 4.9 pM) than in May 2010 (2.5 ± 1.1 pM) while total MeHg concentrations were similar for both seasons and averaged 0.13 ± 0.07 and 0.18 ± 0.11 pM, respectively. DGM concentrations were also similar between the two campaigns, averaging 0.26 ± 0.10 and 0.20 ± 0.09 pM, respectively. Methylation yields remained low within the estuarine plume (< 0.01–0.4% day{sup −1}) while MeHg was efficiently demethylated via both biotic and abiotic pathways (2.3–55.3% day{sup −1}), mainly photo-induced. Hg reduction was also effective in these waters (0.3–43.5% day{sup −1}) and was occurring in both light and dark conditions. The results suggest that the plume is overall a sink for MeHg with integrated net demethylation rates, ranging from 2.0–3.7 g (Hg) d{sup −1}, in the same range than the estimated MeHg inputs from the estuary (respectively, 0.9 and 3.5 g (Hg) d{sup −1}). The large evasion of DGM from the plume waters to the atmosphere (8.8–26.9 g (Hg) d{sup −1}) may also limit Hg{sub T} inputs to coastal waters (33–69 g (Hg) d{sup −1}). These processes are thus considered to be most significant in controlling the fate of Hg transferred from the river to the

  5. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Basu, Niladri; Stamler, Christopher J.; Loua, Kovana Marcel; Chan, H.M.

    2005-01-01

    Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl 2 ) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl 2 and MeHg on [ 3 H]-quinuclidinyl benzilate ([ 3 H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse, mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B max ) and ligand affinity (K d ). Subsequently, samples were exposed to HgCl 2 or MeHg to derive IC50 values and inhibition constants (K i ). Results demonstrate that HgCl 2 is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [ 3 H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies

  6. Role of mariculture in the loading and speciation of mercury at the coast of the East China Sea.

    Science.gov (United States)

    Liang, Peng; Gao, Xuefei; You, Qiongzhi; Zhang, Jin; Cao, Yucheng; Zhang, Chan; Wong, Ming-Hung; Wu, Sheng-Chun

    2016-11-01

    The effects of mariculture on mercury (Hg) contamination and speciation in water, sediment and cultured fish in a typical mariculture zone located in Xiangshan bay, Zhejiang province, east China, were studied. Water, sediment and fish samples were collected from mariculture sites (MS) and from corresponding reference sites (RS) 2500 m away from the MS. The THg concentration in overlying water in Xiangshan bay reached as high as 16.6 ± 19.5 ng L -1 , indicating that anthropogenic sources in this bay may contribution on Hg contamination in overlying water. Mariculture activities resulted in an increase in THg concentration in water from surface and bottom layers, which may be attributed to the discharge of domestic sewage and the accumulation of unconsumed fish feed and fish excreta in the benthic environment. Methylmercury (MeHg) concentrations in the bottom layer of overlying water and top surface layer of porewater underneath MS were higher than at RS, implying that mariculture activities promote Hg methylation in the interface between sediments and water. In addition, the concentrations of MeHg in sediment and porewater were significantly higher in summer than winter. It was observed that THg and MeHg contents in the muscle of blackhead seabream (Acanthopagrus schlegelii) (fed by the trash fish) were significantly higher (p < 0.001) than those in red snapper (Lutjanus campechanus) or perch (Perca fluviatilis) (fed by pellet fish feed). The THg and MeHg concentrations in the fish meat were closely related to the feeding mode, which indicate that fish feed rather than environmental media is the major pathway for Hg accumulation in fish muscle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mercury and methylmercury in reservoirs in Indiana

    Science.gov (United States)

    Risch, Martin R.; Fredericksen, Amanda L.

    2015-01-01

    Mercury (Hg) is an element that occurs naturally, but evidence suggests that human activities have resulted in increased amounts being released to the atmosphere and land surface. When Hg is converted to methylmercury (MeHg) in aquatic ecosystems, MeHg accumulates and increases in the food web so that some fish contain levels which pose a health risk to humans and wildlife that consume these fish. Reservoirs unlike natural lakes, are a part of river systems that are managed for flood control. Data compiled and interpreted for six flood-control reservoirs in Indiana showed a relation between Hg transport, MeHg formation in water, and MeHg in fish that was influenced by physical, chemical, and biological differences among the reservoirs. Existing information precludes a uniform comparison of Hg and MeHg in all reservoirs in the State, but factors and conditions were identified that can indicate where and when Hg and MeHg levels in reservoirs could be highest.

  8. Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism in Geobacter sulfurreducens PCA.

    Science.gov (United States)

    Qian, Chen; Johs, Alexander; Chen, Hongmei; Mann, Benjamin F; Lu, Xia; Abraham, Paul E; Hettich, Robert L; Gu, Baohua

    2016-10-07

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutants and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the ΔhgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon (C1) metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the acetyl-CoA pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. This observation supports the hypothesis that the function of HgcA and HgcB is linked to C1 metabolism through the folate branch of the acetyl-CoA pathway by providing methyl groups required for Hg methylation.

  9. Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons

    Science.gov (United States)

    Baldi, Franco; Gallo, Michele; Marchetto, Davide; Fani, Renato; Maida, Isabel; Horvat, Milena; Fajon, Vesna; Zizek, Suzana; Hines, Mark

    2012-11-01

    Marano and Grado lagoons are polluted by mercury from the Isonzo River and a chlor-alkali plant, yet despite this contamination, clam cultivation is one of the main activities in the region. Four stations (MA, MB, MC and GD) were chosen for clam seeding and surficial sediments were monitored in autumn, winter and summer to determine the Hg detoxifying role of bacteria. Biotransformation of Hg species in surficial sediments of Marano and Grado lagoons was investigated while taking into consideration the speciation of organic matter in the biochemical classes of PRT (proteins), CHO (carbohydrates) and LIP (lipids), water-washed cations and anions, bacterial biomass, Hg-resistant bacteria, some specific microbial activities such as sulfate reduction rates, Hg methylation rates, Hg-demethylation rates, and enzymatic ionic Hg reduction. MeHg in sediments was well correlated with PRT content, whereas total Hg in sediments correlated with numbers of Hg-resistant bacteria. Correlations of the latter with Hg-demethylation rates in autumn and winter suggested a direct role Hg-resistant bacteria in Hg detoxification by producing elemental Hg (Hg0) from ionic Hg and probably also from MeHg. MeHg-demethylation rates were ˜10 times higher than Hg methylation rates, were highest in summer and correlated with high sulfate reduction rates indicating that MeHg was probably degraded in summer by sulfate-reducing bacteria via an oxidative pathway. During the summer period, aerobic heterotrophic Hg-resistant bacteria decreased to <2% compared to 53% in winter. Four Hg-resistant bacterial strains were isolated, two Gram-positive (Staphylococcus and Bacillus) and two Gram-negative (Stenotrophomonas and Pseudomonas). Two were able to produce Hg0, but just one contained a merA gene; while other two strains did not produce Hg0 even though they were able to grow at 5 μg ml of HgCl2. Lagoon sediments support a strong sulfur cycle in summer that controls Hg methylation and demethylation

  10. Methodological considerations regarding the use of inorganic {sup 197}Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Catan, Soledad [Laboratorio de Analisis por Activacion Neutronica, Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 Bariloche (Argentina); Guevara, Sergio Ribeiro [Laboratorio de Analisis por Activacion Neutronica, Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 Bariloche (Argentina)], E-mail: ribeiro@cab.cnea.gov.ar; Marvin-DiPasquale, Mark [US Geological Survey, 345 Middlefield Rd./MS 480, Menlo Park, CA 94025 (United States); Magnavacca, Cecilia [Centro Atomico Ezeiza, Comision Nacional de Energia Atomica, Presbitero Gonzalez y Aragon No. 15, B1802AYA, Ezeiza, Buenos Aires (Argentina); Cohen, Isaac Marcos [Departamento de Ingenieria Quimica, Facultad Regional Buenos Aires, Universidad Tecnologica Nacional, Medrano 951 (C1179AAQ) Buenos Aires (Argentina); Arribere, Maria [Laboratorio de Analisis por Activacion Neutronica, Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 Bariloche (Argentina)

    2007-09-15

    Methodological considerations on the determination of benthic methyl-mercury (CH{sub 3}Hg) production potentials were investigated on lake sediment, using {sup 197}Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and {gamma}-irradiation. Flash freezing showed similar CH{sub 3}Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with {gamma}-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated {sup 197}Hg(II) carry-over in the organic extraction and/or [{sup 197}Hg]CH{sub 3}Hg produced via abiotic reactions. Two CH{sub 3}Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO{sub 4} and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over.

  11. Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment

    International Nuclear Information System (INIS)

    Perez Catan, Soledad; Guevara, Sergio Ribeiro; Marvin-DiPasquale, Mark; Magnavacca, Cecilia; Cohen, Isaac Marcos; Arribere, Maria

    2007-01-01

    Methodological considerations on the determination of benthic methyl-mercury (CH 3 Hg) production potentials were investigated on lake sediment, using 197 Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and γ-irradiation. Flash freezing showed similar CH 3 Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with γ-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated 197 Hg(II) carry-over in the organic extraction and/or [ 197 Hg]CH 3 Hg produced via abiotic reactions. Two CH 3 Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO 4 and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over

  12. Future trends in environmental mercury concentrations: implications for prevention strategies

    Directory of Open Access Journals (Sweden)

    Sunderland Elsie M

    2013-01-01

    Full Text Available Abstract In their new paper, Bellanger and coauthors show substantial economic impacts to the EU from neurocognitive impairment associated with methylmercury (MeHg exposures. The main source of MeHg exposure is seafood consumption, including many marine species harvested from the global oceans. Fish, birds and other wildlife are also susceptible to the impacts of MeHg and already exceed toxicological thresholds in vulnerable regions like the Arctic. Most future emissions scenarios project a growth or stabilization of anthropogenic mercury releases relative to present-day levels. At these emissions levels, inputs of mercury to ecosystems are expected to increase substantially in the future, in part due to growth in the legacy reservoirs of mercury in oceanic and terrestrial ecosystems. Seawater mercury concentration trajectories in areas such as the North Pacific Ocean that supply large quantities of marine fish to the global seafood market are projected to increase by more than 50% by 2050. Fish mercury levels and subsequent human and biological exposures are likely to also increase because production of MeHg in ocean ecosystems is driven by the supply of available inorganic mercury, among other factors. Analyses that only consider changes in primary anthropogenic emissions are likely to underestimate the severity of future deposition and concentration increases associated with growth in mercury reservoirs in the land and ocean. We therefore recommend that future policy analyses consider the fully coupled interactions among short and long-lived reservoirs of mercury in the atmosphere, ocean, and terrestrial ecosystems. Aggressive anthropogenic emission reductions are needed to reduce MeHg exposures and associated health impacts on humans and wildlife and protect the integrity of one of the last wild-food sources globally. In the near-term, public health advice on safe fish consumption choices such as smaller species, younger fish, and harvests

  13. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Hoang-Yen T. [Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Chen, Yu-Wei [Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Belzile, Nelson, E-mail: nbelzile@laurentian.ca [Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada)

    2013-04-01

    Cultures of the sulfate reducing bacteria Desulfovibrio desulfuricans were grown under anoxic conditions to study the effect of added sulfide, selenite and mercuric ions. A chemical trap consisting in a CuSO{sub 4} solution was used to control the poisoning effect induced by the bacterial production of hydrogen sulfide via the precipitation of CuS. Following the addition of Hg{sup 2+}, the formation of methylmercury (MeHg) was correlated to bacterial proliferation with most of MeHg found in the culture medium. A large fraction (50–80%) of added Hg{sup 2+} to a culture ended up in a solid phase (Hg{sup 0} and likely HgS) limiting its bioavailability to cells with elemental Hg representing ∼ 40% of the solid. Following the addition of selenite, a small fraction was converted into Se(0) inside the cells and, even though the conversion to this selenium species increased with the increase of added selenite, it never reached more than 49% of the added amount. The formation of volatile dimethylselenide is suggested as another detoxification mechanism. In cultures containing both added selenite and mercuric ions, elemental forms of the two compounds were still produced and the increase of selenium in the residual fraction of the culture suggests the formation of mercuric selenite limiting the bioavailability of both elements to cells. - Highlights: ► Detoxification mechanisms of D. desulfuricans were studied in presence of added sulfide, selenite and mercuric ions. ► The poisoning effect of H{sub 2}S added to or generated by cultures of D. desulfuricans can be controlled with a chemical trap. ► The addition of selenite to cultures triggered the formation of elemental Se and other forms of volatile and non-volatile Se. ► The addition of mercuric ions to cultures led to the production of methylmercury, volatile Hg and solid mercuric sulfide. ► With both Se and Hg added to cultures, fractionation of species in solid and liquid phases suggests the formation of HgSe.

  14. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

    Science.gov (United States)

    Fu, Xuewu; Feng, Xinbin; Zhang, Gan; Xu, Weihai; Li, Xiangdong; Yao, Hen; Liang, Peng; Li, Jun; Sommar, Jonas; Yin, Runsheng; Liu, Na

    2010-03-01

    Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m-3 (mean: 2.62 ng m-3, median: 2.24 ng m-3). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 ± 0.3 ng L-1, 0.12 ± 0.05 ng L-1, and 36.5 ± 14.9 pg L-1, respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 ± 3.4 ng m-2 h-1). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.

  15. Application of Isotope Dilution Mass Spectrometry for Reference Measurements of Cadmium. Copper, Mercury, Lead, Zinc and Methyl Mercury in Marine Sediment Sample

    Directory of Open Access Journals (Sweden)

    Vasileva E.

    2013-04-01

    Full Text Available Marine sediment was selected as a test sample for the laboratory inter-comparison studies organized by the Environment Laboratoryes of the International Atomic Energy. The analytical procedure to establish the reference values for the Cd, Cu, Hg, Methyl Hg, Pb and Zn amount contents was based on Isotope Dilution Inductively Coupled Plasma-Mass Spectrometry (ID ICP-MS applied as a primary method of measurement..The Hg and Methyl Hg determination will be detailed more specifically because of the problems encountered with this element, including sample homogeneity issues, memory effects and possible matrix effects during the ICP- MS measurement stage. Reference values, traceable to the SI, with total uncertainties of less than 2% relative expanded uncertainty (k=2 were obtained for Cd, Cu, Zn and Pb and around 5% for Hg and CH3Hg.

  16. Mercury distribution and speciation in different brain regions of beluga whales (Delphinapterus leucas)

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, Sonja K., E-mail: ostertag@unbc.ca [Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 (Canada); Stern, Gary A., E-mail: Gary.Stern@dfo-mpo.gc.ca [Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, R3T 2N6 (Canada); Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Wang, Feiyue, E-mail: feiyue.wang@ad.umanitoba.ca [Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Lemes, Marcos, E-mail: Marcos.lemes@ad.umanitoba.ca [Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Chan, Hing Man, E-mail: laurie.chan@uottawa.ca [Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, 1N 6N5 (Canada)

    2013-07-01

    The toxicokinetics of mercury (Hg) in key species of Arctic ecosystem are poorly understood. We sampled five brain regions (frontal lobe, temporal lobe, cerebellum, brain stem and spinal cord) from beluga whales (Delphinapterus leucas) harvested in 2006, 2008, and 2010 from the eastern Beaufort Sea, Canada, and measured total Hg (HgT) and total selenium (SeT) by inductively coupled plasma mass spectrometry (ICP-MS), mercury analyzer or cold vapor atomic absorption spectrometry, and the chemical forms using a high performance liquid chromatography ICP-MS. At least 14% of the beluga whales had HgT concentrations higher than the levels of observable adverse effect (6.0 mg kg{sup −1} wet weight (ww)) in primates. The concentrations of HgT differed between brain regions; median concentrations (mg kg{sup −1} ww) were 2.34 (0.06 to 22.6, 81) (range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe, 1.84 (0.05 to 16.9, 83) in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) in brain stem. Total Hg concentrations in the cerebellum increased with age (p < 0.05). Between 35 and 45% of HgT was water-soluble, of which, 32 to 41% was methyl mercury (MeHg) and 59 to 68% was labile inorganic Hg. The concentration of MeHg (range: 0.03 to 1.05 mg kg{sup −1} ww) was positively associated with HgT concentration, and the percent MeHg (4 to 109%) decreased exponentially with increasing HgT concentration in the spinal cord, cerebellum, frontal lobe and temporal lobe. There was a positive association between SeT and HgT in all brain regions (p < 0.05) suggesting that Se may play a role in the detoxification of Hg in the brain. The concentration of HgT in the cerebellum was significantly associated with HgT in other organs. Therefore, HgT concentrations in organs that are frequently sampled in bio-monitoring studies could be used to estimate HgT concentrations in the cerebellum, which is the target organ of MeHg toxicity. - Highlights:

  17. Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats.

    Science.gov (United States)

    Heimfarth, Luana; Delgado, Jeferson; Mingori, Moara Rodrigues; Moresco, Karla Suzana; Pureur, Regina Pessoa; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2018-03-01

    Human fetuses and neonates are particularly vulnerable to methylmercury (MeHg)-induced brain damage and are sensitive even to low exposure levels. Previous work of our group evidence that prenatal exposure to MeHg causes cognitive and behavioral alterations and disrupt hippocampus signaling. The current study aimed to investigate the effect of gestational exposure of rats to MeHg at low doses (1 or 2 mg/kg) on parameters of redox imbalance and key signaling pathways in the cerebellum of their offspring. Pregnant females received MeHg (treated group) or 0.9% saline water (control group) by gavage in alternated days from gestational day 5 (GD5) until parturition and analyzes were proceed in the cerebellum of 30-day-old pups. We found increased lipid peroxidation and protein carbonylation levels as well as decreased SH content in pups prenatally exposed to 2 mg/kg MeHg. In addition, misregulated SOD/catalase activities supported imbalanced redox equilibrium. We found decreased GSK3β(Ser9) phosphorylation, suggesting activation of this enzyme and dephosphorylation/inhibition of ERK1/2 and JNK pathways. Increased PKAα catalytic subunit could be upstream of hyperphosphorylated c-Raf(Ser259) and downregulated MAPK pathway. In addition, we found raised levels of the Ca 2+ -dependent protein phosphatase 2 B (PP2B). We also found preserved immunohistochemical staining for both glial fibrillary acidic protein (GFAP) and NeuN in MeHg-exposed pups. Western blot analysis showed unaltered levels of BAX/BCL-XL, BAD/BCL-2 and active caspase 3. Together, these findings support absence of reactive astrocytes, neuronal damage and apoptotic cell death in the cerebellum of MeHg treated pups. The present study provides evidence that prenatal exposure to MeHg leads to later redox imbalance and disrupted signaling mechanisms in the cerebellum of 30-day-old pups potentially predisposing them to long-lasting neurological impairments in CNS. Copyright © 2017 Elsevier B.V. All rights

  18. Characterization of the extent of Mercury Contamination in the Androscoggin River from a former Chlor-alkali Facility, Berlin, New Hampshire

    Science.gov (United States)

    Chalmers, A.; Marvin-Dipasquale, M. C.; Rosiu, C.; Luce, D.; Coles, J.; Zimmerman, M.; Smith, T.

    2010-12-01

    From the late 1800s to the 1960s a chlor-alkali plant was used to produce chlorine gas for the papermaking industry in Berlin, New Hampshire. During operation of the chlor-alkali facility, elemental mercury (Hg) was released to the environment, contaminating soils and the underlying fractured rock. Investigations have revealed that elemental Hg continues to seep through bedrock fractures into the adjacent Androscoggin River. This study evaluates the extent and transformation of Hg contamination in the Androscoggin River by comparing a reference site 17 kilometers above the former chlor-alkali facility to 5 sites ranging from 1 to 16 km downstream from the facility. Total and methyl Hg (THg and MeHg, respectively), among other analytes, were characterized in surface water, pore water, sediment and biological tissue samples at each site. Bed sediment was also assessed for bio-available (tin-reducible) inorganic Hg (II) and microbial MeHg production potential rates. Acid extractable ferrous iron, crystalline and amorphous (poorly crystalline) ferric iron, total reduced sulfur, particle size, and organic content in bed sediment was analyzed to help explain spatial differences in MeHg production rates and bio-available Hg (II) among sites. The information provided by this study will help evaluate the extent of Hg contamination in the Androscoggin River, will improve our understanding of the controls on MeHg production in the Androscoggin River system, and will be used by the U.S. Environmental Protection Agency to support remediation of the chlor-alkali facility site.

  19. Mercury speciation in thawed out and refrozen fish samples by gas chromatography coupled to inductively coupled plasma mass spectrometry and atomic fluorescence spectroscopy

    NARCIS (Netherlands)

    Krystek, Petra; Ritsema, Rob

    Different sub-sampling procedures were applied for the determination of mercury species (as total mercury Hg, methylmercury MeHg+ and inorganic mercury Hg2+) in frozen fish meat. Analyses were carried out by two different techniques. After the sample material was pre-treated by microwave digestion,

  20. The concentration and variability of selenium and mercury measured in vacuum-packed tuna fish

    International Nuclear Information System (INIS)

    Brockman, J.D.; Sharp, N.; Ngwenyama, R.A.; Shelnutt, L.D.; McElroy, J.A.

    2009-01-01

    Methylmercury (meHg) is a known toxin commonly found in fish. Fish is also a rich source of the trace nutrient selenium which has been hypothesized to modify the toxicity of meHg. We analyzed 28 samples of commercially packaged albacore and light tuna fish for selenium and mercury using standard comparator instrumental neutron activation analysis. Significant differences in the concentration of mercury and selenium were associated with the type of fish, brand and batch. Fish consumers should vary the brand of tuna fish to avoid routine consumption of a brand high in mercury. (author)

  1. The effect of N-acetylated DL-penicillamin and DL-homocysteine thiolactone on the mercury distribution in adult rats, rat foetuses and macaca monkeys after exposure to methyl mercuric chloride

    International Nuclear Information System (INIS)

    Aaseth, J.; Wannag, A.; Norseth, T.; Institute of Occupational Health, Oslo, Norway)

    1976-01-01

    The distribution and excretion of mercury was studied in pregnant rats, given a single intravenous dose of 2 μmol/kg of CH 3 203 HgCl on the 13th day of pregnancy. Oral treatment for one week with N-acetyl-DL-penicillamine (4 mmol/kg per day) increased the mercury excretion in faces (from 45 to 120 nmol) and urine (from 9 to 160 nmol). Such treatment mobilized mercury from all the organs tested and the foetal and maternal brain levels of mercury were decreased to 1/5 and 1/3 of the controls, respectively. A four-day period of treatment with N-acetyl-DL-penicillamine started three days after the injection of methyl mercury reduced the foetal and maternal brain levels to 1/2 and 2/3 of the controls, respectively. The rapid removal of metal deposits following treatment with N-acetyl-DL-penicillamine is attributed to a free penetration of the complexing thiol into the tissue cells in question. No signs of toxicity were detected in monkeys given an effective daily dose of the agent (4 mmol/kg) for 6 days. In contrast N-acetyl-DL-homocysteine thiolactone was found to be toxic in the monkeys. In addition, the latter agent was ineffective in increasing the mercury elimination from the brains of monkeys, rats and rat foetuses. (author)

  2. Sulfurization of Dissolved Organic Matter Increases Hg-Sulfide-Dissolved Organic Matter Bioavailability to a Hg-Methylating Bacterium.

    Science.gov (United States)

    Graham, Andrew M; Cameron-Burr, Keaton T; Hajic, Hayley A; Lee, Connie; Msekela, Deborah; Gilmour, Cynthia C

    2017-08-15

    Reactions of dissolved organic matter (DOM) with aqueous sulfide (termed sulfurization) in anoxic environments can substantially increase DOM's reduced sulfur functional group content. Sulfurization may affect DOM-trace metal interactions, including complexation and metal-containing particle precipitation, aggregation, and dissolution. Using a diverse suite of DOM samples, we found that susceptibility to additional sulfur incorporation via reaction with aqueous sulfide increased with increasing DOM aromatic-, carbonyl-, and carboxyl-C content. The role of DOM sulfurization in enhancing Hg bioavailability for microbial methylation was evaluated under conditions typical of Hg methylation environments (μM sulfide concentrations and low Hg-to-DOM molar ratios). Under the conditions of predicted metacinnabar supersaturation, microbial Hg methylation increased with increasing DOM sulfurization, likely reflecting either effective inhibition of metacinnabar growth and aggregation or the formation of Hg(II)-DOM thiol complexes with high bioavailability. Remarkably, Hg methylation efficiencies with the most sulfurized DOM samples were similar (>85% of total Hg methylated) to that observed in the presence of l-cysteine, a ligand facilitating rapid Hg(II) biouptake and methylation. This suggests that complexes of Hg(II) with DOM thiols have similar bioavailability to Hg(II) complexes with low-molecular-weight thiols. Overall, our results are a demonstration of the importance of DOM sulfurization to trace metal and metalloid (especially mercury) fate in the environment. DOM sulfurization likely represents another link between anthropogenic sulfate enrichment and MeHg production in the environment.

  3. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    International Nuclear Information System (INIS)

    Watson, David B.; Brooks, Scott C.; Mathews, Teresa J.; Bevelhimer, Mark S.; DeRolph, Chris; Brandt, Craig C.; Peterson, Mark J.; Ketelle, Richard

    2016-01-01

    runoff, floodplain leaching, bank soil erosion, and periphyton matrix dynamics. The bioaccumulation model tracks the feeding, growth, and mercury assimilation of representative individual fish through their typical life span using key inputs of fish size, water temperature, and diet. The LEFPC watershed was divided into five modeling reaches, and fluxes and concentrations are assessed at this spatial scale. Following are the key findings of the field and laboratory studies and the watershed and bioaccumulation modeling: •The greatest flux of total mercury (HgT) in LEFPC is related to stormflow transport of Hg-contaminated solids entering the creek because of bank erosion in the upper reaches of the creek. • The second greatest flux originates from upper EFPC (Station 17 representing the exit stream sampling point near the boundary of the Y-12 Complex), and appears to control base flow fluxes. • The observed increase in MeHg concentration and flux from upstream to downstream is related primarily to instream methylation by periphyton and other biological activity. • A meaningful substantial reduction of the HgT flux in LEFPC would require addressing the flux of HgT originating from bank erosion and from Station 17. • Actions to reduce LEFPC floodplain leaching and runoff would not produce much of an impact on HgT or MeHg concentrations or fluxes unless other major sources are eliminated first. This project addresses the Action Plan goal to evaluate the role of LEFPC bank soil sources and to consider the entire EFPC hydrologic system. Model conclusions are dependent on the data available at the time of this assessment. However, a robust understanding and quantification for some mercury-related parameters and relationships is still lacking; there is a continued need for field data collection and modeling improvements. Model predictions should be viewed cautiously, with comparisons of the magnitude of predictions between scenarios being more valid than absolute

  4. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    runoff, floodplain leaching, bank soil erosion, and periphyton matrix dynamics. The bioaccumulation model tracks the feeding, growth, and mercury assimilation of representative individual fish through their typical life span using key inputs of fish size, water temperature, and diet. The LEFPC watershed was divided into five modeling reaches, and fluxes and concentrations are assessed at this spatial scale. Following are the key findings of the field and laboratory studies and the watershed and bioaccumulation modeling: • The greatest flux of total mercury (HgT) in LEFPC is related to stormflow transport of Hg-contaminated solids entering the creek because of bank erosion in the upper reaches of the creek. • The second greatest flux originates from upper EFPC (Station 17 representing the exit stream sampling point near the boundary of the Y-12 Complex), and appears to control base flow fluxes. • The observed increase in MeHg concentration and flux from upstream to downstream is related primarily to instream methylation by periphyton and other biological activity. • A meaningful substantial reduction of the HgT flux in LEFPC would require addressing the flux of HgT originating from bank erosion and from Station 17. • Actions to reduce LEFPC floodplain leaching and runoff would not produce much of an impact on HgT or MeHg concentrations or fluxes unless other major sources are eliminated first. This project addresses the Action Plan goal to evaluate the role of LEFPC bank soil sources and to consider the entire EFPC hydrologic system. Model conclusions are dependent on the data available at the time of this assessment. However, a robust understanding and quantification for some mercury-related parameters and relationships is still lacking; there is a continued need for field data collection and modeling improvements. Model predictions should be viewed cautiously, with comparisons of the magnitude of predictions between scenarios being more valid than absolute

  5. INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Bryan, L.; Mathews, T.

    2012-03-30

    Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of

  6. Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers

    Directory of Open Access Journals (Sweden)

    Jacqueline R. Gerson

    2018-01-01

    Full Text Available The largest source of global mercury (Hg anthropogenic inputs to the environment is derived from artisanal and small-scale gold mining (ASGM activities in developing countries. While our understanding of global Hg emissions from ASGM is growing, there is limited empirical documentation about the levels of total mercury (THg and methylmercury (MeHg contamination near ASGM sites. We measured THg and MeHg concentrations in soil (n = 119, sediment (n = 22, and water (n = 25 from four active ASGM villages and one non-ASGM reference village in Senegal, West Africa. Nearly all samples had THg and MeHg concentrations that exceeded the reference village concentrations and USEPA regulatory standards. The highest median THg concentrations were found in huts where mercury-gold amalgams were burned (7.5 μg/g, while the highest median MeHg concentrations and percent Hg as MeHg were found in river sediments (4.2 ng/g, 0.41%. Median river water concentrations of THg and MeHg were also elevated compared to values at the reference site (22 ng THg/L, 0.037 ng MeHg/L in ASGM sites. This study provides direct evidence that Hg from ASGM is entering both the terrestrial and aquatic ecosystems where it is converted in soils, sediment, and water to the neurotoxic and bioavailable form of MeHg.

  7. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  8. MeHg Developing Exposure Causes DNA Double-Strand Breaks and Elicits Cell Cycle Arrest in Spinal Cord Cells

    Directory of Open Access Journals (Sweden)

    Fabiana F. Ferreira

    2015-01-01

    Full Text Available The neurotoxicity caused by methylmercury (MeHg is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation.

  9. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Shawn P. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States)]. E-mail: spchadwick@wisc.edu; Babiarz, Chris L. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States); Hurley, James P. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States); University of Wisconsin Aquatic Sciences Center, 1975 Willow Drive Madison, WI 53706-1177 (United States); Armstrong, David E. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States)

    2006-09-01

    The biogeochemical cycling of iron, manganese, sulfide, and dissolved organic carbon were investigated to provide information on the transport and removal processes that control the bioavailability of isotopic mercury amended to a lake. Lake profiles showed a similar trend of hypolimnetic enrichment of Fe, Mn, DOC, sulfide, and the lake spike ({sup 202}Hg, purity 90.8%) and ambient of pools of total mercury (HgT) and methylmercury (MeHg). Hypolimnetic enrichment of Fe and Mn indicated that reductive mobilization occurred primarily at the sediment-water interface and that Fe and Mn oxides were abundant within the sediments prior to the onset of anoxia. A strong relationship (r {sup 2} = 0.986, n = 15, p < 0.001) between filterable Fe and Mn indicated that reduction of Fe and Mn hydrous oxides in the sediments is a common in-lake source of Fe(II) and Mn(II) to the hypolimnion and that a consistent Mn : Fe mass ratio of 0.05 exists in the lake. A strong linear relationship of both the filterable [Fe] (r {sup 2} = 0.966, n = 15, p < 0.001) and [Mn] (r {sup 2} = 0.964, n = 15, p < 0.001) to [DOC] indicated a close linkage of the cycles of Fe and Mn to DOC. Persistence of iron oxides in anoxic environments suggested that DOC was being co-precipitated with Fe oxide and released into solution by the reductive dissolution of the oxide. The relationship between ambient and lake spike HgT (r {sup 2} = 0.920, n = 27, p < 0.001) and MeHg (r {sup 2} = 0.967, n = 23, p < 0.001) indicated that similar biogeochemical processes control the temporal and spatial distribution in the water column. The larger fraction of MeHg in the lake spike compared to the ambient pool in the hypolimnion suggests that lake spike may be more available for methylation. A linear relationship of DOC to both filterable ambient HgT (r {sup 2} = 0.406, n = 27, p < 0.001) and lake spike HgT (r {sup 2} = 0.314, n = 15, p = 0.002) suggest a role of organic matter in Hg transport and cycling. However, a weak

  10. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, Sarah E., E-mail: rothenberg.sarah@gmail.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Feng Xinbin, E-mail: fengxinbin@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Dong Bin, E-mail: dongbin@whu.edu.cn [State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Shang Lihai, E-mail: shanglihai@vip.gyig.ac.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yin Runsheng, E-mail: yinrunsheng2002@163.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yuan Xiaobo, E-mail: xiantao_131@163.com [College of Resources and the Environment, Southwest University, Chongqing 400716 (China)

    2011-05-15

    In China, total Hg (Hg{sub T}) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of Hg{sub T} (water-saving: 3.3 {+-} 1.6 ng/g; flooded: 110 {+-} 9.2 ng/g) and MeHg (water-saving 1.3 {+-} 0.56 ng/g; flooded: 12 {+-} 2.4 ng/g) were positively correlated with root-soil Hg{sub T} and MeHg contents (Hg{sub T}: r{sup 2} = 0.97, MeHg: r{sup 2} = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of Hg{sub T} and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II). - Highlights: > First time that Hg{sub T} and MeHg were characterized in both brown and white rice. > MeHg translocation into the endosperm was more efficient than inorganic Hg(II). > In this respect, MeHg behaved like dimethylarsinic acid and organic Se species. > In white rice, Hg{sub T} and MeHg were positively correlated with soil Hg{sub T} and MeHg. > Uptake rates of Hg{sub T} and MeHg were independent of irrigation methods and Hg content. - Methylmercury was more efficiently translocated to the endosperm than inorganic mercury.

  11. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    Science.gov (United States)

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  12. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Laura S., E-mail: lsaylors@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 North University Avenue, Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 North University Avenue, Ann Arbor, MI 48109 (United States); Basu, Niladri [McGill University, Faculty of Agricultural and Environmental Sciences, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 (Canada); Rajaee, Mozhgon [University of Michigan, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Evers, David C.; Buck, David G. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Petrlik, Jindrich [Arnika Association, Chlumova 17, Prague 3 (Czech Republic); DiGangi, Joseph [IPEN, Box 7256, SE-402 35 Gothenburg (Sweden)

    2015-02-15

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.

  13. Characteristics of mercury speciation in Minnesota rivers and streams

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Steven J. [Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106-6724 (United States)], E-mail: steve.balogh@metc.state.mn.us; Swain, Edward B. [Minnesota Pollution Control Agency, 520 Lafayette Road, St. Paul, MN 55155-4194 (United States)], E-mail: edward.swain@state.mn.us; Nollet, Yabing H. [Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106-6724 (United States)], E-mail: yabing.nollet@metc.state.mn.us

    2008-07-15

    Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs. - Methylmercury and inorganic mercury concentrations in four Minnesota streams were characterized to determine controlling variables.

  14. Characteristics of mercury speciation in Minnesota rivers and streams

    International Nuclear Information System (INIS)

    Balogh, Steven J.; Swain, Edward B.; Nollet, Yabing H.

    2008-01-01

    Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs. - Methylmercury and inorganic mercury concentrations in four Minnesota streams were characterized to determine controlling variables

  15. Detailed Assessment of the Kinetics of Hg-Cell Association, Hg Methylation, and Methylmercury Degradation in Several Desulfovibrio Species

    Science.gov (United States)

    Graham, Andrew M.; Bullock, Allyson L.; Maizel, Andrew C.; Elias, Dwayne A.

    2012-01-01

    The kinetics of inorganic Hg [Hg(II)i] association, methylation, and methylmercury (MeHg) demethylation were examined for a group of Desulfovibrio species with and without MeHg production capability. We employed a detailed method for assessing MeHg production in cultures, including careful control of medium chemistry, cell density, and growth phase, plus mass balance of Hg(II)i and MeHg during the assays. We tested the hypothesis that differences in Hg(II)i sorption and/or uptake rates drive observed differences in methylation rates among Desulfovibrio species. Hg(II)i associated rapidly and with high affinity to both methylating and nonmethylating species. MeHg production by Hg-methylating strains was rapid, plateauing after ∼3 h. All MeHg produced was rapidly exported. We also tested the idea that all Desulfovibrio species are capable of Hg(II)i methylation but that rapid demethylation masks its production, but we found this was not the case. Therefore, the underlying reason why MeHg production capability is not universal in the Desulfovibrio is not differences in Hg affinity for cells nor differences in the ability of strains to degrade MeHg. However, Hg methylation rates varied substantially between Hg-methylating Desulfovibrio species even in these controlled experiments and after normalization to cell density. Thus, biological differences may drive cross-species differences in Hg methylation rates. As part of this study, we identified four new Hg methylators (Desulfovibrio aespoeensis, D. alkalitolerans, D. psychrotolerans, and D. sulfodismutans) and four nonmethylating species (Desulfovibrio alcoholivorans, D. tunisiensis, D. carbinoliphilus, and D. piger) in our ongoing effort to generate a library of strains for Hg methylation genomics. PMID:22885751

  16. Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes embryos

    Directory of Open Access Journals (Sweden)

    Wu Dong

    2016-08-01

    Full Text Available This study examined developmental toxicity of different mercury compounds, including some used in traditional medicines. Medaka (Oryzias latipes embryos were exposed to 0.001–10 µM concentrations of MeHg, HgCl2, α-HgS (Zhu Sha, and β-HgS (Zuotai from stage 10 (6–7 hpf to 10 days post fertilization (dpf. Of the forms of mercury in this study, the organic form (MeHg proved the most toxic followed by inorganic mercury (HgCl2, both producing embryo developmental toxicity. Altered phenotypes included pericardial edema with elongated or tube heart, reduction of eye pigmentation, and failure of swim bladder inflation. Both α-HgS and β-HgS were less toxic than MeHg and HgCl2. Total RNA was extracted from survivors three days after exposure to MeHg (0.1 µM, HgCl2 (1 µM, α-HgS (10 µM, or β-HgS (10 µM to examine toxicity-related gene expression. MeHg and HgCl2 markedly induced metallothionein (MT and heme oxygenase-1 (Ho-1, while α-HgS and β-HgS failed to induce either gene. Chemical forms of mercury compounds proved to be a major determinant in their developmental toxicity.

  17. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhou, Jun; Liu, Hongyan; Du, Buyun; Shang, Lihai; Yang, Junbo; Wang, Yusheng

    2015-04-01

    Recent studies showed that rice is the major pathway for methylmercury (MeHg) exposure to inhabitants in mercury (Hg) mining areas in China. There is, therefore, a concern regarding accumulation of Hg in rice grown in soils with high Hg concentrations. A soil pot experimental study was conducted to investigate the effects of Hg-contaminated soil on the growth of rice and uptake and speciation of Hg in the rice. Our results imply that the growth of rice promotes residual fraction of Hg transforming to organic-bound fraction in soil and increased the potential risks of MeHg production. Bioaccumulation factors deceased for IHg but relatively stabilized for MeHg with soil total mercury (THg) increasing. IHg in soil was the major source of Hg in the root and stalk, but leaf was contributed by Hg from both atmosphere and soil. Soluble and exchangeable Hg fraction can predict the bioavailability of IHg and MeHg in soils, and that can provide quantitative description of the rate of uptake of the bioavailable Hg. Soluble and exchangeable Hg fraction in paddy soil exceeding 0.0087 mg kg(-1) may cause THg concentration in rice grain above the permissible limit standard, and MeHg concentration in paddy soil more than 0.0091 mg kg(-1) may have the health risks to humans.

  18. Streamwater fluxes of total mercury and methylmercury into and out of Lake Champlain

    International Nuclear Information System (INIS)

    Shanley, James B.; Chalmers, Ann T.

    2012-01-01

    From 2000 to 2004, we sampled for total mercury (THg) and methylmercury (MeHg) in inlet streams to Lake Champlain, targeting high flow periods to capture increases in THg and MeHg concentrations with increasing flow. We used these data to model stream THg and MeHg fluxes for Water Years 2001 through 2009. In this mountainous forested basin with a high watershed-to-lake area ratio of 18, fluvial export from the terrestrial watershed was the dominant source of Hg to the lake. Unfiltered THg and MeHg fluxes were dominated by the particulate fraction; about 40% of stream THg was in the filtered ( −2 yr −1 , or about 13% of atmospheric Hg wet and dry deposition to the basin. THg export from the lake represented only about 3% of atmospheric Hg input to the basin. - Highlights: ► We monitored total mercury and methylmercury in major tributaries to Lake Champlain. ► Mercury and methylmercury export was primarily as particulates during high flow. ► Only 13% of atmospheric total mercury input reached the lake via streams. ► Only 3% of atmospheric total mercury input reached the lake outlet. - Eighty-seven percent of total mercury deposition to the Lake Champlain basin is retained in the terrestrial basin; stream export of total and methylmercury to the lake is primarily in the particulate phase.

  19. Mercury speciation and selenium in toothed-whale muscles

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Mineshi, E-mail: sakamoto@nimd.go.jp [National Institute for Minamata Disease, Hama 4058-18, Minamata, Kumamoto 867-0008 (Japan); Itai, Takaaki [Ehime University, Bunkyo 2-5, Matsuyama 790-8755 (Japan); Yasutake, Akira [National Institute for Minamata Disease, Hama 4058-18, Minamata, Kumamoto 867-0008 (Japan); Iwasaki, Toshihide [Tohoku National Fisheries Research Institute, 25-259 Shimomekurakubo, Aomori 031-0841 (Japan); Yasunaga, Genta; Fujise, Yoshihiro [Institute of Cetacean Research, 4-5 Toyomi, Tokyo 104-0055 (Japan); Nakamura, Masaaki [National Institute for Minamata Disease, Hama 4058-18, Minamata, Kumamoto 867-0008 (Japan); Murata, Katsuyuki [Akita University School of Medicine, Hondo 1-1-1, Akita 010-8543 (Japan); Man Chan, Hing [University of Ottawa, Marie-Curie, Ottawa, ON, Canada KIN 6N5 (Canada); Domingo, José L. [School of Medicine, IISPV, Universitat “Rovira i Virgili”, Reus (Spain); Marumoto, Masumi [National Institute for Minamata Disease, Hama 4058-18, Minamata, Kumamoto 867-0008 (Japan)

    2015-11-15

    Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hg decreased from 90–100% to 20–40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. - Highlights: • T-Hg, MeHg, I-Hg and Se were determined in the muscles of four toothed-whales. • MeHg increased with increasing T-Hg and tended to reach a plateau in all species. • Se/I-Hg molar ratios rapidly decreased with increase of I-Hg and reached almost 1. • XAFS of bottlenose dolphin muscle confirmed that HgSe was dominant chemical form. • EPMA of bottlenose dolphin muscle showed that HgSe deposited in muscle cells.

  20. Mercury speciation and selenium in toothed-whale muscles

    International Nuclear Information System (INIS)

    Sakamoto, Mineshi; Itai, Takaaki; Yasutake, Akira; Iwasaki, Toshihide; Yasunaga, Genta; Fujise, Yoshihiro; Nakamura, Masaaki; Murata, Katsuyuki; Man Chan, Hing; Domingo, José L.; Marumoto, Masumi

    2015-01-01

    Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hg decreased from 90–100% to 20–40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. - Highlights: • T-Hg, MeHg, I-Hg and Se were determined in the muscles of four toothed-whales. • MeHg increased with increasing T-Hg and tended to reach a plateau in all species. • Se/I-Hg molar ratios rapidly decreased with increase of I-Hg and reached almost 1. • XAFS of bottlenose dolphin muscle confirmed that HgSe was dominant chemical form. • EPMA of bottlenose dolphin muscle showed that HgSe deposited in muscle cells.

  1. Differential protein expression of hepatic cells associated with MeHg exposure: deepening into the molecular mechanisms of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Cuello, Susana; Madrid, Yolanda; Luque-Garcia, Jose L.; Camara, Carmen [Complutense University of Madrid, Department of Analytical Chemistry, Faculty of Chemistry, Madrid (Spain); Ramos, Sonia [Institute of Food Science, Technology and Nutrition, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain)

    2012-08-15

    Understanding the molecular mechanisms underlying MeHg toxicity and the way in which this molecule interacts with living organisms is a critical point since MeHg represents a well-known risk to ecosystems and human health. We used a quantitative proteomic approach based on stable isotopic labeling by amino acids in cell culture in combination with SDS-PAGE and nanoflow LC-ESI-LTQ for analyzing the differential protein expression of hepatic cells associated to MeHg exposure. Seventy-eight proteins were found de-regulated by more than 1.5-fold. We identified a number of proteins involved in different essential biological processes including apoptosis, mitochondrial dysfunction, cellular trafficking and energy production. Among these proteins, we found several molecules whose de-regulation has been already related to MeHg exposure, thus confirming the usefulness of our discovery approach, and new ones that helped to gain a deeper insight into the biomolecular mechanisms related to MeHg-induced toxicity. Overexpression of several HSPs and the proteasome 26S subunit itself showed the proteasome system as a molecular target of toxic MeHg. As for the interaction networks, the top ranked was the nucleic acid metabolism, where many of the identified de-regulated proteins are involved. (orig.)

  2. Mercury in tree swallow food, eggs, bodies, and feathers at Acadia National Park, Maine, and an EPA superfund site, Ayer, Massachusetts.

    Science.gov (United States)

    Longcore, Jerry R; Haines, Terry A; Halteman, William A

    2007-03-01

    We monitored nest boxes during 1997-1999 at Acadia National Park, Mt. Desert Island, ME and at an old-field site in Orono, ME to determine mercury (Hg) uptake in tree swallow (Tachycineta bicolor) eggs, tissues, and food boluses. Also, in 1998-1999 we monitored nest boxes at Grove Pond and Plow Shop Pond at a U.S. Environmental Protection Agency Superfund site in Ayer, MA. We recorded breeding success at all locations. On average among locations, total mercury (THg) biomagnified 2 to 4-fold from food to eggs and 9 to 18-fold from food to feathers. These are minimum values because the proportion of transferable methyl mercury (MeHg) of the THg in insects varies (i.e., 35%-95% of THg) in food boluses. THg was highest in food boluses at Aunt Betty Pond at Acadia, whereas THg in eggs was highest at the Superfund site. A few eggs from nests at each of these locations exceeded the threshold (i.e., 800-1,000 ng/g, wet wt.) of embryotoxicity established for Hg. Hatching success was 88.9% to 100% among locations, but five eggs failed to hatch from 4 of the 11 clutches in which an egg exceeded this threshold. MeHg in feathers was highest in tree swallows at Aunt Betty Pond and the concentration of THg in bodies was related to the concentration in feathers. Transfer of an average of 80%-92% of the Hg in bodies to feathers may have enhanced nestling survival. Residues of Hg in tissues of tree swallows in the Northeast seem higher than those of the Midwest.

  3. Cardiac autonomic activity and blood pressure among Nunavik Inuit adults exposed to environmental mercury: a cross-sectional study

    OpenAIRE

    Poirier Paul; Dewailly Eric; Valera Beatriz

    2008-01-01

    Abstract Background Mercury is a contaminant that reaches high levels in Nunavik (North of Quebec). It is transformed into methylmercury (MeHg) and accumulated in marine mammals and predator fish, an important part of the traditional Inuit diet. MeHg has been suggested to affect BP in adults and children while the influence on HRV has only been studied in children. We aimed to assess the impact of MeHg levels on HRV and BP in Inuit adults from Nunavik. Methods In the fall of 2004, the «Qanuip...

  4. Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study

    Directory of Open Access Journals (Sweden)

    Morild Inge

    2007-10-01

    Full Text Available Abstract Background The main forms of mercury (Hg exposure in the general population are methylmercury (MeHg from seafood, inorganic mercury (I-Hg from food, and mercury vapor (Hg0 from dental amalgam restorations. While the distribution of MeHg in the body is described by a one compartment model, the distribution of I-Hg after exposure to elemental mercury is more complex, and there is no biomarker for I-Hg in the brain. The aim of this study was to elucidate the relationships between on the one hand MeHg and I-Hg in human brain and other tissues, including blood, and on the other Hg exposure via dental amalgam in a fish-eating population. In addition, the use of blood and toenails as biological indicator media for inorganic and organic mercury (MeHg in the tissues was evaluated. Methods Samples of blood, brain (occipital lobe cortex, pituitary, thyroid, abdominal muscle and toenails were collected at autopsy of 30 deceased individuals, age from 47 to 91 years of age. Concentrations of total-Hg and I-Hg in blood and brain cortex were determined by cold vapor atomic fluorescence spectrometry and total-Hg in other tissues by sector field inductively coupled plasma-mass spectrometry (ICP-SFMS. Results The median concentrations of MeHg (total-Hg minus I-Hg and I-Hg in blood were 2.2 and 1.0 μg/L, and in occipital lobe cortex 4 and 5 μg/kg, respectively. There was a significant correlation between MeHg in blood and occipital cortex. Also, total-Hg in toenails correlated with MeHg in both blood and occipital lobe. I-Hg in both blood and occipital cortex, as well as total-Hg in pituitary and thyroid were strongly associated with the number of dental amalgam surfaces at the time of death. Conclusion In a fish-eating population, intake of MeHg via the diet has a marked impact on the MeHg concentration in the brain, while exposure to dental amalgam restorations increases the I-Hg concentrations in the brain. Discrimination between mercury species is

  5. Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat

    International Nuclear Information System (INIS)

    Hendriksen, Peter J.M.; Freidig, Andreas P.; Jonker, Diana; Thissen, Uwe; Bogaards, Jan J.P.; Mumtaz, Moiz M.; Groten, John P.; Stierum, Rob H.

    2007-01-01

    The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were administered daily for 14 days at the Lowest-Observed-Adverse-Effect-Level (LOAEL) or at a two- or threefold lower concentration individually or in binary or ternary mixtures. The compounds had strong antagonistic effects on each other's gene expression changes, which included several genes encoding Phase I and II metabolizing enzymes. On the other hand, the mixtures affected the expression of 'novel' genes that were not or little affected by the individual compounds. The three compounds exhibited a synergistic interaction on gene expression changes at the LOAEL in the liver and both at the sub-LOAEL and LOAEL in the kidney. Many of the genes induced by mixtures but not by single compounds, such as Id2, Nr2f6, Tnfrsf1a, Ccng1, Mdm2 and Nfkb1 in the liver, are known to affect cellular proliferation, apoptosis and tissue-specific function. This indicates a shift from compound specific response on exposure to individual compounds to a more generic stress response to mixtures. Most of the effects on cell viability as concluded from transcriptomics were not detected by classical toxicological endpoints illustrating the benefit of increased sensitivity of assessing gene expression profiling. These results emphasize the benefit of applying toxicogenomics in mixture interaction studies, which yields biomarkers for joint toxicity and eventually can result in an interaction model for most known toxicants

  6. Changes in miRNA Expression Profiling during Neuronal Differentiation and Methyl Mercury-Induced Toxicity in Human in Vitro Models

    Directory of Open Access Journals (Sweden)

    Giorgia Pallocca

    2014-08-01

    Full Text Available MicroRNAs (miRNAs are implicated in the epigenetic regulation of several brain developmental processes, such as neurogenesis, neuronal differentiation, neurite outgrowth, and synaptic plasticity. The main aim of this study was to evaluate whether miRNA expression profiling could be a useful approach to detect in vitro developmental neurotoxicity. For this purpose, we assessed the changes in miRNA expression caused by methyl mercury chloride (MeHgCl, a well-known developmental neurotoxicant, comparing carcinoma pluripotent stem cells (NT-2 with human embryonic stem cells (H9, both analyzed during the early stage of neural progenitor commitment into neuronal lineage. The data indicate the activation of two distinct miRNA signatures, one activated upon neuronal differentiation and another upon MeHgCl-induced toxicity. Particularly, exposure to MeHgCl elicited, in both neural models, the down-regulation of the same six out of the ten most up-regulated neuronal pathways, as shown by the up-regulation of the corresponding miRNAs and further assessment of gene ontology (GO term and pathway enrichment analysis. Importantly, some of these common miRNA-targeted pathways defined in both cell lines are known to play a role in critical developmental processes, specific for neuronal differentiation, such as axon guidance and neurotrophin-regulated signaling. The obtained results indicate that miRNAs expression profiling could be a promising tool to assess developmental neurotoxicity pathway perturbation, contributing towards improved predictive human toxicity testing.

  7. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C

    1967-01-01

    Organic mercury compounds have a c-mitotic effect on plant cells that cause polyploidi. Studies were performed on Allium root cells. These investigations involved methyl mercury dicyandiamide, methyl mercury hydroxide, and phenyl mercury hydroxide. The lowest concentration necessary for a cytologically observable effect was about 0.05 ppM Hg for the methyl compounds. For the phenyl compound, the value was lower. Experiments were performed on Drosophila melanogaster. The question was whether the mercury would reach the gonads. Experimental data with mercury treated larvae indicated a chromosome disjunction. Data indicated a preferential segregation at the meiotic division might be involved. Experiments are being performed on mice inbred (CBA) in order to investigate teratogenic effects and dominant lethality caused by organic mercury compounds. The mutagenic effects of these compounds are studied on Neurospora Drosophila. No conclusive data is now available.

  8. Determination of methylmercury in marine biota samples with advanced mercury analyzer: method validation.

    Science.gov (United States)

    Azemard, Sabine; Vassileva, Emilia

    2015-06-01

    In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Environmental Factors Affecting Mercury in Camp Far West Reservoir, California, 2001-03

    Science.gov (United States)

    Alpers, Charles N.; Stewart, A. Robin; Saiki, Michael K.; Marvin-DiPasquale, Mark C.; Topping, Brent R.; Rider, Kelly M.; Gallanthine, Steven K.; Kester, Cynthia A.; Rye, Robert O.; Antweiler, Ronald C.; De Wild, John F.

    2008-01-01

    water were observed in samples collected during summer from deepwater stations in the anoxic hypolimnion. In the shallow (less than 14 meters depth) oxic epilimnion, concentrations of methylmercury in unfiltered water were highest during the spring and lowest during the fall. The ratio of methylmercury to total mercury (MeHg/HgT) increased systematically from winter to spring to summer, largely in response to the progressive seasonal decrease in total mercury concentrations, but also to some extent because of increases in MeHg concentrations during summer. Water-quality data for Camp Far West Reservoir are used in conjunction with data from linked studies of sediment and biota to develop and refine a conceptual model for mercury methylation and bioaccumulation in the reservoir and the lower Bear River watershed. It is hypothesized that MeHg is produced by sulfate-reducing bacteria in the anoxic parts of the water column and in shallow bed sediment. Conditions were optimal for this process during late summer and fall. Previous work has indicated that Camp Far West Reservoir is a phosphate-limited system - molar ratios of inorganic nitrogen to inorganic phosphorus in filtered water were consistently greater than 16 (the Redfield ratio), sometimes by orders of magnitude. Therefore, concentrations of orthophosphate were expectedly very low or below detection at all stations during all seasons. It is further hypothesized that iron-reducing bacteria facilitate release of phosphorus from iron-rich sediments during summer and early fall, stimulating phytoplankton growth in the fall and winter, and that the MeHg produced in the hypolimnion and metalimnion is released to the entire water column in the late fall during reservoir destratification (vertical mixing). Mercury bioaccumulation factors (BAF) were computed using data from linked studies of biota spanning a range of trophic position: zooplankton, midge larvae, mayfly nymphs, crayfish, threadfin shad, bluegill,

  10. Speciation of methylmercury in rice grown from a mercury mining area

    Energy Technology Data Exchange (ETDEWEB)

    Li Lu [Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085 (China); Wang Feiyue, E-mail: wangf@ms.umanitoba.c [Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Meng Bo [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang, Guizhou 550002 (China); Lemes, Marcos [Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Feng Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Road, Guiyang, Guizhou 550002 (China); Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085 (China)

    2010-10-15

    Monomethylmercury (CH{sub 3}Hg{sup +} and its complexes; MeHg hereafter) is a known developmental neurotoxin. Recent studies have shown that rice (Oryza sativa L.) grain grown from mercury (Hg) mining areas may contain elevated MeHg concentrations, raising concerns over the health of local residents who consume rice on a daily basis. An analytical method employing high performance liquid chromatography (HPLC) - inductively coupled plasma mass spectrometry (ICP-MS) following enzymatic hydrolysis was developed to analyze the speciation of MeHg in uncooked and cooked white rice grain grown from the vicinity of a Hg mine in China. The results revealed that the MeHg in the uncooked rice is present almost exclusively as CH{sub 3}Hg-L-cysteinate (CH{sub 3}HgCys), a complex that is thought to be responsible for the transfer of MeHg across the blood-brain and placental barriers. Although cooking does not change the total Hg or total MeHg concentration in rice, no CH{sub 3}HgCys is measurable after cooking, suggesting that most, if not all, of the CH{sub 3}HgCys is converted to other forms of MeHg, the identity and toxicity of which remain elusive. - Methylmercury in uncooked rice occurs predominantly as methylmercury-L-cysteinate, which is effectively removed during the cooking process.

  11. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  12. Molecular Mechanisms of Bacterial Mercury Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States). Dept. of Microbiology; Smith, Jeremy C. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology

    2016-04-25

    Hg is of special interest to DOE due to past intensive use in manufacture of nuclear weapons at the Oak Ridge Reservation (ORR). Because of its facile oxidation/reduction [Hg(II)/Hg(0)] chemistry, ability to bond to carbon [as in highly toxic methylmercury: MeHg(I)] and its unique physical properties [e.g., volatility of Hg(0)], Hg has a complex environmental cycle involving soils, sediments, waterways and the atmosphere and including biotic and abiotic chemical and physical transport and transformations. Understanding such processes well enough to design stewardship plans that minimize negative impacts in diverse ecological settings requires rich knowledge of the contributing abiotic and biotic processes. Prokaryotes are major players in the global Hg cycle. Facultative and anaerobic bacteria can form MeHg(I) with consequent intoxication of wildlife and humans. Sustainable stewardship of Hg-contaminated sites requires eliminating not only MeHg(I) but also the Hg(II) substrate for methylation. Fortunately, a variety of mercury resistant (HgR) aerobic and facultative bacteria and archaea can do both things. Prokaryotes harboring narrow or broad Hg resistance (mer) loci detoxify Hg(II) or RHg(I), respectively, to relatively inert, less toxic, volatile Hg(0). HgR microbes are enriched in highly contaminated sites and extensive field data show they depress levels of MeHg >500-fold in such zones. So, enhancing the natural capacity of indigenous HgR microbes to remove Hg(II) and RHg(I) from soils, sediments and waterways is a logical component of a comprehensive plan for clean up and stewardship of contaminated sites.

  13. Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Lee, Young Hwan; Kang, Hye-Min; Kim, Duck-Hyun; Wang, Minghua; Jeong, Chang-Bum; Lee, Jae-Seong

    2017-03-01

    Methylmercury (MeHg) is a concerning environmental pollutant that bioaccumulates and biomagnifies in the aquatic food web. However, the effects of MeHg on marine zooplankton are poorly understood even though zooplankton are considered key mediators of the bioaccumulation and biomagnification of MeHg in high-trophic marine organisms. Here, the toxicity of MeHg in the benthic copepod Tigriopus japonicus was assessed, and its adverse effects on growth rate and reproduction were demonstrated. Antioxidant enzymatic activities were increased in the presence of MeHg, indicating that these enzymes play an important role in the defense response to MeHg, which is regulated by a complex mechanism. Subsequent activation of different patterns of mitogen-activated protein kinase (MAPK) pathways was demonstrated, providing a mechanistic approach to understand the signaling pathways involved in the effects of MeHg. Our results provide valuable information for understanding the toxicity of MeHg and the underlying defense mechanism in response to MeHg exposure in marine zooplankton. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    Science.gov (United States)

    Shanley, J.B.; Alisa, Mast M.; Campbell, D.H.; Aiken, G.R.; Krabbenhoft, D.P.; Hunt, R.J.; Walker, J.F.; Schuster, P.F.; Chalmers, A.; Aulenbach, Brent T.; Peters, N.E.; Marvin-DiPasquale, M.; Clow, D.W.; Shafer, M.M.

    2008-01-01

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L-1 and MeHg was less than 0.2 ng L-1. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L-1 at Sleepers River, Vermont; 112 (0.75) ng L-1 at Rio Icacos, Puerto Rico; and 55 (0.80) ng L-1 at Panola Mt., Georgia. Filtered (Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. ?? 2008 Elsevier Ltd. All rights reserved.

  15. Watershed and discharge influences on the phase distribution and tributary loading of total mercury and methylmercury into Lake Superior

    International Nuclear Information System (INIS)

    Babiarz, Christopher; Hoffmann, Stephen; Wieben, Ann; Hurley, James; Andren, Anders; Shafer, Martin; Armstrong, David

    2012-01-01

    Knowledge of the partitioning and sources of mercury are important to understanding the human impact on mercury levels in Lake Superior wildlife. Fluvial fluxes of total mercury (Hg T ) and methylmercury (MeHg) were compared to discharge and partitioning trends in 20 sub-basins having contrasting land uses and geological substrates. The annual tributary yield was correlated with watershed characteristics and scaled up to estimate the basin-wide loading. Tributaries with clay sediments and agricultural land use had the largest daily yields with maxima observed near the peak in water discharge. Roughly 42% of Hg T and 57% of MeHg was delivered in the colloidal phase. Tributary inputs, which are confined to near-shore zones of the lake, may be more important to the food-web than atmospheric sources. The annual basin-wide loading from tributaries was estimated to be 277 kg yr −1 Hg T and 3.4 kg yr −1 MeHg (5.5 and 0.07 mg km −2 d −1 , respectively). - Highlights: ► The highest mercury yields occurred during spring melt except in forested watersheds. ► Roughly half of the mercury yield occurred in the colloidal phase. ► About 277 kg of Hg T and 3.4 kg of MeHg were delivered annually via tributaries. ► Whole-water MeHg loading was roughly equivalent to the estimated atmospheric loading. ► Watersheds with peat, loam or sandy soils deliver more MeHg than those with clays. - Tributary inputs, which are confined to the near-shore zones of Lake Superior, provide more mercury to these sensitive aquatic habitats than direct atmospheric deposition.

  16. JV Task 77 - Health Implications of Mercury - Selenium Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Ralstion; Laura Raymond

    2007-12-15

    Exposure to mercury (Hg) commonly results from eating fish containing bioaccumulated methylmercury (MeHg). However, conflicting observations and conclusions have arisen from the ongoing human studies of MeHg exposure from fish consumption. Resolving these uncertainties has important implications for human health since significant nutritional benefits will be lost if fish consumption is needlessly avoided. Selenium (Se), an important nutrient that is abundant in ocean fish, has a potent protective effect against Hg toxicity. This protective effect was thought to be due to the high binding affinities between Hg and Se resulting in Se sequestration of Hg to prevent its harmful effects. However, it is imperative to consider the opposing effect of Hg on Se physiology. Crucial proteins that require Se normally protect the brain and hormone-producing glands from oxidative damage. MeHg is able to cross all biological barriers and enter cells in these tissues, where its high Se affinity results in Se sequestration. Sequestration in association with Hg prevents Se from participating in proteins that perform essential antioxidant activities. Supplemental dietary Se is able to replace Se sequestered by Hg and maintain normal antioxidant protection of brain and glands. The goal of this research project was to assess the potency of normal dietary levels of Se in protection against MeHg toxicity. Results from this project indicate that MeHg toxicity is only evident in situations resulting in Hg occurring in high molar excess of Se. Additionally, the common method of MeHg risk assessments using measurements of toenail and blood levels of Hg was shown to provide an accurate reflection of Hg exposure but did not accurately indicate risk of toxicity resulting from that exposure. Instead, Hg:Se molar ratios are proposed as a superior means of assessing risks associated with MeHg exposure.

  17. Mercury accumulation in marine bivalves: Influences of biodynamics and feeding niche

    Energy Technology Data Exchange (ETDEWEB)

    Pan Ke [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    Differences in the accumulation of mercury (Hg) in five species of marine bivalves, including scallops Chlamys nobilis, clams Ruditapes philippinarum, oysters Saccostrea cucullata, green mussels Perna viridis, and black mussels Septifer virgatus, were investigated. The bivalves displayed different patterns of Hg accumulation in terms of the body concentrations of methylmercury (MeHg) and total Hg (THg), as well as the ratio of MeHg to THg. Parameters of the biodynamics of the accumulation of Hg(II) and MeHg could reflect the species-dependent Hg concentrations in the bivalves. With the exception of black mussels, we found a significant relationship between the efflux rates of Hg(II) and the THg concentrations in the bivalves. The interspecific variations in the MeHg to THg ratio were largely controlled by the relative difference between the elimination rates of Hg(II) and MeHg. Stable isotope ({delta}{sup 13}C) analysis indicated that the five bivalve species had contrasting feeding niches, which may also affect the Hg accumulation. - Highlights: > Significant difference in Hg accumulation and MeHg:THg ratio in different bivalves. > THg concentrations in the bivalves were generally related to the efflux rates of Hg(II). > Elimination of Hg(II) and MeHg controlled the interspecific variation in MeHg:THg ratio. > MeHg and THg concentrations reflect the interaction of Hg biodynamics and food. - The species-specific body concentrations of MeHg and THg in bivalves reflect the complicated interaction between the biodynamics of Hg(II) and MeHg and the different food sources.

  18. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic

    International Nuclear Information System (INIS)

    Houserova, Pavlina; Kuban, Vlastimil; Kracmar, Stanislav; Sitko, Jilji

    2007-01-01

    Total mercury and mercury species (methylmercury-MeHg, inorganic mercury - Hg 2+ ) were determined in the aquatic ecosystem Zahlinice (Czech Republic). Four tissues (muscle, intestines, liver and kidney) of three bird species - cormorant, great crested grebe and Eurasian buzzard, muscle tissues of common carp, grass carp, northern pike, goldfish, common tench, perch and rudd, aquatic plants (reed mace and common reed), sediments and water were analysed. Relative contents of MeHg (of total Hg) were in the range from 71% to 94% and from 15% up to 62% in the muscle and intestines and in liver, respectively, for all birds. Statistically significant differences were found between contents of MeHg in liver tissues of young and adult cormorant populations (F 4.6 = 56.71, P -5 ). Relative contents of MeHg in muscle tissues of fishes were in the range from 65.1% to 87.9% of total Hg. - The distribution of the mercury species among the organs of the individual birds is discussed

  19. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Houserova, Pavlina [Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kuban, Vlastimil [Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic)]. E-mail: kuban@mendelu.cz; Kracmar, Stanislav [Department of Animal Nutrition, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Sitko, Jilji [Commenius Museum, Moravian Ornithological Station, Horni nam. 1, Prerov CZ-751 52 (Czech Republic)

    2007-01-15

    Total mercury and mercury species (methylmercury-MeHg, inorganic mercury - Hg{sup 2+}) were determined in the aquatic ecosystem Zahlinice (Czech Republic). Four tissues (muscle, intestines, liver and kidney) of three bird species - cormorant, great crested grebe and Eurasian buzzard, muscle tissues of common carp, grass carp, northern pike, goldfish, common tench, perch and rudd, aquatic plants (reed mace and common reed), sediments and water were analysed. Relative contents of MeHg (of total Hg) were in the range from 71% to 94% and from 15% up to 62% in the muscle and intestines and in liver, respectively, for all birds. Statistically significant differences were found between contents of MeHg in liver tissues of young and adult cormorant populations (F {sub 4.6} = 56.71, P < 10{sup -5}). Relative contents of MeHg in muscle tissues of fishes were in the range from 65.1% to 87.9% of total Hg. - The distribution of the mercury species among the organs of the individual birds is discussed.

  20. Qualitative assessment of visuospatial errors in mercury-exposed Amazonian children

    DEFF Research Database (Denmark)

    Chevrier, Cécile; Sullivan, Kimberly; White, Roberta F.

    2009-01-01

    -12 years (from Brazil and French Guiana). These outcomes were related to hair-mercury concentration as the biomarker of MeHg exposure (range = 0.5-63.8 μg/g). The combined analysis of data from two separate countries had two major goals: (1) to gain clues concerning the underlying neuropathological...

  1. Preliminary assessment of mercury accumulation in Massachusetts and Minnesota seasonal forest pools

    Science.gov (United States)

    Robert T. Brooks; Susan L. Eggert; Keith H. Nislow; Randall K. Kolka; Celia Y. Chen; Darren M. Ward

    2012-01-01

    Seasonal forest pools (SFPs) are common, widespread, and provide critical habitat for amphibians and invertebrates. The ephemeral hydrology of SFPs has been identified as an important factor in the production of biologically active methylmercury (MeHg). To investigate mercury (Hg) in SFPs, we collected water, fine benthic organic matter (FBOM), detrital materials, and...

  2. Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment

    Directory of Open Access Journals (Sweden)

    Einarsson Östen

    2005-10-01

    Full Text Available Abstract Background Biomarkers for mercury (Hg exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. Methods Concentrations of total Hg (THg, inorganic Hg (IHg and organic Hg (OHg, assumed to be methylmercury; MeHg were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. Results About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. Conclusion The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure

  3. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    pollution effects (i.e. methylmercury in fish). The general pattern of fish contamination follows to some extent a pattern similar to that of current and previous atmospheric pollution. Large areas have fish with mercury concentrations exceeding the health advisory guideline of 0.5 mg/kg or 1.0 mg/kg (for northern pike) in the EU and of around 0.3 mg/kg in the USA, thus restricting their use for human consumption. A more comprehensive assessment of factors influencing levels of methylmercury in fish has to include a number of other parameters such as catchment characteristics (e.g. relative size, presence of wetlands), contents and fluxes of DOC in soil run-off and surface waters as well as methylation potential within ecosystems

  4. Human exposure to mercury in a compact fluorescent lamp manufacturing area: By food (rice and fish) consumption and occupational exposure

    International Nuclear Information System (INIS)

    Liang, Peng; Feng, Xinbin; Zhang, Chan; Zhang, Jin; Cao, Yucheng; You, Qiongzhi; Leung, Anna Oi Wah; Wong, Ming-Hung; Wu, Sheng-Chun

    2015-01-01

    To investigate human Hg exposure by food consumption and occupation exposure in a compact fluorescent lamp (CFL) manufacturing area, human hair and rice samples were collected from Gaohong town, Zhejiang Province, China. The mean values of total mercury (THg) and methylmercury (MeHg) concentrations in local cultivated rice samples were significantly higher than in commercial rice samples which indicated that CFL manufacturing activities resulted in Hg accumulation in local rice samples. For all of the study participants, significantly higher THg concentrations in human hair were observed in CFL workers compared with other residents. In comparison, MeHg concentrations in human hair of residents whose diet consisted of local cultivated rice were significantly higher than those who consumed commercial rice. These results demonstrated that CFL manufacturing activities resulted in THg accumulation in the hair of CFL workers. However, MeHg in hair were mainly affected by the sources of rice of the residents. - Highlights: • Rice samples were contaminated by Compact fluorescent lamp (CFL) manufacturing. • CFL manufacturing lead to THg accumulation in human hair. • MeHg in human hair were mainly affected by the sources of rice. • MeHg intake from fish consumption was lower than that from rice consumption. • PDI of MeHg by food consumption was below the guidelines for public health concern. - CFL manufacturing activities result in Hg accumulation in local rice samples and hair of CFL workers. However, MeHg in hair were mainly affected by sources of rice

  5. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish.

    Science.gov (United States)

    Peng, Xiaoyan; Liu, Fengjie; Wang, Wen-Xiong

    2016-08-01

    Low mercury (Hg) concentrations down to several nanograms Hg per gram of wet tissue are documented in certain fish species such as herbivorous fish, and the underlying mechanisms remain speculative. In the present study, bioaccumulation and depuration patterns of inorganic Hg(II) and methylmercury (MeHg) in a herbivorous rabbitfish Siganus canaliculatus were investigated at organ and subcellular levels following waterborne or dietary exposures. The results showed that the efflux rate constants of Hg(II) and MeHg were 0.104 d(-1) and 0.024 d(-1) , respectively, and are probably the highest rate constants recorded in fish thus far. The dietary MeHg assimilation efficiency (68%) was much lower than those in other fish species (∼90%). The predominant distribution of MeHg in fish muscle was attributable to negligible elimination of MeHg from muscle (Hg(II) was much more slowly distributed into muscle but was efficiently eliminated by the intestine (0.13 d(-1) ). Subcellular distribution indicated that some specific membrane proteins in muscle were the primary binding pools for MeHg, and both metallothionein-like proteins and Hg-rich granules were the important components in eliminating both MeHg and Hg(II). Overall, the present study's results suggest that the low tissue Hg concentration in the rabbitfish was partly explained by its unique biokinetics. Environ Toxicol Chem 2016;35:2074-2083. © 2016 SETAC. © 2016 SETAC.

  6. Mercury Contamination and Biogeochemical Cycling Associated with the Historic Idrija Mining Area of Slovenia

    Science.gov (United States)

    Hines, M. E.; Bonzongo, J. J.; Barkay, T.; Horvat, M.; Faganeli, J.

    2001-12-01

    The Idrija Mine is the second largest Hg mine in the world, which operated for 500 years before recently closing. More than five million tons of ore were mined with only 73% recovered. Hg-laden tailings still line the banks. Exhausts from stacks and mineshafts caused elevated levels of airborne Hg, most of which was deposited in the Idrija basin leading to elevated Hg levels in surficial soils. Hg is continually being transported downstream with approximately 1,500 kg per year entering the northern Adriatic Sea 100 km away. Multidisciplinary studies were conducted on samples collected throughout the Idrija and Soca River systems and waters and sediments in the Gulf of Trieste including Hg speciation, Hg transformation activities in sediments and soils, and the presence and expression of bacterial Hg resistance (mer) genes. Total Hg in the Idrija River increased from 300 ng/L with MeHg accounting for about 0.5%. Concentrations decreased downstream, but increased again in the Soca River and in the estuary with MeHg accounting for nearly 1.5% of the total. However, while bacteria upstream of the mine did not contain mer genes, such genes were detected in bacteria collected downstream for nearly 40 km, and these genes were transcribed. Total Hg levels decreased offshore, but values over 30 ng/L were noted in bottom waters. MeHg concentrations in the Gulf were highest in bottom waters. Sediments near the river mouth contained 40 micro-g/g total Hg with MeHg concentrations of about 3 ng/g. Sediments several km into the Gulf contained 50-fold less total Hg but only 10-fold less MeHg that decreased with depth in the sediment. Hg in sediment pore waters varied between 1 and 8 ng/L, with MeHg accounting for about 30%. Hg methylation and MeHg demethylation were active in Gulf sediments with highest activities near the surface. MeHg was degraded by an oxidative pathway with >97% of the C released from MeHg as carbon dioxide. Hg methylation depth profiles resembled profiles of

  7. Mercury kinetics in marine zooplankton

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.; LaRosa, J.

    1976-01-01

    Mercury, like many other heavy metals, is potentially available to marine animals by uptake directly from water and/or through the organisms food. Furthermore, bioavailability, assimilation and subsequent retention in biota may be affected by the chemical species of the element in sea water. While mercury is known to exist in the inorganic form in sea water, recent work has indicated that, in certain coastal areas, a good portion of the total mercury appears to be organically bound; however, the exact chemical nature of the organic fraction has yet to be determined. Methyl mercury may be one constituent of the natural organically bound fraction since microbial mechanisms for in situ methylation of mercury have been demonstrated in the aquatic environment. Despite the fact that naturally produced methyl mercury probably comprises only a small fraction of an aquatic ecosystem, the well-documented toxic effects of this organo-mercurial, caused by man-made introductions into marine food chains, make it an important compound to study

  8. Multiple regression analysis to assess the role of plankton on the distribution and speciation of mercury in water of a contaminated lagoon.

    Science.gov (United States)

    Stoichev, T; Tessier, E; Amouroux, D; Almeida, C M; Basto, M C P; Vasconcelos, V M

    2016-11-15

    Spatial and seasonal variation of mercury species aqueous concentrations and distributions was carried out during six sampling campaigns at four locations within Laranjo Bay, the most mercury-contaminated area of the Aveiro Lagoon (Portugal). Inorganic mercury (IHg(II)) and methylmercury (MeHg) were determined in filter-retained (IHgPART, MeHgPART) and filtered (algae and consumers' grazing pressure in the contaminated area can be involved to increase concentrations of IHg(II)DISS and MeHgPART. These processes could lead to suspended particles enriched with MeHg and to the enhancement of IHg(II) and MeHg availability in surface waters and higher transfer to the food web. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Bioaccumulation of mercury in reared and wild Ruditapes philippinarum of a Mediterranean lagoon

    Science.gov (United States)

    Giani, Michele; Rampazzo, Federico; Berto, Daniela; Maggi, Chiara; Mao, Andrea; Horvat, Milena; Emili, Andrea; Covelli, Stefano

    2012-11-01

    The Marano and Grado lagoon, one of the largest wetlands in the Mediterranean Sea, has been subject to mercury contamination by industrial and mining activities. This must be considered a severe threat for Manila clam harvesting, which is an important fishing and commercial activity in the area. Contamination levels and potential risk for human consumption both in reared and wild clams collected from the lagoon were assessed by analyzing total mercury (THg) and methylmercury (MeHg) contents. In addition, relationships between THg and MeHg in sediments and in the bivalves were investigated. Increased bioaccumulation of THg but not of MeHg with increasing size of wild clam populations was observed at most sites. Higher concentrations both of THg (605 ± 210 ng g-1 ww) and MeHg (147 ± 37 ng g-1 ww) were detected in the eastern lagoon where the highest THg contents in sediments were observed as a consequence of the long-term supply of cinnabar rich suspended material from the Isonzo river. The variation of Hg content in seeded Manila clams during growth was monitored over a period of 18 months at two sites of the western sector of the lagoon. Results showed that the two areas were suitable for clam farming, with THg levels in reared bivalves always lower than the 0.5 mg kg-1 ww European Community limit. At the same time, as clams grew bigger in size, their THg and MeHg concentrations decreased, becoming lower than in the starting seeded pool. Reared clams presented lower THg (84 ± 55 ng g-1 ww) and MeHg (44.1 ± 24.6 ng g-1 ww) content than wild clams of the same commercial size (>30 mm). Based on a precautionary approach, intake of Hg and MeHg with the estimated clam consumption does not seem to constitute a risk for human health in the studied area.

  10. Mercury in San Francisco Bay forage fish

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Ben K., E-mail: ben@sfei.or [San Francisco Estuary Institute, 7770 Pardee Lane, Oakland, CA 94621 (United States); Jahn, Andrew, E-mail: andyjahn@mac.co [1000 Riverside Drive, Ukiah, CA 95482 (United States)

    2010-08-15

    In the San Francisco Estuary, management actions including tidal marsh restoration could change fish mercury (Hg) concentrations. From 2005 to 2007, small forage fish were collected and analyzed to identify spatial and interannual variation in biotic methylmercury (MeHg) exposure. The average whole body total Hg concentration was 0.052 {mu}g g{sup -1} (wet-weight) for 457 composite samples representing 13 fish species. MeHg constituted 94% of total Hg. At a given length, Hg concentrations were higher in nearshore mudflat and wetland species (Clevelandia ios, Menidia audens, and Ilypnus gilberti), compared to species that move offshore (e.g., Atherinops affinis and Lepidogobius lepidus). Gut content analysis indicated similar diets between Atherinops affinis and Menidia audens, when sampled at the same locations. Hg concentrations were higher in sites closest to the Guadalupe River, which drains a watershed impacted by historic Hg mining. Results demonstrate that despite differences among years and fish species, nearshore forage fish exhibit consistent Hg spatial gradients. - Total mercury in estuarine forage fish varies with species, habitat, and proximity to a historic mercury mine.

  11. Mercury in San Francisco Bay forage fish

    International Nuclear Information System (INIS)

    Greenfield, Ben K.; Jahn, Andrew

    2010-01-01

    In the San Francisco Estuary, management actions including tidal marsh restoration could change fish mercury (Hg) concentrations. From 2005 to 2007, small forage fish were collected and analyzed to identify spatial and interannual variation in biotic methylmercury (MeHg) exposure. The average whole body total Hg concentration was 0.052 μg g -1 (wet-weight) for 457 composite samples representing 13 fish species. MeHg constituted 94% of total Hg. At a given length, Hg concentrations were higher in nearshore mudflat and wetland species (Clevelandia ios, Menidia audens, and Ilypnus gilberti), compared to species that move offshore (e.g., Atherinops affinis and Lepidogobius lepidus). Gut content analysis indicated similar diets between Atherinops affinis and Menidia audens, when sampled at the same locations. Hg concentrations were higher in sites closest to the Guadalupe River, which drains a watershed impacted by historic Hg mining. Results demonstrate that despite differences among years and fish species, nearshore forage fish exhibit consistent Hg spatial gradients. - Total mercury in estuarine forage fish varies with species, habitat, and proximity to a historic mercury mine.

  12. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain.

    Science.gov (United States)

    Karri, Venkatanaidu; Schuhmacher, Marta; Kumar, Vikas

    2016-12-01

    Human exposure to toxic heavy metals is a global challenge. Concurrent exposure of heavy metals, such as lead (Pb), cadmium (Cd), arsenic (As) and methylmercury (MeHg) are particularly important due to their long lasting effects on the brain. The exact toxicological mechanisms invoked by exposure to mixtures of the metals Pb, Cd, As and MeHg are still unclear, however they share many common pathways for causing cognitive dysfunction. The combination of metals may produce additive/synergetic effects due to their common binding affinity with NMDA receptor (Pb, As, MeHg), Na + - K + ATP-ase pump (Cd, MeHg), biological Ca +2 (Pb, Cd, MeHg), Glu neurotransmitter (Pb, MeHg), which can lead to imbalance between the pro-oxidant elements (ROS) and the antioxidants (reducing elements). In this process, ROS dominates the antioxidants factors such as GPx, GS, GSH, MT-III, Catalase, SOD, BDNF, and CERB, and finally leads to cognitive dysfunction. The present review illustrates an account of the current knowledge about the individual metal induced cognitive dysfunction mechanisms and analyse common Mode of Actions (MOAs) of quaternary metal mixture (Pb, Cd, As, MeHg). This review aims to help advancement in mixture toxicology and development of next generation predictive model (such as PBPK/PD) combining both kinetic and dynamic interactions of metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Significance of fingernail and toenail mercury concentrations as biomarkers for prenatal methylmercury exposure in relation to segmental hair mercury concentrations.

    Science.gov (United States)

    Sakamoto, Mineshi; Chan, Hing M; Domingo, José L; Oliveira, Ricardo B; Kawakami, Shoichi; Murata, Katsuyuki

    2015-01-01

    To investigate the appropriateness of mercury (Hg) concentrations in fingernails and toenails at parturition for detecting prenatal exposure to methylmercury (MeHg). Total Hg concentrations were measured in 54 paired samples of fingernails, toenails, maternal blood, and maternal hair (1cm incremental segments from the scalp toward the tip) collected at 4th weeks of (early) pregnancy, and the same specimens and cord blood collected at parturition. Strong correlations were observed between Hg concentrations in fingernails and toenails at early pregnancy (r=0.923, pMercury concentrations in fingernails and toenails at parturition represented strong correlations with those in cord blood (r=0.803, pMercury in fingernails and toenails at early pregnancy reflected the maternal Hg body burden level approximately 5 months retroactively. At parturition, Hg levels in fingernails and toenails also showed strong correlations with those in cord blood. In addition, Hg levels in fingernails and toenails at parturition reflected more recent MeHg exposure, compared with those at early pregnancy. These results suggest that fingernails and toenails at parturition are useful biomarkers for prenatal MeHg exposure for mothers and fetuses, especially during the third-trimester of gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.

    Science.gov (United States)

    Tang, Zhenya; Fan, Fangling; Wang, Xinyue; Shi, Xiaojun; Deng, Shiping; Wang, Dingyong

    2018-04-15

    High levels of mercury (Hg), especially methylmercury (MeHg), in rice is of concern due to its potential of entering food chain and the high toxicity to human. The level and form of Hg in rice could be influenced by fertilizers and other soil amendments. Studies were conducted to evaluate the effect of 24 years application of chemical fertilizers and organic amendments on total Hg (THg) and MeHg and their translocation in soil, plants, and rice grain. All treatments led to significantly higher concentrations of MeHg in grain than those from the untreated control. Of nine treatments tested, chemical fertilizers combining with returning rice straw (NPK1+S) led to highest MeHg concentration in grain and soil; while the nitrogen and potassium (NK) treatment led to significantly higher THg in grain. Concentrations of soil MeHg were significantly correlated with THg in soil (r = 0.59 *** ) and MeHg in grain (r = 0.48 *** ). Calcium superphosphate negatively affected plant bioavailability of soil Hg. MeHg concentration in rice was heavily influenced by soil Hg levels. Phosphorus fertilizer was a main source contributing to soil THg, while returning rice straw to the field contributed significantly to MeHg in soil and rice grain. As a result, caution should be exercised in soil treatment or when utilizing Hg-contaminated soils to produce rice for human consumption. Strategic management of rice straw and phosphorus fertilizer could be effective strategies of lowering soil Hg, which would ultimately lower MeHg in rice and the risk of Hg entering food chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Global Mercury Pathways in the Arctic Ecosystem

    Science.gov (United States)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  16. Mercury on a landscape scale—Balancing regional export with wildlife health

    Science.gov (United States)

    Marvin-DiPasquale, Mark C.; Windham-Myers, Lisamarie; Fleck, Jacob A.; Ackerman, Joshua T.; Eagles-Smith, Collin A.; McQuillen, Harry

    2018-06-26

    the mass removed, with the remaining 6 percent apparent MeHg loss unexplained.Benthic MeHg degradation did not appear to be a major MeHg removal process in the deep cells, as changes in the ambient MeHg pool over 7-day bottle incubations showed that the surface sediment exhibited net MeHg production in the majority (87 percent) of incubation experiments. In only 13 percent of the incubations (3 out of 24) was net MeHg degradation observed.Estimates of benthic diffusive flux of MeHg across the sediment/water interface were small relative to particulate flux and variable (positive or negative), suggesting this is likely a minor term in the overall MeHg budget within the deep cells.Although the deep cells served as net MeHg sink overall, MeHg export from the flow-through treatment wetlands (shallow and deep combined) exceeded export from the fill-and-maintain managed control wetlands, because of the differences in hydrologic management between the two wetland types.Shallow wetlands under flow-through conditions generated a net export of MeHg.Most of the annual MeHg export from the treatment wetlands occurred within the first 3 months of flood up (September to November), shortly after hydrologic management began.Despite the effectiveness of the deep cell in lowering MeHg export concentrations, total mercury (THg) concentration did not decrease in biosentinel fish (Gambusia affinis, Mosquitofish) between the deep cell inlet and outlet.Mosquitofish THg concentrations were higher in treatment wetlands than in control wetlands during the first year of study, likely because of an associated increase in MeHg availability immediately following wetland construction activities. Mosquitofish THg concentrations declined in the treatment wetlands during the second year of study, and fish THg concentrations in treatment wetlands were no different from those in the control.Similarly, the increased hydrologic flow rates in the treatment wetlands did not lower fish THg concentrations nor

  17. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations

    International Nuclear Information System (INIS)

    Tong, Yindong; Wang, Mengzhu; Bu, Xiaoge; Guo, Xin; Lin, Yan; Lin, Huiming; Li, Jing; Zhang, Wei; Wang, Xuejun

    2017-01-01

    We assessed mercury (Hg) pollution in China's coastal waters, including the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, based on a nationwide dataset from 301 sampling sites. A methylmercury (MeHg) intake model for humans based on the marine food chain and human fish consumption was established to determine the linkage between water pollutants and the pollutant intake by humans. The predicted MeHg concentration in fish from the Bohai Sea was the highest among the four seas included in the study. The MeHg intake through dietary ingestion was dominant for the fish and was considerably higher than the MeHg intake through water respiration. The predicted MeHg concentrations in human blood in the coastal regions of China ranged from 1.37 to 2.77 μg/L for pregnant woman and from 0.43 to 1.00 μg/L for infants, respectively, based on different diet sources. The carnivorous fish consumption advisory for pregnant women was estimated to be 288–654 g per week to maintain MeHg concentrations in human blood at levels below the threshold level (4.4 μg/L established by the US Environmental Protection Agency). With a 50% increase in Hg concentrations in water in the Bohai Sea, the bioaccumulated MeHg concentration (4.5 μg/L) in the fish consumers will be higher than the threshold level. This study demonstrates the importance in controlling Hg pollution in China's coastal waters. An official recommendation guideline for the fish consumption rate and its sources will be necessary for vulnerable populations in China. - Graphical abstract: MeHg transfer route from the marine food chain to vulnerable population. - Highlights: • Predicted MeHg concentrations in pregnant woman and infant’s blood in China’s coastal regions are below threshold level. • The carnivorous fish consumption advisory for pregnant women is estimated to be 288–654 g per week. g • If with a 50% increase in Hg in Bohai Sea, the bioaccumulated MeHg concentration in

  18. Comparative effects of organic and inorganic mercury on in vivo dopamine release in freely moving rats

    Directory of Open Access Journals (Sweden)

    L.R.F. Faro

    2007-10-01

    Full Text Available The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg and inorganic (mercury chloride, HgCl 2 forms of mercury on in vivo dopamine (DA release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g rats using brain microdialysis coupled to HPLC with electrochemical detection. Perfusion of different concentrations of MeHg or HgCl 2 (2 µL/min for 1 h, N = 5-7/group into the striatum produced significant increases in the levels of DA. Infusion of 40 µM, 400 µM, or 4 mM MeHg increased DA levels to 907 ± 31, 2324 ± 156, and 9032 ± 70% of basal levels, respectively. The same concentrations of HgCl 2 increased DA levels to 1240 ± 66, 2500 ± 424, and 2658 ± 337% of basal levels, respectively. These increases were associated with significant decreases in levels of dihydroxyphenylacetic acid and homovallinic acid. Intrastriatal administration of MeHg induced a sharp concentration-dependent increase in DA levels with a peak 30 min after injection, whereas HgCl 2 induced a gradual, lower (for 4 mM and delayed increase in DA levels (75 min after the beginning of perfusion. Comparing the neurochemical profile of the two mercury derivatives to induce increases in DA levels, we observed that the time-course of these increases induced by both mercurials was different and the effect produced by HgCl 2 was not concentration-dependent (the effect was the same for the concentrations of 400 µM and 4 mM HgCl 2 . These results indicate that HgCl 2 produces increases in extracellular DA levels by a mechanism differing from that of MeHg.

  19. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  20. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity

    International Nuclear Information System (INIS)

    Kehrig, Helena A.; Hauser-Davis, Rachel A.; Seixas, Tercia G.; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M.

    2016-01-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hg inorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hg inorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hg inorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. - Highlights: • Se aids in MeHg detoxification in dolphin liver, forming Hg-Se amorphous crystals. • MT was involved in liver Hg inorg detoxification and GSH was associated to muscle Hg. • Feeding habits seem to influence muscle GSH, suggesting different diving capacities. • MT, GSH and Se and Hg in different forms were investigated in two dolphin species. • Hepatic Hg, MeHg and Hg inorg increased with higher Se concentrations. - “Coastal dolphins showed Se-mediated detoxification of MeHg and MT-mediated detoxification of Hg inorg , while GSH suggests different diving capacities”.

  1. Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the rotifer Brachionus koreanus and the copepod Paracyclopina nana.

    Science.gov (United States)

    Lee, Young Hwan; Kim, Duck-Hyun; Kang, Hye-Min; Wang, Minghua; Jeong, Chang-Bum; Lee, Jae-Seong

    2017-09-01

    To evaluate the adverse effects of MeHg on the rotifer Brachionus koreanus and the copepod Paracyclopina nana, we assessed the effects of MeHg toxicity on life parameters (e.g. growth retardation and fecundity), antioxidant systems, and mitogen-activated protein kinase (MAPK) signaling pathways at various concentrations (1ng/L, 10ng/L, 100ng/L, 500ng/L, and 1000ng/L). MeHg exposure resulted in the growth retardation with the increased ROS levels but decreased glutathione (GSH) levels in a dose-dependent manner in both B. koreanus and P. nana. Antioxidant enzymatic activities (e.g. glutathione S-transferase [GST], glutathione reductase [GR], and glutathione peroxidase [GPx]) in B. koreanus showed more positive responses compared the control but in P. nana, those antioxidant enzymatic activities showed subtle changes due to different no observed effect concentration (NOEC) values among the two species. Expression of antioxidant genes (e.g. superoxide dismutase [SOD], GSTs, glutathione peroxidase [GPx], and catalase [CAT]) also demonstrated similar effects as shown in antioxidant enzymatic activities. In B. koreanus, the level of p-ERK was decreased in the presence of 1000ng/L MeHg, while the levels of p-ERK and p-p38 in P. nana were reduced in the presence of 10ng/L MeHg. However, p-JNK levels were not altered by MeHg in B. koreanus and P. nana, compared to the corresponding controls. In summary, life parameters (e.g. reduced fecundity and survival rate) were closely associated with effects on the antioxidant system in response to MeHg. These observations provide a better understanding on the adverse effects of MeHg on in vivo life parameters and molecular defense mechanisms in B. koreanus and P. nana. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Mercury dynamics of several plants collected from the water-level fluctuation zone of the Three Gorges Reservoir area during flooding and its impact on water body].

    Science.gov (United States)

    Zhang, Xiang; Zhang, Cheng; Sun, Rong-guo; Wang, Ding-yong

    2014-12-01

    Submerged plants are a major source for the abnormal elevation of methylmercury in reservoir. Several specific plants (Echinochloa crusgalli, Cynodondactylon and Corn stover) were collected and inundated in a simulated aquatic environment in the laboratory for investigating the mercury (Hg) dynamics in plants and the release process into water, aiming to find out the properties of Hg dynamics of plants under inundation conditions and its impact on water body in the Water-Level Fluctuation Zone of the Three Gorges Reservoir Area. The results showed that the contents of total mercury in several plants were in the range of 9. 21-12.07 ng x g(-1), and the percentage content of methylmercury (MeHg) was about 1%-2%. The content of total mercury (THg) in plants gradually decreased, by 35.81%-55.96%, whereas that of the dissolved mercury (DHg) increased sharply, by 103.23% -232.15%, which indicated an emission of Hg from plants to water in the process of decomposition. Furthermore, the state of inundation provided sufficient conditions for the methylation process in plants and therefore caused an increase of the content of methylmercury in the plant residues, which was 3.04-6.63 times as much as the initial content. The concentration of dissolved methylmercury (DMeHg) in the overlying water also increased significantly by 14.84- 16.05 times compared with the initial concentration. Meanwhile, the concentration of dissolved oxygen (DO) in the overlying water was significantly and negatively correlated with DMeHg. On the other hand, the concentration of dissolved organic carbon (DOC) in the overlying water was significantly and positively correlated with DMeHg. During the whole inundation period, the increase of DHg in the overlying water accounted for 41.74% -47.01% of the total amount of THg emission, and there was a negative correlation between the content of THg in plant residues and that of DHg in the overlying water.

  3. Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes.

    Science.gov (United States)

    Lepak, Ryan F; Janssen, Sarah E; Yin, Runsheng; Krabbenhoft, David P; Ogorek, Jacob M; DeWild, John F; Tate, Michael T; Holsen, Thomas M; Hurley, James P

    2018-03-06

    Identifying the sources of methylmercury (MeHg) and tracing the transformations of mercury (Hg) in the aquatic food web are important components of effective strategies for managing current and legacy Hg sources. In our previous work, we measured stable isotopes of Hg (δ 202 Hg, Δ 199 Hg, and Δ 200 Hg) in the Laurentian Great Lakes and estimated source contributions of Hg to bottom sediment. Here, we identify isotopically distinct Hg signatures for Great Lakes trout ( Salvelinus namaycush) and walleye ( Sander vitreus), driven by both food-web and water-quality characteristics. Fish contain high values for odd-isotope mass independent fractionation (MIF) with averages ranging from 2.50 (western Lake Erie) to 6.18‰ (Lake Superior) in Δ 199 Hg. The large range in odd-MIF reflects variability in the depth of the euphotic zone, where Hg is most likely incorporated into the food web. Even-isotope MIF (Δ 200 Hg), a potential tracer for Hg from precipitation, appears both disconnected from lake sedimentary sources and comparable in fish among the five lakes. We suggest that similar to the open ocean, water-column methylation also occurs in the Great Lakes, possibly transforming recently deposited atmospheric Hg deposition. We conclude that the degree of photochemical processing of Hg is controlled by phytoplankton uptake rather than by dissolved organic carbon quantity among lakes.

  4. Biomagnification of mercury and selenium in two lakes in southern Norway

    Energy Technology Data Exchange (ETDEWEB)

    Økelsrud, Asle, E-mail: asle.okelsrud@hit.no [Department of Environmental and Health Studies, University College of Southeast Norway, Hallvard Eikas Plass 1, 3800 Bø (Norway); Lydersen, Espen [Department of Environmental and Health Studies, University College of Southeast Norway, Hallvard Eikas Plass 1, 3800 Bø (Norway); Fjeld, Eirik [Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo (Norway)

    2016-10-01

    We have investigated bioaccumulation and trophic transfer of both mercury (Hg) and selenium (Se) in two lakes in southern Norway to reveal a suggested mitigating effect of Se on Hg biota accumulation. The study included analysis of total Se (Se), total Hg (Hg), and methyl-mercury (MeHg) in water, littoral and pelagic invertebrates and perch (Perca fluviatilis), together with stable isotope analysis (δ{sup 15}N and δ{sup 13}C) in biota. Mean dissolved Se ranged from 22 to 59 ng L{sup −1}, while Hg and MeHg in lake water ranged from 1 to 3 ng L{sup −1} and 0.01 to 0.06 ng L{sup −1}. Biota Se and Hg concentrations (dry weight) ranged from 0.41 mg Se kg{sup −1} and 0.06 mg Hg kg{sup −1} in primary littoral invertebrates and up to 2.9 mg Se kg{sup −1} and 3.6 mg Hg kg{sup −1} in perch. Both Hg and Se biomagnified in the food web, with a trophic magnification factor (TMF) of 4.64 for Hg and 1.29 for Se. The reported positive transfer of Se in the food web, despite the low measured dissolved Se, suggest that a major proportion of the Se in these lakes are both highly bioavailable and bioaccumulative. However, we did not find support for a Se-facilitated inhibition in the accumulation of Hg in perch, as Se and Hg concentrations in perch muscle correlated positively and Se did not explain any variations in Hg after we controlled for the effects of other important covariates. We postulate that this may be a result of insufficient concentrations of dissolved Se and subsequently in biota in our studied lakes for an efficient Hg sequestration up the food web. - Highlights: • Hg, Se and stable isotopes were investigated in biota in two Norwegian Boreal lakes • Both Hg and Se biomagnified in the food web, with a TMF of 4.64 and 1.29 respectively • Food carbon source, trophic level and age explained Se and Hg variations in perch • Perch muscle Se and Hg were positively correlated.

  5. Biomagnification of mercury and selenium in two lakes in southern Norway

    International Nuclear Information System (INIS)

    Økelsrud, Asle; Lydersen, Espen; Fjeld, Eirik

    2016-01-01

    We have investigated bioaccumulation and trophic transfer of both mercury (Hg) and selenium (Se) in two lakes in southern Norway to reveal a suggested mitigating effect of Se on Hg biota accumulation. The study included analysis of total Se (Se), total Hg (Hg), and methyl-mercury (MeHg) in water, littoral and pelagic invertebrates and perch (Perca fluviatilis), together with stable isotope analysis (δ 15 N and δ 13 C) in biota. Mean dissolved Se ranged from 22 to 59 ng L −1 , while Hg and MeHg in lake water ranged from 1 to 3 ng L −1 and 0.01 to 0.06 ng L −1 . Biota Se and Hg concentrations (dry weight) ranged from 0.41 mg Se kg −1 and 0.06 mg Hg kg −1 in primary littoral invertebrates and up to 2.9 mg Se kg −1 and 3.6 mg Hg kg −1 in perch. Both Hg and Se biomagnified in the food web, with a trophic magnification factor (TMF) of 4.64 for Hg and 1.29 for Se. The reported positive transfer of Se in the food web, despite the low measured dissolved Se, suggest that a major proportion of the Se in these lakes are both highly bioavailable and bioaccumulative. However, we did not find support for a Se-facilitated inhibition in the accumulation of Hg in perch, as Se and Hg concentrations in perch muscle correlated positively and Se did not explain any variations in Hg after we controlled for the effects of other important covariates. We postulate that this may be a result of insufficient concentrations of dissolved Se and subsequently in biota in our studied lakes for an efficient Hg sequestration up the food web. - Highlights: • Hg, Se and stable isotopes were investigated in biota in two Norwegian Boreal lakes • Both Hg and Se biomagnified in the food web, with a TMF of 4.64 and 1.29 respectively • Food carbon source, trophic level and age explained Se and Hg variations in perch • Perch muscle Se and Hg were positively correlated

  6. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    Science.gov (United States)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream

  7. Planet Mercury

    Science.gov (United States)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  8. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. New Mechanisms of Mercury Binding to Peat

    Science.gov (United States)

    Nagy, K. L.; Manceau, A.; Gasper, J. D.; Ryan, J. N.; Aiken, G. R.

    2007-12-01

    Mercury can be immobilized in the aquatic environment by binding to peat, a solid form of natural organic matter. Binding mechanisms can vary in strength and reversibility, and therefore will control concentrations of bioreactive mercury, may explain rates of mercury methylation, and are important for designing approaches to improve water quality using natural wetlands or engineered phytoremediation schemes. In addition, strong binding between mercury and peat is likely to result in the fixation of mercury that ultimately resides in coal. The mechanisms by which aqueous mercury at low concentrations reacts with both dissolved and solid natural organic matter remain incompletely understood, despite recent efforts. We have identified three distinct binding mechanisms of divalent cationic mercury to solid peats from the Florida Everglades using EXAFS spectroscopic data (FAME beamline, European Synchrotron Radiation Facility (ESRF)) obtained on experimental samples as compared to relevant references including mercury-bearing solids and mercury bound to various organic molecules. The proportions of the three molecular configurations vary with Hg concentration, and two new configurations that involve sulfur ligands occur at Hg concentrations up to about 4000 ppm. The binding mechanism at the lowest experimental Hg concentration (60-80 ppm) elucidates published reports on the inhibition of metacinnabar formation in the presence of Hg-bearing solutions and dissolved natural organic matter, and also, the differences in extent of mercury methylation in distinct areas of the Florida Everglades.

  10. Influences on Mercury Bioaccumulation Factors for the Savannah River

    International Nuclear Information System (INIS)

    Paller, M.H.

    2003-01-01

    Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118 km reach of the Savannah River demonstrated that species specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat and season related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 106 for largemouth bass, 1.4 x 106 for sunfishes, and 2.5 x 106 for white catfish. Inaccurate and imprecise BAFs can result in unnecessary economic impact or insufficient protection of human health. Determination of representative and precise BAFs for mercury in fish FR-om large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle FR-om the entire area and all habitats to be represented by the TMDL

  11. Defining the Molecular-Cellular-Field Continuum of Mercury Detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States)

    2016-04-25

    Hg is of special interest to DOE due to past intensive use in manufacture of nuclear weapons at the Oak Ridge Reservation (ORR). Because of its facile oxidation/reduction [Hg(II)/Hg(0)] chemistry, ability to bond to carbon [as in highly toxic methylmercury: MeHg(I)] and its unique physical properties [e.g., volatility of Hg(0)], Hg has a complex environmental cycle involving soils, sediments, waterways and the atmosphere and including biotic and abiotic chemical and physical transport and transformations.1 Understanding such processes well enough to design stewardship plans that minimize negative impacts in diverse ecological settings requires rich knowledge of the contributing abiotic and biotic processes. Prokaryotes are major players in the global Hg cycle. Facultative and anaerobic bacteria can form MeHg(I) with consequent intoxication of wildlife and humans. Sustainable stewardship of Hg-contaminated sites requires eliminating not only MeHg(I) but also the Hg(II) substrate for methylation. Fortunately, a variety of mercury resistant (HgR) aerobic and facultative bacteria and archaea can do both things. Prokaryotes harboring narrow or broad Hg resistance (mer) loci detoxify Hg(II) or RHg(I), respectively, to relatively inert, less toxic, volatile Hg(0). HgR microbes are enriched in highly contaminated sites and extensive field data show they depress levels of MeHg >500-fold in such zones2. So, enhancing the natural capacity of indigenous HgR microbes to remove Hg(II) and RHg(I) from soils, sediments and waterways is a logical component of a comprehensive plan for clean up and stewardship of contaminated sites.

  12. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  13. Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment

    Energy Technology Data Exchange (ETDEWEB)

    Maulvault, Ana Luísa, E-mail: aluisa@ipma.pt [Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); MARE – Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais (Portugal); Custódio, Ana [Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa (Portugal); Instituto Superior de Agronomia (ISA), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa (Portugal); Anacleto, Patrícia [Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); MARE – Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais (Portugal); and others

    2016-08-15

    Warming is an expected impact of climate change that will affect coastal areas in the future. These areas are also subjected to strong anthropogenic pressures leading to chemical contamination. Yet, the consequences of both factors for marine ecosystems, biota and consumers are still unknown. The present work aims to investigate, for the first time, the effect of temperature increase on bioaccumulation and elimination of mercury [(total mercury (THg) and methylmercury (MeHg)] in three tissues (muscle, liver, and brain) of a commercially important seafood species – European seabass (Dicentrarchus labrax). Fish were exposed to the ambient temperature currently used in seabass rearing (18 °C) and to the expected ocean warming (+4 °C, i.e. 22 °C), as well as dietary MeHg during 28 days, followed by a depuration period of 28 days fed with a control diet. In both temperature exposures, higher MeHg contents were observed in the brain, followed by the muscle and liver. Liver registered the highest elimination percentages (EF; up to 64% in the liver, 20% in the brain, and 3% in the muscle). Overall, the results clearly indicate that a warming environment promotes MeHg bioaccumulation in all tissues (e.g. highest levels in brain: 8.1 mg kg{sup −1} ww at 22 °C against 6.2 mg kg{sup −1} ww at 18 °C after 28 days of MeHg exposure) and hampers MeHg elimination (e.g. liver EF decreases after 28 days of depuration: from 64.2% at 18 °C to 50.3% at 22 °C). These findings suggest that seafood safety may be compromised in a warming context, particularly for seafood species with contaminant concentrations close to the current regulatory levels. Hence, results point out the need to strengthen research in this area and to revise and/or adapt the current recommendations regarding human exposure to chemical contaminants through seafood consumption, in order to integrate the expected effects of climate change. - Highlights: • Higher MeHg contents were found in the brain

  14. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    Energy Technology Data Exchange (ETDEWEB)

    Shanley, James B. [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: jshanley@usgs.gov; Alisa Mast, M. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: mamast@usgs.gov; Campbell, Donald H. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dhcampbe@usgs.gov; Aiken, George R. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: graiken@usgs.gov; Krabbenhoft, David P. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: dpkrabbe@usgs.gov; Hunt, Randall J. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: rjhunt@usgs.gov; Walker, John F. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: jfwalker@usgs.gov; Schuster, Paul F. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: pschuste@usgs.gov; Chalmers, Ann [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: chalmers@usgs.gov; Aulenbach, Brent T. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: btaulenb@usgs.gov; Peters, Norman E. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: nepeters@usgs.gov; Marvin-DiPasquale, Mark [US Geological Survey, 345 Middlefield Rd., MS 480, Menlo Park, CA 94025 (United States)], E-mail: mmarvin@usgs.gov; Clow, David W. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dwclow@usgs.gov; Shafer, Martin M. [Environmental Chemistry and Technology and Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: mmshafer@wisc.edu

    2008-07-15

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L{sup -1} and MeHg was less than 0.2 ng L{sup -1}. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L{sup -1} at Sleepers River, Vermont; 112 (0.75) ng L{sup -1} at Rio Icacos, Puerto Rico; and 55 (0.80) ng L{sup -1} at Panola Mt., Georgia. Filtered (<0.7 {mu}m) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5 ng L{sup -1} at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. - High-flow sampling reveals strong contrasts in total

  15. Genetic effects of organic mercury compounds. II. Chromosome segregation in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C; Magnusson, J

    1969-01-01

    The genetic effect of organic mercury compounds on the fruit fly, Drosophila melanogaster was investigated. Treatments of larvae with methyl and phenyl mercury gave rise to development disturbances. Chromosomal abnormalities were noted.

  16. Fate and Transport of Mercury in Environmental Media and Human Exposure

    Science.gov (United States)

    Kim, Moon-Kyung

    2012-01-01

    Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental (Hg0) and divalent (Hg2+) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly Hg2+, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans. PMID:23230463

  17. Assessment of mercury contamination in African sub-Saharan freshwater reservoirs (Burkina Faso)

    Energy Technology Data Exchange (ETDEWEB)

    Ousseni, O.; Marc, A. [Montreal Univ., PQ (Canada)

    2010-07-01

    Despite an increase in artisanal gold mining with metallic mercury (Hg) amalgamation in Burkina Faso since 1990, there is no data on the potential impact of Hg contamination on aquatic systems. This presentation reported on a study that evaluated environmental mercury contamination by determining the total mercury (THg) and methylmercury (MeHg) concentrations in water and 350 muscle tissues of fish samples from 13 reservoirs in Burkina Faso. Mercury was analyzed by cold vapour atomic fluorescence spectrometry technique using Tekran 2600 mercury analyzer (CV-AFS) after oxidization by BrCl and reduction by SnCl{sub 2}. The range of Hg concentration for THg and MeHg in water was presented along with the Fish THg level range. The study showed that most mercury was in the particulate form as a result of rainfall runoff. Most fish mercury concentrations were below the Health Canada guideline limit. However, the Hg level in one fish species (Bagrus bajad) was above the World Health Organization (WHO) international trade guideline limit. The study showed that in general, most fish species are not highly contaminated by Hg, with the exception of Bagrus bajad. It was concluded that future studies should consider consumption patterns of different subpopulations in order to evaluate risk and develop policy recommendations.

  18. [Distribution of Mercury in Plants at Water-Level-Fluctuating Zone in the Three Gorges Reservoir].

    Science.gov (United States)

    Liang, Li; Wang, Yong-min; Li, Xian-yuan; Tang, Zhen-ya; Zhang, Xiang; Zhang, Cheng; WANG, Ding-yong

    2015-11-01

    The mercury (Hg) distribution and storage in plants at water-level-fluctuating zone (WLFZ) in the Three Gorges Reservoir were investigated by analyzing the total mercury(THg) and methylmercury ( MeHg) levels in different parts of plants collected from three typical sites including Shibaozhai, Zhenxi and Hanfeng Lake in WLFZ. The results indicated that THg and MeHg concentrations in plants ranged from (1.62 ± 0.57) to (49.42 ± 3.93) μg x kg(-1) and from (15.27 ± 7.09) to (1 974.67 ± 946.10) ng x kg(-1), respectively. In addition, THg levels in different plant parts followed the trend: root > leaf > stem, and similar trend for MeHg was observed with the highest level in root. An obvious spatial distribution was also found with the THg and MeHg levels in plants in Hanfeng higher than those in the same plants in the other two sampling sites (Shibaozhai and Zhenxi), and there was a difference of THg and MeHg storage in plants in various attitudes. The corresponding THg and MeHg storages were 145.3, 166.4, 124.3 and 88.2 mg x hm(-2), and 1.9, 2.7, 3.6 and 3.2 mg x hm(-2) in 145-150, 150-160, 160-170 and 170-175 m attitudes. The accumulation ability of dominant plants in WLFZ for THg (bioaccumulation factor, BAF 1).

  19. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  20. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  1. Effects of Seasonal and Spatial Differences in Food Webs on Mercury Concentrations in Fish in the Everglades

    Science.gov (United States)

    Kendall, C.; Bemis, B. E.; Wankel, S. D.; Rawlik, P. S.; Lange, T.; Krabbenhoft, D. P.

    2002-05-01

    A clear understanding of the aquatic food web is essential for determining the entry points and subsequent biomagnification pathways of contaminants such as methyl-mercury (MeHg) in the Everglades. Anthropogenic changes in nutrients can significantly affect the entry points of MeHg by changing food web structure from one dominated by algal productivity to one dominated by macrophytes and associated microbial activity. These changes in the base of the food web can also influence the distribution of animals within the ecosystem, and subsequently the bioaccumulation of MeHg up the food chain. As part of several collaborations with local and other federal agencies, more than 7000 Everglades samples were collected in 1995-99, and analysed for d13C and d15N. Many organisms were also analysed for d34S, gut contents, total Hg, and MeHg. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. Many organisms show significant (5-12%) spatial and temporal differences in d13C and d15N values across the Everglades. These differences may reflect site and season-specific differences in the relative importance of algae vs. macrophyte debris to the food web. However, there is a lack of evidence that these sites otherwise differ in food chain length (as determined by d15N values). This conclusion is generally supported by gut contents and mercury data. Furthermore, there are no statistically significant differences between the Delta d15N (predator-algae) values at pristine marsh, nutrient-impacted marsh, or canal sites. The main conclusions from this preliminary comparison of gut contents, stable isotope, and Hg data are: (1) there is

  2. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to MeHg

  3. Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Logar, Martina; Horvat, Milena [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Akagi, Hirokatsu [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan); Pihlar, Boris [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana (Slovenia)

    2002-11-01

    The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg{sup 2+}) and monomethylmercury compounds (MeHg) in natural water samples at the pg L{sup -1} level. The method is based on the simultaneous extraction of MeHg and Hg{sup 2+}dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na {sub 2}S, removal of H {sub 2}S by purging with N {sub 2}, subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L {sup -1} for MeHg and 0.06 ng L {sup -1} for Hg {sup 2+}when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg {sup 2+}. Recoveries were 90-110% for both species. (orig.)

  4. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga

    International Nuclear Information System (INIS)

    Gorski, P.R.; Armstrong, D.E.; Hurley, J.P.; Krabbenhoft, D.P.

    2008-01-01

    Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5 mg L -1 . These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg. - Bioavailability of mercury to an alga was greatest at low concentrations of natural dissolved organic carbon and inhibited at high concentrations of natural dissolved organic carbon

  5. The Risk of Mercury Exposure to the People Consuming Fish from Lake Phewa, Nepal

    Directory of Open Access Journals (Sweden)

    Devna Singh Thapa

    2014-06-01

    Full Text Available The risk of mercury exposure through consumption of fish from Lake Phewa, Nepal was investigated. A total of 170 people were surveyed to know their fish consumption levels. The weekly mercury (Hg intake in the form of methylmercury (MeHg through fish was calculated by using the data on average MeHg concentrations in fish, the average consumption of fish per week, and an average body weight of the people. Hotel owners were consuming significantly high amounts of fish, followed by fishermen, in comparison to the government staff, army/police, locals and others (visitors. Some individuals exceeded the Provisional Tolerable Weekly Intake (PTWI of 1.6 µg per kg body weight of MeHg (FAO/WHO. The minimum intake of MeHg (0.05 µg/kg/week was found in the visitors (others category, whereas the hotel owners had the maximum intake (3.71 µg/kg/week. In general, it was found that a person of 60 kg can consume at least 2 kg of fish per week without exceeding PTWI such that it does not pose any health risk associated with Hg poisoning at the present contamination level. Hg based PTWI values for Nepal has not been proposed yet in fishery resources so as to reduce health risk of the people.

  6. Study on total and methyl mercury levels in human scalp hairs of lying-in women and newborns by NAA and other techniques

    International Nuclear Information System (INIS)

    Chai Chifang; Feng Weiye; Qian Qinfang; Guan Ming; Li Xinji; Lu Yilun; Zhang Xioumei

    1995-01-01

    Since the Second Research Co-ordinating Meeting in Malaysia, 24-28 August 1992, our research group has completed the analysis of total and methylmercury in scalp hair samples of 1179 fishermen living at a typical Hg-polluted region in Northeast China and of 27 lying-in women and their newborns in a Beijing hospital by INAA, GC(EC) and other techniques. The longitudinal Hg patterns of the lying-in women show a gradually decreasing tendency during the pregnancy period. Further, the hair Hg contents of the newborn babies are generally above or close to those of their mothers, confirming the mechanism that the methylmercury, an organic species of Hg with high toxicity, is readily able to penetrate the placental barrier and accumulate in the fetus. Thus, the mercury exposure has occurred at the early stage of pregnancy. (author)

  7. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.

    Science.gov (United States)

    Maramba, Nelia P C; Reyes, Jose Paciano; Francisco-Rivera, Ana Trinidad; Panganiban, Lynn Crisanta R; Dioquino, Carissa; Dando, Nerissa; Timbang, Rene; Akagi, Hirokatsu; Castillo, Ma Teresa; Quitoriano, Carmela; Afuang, Maredith; Matsuyama, Akito; Eguchi, Tomomi; Fuchigami, Youko

    2006-10-01

    elevation of blood mercury levels exceeding the then recommended exposure level of 20ppb in 12 out of the 43 (27.9%) residents examined. The majority of the volunteers were former mine workers. In this study the abnormal findings included gingivitis, mercury lines, gum bleeding and pterydium. The most common neurologic complaints were numbness, weakness, tremors and incoordination. Anemia and elevated liver function tests were also seen in a majority of those examined. The assessment also revealed a probable association between blood mercury level and eosinophilia. The same association was also seen between high mercury levels and the presence of tremors and working in the mercury mine. To date, there are very limited environmental and health studies on the impact of both total and methylmercury that have been undertaken in the Philippines. Thus, this area of study was selected primarily because of its importance as an emerging issue in the country, especially regarding the combined effects of total and methylmercury low-dose and continuous uptake from environmental sources. At present the effects of total mercury exposure combined with MeHg consumption remain an important issue, especially those of low-dose and continuous uptake. Results of the study showed that four (4) species of fish, namely ibis, tabas, lapu-lapu and torsillo, had exceeded the recommended total mercury and methylmercury levels in fish (NV>0.5 microg/gf.w., NV>0.3 microg/gf.w., respectively). Saging and kanuping also exceeded the permissible levels for methylmercury. Total and methylmercury in canned fish, and total mercury in rice, ambient air and drinking water were within the recommended levels, however, additional mercury load from these sources may contribute to the over-all body burden of mercury among residents in the area. Surface water quality at the mining area, Honda Bay and during some monitoring periods at Palawan Bay exceeded total mercury standards (NV>0.002 ng/mL). Soil samples in two

  8. Bioaccumulation of As, Cd, Cr, Hg(II), and MeHg in killifish (Fundulus heteroclitus) from amphipod and worm prey

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Jessica, E-mail: dutton.jess@gmail.com; Fisher, Nicholas S., E-mail: nfisher@notes.cc.sunysb.edu

    2011-08-15

    Elevated metal levels in fish are a concern for the fish themselves, their predators, and possibly humans who consume contaminated seafood. Metal bioaccumulation models often rely on assimilation efficiencies (AEs) of ingested metals and loss rate constants after dietary exposure (k{sub ef}s). These models can be used to better understand processes regulating metal accumulation and can be used to make site-specific predictions of metal concentrations in animal tissues. Fish often consume a varied diet, and prey choice can influence these two parameters. We investigated the trophic transfer of As, Cd, Cr, Hg(II), and methylmercury (MeHg) from a benthic amphipod (Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish (Fundulus heteroclitus) using gamma-emitting radioisotopes. Except for MeHg, AEs varied between prey type. AEs were highest for MeHg (92%) and lowest for Cd (2.9-4.5%) and Cr (0.2-4%). Hg(II) showed the largest AE difference between prey type (14% amphipods, 24% worms). For Cd and Hg(II) k{sub ef}s were higher after consuming amphipods than consuming worms. Tissue distribution data shows that Cd and Hg(II) were mainly associated with the intestine, whereas As and MeHg were transported throughout the body. Calculated trophic transfer factors (TTFs) suggest that MeHg is likely to biomagnify at this trophic step at all ingestion rates, whereas As, Cd, Cr, and Hg(II) will not. Data collected in this study and others indicate that using one prey item to calculate AE and k{sub ef} could lead to an over- or underestimation of these parameters. - Highlights: {yields} We investigated the trophic transfer of metals to killifish from amphipod and worm prey. {yields} Prey choice influences metal accumulation from the diet. {yields} Only MeHg is likely to biomagnify at this trophic step.

  9. Gene expression changes in bottlenose dolphin, Tursiops truncatus, skin cells following exposure to methylmercury (MeHg) or perfluorooctane sulfonate (PFOS)

    Energy Technology Data Exchange (ETDEWEB)

    Mollenhauer, Meagan A.M. [Department of Pediatrics, Medical University of South Carolina, Charleston, SC (United States); Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, SC (United States)], E-mail: willimea@musc.edu; Carter, Barbara J. [EcoArray, Inc., Gainesville, FL (United States); Peden-Adams, Margie M. [Department of Pediatrics, Medical University of South Carolina, Charleston, SC (United States); Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, SC (United States); Marine Biomedicine and Environmental Science Center, Medical University of South Carolina, Charleston, SC (United States); Mystic Aquarium and Institute for Exploration, Mystic, CT (United States); Bossart, Gregory D. [Harbor Branch Oceanographic Institution, Fort Pierce, FL (United States); Fair, Patricia A. [National Oceanic and Atmospheric Administration/National Ocean Service/Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC (United States)

    2009-01-18

    Methylmercury (MeHg) and perfluorooctane sulfonate (PFOS) bioaccumulate and biomagnify in the environment and increasing concentrations of these pollutants have been found in wildlife and humans. Both chemicals are worldwide contaminants with wide ranging biological effects and have been identified in relatively high concentrations in apex level marine mammals such as bottlenose dolphins. The primary objective of this study was to determine if exposure to MeHg or PFOS would alter the gene expression in primary bottlenose dolphin epidermal cell cultures. Primary skin cells were isolated and cultured from skin samples collected from wild bottlenose dolphins. The cells were subsequently exposed to 13 ppm PFOS or 1 ppm MeHg and changes in gene expression were analyzed by suppressive subtractive hybridization (SSH) and quantitative real-time PCR (QPCR). 116 genes were positively identified in the dolphin skin cells by SSH. Of these, 16 total genes were analyzed by QPCR (9 and 11 genes following PFOS or MeHg exposure, respectively, with four overlapping genes). Results indicate MeHg significantly alters gene expression patterns following 24 h exposure, but has no measurable effect after only 1 h. PFOS exposure, however, caused significant alterations following both 1 and 25 h. Overall, the changes in gene expression observed indicate these concentrations of MeHg and PFOS significantly alter normal gene expression patterns. The changes in gene expression following exposure to these contaminants not only indicate a cellular stress response, but also decreased cell cycle progression and cellular proliferation and reduced protein translation. Alterations in normal cellular biology, like those observed, may lead to changes in health in marine mammals exposed to contaminants; however, this warrants further investigation.

  10. Gene expression changes in bottlenose dolphin, Tursiops truncatus, skin cells following exposure to methylmercury (MeHg) or perfluorooctane sulfonate (PFOS)

    International Nuclear Information System (INIS)

    Mollenhauer, Meagan A.M.; Carter, Barbara J.; Peden-Adams, Margie M.; Bossart, Gregory D.; Fair, Patricia A.

    2009-01-01

    Methylmercury (MeHg) and perfluorooctane sulfonate (PFOS) bioaccumulate and biomagnify in the environment and increasing concentrations of these pollutants have been found in wildlife and humans. Both chemicals are worldwide contaminants with wide ranging biological effects and have been identified in relatively high concentrations in apex level marine mammals such as bottlenose dolphins. The primary objective of this study was to determine if exposure to MeHg or PFOS would alter the gene expression in primary bottlenose dolphin epidermal cell cultures. Primary skin cells were isolated and cultured from skin samples collected from wild bottlenose dolphins. The cells were subsequently exposed to 13 ppm PFOS or 1 ppm MeHg and changes in gene expression were analyzed by suppressive subtractive hybridization (SSH) and quantitative real-time PCR (QPCR). 116 genes were positively identified in the dolphin skin cells by SSH. Of these, 16 total genes were analyzed by QPCR (9 and 11 genes following PFOS or MeHg exposure, respectively, with four overlapping genes). Results indicate MeHg significantly alters gene expression patterns following 24 h exposure, but has no measurable effect after only 1 h. PFOS exposure, however, caused significant alterations following both 1 and 25 h. Overall, the changes in gene expression observed indicate these concentrations of MeHg and PFOS significantly alter normal gene expression patterns. The changes in gene expression following exposure to these contaminants not only indicate a cellular stress response, but also decreased cell cycle progression and cellular proliferation and reduced protein translation. Alterations in normal cellular biology, like those observed, may lead to changes in health in marine mammals exposed to contaminants; however, this warrants further investigation

  11. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Sillanpää, Mika; Wang, Yongjie; Sun, Shiwei

    2015-01-01

    Accurate measurements of wet mercury (Hg) deposition are critically important for the assessment of ecological responses to pollutant loading. The Hg in wet deposition was measured over a 3-year period in the southeastern Tibetan Plateau. The volume-weighted mean (VWM) total Hg (Hg_T) concentration was somewhat lower than those reported in other regions of the Tibetan Plateau, but the VWM methyl-Hg concentration and deposition flux were among the highest globally reported values. The VWM Hg_T concentration was higher in non-monsoon season than in monsoon season, and wet Hg_T deposition was dominated by the precipitation amount rather than the scavenging of atmospheric Hg by precipitation. The dominant Hg species in precipitation was mainly in the form of dissolved Hg, which indicates the pivotal role of reactive gaseous Hg within-cloud scavenging to wet Hg deposition. Moreover, an increasing trend in precipitation Hg concentrations was synchronous with the recent economic development in South Asia. - Highlights: • The lowest Hg_T concentration in precipitation was found at Southeast Tibet Station. • MeHg concentration and wet deposition flux were among the highest at our study site. • Hg_D dominated the concentration and flux of Hg_T in wet Hg deposition. • A long-term increasing trend in the Hg_T concentration was found at our study site. - An increasing trend in the precipitation Hg concentrations was synchronous with the recent economic development in South Asia.

  12. Fish consumption and bioindicators of inorganic mercury exposure

    International Nuclear Information System (INIS)

    Sousa Passos, Carlos Jose; Mergler, Donna; Lemire, Melanie; Fillion, Myriam; Guimaraes, Jean Remy Davee

    2007-01-01

    Background: The direct and close relationship between fish consumption and blood and hair mercury (Hg) levels is well known, but the influence of fish consumption on inorganic mercury in blood (B-IHg) and in urine (U-Hg) is unclear. Objective: Examine the relationship between fish consumption, total, inorganic and organic blood Hg levels and urinary Hg concentration. Methods: A cross-sectional study was carried out on 171 persons from 7 riparian communities on the Tapajos River (Brazilian Amazon), with no history of inorganic Hg exposure from occupation or dental amalgams. During the rising water season in 2004, participants responded to a dietary survey, based on a seven-day recall of fish and fruit consumption frequency, and socio-demographic information was recorded. Blood and urine samples were collected. Total, organic and inorganic Hg in blood as well as U-Hg were determined by Atomic Absorption Spectrometry. Results: On average, participants consumed 7.4 fish meals/week and 8.8 fruits/week. Blood total Hg averaged 38.6 ± 21.7 μg/L, and the average percentage of B-IHg was 13.8%. Average organic Hg (MeHg) was 33.6 ± 19.4 μg/L, B-IHg was 5.0 ± 2.6 μg/L, while average U-Hg was 7.5 ± 6.9 μg/L, with 19.9% of participants presenting U-Hg levels above 10 μg/L. B-IHg was highly significantly related to the number of meals of carnivorous fish, but no relation was observed with non-carnivorous fish; it was negatively related to fruit consumption, increased with age, was higher among those who were born in the Tapajos region, and varied with community. U-Hg was also significantly related to carnivorous but not non-carnivorous fish consumption, showed a tendency towards a negative relation with fruit consumption, was higher among men compared to women and higher among those born in the region. U-Hg was strongly related to I-Hg, blood methyl Hg (B-MeHg) and blood total Hg (B-THg). The Odds Ratio (OR) for U-Hg above 10 μg/L for those who ate > 4 carnivorous fish

  13. Mercury health effects among the workers extracting gold from carpets and dusted clays through amalgamation and roasting processes.

    Science.gov (United States)

    Gul, Nayab; Khan, Sardar; Khan, Abbas; Ahmad, Sheikh Saeed

    2015-11-01

    Mercury (Hg) is a highly toxic metal which can cause serious health effects. The aim of this research was to determine the concentrations of total Hg (T-Hg), methyl Hg (Me-Hg), and inorganic Hg (I-Hg) in the biological samples (plasma, red blood cells (RBCs), urine, hair, and nails) of the exposed goldsmith workers. This is the first study that determines the detailed Hg concentrations in the biological samples (plasma, RBCs, urine, hair, and nails) of the exposed goldsmith workers and correlates them with the diseases noted among the workers in a single paper. Biological samples were collected from goldsmith workers (n = 40) and analyzed for T-Hg, Me-Hg, and I-Hg using atomic absorption spectrometer equipped with mercury hydride system. The mean T-Hg concentration in RBCs (33 μg L(-1)), plasma (11.8 μg L(-1)), urine (167 μg L(-1)), hair (4.21 μg g(-1)), and nails (5.91 μg g(-1)) were higher than the control RBCs (1.64 μg L(-1)), plasma (0.55 μg L(-1)), urine (2.72 μg L(-1)), hair (0.35 μg g(-1)), and nails (0.51 μg g(-1)). All workers participated in this study were suffering from physical and mental diseases. The concentration of Hg was found higher among the workers suffering from mental diseases as compared to those suffering from physical diseases. Among the physical diseases, the most serious diseases were sexual dysfunction, skin diseases, and fatigue because the workers suffering from these diseases had higher concentration of Hg than the workers with other diseases. The occurrence of physical diseases (88%) was greater than the mental diseases (53%) among the workers. The correlations of physical and mental diseases with experience (years of work) and exposure time were significant (p  0.05) correlation was observed between demographic parameters and Hg concentrations in the biological samples of the workers. The burning process of amalgamated gold is a significant source of Hg exposure to goldsmith workers; therefore, awareness and

  14. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils

    International Nuclear Information System (INIS)

    Rieder, Stephan R.; Brunner, Ivano; Horvat, Milena; Jacobs, Anna; Frey, Beat

    2011-01-01

    Accumulation of total and methyl-Hg by mushrooms and earthworms was studied in thirty-four natural forest soils strongly varying in soil physico-chemical characteristics. Tissue Hg concentrations of both receptors did hardly correlate with Hg concentrations in soil. Both total and methyl-Hg concentrations in tissues were species-specific and dependent on the ecological groups of receptor. Methyl-Hg was low accounting for less than 5 and 8% of total Hg in tissues of mushrooms and earthworms, respectively, but with four times higher concentrations in earthworms than mushrooms. Total Hg concentrations in mushrooms averaged 0.96 mg Hg kg -1 dw whereas litter decomposing mushrooms showed highest total Hg and methyl-Hg concentrations. Earthworms contained similar Hg concentrations (1.04 mg Hg kg -1 dw) whereas endogeic earthworms accumulated highest amounts of Hg and methyl-Hg. - Highlights: → Hg and MeHg concentrations in mushrooms and earthworms at unpolluted forest soils. → Mushrooms and earthworms contained similar Hg concentrations. → MeHg was present in traces but four times higher in earthworms than in mushrooms. → Ecophysiological group influenced Hg and MeHg concentration in both receptors. - Accumulation of Hg and methyl-Hg by mushrooms and earthworms is species- and ecophysiological group dependent.

  15. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Stephan R. [Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf (Switzerland); Institute for Biogeochemistry and Pollutant Dynamics, ETH Zuerich, 8092 Zuerich (Switzerland); Brunner, Ivano [Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf (Switzerland); Horvat, Milena [Jozef Stefan Institute, 1001 Ljubliana (Slovenia); Jacobs, Anna [Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf (Switzerland); Department of Environmental Chemistry, University of Kassel, 37213 Witzenhausen (Germany); Frey, Beat, E-mail: beat.frey@wsl.ch [Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf (Switzerland)

    2011-10-15

    Accumulation of total and methyl-Hg by mushrooms and earthworms was studied in thirty-four natural forest soils strongly varying in soil physico-chemical characteristics. Tissue Hg concentrations of both receptors did hardly correlate with Hg concentrations in soil. Both total and methyl-Hg concentrations in tissues were species-specific and dependent on the ecological groups of receptor. Methyl-Hg was low accounting for less than 5 and 8% of total Hg in tissues of mushrooms and earthworms, respectively, but with four times higher concentrations in earthworms than mushrooms. Total Hg concentrations in mushrooms averaged 0.96 mg Hg kg{sup -1} dw whereas litter decomposing mushrooms showed highest total Hg and methyl-Hg concentrations. Earthworms contained similar Hg concentrations (1.04 mg Hg kg{sup -1} dw) whereas endogeic earthworms accumulated highest amounts of Hg and methyl-Hg. - Highlights: > Hg and MeHg concentrations in mushrooms and earthworms at unpolluted forest soils. > Mushrooms and earthworms contained similar Hg concentrations. > MeHg was present in traces but four times higher in earthworms than in mushrooms. > Ecophysiological group influenced Hg and MeHg concentration in both receptors. - Accumulation of Hg and methyl-Hg by mushrooms and earthworms is species- and ecophysiological group dependent.

  16. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  17. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    Science.gov (United States)

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Atmospheric mercury deposition to forests in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  19. Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding

    Science.gov (United States)

    Poulin, Brett; Aiken, George R.; Nagy, Kathryn L.; Manceau, Alain; Krabbenhoft, David P.; Ryan, Joseph N.

    2016-01-01

    Riparian soils are an important environment in the transport of mercury in rivers and wetlands, but the biogeochemical factors controlling mercury dynamics under transient redox conditions in these soils are not well understood. Mercury release and transformations in the Oa and underlying A horizons of a contaminated riparian soil were characterized in microcosms and an intact soil core under saturation conditions. Pore water dynamics of total mercury (HgT), methylmercury (MeHg), and dissolved gaseous mercury (Hg0(aq)) along with selected anions, major elements, and trace metals were characterized across redox transitions during 36 d of flooding in microcosms. Next, HgT dynamics were characterized over successive flooding (17 d), drying (28 d), and flooding (36 d) periods in the intact core. The observed mercury dynamics exhibit depth and temporal variability. At the onset of flooding in microcosms (1–3 d), mercury in the Oa horizon soil, present as a combination of ionic mercury (Hg(II)) bound to thiol groups in the soil organic matter (SOM) and nanoparticulate metacinnabar (b-HgS), was mobilized with organic matter of high molecular weight. Subsequently, under anoxic conditions, pore water HgT declined coincident with sulfate (3–11 d) and the proportion of nanoparticulate b-HgS in the Oa horizon soil increased slightly. Redox oscillations in the intact Oa horizon soil exhausted the mobile mercury pool associated with organic matter. In contrast, mercury in the A horizon soil, present predominantly as nanoparticulate b-HgS, was mobilized primarily as Hg0(aq) under strongly reducing conditions (5–18 d). The concentration of Hg0(aq) under dark reducing conditions correlated positively with byproducts of dissimilatory metal reduction (P(Fe,Mn)). Mercury dynamics in intact A horizon soil were consistent over two periods of flooding, indicating that nanoparticulate b-HgS was an accessible pool of mobile mercury over recurrent reducing conditions. The

  20. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water

    Science.gov (United States)

    Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A.; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2014-06-01

    Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels

  1. Mercury and selenium in stranded Indo-Pacific humpback dolphins and implications for their trophic transfer in food chains.

    Directory of Open Access Journals (Sweden)

    Duan Gui

    Full Text Available As top predators in the Pearl River Estuary (PRE of China, Indo-Pacific humpback dolphins (Sousa chinensis are bioindicators for examining regional trends of environmental contaminants in the PRE. We examined samples from stranded S. chinensis in the PRE, collected since 2004, to study the distribution and fate of total mercury (THg, methylmercury (MeHg and selenium (Se in the major tissues, in individuals at different ages and their prey fishes from the PRE. This study also investigated the potential protective effects of Se against the toxicities of accumulated THg. Dolphin livers contained the highest concentrations of THg (32.34±58.98 µg g(-1 dw and Se (15.16±3.66 µg g(-1 dw, which were significantly different from those found in kidneys and muscles, whereas the highest residue of MeHg (1.02±1.11 µg g(-1 dw was found in dolphin muscles. Concentrations of both THg and MeHg in the liver, kidney and muscle of dolphins showed a significantly positive correlation with age. The biomagnification factors (BMFs of inorganic mercury (Hginorg in dolphin livers (350× and MeHg in muscles (18.7× through the prey fishes were the highest among all three dolphin tissues, whereas the BMFs of Se were much lower in all dolphin tissues. The lower proportion of MeHg in THg and higher Se/THg ratios in tissues were demonstrated. Our studies suggested that S. chinensis might have the potential to detoxify Hg via the demethylation of MeHg and the formation of tiemannite (HgSe in the liver and kidney. The lower threshold of hepatic THg concentrations for the equimolar accumulation of Se and Hg in S. chinensis suggests that this species has a greater sensitivity to THg concentrations than is found in striped dolphins and Dall's porpoises.

  2. Mercury and Selenium in Stranded Indo-Pacific Humpback Dolphins and Implications for Their Trophic Transfer in Food Chains

    Science.gov (United States)

    Gui, Duan; Yu, Ri-Qing; Sun, Yong; Chen, Laiguo; Tu, Qin; Mo, Hui; Wu, Yuping

    2014-01-01

    As top predators in the Pearl River Estuary (PRE) of China, Indo-Pacific humpback dolphins (Sousa chinensis) are bioindicators for examining regional trends of environmental contaminants in the PRE. We examined samples from stranded S. chinensis in the PRE, collected since 2004, to study the distribution and fate of total mercury (THg), methylmercury (MeHg) and selenium (Se) in the major tissues, in individuals at different ages and their prey fishes from the PRE. This study also investigated the potential protective effects of Se against the toxicities of accumulated THg. Dolphin livers contained the highest concentrations of THg (32.34±58.98 µg g−1 dw) and Se (15.16±3.66 µg g−1 dw), which were significantly different from those found in kidneys and muscles, whereas the highest residue of MeHg (1.02±1.11 µg g−1 dw) was found in dolphin muscles. Concentrations of both THg and MeHg in the liver, kidney and muscle of dolphins showed a significantly positive correlation with age. The biomagnification factors (BMFs) of inorganic mercury (Hginorg) in dolphin livers (350×) and MeHg in muscles (18.7×) through the prey fishes were the highest among all three dolphin tissues, whereas the BMFs of Se were much lower in all dolphin tissues. The lower proportion of MeHg in THg and higher Se/THg ratios in tissues were demonstrated. Our studies suggested that S. chinensis might have the potential to detoxify Hg via the demethylation of MeHg and the formation of tiemannite (HgSe) in the liver and kidney. The lower threshold of hepatic THg concentrations for the equimolar accumulation of Se and Hg in S. chinensis suggests that this species has a greater sensitivity to THg concentrations than is found in striped dolphins and Dall’s porpoises. PMID:25310100

  3. Portuguese preschool children: Benefit (EPA+DHA and Se) and risk (MeHg) assessment through the consumption of selected fish species.

    Science.gov (United States)

    Cardoso, C; Bernardo, I; Bandarra, N M; Louro Martins, L; Afonso, C

    2018-05-01

    This study aimed to assess the risk-benefit balance associated to fish consumption by Portuguese preschool children. For this purpose, databases (from IPMA and literature) were mined and mathematically processed by a model based on the Extreme Value Theory assuming consumption scenarios. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) and selenium (Se) and methylmercury (MeHg) were selected as critical components of fish, given their health impact and significant contents in some fish species. Assessment also took into account that Se may protect against MeHg toxicity. With exception of blue shark, Se Health Benefit Value (Se-HBV), was always positive (ranging between 3.3 and 14.9) and Se:MeHg ratio was always higher than one (3.8 to 32.3). It was also estimated that the deleterious effects of MeHg on children IQ were offset by the beneficial impact of EPA+DHA in fish except for grilled black scabbardfish consumed every day. Blue shark, regardless of the culinary treatment, yielded very high probabilities of exceeding MeHg TWI (higher than 84 % with a single weekly meal), thus raising serious concerns. EPA+DHA benefits were high in salmon regardless of culinary treatment (> 84 %). Fish consumption by children is advisable with exception of blue shark and boiled and grilled tuna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Distribution and availability of mercury and methylmercury in different waters from the Rio Madeira Basin, Amazon.

    Science.gov (United States)

    Vieira, Miguel; Bernardi, José V E; Dórea, José G; Rocha, Bruno C P; Ribeiro, Romulo; Zara, Luis F

    2018-04-01

    Waters from the Amazon Basin have distinct physicochemical characteristics that can be optically classified as "black", "clear" and "white". We studied the distribution of total-Hg (THg) and methyl-Hg (MeHg) in these waters and respective suspended solids, sediment, phytoplankton, zooplankton, and benthic macroinvertebrates (BM) in the Madeira River Basin. Compared with the other types of water, the more acidic "black" kind had the highest THg and MeHg concentrations. The trend (black > clear > white) occurred for the concentrations of THg and MeHg in sediments and in the biotic compartment (plankton, macroinvertebrates). Organic Hg accounted for a small percentage (0.6-0.4%) of the THg in sediments but was highest in water (17-15%). For plankton and BM, the biota sediment accumulation factor (BSAFs) of MeHg (53-125) were greater than those of THg (4.5-15); however, the BSAF trend according to water type (black > clear > white) was only significant for MeHg. Sediment THg is correlated with all forms of Hg in biotic and abiotic matrices. The results indicate that water acidity in the Amazon is an important chemical characteristic in assessing Hg contamination of sediments and bioaccumulation in the aquatic food web. The differences in the BSAFs between THg and MeHg support the use of this factor for evaluating the bioaccumulation potential of sediment-bound Hg. The results add information critical to assessing environmental and health risks related to Hg methylation and potential fish-MeHg contamination, especially in tropical aquatic environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Total mercury and methylmercury fluxes via emerging insects in recently flooded hydroelectric reservoirs and a natural lake

    International Nuclear Information System (INIS)

    Tremblay, Alain; Lucotte, Marc; Cloutier, Louise

    1998-01-01

    Total mercury (total Hg) concentrations in emerging aquatic insects ranged from 140 to 1500 ng g -1 dry wt. in two hydroelectric reservoirs of northern Quebec compared with 50-160 ng g -1 dry wt. in a natural lake. Methylmercury (MeHg) concentrations were somewhat lower, ranging from 35 to 800 ng Hg g -1 dry wt. in reservoirs and from 29 to 90 ng g -1 dry wt. in the natural lake. Contamination of insect taxa of reservoirs was on average 2-3 times higher than their counterparts in the natural lake. There was no difference between total Hg and MeHg concentrations of insects sampled from flooded forest soils and flooded peatland, although total Hg and MeHg concentrations differed between flooded peatland and flooded forest soils themselves. Insect biomasses were approx. two times higher in the reservoirs than in the natural lake (580-2200 mg m -2 year -1 dry wt., 950 mg m -2 year -1 dry wt., respectively); chironomids dominated in the reservoirs and trichopterans dominated in the natural lake. Similarly, total MeHg fluxes via emerging insects were approx. 2-4 times higher in reservoirs than that of the natural lake (55-224 ng MeHg m -2 year -1 dry wt., 74 ng MeHg m -2 year -1 dry wt., respectively). Our results show the importance of the insect community in the transfer of MeHg from flooded soils and flooded peatlands to fish, and that this pathway probably makes a significant contribution to the rapid rise of Hg levels in the fish community after flooding

  6. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    Science.gov (United States)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, 5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  7. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    International Nuclear Information System (INIS)

    Guzmán-Mar, J.L.; Hinojosa-Reyes, L.; Serra, A.M.; Hernández-Ramírez, A.; Cerdà, V.

    2011-01-01

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: ► The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. ► The speciation of MeHg + , Hg 2+ and EtHg + was achieved on a RP C18 monolithic column. ► The hyphenated system provided higher sample throughput compared to HPLC–CV/AFS. ► The limits of detection for mercury species were comparable or better than those reported by HPLC–CV/AFS. ► The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg 2+ ), methylmercury (MeHg + ) and ethylmercury (EtHg + ) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L −1 for MeHg + , Hg 2+ and EtHg + , respectively. The relative standard deviation (RSD, n = 6) of the peak height for 3, 6 and 3 μg L −1 of MeHg + , Hg 2+ and EtHg + (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC–CV/AFS hyphenated systems

  8. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yun [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: > The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. > The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. > Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  9. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    International Nuclear Information System (INIS)

    Wu Yun; Wang Wenxiong

    2011-01-01

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: → The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. → The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. → Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  10. Mercury effects on Thalassiosira weissflogii: Applications of two-photon excitation chlorophyll fluorescence lifetime imaging and flow cytometry

    International Nuclear Information System (INIS)

    Wu Yun; Zeng Yan; Qu, Jianan Y.; Wang Wenxiong

    2012-01-01

    The toxic effects of inorganic mercury [Hg(II)] and methylmercury (MeHg) on the photosynthesis and population growth in a marine diatom Thalassiosira weissflogii were investigated using two methods: two-photon excitation fluorescence lifetime imaging (FLIM) and flow cytometry (FCM). For photosynthesis, Hg(II) exposure increased the average chlorophyll fluorescence lifetime, whereas such increment was not found under MeHg stress. This may be caused by the inhibitory effect of Hg(II) instead of MeHg on the electron transport chain. For population growth, modeled specific growth rate data showed that the reduction in population growth by Hg(II) mainly resulted from an increased number of injured cells, while the live cells divided at the normal rates. However, MeHg inhibitory effects on population growth were contributed by the reduced division rates of all cells. Furthermore, the cell images and the FCM data reflected the morphological changes of diatom cells under Hg(II)/MeHg exposure vividly and quantitatively. Our results demonstrated that the toxigenicity mechanisms between Hg(II) and MeHg were different in the algal cells.

  11. Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles

    International Nuclear Information System (INIS)

    Zhou, N.; Chen, H.; Li, J.; Chen, L.

    2013-01-01

    We have developed an electrochemical sensor for highly selective and sensitive determination of Hg(II). It is based on the specific binding of 5-methyl-2-thiouracil (MTU) and Hg(II) to the surface of an indium tin oxide (ITO) electrode modified with a composite made from graphene oxide (GO) and gold nanoparticles (AuNPs). This leads to a largely enhanced differential pulse voltammetric response for Hg(II). Following optimization of the method, a good linear relationship (R = 0.9920) is found between peak current and the concentration of Hg(II) in the 5.0-110.0 nM range. The limit of detection (LOD) is 0.78 nM at a signal-to-noise ratio of 3. A study on the interference by several metal ions revealed no interferences. The feasibility of this method was demonstrated by the analyses of real water samples. The LODs are 6.9, 1.0 and 1.9 nM for tap water, bottled water and lake water samples, respectively, and recoveries for the water samples spiked with 8.0, 50.0 and 100.0 nM were 83.9-96.8 %, with relative standard deviations ranging from 3.3 % to 5.2 %. (author)

  12. Selective removal mercury (Ⅱ) from aqueous solution using silica aerogel modified with 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion

    Energy Technology Data Exchange (ETDEWEB)

    Tadayon, Fariba; Saber-Tehrani, Mohammad; Motahar, Shiva [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Silica aerogel surface modifications with chelating agents for adsorption/removal of metal ions have been reported in recent years. This investigation reported the preparation of silica aerogel (SA) adsorbent coupled with metal chelating ligands of 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion (AMTT) and its application for selective adsorption of Hg(Ⅱ) ion. The adsorbent was characterized by Fourier transform infrared spectra (FTIR) and thermo gravimetric analysis (TGA) measurements, nitrogen physisorption and scanning electron microscope (SEM). Optimal experimental conditions including pH, temperature, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data given by the Langmuir isotherm equation and the maximum adsorption capacity of the modified silica gel and silica aerogel was 142.85 and 17.24mgg⌃(-1), respectively. Thermodynamic parameters such as Gibbs free energy (ΔG{sup o}), standard enthalpy (ΔH{sup o}) and entropy change (ΔS{sup o}) were investigated. The adsorbed Hg(Ⅱ) on the SA-AMTT adsorbents could be completely eluted by 1.0M KBr solution and recycled at least four times without the loss of adsorption capacity. The results of the present investigation illustrate that modified silica aerogel with AMTT could be used as an adsorbent for the effective removal of Hg(Ⅱ) ions from aqueous solution.

  13. Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

    Science.gov (United States)

    Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu

    2016-04-01

    A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jia Xiaoyu; Han Yi; Liu Xinli; Duan Taicheng; Chen Hangting

    2011-01-01

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg + ) and mercury (Hg 2+ ) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg + and Hg 2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL -1 for MeHg + and 0.0014 ng mL -1 for Hg 2+ , respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL -1 MeHg + and Hg 2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  15. Mercury species accumulation and trophic transfer in biological systems using the Almadén mining district (Ciudad Real, Spain) as a case of study.

    Science.gov (United States)

    Patiño Ropero, M J; Rodríguez Fariñas, N; Mateo, R; Berzas Nevado, J J; Rodríguez Martín-Doimeadios, R C

    2016-04-01

    The impact of mercury (Hg) pollution in the terrestrial environments and the terrestrial food chains including the impact on human food consumption is still greatly under-investigated. In particular, studies including Hg speciation and detoxification strategies in terrestrial animals are almost non-existing, but these are key information with important implications for human beings. Therefore, in this work, we report on Hg species (inorganic mercury, iHg, and monomethylmercury, MeHg) distribution among terrestrial animal tissues obtained from a real-world Hg exposure scenario (Almadén mining district, Spain). Thus, we studied Hg species (iHg and MeHg) and total selenium (Se) content in liver and kidney of red deer (Cervus elaphus; n = 41) and wild boar (Sus scrofa; n = 16). Similar mercury species distribution was found for both red deer and wild boar. Major differences were found between tissues; thus, in kidney, iHg was clearly the predominant species (more than 81%), while in liver, the species distribution was less homogeneous with a percentage of MeHg up to 46% in some cases. Therefore, Hg accumulation and MeHg transfer were evident in terrestrial ecosystems. The interaction between total Se and Hg species has been evaluated by tissue and by animal species. Similar relationships were found in kidney for both Hg species in red deer and wild boar. However, in liver, there were differences between animals. The possible underlying mechanisms are discussed.

  16. Speciation and determination of inorganic mercury and methylmercury by headspace single drop microextraction and electrothermal atomic absorption spectrometry in water and fish

    Energy Technology Data Exchange (ETDEWEB)

    Sarica, Deniz Yurtsever [Scientific and Technological Research Council of Turkey, Ankara Test and Analysis Laboratory, TUeBITAK/ATAL, Besevler, Ankara (Turkey); Tuerker, Ali Rehber [Science Faculty, Department of Chemistry, Gazi University, Ankara (Turkey)

    2012-05-15

    In this study, headspace single drop microextraction (HS-SDME) method in combination with electrothermal atomic absorption spectrometry (ETAAS) method was developed and validated for the speciation and determination of inorganic mercury (iHg) and methylmercury (MeHg). MeHg and iHg species were reduced to volatile methylmercury hydride (CH{sub 3}HgH) and elemental mercury, respectively, in the presence of NaBH{sub 4} and trapped onto a drop of acceptor phase in the tip of a microsyringe. Thiourea and ammonium pyrrolydinedithiocarbamate (APDC) were tested as the acceptor phase. The experimental parameters of the method such as microextraction time, temperature, NaBH{sub 4} concentration, acceptor phase concentration, and pH of the medium were investigated to obtain distinctive conditions for mercury species. Possible interference effects have also been investigated. In order to validation of the method, analytical figures of merits such as accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), and linear working range have been evaluated. Accuracy of the method has been verified by analyzing certified reference materials (BCR 453 Tuna fish) and spiked samples. The proposed method was applied for the speciation and determination of mercury species in water and fish samples. Mercury species (MeHg and iHg) have been determined in the real samples with a relative error less than 10%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Mercury and stable isotope signatures in caged marine fish and fish feeds

    Energy Technology Data Exchange (ETDEWEB)

    Onsanit, Sarayut; Chen, Min; Ke, Caihuan [State Key Laboratory for Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005 (China); Wang, Wen-Xiong [State Key Laboratory for Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Mercury concentrations in caged fish were closely related to Hg concentrations in fish feeds. Black-Right-Pointing-Pointer The trophic transfer factor of methylmercury was dependent on fish feeds, and was the highest for fish fed on pellet feeds. Black-Right-Pointing-Pointer Fish farming may be a good way of reducing the human exposure to Hg because Hg levels can be carefully controlled. - Abstract: Total mercury (THg) and methylmercury (MeHg) concentrations were determined in four species of marine caged carnivorous fish, one species of herbivorous fish and three types of fish feeds (dried pellet feed, forage fish and fish viscera), collected from five cage sites in the rural areas along Fujian coastline, China. For the carnivorous fish, the concentrations of THg and MeHg ranged from 0.03 to 0.31 {mu}g/g and from 0.02 to 0.30 {mu}g/g on wet weight basis, respectively. The concentrations were lower for the herbivorous fish with both within the range of 0.01-0.03 {mu}g/g. Out of the three tested fish feeds, tuna viscera contained the highest level of mercury (0.20 {mu}g/g THg and 0.13 {mu}g/g MeHg), with pellet feed containing the lowest level (0.05 {mu}g/g THg and 0.01 {mu}g/g MeHg). The calculated trophic transfer factor of MeHg was the highest (12-64) for fish fed on pellet feeds, and was the lowest for fish fed on tuna viscera. A significant relationship was found between Hg concentrations in caged fish and in fish feeds, thus Hg was primarily accumulated from the diet. Furthermore, the stable isotope {delta}{sup 15}N was positively correlated with the Hg concentration in two caged sites, indicating that {delta}{sup 15}N may be a suitable tool for tracking mercury in caged fish. We conclude that fish farming may be a good way of reducing the human exposure to Hg because mercury levels can be carefully controlled in such farming systems.

  18. Mercury and stable isotope signatures in caged marine fish and fish feeds

    International Nuclear Information System (INIS)

    Onsanit, Sarayut; Chen, Min; Ke, Caihuan; Wang, Wen-Xiong

    2012-01-01

    Highlights: ► Mercury concentrations in caged fish were closely related to Hg concentrations in fish feeds. ► The trophic transfer factor of methylmercury was dependent on fish feeds, and was the highest for fish fed on pellet feeds. ► Fish farming may be a good way of reducing the human exposure to Hg because Hg levels can be carefully controlled. - Abstract: Total mercury (THg) and methylmercury (MeHg) concentrations were determined in four species of marine caged carnivorous fish, one species of herbivorous fish and three types of fish feeds (dried pellet feed, forage fish and fish viscera), collected from five cage sites in the rural areas along Fujian coastline, China. For the carnivorous fish, the concentrations of THg and MeHg ranged from 0.03 to 0.31 μg/g and from 0.02 to 0.30 μg/g on wet weight basis, respectively. The concentrations were lower for the herbivorous fish with both within the range of 0.01–0.03 μg/g. Out of the three tested fish feeds, tuna viscera contained the highest level of mercury (0.20 μg/g THg and 0.13 μg/g MeHg), with pellet feed containing the lowest level (0.05 μg/g THg and 0.01 μg/g MeHg). The calculated trophic transfer factor of MeHg was the highest (12–64) for fish fed on pellet feeds, and was the lowest for fish fed on tuna viscera. A significant relationship was found between Hg concentrations in caged fish and in fish feeds, thus Hg was primarily accumulated from the diet. Furthermore, the stable isotope δ 15 N was positively correlated with the Hg concentration in two caged sites, indicating that δ 15 N may be a suitable tool for tracking mercury in caged fish. We conclude that fish farming may be a good way of reducing the human exposure to Hg because mercury levels can be carefully controlled in such farming systems.

  19. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  20. Mercury speciation driven by seasonal changes in a contaminated estuarine environment

    Energy Technology Data Exchange (ETDEWEB)

    Bratkič, Arne, E-mail: arne.bratkic@ijs.si [Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Ogrinc, Nives, E-mail: nives.orginc@ijs.si [Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Kotnik, Jože, E-mail: joze.kotnik@ijs.si [Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Faganeli, Jadran, E-mail: faganeli@mbss.org [Marine Biology Station, Fornače 41, 6330 Piran (Slovenia); Žagar, Dušan, E-mail: dusan.zagar@fgg.uni-lj.si [Faculty of Civil and Geodetic Engineering, Jamova 2, 1000 Ljubljana (Slovenia); Yano, Shinichiro [Faculty of Engineering, Kyushu University, Fukuoka 812-8581 (Japan); Tada, A